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Abstract

A novel approach which combines isogeometric collocation and an equilibrium-

based stress recovery technique is applied to analyze laminated composite

plates. Isogeometric collocation is an appealing strong form alternative to

standard Galerkin approaches, able to achieve high order convergence rates

coupled with a significantly reduced computational cost. Laminated com-

posite plates are herein conveniently modeled considering only one element

through the thickness with homogenized material properties. This guarantees

accurate results in terms of displacements and in-plane stress components.

To recover an accurate out-of-plane stress state, equilibrium is imposed in

strong form as a post-processing correction step, which requires the shape

functions to be highly continuous. This continuity demand is fully granted
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by isogeometric analysis properties, and excellent results are obtained us-

ing a minimal number of collocation points per direction, particularly for

increasing values of length-to-thickness plate ratio and number of layers.

Keywords: Isogeometric Collocation, Splines, Orthotropic materials,

Homogenization, Laminated composite plates, Stress recovery procedure

1. Introduction

Composite materials consist of two or more materials which combined

present enhanced properties that could not be acquired employing any of the

constituents alone (see, e.g., [28, 41, 65, 74] and references therein). The in-

terest for composite structures in the engineering community has constantly

grown in recent years due to their appealing mechanical properties such as in-

creased stiffness and strength, reduced weight, improved corrosion and wear

resistance, just to recall some of them. The majority of man-made compos-

ite materials consists of reinforced fibers embedded in a base material, called

matrix (see, e.g., [34, 65]). The matrix material keeps the fibers together,

acts as a load-transfer medium between fibers, process which takes place

through shear stresses, and protects those elements from being exposed to

the environment, while the resistence properties of composites are given by

the fibers which are stiffer and stronger than the soft matrix. In this paper we

focus on laminated composite materials, which are formed by a collection of

building blocks or plies, stacked to achieve the desired stiffness and thickness.

For this kind of structures also simple loading conditions, such as traction

or bending, cause a complex 3D stress state because of the difference in the

material properties between the layers, which may lead to delamination, con-
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sequently requiring an accurate stress evaluation through the thickness (see,

e.g., [65, 70]). As an alternative to two-dimensional theories, often insuf-

ficiently accurate to depict delamination and interlaminar damage, and to

layerwise theories, which typically show an high computational cost, a novel

method combining an isogeometric analysis (IGA) Galerkin approach with

a stress-recovery technique has been recently proposed in [23]. Introduced

in 2005 by Hughes et al. [36], IGA aims at integrating design and analysis

employing shape functions typically belonging to Computer Aided Design

field (such as, B-Splines and NURBS). Using the same shape functions to

approximate both geometry and field variables leads to a cost-saving simpli-

fication of expensive mesh generation and refinement processes required by

standard finite element analyisis. One of the most important features of IGA

is the high-regularity of its basis functions leading to superior approximation

properties. IGA proved to be successful in a wide variety of problems rang-

ing from solids and structures (see, e.g., [5, 11, 13, 22, 24, 37, 39, 49, 58]) to

fluids (see, e.g., [1, 12, 30, 50]), fluid-structure interaction (see, e.g., [10, 35]),

opening also the door to geometrically flexible discretizations of higher-order

partial differential equations in primal form as in [3, 29, 43, 51]. However,

a well-known important issue of IGA is related to the development of effi-

cient integration rules when higher-order approximations are employed (see,

e.g., [7, 26, 38, 67]). In attempt to address this problem taking full ad-

vantage of the special possibilities offered by IGA, isogeometric collocation

(IGA-C) schemes have been proposed in [4]. The aim was to optimize the

computational cost still relying on IGA geometrical flexibility and accuracy.

Collocation main idea, in contrast to Galerkin-type formulations, consists
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in the discretization of the governing partial differential equations in strong

form, evaluated at suitable points. Since integration is not required, iso-

geometric collocation results in a very fast method providing superior per-

formance in terms of accuracy-to-computational effort ratio with respect to

Galerkin formulations, in particular when higher-order approximation de-

grees are adopted (see [68]). Isogeometric collocation has been particularly

successful in the context of structural elements, where isogeometric colloca-

tion has proven to be particularly stable in the context of mixed methods. In

particular, Bernoulli-Euler beam and Kirchhoff plate elements have been pro-

posed [64], while mixed formulations both for Timoshenko initially-straight

planar [17] and non-prismatic [9] beams as well as for curved spatial rods [8]

have been introduced and studied, and then effectively extended to the geo-

metrically nonlinear case [47, 53, 54, 55, 75, 77]. Isogeometric collocation has

been moreover successfully applied to the solution of Reissner-Mindlin plate

problems in [44], and new formulations for shear-deformable beams [45, 47],

as well as shells [46, 56] have been solved also via IGA collocation. Since

its introduction, many promising significant works on isogeometric colloca-

tion methods have been published also in other fields, including phase-field

modeling [31], contact [21, 48, 76] and poromechanics [59]. Moreover, com-

binations with different spline spaces, like hierarchical splines, generalized

B-Splines, and T-Splines, have been successfully tested in [14, 52, 68], while

alternative effective selection strategies for collocation points have been pro-

posed in [2, 31, 57]. IGA-Galerkin methods have already been used to solve

composite laminate problems, especially relying on high-order theories for en-

hanced plate and shell theories [27, 42, 66, 69, 72]. Recently an isogeometric
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collocation numerical formulation has been proposed [61] to study Reissner-

Mindlin composite plates. Other Galerkin methods [32, 33, 66] compute

instead a full 3D stress state using isogeometric analysis, applying a layer-

wise technique. This method can also be applied to isogeometric collocation

adopting a multipatch approach, which models each layer as a patch (see

Figure 1(a)), enforcing normal stress continuity at the inter-patches bound-

aries [6]. Clearly a layerwise method exploits a number of degrees of free-

dom directly proportional to the number of layers, inevitably leading to high

computational costs. In this paper we apply a single patch 3D isogeometric

collocation method to analyze the behavior of composite plates. We adopt a

homogenized single-element approach (see Figure 1(b)), which conveniently

uses one element through the thickness, coupled with a post-processing tech-

nique in order to recover a proper out-of-plane stress state. This method is

significantly less expensive compared to a layerwise approach since employs

a considerably lower number of degrees of freedom.

Material layer 1

Material layer 2

Material layer 3

(a) Multipatch approach

Homogenized material

(b) Homogenized single-element approach

Figure 1: Layerwise approach and homogenized single-element example of isogeometric
shape functions for a degree of approximation equal to 4.

The post-processing approach, first proposed in [23], takes inspiration from

recovery techniques which can be found in [16, 19, 25, 42, 63, 73] and is

based on the direct integration of the equilibrium equations to compute the
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out-of-plane stress components from the in-plane ones directly derived from

a coarse displacement solution.

The structure of the paper is organized as follows. In Section 2 the fundamen-

tal concepts of multivariate B-Splines and NURBS are presented, followed by

an introduction to isogeometric collocation and a description of our IGA-C

scheme for orthotropic elasticity. In Section 3 we define our isogeometric col-

location strategy to study laminated plates, which combines a homogenized

single-element approach with an equilibrium-based stress recovery technique.

In Section 4 we present our reference test case and provide results for the

single-element approach. Several numerical benchmarks are displayed, which

show a significant improvement between non-treated and post-processed out-

of-plane stress components. Finally we provide some mesh sensitivity tests

considering an increasing length-to-thickness ratio and numbers of layers to

show the effectiveness of the method. We draw our conclusions in Section 5.

2. Isogeometric Collocation: Basics and application to orthotropic
elasticity

In this section we introduce the notions of multivariate B-Splines and

NURBS, provide some details regarding isogeometric collocation and describe

our collocation scheme in the context of linear orthotropic elasticity.

2.1. Multivariate B-Splines and NURBS

In the following, we introduce the basic definitions and notations about

multivariate B-Splines and NURBS. For further details, readers may refer

to [15, 36, 62], and references therein. Multivariate B-Splines are generated

through the tensor product of univariate B-Splines. We denote with dp the
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dimension of the parametric space and therefore dp univariate knot vectors

have to be introduced as

Θ = {θd1, ..., θdmd+pd+1} d = 1, ..., dp , (1)

where pd represents the polynomial degree in the parametric direction d, and

md is the associated number of basis functions. Given the univariate basis

functions Nd
id,pd

associated to each parametric direction ξd, the multivariate

basis functions Bi,p(ξ) are obtained as:

Bi,p(ξ) = dp∏
d=1Nid,pd(ξd) , (2)

where i = {i1, ..., idp} plays the role of a multi-index which describes the con-

sidered position in the tensor product structure, p = {p1, ..., pd} indicates the
polynomial degrees, and ξ = {ξ1, ..., ξdp} represents the vector of the para-

metric coordinates in each parametric direction d. B-Spline multidimensional

geometries are built from a linear combination of multivariate B-Spline basis

functions as follows

S(ξ) = ∑
i
Bi,p(ξ)Pi , (3)

where the coefficients Pi ∈ Rds of the linear combination are the so-called

control points (ds is the dimension of the physical space) and the summation

is extended to all combinations of the multi-index i. NURBS geometries in

Rds are instead obtained from a projective transformation of their B-Spline

counterparts in Rds+1. Defining wi as the collection of weights according to

the multi-index i, multivariate NURBS basis functions are obtained as

Ri,p(ξ) = Bi,p(ξ)wi∑jBj,p(ξ)wj
(4)
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and NURBS multidimensional geometries are built as

S(ξ) = ∑
i
Ri,p(ξ)Pi . (5)

2.2. An Introduction to Isogeometric collocation

Collocation methods have been introduced within isogeometric analysis

as an attempt to address a well-known important issue of early IGA-Galerkin

formulations, related to the development of efficient integration rules for

higher-order approximations. In fact, element-wise Gauss quadrature, typi-

cally used for finite elements and originally adopted for Galerkin-based IGA,

does not properly take into account inter-element higher continuity leading

to sub-optimal array formation and assembly costs, significantly affecting the

performance of IGA methods. Isogeometric collocation aimed at optimizing

computational cost, since it may be viewed as a variant of one-point quadra-

ture numerical scheme, still taking advantage of IGA geometrical flexibility

and accuracy. Collocation methods are based on the direct discretization in

strong form of the differential equations governing the problem evaluated at

suitable points. The isoparametric paradigm is adopted and the same basis

functions are used to describe both geometry and problem unknowns. Once

the approximations are carried out, as in a typical Galerkin-IGA context,

by means of a linear combinations of IGA basis functions and control vari-

ables, the discrete differential equations are collocated at each collocation

point. Consequently a delicate issue is represented by the determination of

suitable collocation points. A widespread approach which is proposed in

the engineering literature is to collocate at the images of Greville abscissae

(see, e.g., [40]), but this represents just the simplest possible option (see,
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e.g., [18, 20] for alternative choices). Along each parametric direction d, Gre-

ville abscissae consist of a set of md points, obtained from the knot vector

components, θdi , as

θ
d

i = θdi+1 + θdi+2 + ... + θdi+p
pd

i = 1, ...,md , (6)

pd being the degree of approximation. Since the approximation is performed

through direct collocation of the differential equations, no integrals need to

be computed and consequently, evaluation and assembly operations lead to

a significantly reduced computational cost.

2.3. Numerical formulation for orthotropic elasticity

Once a strategy to select collocation points and compute IGA shape func-

tions is set, a proper description of the equations in strong form for the prob-

lem under examination is required, as mentioned in Section 2.2. We therefore

recall the classical elasticity problem in strong form considering a small strain

regime and detail equilibrium equations using Einstein’s notation (7). The

following notations are used: Ω ⊂ R3, is an open bounded domain, represent-

ing an elastic three-dimensional body, ΓN and ΓD are defined as boundary

portions subjected respectively to Neumann and Dirichlet conditions such

that ΓN ∪ΓD = ∂Ω and ΓN ∩ΓD = ∅. Accordingly, the equilibrium equations

and the corresponding boundary conditions are:

σij,j + bi = 0 in Ω (7a)

σijnj = ti on ΓN (7b)

ui = ui on ΓD (7c)
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where σij and ui represent respectively the Cauchy stress and displacement

components, while bi and ti the volume and traction forces, nj the outward

normal, and ui the prescribed displacements. The elasticity problem is finally

completed by the kinematic relations in small strain

εij = ui,j + uj,i
2

, (8)

as well as by the constitutive equations

σij = Cijkmεkm , (9)

where Cijkm is the fourth order elasicity tensor.

As we described in Section 1, the basic building block of a laminate is a lam-

ina, i.e., a flat arrangement of unidirectional fibers, considering the simplest

case, embedded in a matrix. In order to increase the composite resistance

properties cross-ply laminates can be employed (i.e., all the plies used to form

the composite stacking sequence are piled alternating different fiber layers

orientations) in which all unidirectional layers are individually orthotropic.

Since the proposed collocation approach uses one element through the thick-

ness to model the composite plate as a homogenized single building block,

we focus in this section on the collocation formulation for a plate formed by

only one orthotropic elastic lamina. Considering three mutually orthogonal

planes of material symmetry for each ply, the number of elastic coefficients

of the fourth order elasticity tensor Cijkm is reduced to 9 in Voigt notation,

that can be expressed in terms of engineering constants as
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C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

symm C44 0 0

C55 0

C66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

E1

−ν12

E1

−ν13

E1

0 0 0

1

E2

−ν23

E2

0 0 0

1

E3

0 0 0

symm
1

G23

0 0

1

G13

0

1

G12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

.

(10)

The displacement field is then approximate as a linear combination of

NURBS multivariate shape functions and control points as follows

u(ξ) = Ri,p(ξ)ûi ,

v(ξ) = Ri,p(ξ)v̂i ,

w(ξ) = Ri,p(ξ)ŵi .

(11)

Having defined τ as the matrix of collocation points, we insert the approx-

imations (11) into kinematics equations (8) and we combine the obtained

expressions with the constitutive relations (9). Finally we substitute into

equilibrium equations (7a) obtaining

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11(τ ) K12(τ ) K13(τ )
K22(τ ) K23(τ )

symm K33(τ )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅
⎛⎜⎜⎜⎜⎜⎜⎝

ûi

v̂i

ŵi

⎞⎟⎟⎟⎟⎟⎟⎠
= −b(τ ), ∀τ ∈ Ω , (12)
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where Kij(τ ) cofficients can be expressed as

K11(τ ) = C11

∂2Ri,p(τ )
∂x1

2
+C66

∂2Ri,p(τ )
∂x2

2
+C55

∂2Ri,p(τ )
∂x3

2
, (12a)

K22(τ ) = C66

∂2Ri,p(τ )
∂x1

2
+C22

∂2Ri,p(τ )
∂x2

2
+C44

∂2Ri,p(τ )
∂x3

2
, (12b)

K33(τ ) = C55

∂2Ri,p(τ )
∂x1

2
+C44

∂2Ri,p(τ )
∂x2

2
+C33

∂2Ri,p(τ )
∂x3

2
, (12c)

K23(τ ) = (C23 +C44)∂2Ri,p(τ )
∂x2∂x3

, (12d)

K13(τ ) = (C13 +C55)∂2Ri,p(τ )
∂x1∂x3

, (12e)

K12(τ ) = (C12 +C66)∂2Ri,p(τ )
∂x1∂x2

, (12f)

and substituting in (7b) we obtain:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K̃11(τ ) K̃12(τ ) K̃13(τ )
K̃22(τ ) K̃23(τ )

symm K̃33(τ )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅
⎛⎜⎜⎜⎜⎜⎜⎝

ûi

v̂i

ŵi

⎞⎟⎟⎟⎟⎟⎟⎠
= t(τ ), ∀τ ∈ ΓN (13)

with K̃ij(τ ) components having the following form

K̃11(τ ) = C11

∂Ri,p(τ )
∂x1

n1 +C66

∂Ri,p(τ )
∂x2

n2 +C55

∂Ri,p(τ )
∂x3

n3 , (13a)

K̃22(τ ) = C66

∂Ri,p(τ )
∂x1

n1 +C22

∂Ri,p(τ )
∂x2

n2 +C44

∂Ri,p(τ )
∂x3

n3 , (13b)

K̃33(τ ) = C55

∂Ri,p(τ )
∂x1

n1 +C44

∂Ri,p(τ )
∂x2

n2 +C33

∂Ri,p(τ )
∂x3

n3 , (13c)

K̃23(τ ) = C23

∂Ri,p(τ )
∂x3

n2 +C44

∂Ri,p(τ )
∂x2

n3 , (13d)
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K̃13(τ ) = C13

∂Ri,p(τ )
∂x3

n1 +C55

∂Ri,p(τ )
∂x1

n3 , (13e)

K̃12(τ ) = C12

∂Ri,p(τ )
∂x2

n1 +C66

∂Ri,p(τ )
∂x1

n2 . (13f)

As we can see from equations (13), Neumann boundary conditions are di-

rectly imposed as strong equations at the collocation points belonging to the

boundary surface (see, [6, 21]), with the usual physical meaning of prescribed

boundary traction.

3. An IGA collocation approach to model 3D composite plates

In this section we describe our IGA 3D collocation strategy to model

composite plates. The proposed method, known as single element approach,

relies on a homogenization technique combined with a post-processing ap-

proach based on the imposition of equilibrium equations in strong form.

3.1. Single-element approach

The single-element approach considers the plate discretized by a single

element through the thickness, which strongly reduces the number of degrees

of freedom with respect to layerwise methods. The material matrix is there-

fore homogenized to account for the presence of the layers as Figure 1(b)

clearly describes.

Remark 1. Considering a single-element homogenized approach is effec-
tive only for through-the-thickness symmetric layer distributions, as for non-
symmetric ply stacking sequences the plate middle plane is not balanced. In
the case of non-symmetric layer distributions this technique is still applicable
when the stacking sequence can be split into two symmetric piles, using one
element per homogenized stack with a C0 interface.
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This method provides accurate results only in terms of displacements and

in-plane stress components and, in order to recover a proper out-of-plane

stress state, following [23], we propose to couple it with a post-processing

technique. To characterize the variation of the material properties from layer

to layer, we homogenize the constitutive behavior to create an equivalent

single-layer laminate, referring to [71], where explicit expressions for the ef-

fective elastic constants of the equivalent laminate are given as

C11 = N∑
k=1 tkC

(k)
11 + N∑

k=2(C(k)13 −C13)tk (C(1)13 −C(k)13 )
C(k)33

(14a)

C12 = N∑
k=1 tkC

(k)
12 + N∑

k=2(C(k)13 −C13)tk (C(1)23 −C(k)23 )
C(k)33

(14b)

C13 = N∑
k=1 tkC

(k)
13 + N∑

k=2(C(k)33 −C33)tk (C(1)13 −C(k)13 )
C(k)33

(14c)

C22 = N∑
k=1 tkC

(k)
22 + N∑

k=2(C(k)23 −C23)tk (C(1)23 −C(k)23 )
C(k)33

(14d)

C23 = N∑
k=1 tkC

(k)
23 + N∑

k=2(C(k)33 −C33)tk (C(1)23 −C(k)23 )
C(k)33

(14e)

C33 = 1

(∑N
k=1

tk

C(k)33

)
(14f)

C44 =
(∑N

k=1
tkC(k)44

∆k

)
∆

, ∆ = ( N∑
k=1

tkC(k)44

∆k

)( N∑
k=1

tkC(k)55

∆k

) (14g)

C55 =
(∑N

k=1
tkC(k)55

∆k

)
∆

, ∆k = Ck
44Ck

55 (14h)

C66 = N∑
k=1 tkC

(k)
66 (14i)

14



where C(k)ij represents the ij-th component of the fourth order elasticity ten-

sor in Voigt notation (10) for the k-th layer and tk = tk
h
stands for the volume

fraction of the k-th lamina, h being the total thickness and tk the k-th thick-

ness.

3.1.1. Post-processing step: Reconstruction from Equilibrium

As interlaminar delamination and other fracture processes rely mostly on

out-of-plane components, a proper through-the-thickness stress description is

required. In order to recover a more accurate stress state, we perform a post-

processing step based on the equilibrium equations, following [23], relying on

the higher regularity granted by IGA shape functions. This procedure, which

takes its roots in [19, 25, 63, 73], has already been proven to be successful

for IGA-Galerkin. Inside the plate the stresses should satisfy the equilibrium

equation (7a) that can be expanded as

σ11,1 + σ12,2 + σ13,3 = −b1 , (15a)

σ12,1 + σ22,2 + σ23,3 = −b2 , (15b)

σ13,1 + σ23,2 + σ33,3 = −b3 . (15c)

Assuming the in-plane stress components to well approximate the laminate

behaviour, as it will be shown in Section 4, we can integrate equation 15a

and 15b along the thickness, recovering the out-of-plane shear stresses as

σ13(X3) = −∫ X3

X̄3

(σ11,1(ζ) + σ12,2(ζ) + b1(ζ))dζ + σ13(X̄3) , (16a)

σ23(X3) = −∫ X3

X̄3

(σ12,1(ζ) + σ22,2(ζ) + b2(ζ))dζ + σ23(X̄3) , (16b)

where ζ represents the coordinate along the thickness direction.

Finally we can insert equations (16a) and (16b) into (15c), recovering the σ33
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component as

σ33(X3) = −∫ X3

X̄3

(σ13,1(ζ) + σ23,2(ζ) + b3(ζ))dζ + σ33(X̄3) . (17)

Following [23], the integral constants are chosen to fulfil the boundary con-

ditions at the top or bottom surfaces.

Recalling that

σij,k = Cijmn

um,nk + un,mk

2
, (18)

where the homogenized elasticity tensor C is constant, it is clear the necessity

of a highly regular displacement solution in order to recover a proper stress

state. Such a condition can be easily achieved using isogeometric collocation,

due to the possibility to benefit from the high regularity of B-Splines or

NURBS. We also remark that the proposed method strongly relies on the

possibility to obtain an accurate description (with a relatively coarse mesh)

of the in-plane stress state.

4. Numerical tests

In this section, to assess whether the proposed method can effectively

reproduce composite plates behaviour, we consider a classical benchmark

problem [60] and we address different aspects such as the effectiveness of the

proposed post-processing step, the method sensitivity to parameters of inter-

est (i.e., number of layers and length-to-thickness ratio), and its convergence.

4.1. Reference solution: the Pagano layered plate

A square laminated composite plate of total thickness t made of N or-

thotropic layers is considered. This structure is simply supported and a

normal sinusoidal traction is applied on the upper surface, while the lower
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Figure 2: Pagano’s test case [60]. Problem geometry and boundary conditions.

surface is traction-free, as shown in Figure 2. In the proposed numerical tests

we consider different numbers of layers, namely 3, 11 and 33. The thickness

of every single layer is set to 1 mm, and the edge length, L, is chosen to be

S times larger than the total thickness t of the laminate. Different choices

of length-to-thickness ratio are considered (i.e., 20, 30, 40, and 50) which

allow to draw interesting considerations about the laminate behaviour in the

proposed convergence tests. For all examples we consider the same loading

conditions proposed by Pagano, i.e., a double sinus with periodicity equal to

twice the length of the plate. As depicted in Figure 2 the laminated plate

is composed of layers organized in an alternated distribution of orthotropic

plies (i.e., a 0°/90° stacking sequence in our case). Layer material parameters

considered in the numerical tests are summarized in Table 1 for 0°-oriented

plies.
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Table 1: Material properties for 0°-oriented layers employed in the numerical tests.

E1 E2 E3 G23 G13 G12 ν23 ν13 ν12

[GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [-] [-] [-]

25000 1000 1000 200 500 500 0.25 0.25 0.25

The Neumann boundary conditions on the plate surfaces x3 = ± t
2
are

σ33(x1, x2,− t
2
) = σ13(x1, x2,± t

2
) = σ23(x1, x2,± t

2
) = 0 ,

σ33(x1, x2,
t

2
) = σ0 sin(πx1

St
) sin(πx2

St
) , (19)

where σ0 = 1 MPa.

The simple support edge conditions are taken as

● σ11 = 0 and u2 = u3 = 0 at x1 = 0 and x1 = L ,
● σ22 = 0 and u1 = u3 = 0 at x2 = 0 and x2 = L . (20)

All results are then expressed in terms of the following normalized stress

components

σij = σij
σ0S2

, i, j = 1,2 ,

σi3 = σi3
σ0S

, i = 1,2 ,

σ33 = σ33

σ0

.

(21)

4.2. Post-processed out-of-plane stresses

In this section, we comment the results obtained using the proposed IGA-

collocation approach, as compared with Pagano’s analytical solution [60].

To give an idea of the improvement granted by the post-processing of out-of-

plane stress components, in Figures 3 and 4 we compare the reference solution

18



with non-treated and post-processed results for the cases with 3 and 11 layers,

considering a length to thickness ratio S = 20. All numerical simulations are

carried out using an in-plane degree of approximation p = q = 6 and 10

collocation points for each in-plane parametric direction, while we use an

approximation degree r = 4 and one element through the thickness (i.e., r+1

collocation points). The sampling point where we show results is located at

x1 = x2 = 0.25L. For both considered cases the in-plane stresses show a good

behaviour, as expected, while the out-of-plane stress components, without

a post-processing treatment, are erroneusly discontinuous. The proposed

results clearly show the improvement granted by the post-process of out-of-

plane components.
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Figure 3: Through-the-thickness stress solutions for the 3D Pagano problem [60] evalu-
ated at x1 = x2 = 0.25L. Case: plate with 3 layers and length-to-thickness ratio S = 20
(Ð Pagano’s solution, homogenized single-element approach solution (without post-
processing), × post-processed solution).
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Figure 4: Through-the-thickness stress solutions for the 3D Pagano problem [60] evaluated
at x1 = x2 = 0.25L. Case: plate with 11 layers and length-to-thickness ratio S = 20
(Ð Pagano’s solution, homogenized single-element approach solution (without post-
processing), × post-processed solution).
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To show the effect of post-processing at different locations of the plate,

in Figures 5-7 the out-of-plane stress state profile is recovered sampling the

laminae every quarter of length in both in-plane directions, for the case of a

length-to-thickness ratio equal to 20 and 11 layers.
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Figure 5: Through-the-thickness σ̄13 profiles for several in plane sampling points. L rep-
resents the total length of the plate, that for this case is L = 220mm (being L = S t with
t = 11mm and S = 20), while the number of layers is 11 (Ðpost-processed solution, ×
analytical solution [60]).
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Figure 6: Through-the-thickness σ̄23 profiles for several in plane sampling points. L rep-
resents the total length of the plate, that for this case is L = 220mm (being L = S t with
t = 11mm and S = 20), while the number of layers is 11 (Ðpost-processed solution, ×
analytical solution [60]).
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Figure 7: Through-the-thickness σ̄33 profiles for several in plane sampling points. L rep-
resents the total length of the plate, that for this case is L = 220mm (being L = S t with
t = 11mm and S = 20), while the number of layers is 11 (Ðpost-processed solution, ×
analytical solution [60]).
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4.3. Convergence behaviour

In order to validate the proposed approach in a wider variety of cases,

computations with a different ratio between the thickness of the plate and

its length are performed respectively for 3, 11, and 33 layers, considering an

increasing number of knot spans. Figures 8 and 9 assess the convergence

behaviour of the method, adopting the following error definition

e(σij) = max(∣σanalytic
ij − σrecovered

ij ∣)
max(∣σanalytic

ij ∣) . (22)

Note that relation (22) is used only to estimate the error inside the domain to

avoid indeterminate forms. Different combinations of degree of approxima-

tions have been also considered. A poorer out-of-plane stress approximation

is obtained using a degree equal to 4 in every direction, and, in addition, with

this choice locking phenomena may occur for increasing values of length-to-

thickness ratio. Therefore, we conclude that using a degree of approximation

equal to 6 in-plane and equal to 4 through the thickness seems to be a reason-

able choice to correctly reproduce the 3D stress state. Using instead uniform

approximation degrees p = q = r = 6 does not seem to significantly improve

the results (see Figures 8, 9, and Table 2). The post-processing method

provides better results for increasing values of length-to-thickness ratio and

number of layers and therefore proves to be particularly convenient for very

large and thin plates. This is clear since a laminae with a large number of

thin layers resembles a plate with average properties. What really stands out

looking at the displayed mesh sensitivity results, is the fact that collocation

perfectly captures the plates behaviour not only using one element through

the thickness but also employing only one knot span in the plane of the plate.
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A single element of degrees p = q = 6 and r = 4, comprising a total of 7x7x5

collocation points, is able to provide for this example maximum percentage

errors of 5% or lower (and of 1% or lower in the cases of 11 and 33 layers)

for S = 30 or larger.
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Figure 8: Maximum relative percentage error evaluation at x1 = x2 = 0.25L for in-plane
degree of approximation equal to 6 and out-of-plane degree of approximation equal to 4.
Different length-to-thickness ratios S are investigated for a number of layers equal to 3,
11, and 33 ( 1 knot span, 2 knot spans, 4 knot spans, 8 knot spans).
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Figure 9: Maximum relative percentage error evaluation at x1 = x2 = 0.25L for degree
of approximation equal to 6. Different length-to-thickness ratios S are investigated for a
number of layers equal to 3, 11, and 33 ( 1 knot span, 2 knot spans, 4 knot spans,
8 knot spans).
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Quantitative results are presented in Table 2 for various plate cases, con-

sidering a number of layers equal to 11 and 10 collocation points for each

in-plane parametric direction. Different number of layers (i.e., 3 and 33)

are instead investigated in Appendix A. Increasing length-to-thickness ra-

tios, namely 20, 30, 40, and 50 are considered and the maximum relative

error results is reported for a reference point located at x1 = x2 = 0.25L. Also

different degrees of approximation are investigated. Given these results, we

conclude that using an out-of-plane degree of approximation equal to 4 leads

to a sufficiently accurate stress state. Furthermore the out-of-plane stress

profile reconstruction shows a remarkable improvement for increasing values

of number of layers and slenderness parameter S.

Table 2: Simply supported composite plate under sinusoidal load with a number of layers
equal to 11. Out-of-plane stress state maximum relative error with respect to Pagano’s so-
lution [60] at x1 = x2 = 0.25L. Comparing the isogeometric collocation-based homogenized
single element approach (IGA-C) and the coupled post-processing technique (IGA-C+PP)
for different approximation degrees.

Degree p = q = 6, r = 4 p = q = r = 6

S Method e(σ13) e(σ23) e(σ33) e(σ13) e(σ23) e(σ33)
[%] [%] [%] [%] [%] [%]

20 IGA-C 97.6 56.7 6.34 96.6 56.1 6.31
IGA-C+PP 0.31 2.94 0.90 1.97 1.20 0.05

30 IGA-C 98.7 55.6 6.36 98.3 55.4 6.34
IGA-C+PP 0.16 1.34 0.47 0.91 0.57 0.08

40 IGA-C 99.2 55.3 6.37 98.9 55.2 6.36
IGA-C+PP 0.07 0.78 0.34 0.50 0.35 0.12

50 IGA-C 99.4 55.1 6.38 99.2 55.1 6.38
IGA-C+PP 0.03 0.52 0.29 0.30 0.25 0.15
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5. Conclusions

In this paper we present a new approach to simulate laminated plates

characterized by a symmetric distribution of plies. This technique combines

a 3D collocation isogeometric analysis with a post-processing step procedure

based on equilibrium equations. Since we adopt a single-element appoach, to

take into account variation through the plate thickness of the material prop-

erties, we average the constitutive behaviour of each layer considering an

homogeneized response. Following this simple approach, we showed that ac-

ceptable results can be obtained only in terms of displacements and in-plain

stresses. Therefore, we propose to perform a post-processing step which re-

quires the shape functions to be highly continuous. This continuity demand

is fully granted by typical IGA shape functions. After the post-processing

correction is applied, good results are recovered also in terms of out-of-plane

stresses, even for very coarse meshes. The post-processing stress-recovery

technique is only based on the integration through the thickness of equilib-

rium equations, and all the required components can be easily computed

differentiating the displacement solution. Several numerical tests are carried

out to test the sensitivity of the proposed technique to different length-to-

thickness ratios and number of layers. Regardless of the number of layers,

the method gives better results the thinner the composites are. Multiple

numbers of alternated layers and sequence of stacks (both even and odd)

have been studied in our applications. Neverthless only tests which consider

an odd number of layers or an odd disposition of an even number of stacks

show good results as expected because considering a homogenized response
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of the material is effective only for symmetric distributions of plies. Further

research topics currently under investigation consist in the extension of this

approach to more complex problems involving curved geometries and large

deformations.
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Appendix A

Results in terms of maximum relative error considering a plate with a

number of layers equal to 3 and 33 are herein presented for a reference point

located at x1 = x2 = 0.25L. Increasing length-to-thickness ratios, namely 20,

30, 40, and 50 are investigated for different degrees of approximations (i.e.,

p = q = 6 and r = 4, and p = q = r = 6), using 10 collocation points for each

in-plane parametric direction and one element through-the-thickness.
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Table 3: Simply supported composite plate under sinusoidal load with a number of layers
equal to 3. Out-of-plane stress state maximum relative error with respect to Pagano’s so-
lution [60] at x1 = x2 = 0.25L. Comparing the isogeometric collocation-based homogenized
single element approach (IGA-C) and the coupled post-processing technique (IGA-C+PP)
for different approximation degrees.

Degree p = q = 6, r = 4 p = q = r = 6

S Method e(σ13) e(σ23) e(σ33) e(σ13) e(σ23) e(σ33)
[%] [%] [%] [%] [%] [%]

20 IGA-C 292 57.2 5.80 291 57.2 5.79
IGA-C+PP 10.4 3.16 0.54 11.9 1.41 0.33

30 IGA-C 311 57.5 5.77 311 57.5 5.77
IGA-C+PP 5.05 1.40 0.28 5.75 0.63 0.11

40 IGA-C 319 57.6 5.76 319 57.6 5.76
IGA-C+PP 2.91 0.81 0.21 3.32 0.38 0.02

50 IGA-C 323 57.6 5.76 322 57.6 5.76
IGA-C+PP 1.87 0.54 0.20 2.14 0.26 0.07

Table 4: Simply supported composite plate under sinusoidal load with a number of layers
equal to 33. Out-of-plane stress state maximum relative error with respect to Pagano’s so-
lution [60] at x1 = x2 = 0.25L. Comparing the isogeometric collocation-based homogenized
single element approach (IGA-C) and the coupled post-processing technique (IGA-C+PP)
for different approximation degrees.

Degree p = q = 6, r = 4 p = q = r = 6

S Method e(σ13) e(σ23) e(σ33) e(σ13) e(σ23) e(σ33)
[%] [%] [%] [%] [%] [%]

20 IGA-C 81.6 69.7 6.33 80.7 68.9 6.33
IGA-C+PP 1.16 2.21 0.93 0.54 0.50 0.07

30 IGA-C 81.5 69.0 6.34 81.2 68.7 6.34
IGA-C+PP 0.53 1.01 0.48 0.23 0.25 0.09

40 IGA-C 81.5 68.7 6.35 81.3 68.6 6.34
IGA-C+PP 0.32 0.59 0.34 0.11 0.16 0.12

50 IGA-C 81.6 68.6 6.35 81.4 68.5 6.35
IGA-C+PP 0.23 0.40 0.30 0.05 0.13 0.16
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