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ABSTRACT
The Web constitutes a valuable source of information. In recent
years, it fostered the construction of large-scale knowledge bases,
such as Freebase, YAGO, and DBpedia. The open nature of the
Web, with content potentially being generated by everyone, how-
ever, leads to inaccuracies and misinformation. Construction and
maintenance of a knowledge base thus has to rely on fact checking,
an assessment of the credibility of facts. Due to an inherent lack of
ground truth information, such fact checking cannot be done in a
purely automated manner, but requires human involvement.

In this paper, we propose a comprehensive framework to guide
users in the validation of facts, striving for a minimisation of the
invested effort. Our framework is grounded in a novel probabilistic
model that combines user input with automated credibility inference.
Based thereon, we show how to guide users in fact checking by
identifying the facts for which validation is most beneficial. More-
over, our framework includes techniques to reduce the manual effort
invested in fact checking by determining when to stop the validation
and by supporting efficient batching strategies. We further show
how to handle fact checking in a streaming setting. Our experiments
with three real-world datasets demonstrate the efficiency and effec-
tiveness of our framework: A knowledge base of high quality, with
a precision of above 90%, is constructed with only a half of the
validation effort required by baseline techniques.
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1. INTRODUCTION
Extracting factual knowledge from Web data plays an important

role in various applications. For example, knowledge bases such
as Freebase [3], YAGO [7] and DBpedia [1] rely on Wikipedia to
extract entities and their relations. These knowledge bases store
millions of facts, about society in general as well as specific domains
such as politics and medicine. Independent of the adopted format
to store facts, extraction of factual knowledge first yields candidate
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facts (aka claims), for which the credibility needs to be assessed.
Given the open nature of the Web, where content is potentially gen-
erated by everyone, extraction of claims faces inaccuracies and mis-
information. Hence, building a knowledge base from Web sources
does not only require conflict resolution and data cleansing [23], but
calls for methods to ensure the credibility of the extracted claims,
especially in sensitive domains, such as healthcare [48].

To assess the credibility of claims, automated methods rely on
classification [41] or sensitivity analysis [66]. While these methods
scale to the volume of Web data, they are hampered by the inherent
ambiguity of natural language, deliberate deception, and domain-
specific semantics. Consider the claims of ‘the world population
being 7.5 billion’ or ‘antibiotics killing bacteria’. Both represent
common-sense facts. Yet, these facts have been derived from com-
plex statistical and survey methods and, therefore, cannot easily be
inferred from other basic facts.

When relying on accurate facts, incorporating manual feedback is
the only way to overcome the limitations of automated fact checking.
However, eliciting user input is challenging. User input is expensive
(in terms of time and cost), so that a validation of all claims is
infeasible, even if one relies on a large number of users (e.g., by
crowdsourcing) and ignores the overhead to resolve disagreement
among them. Also, claims are not independent, but connected
in a network of Web sources. An assessment of their credibility
thus requires effective propagation of user input between correlated
claims. Finally, there is a trade-off between the precision of a
knowledge base (the ratio of credible facts) and the amount of
user input: The more claims are checked manually, the higher the
precision. However, user input is commonly limited by some budget.

This paper presents a comprehensive framework for guiding users
in fact checking, adopting a pay-as-you-go approach. We present a
novel probabilistic model that enables us to reason on the credibility
of facts, while new user input is continuously incorporated. By (i)
inferring the credibility of non-validated facts from those that have
been validated, and by (ii) guiding a user in the validation process,
we reduce the amount of manual effort needed to achieve a specific
level of result precision. Credibility inference and user guidance are
interrelated. Inference exploits mutual reinforcing relations between
Web sources and claims, which are further justified based on user
input. Moreover, a user is guided based on the potential effect of the
validation of a claim for credibility inference.

Efficient user guidance further requires to decide: (i) when to
terminate validation to avoid wasting resources on marginal im-
provements of the quality of the knowledge base; (ii) how to group
claims for batch processing to reduce the impact of set-up costs in
validation (a user familiarising with a particular domain); and (iii)
how to handle continuous arrival of new data to avoid redundant
computation. Our novel model enables us to address these aspects.
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Our contributions are summarised as follows:
• Approach to Guided Fact Checking: §2 formalises the setting of

fact checking and, based thereon, formulates the problem of ef-
fort minimisation. We further introduce an iterative approach to
guide a user in the validation process and highlight requirements
for its instantiation.
• Probabilistic credibility inference: §3 addresses the need for

a method to reason on the credibility of facts. We introduce
a probabilistic model for fact checking, based on Conditional
Random Fields, and show how to perform incremental inference
based on user input. Aiming at pay-as-you-go validation, we
show how to derive a trusted set of facts based on our model.
• Probabilistic user guidance: §4 presents strategies to guide

users, i.e., to select the claims for which validation is most
beneficial. These strategies target the reduction of uncertainty
in our probabilistic model for fact checking.
• Complete validation process: §5 combines our mechanisms for

credibility inference and user guidance to obtain a comprehen-
sive validation process. We also show how to achieve robustness
against erroneous user input.
• Methods for effort reduction: §6 introduces techniques for early

termination of the validation process and batch selection. The
former is based on signals that indicate convergence of our prob-
abilistic model and, thus, of the quality of the derived knowledge
base. The latter selects groups of claims for validation based on
the benefit of their joint validation. Since this selection problem
turns out to be intractable in practice, we propose a greedy top-k
algorithm, which comes with performance guarantees.
• Streaming fact checking: §7 shows how to handle continuously

arriving data by an adaptation of our validation process that fea-
tures stochastic approximation and reuse of model parameters.

We evaluate our techniques with three large-scale datasets (§8) of
real-world claims. We demonstrate low response times for claim
selection (<0.5s) and high effectiveness of guiding users in their val-
idation efforts. To obtain a knowledge base of high quality (>90%
precision), only a half of the effort of baseline techniques is required.
Finally, we review related work (§9) and conclude (§10).

2. GUIDED FACT CHECKING

2.1 Setting
We model the setting of fact checking by means of a set of data

sources S = {s1, . . . , su}, a set of documents D = {d1, . . . , dm},
and a set of candidate facts, or short claims, C = {c1, . . . , cn}. A
source could be a user, a website, a news provider, or a business
entity. It provides multiple documents, each often being textual
(e.g., a tweet, a news item, or a forum posting) and involving a
few claims. The representation of a claim (e.g., unstructured text
or an RDF triple) is orthogonal to our model. However, a claim
can be referenced in multiple documents, it depends on a specific
process for information extraction how the link between claims and
documents is established (see §8.1).

A claim c ∈ C represents a binary random variable, where c =
1 and c = 0 denote that the claim is credible or non-credible,
respectively. In fact checking, however, these values are not known,
so that we consider a probabilistic model P , where P (c = 1), or
P (c) for short, denotes the probability that claim c is credible.
Combining the above notions, the setting of fact checking is a tuple
Q = 〈S,D, C, P 〉, also referred to as a probabilistic fact database.

A knowledge base is constructed from such a database by deriving
a trusted set of facts. We formalise this construction by a grounding
function g : C → {0, 1}, labelling claims as credible (g(c) = 1) or
non-credible (g(c) = 0).

In fact checking, claims are validated manually by a user, which
is represented by a binary model of user input. A claim c is either
confirmed as credible, which yields P (c) = 1, or labelled as non-
credible, so that P (c) = 0.

As an example, consider the Snopes dataset [9], a collection
of 4856 claims derived from 80421 documents of 23260 sources,
such as news websites, social media, e-mails, etc. For instance,
this dataset comprises the claim that eating turkey makes people
especially drowsy. This claim can be found in documents of various
Web sources, among them earthsky.org [2], webmd.com [6], and
kidshealth.org [4]. In the Snopes dataset, claims have been validated
by expert editors, which corresponds to the user input in our model.
It labels the aforementioned example claim as non-credible [5].

2.2 Effort Minimisation
Adopting the above model, the grounding g to derive a trusted

set of facts is partially derived from user input. However, manual
validation of claims is expensive, in terms of user hiring cost and
time. User input is commonly limited by an effort budget, which
leads to a trade-off between validation accuracy and invested effort.

Going beyond this trade-off, we aim at minimising the user effort
invested to reach a given validation goal. We consider fact checking
as an iterative process with a user validating the credibility of a single
claim in each iteration. This process halts either when reaching a
validation goal or upon consumption of the available effort budget.
The former relates to the desired result quality, e.g., a threshold
on the estimated credibility of the grounding. The latter defines
an upper bound for the number of validations by a user and, thus,
iterations of the validation process.

Formally, given a probabilistic fact database 〈S,D, C, P 〉, fact
checking induces a validation sequence, a sequence of groundings
〈g0, g2, . . . , gn〉 obtained after incorporating user input as part of
n iterations of a validation process (i.e., any gi is a prediction of
the model). Given an effort budget b and a validation goal ∆, a
sequence 〈g0, g1, . . . , gn〉 is valid, if n ≤ b and gn satisfies ∆. Let
R(∆, b) denote a finite set of valid validation sequences that can be
created by instantiations of the validation process. Then, a validation
sequence 〈g0, g1, . . . , gn〉 ∈ R(∆, b) as minimal, if n ≤ m for any
validation sequence 〈g′0, g′1, . . . , g′m〉 ∈ R(∆, b).

Problem 1 (Effort Minimisation). Let 〈S,D, C, P 〉 be a probabilis-
tic fact database and R(∆, b) a set of valid validation sequences
for an effort budget b and a goal ∆. The problem of effort minimi-
sation in fact checking is the identification of a minimal sequence
〈g0, g1, . . . , gn〉 ∈ R(∆, b).

The validation goal could be the precision of the final grounding
gn, estimated by cross validation. Note that, in theory, Problem 1
could have no solution—the effort budget may be too small or the
validation goal may be unreachable. However, for practical reasons,
there needs to be a guarantee that the validation process terminates.

Solving Problem 1 is challenging, mainly for two reasons. First,
claims are not independent, but subject to mutual reinforcing rela-
tions with Web sources and documents. Consequently, the validation
of one claim may affect the probabilistic credibility assessment of
other facts. Second, the problem is computationally hard: Finding an
optimal solution quickly becomes intractable, since all permutations
of all subsets (of size ≤ b) of claims would have to be explored.

2.3 Outline of the Validation Process
To address the problem of effort minimisation, we argue that a

user shall be guided in the validation of claims. In essence, user
input shall be sought solely on the ‘most promising’ unverified facts,
i.e., those for which manual validation is expected to have the largest
impact on the estimated credibility of the resulting grounding.
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Let 〈S,D, C, P 〉 be a probabilistic fact database. Our validation
process continuously updates the grounding g to validate claims in
a pay-as-you-go manner, by:
(1) selecting a claim c for which feedback shall be sought;
(2) eliciting user input on the credibility of c, which either confirms

it as credible or labels it as non-credible;
(3) inferring the implications of user input on the probabilistic

credibility model P ;
(4) deciding on the grounding g that captures the facts that are

assumed to be credible.
In the above process, steps (1), (3), and (4) need to be instantiated
with specific methods. An example for a straight-forward instantia-
tion would be a validation process that:
• selects a claim c randomly for validation;
• limits the inference to claim c, setting either P (c) = 1 or
P (c) = 0, not changing P (c′) for any claim c′ 6= c;
• decides that a claim c is credible, g(c) = 1, if and only if it

holds P (c) ≥ 0.5.
In the remainder, we present methods for a more elaborated instanti-
ation of the above process. We introduce a probabilistic model for
fact checking that captures the mutual reinforcing relations between
Web sources and claims. This enables us to infer the implications
of user input beyond the claims that have been validated, and based
thereon, decide on the grounding while incorporating the relations
between sources and claims. Also, the model enables conclusions
on the claims that shall be selected. Unverified claims for which
validation is most beneficial for the inference will be chosen. Our
model further helps to identify suspicious user input, i.e., claims
that may have been validated by mistake.

We then address aspects of practical relevance, which are not
captured in Problem 1. Validation may converge before the vali-
dation goal is reached and the effort budget has been spent. If so,
further user input leads to diminishing improvements of the quality
of the grounding and the validation process may be terminated. We
show how our model enables the detection of such scenarios by
decision-support heuristics.

In practice, users that validate claims face significant set-up costs,
implied by the need to familiarise with claims of a particular domain.
It therefore increases user convenience and efficiency if the valida-
tion process considers a batch of claims per iteration. We support
such batching by a greedy top-k strategy to select a set of claims
with a high joint benefit for credibility inference.

Moreover, in many applications, new sources, documents, and
claims arrive continuously. We thus illustrate how the above process
can be lifted to a streaming setting by exploiting online algorithms
for inference and reusing parameters of our underlying model.

3. CREDIBILITY INFERENCE
This section presents a probabilistic model for fact checking

(§3.1), before turning to mechanisms for incremental inference
(§3.2) and the instantiation of a grounding (§3.3).

3.1 A Probabilistic Model for Fact Checking
Sources of uncertainty. Claims are assessed by means of docu-
ments from Web sources. These documents are encoded using a set
of features. We abstract from the specific nature of these features,
but take into account that the trustworthiness of a source and the
language quality of a document have a strong influence on the credi-
bility of the claims. We capture these features as follows. A source
s ∈ S is associated with a feature vector 〈fS1 (s), . . . , fSmS (s)〉 of
mS source features. In the same vein, 〈fD1 (d), . . . , fDmD (d)〉 is a
vector of mD document features, assigned to each document d ∈ D.

Features of sources and documents interact with each other, and
with the credibility of claims. A claim’s credibility depends on both,
the trustworthiness of the source and the language quality of the
document, which we call a direct relation. A claim is more likely to
be credible, if it is posted by a trustworthy source using objective
language. Yet, the intentions of a source, and thus its trustworthiness,
may change over different contexts and hence documents. Therefore,
we also reason about the credibility of claims via an indirect relation,
exploiting that documents of different sources may refer to the same
claim. For example, a source disagreeing with a considered credible
by several sources shall be regarded as not trustworthy.
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Figure 1: Relations in a probabilistic fact database.

The Conditional Random Field model. To model these relations,
and eventually derive the assignment of credibility probabilities, we
rely on a Conditional Random Field (CRF) [25], see Fig. 1. We
construct a CRF as an undirected graph of three sets of random
variables, S,D, C for sources, documents, and claims. Here, S and
D are sets of real-valued variables that represent trustworthiness
of sources and language quality of documents, respectively, based
on the aforementioned features. Set C is the set of binary variables
introduced in §2.1, each variable representing a claim’s credibility.
Direct relations are captured by relation factors in the CRF, also
called cliques since they always involve three random variables
(source, document, claim). Any random variable can be part in
multiple cliques, reflecting the indirect relations. This implies a
factorization of cliques to compute the joint probability distribution.

In this model, S and D are observed variables. As an output vari-
able, we consider a categorical variable C that represents credibility
configurations of claims. A possible value o of C, called configura-
tion, is an assignment o : C → {0, 1}, such that each variable c ∈ C
is assigned the value o(c). Considering these variables, the model
likelihood is expressed in the form of a conditional distribution,
tailored from the generic form of a CRF [25]:

Pr(C = o | D,S;W ) =
1

Z

∏
π={c,d,s}∈Π

φ(c = o(c), d, s;Wπ) (1)

where Π is the set of all cliques in the CRF; c, d, s are the claim, doc-
ument, and source of a clique π, respectively; Z =

∑
c∈C

∏
π∈Π

φ(c = o(c), d, s;Wπ) is a normalisation constant to ensure that
the probabilities over all configurations of C sum up to one; and
W =

⋃
π∈Π Wπ is the set of model parameters controlling the

effects of individual features. Using this model, we shall compute
the conditional distribution of C, given the source and document
features. This is realised by the log-linear model (aka logistic re-
gression) that expresses the log of a potential function as a linear
combination of features, instantiated from its generic form [25]:

log φ(c = o(c), d, s;Wπ) = wπ,o(c) +

mD∑
t=1

wDπ,t × fDt (d)

+

mS∑
t=1

wSπ,t × fSt (s). (2)

Hence, we have different weights for each configuration of C and
Wπ = {wπ,0, wπ,1, wDπ,t, wSπ,t} is the set of all weights.
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The above formulation is motivated by the CRF being a special
case of log-linear models, which, extending logistic regression, are
suitable for structured learning tasks [38, 25]. In our setting, the
data has an internal structure via the relations between sources, doc-
uments, and claims. Exploiting these relations, however, means that
the inference of model parameters becomes complex. Hence, the po-
tential function needs to be computationally efficient to enable user
interactions in the validation process. A log-linear model enables
efficient computation, while, at the same time, provides a compre-
hensive model, in which the features of sources and documents are
discriminative indicators for the credibility of the related claims.
The weights enable tuning of feature importance, as features vary
between applications and shall be learned from labelled data.
Handling opposing stances. Documents may link the same claim
with opposite stances—support or refute it [28]—and a source is
considered trustworthy, if it refutes an incorrect claim. A model
that only captures that a claim is part of a document would neglect
this aspect. Yet, incorporating such information via a new type of
random variable would mean that the number of variables is larger
than or equal to the number of documents, which is much larger than
the number of claims (see §8). We therefore introduce an opposing
variable ¬c for each claim c. Then, model complexity increases only
slightly: Configurations of C include opposing claims, W contains
a doubled number of parameters, and any document connects only to
the positive or negative variable of a claim. As c and ¬c cannot have
the same credibility value, we enforce a non-equality constraint:

Pr(c,¬c′) =

{
0 if c = c′

Pr(c,¬c′|D,S;W ) otherwise.
(3)

3.2 Incremental Inference with User Input
Using the above formalisation, we further distinguish the set
CL ⊆ C of validated, or labelled, claims. It contains all claims c for
which, based on user input, we set P (c) = 1 in the probabilistic fact
database. In the same vein, CU = C \ CL is the set of unlabelled
claims. Based thereon, we define restricted variants of the categori-
cal random variable C that represents credibility configurations of
claims: CU andCL are variables for configurations involving solely
the unlabelled claims of CU or the labelled claims of CL, respec-
tively. Then, we need to solve the following optimisation problem
to infer model parameters (as usual, Pr(X) is the probability of
one value of a categorical random variable X), derived from the
principle of maximum likelihood [25]:

W ∗ = arg max
W

log Pr(CL | D,S;W ) (4)

= arg max
W

log
∑
CU

Pr(CL, CU | D,S;W ). (5)

The log-likelihood optimisation is convex, since the logarithm is
monotonically increasing and the probability distribution is in expo-
nential form. However, the problem becomes intractable due to the
exponential number of configurations to consider for the random
variable CU . Moreover, upon receiving new user input, CL and CU ,
and hence CL and CU change, so that re-computation is needed.
Requirements for model inference. To be useful in our setting,
an inference algorithm must meet two requirements. First, user
input on correspondences should be a first class citizen. By propa-
gating which claims have been validated, credibility probabilities
can be computed for claims for no input has been sought so far.
Second, each iteration of the validation process changes the credi-
bility of claims only marginally. Hence, inference should proceed
incrementally and avoid expensive re-computation of the credibility
probabilities and model parameters in each iteration.

Existing inference algorithms. Various inference algorithms have
been proposed in the literature. Yet, none of them meets the afore-
mentioned requirements. Traditional CRF models, such as [54],
operate in a static manner, in which model parameters are inferred
from a fixed set of labelled data by methods that incur high com-
putational effort (e.g., gradient descent or trusted region methods).
Hence, credibility probabilities and model parameters in our model
would be computed from scratch every time new user input arrives.
Moreover, the instantiation of a grounding based on this model re-
quires another pass over the whole data. This makes it not suitable
for interactive validation process considered in our work.
iCRF algorithm. In the light of the above, we propose a novel
incremental inference algorithm, iCRF , which adopts the view
maintenance principle by maintaining a set of Gibbs samples over
time. Estimation of credibility and model parameters exploits the
results of the previous iteration of the validation process, thereby
avoiding re-computation. As we will show experimentally, this
does not only increase inference efficiency, but also yields a better
approximation compared to random estimation.

Our iCRF algorithm implements the third step of the validation
process introduced in §2.3, i.e., the inference of the implications
of user input on the probabilistic credibility model. In the z-th
iteration of the validation process, reasoning is based on the prob-
abilistic fact database of the previous iteration and the user input
that has been received in the z-th iteration. That is, if c is the
claim validated in the z-th iteration, we rely on the probabilistic
fact database Qz−1 = 〈S,D, C, Pz−1〉, with CUz−1 and CLz−1 being
the sets of unlabelled and labelled claims, respectively, as indicated
by Pz−1. Then, these sets are updated, CUz = CUz−1 \ {c} and
CLz = CLz−1 ∪ {c}, and inference returns a new probabilistic fact
database Qz = 〈S,D, C, Pz〉.

In each iteration of the validation process, our iCRF algorithm
adopts the Expectation-Maximization (EM) principle for inference.
This choice is motivated by EM’s fast convergence, computation-
ally efficiency, and particular usefulness when the likelihood is
an exponential function (i.e., maximising log-likelihood becomes
maximising a linear function). Specifically, we infer the values of
the variables for unlabelled claims CU through a configuration of
CU and learn the weight parameters W . By relying on an EM-
based approach, we can further naturally integrate user input on
the credibility of specific claims. This is a major advantage com-
pared to approaches based on gradient-descent [47] that optimise
model parameters, but do not enable the integration of user input
and constraints (e.g., on opposing claims).

Inference alternates between an Expectation (E-step) and a Maxi-
mization (M-step), until convergence. EM-based inference is con-
ducted in each iteration of the validation process, while each EM
iteration updates the model parameters W . Hence, in the z-th it-
eration of validation, we obtain sequences W 0

z ,W
1
z , . . . ,W l

z and
P 0
z , P

1
z , . . . , P

l
z of model parameters and credibility probabilities.

E-step: We estimate the credibility probabilities from the current
parameter values. The first E-step of the z-th iteration of the val-
idation process is based on parameters W 0

z , given as input from
the previous iteration of the validation process, i.e., W 0

z = W
lz−1
z−1 ,

with lz−1 as the number of EM iterations in the z − 1-th iteration
of the validation process. In the l-th E-step of the z-th step of the
validation process, credibility probabilities are computed as follows:
(1) A sequence of samples Ωlz is obtained by Gibbs sampling ac-

cording to the conditional probability distribution:

qlz(CUz ) = Pr(CUz | CLz , D, S;W l
z)

∝
∏

π={c,d,s}∈Π

Prl−1
z (c)× φ(o(c), d, s;W l

z). (6)
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We incorporate non-equality constraints (Eq. 3) into Gibbs sam-
pling using an idea similar to [61], which, based on matrix
factorisation, embeds constraints as factorised functions into
the Markov chain Monte Carlo process. Note that Ωlz is a se-
quence, as any configuration of CU can appear multiple times.
We weight the influence of causal interactions (i.e., cliques) by
the credibility of their contained claims, so that user input is
propagated via mutual interactions between the cliques.

(2) The probability for each claim c ∈ CU without user input is
determined by the ratio of Gibbs samples in which c is credible:

Prlz(c) =

∑
ω∈Ωtz

ω(c)

|Ωtz |
. (7)

For all other claims c ∈ CL, the probability is fixed by the user
input: We set Prlz(c) = 1, if the user confirms a claim, and
Prlz(c) = 0 otherwise.

M-step: We compute the new parameter values by maximising
the expectation of log-likelihoods as a weighted average of the
probability distribution of current label estimates. That is, in the l-th
M-step of the z-th step of the validation process, we have:

W l+1
z = arg max

W ′

∑
CU

qlz(C
U
z ) logPr(CLz , C

U
z |D,S;W ′) (8)

This step is realised by a L2-regularized Trust Region Newton
Method [45], suited for large-scale data, where critical informa-
tion is often sparse (many zero-valued features).

Proposition 1. iCRF runs in linear time in the size of the dataset.

Proof. The E-step is implemented by Gibbs sampling, which takes
linear time [19, 37] in the number of claims. The M-step is imple-
mented by the Trust Region Newton Method, which also takes linear
time in the dataset size [45] .

3.3 Instantiation of a Grounding
Once the user input of the z-th iteration of the validation process

has been incorporated, a grounding is instantiated. This corresponds
to the fourth step of the validation process in §2.3, i.e., deciding
which claims are deemed credible. Since claims are not independent,
we take the configuration with maximal joint probability:

gz(c) =


1 if (c ∈ CLz ) ∨

(o(c) = 1 ∧ o = arg max
CUz

Pr(CUz | CLz , D, S;Wz))

0 otherwise.
(9)

However, solving this equation is similar to solving a Boolean
satisfiability problem. Thus, we simply leverage the most recent
Gibbs sampling result Ω∗z , obtained during EM, for instantiation.
This is defined by a function decide as follows:

gz(c) = decide(c,Ω∗z)

=


1 if (c ∈ CLz ) ∨

(o(c) = 1 ∧ o = arg max
CUz

|{ω ∈ Ω∗z | CUz = ω}|)

0 otherwise.
(10)

Consider a set of claims C = {c1, c2, c3} and assume that the last
Gibbs sampling comprised three configurations, ω1 = [1, 1, 0],
ω2 = [1, 0, 0], ω3 = [1, 1, 0], where the i-th vector element denotes
the credibility of claim ci. Instantiation will return [1, 1, 0] as this
configuration appears most often, so that its probability is maximal.

4. USER GUIDANCE
Having discussed (i) inference based on user input and (ii) instan-

tiation of a grounding, we turn to strategies to guide a user in the
validation. This corresponds to the first step of the validation process
presented in §2.3, i.e., the selection of a claim for validation. We
first define a measure of uncertainty for a probabilistic fact database
(§4.1). Then, two selection strategies are introduced (§4.2 and §4.3),
before they are combined in a hybrid approach (§4.4).

4.1 Uncertainty Measurement
The model of a probabilistic fact database, as constructed above,

enables us to quantify the uncertainty related to credibility in-
ference in order to guide a user in the validation process. Let
Q = 〈S,D, C, P 〉 be a probabilistic fact database. Recall that P
assigns to each claim c ∈ C the probability P (c) of it being credible,
while C is the categorical random variable that captures credibility
configurations over all claims. We quantify the overall uncertainty
of the database by the Shannon entropy over a set of claims:

HC(Q) = −
∑
C

Pr(C;W ) logPr(C;W ) (11)

In our iCRF model, it can be computed exactly by [58, 57]:
HC(Q) = Φ(W )−EW [t(C)]TW (12)

where Φ(W ) =
∑
C

∏
π φ(o, d, s;W ) is called the partition func-

tion and EW [t(C)] = ∇Φ(W ). Since our model is an acyclic
graph with no self statistics, the partition function is computed
exactly using Ising methods [57], which run in polynomial time.

We can further scale-up uncertainty computation by approximat-
ing the entropy in linear time, as follows:
HC(Q) = −

∑
c∈C

[Pr(c) logPr(c)+(1−Pr(c)) log(1−Pr(c))] (13)

where the claim probabilities are obtained after each EM iteration
(i.e., Eq. 7 for unlabelled claims, or directly by the user input for
labelled claims). However, this approximation neglects the mutual
dependencies between claims.

4.2 Information-driven User Guidance
A first heuristic to guide the selection of claims for validation

aims at the maximal reduction in uncertainty under the assumption
of trustworthy sources. It exploits the benefit of validating a claim
using the notion of information gain from information theory [59].

To capture the impact of user input on a claim c, we define a condi-
tional variant of the entropy measure introduced earlier. It measures
the expected entropy of the database under specific validation input:

HC(Q | c) = Pr(c)×HC(Q+)+(1−Pr(c))×HC(Q−) (14)

where Q+ = 〈S,D, C, P+〉 and Q− = 〈S,D, C, P−〉 are inferred
from Q = 〈S,D, C, P 〉 by iCRF (§3.2), under input that confirms
the claim, P+(c) = 1, or labels it as non-credible, P−(c) = 0.

To take a decision on which claim to select, we assess the expected
difference in uncertainty before and after incorporating input for
a claim. The respective change in entropy is the information gain
that quantifies the potential benefit of knowing the true value of an
unknown variable [59], i.e., the credibility value in our case:

IGC(c) = HC(Q)−HC(Q | c). (15)

Using this notion, we chose the claim that is expected to maximally
reduce the uncertainty of the probabilistic fact database. This yields
a selection function for information-driven user guidance:

selectC(C) = arg max
c∈C

IGC(c) (16)

Note that we do not need to rank the opposing claim ¬c of a claim
c, as their conditional entropies in Eq. 14 will be equivalent.
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4.3 Source-driven User Guidance
User guidance as introduced above assumes that sources are

trustworthy—an assumption that is often violated in practice. To
tackle this issue, we model source trustworthiness by explicitly ag-
gregating over all claims made by a source. More precisely, the
likelihood that a source is trustworthy is measured as the fraction
of its claims that are considered credible. The latter is derived from
the grounding gz instantiated in the last, the z-th, EM iteration:

Pr(s) =

∑
c∈Cs gz(c)

|Cs|
(17)

where Cs = {c ∈ C | (c, s) ∈ Π} is the set of claims connected to
s in the CRF model. Then, the uncertainty of source trustworthiness
values is defined as:

HS(Q) = −
∑
s∈S

[Pr(s) logPr(s)+(1−Pr(s)) log(1−Pr(s))] (18)

The conditional entropy when a claim c is validated is:

HS(Q|c) = Pr(c)×HS(Q+) + (1− Pr(c))×HS(Q−) (19)

where, as detailed above, Q+ and Q− are inferred from Q by iCRF
under user input that confirms or disproves the claim, i.e., setting
P+(c) = 1 for Q+, or P−(c) = 0 for Q−, respectively.

As for the first heuristic, we further capture the information gain
as the difference in entropy and, based thereon, define the selection
function for source-driven user guidance:

IGS(c) = HS(Q)−HS(Q|c) (20)

selectS(C) = arg max
c∈C

IGS(c) (21)

Again, we do not need to rank opposing claims.

4.4 Hybrid User Guidance
There is a trade-off between the information-driven and the source-

driven strategy for user guidance. Focusing solely on the former
may lead to contamination of the claims from trustworthy sources
by unreliable sources. An excessively source-driven approach, in
turn, may increase the overall user efforts significantly. Thus, we
propose a dynamic weighting procedure that to choose among the
two strategies. This choice is influenced by two aspects:

Ratio of untrustworthy sources. If there is a high number of
unreliable sources, the source-driven strategy is preferred. With
little user input, detection of unreliable sources is difficult, though,
so that the information-driven strategy is favoured in the beginning.

Error rate. The grounding gi captures which claims are deemed
credible in the i-th iteration of the validation process. If gi turns out
to be mostly incorrect, we have evidence of unreliable sources and
favour the source-driven strategy.

Initially, with little user input, we choose the strategy mainly
based on the error rate of the grounding. At later stages of the vali-
dation process, the number of inferred unreliable sources becomes
the dominant factor. The above idea is formalised based on the ratio
of unreliable sources in the i-th iteration of the validation process,
which is ri = (|{s ∈ S | Pr(s) < 0.5}|)/(|S|). The error rate of
the grounding is computed by comparing the user input for claim c
in the i-th iteration with the credibility value assigned to c in gi−1,
i.e., in the previous iteration. Here, we leverage the probability
Pi−1(c) of the probabilistic fact database Qi−1 = 〈S,D, C, Pi−1〉,
of the previous iteration. The error rate is computed as:

εi =

{
1− Pri−1(c) gi−1(c) = 1

Pri−1(c) otherwise
(22)

Algorithm 1: Validation process for fact checking
input : sets of sources S, documentsD, and claims C,

Cs ⊆ C being claims originating from a source s ∈ S,
a validation goal ∆, and a user effort budget b.

output : the grounding g.

1 CU ← C; CL ← ∅;
2 (P0,Ω

∗
0)← iCRF(S,D, C, (c 7→ 0.5, c ∈ C));

3 g0 ← (c 7→ decide(c,Ω∗0), c ∈ C);
4 z0 ← 0;
5 i← 1;
6 while not ∆ ∧ i < b do

// (1) Select a claim to validate
7 x← random(0, 1);

// Source-driven or information-driven strategy?

8 if x < zi−1 then c← selectS(CU ) ;
9 else c← selectC(CU ) ;

// (2) Elicit user input
10 Elicit user input v ∈ {0, 1} on c;
11 CU ← CU \ {c}; CL ← CL ∪ {c} ;

// Calculate error rate εi
12 if gi−1(c) = 1 then εi = 1− Pi−1(c) ;
13 else εi = Pi−1(c) ;

// (3) Infer implications of user input
// Update credibility of validated claim

14 P ← (c 7→ v ∧ c′ 7→ Pi−1(c′), c′ ∈ C, c′ 6= c);
// Conduct inference

15 (Pi,Ω
∗
i )← iCRF(S,D, C, P ) ;

// (4) Decide on grounding
// Instantiate grounding based on samples of last

iCRF
16 gi ← (c 7→ decide(c,Ω∗i ), c ∈ C);

// Calculate ratio of unreliable sources

17 ri = 1
|S|

∣∣∣∣{s ∈ S | ∑c∈Cs gi(c)|Cs|
< 0.5

}∣∣∣∣ ;

// Calculate score to choose selection strategy

18 zi = 1− e
−
(
εi

(
1− i
|C|

)
+ri

i
|C|

)
;

19 i← i+ 1;

20 return gi−1

Using the ratio of unreliable sources ri and the error rate εi, a we
define a score for choosing the source-driven strategy:

zi = 1− e−(εi(1−hi)+rihi) (23)

where hi = i/|C| is the ratio of user input. This score mediates the
trade-off between the error rate εi and the ratio of untrustworthy
sources ri by the ratio of user input hi. When the ratio hi is small,
the ratio of untrustworthy sources has less influence and the error
rate is the dominant factor. When the ratio hi is large, the ratio of
unreliable sources becomes a more dominant factor.

5. COMPLETE VALIDATION PROCESS
Combining the techniques for credibility inference and instantia-

tion of a grounding (§3) with those for user guidance (§4), we define
a comprehensive validation process (§5.1). We further outline how
robustness against erroneous user input is achieved (§5.2).

5.1 The Algorithm
Our complete validation process for fact checking is defined in

Alg. 1. It instantiates the general validation process outlined in
§2.3 to address the problem of effort minimisation (Problem 1). As
long as the validation goal is not reached and the user effort budget
has not been exhausted (line 6), selection of the claim for which
user input shall be sought is done either by the source-driven or
the information-driven strategy. The choice between strategies is
taken by comparing factor zi−1 to a random number (line 8), which
implements a roulette wheel selection. The second step (lines 10-
13) elicits user input for the selected claim and computes the error
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rate. The third step incorporates the user input in the probabilistic
model (line 14) and then conducts credibility inference by means
of our iCRF algorithm (line 15). This yields a new probabilistic
model Pi, along with the Gibbs sampling result Ω∗i of the last E-step.
Based thereon, in a fourth step, we decide on the new grounding gi
capturing the facts that are considered credible (line 16). The ratio of
unreliable sources ri is calculated to compute score zi (lines 17-18),
used in the next iteration to choose between the selection strategies.

Proposition 2. An iteration of Alg. 1 (lines 6-19) runs in linear
time in the size of the dataset.

Proof. The time complexity of the iteration of Alg. 1 is dominated
by the iCRF algorithm, which infers the implications of new user
input. Yet, iCRF runs in linear time in the dataset size (Prop. 1).

Applying Alg. 1 in practice, the computation of the information
gain for the information-driven or source-driven selection strategy
becomes a performance bottleneck. Therefore, we consider two
optimisations for this step:
• Parallelisation: The computation of information gain for differ-

ent claims is independent and thus done in parallel.
• Graph partitioning: Not all sources share the same claims and

not all claims stem from a single source. Hence, as a pre-
processing step before seeking user input, the graph represen-
tation of the CRF model can be decomposed into its connected
components [39]. The resulting smaller CRF models can then
be handled more efficiently.

5.2 Robustness Against User Errors
When validating claims, a user may make mistakes, not because

of a lack of knowledge, but as a result of the interactions with a
validation system [56]. Assuming that a user is confronted with
the current inferred credibility of the claim to validate, along with
an assessment of related sources and documents, any decision to
deviate from the current most likely credibility assignment is typi-
cally taken well-motivated. Common mistakes, thus, are accidental
confirmations of a (wrong) inferred credibility value of a claim.

Against this background, we incorporate a lightweight confir-
mation check, triggered after a fixed number of iterations of the
validation process. At some step i, for every claim c that has been
validated, a grounding gi∼c is constructed, using all information of
the probabilistic fact database except the validation of c. Then, the
label for claim c in gi∼c is compared with the respective user input
v. If gi∼c(c) 6= v, then v is identified as a potential mistake and
updated accordingly. Intuitively, this check exploits that additional
user input may lead to a different inferred credibility value than the
one given earlier directly by the user. As inference is based on a
large number of validated claims, instead of a single one, it is con-
sidered more trustworthy. We will demonstrate experimentally that
this check is highly effective when trying to detect user mistakes.

6. METHODS FOR EFFORT REDUCTION
Based on the validation process introduced so far, this section

presents methods to further reduce the required user effort. Detect-
ing convergence of our probabilistic model, we discuss when to
terminate validation (§6.1). Reducing set-up costs of a user, we then
target batching of claims (§6.2).

6.1 Early Termination
In practice, we can improve efficiency by terminating the vali-

dation process upon convergence of the results. Below, we define
several criteria that indicate such convergence and, therefore, may
be employed as additional termination criteria.

Uncertainty reduction rate. A first indicator is the effect of user
input in terms of uncertainty reduction. After each iteration in Alg. 1,
the probabilistic fact database Qi becomes Qi+1. The rate of uncer-
tainty reduction is measured as (HC(Qi)−HC(Qi+1))/HC(Qi).
The rate approaches zero upon convergence, so that validation is
stopped once the rate falls below a threshold.
The amount of changes. Instead of considering the probability val-
ues of all claims, this indicator incorporates solely the configuration
with the highest likelihood. With gi and gi+1 as the groundings
of two iterations of Alg. 1, the amount of change is quantified as
|{c ∈ C | gi(c) 6= gi+1(c)}|. If this value becomes negligible, i.e.,
falls below a threshold over several consecutive iterations, we con-
clude that the credibility of claims has been determined.
Amount of validated predictions. Another indicator for a high
quality model is the ability to instantiate credibility assignments that
are matched with user input. Exploiting this idea, in each iteration of
Alg. 1, we assess whether the result of inference and the user input
are consistent. If this is the case for several consecutive iterations,
we conclude that the validation process may be stopped.
Precision improvement rate. A more direct way to assess conver-
gence is to estimate the precision based on k-fold cross validation.
Formally, in the i-th iteration of Alg. 1, the set of labelled claims
CL is divided into k equal-size partitions, E = E1 ∪ . . . ∪ Ek.
Then, we repeat the following procedure k-times: (1) consider
the claims of the j-th partition Ej as non-validated; (2) conduct
credibility inference ignoring the user input for claims in Ej and
instantiate a grounding g′j ; (3) compare the credibility values for
claims in Ej based on g′j with those given directly by the user:
AEj = (|{c ∈ Ej | g′j(c) = Pi(c)}|)/|Ej |. We then take the aver-
age of k runs as an overall estimation of the model precision at step i,
i.e., Ai = (

∑k
j=1 AEj )/k. This yields a rate (Ai −Ai−1)/Ai−1

of precision improvement at step i. This rate shall converge to zero,
thereby indicating when to terminate the validation process.

6.2 Batching
Batching of claims reduces the set-up costs of users, i.e., the time

needed to familiarise with a particular domain. Moreover, batching
enables the definition of large validation tasks, which is beneficial
when involving multiple users working in parallel. We thus adapt
the approach defined in Alg. 1, so that a set of claims, instead of
a single one, is checked per iteration. Below, we show how to lift
claim selection to sets, assessing the benefit of their joint validation.
Expected benefit. We measure the information gain of validating
claims B ⊆ C by the expected uncertainty reduction. With B as the
categorical random variable that represents credibility configurations
of claims B, the uncertainty conditioned by user input on B is:

HC(Q | B) =
∑
B

Pr(B)H(QB) (24)

Here, QB denotes the probabilistic fact database constructed after
incorporating the given configuration of B. Note that a more com-
plex cost model could be constructed based on validation difficulty
(e.g., implied by logical relations between claims) [16]. Yet, this is
orthogonal to our work. Using this measure, our validation process
incorporates batching of claims by choose the top-k claims with
maximal information gain (breaking ties randomly):

selectB(C) = arg max
B⊆C,|B|=k

HC(Q)−HC(Q | B) (25)

However, the above optimisation problem is computationally hard,
as, in practice, both |C| and k are large. We therefore resort to an
approximate computation of the benefit and a greedy algorithm for
the actual selection.
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Approximating the expected benefit. We employ an alternative
utility function that combines the individual benefit of each claim
with a redundancy penalty that incorporates claim dependencies.
Individual benefit: The expected benefit of a claim c is computed as
its information gain IGC(c) as defined in Eq. 15, which is tractable.
Selecting claims one-by-one based solely on their individual benefit,
however, may be non-optimal, due to the complex joint distribution
of random variables for claims, documents, and sources.
Redundancy penalty: Neglecting the dependencies between the
variables in the CRF model may yield redundant validation effort.
Therefore, when selecting claims, we aim at low information overlap,
which is quantified as the redundancy of a set of claims B ⊆ C as:

R(B) =
∑
c,c′∈B

IGC(c)M(c, c′)IGC(c′) (26)

where M(c, c′) = 1
Z
|{s ∈ S|c ∈ Cs ∧ c′ ∈ Cs}| is a correlation

matrix that is based on the number of sources that serve as the
origin of both claims c and c′ and normalised to the unit interval by
Z = maxc,c′∈CM(c, c′).
Approximated benefit: The two aforementioned measures are com-
bined to approximate the benefit of validating a set of claims B ⊆ C.
The individual benefit, however, is weighted by the importance of
a claim. The idea is that claims stemming from a large group of
dependent claims have a high chance to propagate information. To
exploit this effect, we define q(c) =

∑
c′∈CM(c, c′)IGC(c′) as

the importance of claim c. Putting it all together, we employ the
following utility function to approximate the benefit of validating B:

F (B) = w
∑
c∈B

q(c)IGC(c)−
∑
c,c′∈B

IGC(c)M(c, c′)IGC(c′) (27)

where w ∈ R+ is a positive weight parameter to balance the terms
related to individual benefit and redundancy. Then, our utility func-
tion is used to guide the selection of the top-k claims:

selectAB(C) = arg max
B⊆C,|B|=k

F (B) (28)

As discussed, computation of the utility function F is tractable.
However, the above optimisation problem (Eq. 28) is not.

Theorem 1. Computing the result of selectAB is NP-complete.

Proof. F is a submodular set function. Maximization of such func-
tions is known to be NP-complete [49].

Greedy selection. Exploiting the monotonicity and submodularity
of the utility function F , we define a greedy algorithm with a perfor-
mance guarantee of (1− 1/e) ≈ 0.63 [49]. We iteratively expand
the set of claims in k iterations. In each iteration, we traverse all unla-
belled claims to identify the claim c∗ to maximise the gain ∆(c∗) =
F (B′ ∪{c∗})−F (B′), where B′ is the set of claims selected in the
previous iteration. Note that the gain can be updated incrementally.
That is, ∆i+1(c) = ∆i(c) − 2IGC(c∗i )M(c, c∗i )IGC(c), where
c∗i is the claim chosen in iteration i.

The time and space complexity of this heuristic strategy are
O(|C|2 + k|C|) and O(|C|2), respectively. The quadratic term |C|2
in either complexity stems from the calculation of the correlation
matrix M(., .). The linear term k|C| is explained by k iterations,
each requiring consideration of the whole set of claims to select c∗.

7. STREAMING FACT CHECKING
We now lift our approach to a streaming setting. Instead of

checking a large set of claims from scratch, we consider a potentially
infinite stream of claims to validate.

Algorithm 2: Streaming fact checking
input : Probabilistic fact databaseQ = 〈S,D, C, P 〉 and its CRF

representation Pr(C|D,S;W ),
A potentially infinite stream of claims c1, c2, . . ..

1 while a new non-validated claim ct arrives do
2 CUt ← CUt−1 ∪ {ct} ;
3 if ct comes with a new document dt then Dt ← Dt−1 ∪ {dt} ;
4 else Dt ← Dt−1 ;
5 if ct comes with a new source st then St ← St−1 ∪ {st} ;
6 else St ← St−1 ;
7 Receive current model parametersW from Alg. 1 ;
8 ComputeQt(W ) using Eq. 29 ;
9 ComputeWt using Eq. 30 ;

10 Feed new model parametersWt to Alg. 1 ;

Upon the arrival of new documents, sources, and claims, the
model structure and its parameters need to be updated. How-
ever, evaluating the parameters periodically based on the complete
database is not a viable option, as the database grows continuously.
Limiting the number of considered claims, in turn, may induce a
loss of all claims provided by a source. Since only a (small) subset
of documents is observed per source, operating on a subset of claims
increases the risk of discarding trustworthy sources and documents.

We therefore propose an online expectation-maximization algo-
rithm that reuses and updates the previous trained parameters, which
accelerates convergence in the presence of new data. We operate
on one claim at a time, and both the claim and the associated user
input are discarded after validation. As such, we can only provide an
educated guess on the credibility of the claim at a later stage. How-
ever, this is a minor drawback, since, in an online setting, claims
are relevant only for a comparatively short interval. How to de-
cide on which claims to discard in a more elaborated manner, is an
interesting problem, see [51], yet orthogonal to our work.

In the online setting, we consider an EM algorithm with stochas-
tic approximation to update the likelihood with a new claim ct,
a new source st, or a new document dt, rather than conducting
re-computation. Specifically, the update rule is defined as:

Qt(W ) = Qt−1(W ) + γt×(
E

CUt |C
L
t ,Dt,St,Wt−1

[logPr(CUt , C
L
t , Dt, St;W )]−Qt−1(W )

)
(29)

where Q0(W ) = 0 and the sequence γ1, γ2, . . . is a decreasing
sequence of positive step sizes, i.e. limT→∞

∑T
t=1 γt = ∞ and

limT→∞
∑T
t=1 γ

2
t < ∞. In practice, the step-size yt may be

adjusted using line searches to ensure that the likelihood is indeed
increased in each iteration [18]. As above, the model parameters W
are estimated by maximizing the expectation of the likelihood via
the L2-regularized Trust Region Newton Method [45]:

Wt = arg max
W

Qt(W ) (30)

We realise this idea in Alg. 2. Given a stream of claims c1, c2, . . .,
the algorithm updates the model variables CUt , Dt, St (lines 2
to 6). It then performs the stochastic approximation of the parameter
estimates (lines 8 to 9). The returned parameters are then fed to
Alg. 1 (line 10). Alg. 2 can receive the current model parameters
from Alg. 1 (line 7), since both algorithms may run in parallel and
influence the parameters of one another. The respective parts of
either algorithm are highlighted. That is, user input in Alg. 1 or the
arrival of a new claim in Alg. 2 may change the model.

Proposition 3. Alg. 2 runs in linear time.

Proof. The update of a new claim is implemented by Trust Region
Newton Method, which takes linear time [45] in the dataset size.
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8. EVALUATION
We evaluate our approach experimentally, using real-world datasets.

We first discuss the experimental setup (§8.1), before turning to an
evaluation of the following aspects of our approach:
• The runtime performance of the presented approach (§8.2).
• The efficacy of the CRF model (§8.3).
• The effectiveness of user guidance (§8.4).
• The robustness against erroneous user input (§8.5).
• The effectiveness of early termination (§8.6).
• The benefits and trade-offs of batching (§8.7).
• The streaming setting of fact checking (§8.8).
• The real-world deployment for human validators (§8.9).

8.1 Experimental Setup
Datasets. We utilise state-of-the-art datasets in fact checking [71]:
• Wikipedia: The dataset contains proven hoaxes and fictitious

people from Wikipedia [10] with 1955 sources, 3228 documents,
and 157 labelled claims. The model has been constructed by
taking unique, curated claims from Wikipedia and using them as
a query for a search engine to collect Web pages as documents,
while the originating domain names indicate the sources. The
top-30 retrieved documents are linked to a given claim, except
those that originate from wikipedia.org in order to avoid a bias,
as described in [54].
• Healthcare forum: The dataset contains 291276 claims about

side-effects of drugs extracted from 2.8M documents of 15K
users on healthboards.com [8]. We consider 529 claims of 48083
documents from 11206 users, which have been labelled by health
experts. The model has been constructed using domain-specific
rules to extract RDF triples from forum texts, i.e. documents.
Each user of the forum is considered as a source. Various pattern
mining and data cleaning routines are used to ensure that the
resulting set of claims does not contain duplicates, see [48].
• Snopes: This dataset [9] originates from the by far most reliable

and largest platform for fact checking [63], covering different
domains such as news websites, social media, and e-mails. The
dataset comprises 80421 documents of 23260 sources that con-
tain 4856 labelled claims. The model has been constructed as
described above for the wikipedia dataset: A duplicate-free set
of curated claims of the Snopes’ editors was used to collect Web
pages that links to these claims, see [54].

For these datasets, we derive features as follows. If a source is a
website, we rely on centrality scores such as PageRank and HITS.
If a source is an author, features include personal information (age,
gender) and activity logs (number of posts). Language quality of
documents is assessed using common linguistic features such as
stylistic indicators (e.g., use of modals, inferential conjunction) and
affective indicators (e.g., sentiments, thematic words) [52].

We follow common practice [46, 14, 34, 50, 29] and use the
ground truth of the datasets to simulate user input. Model parameters
are initialised with 0.5, following the maximum entropy principle.

Evaluation measures. In addition to the uncertainty of a proba-
bilistic fact database, see §4, we measure:
User effort (E): the ratio of validated claims |CU | and all claims
|C|, i.e., E = |CU |/|C|.

Precision (Pi): the correctness of the grounding. Let g∗ : C →
{0, 1} be the correct assignment of credibility values. Then, we
measure precision of grounding gi in the i-th iteration of the
validation process as Pi = |{c ∈ C | gi(c) = g∗(c)}|/|C|. This
definition of precision is different from the one in information
retrieval and binary classification [59]. As the user interest is a
trusted set of facts, the correctness of obtained facts is evaluated.

Precision improvement (Ri): a normalised version of precision, mea-
suring relative improvements to illustrate the effect of user input.
With P0 as the initial precision, the measure is defined at the
i-th iteration by Ri = Pi − P0/1− P0.

Experimental environment. Our results have been obtained on an
Intel Core i7 system (3.4GHz, 12GB RAM). All except the experi-
ments on early termination (§8.6) ran until the actual termination of
the validation process.

8.2 Runtime Performance
We first measures the response time, denoted by ∆t, of our ap-

proach during one iteration of Alg. 1, i.e., the wait time of a user.
This includes the time for inference and claim selection.
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Figure 2: Time vs. dataset
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Figure 3: Time vs. effort

Fig. 2 shows the observed response time, averaged over 10 runs,
when using the plain algorithm (origin), with uncertainty estimation
as introduced in §4.1 (scalable), and with the computational optimi-
sations of §5.1 (parallel+partition). With larger dataset size (wiki to
snopes), the response time increases. However, with computational
optimisations, the average response time stays below half a second,
which enables immediate user interactions. Fig. 3 further illustrates
for the largest dataset, snopes, how the response time evolves dur-
ing validation when averaging the response time over equal bins
of relative user effort. The response time peaks between 40% and
60% of user effort, since at these levels, user input enables the most
conclusions on credibility values.

8.3 Efficacy of the CRF Model
Next, we assess the estimated probabilities of credibility assign-

ments. Since we use probabilistic information to guide validation,
the probabilities should reflect the ground truth, i.e., the true cred-
ibility values of claims. For each claim, our model should assign
a higher probability to correct credibility values than to incorrect
ones. In the experiment, we keep track of the correct assignments
(if a claim is correct, we plot Pr(c = 1) and otherwise, we plot
Pr(c = 0)) and their associated probabilities, while varying the
user effort (0%, 20%, 40%).

0 .1.2.3.4.5.6.7.8.9 1
Probability Values

0
5
10
15
20
25
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Figure 4: Guidance benefits
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Figure 5: Uncert. vs. prec.

Fig. 4 shows a histogram over all datasets, illustrating how often
the probability assigned to a claim falls into a specific bin. Increasing
the amount of user effort, the range covering most of the correct
credibility values shifts from lower probability bins to higher ones.
Even with little user effort (20%), the number of correct assignments
with a value ≥ 0.5 is high. This highlights that user input indeed
enables a better assessment of the credibility of claims.
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Figure 6: Effectiveness of guiding
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Figure 7: Guiding with erroneous user input

8.4 Effectiveness of User Guidance
Relation between uncertainty and precision. We verify our as-
sumption that the uncertainty of a fact database, see §4, is corre-
lated with the precision of the grounding. In this experiment, the
information-driven guidance was applied to all datasets (100 runs
each), until precision reaches 1.0. Fig. 5 plots the observed values
for precision and normalised uncertainty (i.e., uncertainty divided
by the maximum value of the run). There is a strong correlation
between both measures (Pearson’s coefficient is −0.8523, a highly
negative correlation). Hence, uncertainty is indeed a truthful indica-
tor of correctness of the credibility assignments.
Guidance strategies. In this experiment, we mimic the user by the
ground-truth, until precision reaches 1.0. We compare our approach
(hybrid) with four baseline methods: random, which selects a claim
randomly; uncertainty, which selects the most ‘problematic’ claim,
in terms of the entropy of its probability; info, which uses the
information-driven user guidance only; and source, which uses
the source-driven user guidance only. Fig. 6 shows the results for
all datasets. Our approach (hybrid) clearly outperforms baseline
techniques. For example, using the snopes dataset, our approach
leads to a precision value > 0.9 with input on only 31% of the
claims, whereas the other methods require validation of at least 67%
to reach the same level of precision.

8.5 Robustness Against Erroneous User Input
Detecting erroneous input. We evaluate our approach to detect
erroneous input by simulating user mistakes. With a probabil-
ity p, we transform correct user input into an incorrect assessment.

Table 1: Detected mistakes

Dataset p : probability of mistake

0.15 0.20 0.25 0.30

wiki 100 100 96 89
health 100 100 94 86
snopes 100 95 87 79

The confirmation check
(§5.2) is triggered after
each 1% of total valida-
tions. Table 1 shows
the detected mistakes (%)
when increasing parame-
ter p. Across all datasets,
the majority of inserted
mistakes is detected.
User guidance with mistakes. We further study the effect of user
mistakes on the relation between user effort and precision. Again,
the confirmation check is triggered after each 1% of total validations.
Upon a detected mistake, the user reconsiders the input, which adds
to the invested effort. Fig. 7 illustrates that this implies that more

user interactions are required to reach perfect precision. However,
the precision curves obtained with our approach are still much better
than with other baseline methods.

Effects of missing user input. A user may skip the validation of
a claim due to being unsure or preferring to check another claim
first. We consider such scenarios by a probability pm with which a
claim is skipped, meaning that the second-best claim is validated.
We test pm ranging from 0.1 to 0.5, while running the validation
process until a precision value of 0.7, 0.8, or 0.9 is reached. Fig. 8
shows the saved efforts (%), computed as the relative difference in
user effort between the normal process and the one with skipping,
needed to reach the respective precision. As expected, skipping
at the beginning of the validation process (precision level of 0.7)
affects the saved effort, as selecting the second-best candidate leads
to worse inference results. Later, this effect becomes smaller.

8.6 Benefits of Early Termination
Using the snopes dataset (wiki and health show similar trends),

we evaluate our indicators for early termination of the validation
process (see §6.1): the uncertainty reduction rate (URR); the amount
of changes (CNG); the amount of validated predictions (PRE); and
the precision improvement rate (PIR). Fig. 9 plots user effort and
precision improvement and, on the secondary Y-axis, the values
of the above indicators. Overall, the indicators are aligned with
the convergence of the validation process. For example, using the
URR indicator, validation can be stopped at an URR value of 20%.
Then, at 40% of user effort, large relative improvements of precision
(> 80%) have materialised already.

8.7 Benefits of Batch Validation
Next, we evaluate the benefits of selecting the top-k claims for

validation. Here, high values of k lead to larger savings of user
set-up costs. Yet, increasing k also implies less accurate estimation
of potential benefit, due to our greedy algorithm (§6.2). To explore
this trade-off, we capture the costs saved (CS) as a function of
k: CS(k) = 1 − 1/kα, where α is the rail factor to control the
increased cost of validating sets of claims. The chosen function
form enables us to capture both linear and non-linear cost models.

Static batch size. When conducting validation with batching, the
obtained precision will be lower, since inference is conducted only
once the input for the whole batch has been incorporated. We mea-
sure this effect by the precision degradation, the relative difference
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Figure 8: Effects of missing user input
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Figure 9: Effectiveness of early termination criteria
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Figure 10: Effects of static batch size

in precision between the validation processes without batching and
with batches of size k, varied between one and 20. Fig. 10 plots
precision degradation (%) relative to the cost saving (%) using batch-
ing under cost models with α = 0.25, 0.5, 1. As expected, larger
batches lead to lower precision, but increased cost savings. Medium-
sized batches (k = 5, 10) appear to be beneficial, as they yield
potentially large cost savings with a graceful reduction in precision.

Dynamic batch Size. We further explore a dynamic selection of the
batch size k, with the goal to maximizes cost savings and precision.
We consider different precision thresholds (0.8,0.9) and count the
validated claims after each user interaction needed to reach that
threshold. For a cost model with α = 2/3, Fig. 11 shows box plots
of the user effort (%) relative the cost savings (%). Observing the
same trade-off as in Fig. 10, the specific results suggest how to
choose k dynamically: Initially, a small k shall be used, which is
increased once a sufficient amount of claims has been validated.

8.8 Streaming Fact Checking
Update time. We measure the response time during one iteration of
Alg. 2, i.e., the update time of the model when a new claim arrives.
We run the update process from 0% to 100% of claims in the order
of their posting time, for each dataset. The average update time
for the wiki, health, and snopes datasets are 0.34s, 0.61s, and 1.22s
respectively. As such, the response times turn out to be similar to
those of Alg. 1, as implied by Prop. 2 and Prop. 3.

Preservation of validation sequence. As explained in §7, the algo-
rithms for streaming fact checking (Alg. 2) and validation (Alg. 1)
run in parallel and update the model parameters. This leads to the
question of how to interleave both algorithms: Validating claims
early may not be beneficial as later arriving claims help in user guid-
ance. To answer this question, we compare the validation sequences
between the offline setting and the streaming setting as follows. We
run the streaming algorithm from 0% to 100% of claims in the order

of their posting time, and periodically invoke the validation process,
where a claim is selected from the existing claims for validation
(hybrid strategy, current model parameters provided by the stream-
ing algorithm). We record the validation sequence and compare
it with the offline setting using Kendall’s τβ rank correlation coef-
ficient [12]. It ranges from −1 (reverse order) to 1 (same order),
quantifying the similarity of the ranking in two validation sequences.

Table 2 presents the result when varying the validation period
from 5% to 30% (e.g., validation is invoked after every 5% of new
claims arrive). Increasing this period, the validation sequence of
streaming fact checking becomes more similar to the static setting.

8.9 Real-world Deployment
Finally, we investigate practical issues when deploying our val-

idation framework. A challenge for such an evaluation is that it
is difficult to find experts that are knowledgeable in the domains
covered by the annotated datasets. Therefore, we consider a setting
that features supporting information for the validation. To derive
this supporting information, we queried the Google search engine
with the text of each claim and extracted the first ten search results
as a list of documents. The list of documents is then shuffled for
each validation task to avoid biases by the search engine or the user.
Due to budget constraints, we selected 50 claims randomly for each
dataset. Then, we considered two different types of users:

Experts (E): We implemented a validation interface for expert
users, which records the time spent on validation and computes the
average accuracy by comparing the answers with the ground truth.
We asked three senior computer scientists to complete the validation
tasks, with the option to pause between handling different claims.

Crowd workers (C): While it is not the primary use case for our
work, crowdsourcing enables scaling of manual validation tasks
with the risk of lower result quality due to different levels of worker
reliability [33, 30, 32, 32]. We used FigureEight [11] and its web
templates to deploy our validation tasks. We prepared a budget
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Figure 11: Effects of dynamic batch size

of 1500 HITs (Human Intelligence Tasks) in total with a financial
incentive of 0.1$/HIT. We recorded the time spent on validation
and computed the consensus of the answers among crowd workers
using existing algorithms that include an evaluation of worker relia-
bility [33]. The consensus answer is then compared to the ground
truth.

Table 2: Preservation of valida-
tion sequence (Kendall’s τβ)

Dataset validation period

5% 10% 20% 30%

wiki 0.23 0.46 0.78 0.84
health 0.19 0.42 0.71 0.78
snopes 0.12 0.38 0.59 0.67

Table 3: Avg. time and accuracy
of experts and crowd workers

Dataset Exp. Cro. Exp. Cro.
time time acc. acc.

wiki 268s 186s 0.99 0.88
health 1579s 561s 0.94 0.83
snopes 559s 336s 0.96 0.85

Table 3 summarises the obtained results. Experts validate claims
more accurately than crowd workers, but take more time to complete.
Moreover, the system also reports that the experts do not validate
all the claims in one shoot; the validation process spanned 3-7 days.
Note that in our setting, experts and crowd workers already had
supporting information in place. Without it, they would have to
retrieve such information on their own, which may further increase
the validation time. The trade-offs illustrated in Table 3, however,
point to the potential benefit of combining the input of experts and
crowd workers to achieve efficient, yet accurate fact checking.

9. RELATED WORK
Truth finding on the Web. Given a set of claims of multiple
sources, the truth finding (aka fact checking) problem is to de-
termine the truth values of each claim [23]. Existing work in this
space also considers mutual reinforcing relations between sources
and claims, e.g., by Bayesian models [72], maximum likelihood
estimation [64], and latent credibility analysis [53]. However, these
techniques neglect posterior knowledge on user input and rely on
domain-specific information about sources and data, such as the de-
pendencies between sources and temporal data evolution [23]. The
fact checking literature, however, focuses on the classification of
claims by credibility, based on a fixed training data. This can be seen
as the starting point for our work: We put an expert user in the loop
to clean the results obtained by automated classification. Our guid-
ance strategies therefore complement the literature on classifying
claims in identifying which potential errors of a classifier are most
beneficial to validate by an expert user. At the same time, our ap-
proach can also support an expert user in building up a fact database
from scratch, in a pay-as-you-go manner. Moreover, our approach
goes beyond recent work on offline fact checking, e.g., [54], by
including a streaming process to incorporate new claims on-the-fly.

Truth finding is also known as knowledge verification [42] and
credibility analysis [47]. Existing automatic techniques mostly look
at features of data, such as number of relevant articles, keywords,
and popularity, which are noisy and can be easily dominated by
information cascades [42]. Again, posterior knowledge on user
input cannot be incorporated. Also, approaches based on gradient-
descent [47, 20, 24, 55] only optimise model parameters, but neglect

external probability constraints. Fact extraction may be performed
by diverse data representations, e.g., knowledge bases [22], web
tables [17], semi-structured data [26, 62], or free text [15]. Other
work uses co-occurrence information and evidential logs [42, 43],
but is limited to quantitative information such as identifying un-
popular facts based on the number of mentions [42]. Our work is
orthogonal to all the above mentioned. By relying on an abstract
data representation, our model is not specific to a particular domain.
Our principles of user guidance can further be adapted for many of
the above techniques, exploiting its generic notion of uncertainty.

User guidance. Guiding users has been studied in data integration,
data repair, crowdsourcing, and recommender systems [36, 67, 44,
70, 69, 68, 65, 31, 21]. Most approaches rely on decision theoretic
frameworks to rank candidate data for validation. Despite some sim-
ilarities in the applied models, however, our approach differs from
these approaches in several ways. Unlike existing work that focuses
on structured data that is deterministic and traceable, we cope with
Web data that is unreliable and potentially non-deterministic. Also,
instead of relying on two main sources of information (data and data
provider), we incorporate individual features as well as direct and
indirect relations between data types (sources, documents, claims).

Our setting is also different from active learning, as we do not
require any training data for a user to begin the validation process.
Moreover, we incrementally incorporate user input without devising
a model from scratch upon receiving new labels. However, stopping
criteria for feedback processes have been proposed in active learning,
e.g. using held-out labels [46] and performance estimation [40]. Yet,
these methods are applicable only for specific classifiers and do not
incorporate human factors. Using our probabilistic model, we have
been able to propose several criteria for early termination that turned
out to be effective in our experimental evaluation.

Moreover, we focus on reducing manual effort, assuming that
there is a notion of truth. Yet, user input may be uncertain or subjec-
tive [13, 35]. While we consider the integration of such feedback
to be future work, we see two scenarios with different implications.
First, if claims are validated by a single biased expert [60], the
grounding function is shifted to the expert belief. This angle can
be extended to recommender systems, which recommend the most
belief-compatible claim for a user. Second, if claims are validated
by multiple biased experts, differences in their belief suddenly have
an impact. Finding a common ground then requires negotiation and
conflict resolution mechanisms [27].

10. CONCLUSIONS
In this paper, we proposed an approach to overcome the limita-

tions of existing methods for automatic and manual fact checking.
We introduced an iterative validation process, which, based on a
probabilistic model, selects claims for which validation is most ben-
eficial, infers the implications of user input, and enables grounding
of the credibility values of claims at any time. We further proposed
methods for early termination of validation, efficient batching strate-
gies, and a streaming version of our framework. Our experiments
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showed that our approach outperforms respective baseline methods,
saving up to a half of user effort when striving for 90% precision.
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[14] A. Arasu, M. Götz, and R. Kaushik. On active learning of

record matching packages. In SIGMOD, pages 783–794,
2010.

[15] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and
O. Etzioni. Open information extraction from the web. In
IJCAI, pages 2670–2676, 2007.

[16] S. Basu Roy, I. Lykourentzou, S. Thirumuruganathan,
S. Amer-Yahia, and G. Das. Task assignment optimization in
knowledge-intensive crowdsourcing. VLDBJ, 24(4):467–491,
2015.

[17] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang.
Webtables: exploring the power of tables on the web. In
VLDB, pages 538–549, 2008.
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