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Abstract. Probabilistic parameter estimation in model fitting runs the
gamut from maximum likelihood or maximum a posteriori point esti-
mates from optimization to Markov Chain Monte Carlo (MCMC) sam-
pling. The latter, while more computationally intensive, generally pro-
vides a better characterization of the underlying parameter distribution
than that of point estimates. However, in order to efficiently explore dis-
tributions, MCMC methods ideally require generating uncorrelated sam-
ples while also preserving reasonable acceptance probabilities; this be-
comes particularly important in problematic regions of parameter space.
In this paper, we extend a recently proposed Hamiltonian MCMC sam-
pler parametrized by neural networks (L2HMC) by modifying the loss
function to jointly optimize the distance between samples and the ac-
ceptance probability such that it is stable and efficient. We apply this
enhanced sampler to parameter estimation in a recently proposed MRI
model, the multi-echo spherical mean technique. We show that it gen-
erally outperforms the state of the art Hamiltonian No-U-Turn (NUTS)
sampler, L2HMC, and a least squares fitting in terms of accuracy and
precision, also enabling the generation of more informative parameter
posterior distributions. This illustrates the potential of machine learning
enhanced samplers for improving probabilistic parameter estimation for
medical imaging applications.

Keywords: Markov Chain Monte Carlo · Hamiltonian MCMC Sampler
· Magnetic Resonance Imaging · Optimization · Parameter Estimation.

1 Introduction

Given a data vector s ∈ Rd generated from varying an independent experimental
variable v ∈ R, and a model M(x, v) : Rn × R→ R with parameters x ∈ Rn to
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explain the data, probabilistic parameter estimation constructs a probabilistic
model for the data and views the problem as inferring the parameters of a prob-
ability distribution [17]. For example, one can define the likelihood of the data
given fixed parameters by treating each data point as an independent sample
from a Gaussian distribution with mean at the model evaluated at the corre-
sponding v,x and with a variance coming from the measurement noise. Using
Bayes’ theorem, the posterior probability distribution of the parameters given
the data is proportional to the product of the likelihood function and the priors
on the parameters:

p(x|s) ∝ p(s|x)p(x), (1)

where,

p(s|x) = N (M(x,v), σ2) =

d∏
i=1

1√
2πσ2

exp(
(si −M(x,vi))

2

2σ2
), (2)

and σ2 denotes the noise variance. The prior distribution p(x) encodes con-
straints such as sum constraints or upper/lower bounds through, for example,
Dirichlet and uniform distributions [1]. An immediate candidate for a parameter
estimate is then the maximum a posteriori (MAP) point estimate

x∗ = arg max
x

p(x|s). (3)

This reduces the parameter estimation to an optimization problem. However,
there are two potential problems with this point estimate. First, the general
problems of uniqueness and feasibility of optimization, i.e. finding the MAP esti-
mate. Second, the underlying assumption of this point estimate is that the mode
is a good representation of the underlying probability distribution. Intuitively,
we can see the truth of this assumption for many commonly used distributions
in three or less dimensions e.g. normal or exponential. However, this assumption
can fail as the dimensionality and complexity of the distribution increases due
to the geometry of high dimensional spaces [3] and the concentration of measure
phenomenon [3, 14]. Hence, inferring the parameters of a probabilistic model of
high dimension and/or complexity through a mode point estimate can lead to
spurious results. One approach to handle these issues is to first characterize the
posterior distribution with Markov Chain Monte Carlo (MCMC) techniques [9]
by sampling from the posterior distribution. One can then, as an example, use
the mode, mean, median, etc. of the marginal posterior distributions of the pa-
rameters for the parameter estimate. In this paper, we use the expectation of
each parameter over its marginal posterior, approximated by

x∗ ≈ 1

N

N∑
i

xi, (4)

where the subscript i denotes one of the N samples.
The contributions of this paper are, first, to extend a Hamiltonian MCMC

sampler parametrized with neural networks proposed in [15] . We modify the
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loss function to balance acceptance probability and mixing such that both fast
mixing and stable exploration of problematic regions of state space are possible.
Second, we apply our extended sampler to estimate the parameters of a recently
proposed MRI model and compare it to a least squares fitting and application
of two state of the art Hamiltonian samplers.

2 Related Work

2.1 Hamiltonian Markov Chain Monte Carlo

In the following, we denote the posterior distribution from which we want to
sample as p(x) with x ∈ Rn being the state variables. MCMC methods sample
from the posterior by generating a sequence of samples where each new sample
xt is generated from the previous sample xt−1 according to a transition distri-
bution T (xt|xt−1) [4]. In order for the posterior to be the unique distribution to
which this sequence converges, the transition distribution must satisfy ergodic-
ity, which can usually be safely assumed, and an invariance property which is
usually shown by proving a property called detailed balance p(xt)T (xt−1|xt) =
p(xt−1)T (xt|xt−1).

One well known way to construct a transition satisfying detailed balance
called the Metropolis-Hastings algorithm [9] is as follows: given a proposal dis-
tribution q(x′|xt−1), sample a candidate x′; then, accept x′ with probability

A(x′|xt−1) = min(1, p(x′)q(xt−1|x′)
p(xt−1)q(x′|xt−1)

). If accepted, xt = x′. If rejected, xt =

xt−1. However, even if a sampler satisfies these properties, the convergence is
only proven asymptotically [4]. The typical procedure is to first have a burn-
in stage where the sampler is run for some amount of steps in order for it to
converge. Then, the actual sampling begins, with the burn-in samples being
discarded [4].

For efficient exploration, the samples should ideally be uncorrelated, which
can be accomplished by large distances between samples in the sample space,
i.e. mixing. Autocorrelation analysis using multiple chains of samples can be
used as a rough measure of how many samples are necessary. We emphasize that
a balance must be found between the acceptance probability and the mixing;
acceptance probabilities which are very high can mean the samples are very
close/correlated and large distances between samples can lead to only a small
number of samples being accepted. One powerful MCMC method which scales
with the dimensionality and complexity of the posterior is Hamiltonian MCMC
(HMCMC) [6]. In HMCMC, one generates proposal samples by integrating along
trajectories of a Hamiltonian dynamical system constructed from combining the
posterior distribution of interest with a momentum distribution. This is then
followed by the Metropolis acceptance step to yield a new sample. Formally a
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joint distribution is constructed with state variables (x,p):

pH(x,p) ∝ exp(−U(x)−K(p)), (5)

p(x) ∝ exp(−U(x)), (6)

K(p) =
1

2
pTp, (7)

where we omit a normalizing constant and p are the momentum variables which
are added. This form is motivated from statistical physics by the canonical dis-
tribution of energy states of a system, where U and K denote the potential and
kinetic energy respectively, and the Hamiltonian (total energy) is H = U+K [6].
HMCMC samples from pH(x,p), and we can obtain the marginal distribution of
x from the samples. H defines a dynamical system, which is a set of differential
equations used to evolve x,p forward in time from an initial sample.

In practice, these equations are integrated numerically, characterized by a
step size ε and a number of steps L such that Lε is the time period over which a
sample trajectory is evolved. The most common numerical scheme is the leapfrog
scheme, which we write below for one time step with initial condition (x,p) and
result (x′,p′).

p
1
2 = p− ε

2
∂xU(x), x′ = x + εp

1
2 , p′ = p− ε

2
∂xU(x′). (8)

Given an initial x0, an initial momentum p0 is sampled from a distribution,
usually a standard Gaussian [4]. The proposed sample from running the dy-
namics, (x′,p′), is then accepted in a Metropolis-Hastings step with probability

α = min(1,
exp(−U(x)− 1

2p
Tp)

exp(−U(x0)− 1
2p0

Tp0)
). Ideally, this procedure is then repeated un-

til the convergence of the samples to the distribution, with the output of each
proposal becoming the new initial sample. The main advantage of HMCMC is
that it generally proposes samples which are far away from the initial sample,
thus efficiently exploring the posterior, while maintaining reasonable acceptance
probabilities [4]. A state of the art HMCMC sampler called the No U Turn Sam-
pler (NUTS) [10] improves on standard HMCMC by adaptively tuning L, ε to
manage the distance between samples and acceptance probability. HMCMC can
perform poorly in certain circumstances, in particular, in highly curved sample
spaces such as those that might arise in the posteriors derived from parameter
estimation of complex models [8].

2.2 L2HMC

Levy et. al. [15] recently proposed a framework called L2HMC which parametrizes
the standard HMCMC sampler with a neural network and maximizes the ex-
pected distance between samples through minimization of a loss function which
rewards large expected squared distances between samples. Furthermore, the
parametrization is carefully tailored to preserve detailed balance and have a
tractable Jacobian for the correction of the acceptance probability due to the
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potential non-volume preserving dynamics. The algorithm of L2HMC is struc-
turally similar to standard HMCMC, but modifications are made to the proposal
stage. First, for each step t, 1 ≤ t ≤ L, a random binary mask mt ∈ {0, 1}n is
constructed such that approximately half of the entries of the mask are 1. The
conjugate mask is denoted as mc

t . Instead of updating x in one step accord-
ing to the classical algorithm, the update is split into two steps each updating
only the variables of x corresponding to mt,m

c
t separately. These are denoted as

xmt = x �mt and xmc
t

= x �mc
t respectively, where � is the component-wise

multiplication operator. Each update equation is modified with scaling factors
for each term depending on only variables which are not being updated. Con-
cretely, let ζ1 = (x, ∂xU(x′), t). Then p is first updated according to

p
1
2 = p� exp(

ε

2
Sp(ζ1))− ε

2
∂xU(x)� exp(εQp(ζ1)) + Tp(ζ1), (9)

where Sp, Qp, Tp : R2n+1 → Rn are scaling functions parameterized by a neural

network. Let ζ2 = (xmc
t
,p, t) and ζ3 = (x

1
2
mt ,p, t). Then x is updated according

to

x
1
2 = xmc

t
+mt �

[
x� exp(εSx(ζ2)) + ε(p

1
2 � exp(εQx(ζ2)) + Tx(ζ2))

]
, (10)

x′ = xmt +mc
t �

[
x� exp(εSx(ζ3)) + ε(p

1
2 � exp(εQx(ζ3)) + Tx(ζ3))

]
, (11)

where Sx, Qx, Tx : R2n+1 → Rn are also scaling functions parameterized by a
neural network. Finally, let ζ4 = (x′, ∂xU(x′), t):

p′ = p
1
2 � exp(

ε

2
Sp(ζ4))− ε

2
∂xU(x′)� exp(εQp(ζ4)) + Tp(ζ4). (12)

These learned scaling functions, structured as a two layer neural network, can
allow the sampler to learn, for example, how to carefully navigate regions of
high curvature in the parameter space rather than having to manipulate ε and
L to accomplish this. As in NUTS [10], the time reversed version of the above
dynamics can also be used to propose samples, and L2HMC takes a random
combination of the forward and backward dynamics proposal as the final pro-
posal [15]. Let θ be the vector of parameters of the above functions. After each
complete cycle of proposal and acceptance, the loss function is optimized using
Adam [12]. Concretely, let ξ = (x, p) be the initial sample, and ξ′ = (x′, p′) be
the sample after the acceptance step. Let δ(ξ, ξ′) = ‖x−x′‖22 and A(ξ′, ξ) denote
the acceptance probability. Then the loss function L(θ) used is

L(θ) = Ep(ξ)
[
−δ(ξ, ξ

′)A(ξ′, ξ)

λ2
+

λ2

δ(ξ, ξ′)A(ξ′, ξ)

]
, (13)

where the expectation is taken over the batch of samples over which the training
is taking place. λ is the typical length scale of the distribution, which Levy
et. al. set in the case of a multivariate normal distribution, as the smallest
standard deviation in the covariance matrix. For simplicity, in eq. 13, we omit
an additional term with identical form as above [15] designed to enhance burn-
in by using an arbitary proposal distribution. Fig 1 shows a flowchart of the
algorithm of sampling with the neural network parametrization.
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Fig. 1. Flowchart of the training algorithm for neural network parametrization of HM-
CMC. The components of the algorithm are very similar to standard HMCMC; how-
ever, the differences lie in the altered dynamics/proposal stage and the update of the
neural network parameters after each step. When sampling, the network parameters
are fixed at the last training values.

3 Methods

3.1 Neural Network Enhanced Hamiltonian MC (NNEHMC)

The first contribution of this paper is to extend L2HMC by augmenting the loss
function to balance acceptance probability and the distance between samples.
Let AHMC(ξ′, ξ) denote the acceptance probability used in standard HMCMC.
We introduce the loss function

LNNEHMC(θ) = Ep(ξ) [−δ(ξ, ξ′)A(ξ′, ξ)− βAHMC(ξ′, ξ)] . (14)

We removed the reciprocal distance term as it did not meaningfully change
the dynamics of the sampling in the distributions we considered. Further, we
do not integrate the time reversed dynamics in our sampling. We argue that
this form of loss function more faithfully and naturally enhances the desirable
properties of Hamiltonian dynamics. In theory, Hamiltonian dynamics preserve
energy along trajectories; hence, since the probability of a sample is proportional
to exp(−H), the acceptance probability is always 1 [4]. However, the introduction
of numerical integration causes violation of this property; nonetheless HMCMC
still, generally, provides high acceptance rates, with additional tuning possible
through changing ε or L. One can view this tuning as reducing the error of the
leapfrog scheme such that the numerical integration gets closer and closer to
the theoretical Hamiltonian dynamics with its property of preserving energy.
However, the dynamics of L2HMC is no longer a numerical approximation of
Hamiltonian dynamics due to the scaling terms. Hence, while it is valid as an
MCMC sampler, there is no theoretical basis for the sampler to produce samples
with high acceptance probabilities which are largely independent of the squared
distance as in standard HMCMC.
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As a way of both inducing the sampler to remain close to Hamiltonian dynam-
ics and balancing the acceptance probability and mixing, we add the negative
standard HMCMC acceptance probability in the loss function, with the pa-
rameter β enforcing the tradeoff between it and the negative expected squared
distance. We argue that this loss function can lead to two desirable properties.
First, it could lead to faster mixing and faster convergence than in L2HMC since,
from the beginning, it can balance learning the standard, approximately energy
preserving Hamiltonian dynamics with opportunities to move great distances.
One can interpret the additional term as enforcing approximate conformity, in
some sense, to Hamiltonian dynamics, mediated by β. Second, crucial for pa-
rameter estimation, we argue that this term helps to keep the sampler stable
when exploring high curvature regions. In these regions, the acceptance proba-
bility can drop to zero easily due to large distance steps and numerical issues
can develop [8]. The acceptance probability of the neural network parametrized
sampler differs from the classical acceptance by the Jacobian of the new, scaled
dynamics, which is identically 1 in the standard case. Hence, if the standard
acceptance probability is the dominant term, it can still enforce high acceptance
probabilities for the sampler. We thus treat the neural network as an enhance-
ment that allows the sampler to learn ”approximate” Hamiltonian dynamics
which can balance and enhance the desirable properties of HMCMC while learn-
ing to minimize its weaknesses. We henceforth refer to our sampler as Neural
Network Enhanced Hamiltonian MC (NNEHMC).

In the results, we compare the performance of NNEHMC and L2HMC on
a toy distribution also tested in [15]. The distribution is a strongly correlated
2-D Normal distribution with mean zero, and a covariance matrix obtained from
diag(100, 0.1) rotated by 45 degrees. For both samplers, we use the same ε =
0.1, L = 10, initialize with the same 200 samples, train in batches of 200 samples
for 5000 steps, then fix the neural network parameters and sample 200 chains for
2000 steps using the trained sampler [15]. We tune β in NNEHMC by looking
at the autocorrelation analysis and the acceptance probabilities. We set λ = 0.1
as is done in [15]. We compare the two samplers by the autocorrelation of the
samples as well as the effective sample size derived from the autocorrelation,
which can be seen as a measure of how many of the samples are ”useful” for
inference [4].

3.2 Biophysical Parameter Estimation

The second contribution of this paper to apply NNEHMC to biophysical pa-
rameter estimation in a recently proposed MRI model, the Multi Echo Spherical
Mean Technique (MESMT) [5].

Multi Echo Spherical Mean Technique (MESMT). MRI Diffusometry
and T2 relaxometry can be combined into a multi-modal analysis which jointly
estimates diffusivities, T2’s, and water volume fractions of different tissue com-
partments. The extended spherical mean technique (SMT) framework introduced
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by [5] is one example of this, generalizing the diffusion MRI model SMT [11] by
including the effects of changing the echo time TE in the acquisition on the MRI
signal and using the additional information to simultaneously estimate the T2’s
and diffusivities of the compartments in brain white matter. The model signal
is a function of b and TE . For given b, TE

Model(TE , b,x) =vI exp(
−TE
T I2

)

√
π erf(

√
bλ‖)

2
√
bλ‖

+ vE exp(
−TE
TE2

) exp(−bλ⊥)

√
π erf(

√
b(λ‖ − λ⊥))

2
√
b(λ‖ − λ⊥)

+ vCSF exp(
−TE
T csf2

) exp(−bDcsf ),

where vI , vE , vCSF are the volume fractions of the intra-axonal, extra-axonal,
and cerebrospinal fluid (CSF) compartments respectively, λ‖, λ⊥ are the parallel
and perpendicular diffusivities. The likelihood of this model is constructed as
in the introduction. In the fitting, we fix the values of T csf2 = 2s and Dcsf =

0.003mm
2

s at those of free water [11,16], but we allow vCSF to be free.
Using our proposed sampler, we can bound the T2’s and diffusivities based

on prior physical knowledge [11,16] so we use uniform priors as follows:

T I2 ∼ U(5ms, 200ms), TE2 ∼ U(5ms, 100ms), λ‖ ∼ U(0.0005mm
2

s , 0.003mm
2

s ),

λ⊥ ∼ U(0.0001mm
2

s , 0.0005mm
2

s ).

Experimental Setup. We simulate three datasets using three different T ′Es =
50, 75, 100ms, with three b = 300, 2150, 4000s/mm2 values per dataset, and fit
them simultaneously. The ground truth parameters are as follows: vI = 0.5, vE =

0.3, vCSF = 0.2, λ‖ = 0.0015mm
2

s , λ⊥ = 0.0002mm
2

s , T I2 = 140ms, TE2 = 70ms.
Since the volume fractions must sum to one, we use a 3D, symmetric Dirich-
let prior for the volumes: (vI , vE , vCSF ) ∼ Dir(1.0, 1.0, 1.0). We generated one
hundred signals from the ground truth parameters by adding one hundred re-
alizations of Gaussian noise with a standard deviation of σ = 1

120 . We simu-
lated many instances of a typical diffusion acquisition using Dmipy [7] with a
mean SNR of 20 on the b0 data, then performed spherical averaging on each
instance. The standard deviation of the resulting signals over the instances was
estimated to be around 1

120 , which motivates our setting of σ. We then estimated
the parameters over each signal using NUTS, L2HMC, and NNEHMC within
the Bayesian framework described in Section 3.2. We also show a fitting using
constrained least squares (LSQ). We imposed the same constraints in both the
probabilistic and deterministic fittings. We initialize NUTS with a variational
inference estimate [13], and use 1000 samples for burn-in and 1000 samples for
inference. We initialize L2HMC and NNEHMC with the first 50 samples of the
NUTS burn-in, train on batches of 50 samples for 1000 steps, then fix the param-
eters of the network and use the trained sampler to generate 1000 samples for
inference. We set λ = σ, since it is roughly the length scale of the distribution.
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Fig. 2. Plot of the average autocorrelation of 200 chains of length 2000 for L2HMC
and NNEHMC with the corresponding effective sample size. The autocorrelation and
effective sample size are calculated as in [15]. We see that NNEHMC mixes faster in
sampling steps and has a larger effective sample size.

In the results, we report the relative absolute error as follows: letting g denote
the ground truth parameter and e as the estimate, the relative absolute error is
computed as |g − e|/g. We note that we scale b by 10e−2 and the diffusivities
by 10e2 in the sampling and results.

4 Results and Discussion

4.1 Strongly Correlated Gaussian

In Fig 2, we show the average autocorrelation of the samples over 50 chains
from sampling the strongly correlated Gaussian as a function of steps in the
chain as well as a table with the effective sample sizes derived from the autocor-
relation. We note that NNEHMC mixes faster and has an effective sample size
almost eight times larger than that of L2HMC. Further, on the same computer,
NNEHMC requires 179s of computation time while L2HMC requires 1561s. This
is mostly because NNEHMC does not use the time reversed dynamics. In cases
with tractable distributions and derivatives one can also speed up the sampling
by using GPU computation [2].

4.2 Multi Echo Spherical Mean Technique (MESMT)

In Fig. 3, 4, we show the relative absolute error and an example of the marginal
posterior probability distributions produced by the MCMC samplers.

We can see that, in general, the MCMC samplers are more accurate and pre-
cise than the least squares fitting. However, we see that NNEHMC and L2HMC
significantly outperform NUTS in estimating volume fractions and λ‖, even
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Fig. 3. Box plots of relative absolute errors from ground truth using least squares
(blue), NUTS (orange), L2HMC (green), and NNEHMC (red). We note that in general,
NNEHMC has the lowest mean error and variance. Further, NUTS has significant issues
in the estimation of λ‖ and the volume fractions, which is not observed in NNEHMC
or L2HMC.

though they all start from the same initialization. Inspection of the probabil-
ity distributions reveals that NUTS gives distributions biased away from the
ground truth for these parameters. Furthermore, we note that NNEHMC gener-
ally outperforms L2HMC regarding the accuracy and variance of the estimates.
Unlike in the toy example, where we knew the precise mean and variance of
the distribution, we can only compute an approximate autocorrelation analysis
in this case. We obtained an effective sample size of 1.5e−3 for NNEHMC and
1.9e−3 for L2HMC. However, the mean computation times for a single signal
are 280s for NNEHMC and 443s for L2HMC.

Furthermore we emphasize that using L2HMC on this model is
numerically unstable. By changing the random seed in our implementation, 18
out of the 100 trials with L2HMC either decline to and remain at zero acceptance
probability for all chains by the end of training or encounter numerical errors
(NaN, infinities). This can happen, for instance, if the proposal samples move
too far away. NNEHMC was robust to such changes. We do not consider these
results in the analysis since they are invalid for parameter estimation and would
artificially bias the results for L2HMC negatively. In order for NUTS not to
develop similar numerical issues, we had to set a desired acceptance probability
of 99%. It is probable that the poor results of NUTS stem, in part, from inefficient
sampling due to a highly curved parameter space which the adaptive tuning could
not overcome. Thus, we can see that the parametrization with a neural network
can enable efficient sampling of problematic regions in parameter space; however,
regularization with an acceptance probability term is needed for stability.
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Fig. 4. Representative plots of the marginal probability distributions for each param-
eter, where the black vertical line denotes the ground truth value. We can see that
NNEHMC provides informative posterior distributions from which inference seems
justified, while NUTS provides quasi-uniform distributions and distributions biased
towards the parameter bounds.

5 Conclusion

In this paper, we have proposed and tested a parametrization of Hamiltonian
MCMC with a neural network (NNEHMC) which jointly optimizes sample accep-
tance probability and distances between successive samples in order to efficiently
and stably sample probability distributions, particularly in regions of parameter
space with high curvature. Such regions frequently occur in the probabilistic es-
timation of parameters in bio-physical models since the posterior distributions
are parametrized, in part, by highly nonlinear models. We show on a recently
proposed MRI model that the neural network enhancement provides parame-
ter estimates which are more accurate and precise than those given by a least
squares fitting and the state of the art NUTS and L2HMC samplers; in addition
NNEHMC provides more numerically stable sampling than NUTS or L2HMC.
Furthermore, we show that the neural network parametrization provides qualita-
tively different and more informative posterior distributions than those produced
from NUTS; NNEHMC can produce posterior distributions which are Gaussian-
like centered near the correct parameter values. This highlights the potential
of augmenting MCMC methods with neural networks to improve probabilistic
estimation of parameters in biophysical models.

Acknowledgements. Thomas Yu is supported by the European Union’s Hori-
zon 2020 program under the Marie Sklodowska-Curie project TRABIT (agree-
ment No 765148). Marco Pizzolato is supported by the SNSF under Sinergia



12 T. Yu et al.

CRSII5 170873. This work is also supported by the Center for Biomedical Imag-
ing (CIBM) of the Universities of Geneva and Lausanne and the EPFL as well
as the foundations of Leenaards and Louis-Jeantet.

References

1. Balakrishnan, N., Nevzorov, V.B.: A Primer on Statistical Distributions. John
Wiley & Sons (2004)

2. Beam, A.L., Ghosh, S.K., Doyle, J.: Fast Hamiltonian Monte Carlo using GPU
Computing. Journal of Computational and Graphical Statistics 25(2), 536–548
(2016)

3. Betancourt, M.: A conceptual introduction to Hamiltonian Monte Carlo. arXiv
preprint arXiv:1701.02434 (2017)

4. Brooks, S., Gelman, A., Jones, G., Meng, X.L.: Handbook of Markov Chain Monte
Carlo. CRC press (2011)

5. Canales Rodriguez, E.J., Pizzolato, M., Aleman-Gomez, Y., Kunz, N., Pot, C.,
Thiran, J.P., Daducci, A.: Unified multi-modal characterization of microstructural
parameters of brain tissue using diffusion MRI and multi-echo T2 data. In: Joint
Annual Meeting ISMRM-ESMRMB (2018)

6. Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D.: Hybrid Monte Carlo.
Physics Letters B 195(2), 216–222 (1987)

7. Fick, R., Wassermann, D., Deriche, R.: Mipy: An Open-Source Framework to im-
prove reproducibility in Brain Microstructure Imaging. In: OHBM 2018-Human
Brain Mapping. pp. 1–4 (2018)

8. Girolami, M., Calderhead, B.: Riemann Manifold Langevin and Hamiltonian Monte
Carlo Methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 73(2), 123–214 (2011)

9. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their
applications (1970)

10. Hoffman, M.D., Gelman, A.: The No-U-Turn Sampler: Adaptively Setting Path
Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15(1),
1593–1623 (2014)

11. Kaden, E., Kelm, N.D., Carson, R.P., Does, M.D., Alexander, D.C.: Multi-
compartment microscopic diffusion imaging. NeuroImage 139, 346–359 (2016)

12. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980 (2014)

13. Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., Blei, D.M.: Automatic
Differentiation Variational Inference. The Journal of Machine Learning Research
18(1), 430–474 (2017)

14. Ledoux, M.: The Concentration of Measure Phenomenon. No. 89, American Math-
ematical Soc. (2001)

15. Levy, D., Hoffman, M.D., Sohl-Dickstein, J.: Generalizing Hamiltonian Monte
Carlo with Neural Networks. arXiv preprint arXiv:1711.09268 (2017)

16. MacKay, A.L., Laule, C.: Magnetic Resonance of Myelin Water: An in vivo Marker
for Myelin. Brain Plasticity 2(1), 71–91 (2016)

17. Sengijpta, S.K.: Fundamentals of Statistical Signal Processing: Estimation theory
(1995)


