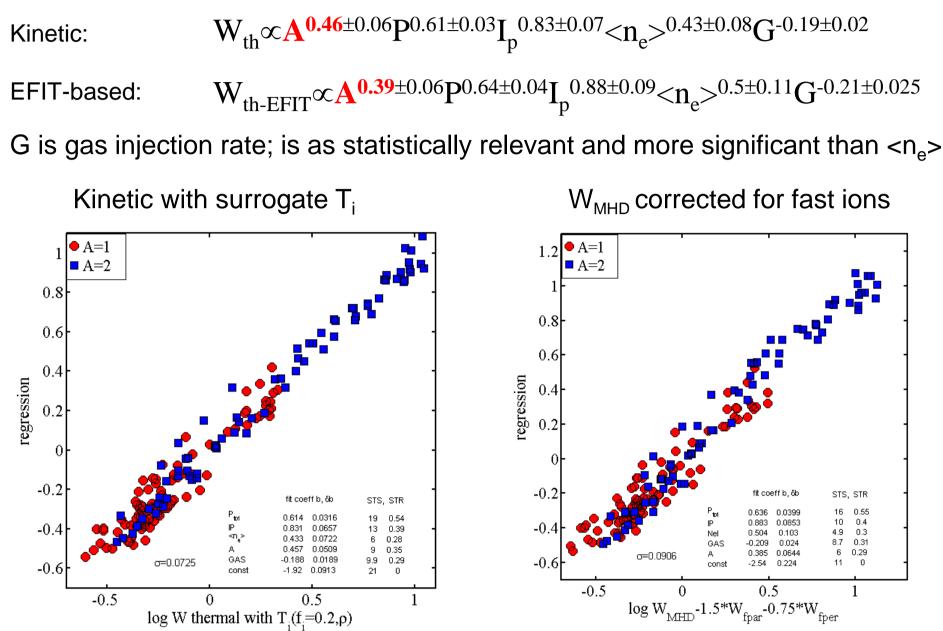

EUROfusion

H. Weisen¹, C.F. Maggi², S. Menmuir², L. Horvath³, F. Auriemma⁴, T.W. Bache², A. Chankin⁶, E. Delabie⁷, C. Giroud², D. King², R Lorenzini⁴, E. Viezzer⁸ and JET contributors^{*}. <u>Presented by E. Joffrin⁹ and J. Hillesheim²</u> (affiliations see footnote)



Isotope Dependence of Confinement in JET-ILW Deuterium and Hydrogen Plasmas

- No complex non-linear / zonal flow / multi-
- changed (e.g. ExB shear in GB units, fast

Pulse #	#91458	#89724
Isotope	Н	D
Time interval [s]	17.2 - 18.9	14.0 - 16.0
B _T [T]	1.74	2.95
I _P [MA]	1.44	2.46
P _{abs} [MW] (±10%)	2.56	6.24
$P_{abs}/BT^{5/3}$	1.02	1.03
[MW/T ^{5/3}]		
Zeff (±10%)	1.4	1.35
$\tau_{E,th}[s] \ (\pm 10\%)$	0.155	0.19
$B_T \tau_{E,th} / A [T/s]$	0.27	0.28

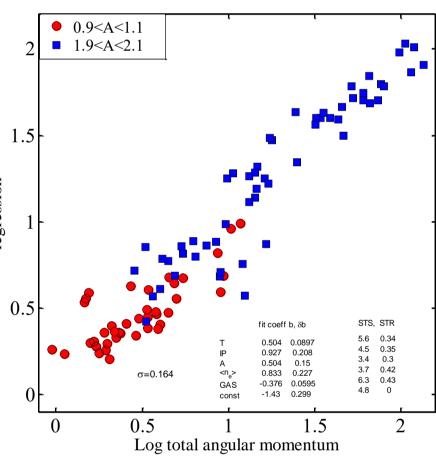
Type I ELMy H-mode: Global thermal energy confinement depends strongly on ion mass

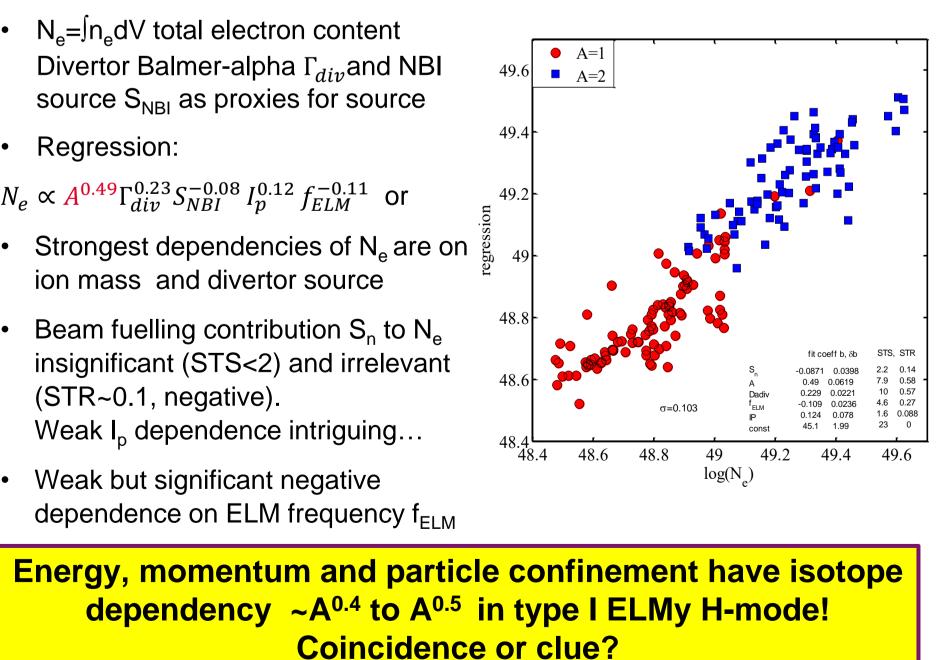
H-mode: Momentum dependence strong

 τ_{ϕ}/τ_{F} in range 0.8-1.6 Dependencies for angular momentum L are similar to total thermal energy

 $L \propto A^{0.5} T^{0.5} I_n^{0.93} \langle n_e \rangle^{0.83} G^{-0.38}$ T is total NBI torque

- Significant, because momentum carried by ions only, no issue with equipartition with electrons
- Consistent with overall transport being dominated by ion channel if Prandtl number ≈ 1 , consistent with core GK modelling finding that ITG turbulence dominates in core


H-mode: particle confinement dependence strong


- $N_{e} = \int n_{e} dV$ total electron content Divertor Balmer-alpha Γ_{div} and NBI source S_{NBI} as proxies for source
- Regression:
- $N_e \propto A^{0.49} \Gamma_{div}^{0.23} S_{NBI}^{-0.08} I_p^{0.12} f_{ELM}^{-0.11}$ or
- Strongest dependencies of N_e are on ion mass and divertor source
- Beam fuelling contribution S_n to N_p insignificant (STS<2) and irrelevant (STR~0.1, negative). Weak I_n dependence intriguing...
- Weak but significant negative dependence on ELM frequency f_{FIM}

\Rightarrow global confinement scaling with mass is **BAKED INTO PEDESTAL** This conclusion was already drawn by Bateman et al, 1999

9 DRFC, CEA, St. Paul-lez-Durance, France

²CCFE, Culham Science Centre, Abingdon OX14 3DB, UK ³York Plasma Institute, Department of Physics, University of York, York YO10 5DD, UK ⁴Consorzio RFX, Corso Stati Uniti 4, I-35127 Padova, Italy ⁵Chalmers University, Göteborg, Sweden ⁶Max-Planck Institut für Plasmaphysik, D-85748 Garching, Germany ⁷Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America ⁸University of Sevilla, Spain

Particle density n_e lower in hydrogen entails lower energy ($\propto n_{e,i}T_{e,i}$) confinement because absolute temperatures are similar in shape (stiff) and in absolute value

- Pair (H&D) with P_{aux} =10MW simulated, non-linear, flux-tube, ρ =0.5, assuming A=1 & 2
- Absolute heat fluxes reproduced if ∇T_{e} reduced by ~20%, provided
 - collisions are included
 - dilution by Be impurities included
- Strong overprediction if collisions are neglected
- Note this is local results may be different in future global simulations with imposed boundary conditions (M. Oberparleiter, 2019)

- The lower particle confinement in hydrogen is add odds with idea that the higher thermal velocity should make fuelling easier
- \Rightarrow Transport more than overrides fuelling by neutrals
- Pedestal width model based on neutral penetration (Groebner 2002): $\Delta_{\rm ne} \propto {\rm A}^{-1/2} ({\rm T}_{\rm iped}/{\rm T}_{\rm eped})^{-1/2} {\rm n}_{\rm eped}^{-1}$
- Scaling is not followed in the dataset, even reversed at 1MA, 1T !

\Rightarrow Transport processes that override neutral penetration differences are at work in pedestal (Horvath, NF to be submitted)

- Type I ELMs more frequent in H than D from same gas rate & power
- Pedestal density decrease with f_{FIM} However for f_{ELM}>40Hz, ELM particle loss/ELM decreases and time average losses $\delta n \times f_{FLM}$ saturate

\Rightarrow ELMs alone cannot explain differences in density between H and D

(Horvath, NF to be submitted)

Differences in pedestal stability may play a role:

- Operating point for H well inside s- α stability boundary (D is ~at boundary) • Small (5%) reduction of stability boundary expected from peeling-ballooning stability criterion $\gamma > \omega_{dia}/2$ because $\gamma \propto A^{-1/2}$
- A possibly larger effect (up to 15%) would be expected if T_e,_{sep} is higher in H than in D $(T_{e,sep} \approx 100 \text{ eV})$, as suggested by EDGE2D-EIRENE simulations $(T_{e,sep} \leq 160 \text{ eV} \text{ in H})$,
- Strong ∇p region would be shifted outwards \Rightarrow P-B stability reduced, boundary shrinks
- Experimental data validation undergoing, but challenging

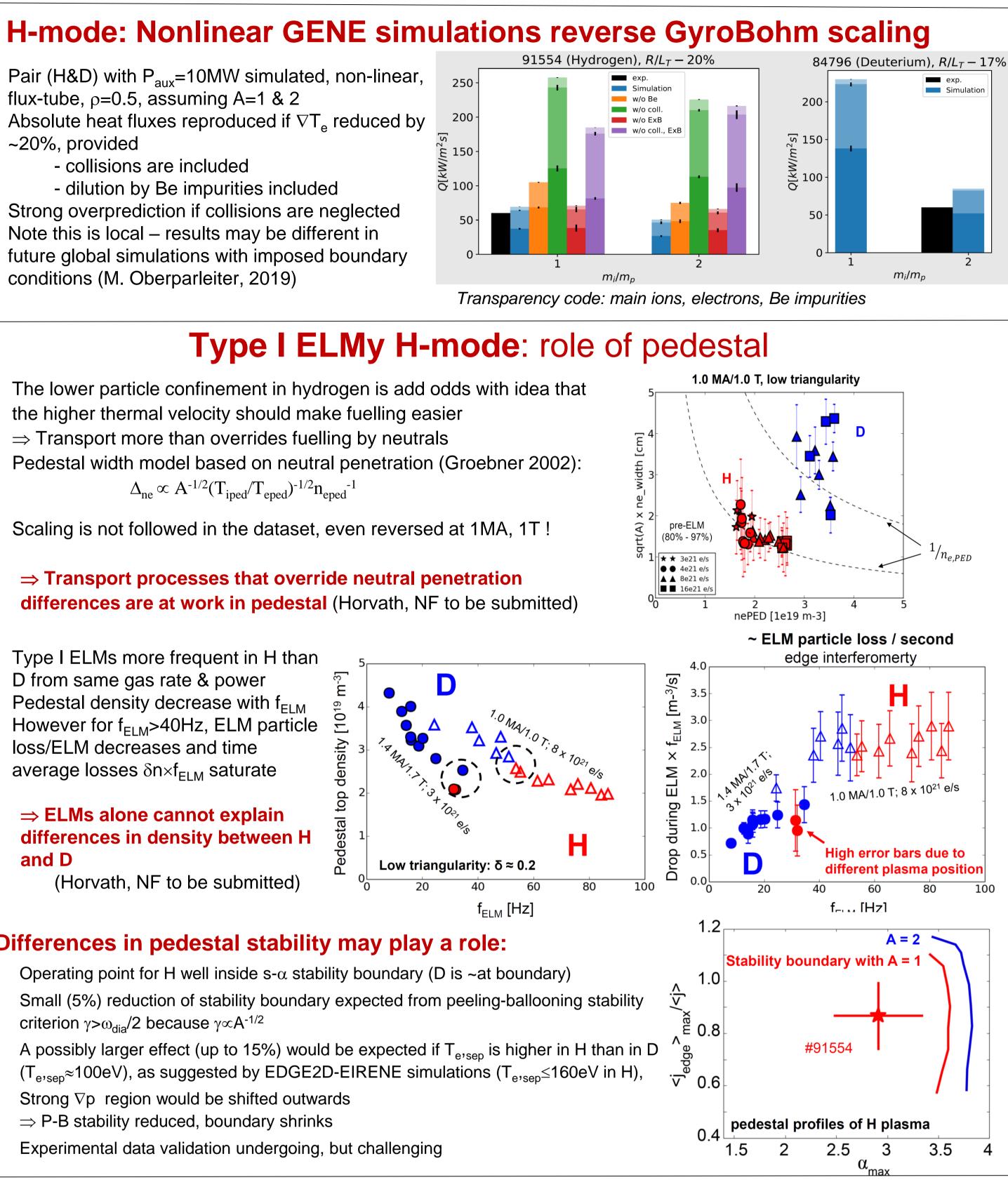
Summary & discussion

Type I ELMy H-mode:

- Strong isotope dependence in all transport channels: $\sim A^{0.4}$ to $\sim A^{0.5}$
- Gyrokinetic GENE analysis shows ITG is dominant
- GENE reverses GB scaling thanks to collsions and impurities
- Low particle confinement in hydrogen likely due to pedestal and edge transport processes Low particle confinement in hydrogen Low particle confinement in hydrogen, leads to lower
- n_e, entailing lower energy and lower momentum confinement than in D

L-mode:

- Weak dependence of global energy / particle confinement on isotope ($\sim A^{0.14}$) Stiffness in TGLF QL modelling overcomes intrinsic GB dependence in local QL models, leading to ~no isotope scaling, but NOT to observed anti-GB scaling


- Take home:
- Key to understanding and prediction remains edge/pedestal physics

References

- C.F. Maggi, PPCF 60 (2018) 01405 C.F. Maggi, EPS 2018, O2.101 C.F. Maggi, NF, to be published M. Operparleiter, to be submitted L. Hovrath, to be submitted to NF

(*) See the author list of X Litaudon et al. 2017 Nucl. Fusion **57** 102001

Staebler G et al. 2007 Phys. Plasmas 14 055909 M. Romanelli et al (2014) Plasma and Fusion Research 9, 3403023 H. Weisen et al, 201?, to be written G. Bateman et al, Phys. Plasmas **6**, (1999) 4607

> This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.