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A LOW-RANK TECHNIQUE FOR COMPUTING THE QUASI-STATIONARY
DISTRIBUTION OF SUBCRITICAL GALTON-WATSON PROCESSES

SOPHIE HAUTPHENNE* AND STEFANO MASSEIf

Abstract. We present a new algorithm for computing the quasi-stationary distribution of subcritical Galton—
Watson branching processes. This algorithm is based on a particular discretization of a well-known functional
equation that characterizes the quasi-stationary distribution of these processes. We provide a theoretical analysis of
the approximate low-rank structure that stems from this discretization, and we extend the procedure to multitype
branching processes. We use numerical examples to demonstrate that our algorithm is both more accurate and more
efficient than other approaches.

Keywords: Galton-Watson processes, Quasi Stationary Distribution, Yaglom limit, low-rank matrices, low-rank
approximation.

AMS subject classifications: 15B05, 65C40.

1. Introduction. Many biological populations are doomed to extinction due to low repro-
duction rates, the presence of predators, competition for limited resources, lack of suitable habitat,
or other factors. However, before extinction eventually occurs the population size may fluctuate
around some positive values for a long period of time. We are then interested in the long-term distri-
bution of the size of the population; roughly speaking, this amounts to studying the quasi-stationary
distribution. We illustrate this in Figure 1 for a stochastic process with logistic growth.

In this paper, we focus on the class of stochastic processes called the Galton-Watson (GW)
branching processes. These processes are particular discrete-time Markov chains used to model
randomly evolving populations in which individuals reproduce independently of each other. They
have been successfully illuminating real-world problems arising in diverse areas, such as biology,
chemistry, particle physics, and computer science. Classical reference books on branching processes
include Harris [17], Athreya and Ney [2], and Haccou, Jagers and Vatutin [15].

Quasi-stationary distributions of stochastic processes have been a focus of attention for many
years. Their study started with the work of Yaglom in the late 1940’s, who was the first to
establish the existence of a particular quasi-stationary distribution, called the Yaglom limit, in
the (subcritical) GW branching process [32]. The computation of quasi-stationary distributions of
general Markov chains can generally be tackled from different angles. The most common approaches
involve using simulation techniques, or solving for the left eigenvector of the transition matrix
restricted to the positive states; for more details we refer to the excellent surveys of Méléard
and Villemonais [24] and van Doorn and Pollet [30], and references therein. These methods have
clear limitations, especially when the state space of the process is unbounded. Our motivation for
considering subcritical GW processes here stems from the fact that their Yaglom limit has a specific
characterisation: if P(z) := 3,5, p;z7 denotes the (known) probability generating function of the
offspring distribution, m := P’(1) < 1 its mean, and G(z) := Zj>1 g;2" the unknown probability
generating function of the Yaglom limit (g;);>1, then G(z) solves the modified Schréder functional
equation

(1) G(0) =0, G(P(z))=mG(z)+1—m, z € [0,1].
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Fic. 1. A tragectory of a discrete-time population-size-dependent branching process, starting with a single
individual. An empirical estimate of the quasi-stationary distribution is superimposed.

To the best of our knowledge, no attention has been paid to the numerical solution of this equation.

In this paper, we propose an efficient algorithmic method to compute the coefficients g; of G(z)
when the latter is analytic on a neighborhood of the unit disc. Our approach consists in using
Cauchy’s integral formula to rewrite (1) as

GO ) 41— m
At—ﬂ@ﬁ_ G(z)+1—m,

where T is a circle of appropriate radius r. Discretizing the integral on the left-hand side by means
of the trapezoidal rule leads to

ZG r&j) - (7’51 P2) ' =mG(z)+1—-m

where {r{;}1<j<n are the scaled nth roots of unity. Evaluating the last equation in z = r¢; for
1 < j < n leads to a linear system where the unknowns are the (approximate) quantities G(7¢;).
We then retrieve an interpolating polynomial of degree n for G(z) by applying the Fast Fourier
Transform (FFT). This particular discretization method provides highly structured data and allows
to deal with a large number n of integration nodes. In the second part of the paper we perform a
theoretical analysis of the low-rank structure arising from the discretization scheme, and we discuss
how to modify the algorithm in order to benefit from this property. In the final part of the paper
we extend the technique to multitype branching processes. Here, the computational cost and the
memory consumption suffer from the curse of dimensionality. The presence of the low-rank structure
enables to partially mitigate this effect and to obtain satisfactory results in the two-dimensional
case.

The paper is organized as follows; in Section 1.1 we recall some background notions. We dedicate
Section 2 to the study of the regularity of G(z) and the consequent decay of the coefficients g; as
j — oo. In particular, we provide algebraic proofs of some results on the interplay between the
regularity of P(z) and G(z). In Section 3 we describe the numerical procedures for the computation
of the coefficients g;. In Section 3.3 we introduce a new method based on solving a discretized
version of Equation (1), and we compare it with existing techniques in Section 3.4. In Section 3.5
we perform an analysis of the rank structure stemming from the discretization process, and we
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provide a large scale version of the new algorithm in Section 3.6. Finally, in Section 4 we extend
the procedure to multitype GW branching processes.

Throughout the paper, for zg € C and r > 0, we let B(z,7) := {z € C: |z — z| < 7},
D(z9,7) :={2 € C: |z — 2 <r}and S' := {z € C: |z| = 1}; we let d indicate the border of
a set with respect to the Euclidean topology, e.g., St = 9B(0,1) = dD(0, 1); finally, we let 1 and
0 denote the column vectors of 1’s and 0’s, respectively, whose length will be determined by the
context.

1.1. Background. A Galton-Watson (GW) branching process is a particular discrete-time
Markov chain {Z,},>0 that takes values in N := {0,1,2,...}, where 0 is an absorbing state. It
describes the evolution of a population in which each individual lives for one unit of time, at the end
of which it gives birth to a random number of children, chosen following an offspring distribution
p := (p;)jen with generating function

P(z):=> piz, p;=0, Y pi=1, z€[0,1],
j=0 i=0

independently of the rest of the population. Given the initial population size Zy, the size Z,, of the
population at generation n > 1 evolves according to the recurrence formula

Zn—1

Zn=Y 0",

=1

where {Gl(n)}ln is a family of independent random variables identically distributed following the
probability distribution p, and Z,, := 0 if Z,,_1 = 0. Before extinction, the GW process takes its
values in the space Ny := N\ {0}. In the sequel, we assume 0 < pg + p; < 1. For any initial state
z € Ny and any initial probability distribution p := (p;),en,, we let P,(-) := P(-|Zy = z) and
Pu() =3 o 1P ():

The mean offspring number per individual in the GW process is given by

ijj~

=1 >

_ dP(z)

m=E@®")=PV(1): -

We distinguish between three different cases:

e the subcritical case m < 1: the population becomes extinct almost surely, that is, for any
initial probability distribution @, P,(3In < oo : Z,, = 0) = 1; the expected extinction time
is finite.

e the critical case m = 1: the population becomes extinct almost surely, and the expected
extinction time is infinite.

e the supercritical case m > 1: the population has a positive probability of surviving, and
therefore the expected extinction time is infinite.

We say that {Z,} has a Yaglom limit if there exists a probability distribution g := (g;);jen,
such that, for any initial population size z € Ny and any state j € Ny,

nlgr;oPZ(Zn =JlZn>0) = g;;
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in other words, g is the asymptotic distribution of the population size at generation n, conditional on
non-extinction by generation n. When it exists, the Yaglom limit g is a quasi-stationary distribution,
that is, for all n > 0 and for any state j € Ny,

Pg(Zn:j|Zn >O) = gj;

in other words, if the process starts with a number of individuals distributed according to g, then
the distribution of the population size at any subsequent generation n > 1 remains g.

There is no quasi-stationary distribution in the critical and the supercritical case because con-
ditioning on the event {Z,, > 0} results in the process growing without bounds as n — oo. However,
in the subcritical case there is a unique Yaglom limit; the next theorem states this formally, and
we refer to [24, Theorem 6] for a proof.

THEOREM 1.1 (Yaglom [32]). Let {Z,} be a GW process with offspring generating function
P(z) and mean offspring m < 1. There exists a unique probability distribution g = (g;)jen, such
that, for any initial probability distribution p with finite mean on Ny, g satisfies

(2) Jim Py (Z, = | Z0 > 0) = g;.

The distribution g is a Yaglom limit for {Z,}, and ils generating function G(z) == > .5, 9577,
z € [0,1], satisfies Equation (1) on [0, 1].

Remark 1.2. Since the series that define P(z) and G(z) converge absolutely Vz € D(0, 1) then,
by continuity, (1) holds Vz € D(0,1).

Remark 1.3. There exist quasi-stationary distributions which are not a Yaglom limit. In partic-
ular, for the subcritical GW process, there exists an infinite number of quasi-stationary distributions
which are obtained as the limit in (2) for some initial probability distributions g with infinite mean.
We refer to [24, Theorem 6] for more detail.

In the remainder of the paper we assume that the GW process is subcritical (m < 1) and we
use the term “the quasi-stationary distribution of the GW process” when referring to its Yaglom
limit g.

It is worth mentioning another important characterization for the quasi-stationary distribution
of a GW process. Let @ denote the truncated transition matrix of the process corresponding to the
(transient) positive integer states. Then the quasi-stationary distribution satisfies

(3) gQ = mg,

that is, g corresponds to the normalized Perron-Frobenius left eigenvector associated with the
Perron-Frobenius eigenvalue m. The solution of (3) is unique up to a multiplicative constant. We
refer the reader to [2, Section I. 8] and [24] for more details about quasi-stationary distributions of
GW processes.

We end this section by defining the linear fractional branching processes, which form a special
class of GW branching processes amenable to explicit computation. In these processes, the offspring
distribution is modified geometric, that is,

pi=0—-p)(L-pp’~", =1,
fully characterized by just two parameters: py € [0,1), and p € [0,1). Note here that p; > p,41 for
all j > 1. The mean offspring is given by
— 1—po
I-p

)
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therefore the process is subcritical (m < 1) if and only if py > p. The corresponding progeny
generating function is given by

(1-p)z
1—pz’

It is not difficult to verify that the quasi-stationary distribution of a linear-fractional GW
process is geometric with parameter p/pg, that is,

j—1
p p . P z
4 =(l1-=) (= >1 = =(1-= )

We shall use the linear fractional branching process in Section 3.4 as a benchmark tool to
evaluate the quality of our numerical approximation methods for the computation of the quasi-
stationary distribution.

P(2) =po+ (1 —po) z€[0,p7h).

2. Properties of G(z). In this section we study the asymptotic behavior of the coefficients
g;, or in other words, the tail behavior of the quasi-stationary distribution g. From a computational
perspective, we are interested in understanding the decay properties of these coefficients in order
to ensure that a limited number of them is sufficient to describe G(z) with arbitrary accuracy. For
example, the existence of the h-th derivative G")(1) of G(z) at z = 1, which corresponds to the
h-th factorial moment of g, provides an algebraic decay of (at least) order h, because GM (1) =
ZJ? h (717;7,)' g; ~ Ej>h j"g;. Exponential decay is directly linked to the radius of convergence of
G(z) = Xi>0 gjz? and — consequently — to the domain of analyticity of G(z). Indeed, given
R > 0, it is well known that a formal power series » >0 g;27 defines a analytic function G(z) on
B(0, R) if and only if, for all € (0, R) and j > 0, |g;| < max,|, |G(2)|-r~7 [14, Proposition IV.1].
Since in our case the power series has real non-negative coefficients, G(z) is analytic on B(0, R) if
and only if

(5) g; <G(r)-r77 vr e (0,R),7 > 0.

From a computational perspective, we would like G(z) to be analytic on a disc with radius bigger
than 1. This would allow us to choose 7 > 1 in (5), ensuring that at most [log(u~*G(r))/log(r)]
coefficients g; are above the machine precision w. This property is equivalent to having G(z) analytic
at z = 1.

PROPOSITION 2.1. Let P(z) be analytic on B(0,rp) with rp > 1. Then, G(2) is analytic at
z =1 if and only if there exists rg > 1 such that G(z) is analytic on B(0,rg).

Proof. First, note that G(z) analytic on B(0,rq) with r¢ > 1 implies G(z) analytic at 1.

Now, let us assume G(z) analytic on an open neighborhood A; of 1. We proceed by proving that
G(z) is analytic at every point of S'. Given z € 8! we distinguish between two cases: |P(z)| < 1

and |P(z)| = 1. If |P(2)| < 1, then there exists an open neighborhood A, of z such that |P(Z)| < 1
VzZ € A,. Since G(z) verifies (1), the expression

(6) G(z) =m Y G(P(2)) +m —1)

provides a analytic continuation of G(z) on A,. If |P(z)| = 1, then

oo

1=|po+ Y p;z’ | =|po+wl.
j=1
———

w
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Since pg € (0,1) and |w| < Z;’il pj = 1—pog, the sum py+w has modulus 1 if and only if w = 1—py,
i.e. P(z) =1 € A;. In particular, there exists an open neighborhood A, of z such that P(Z) € A;
VzZ € A,. Once again, (6) defines a analytic continuation of G(z) on A,.

By construction, G(z) is analytic on B(0,1) and the union B(0,1)|J{A.}.es: yields an open
set A that contains D(0,1) where G(z) is analytic. This implies that there exists r¢ > 1 such that
B(0,r¢) C A and G(z) is analytic on B(0,r¢). d
In what follows we study the interplay between the regularity of the offspring distribution and that
of the quasi-stationary distribution.

2.1. Derivatives of G(z) at z = 1. We start by looking at the existence of the derivatives
of G(z) at z = 1. A necessary and sufficient condition on the offspring distribution that ensures
G (1) < oo is the following

THEOREM 2.2 (Heathcote et al. [18]).

GP(1) <0 Zjlog(j) - pj < o0.
j=2

Higher order moments of the quasi stationary distribution have been studied in [3]. There, it has
been proven that G (1) is finite if and only if P()(1) finite for 1 < h € N. We report a simpler
and shorter proof of this fact, that only relies on algebraic arguments. In preparation for this proof,
we first establish the relationship between the higher order derivatives of G(z) and those of P(z).
Differentiating (1) h times (h > 1) leads to

(7) mG" (z) = (G o P)M(2),

where (G o P)(z) := G(P(z)). The derivative of the composition is expressed in closed form with
the Faa di Bruno’s formula [13],

h

(®) (G o P)P(2) = 3 GOP() - Bug (PO(), .., PATIH()),

j=1
which involves the so-called Bell polynomials By, ; [25], defined as

h,j (1‘1 Th ]+1) Z jl' . ~Jh—j+1! g s!
where the sum is taken over all sequences ji,Jj2,...,jn—j+1 Of non-negative integers such that
Zg;lﬁ_l js = j and ZZ;IJH s+ js = h. In particular we have By, ,(z1) = 2. Plugging (8) into (7)
and evaluating at z = 1 yields the relation
h—1
(9) (m = m" G (1) =3 GO Byy (PO),..., PATHI (1)),

Jj=1

which is only informative for A > 1. Equation (9) highlights the connection between the existence
of higher order derivatives of P(z) and those of G(z). In probabilistic terms, it relates the factorial
moments of the quasi-stationary distribution to those of the offspring distribution. We are now
ready to prove the following lemma.
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2.5 I

1.5 1

0.7
F1G. 2. Intersections of P(z) := 0.6 + 0.4% with the bisector of the first quadrant; in this example Yp = 2.
— 0.3z

LEMMA 2.3. For any 1 < h € N, P™(1) is finite if and only if G™ (1) is finite.

Proof. First, assume that P") (1) < oco; observe that this implies Z;’;leog(j)pj < 00, or
equivalently, G (1) < oo, in light of Theorem 2.2. Moreover, (9) expresses G (1) as a linear
combination of G (1),..., G~V (1), whose coefficients are polynomial functions of P(M)(1),...,
P™)(1). The claim then follows using an inductive argument.

Next, assume G(" (1) < co. The only term which involves the h-th derivative of P(z) in the
right-hand side of (9) is G (1)P") (1), which is obtained by choosing j = 1, j; = ...,jn_1 = 0
and j, = 1 in the series expansion. Since G(1)(1) # 0, this allows to express P (1) as a well-
defined function of G (1),...,G™ (1) and PM(1),..., P*=Y(1). The claim then again follows
by induction. ]

2.2. Domain of analyticity of G(z). Motivated by the results in the previous section, we
wonder if assuming the analyticity of P(z) on an open disc of radius bigger than 1 is enough to
ensure the same property for G(z). The answer to this question is affirmative, and this property
can be obtained combining Proposition 2.1 with the linearization theorem of Koenigs [22]; see
also [10, Chapter II]. In order to validate the algebraic framework introduced so far, we adopt an
alternative strategy by directly proving the convergence of the Taylor series of the quasi-stationary
generating function G(z) centred at z = 1.

Observe that the offspring generating function P(z) and all its derivatives are real and positive
on the interval [0,7p), where rp denotes the radius of convergence of P(z). In particular, if we
assume 0 < pg+p1 < 1, then P(z) is not the polynomial 1 —m + mz (the only degree 1 polynomial
that satisfies the assumptions on P(z)), therefore if rp > 1, then the equation z = P(z) has exactly
two solutions on the positive real semi axis: 1 and zZ > 1, see Figure 2. We define ¢ p as follows:

(10)

)

op = 00 if P(z) =1—m+mz,
P> 1:Z=P(z) otherwise,

so that P(z) < z Vz € (1,¢p).
We recall an identity regarding Bell polynomials.
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LeEMMA 2.4 (Wang and Wang [31], Lemma 2.6). Let f(z):= 372, %zj, then Yh,k € N,
h!

Buk(fiy oo fheks1) = h [2"(f(2)7),

where [2"](-) indicates the operator that extracts the h-th coefficient from the power series expansion
of the argument around zero.

THEOREM 2.5. If P(2) has radius of convergence rp > 1, then G(z) has radius of convergence
ra > 1.

Proof. The function P(z) being analytic at z = 1 by assumption, we consider the power series
expansion of P(z) := P(1+z) = Ej;oﬁjzj that has radius of convergence rp — 1.

By Proposition 2.1, the claim is equivalent to having G(z) analytic at 1. Therefore, we proceed
by considering the (left looking) Taylor expansion of G(z) at 1 and by showing that its radius of
convergence is non-zero. In view of (5) this is equivalent to showing that Jp, s > 0 such that

GM(1)<O0g-p~"-h, VheN.

Choosing fg = max{1,GM)(1) - p} provides the claim for » = 0 and h = 1 without limiting the
parameter p. For h > 1 we use an inductive argument; from (9) we get

1 : -
G (1) — ZG‘”(l) - By (P(l)(1), ..., pt J+1)(1))
j=1
h—1
< 00N gt By (PO, P ().
— mh 2 i I )

Observe that P (1) = j! - pj, therefore, Lemma 2.4 implies

By; (PO(1),..., PO+ (1)) = ;i,' [ ((P2) - 1))

Since (ﬁ(z) — 1)7 also has radius of convergence rp — 1 and its expansion involves non-negative
coefficients, the h-th coefficient of the latter satisfies

2 ((BE) —17) < (P) —19r . e (0.rp 1)
In particular, selecting 7 € (0,9 p — 1), where ¢p is given in (10), provides P(1 4+ 7) < 147 and
2" ((P) 1) <700,

Coming back to G (1), we then have

\1-h
el s ()"
aM(1) < — Oc - h! . (r) =0c-p " R £/ ,
T(m_m)jzl P (1—%)(m—mh)
(2)"~"
Choosing p small enough we can ensure m < 1 independently of h > 1. This completes

the proof. 0
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To conclude we provide a lower bound for the domain of analyticity of G(z) under the analyticity
assumption for P(z).

COROLLARY 2.6. Assume that P(z) has radius of convergence rp > 1. Then the following
statements hold:

(i) rq = Y¥p where Yp is given in (10),

(1) G(P(2)) =m-G(z)+1—m, ¥z € D(0,r¢q).

Proof. By Theorem 2.5 we have rg > 1. To show (i) we assume by contradiction that 1 < rg <
¥p, and consider the set P~1([1,rg)) := {z € R: P(z) € [1,76)}; P(2) < z on (1,¢p) implies
that P~1([1,7¢)) = [1,y) with y > rg. Rephrasing (1), we can set G(z2) = (G(P(2)) — 1+ m)/m
for every z € [rg,y), extending analytically the function on [0,y). Since |P(z)| < P(|z]) < |z| for
1 < |z] <y, G(z) can be extended analytically on the disc of radius y, leading to a contradiction.

The claim in (#i) follows by continuity. O

Remark 2.7. The results in this section guarantee that we always have rp > rg > ¥p > 1. In

particular, this provides the upper bound O(¢5”) for the asymptotic behavior of g;.

Remark 2.8. Observe that, in the case of the linear fractional branching process,

1
Tp:*>TG:pp?O>1,

and that — since P (po/p) = po/p — T = ¥p; this is in accordance with Corollary 2.6.

3. Methods for computing G(z). In this section, we first review a method known in the
literature to compute the quasi-stationary distribution of a general transient Markov chain; we
then discuss another natural approach, based on probabilistic arguments, which suffers from some
numerical drawbacks; finally we present our new algorithm.

3.1. The returned process approach. This approach can be used to evaluate the quasi-
stationary distribution g of a transient Markov chain {X,,},>0 on N, with the absorbing state 0
assumed to be reached in finite time with probability one, regardless the initial state. It relies
on the idea that g can be approximated by the stationary distribution 7r# of a positive recurrent
returned process {X*}, which is a Markov chain that evolves exactly like the original process { X},
except at the times at which 0 is visited, when it is instantly returned to a random positive state,
chosen according to a probability distribution g on Np; for more detail, see for instance [4,7,30].

The function p — 7# is contractive, and the quasi-stationary distribution g satisfies g = &9.
Therefore, if instead of sampling from a fixed distribution p every time the process visits state 0, the
return state follows the empirical distribution of the returned process up to that time, then after a
large enough time, the empirical distribution of the returned process will be a good approximation
of the quasi-stationary distribution.

In summary, the returned process approach works as follows:

(i) Start the Markov chain in a non-absorbing state.

(ii) Simulate the Markov chain {X,,} normally.

(iii) If the Markov chain hits the absorbing state, re-sample the starting position based on an
empirical estimate of the quasi-stationary distribution up until that point, and go back to
step (ii). That is, we sample a new transient state with a probability proportional to the
amount of time that such a state has been visited so far since the start of the simulation.

(iv) After a large enough time, the samples will be drawn approximately from the quasi-
stationary distribution.
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In our setting where {X,} corresponds to a GW branching process, the simulation of the
process requires the offspring of each individual to be simulated at each generation, which can
be computationally demanding. In addition, a large number of generations generally needs to be
simulated in order to obtain a satisfactory approximation. This method is illustrated in Section 3.4.

3.2. A probabilistic interpolation approach. Here we discuss another method for comput-
ing G(z) that has a probabilistic inspiration. This technique exploits equation (1) in combination
with the sequence {Z }r>0 recursively defined as

Zht1 = P(Z),
with Zg = 0. This leads to the recursion
G(Zgr1) =m - G(Z) +1—m,
which, because G(0) = 0, can be solved explicitly:
(11) G(Z)=1-mF, k>0

The sequence {Zj }ren has a probabilistic interpretation: zj, is the probability that the GW process
becomes extinct by generation k, if it starts with a single individual in generation 0.

In view of (11), G(%) also has a probabilistic meaning: G(Zx) = >_;5( 9; % is the probabil-
ity that a subcritical GW process observed in its quasi-stationary regime dies within the next k
generations. So mF is the probability that, if we observe a subcritical GW process which has been
living for a long time, it is still going to survive for at least k generations. The mean offspring of a
subcritical GW process can therefore be interpreted as the probability that the process survives one
generation when it is in its quasi-stationary regime. A similar property is given in [24, Proposition
2].

From an algebraic perspective, we have at our disposal a sequence of nodes zj € [0,1] with
zZo = 0,z1 = po, 22 = P(po), . . ., for interpolating the function G(z). However, there are two main
issues: first, the set of nodes accumulates near the point 1 and does not become dense in the interval
[0,1]. Second, since we are interested in the coefficients g; we are forced to interpolate with respect
to the monomial basis. This requires to solve linear systems (or linear least squares problem) with
the Vandermonde matrix generated by the nodes z. Empirically, we observe that the latter is
exponentially ill-conditioned with respect to the degree of the interpolant. The performance of this
approach is tested in Section 3.4.

3.3. A new algorithm. In this section we propose an algorithm for approximating the un-
known quasi-stationary distribution g characterized by G(z) when the offspring distribution P(z)
has a radius of convergence rp > 1.

The method described in Section 3.2 suffers from the bad quality of the set of nodes used for
interpolation. Here, we propose an alternative strategy that performs an approximate interpolation
of G(z) on the roots of unity, which is the most suited set for interpolating with respect to the
monomial basis.

We remark that the original functional equation G(P(z)) = mG(z) + 1 — m admits an infinite
number of solutions of the form G(z) =1+t f(z), where t € C is an arbitrary constant, and f(z)
satisfies

(12) f(P(z)) —m- f(z) = 0.
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Once f(z) is known, G(z) can be obtained by imposing the boundary condition G(0) = 0. Our
strategy for computing f(z) consists in discretizing the operator f — f o P —mjf and looking for
an eigenvector associated with its smallest eigenvalue.

Observe that, given r € (1,¢p), Vz € r - S we have |P(z)| < r. Therefore, for z € r - S we
can use the Cauchy integral formula and rewrite (12) as

1

13 —
( ) 2mi r-St

F@)(t = P(z) "'t —m- f(z) = 0.

Then, we replace the left-hand side of (13) with its approximation obtained via the trapezoidal
rule, choosing the scaled n-th roots of unity as nodes for integration. As n increases, this yields the
exponentially convergent integration scheme [29]:

1) s [ FO - PE) - mi) 2 3 F0) (g - P - m(),

27Ti r.S1

where &; = exp(2mji/n), j = 1,2,...,n. Evaluating the right-hand side of (14) in the scaled n-th
roots of unity provides the system of n equations in the n unknowns f(r¢;):

n
& - .
(15) > ) D (r6n = POE) T —m f€) 20 G=1,..m.
h=1
Rewriting (15) in matrix form leads to the smallest-eigenpair problem:
B h#j
(16) Ave = Apinve, A= (an)jn=1,..ny  Gn = {"(Tghrgi(rgj)) ~m h=j
n(r&n—P(rén) =J

Indeed, when Ay is the eigenvalue of smallest modulus of the matrix A, the vector v¢ contains
approximations of the quantities f(§;) := f(r-€&;), j =1,...,n, for a function f that verifies (12).
Then, applying the Inverse Fast Fourier Transform (IFFT) to v¢ provides the vector containing
the (approximate) coefficients of the interpolating polynomial Z?;OI E-zj for f(z) at the nodes
&n, for h = 1,...,n. In order to retrieve the (approximate) interpolating polynomial for f(z)
we rescale the coefficients with the rule f; < fj /r?. Finally, we impose the boundary condition
0=G(0) =1+1tf(0) =1+ tfy, which implies t = —1/ fo. This yields the following (approximate)
interpolating polynomial @(z) for G(2):

n—1
G(z) :=Z§jzj, g; :—%.
=1 0

The procedure is summarized in Algorithm 1; E1Gs(A) denotes any numerical method for
computing the eigenvector of A associated with its smallest eigenvalue.

The construction of A and E1Gs(A) constitute the bottlenecks of the algorithm. In particular,
memorizing the full matrix and running E1Gs(A) in dense arithmetic — for example using the
MATLAB command eigs(A, 1, >SM’) — provides a quadratic cost in storage and a cubic time
consumption, respectively. In this setting, we have to consider n less than 10* in order to carry on
the computations on a standard laptop. In Section 3.5, we will show that it is possible to exploit
the structure of the matrix A for achieving a cheaper storage and an efficient implementation of
Ei1as, allowing us to consider higher values for n.
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Algorithm 1 Evaluation-Interpolation

1: procedure COMPUTE_G(P(z),n,r) >r>P(r)>1
2. m <« PM(1)
27ij
3: &+ (7‘ cem )
j=1,....n
. £
$ A (n@h,ffa(&j)))j,h:h,,n

5: A+—A—m- 1,
: vy + E1as(4)
7: f «— IFFT(vy), f« (f—;) > E;l:_ol /77 interpolates f(z)
=0
8 g —%f . Go+0
9: return g
10: end procedure

3.4. Numerical tests.

Ezxample 3.1. As a first example, we consider the linear-fractional GW process with parameters
po = 0.6 and p = 0.3. In this case, we know that the quasi-stationary distribution is given by
g; = 27Ut § > 1, see (4). This example allows us to evaluate the quality of the approximations
resulting from the three algorithms that we have introduced.

In Figures 3 and 4 we denote with the label “Return map” the procedure described in Sec-
tion 3.1, which we ran for 10° generations. With “Interpolation” we indicate the probabilistic
interpolation approach of Section 3.2, that generates the data set {(Z, 1 —m*)}x—o,.. 190 and com-
putes the corresponding fitting polynomial of degree 12 using the polyfit function of MATLAB.
Clearly, this yields estimates only for g; with j = 1,...,12; however, experimentally we notice that
using a higher degree for the fitting polynomial provides noisy results. Moreover, adding points to
the data set brings no benefits due to the convergence of the sequence zj to its limit point. Finally,
we run Algorithm 1 using n = 512 integration nodes.

In Figure 3-left we plot the approximated solutions G(z) returned by the three methods over the
unit interval. Since the three graphs are indistinguishable on this scale, in Figure 3-right we zoom
over the interval [0.02,0.03] where we finally observe some differences. In Figure 4-left we report
the approximated coefficients g; returned by the three methods and the true gjs. We let the index
J to vary in the range [0,52] because, for j > 53, g; is below the machine precision. It is evident
that the outcome of the interpolation method strongly differs from the ones of the other algorithms
and from the true solution; in addition the coefficients of the fitting polynomial are sometimes
negative. In Figure 4-right we report the relative errors |(g; — g;)/g;| of the three approaches; the
results indicate that the accuracy of Algorithm 1 largely exceeds that of the others, as it returns
relative errors of magnitudes close to the machine precision already for 512 integration nodes. We
also remark that the return map method with 10° generations does not manage to provide non-zero
estimates for the coefficients g; with j > 20. Finally, we mention that the execution time of Return
map was about 40 seconds while Algorithm 1 and Interpolation needed less than 0.1 seconds.

Example 3.2. We test Algorithm 1 on a randomly generated offspring distribution. More specif-
ically, we set P(z) equal to the polynomial of degree 8 with the following coefficients: py = 0.838,
p1 = 0.008, po = 0.031, ps = 0.011, py = 0.021, p5 = 0.029, pg = 0.019, p; = 0.014 and ps = 0.029.
Consequently, we have m = 0.776 and ¢ p ~ 1.101. The latter is estimated numerically as the right-
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1{|— Algorithm 1 8 —— Algorithm 1
—— Return map —— Return map
0.8 || — Interpolation 1 oowall— Interpolation |
0.6 | a
04 1 0.012) |
0.2} -
0F -4 0.01+ .
| | | | | | | | | | | |
0 02 04 06 08 1 0.02 0.0220.024 0.026 0.028 0.03

F1c. 3. On the left; plots of the approzimated solutions @(z) returned by the three methods for the linear fraction
branching process with po = 0.6 and p = 0.3. On the right; zoom of the picture on the left for z € [0.02,0.03].

1 ® I 108 \
o Algorithm 1 —o— Algorithm 1
o Return map —&— Return map
05 ®e® e Interpolation || 102 - o —e— Interpolation H
s ° *  True g; f’
or 10| :
®
—05f ° Lo-10] |
1k i
| 'Y | | —16
0 20 10 10
J J

FIG. 4. On the left; approzimated coefficients §; computed by the three methods and true coefficients g; of the
% of the three
J

linear fractional branching process with po = 0.6 and p = 0.3. On the right; relative errors

approaches.

most solution of z = P(z). The parameter r is set equal to arg min,>; P(x) — x, which is obtained
via the fminsearch function of MATLAB. This is because we want to keep the magnitude of the
quantities (P(ré;) —r€;) ™' — that are involved in the definition of the matrix A — under control.
In Figure 5-left, we show the performances of Algorithm 1 and the features of the computed
solution. In particular, we report the residue defined as
Res = max [G(P(g;) ~ mG(&) — 1+ ml,

J=4.

and the sum of the coefficients g;. We notice that, in all our tests, the g;’s are real and non-



14 SOPHIE HAUTPHENNE AND STEFANO MASSEI

10t —
n Time (s) Res >0
256 0.05 8.67-1072  0.72 1074
512 0.11 1.40-1072  0.96
1,024 0.44 4.96-10~4 1 10-9 | |
2,048 1.62 8.85-107 1
4,096 9.92 3.80 10712 1 _
8,192 78.21 2.04-10715 1 10-14 ] | | > |
0 100 200 300
J

F1G. 5. Ezample 3.2. On the left, performances of Algorithm 1 as n increases. On the right, comparison
between the estimated coefficicients of G(z), in the case n = 8192, and the decay suggested by Corollary 2.6.

negative up to machine precision. As n increases, the execution times scale cubically; the residue
tends rapidly to 0 and the sum of the g;’s converges to 1. In Figure 5-right, we plot the first 300
coefficients g;, computed in the case n = 8192, and we compare their distribution with the decay
rate w;j , suggested by Corollary 2.6. The outcome confirms the sharpness of the decay rate.

Example 3.3. We consider a test analogous to the one in Example 3.2, selecting a case in which
m is closer to 1. We set the coefficients of P(z) as po = 0.782, p; = 0.016, po = 0.045, p3 = 0.038,
ps = 0.037, ps = 0.008, pg = 0.009, p; = 0.04 and pg = 0.025, which yields m = 0.942 and
1p ~ 1.026. Apart from the case n = 8192, we notice the presence of negative coefficients g; whose
order of magnitude range from 103 (for n = 256) to 10~° (for n = 4096). The results reported in
Figure 6 highlight that we are still far from convergence; indeed the residue is much higher than
in Example 3.2, and the sum of the g;’s is not close to 1. Finally, the slope of the decay of the
coefficients is further from the theoretical estimate.

Example 3.3 suggests that for m close to 1, higher values of n are needed in order to reach a
satisfactory accuracy. This leads us to deal with a large scale matrix A. In the next sections we
propose an improvement of Algorithm 1 for treating this case.

3.5. Rank structure in the matrix A. We now take a closer look at the matrix A in (16).
This matrix can be written as

A= Cg? - diag (Tgl,...,rgn> —ml,.
' n n

where the n X n matrix C}(;?: = (cp;) is defined as cpj 1= (1€, — P(r&;)) ™! with &, = exp(27ih/n).
The aim of this subsection is to show that the matrix A is well-approximated by a multiple of the
identity matrix plus a low-rank matrix. In view of the Eckart-Young theorem [20, Chapter 3], this
is equivalent to showing that the singular values o of 01(37,12 - diag (%, e TET") rapidly become
negligible, with respect to o1, as k increases. We note that the analysis is reduced to studying the
n X n matrix 01(3"3,, because the multiplication by the diagonal matrix does not alter the ratio o /o7.

The matrix ng}, belongs to a well-studied class of structured matrices that we introduce within
the next definition.
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10 ‘

n Time (s) Res > 0; 10t - i
256 0.06  9.94-107* 0.73

512 0.11  7.53-107% 0.74 10-11 _
1,024 039  433-100% 097
2,048 155  214-107% 0.67 10-3 | 1
4,096 994  249-107*  0.65
8,192  79.88  1.33-107% 0.86 10-5 L | | an

0 100 200 300
J

Fic. 6. Example 3.3. On the left, performances of Algorithm 1 as n increases. On the right, comparison
between the estimated coefficicients of G(z), in the case n = 8192, and the decay suggested by Corollary 2.6.

DEFINITION 3.4. A matriz (cp;) € C™*" is called a Cauchy matrix if there exist two vectors
x € C™ and y € C" such that cpj = (zp, —y;)~". We call x,y the generators and we denote the
matriz (cp;) with C(x,y).

The behavior of the singular values of C(x,y) can be linked to the configurations of the two
sets X 1= {zp}nr=1,.. m and Y := {y;};=1,..»n in the complex plane. There are many results in the
literature on the singular value decay of Cauchy matrices whose corresponding sets X and ) are
separated in some sense [12,26,27].

3.5.1. Bounds linked to polynomial approximation. The existence of accurate low-
rank approximations of C(x,y) is implied by the existence of low-degree separable approzimations
a(z,y) = 2521 gj(z)h;j(y) of the function a(z,y) := (z —y)~!, over the set X x ), see [16, Sec-
tion 4]. A possible way to determine a separable approximation of a(z,y) consists in considering
its truncated Taylor expansion with respect to one of the two variables. Intuitively, for using the
Taylor expansion we need the set X' X ) to be well separated from the singularities of a(z,y). This
is encoded in the following definition.

DEFINITION 3.5. Given 6 € (0,1) and c € C we say that two sets X, C C are (0, c)-separated
if for every x € X and y € Y we have |y — ¢| < 8]z — ¢|.
The property in Definition 3.5 provides an explicit exponential decay in the singular values of
C(x,y), as stated in the next result.

THEOREM 3.6 (Chandrasekaran et al. [12], Section 2.2). Let {zp}th=1,.. m,{¥;}i=1,...n C C be
(6, c)-separated for a certain 6 € (0,1) and a complex center c. Then, Vk € N there exist U € C™**
and V € C"*F such that i
0

—_ * < -
||O(X7Y) uv ”2 = (1 _ 9)5

vmn,

where § = minp=1,__m |c — zp].
Remark 3.7. By the Eckart-Young theorem, Theorem 3.6 provides the bound

ak
< ——mn, k=12,...,
Ok+1 (1—9)6 mn
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for the singular values of C(x,y).

In order to apply Theorem 3.6 in our framework, we need to understand better where the
function P(r - z) maps the unit circle. Relying on the stochasticity properties of the coefficients p;,
Vz € 8! we have

3

(17) |P(r-2) = pol = ij rzf| <Y pir? = P(r) = po,
Jj=1

i.e., P(r-S8') can be enclosed into the circle pg + a(r)S!, with a(r) := P(r) — po. This is at the
basis of the next lemma.

LEMMA 3.8. Letn € N, P(2) =Y. ,50p;27, p; > 0Vj >0, P(1) =1, PO(1) € (0,1), and let
r > 1 be such that r > P(r). ThenVk =1,...n—1 we have

0kn
18 o1 (O < — |
( ) +( P,) (1_9)(71_]70)
N
where 0 := —= p € (0,1).
Proof. Let us consider x = (re%Tij)‘ . and y = (P(Tem;'ij)), L 50 that Cgfr) =
j=1,...,n j=1,...,n
C(x,y). In light of (17), we have
ly; —pol  |P(re”™") — po o Pr) —po
[zh —pol  |re®R — pol S —po

that is X and ) are (m, po)—separated. Then, the claim follows by applying Theorem 3.6 and

T—Po
Remark 3.7 to C(x,y). 0
Remark 3.9. The decay rate 8 in Lemma 3.8 depends on the parameter r. We notice that the
strategy of minimizing the difference P(r) — r on the interval (1,%p) (when we choosing r) also
minimizes the quantity 6.

Ezample 3.10. We proceed to test the quality of the bound (18) by considering the linear
fractional family of progeny distributions with p = 1/2:
z\/ z(1 —po)
P(z) — 1— (7) = _ € (0,1).
(2) =po + ( Po); 5 Po + 5 po € (0,1)

For these distributions, we have m = P()(1) € (0,1) if and only if py € (1/2,1). In particular,
when pg is close to 1/2, m is close to 1 and the interval (1,4 p) shrinks drastically. This yields
a ratio (P(r) — po)/(r — po) close to 1 and consequently a slow decay. The opposite behavior is
obtained when pg tends to 1.

In the left panels of Figures 7-8 we report the singular values of the matrix C},nr) together
with the bound (18), for n = 1000, in the cases py = 0.55 and py = 0.95. In the righlc panels of
these figures we plot the three curves: 7S, P(rS') and a(r)S* + po. The provided bound is quite
informative in the case p = 0.95 but it is useless when p = 0.55. Indeed, whenever the distance
between X and Y tends to 0, e.g. in the case pg = 0.55, the Taylor expansion of (z —y)~! converges
slowly and this translates in slowly decaying bounds for the singular values of C'(x,y).
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Fic. 7. Case po = 0.55. On the left, the first singular values of the matriz C;Dnr), with n = 1000, compared
with the bound in (18). On the right, the regions rS* (in red) and P(rSY) (in blue) containing the sets X and Y,

respectively. In light blue the curve po + a(r)S! that encloses Y, by (17)

4 [T I ]
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Fi1c. 8. Case po = 0.95. On the left, the first singular values of the matriz Cng), with n = 1000, compared

with the bound in (18). On the right, the regions rS* (in red) and P(rSY) (in blue) containing the sets X and Y,
respectively. In light blue the curve po + a(r)S! that encloses Y, by (17)

3.5.2. Bounds linked to rational approximation. A link between the quantities Uk(C’}(,T’LT))
and certain rational approximation problems has been described in [6]. This motivates the presence
of a fast decay in a wider class of configurations for & and Y.

THEOREM 3.11 (Beckermann and Townsend [6], Section 4). Let Ry i denote the set of rational
functions of the form r(z) = p(2)/q(z), where p(z) and q(z) are polynomials of degree at most k.
Then

7541 (C(%,y))
1€ y) I

(19) < Ze(X,Y) = min DXxlr(z)]

reRe, miny |r(z)]
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Relation (19) bounds the relative singular values with Z; (X', )), usually called the k-th Zolotarev
number. Intuitively, these quantities become small when X and ) are well separated. For example,
it X ={|z| =21} and Y = {|z| < re} with r; > ro then

_ k

maxy |2 7F| T
20 Zu(x,y) < x| (T2
(20) k(&) miny |2¥| (7"1)

In addition, Zolotarev numbers enjoy the following properties.

PROPOSITION 3.12 (Akhiezer [1]). Let X, be disjoint subsets of C and assume Zy(X,Y) is
defined as in (19). Then the following properties hold:

(i) Let W, Z C C and assume X CW and Y C Z. Then Zi(X,Y) < Z(W, Z), Vk € N.

(i) Let T(z) be any Mébius transform, then Zp(X,Y) = Zx(T(X),T(Y)), Vk € N.

For generic complex sets, it appears to be difficult to derive explicit bounds for Z;(X',)). However,
our situation can be re-casted to the case where X',) are the two connected components of the
complement of an open annulus.

LEMMA 3.13. Under the assumptions of Lemma 3.8, we have

ore(CP))

(21) .
Icg2],

vk > 0,

2 2 2 2)2 2.2 2
where 0 — g::g))((];g:;:(g;; o= 2po P(r)—P(r)“+r +\/(221;00P(7') P(r)2+r2)%—4pgr and ,8 — %.

Proof. By Theorem 3.11 and Proposition 3.12 (i) we have 0k+1(01(373)/\|01(373\\2 < Zr(W, 2)
where W =r-St and Z = {|z — po| < P(r) —po}. The idea is to consider a Mébius transformation
that maps W and 0Z into two concentric circles centred in the origin and that maps the inner
part of Z into the inner part of the smaller disc. The Mobius transformation that satisfies these
requirements is given by T'(z) = (z — a)/(z — ) where the coefficients «, 5 are common inverse
points for the circles W and 0Z [19, Section 4.2]. Algebraically, a and 8 solve the system

af = r?
{m — po) (B — po) = (P(r) — po)?,

and T(z) maps W into (r — a)/(r — ) - St and Z into D (0, (P(r) — a)/(P(r) — 8)). Hence, the
claim follows by applying Proposition 3.12 (ii) with 7'(z) and the bound in (20). d

Ezxample 3.14. The qualitative behavior of the bound in Lemma 3.13 on the case considered
in Example 3.10 is shown in Figures 9-10. We also plot the action of the Moebius transform
(z —a)/(z — B) on the sets rS', P(rS§') and py + a(r)S'. Inequality (21) achieves a sharper
description of the slope of the decay, especially for what concerns the first singular values. We
expect that a complete sharpness is not attainable due to the fact that we are using an estimate for
P(r-8%). Moreover, in order to capture the superlinear behavior that appears in the case py = 0.55
one might consider the Zolotarev numbers on the discrete sets X, ), see for example [5]. The latter
is beyond the scope of this paper.
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F1a. 9. Case po = 0.55. On the left, the first relative singular values of Cl(t,nz, with n = 1000, compared with the
bound in (21). On the right, the image of the regions rS*, P(rS8Y)and po+a(r)S! under the Mdebius transformation

T(z) = (z=a)/(z = B)
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Fic. 10. Case po = 0.95. On the left, the first relative singular values of C’glz, with n = 1000, compared

with the bound in (21). On the right, the image of the regions rS', P(rS')and po + a(r)S! under the Méebius
transformation T(z) = (z — a)/(z — B)

3.6. Exploiting the structure in Algorithm 1. The results in Section 3.5 ensure that the
matrix A in (16) can be well approximated by the sum UV* —mlI,, where U,V € C"** are tall and
).
More specifically, we just need to store two n X k matrices and one scalar in order to represent A,
making the memory consumption linear with respect to the number of integration nodes.

The factors U and V are computed by means of the adaptive cross approrimation with partial
pivoting [8, Algorithm 1] whose pseudocode is reported in Algorithm 2. This procedure is heuristic
but experimentally effective for the case studies reported in this paper. Note that Algorithm 2 only

skinny matrices (i.e. k < n) that constitute a low-rank approximation of Cl(gnz -diag (%, e
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needs to have a cheap access to the entries of its argument, so there is no need to form the full
matrix C’g}g in order to compress it. In all the numerical tests that call Algorithm 2, we have set
T=10"10,

In order to keep the rank k of the approximation as low as possible one might apply a re-
compression technique — e.g. [16, Algorithm 2.17] — to the factors U and V returned by Algo-
rithm 2. Experimentally, we notice that this strategy does not bring any advantage in term of
computational time, hence we do not apply any recompression method.

We also use the structure of A in the computation of the eigenvector associated with its smallest

eigenvalue. Indicating with A.,;,, () the smallest eigenvalue of the (matrix) argument, we notice that
if Appin(UV* —ml,) # m then

Amin(UV* —mI,) = Apin (VU —ml}) =: A,
Moreover, if U;4y, is such that (VU — mI)vmin = vam then Uv,,;, satisfies
(UV* = mIL)Ubmin = AUUmin.

This suggests the procedure outlined in Algorithm 3, that has a O(nk? + k3) cost. Replacing eigs
in line 6 of Algorithm 1 with Algorithm 3, we get the structured procedure for computing the
coefficients of G(z) that is summarized in Algorithm 4.

The method is tested on the problematic Example 3.3, where we considered larger values of
n. We observe that the computed coefficients g; are positive, up to machine precision, and they
sum up to 1 in all cases. A complete picture of this test is shown in Figure 11. The rank of the
approximation of Cgfr) — returned by Algorithm 2 — is reported in the column with the label
“rank”. This quantity seems to stabilize around a value less than 500. When the rank growth
is limited (as in the last two numerical tests) the computational times confirm the almost linear
complexity with respect to n.

Algorithm 2 Adaptive cross approximation with partial pivoting

1: procedure ACA(C,T) > Computes the low-rank approximation C ~ UV*
2 Choose a starting i}

3 Set k1, U<+ [], V<« []

4 for k=1,2,... do

5: V4 Ci;7; — Ui;,: V=

6 Ji < argmax; |v;|

7 we (Cop ~U VE,) Juj;

8

9

U« [U,u]

: V « [V,v¥]
10: if ||ull5]lv]], < T then
11: break
12: end if
13: iy < argmax;z;: |u;
14: end for
15: return U,V

16: end procedure
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Algorithm 3

1: procedure Eics_LR(U,V, m) > Computes the smallest eigenvector of UV* — mlI
2 v = E1as(V*U — mly)

3: return Uv

4: end procedure

Algorithm 4 Low-rank Evaluation-Interpolation
1: procedure COMPUTE_G_LR(P(2),n,r) >r>P(r)>1
2: m <— P(l)(l)

2miyj
3: &+~ (r-eTj>

j=1,....n

4 [U,V]«ACA(CY))

50 V< 1V .diag(¢)

6: vy + E1Gs_.LR(U,V,m)

7. f<IFFT(v)), f+ (L)
8 g —¢f Go+ 0

9: return g

10: end procedure

§=0,...,n—1

3.7. Taking advantage of self-similarity when m ~ 1. The closer m to 1 the higher the

rank k of the approximation of O}()ng -diag (@ N 767" . Therefore, to limit resource consumption,

n ’

when m = 1, one can think about exploiting self-similarity of Cauchy matrices. Indeed, every
sub matrix of C(x,y) is again a Cauchy matrix whose generators are sub-vectors X := (:rj)j e
y = (yj)j ey In our setting, x,y represent samplings of closed curves that rotate counterclockwise,
so, intuitively, selecting disjointed subsets Jy, Jy of {1,...,n} provides well separated sets of nodes.
This translates in saying that the rank of the off-diagonal blocks is smaller than the rank of C'(x,y)
and sometimes the difference is substantial; see the example reported in Figure 12. In these cases,
it is advisable to rely on representations like %2 [8] and HSS [11] that aim at compressing the
off-diagonal sub-matrices while keeping the small diagonal blocks in the dense format. Adopting
this strategy, still allows to store and operate with matrices with a O(n) complexity. The H? and
HSS representations of the matrix A can be obtained by applying the algorithms described in [9,23].
The use of these more sophisticated formats is beyond the scope of this paper and might be the
subject of future investigations.

4. Multitype processes. In a multitype Galton-Watson process, individuals of each type can
give birth to children of various types according to a progeny distribution specific to the parental
type. For the sake of clarity, in this section we consider the two-type case; analogous arguments
can be applied to the case of an arbitrary (yet finite) number of types.

For j = 1,2 and h, k € N, we denote by pgfgc the probability that a type-j individual produces h

children of type 1 and k children of type 2; we let Pj(z,y) = > pgji 2"y* denote the offspring
(h,k)eN2
generating function of a type-j individual, and P(x,%y) = (Pi(z,y), P2(x,5))". The mean progeny
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10° : ‘

n Time (s) Res >.g; rank 10" |- 1

16,384 228 4101070 1 24| |
32,768 6.88 5.80 - 1077 1 366

65,536 21.67 1.15-10710 1 465 10-3 | |
1.31-10° 49.89 4.33-10710 1 471

262-10° 11319 5.94-107° 1 415 ] |

! ! !
0 100 200 300
J
Fic. 11. Ezample 3.3. On the left, performances of Algorithm 4 as n increases. On the right, comparison
between the estimated coefficicients of G(z), in the case n = 262144, and the decay suggested by Corollary 2.6.

27

13

149
13

27

Fic. 12. Rank (left) and off-diagonal rank distribution (right) of the matriz Cg;,ng. We set n = 4096, r =~ 1.0078
and P(z) equal to the polynomial of degree 7 with coefficients po = 0.765, p1 = 0.016, p2 = 0.039, p3 = 0.034,
pa = 0.049, ps = 0.043, ps = 0.005 and p7 = 0.049 which yields m = 0.98.

matrix is defined as

0P (z,y) 0Py (z,y)
. ox )
M= lmé,y) a&&y)] ;

ox Oy

(z,y)=(1,1)

and is assumed throughout the section to be positive regular, that is, 3n > 1 such that (M™);; > 0
for all 4,5 = 1,2. Analogue to m in the single-type case, the Perron-Frobenius eigenvalue p of M
determines the criticality of the process. Here we consider the subcritical case p < 1 with almost
sure extinction regardless the type of the initial individual [17, Theorem 7.1].

Let Z,, := (Zy1, Zpn,2) denote the population size in both types at generation n > 0. We assume
that the second moments of the offspring distribution are finite, that is, E(Z, ;2 ; | Zo = ex) < 00
for all 4,75,k = 1,2. If the process starts with a single individual of type j, then the conditional
probability distribution of Z,,, given Z,, # 0, converges as n — oo to a limiting distribution whose
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generating function,

Giwy)= D g 2"y,
(h,k)EN?

satisfies
(22) Gi(P(z,y) =p-Gj(z,y) +1—-p, j=12;

see for instance [17, Theorem 9.1] and [2, Chapter 4, Theorem 2] for a stronger result without the

second moment assumption. Here we aim at computing (G1(z,y), Ga(r,y)) " with g,(f;c > 0 and
G;(0,0) = 0 for j = 1,2. Note that Gy(z,y) = Ga(z,y), therefore we remove the subscript of
G(z,y) and the superscript of the coefficients gy, .

4.1. The bivariate linear fractional case. In the two-type case, the progeny distributions
of a linear fractional Galton-Watson process take the form

5117 + 812y + by

P =
1(1’,:(/) Cll‘+02y+d )
5212 + S22y + by
P. == -
Q(xay) Cll‘+02y+d

for some real parameters s;;, b;, ¢;, d, i = 1,2. Defining the matrix S := (s;;); j=1,2 and the vector
¢ = (c1, ¢2), the mean progeny matrix is given by M = (S—1®c)/(c1 +c2+d). Let v denote its left
Perron-Frobenius eigenvector, normalised such that v; + vo = 1. Finally, let ¢ := (¢1,t2) = —c¢/d,
to=1—(t1 +1t2), w := (w1, we) = t/ty, and p := w(l — M)~'/(1 +w(l — M)~11). Then, the
generating function of the quasi-stationary distribution is given by

Gla,y) = (1 — 1)z + (v — p2)y
’ 1 — pa — poy

see [21, Theorem 1]. This provides the explicit expression
h+k—-1 _ h+k—1 _
(23) Ghe = (V1 — Nl)( i )N}f s+ (v — M2)< b >//fl/§ g

where the binomial coefficient (§) is assumed to be equal to 0 whenever b > a.

4.2. Extension of Algorithm 1 to two dimensions. Similar to the one-dimensional case,
we define for j = 1,2

o~

o = 00 if Pj(x,x) is of degree 1,
BT \2e(,00): 2=P;(3,2) otherwise.

so that given r1 € (1,vp,) and 12 € (1,%p,), the function P(x,y) is holomorphic on a open
neighborhood of the polydisc D(0,r1) x D(0,73).
As in the previous case, every function of the form G(z,y) =1+t- f(z,y) such that ¢ € C and
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solves (22). By construction, V(z,y) € (r1S8' x r28') we have |Pj(z,y)| < rj, j = 1,2, hence
applying the multivariate Cauchy integral formula to (24) provides

! f(@,9) e
25) (27ri)2/rl$1 /,«251 (@ — Pi(z,y)) dz dj —p f(z,y) = 0.

Y
(§ = Pa(z,9))
Then, we approximate (25) by means of the composite trapezoidal rule, i.e. for both integrals we

select as nodes of integration the scaled n-th roots of unity:
(26

7 Lo Lo T
2771 r1St JrySt l‘—Pl ))

Evaluating (26) in all the pairs of scaled n-th roots of unity yields

)

Y di dj ~ F(ri€n, r2€i) - rira&ntr
(§ — Pa(z,y))

n%(ri&p — Pi(x,y))(roée — Pa(z,y))

M

n—1

F(ri€n, r2€e) - rira&nir

Z n2 - (1€, — P1(r16s,m2&)) (126 — Pa(r1&s,m2&))

h,k=0

pf(ri€s,m2&) =0, s,t=1,...,n.

Rearranging the (approximate) evaluations of f into the vector vy € Cc’, ie. (Vi) htnk &
fri&n, ro&k), leads us to the eigenvalue problem

27 AVe = Aminves,  A=CT) D pLa.eCrxn?
Py ,Ps,

-
where

(n®) 1
( PI’PQ’Tl’TZ’)s+n(t—1)7h+n(k—1) T (ri€n — Pu(ri€s, 1260)) (1o — Po(ri€s, 172Er))

D =n? diag(§(1) ® {(2)), and ;) € C" is the vector containing the n-th roots of unity in the
counterclockwise order multiplied by the constant r;.

After computing a vector v¢ that verifies (27), we apply the two-dimensional FFT on it; for
example, this task is performed by the MATLAB command ifft2(reshape(vg, n, n)). This
returns the (approximate) coefficients of the interpolating bivariate polynomial 2221:0 fh,kxhyk
for f(x, y) = f(riz,r2y). In order to obtain those for f(x,y) we rescale them with the rule
frg < fh &/ (T77rk). Once again, we impose the boundary condition 0 = G(0,0) = 1 + tf(0,0) =
1+t fo,0, which implies ¢t = —1/ fo. This yields the following (approximate) interpolating bivariate
polynomial G(z,y) for G(z,y):

n—1 O
B PO go,0 =0
V= 3 Gy, {A e (k) £ (0,0).

h,k=0 Ghk = fo,0?

The whole procedure is summarized in Algorithm 5

In our implementation, the parameters r; and ry are set as r; = argming,>; Pj(z,z) — z,
j = 1,2. A significant difference in the parameters r; and ro suggests the use of different levels
of discretization on the two integrals. This requires to slightly modify Algorithm 5 in order to
consider n; and ny integration nodes for the two integrals in (26). In the numerical experiments of
Section 4.1 we always use ny = ny = n.
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Algorithm 5 Evaluation-Interpolation in the 2D case

1: procedure COMPUTE_G_2D (P (z,y),r1, Pa(x,y),r2,n) > ;€ (1,9p)
oPi(1,1)  oPi(1,1)
2: p < spectral radius of 8},23(?71) apf&l)
‘ ox oy

s e (o)

Jj=1,..., n

. 1 —
4: A+ ((mgh,pl(Tlgsngt))(rzgk7P2(r1§5,mgt)))Hn(tilm%(’%l) ;o hokysit,=1,....n
5: D + D52 diag(§ ® €)
6: A(*A~D7p'ln2
7: vy + E1Gs(4), Vi <= RESHAPE(Vf,n,n)
8: G« IFFT2(Vy), G« (fﬁr’};)h . > ZZ?:O Gnxx"y* interpolates f(rix,ray)
172 / h,k=0,...,n—1 ’

9: G(**%ITG, §070%0
10: return G

11: end procedure

4.3. Rank structure in the matrix A. The size of the linear system (27) depends quadrat-
ically on the number of nodes n that we use for discretizing each integral in (25). In particular, the
execution — in dense arithmetic — of Algorithm 5 rapidly become computationally not feasible
as n increases. We here see that, similar to the single-type scenario, the matrix A exhibits a rank
structure and we discuss how to modify Algorithm 5 in order to consider larger values of n.

Let us denote with 1,, the vector of all ones of length n; then we can write

CI(DTI,I)Jg,rl,rz =C(1, ® &), P1(€1),€2)) o CEn) ® Ln, P1(§),€2)),

where o denotes the Hadamard product. In light of (27), A is obtained by applying a column
scaling and a diagonal shift to the Hadamard product of two Cauchy matrices. Intuitively, if the

latter are both numerically low-rank, then we expect the numerical rank of C},??I)QZ)TMZ to be much
smaller than n2. More formally, as pointed out in [28, Section 4.2], Hadamard products of Cauchy
matrices solve certain rank structured linear matrix equations and this enables to state decaying
bounds for their singular values; see Theorem 2 in [28].

Since we have a cheap access to the entries of CI(DTA’%”, we compress it using Algorithm 2 in
place of forming the full matrix A in line 4 of Algorithm 5. Once again, this provides two tall and
skinny matrices U,V whose storage consumption is O(n?). Finally, we apply the diagonal scaling
to the matrix V' and we replace the call to EIGS, in line 7, with a call to Algorithm 3. The modified

procedure is reported in Algorithm 6 and tested in the next example.
4.4. Numerical tests.

Example 4.1. We first consider a two-type linear fractional branching process whose offspring
distribution is defined in Section 4.1, with the following parameters:

0.3 0.2 ~0.05 0.4
5= [0.2 0.3]’ €= [—0.05]’ b= [0.4]’ d=1

Via direct computation we find that p = %, and the explicit expression of the coefficients gy, . is
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Algorithm 6 Low-rank Evaluation-Interpolation in the 2D case
1: procedure COMPUTE_G_2D _LR(P;(z,y),71, Pa(z,y),72,n)

aP(1,1)  9Pi(1,1)
2: p < spectral radius of apf&l) apf&l)
ox oy

27ij
3. £+ (e 5 )
Jj=1,...,n

U, V]« ACA(CY), )

D + D52 diag(§ ® €)

V«V-D

vy + E1Gs_.LR(U, V, p), Vi <= RESHAPE(Vf,n,n)
G « IFFT2(V}), é«—(%*

k
172 / h,k=0,...,n—1

@ N Tk

9: @ — —%G\, /9\0,0 —0

99,\0
10: return G
11: end procedure

1074 F 106
-8

10—9 i} 10
S A" —10

10-14 | ¢ 10
0 10712

F1G. 13. Ezample j.1. Relative error of the computed coefficients gy, in the bivariate linear fractional example.

given in (23) with vy = vy = % and py = o = %.

We run Algorithm 6 for this example with n = 256, and we compute the relative error |(gnx —
Gh.k)/gn.k| of the approximate coefficients gy, 5 returned by our method. The results are shown in
Figure 13 where we let the indices h, k vary in [0,20] (outside this range, the coefficients g, are
below the machine precision). We see that the most accurate quantities are those with highest
magnitude, i.e. the coefficients g,  whose index (h, k) is close to (0,0). The relative error increases
progressively as h, k increase, reaching about 10~ for the quantities that are at the level of the
machine precision.

Example 4.2. Here we test the scalability of Algorithm 6 on a randomly generated example.
We consider Pj(z,y) and Py(x,y) equal to bivariate polynomials of degree (2,2) with coefficients
reported in Table 1. This yields p ~ 0.5884, r1 = 1.2462 and o = 1.4104. The radii r; are estimated
using the MATLAB function fminsearch.

In Figure 14 left, we show the performances of Algorithm 6 and the features of the computed
solution. For all values of n the computed coefficients gj, ,, are non negative up to machine precision.
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R A I S I . W N . I . A %
Py(x,y) | 0.798 0.029 0.009 0.015 0.010 0.022 0.052 0.020 0.045
PQ(:L‘,y) 0.694 0.041 0.057 0.035 0.027 0.043 0.024 0.051 0.028
TABLE 1
Ezample 4.2. Coefficients of the bivariate polynomials P;(x,y).
n  Time (s) Res > Gnk rank 10!
16 0.12 0.27 1.17 107
32 0.18 6.59 - 1072 0.9 192 10715
64 0.86 2.26-1073 1 306
128 5.66 1.45-107° 1 437 10-31
256 33.45 9.53-10~10 1 572 0
512 218.49 5.95.10712 1 673 0

60 60 20

F1G. 14. Ezample /.2. On the left, performances of Algorithm 5 as n increases. On the right, 2D plot of the
coefficients Gy, 1, in the case n = 512.

The reported residue is defined as

Cmax  |G(Pi(&, &), Pa(6,65)) — pGl&L &) — 1+ pl,

1,j=1,...,n

Res := & = exp(2rij/n).

In the last column we also report the rank of the approximation of the matrix C}(jfl)pzyrhm returned
by Algorithm 2. The growth of this quantity — as the number of nodes increases — makes the time
consumption slightly super-quadratic with respect to n. In Figure 14-right, we plot the coefficients
Gn.x up to degree (63,63), computed in the case n = 512. Experimentally, we observe that if h
or k is not in the range [0,63] then g < 1073, This confirms that only a limited number of

coeflicients is sufficient to describe the quasi-stationary distribution with high accuracy.

4.5. A note on the implementation. All experiments have been performed on a Laptop
with the dual-core Intel Core i7-7500U 2.70 GHz CPU, 256KB of level 2 cache, and 16 GB of RAM.
The algorithms are implemented in MATLAB and tested under MATLAB2017a, with MKL BLAS

version 11.2.3 utilizing both cores.

5. Conclusions. We provided a fully algebraic analysis of the interplay between the regularity
of the offspring distribution and that of the quasi-stationary distribution of a subcritical GW
process. We proposed a new numerical method for computing the quasi-stationary distribution.
We showed that our approach can significantly outperform the accuracy of other techniques bases
on simulations or on interpolation.

Moreover, we provided a theoretical analysis of the low-rank structure stemming from the
discretization of the problem. This enabled our algorithm to be slightly modified in order to scale
well with the fineness of the discretization. The reported numerical tests confirm the scalability of
computational time.
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