
Kinetic with surrogate Ti WMHD corrected for fast ions

WthA0.460.06P0.610.03Ip
0.830.07<ne>

0.430.08G-0.190.02

Wth-EFITA0.390.06P0.640.04Ip
0.880.09<ne>

0.50.11G-0.210.025

Kinetic:

EFIT-based:

G is gas injection rate; is as statistically relevant and more significant than <ne>

TGLF modelling of H & D L-modes with same Wth

• Predictive JETTO-TGLF (Staebler 2007, Romanelli 2014) modelling finds

~identical confinement in D and H due to temperature profile shapes (stiffness)

• Largest D / H differences in particle channel (not stiff)

• Weak “anti-GB” scaling in experiment, missing in model

• Including ExB effects does not improve confinement D relative to H in this case

Deuterium (3.2MW)

Hydrogen (4.5 MW)

Discussion:

• Expectation of GB mass scaling of global 

confinement is naïve! 

• Assumes ion driven transport (ITG), 

neglects subdominant TEM, collisions 

• Assumes that fluxes are proportional to 

gradients

• No complex non-linear / zonal flow / multi-

scale effects

• Assumes all else equal when isotope is 

changed (e.g. ExB shear in GB units, fast 

ion density, edge conditions…)

• Assumes local property maps to a global 

confinement.

• Boundary conditions can overrule

local scaling with stiff profiles as 

recognised by Bateman et al, 1999
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Type I ELMy H-mode: overview

Energy confinement worse in H           More fast ions in D                     Gas ~ Balmer- from divertor

r=0.5

Maggi PPCF 2018
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Isotope Dependence of Confinement in JET-ILW 

Deuterium and Hydrogen Plasmas
H. Weisen1, C.F. Maggi2, S. Menmuir2, L. Horvath3 , F. Auriemma4, T.W. Bache2, F.J. Casson2, M. Oberparleiter5 , A. Chankin6, E. Delabie7, C. Giroud2 , D. King2, R Lorenzini4, E. 

Viezzer8 and JET contributors* . Presented by E. Joffrin9 and J. Hillesheim2 (affiliations see footnote)

Datasets
• Deuterium & Hydrogen type I ELMy H-modes, 171 samples (Maggi, PPCF 2018)

BT=1T, Ip=1MA (q95  3) and BT=1.7T, Ip=1.4MA (q95  3.7)

(also 1.7T, 1.7MA in D only for dimensionless identity) 

Mostly ‘corner-corner (C/C)’, configuration for best 

pumping and lowest PL-H power (some V/H too) 

Gas scans and power scans: 

Deuterium: 3.5MW PNBI17MW, only NBI

Hydrogen: 5 MW PNBI10MW, 0  PICRH6.5MW

NBI+ICRH required to achieve type I ELMy H-modes at 1.7T/1.4MA

• Deuterium & Hydrogen L-modes, 20 samples

BT=2.9 T, Ip=2.5 MA, <ne>3.11019m-3 NBI power scan only,

20 samples,only NBI power scans 1.5MW PNBI9.5MW

Divertor strike points on vertical tiles for highest PL-H

• Diagnostics

Isotope ratio from high resolution Balmer- spectroscopy and RGA

Te and ne from Thomson scattering (HRTS as used here and LIDAR)

Ti , wi and from CXRS (mostly Ne X line, only for 86 samples in H-mode)

ni from ne and Zeff, assuming Zeff-1 is due to Be only

Maggi PPCF 2018

Type I ELMy H-mode:
Global thermal energy confinement depends strongly on 

ion mass
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f it coeff b, b STS,  STR 
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H-mode: Momentum dependence strong

• tf/tE in range 0.8-1.6
• Dependencies for angular

momentum L are similar to total 

thermal energy

𝐿 ∝ 𝐴0.5𝑇0.5𝐼𝑝
0.93 𝑛𝑒

0.83𝐺−0.38

T is total NBI torque

• Significant, because momentum

carried by ions only, no issue with

equipartition with electrons

• Consistent with overall transport 

being dominated by ion channel if 

Prandtl number 1, consistent with

core GK modelling finding that ITG 

turbulence dominates in core

Summary & discussion
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Main ion temperature constrained by power balance
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H, r=0.3

D, r=0.3

H, r=0.5

D, r=0.5

H, r=0.7

D, r=0.7

x=y

• Previous anlyses (Maggi PPCF 2018) assumed Ti=Te. Since then, CXRS data 

(C, Ne) became available, but only for half the dataset (and still noisy). 

• Detailed analysis (H Weisen 201?) extends Timp data to whole dataset for the 

main ions Tmain

• A family of assumed Ti(f,r) can be defined, assuming a certain fraction fi of Qis

is transferred to electrons by equipartition. 

Shown: fi=0.2,0.5 & 1 (& if Qie<0, fe=Qie/Qes)

• Multi-ion power balance shows Tmain in range (0.95-1) Timp in core Most Tmain(r) 

close to Ti(fi=0.2,r) , i.e. net ion heat flux is ~80% of deposited

• Ti(r)= Ti(fi=0.2,r) assumed in this study to extend Tmain data to entire database
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L-modes: isotope dependence is weak
• NBI power scans in D and H at ne  const

• Stiff temperature profiles: R/LTe8 m-1, Ti/Te 1

• GK analysis shows dominant mode is ITG in core (Maggi EPS 2018)

• Robust regressions for thermal stored energy Wth without and with ne 

𝑊𝑡ℎ ∝ 𝐴0.15𝑃0.37 𝑜𝑟 𝑊𝑡ℎ ∝ 𝐴0.14𝑃0.35 𝑛𝑒
0.62 (figure)

• Small (10%, unintended) variations in density show global particle confinement 

also weakly dependent on isotope:

𝑁𝑒 ∝ 𝐴0.12Γ𝑚𝑎𝑖𝑛
0.27

with Ne=nedV total electron content and

Gmain the main chamber Balmer-alpha emission (a.u.) from a horizontal midplane

viewing line, taken as a proxy for the particle source

𝑁𝑒 ∝ 𝐴0.12Γ𝑚𝑎𝑖𝑛
0.27
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L-mode isotope identity experiment satifies scale

invariance

• An H/D dimensionless L-mode 

identity pair in r*, b, n* and q was

successfully created by scaling

the dimensional parameters as 

follows:

IP, BT  A3/4; n  A,T  A1/2

• Scale invariance was achieved, 

i.e. the pair had identical

normalised confinement time 

wcitEth  BTtEth/A

• This is consistent with ion scale 

transport depending on r*, b, n* 

and, within errors, no additional 

isotope dependence

• This difference in scaling

compared to the dimensional set 

still calls for understanding

(Maggi, NF, to be submitted)
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H-mode: particle confinement dependence strong

• Ne=nedV total electron content

Divertor Balmer-alpha Γ𝑑𝑖𝑣and NBI 

source SNBI as proxies for source

• Regression:

𝑁𝑒 ∝ 𝐴0.49Γ𝑑𝑖𝑣
0.23𝑆𝑁𝐵𝐼

−0.08 𝐼𝑝
0.12 𝑓𝐸𝐿𝑀

−0.11 or

• Strongest dependencies of Ne are on 

ion mass  and divertor source 

• Beam fuelling contribution Sn to Ne

insignificant (STS<2) and irrelevant

(STR~0.1, negative). 

Weak Ip dependence intriguing…

• Weak but significant negative

dependence on ELM frequency fELM

Energy, momentum and particle confinement have isotope 

dependency ~A0.4 to A0.5 in type I ELMy H-mode! 

Coincidence or clue?
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• The lower particle confinement in hydrogen is add odds with idea that

the higher thermal velocity should make fuelling easier

•  Transport more than overrides fuelling by neutrals

• Pedestal width model based on neutral penetration (Groebner 2002):

ne  A-1/2(Tiped/Teped)
-1/2neped

-1

• Scaling is not followed in the dataset, even reversed at 1MA, 1T !

 Transport processes that override neutral penetration

differences are at work in pedestal (Horvath, NF to be submitted)

• Type I ELMs more frequent in H than

D from same gas rate & power

• Pedestal density decrease with fELM

• However for fELM>40Hz, ELM particle

loss/ELM decreases and time 

average losses nfELM saturate

 ELMs alone cannot explain

differences in density between H 

and D

(Horvath, NF to be submitted)

Differences in pedestal stability may play a role:

• Operating point for H well inside s- stability boundary (D is ~at boundary)

• Small (5%) reduction of stability boundary expected from peeling-ballooning stability

criterion g>wdia/2 because gA-1/2

• A possibly larger effect (up to 15%) would be expected if Te,sep is higher in H than in D 

(Te,sep100eV), as suggested by EDGE2D-EIRENE simulations (Te,sep160eV in H),

• Strong p  region would be shifted outwards

 P-B stability reduced, boundary shrinks

• Experimental data validation undergoing, but challenging

Type I ELMy H-mode: role of pedestal

• Particle density ne lower in hydrogen entails lower energy (ne,iTe,i) confinement 

because absolute temperatures are similar in shape (stiff) and in absolute value

 global confinement scaling with mass is

BAKED INTO PEDESTAL

• This conclusion was already drawn by Bateman et al, 1999

H-mode: Nonlinear GENE simulations reverse GyroBohm scaling

• Pair (H&D) with Paux=10MW simulated, non-linear, 

flux-tube, r=0.5, assuming A=1 & 2

• Absolute heat fluxes reproduced if Te reduced by 

~20%, provided

- collisions are included

- dilution by Be impurities included

• Strong overprediction if collisions are neglected

• Note this is local – results may be different in 

future global simulations with imposed boundary

conditions (M. Oberparleiter, 2019)
Transparency code: main ions, electrons, Be impurities

Type I ELMy H-mode:
• Strong isotope dependence in all transport channels: ~A0.4 to ~A0.5

• Gyrokinetic GENE analysis shows ITG is dominant 

• GENE reverses GB scaling thanks to collsions and impurities

• Low particle confinement in hydrogen likely due to pedestal and edge transport processes

• Low particle confinement in hydrogen Low particle confinement in hydrogen, leads to lower

ne, entailing lower energy and lower momentum confinement than in D

L-mode:
• Weak dependence of global energy / particle confinement on isotope (~A0.14)

• Stiffness in TGLF QL modelling overcomes intrinsic GB dependence in local QL models, 

leading to ~no isotope scaling, but NOT to observed anti-GB scaling

Take home:
• Key to understanding and prediction remains edge/pedestal physics


