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Distance-bounding protocols allow a verifier to both authenticate a prover and evaluate
whether the latter is located in his vicinity. These protocols are of particular interest
in contactless systems, e.g., electronic payment or access control systems, which are
vulnerable to distance-based frauds. This survey analyzes and compares in a unified
manner many existing distance-bounding protocols with respect to several key security
and complexity features.
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1 INTRODUCTION AND STATE-OF-THE-ART

1.1 From Relay Attacks to Evolved Distance-based Frauds

The basic concept of a relay attack was first described by Conway [25] in 1976,
in a scenario referred to as the Chess Grandmaster Problem. In this scenario,
any player could play against two Grandmasters by challenging both of them
to a game of chess by post. The player would then simply forward the move
received from one Grandmaster to the other, effectively making them playing
against each other. This results in the player either winning one match, or
earning a draw in both matches. Desmedt, Goutier, and Bengio [28] extended
this concept to security protocols in 1987, with an attack on the Fiat-Shamir
protocol [31, 32] they named mafia fraud. In general, a protocol is seen to be
executed between a party making a claim, the prover, and a party verifying this
claim, the verifier. Mafia fraud involves a malicious third party who aims to
convince the verifier that he is the legitimate prover. To start, the third-party
simply takes all the messages sent by the verifier and forwards these to the
prover. As the messages are legitimate, the prover believes he is communicating
with the legitimate verifier. The prover then generates a valid response which
the third party forwards to the verifier. Upon receiving this response, the verifier
is convinced that he is communicating with the legitimate prover and the attack
succeeds. A variant of mafia fraud, denoted by terrorist fraud, is an attack in
which the prover colludes with the adversary to deceive the verifier, and was
subsequently proposed by Bengio et al. [10]. In practice, this involves a prover
sharing protocol information, other than key material, with a third-party in
such a way that he allows this third-party to convince the verifier that he is the
legitimate prover without having to relay all the verifier’s messages.
Even though mafia fraud could be classified as a special type of man-in-

the-middle attack, there are fundamental differences between these attacks. In
man-in-the-middle attacks, the third party actively modifies messages between
the verifier and the prover, and in general the attack is made possible through a
security vulnerability in the protocol. In other words, man-in-the-middle attacks
can be mitigated with conventional security mechanisms. In mafia fraud, the
third party is passive and simply relays messages. He does not need to perform
any further logical attack on the messages or the protocol sequence and in fact
the third party does not even need to know what he is relaying. The protocol
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and security mechanisms are irrelevant as the attacker just relays the entire
message generated by the legitimate parties, regardless of their content, thereby
ensuring that both the verifier and the prover always receive a valid message.
Conventional security mechanisms are therefore not an effective countermeasure.
Brands and Chaum early proposed the idea of using so-called distance-

bounding protocols [17] to mitigate mafia fraud. In addition to mafia fraud,
Brands and Chaum also considered the possibility of distance fraud. Distance
fraud involves a fraudulent prover that wants to convince the verifier that he is
closer than he really is. Most recently, a new fraud termed distance hijacking
was proposed [26]. In this case, a fraudulent prover takes advantage of a protocol
executed between an honest prover and the verifier. The fraudulent prover
selectively uses parts of this protocol instance to convince the verifier that he is
at a distance, at which some other honest prover resides, which differs from the
actual distance of the dishonest prover to the verifier.

1.2 Practical Attacks

The frauds discussed above are of practical significance when considering real-
world system security. For example, mafia fraud is especially relevant in access
control and payment systems. An RFID door access reader might authenticate
an access token by transmitting a challenge, e.g., a nonce, and then checking
whether the cryptographic response, constructed with the token’s key, is valid.
In such a case, an attacker can present a proxy-token, a device under the
attacker’s control that emulates a token, to the door reader. At the same time
his accomplice has a proxy-reader, a reader under the attacker’s control, which
is used to communicate with a legitimate token. This can be done in a covert
manner, e.g., holding the reader against the token holder’s pocket while he is
outside the premises. The attacker’s proxy-token gets the challenge from the
door reader and transmits it to the accomplice’s proxy-reader. The latter sends
the challenge to the legitimate token. The proxy-reader thus obtains the valid
response, which is transmitted to the proxy-token and then sent to the door
reader. The door reader is now convinced that the token it is communicating with
is the legitimate token and opens the door. A practical mafia fraud of this nature
was first demonstrated by Hancke [40], using a built-for-purpose proxy-token
and relaying radio channel with an effective range of 50 meters, alongside a
modified off-the-shelf reader for the purpose of proxy-reader. Francillon, Danev,
and Čapkun have also practically demonstrated the feasibility of mafia fraud
against remote keyless entry systems in vehicles [35].
Similarly, payment systems are also vulnerable to mafia fraud. An attacker

could convince a customer to insert his payment card into a proxy-reader, perhaps
to pay for a low-value item sold to the customer by the attacker. The attacker’s
accomplice, in the meantime, purchases a high-value item and inserts his proxy-
card into the merchant’s reader. The high-value transaction is then conducted,
via the proxy devices, with the legitimate payment card. The proxy-reader only
displays the low value amount for customer approval, who thinks that he is
authorizing the transaction by entering his PIN on the proxy-reader. This PIN
is transmitted to the accomplice and it is entered into the merchant’s reader,
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which then verifies the PIN through the relay setup with the legitimate card.
As a causality the customer ends up paying for the attacker’s item. This attack
scenario was implemented against the “Chip and Pin” card payment system in
the United Kingdom by Drimer and Murdoch [29], and illustrates that mafia
fraud can be a serious threat even when systems use strong cryptography and two-
factor authentication. The implementation of near-field communication (NFC)
in mobile phones has potentially decreased the complexity of implementing mafia
fraud. An NFC-enabled mobile phone can act as a token and a reader, so it can
either act as a proxy-token or proxy-reader, while offering multiple options with
regards to communication channels for relaying messages. The potential use of
NFC devices in mafia fraud is documented by Kfir and Wool [47], and a practical
mafia fraud using NFC-enabled mobile phones has already been demonstrated
by Francis et al. [37]. Some additional attack scenarios and a discussion on the
practical implementation of mafia fraud can be found in [36, 44].

Real-time location systems (RTLS) are increasingly used to track high-value
assets and people. A RTLS relies on the fact that the physical relation between
reference nodes, with fixed and known locations, and the target can be esti-
mated. If these estimates are somehow modified by an attacker then the overall
localization process will be adversely affected and the location of the target
could be misrepresented. Čapkun and Hubaux [21] have shown that in the case
of trilateration, and the principle extends to multilateration, a target located
outside a triangle of reference nodes cannot prove that it is inside the triangle
without shortening the distance measured to at least one of the reference nodes.
Similarly, a node located inside the triangle cannot prove it is at a different
location without decreasing the measured distance to at least one of the nodes.
This means that a fraudulent prover, wishing to misrepresent his own location,
must perpetrate distance fraud against at least one reference node. In practice,
distance fraud is relatively simple in certain RTLS systems. For example, if the
distances are estimated using received signal strength, then an attacker could
selectively attenuate or amplify his communication with a specific reference
node. Some practical distance fraud strategies enabling a fraudulent prover to
decrease the round-trip-time of his responses are discussed in [43] and [24].
Finally, relay attacks are particularly relevant in the field of digital rights

management (DRM), although this issue is rarely discussed in the literature.
For example, a provider may refuse to deliver a content to the customer if the
latter is not in a clearly defined location, as stated for example in [1, 19, 58].

1.3 Countermeasures to Relay Attacks

To counteract relay attacks, we need to look beyond the data exchanged and
incorporate the physical context of the interaction between verifier and prover
into the protocol. Desmedt was the first to introduce solutions of this type [27];
he proposed to sign the prover GPS coordinates. In a second proposal [11], the
notion of timed message exchanges was introduced. Using precise timing, Beth
and Desmedt managed to detect the little girl fraud via the delay introduced by
the relay. Desmedt, alone in a first time, then later along with Beth, was the
first to remark that countering mafia fraud implies relying on physical properties
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(localization, or timing) rather than only depending on the cryptographic parts.
This observation yields to several propositions to measure this physical property.
Among them, distance-bounding protocols were the most promising counter-
measure. Distance-bounding protocols can be built on the Received Signal
Strength (RSS) [8], by measuring the Angle-of-Arrival (AoA) [38], the noise
level [23], the physical property of the communication channel [67], the ambient
environment [39, 72], or the measure of the Time Of the Flight (ToF).

The RSS, and the AoA methods are usually discarded due to implicit security
flaws. Indeed, an adversary can by increasing its signal strength or building
special antenna deceive these measurements [22]. Methods based on the noise
level or on channel properties work in theory. However, they are not practical
to implement.
ToF methods are more reliable, and often used to evaluate the distance 𝑑

between two parties by calculating 𝑑 = 𝑠𝑝𝑟 · 𝑡𝑝 where 𝑠𝑝𝑟 is the propagation
speed of signals on the medium of the communication channel and 𝑡𝑝 is the
one-way propagation time between the transmitter and the receiver [42]. An
attacker committing mafia fraud will unavoidably increase the time that the
message takes to travel between the prover and verifier. Even simply forwarding
and transmitting messages increases the ToF. Measuring this time and checking
for unexpected delay in a response is therefore recognized as a feasible method
for detecting mafia fraud [11]. ToF distance estimation comprises both Time-
of-arrival (ToA) or round-trip-time (RTT) approaches. ToA requires both a
verifier and prover to share a synchronized, high-precision clock and only the
propagation time of a single message is measured. For example, the verifier
sends a challenge 𝑐ℎ𝑎𝑙𝑙 to the prover, and records the time 𝑡0 it was sent. The
prover records the time 𝑡0 + 𝑡𝑝 the challenge was received and responds with
the authenticated message {𝑡0 + 𝑡𝑝, 𝑐ℎ𝑎𝑙𝑙}. If both the prover and the verifier
are trusted, this protocol is effective in detecting mafia frauds. However, it is
vulnerable to distance fraud as the prover can simply decrease the value of
𝑡0 + 𝑡𝑝 in the response to appear closer. From a practical perspective, both the
prover and the verifier might not have a synchronized precise clock, e.g., an
RFID reader could have such a precise clock but an RFID tag not.

1.4 Distance-Bounding Based on RTT

Both these issues can be addressed using an RTT distance-estimation approach.
In RTT, the verifier measures the time 𝑡𝑚 from the moment he has sent a
challenge to the moment the response is received. The verifier is therefore
completely in control of the measurement and he is also the only entity that
requires a precise clock. In this case the verifier can estimate the distance
𝑑 = 𝑐 · (𝑡𝑚 − 𝑡𝑑)/2, where 𝑡𝑚 is the round-trip-time, equal to 2 · 𝑡𝑝 + 𝑡𝑑, and 𝑡𝑑
is the time the prover takes to calculate the response. For example, the verifier
sends a challenge 𝑐ℎ𝑎𝑙𝑙 at 𝑡0, which the prover receives at 𝑡0 + 𝑡𝑝. The prover
sends a response back at 𝑡0 + 𝑡𝑝 + 𝑡𝑑 and this is received at 𝑡𝑣 = 𝑡0 + 2 · 𝑡𝑝 + 𝑡𝑑,
allowing for the RTT to be calculated as 𝑡𝑚 = 𝑡𝑣 − 𝑡0. The fraudulent prover
can no longer directly influence the measurement, as is the case with ToA,
but he could try to send his response earlier than he receives the challenge.
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To prevent this, a protocol must be designed in such a way that the response
depends on the challenge, i.e., 𝑟 = 𝑓(𝑐ℎ𝑎𝑙𝑙), so that the prover has to wait for
the challenge before responding. This response function 𝑓 also determines the
length of the processing time 𝑡𝑑, which must be minimal and deterministic,
to achieve an accurate estimate. The response function must therefore be of
minimal complexity and should be processable in a short and predictable time.
Distance-bounding protocols are closely linked to aspects of the physical

communication channel, a side effect of requiring accurate timing measure-
ments. The channel on which the challenges and responses are to be transmitted
must therefore be chosen in such a way that it does not adversely affects the
security of the protocol or the accuracy of the distance estimated. Conven-
tional communication channels have been shown to be unsuitable for secure
distance-bounding protocols, due to the possibility that an attacker could exploit
the latency introduced in these channels by error-resistant measures, such as
framing/integrity data and filters in transceivers [24, 43]. In practice, building
a distance-bounding channel is a hard problem. Even if we only consider the
distance estimation requirements, a timing measurement error of 1 ns could
result in a distance estimation error of approximately 30 cm, and measuring
the RTT to this level of accuracy is not feasible in systems often suggested to
benefit from distance-bounding. Implementing suitable channels is still an open
research question, although there are several proposals already described and
practically demonstrated in the literature [29, 41, 62–64].

In 2006, Clulow et al. [24] proposed four principles for implementing a secure
channel for timed challenge-response exchanges:

(1) Use a communication medium with a propagation speed as close as
possible to the physical limit, i.e., speed of light.

(2) Use a communication format in which only a single symbol is transmitted
as challenge of response.

(3) Minimize the length of this symbol, or the time taken to decide the
value of the symbol.

(4) Design the protocol such that it copes with errors during the challenge-
response exchange.

These principles have historical significance, as this work was the first to look
at the security implications of the underlying implementation of the exchange
channel. However, there is a growing opinion that these principles, aiming for
theoretical security, are not fully achievable in practice. As such it is perhaps
better to consider the intentions behind the principles’ definition, which helps us
understand potential security threats and evaluate the effectiveness of a channel
used for distance-bounding, rather than considering these as hard conditions for
secure distance-bounding. The first principle advises against the use of channels
with a relatively low propagation speed as this would allow an attacker to use a
faster channel to relay the communication and not be detected. For example, if
distance-bounding is conducted across a sound channel the attacker can execute
an undetectable relay attack using wired or radio communication. The second
principle advises against sending multiple challenges and responses during a
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single timed exchange, and against the transmission of any additional information
even for purposes of error detection or formatting, e.g., any parity bits, cyclic
redundancy checks (CRC), headers/trailers or start/stop bits. In both cases it is
shown that a dishonest prover could exploit such exchanges to correctly send a
reply earlier than what is expected from a honest prover adhering to the channel
rules. The nature of the attack depends on the format of the message but the
general idea is that the dishonest prover can calculate and prepare the response
before the entire challenge message is received, thus shortening the response time
compared to a honest prover waiting for the entire message. The third principle
advises that the decision should be made as quickly as possible. If the symbol
modulation/encoding is such that the entire symbol must be received the symbol
period must be minimized or the receiver should determine the value early on
in the symbol period. This is meant to protect against early detect/late send
relay attacks, where the attacker can take advantage of the duration between
the start of the symbol and when the receiver actually determines its value.
For example, when using non-return to zero (NRZ) coding the receiver usually
samples the symbol after 𝑡𝑠/2, where 𝑡𝑠 is the symbol period, which allows for
the maximum tolerance to data clock differences between the sender and receiver.
If the attacker can sample the symbol at 𝑡𝑠/10, he has 4 · 𝑡𝑠/10 to relay its value
and transmit it to the receiver. In such a case, there will be no detectable delay
in the communication and distance-bounding would be ineffective. To minimize
the amount of time available to the attacker, the receiver must make its decision
as early as possible during the symbol period. The fourth principle, taking into
account that principles two and three would not allow for conventional error
detection/correction measures and reduces the receiver’s tolerances for reliably
decoding of data, advises that the protocol cannot expect that the exchange
channel will have no communication errors and that this has to be taken into
consideration elsewhere in the system.

1.5 Protocol Evolution

Distance-bounding protocols are based on the Round-Trip-Time (RTT) of
challenge-response messages, and are essentially meant to detect any unexpected
delay in the provers’ responses inherently caused by the messages being relayed
over a larger distance by a third party. To effectively achieve this goal, protocols
must meet some simple requirements to obtain an accurate propagation time
measurement, as explained in the previous section: the response and challenge
must be single bits, the response must be dependent on the challenge and the
time taken to calculate the response must be minimal and predictable. There
are a number of protocols that aim to implement distance-bounding but do not
adhere to these requirements, e.g., [11, 58, 75]. However, they are not capable of
providing accurate distance estimates because of the variation in the time taken
to calculate the response, which makes them unsuitable for many use cases. For
example, the time taken by a smart token to encrypt a message or perform
a digital signature differs each time. If such a token usually takes 100 ms to
calculate a response and if there is even a 0.1% variation, this results in a RTT
variation of 0.1 ms and hence a 30000 km distance estimate error. This paper
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only considers protocols proposals adhering to the prescribed requirements for
distance-bounding.
In a distance-bounding protocol, not all exchanged messages are subject to

round-trip-time measurements. The protocol can be divided into three distinct
phases: setup, exchange, and verification. During the setup phase, the verifier and
the prover exchange some initial information and determine the cryptographic
material used during the rest of the protocol. During the exchange stage, the
verifier measures the round-trip-time of the challenge-response pairs. The validity
of the responses and the distance-bound is checked during the verification stage.
The setup and verification phases are commonly referred to as the “slow” phases,
while the exchange phase is referred to as the “fast” phase, due to the nature
of the communication during these phases. The slow phase uses a conventional
channel while the fast phase requires a special channel.

The first distance-bounding protocol was proposed by Brands and Chaum [17].
This protocol, based on Beth and Desmedt’s [11] idea that RTT can detect
mafia fraud, bounds the distance between the parties by measuring the RTT
of single-bit challenges and responses. During the setup phase, the prover
cryptographically commits to a random string that he will use to calculate the
responses using an XOR operation. During the verification stage the prover
signs a message containing the challenges received and the responses sent. The
protocol achieves an optimal

(︀
1
2

)︀𝑛
resistance against both mafia fraud and

distance fraud, where 𝑛 is the number of challenge-response exchanges. This
concept formed the basis for numerous protocols, whose evolution is represented
in Figure 1.
There are four direct descendants of Brands and Chaum’s protocol: [20, 42,

59, 63], each of which improved Brands and Chaum in its own way. Peris-Lopez
et al. [59] propose that cryptographic puzzles should be used to provide privacy
in distance-bounding protocols. Rasmussen and Čapkun protocol [63] is based
on XOR and a comparison function, and has the benefit that the prover does not
need to demodulate the signal to answer to the verifier’s challenges. The MAD
protocol proposed by Čapkun et al. [20] allows for mutual distance-bounding.
This protocol was enhanced by the protocol of Singelée and Preneel [65], which
added bit-error resilience to MAD by using error correcting codes. The Hancke
and Kuhn’s protocol [42], originally designed to be used in the RFID environment
and is thus optimized for execution time and minimal prover complexity, uses
pre-computation, instead of a commitment step, during the setup phase in such
a way that no additional messages need to be transmitted during the verification
stage.

Hancke and Kuhn’s protocol has two issues: it does not take terrorist attacks
into account, and it achieves a sub-optimal performance-security trade-off with
respect to mafia and distance frauds of

(︀
3
4

)︀𝑛
. Subsequently, numerous proposals

based on the pre-computation method used by Hancke and Kuhn were proposed
in an effort to improve its performance. Bussard and Bagga’s protocol [18] and all
its descendants introduce resistance to terrorist fraud. These protocols are based
on Bussard and Bagga’s idea that the prover long-term secret is incorporated
into the pre-computed response options in such a way that if the prover reveals

8



Brands and Chaum
1993

Rasmussen and Capkun
2011

(No demodulation)
Hancke and Kuhn

2005
(Registers)

Walter and Felten
2003

(one pass fast phase)

SECTOR
2003

(mutual authentication)

Peris-Lopez, Hernandez-
Castro, Palomar,
Tapiador, and
Van der Lubbe

2010
(cryptographic puzzles)

Nikov and Vauclair
2008

(exchanges lightening)

MAD
2007

(noise resilience)

Kardas, Kiraz, Bin-
gol, and Demirci

2011
(PUF)

Munilla and Peinado
2006, 2008

(third state and
tag detection)

Bussard and Bagga
2005

(terrorist fraud
resistance)

Avoine and
Tchamkerten

2009
(tree)

Kim and Avoine
2009, 2011

(tag detection)

MUSE
2009

(multistate)

Reid, Neito, Tang,
and Senadji

2007
(computation
lightening)

Poulidor
2010

(graph)

Yum, Kim,
Hong, and Lee

2011
(mutual authentication)

Tu and Piramuthu
2007

(protocol structure)

Swiss-knife
2008

(third phase)

Avoine, Lau-
radoux, and Martin

2011
(secret sharing)

Hitomi
2009

(register computation)

Boureanu, Mitrokotsa,
and Vaudenay

2012
(protocol adaptiveness)

Fig. 1. Distance-bounding evolution

all the options his accomplice would also get the prover’s key. This therefore
discourages the prover to participate in a terrorist fraud, but at the cost of
a complex proof-of-knowledge operation. Its descendants aim to achieve the
same functionality but with decreased computational complexity. Reid et al. [64]
so improves the computational efficiency but the fraud resistance is ( 34 )

𝑛 in

comparison to Bussard and Bagga’s
(︀
1
2

)︀𝑛
. Tu and Piramuthu’s protocol [71]

proposes a protocol compounded by a succession of fast and slow phases. However,
this protocol suffers from several vulnerabilities, discussed in [50, 56], that reveal
the secret to an eavesdropper during a legitimate protocol run. The swiss-knife
protocol [50] fixes the poor mafia fraud resistance problem by adding a third
phase to Reid et al.’s protocol, and it also provides mutual authentication.
In [60], the authors claim that they found an attack on this protocol based
on nonce repetitions, and thus propose the Hitomi variation. However, if the
assumption is made that nonces repeat then Hitomi suffers, to a lesser extent,
of a similar flaw. A further variation of the swiss-knife protocol [5] explicitly
introduces secret-sharing to counter terrorist fraud, and studies the best settings
in which to use it. Avoine and Tchamkerten’s protocol [7] introduces binary
trees to compute the prover answers during the exchange phase, and succeeds in
improving mafia fraud resilience to almost ( 12 )

𝑛. Indeed, various graph structures
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can be used instead of a tree structure. The interest of cyclic and 𝑞-partite
graphs has been demonstrated in [69] and [51, 52], respectively. Finally, Trujillo
et al. [70] show that precomputation-based protocols can also deal with noise
without sacrificing security.

Munilla and Peinado [54, 55] initiated a new branch of the Hancke-Kuhn
pre-computation family. Their protocol communicates during the exchange phase
using binary symbols, 0 and 1, and also an additional “nothing” state. MUSE [3]
is a generalization of this idea relaxing the number of possible states. Kim and
Avoine’s protocols [48, 49] enhance the attack detection mechanism. Its descen-
dant [76] uses the detection mechanism to also provide mutual authentication.
Finally, Kardaş et al. [46] introduce PUFs in Hancke and Kuhn’s protocol and
claim the protocol now resists to terrorist fraud.

1.6 Provable Security

Most distance-bounding protocols have been analyzed without a formal approach.
Instead, generic best-known attacks are usually adapted to the specific features of
the protocol at hand, which has led to unsound analyzes and unfair comparisons.
Examples are the protocols proposed in [54], [71], and [76], whose flaws are
explored in [2], [56], and [4], respectively. The first comprehensive formalization
for analyzing distance-bounding protocols was proposed by Avoine et al. [2];
this is not a provable security formalism, but it is a framework that can describe
attack-scenarios in a unitary fashion, and thus offer a systematic manner of
computing upper-bounds on the probabilities of typical attacks in distance-
bounding and its variants. This unified framework [2] defines the following
important objects: the prover model (depending on the prover tampering-
resistance, it can be either black-box or white-box ); the prover’s computing
capabilities (e.g., whether the prover can exploit latencies between the slow and
fast phases); and the attacker’s strategies (e.g., pre-ask, post-ask, and early-reply).

Recent efforts have been made on proving security for distance-bounding [14–
16, 30, 34, 73]. However, this is still a very young field that needs to overcome
three main, inter-dependent challenges: (i) the introduction of sound communi-
cation, network and adversarial models that capture the notion of time-of-flight,
(ii) the definition of clear and rigorous specifications of the classical frauds (i.e.,
formal definitions of these frauds that can be proven to hold or to be refuted
within the model), and (iii) formal security proofs based on cryptographic as-
sumptions. To illustrate for instance the difficulty of the third challenge, [13]
proved that many protocols fall short in having their security based on the
pseudorandom function (PRF) assumption of some underlying primitive.
The first formalism in this direction was put forward by Dürholz et al. [30].

The authors formalize the impossibility of illegitimate yet sufficiently fast round-
trip communications using the notion of tainted sessions; to encode timing-
restrictions, tainted sessions only allow certain flows of communication. Then, a
protocol is said to be secure if no adversary executing it with tainted sessions
can violate its security properties. The model comprises a formalization of
all the classical frauds and provides several (partial) security proofs for some
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protocols [30, 33]. This formal model is a step in the right direction towards
provably secure distance-bounding.

Another line on provably secure distance-bounding, which builds on the model
by Dürholz et al., is in [34]. One addition therein is proposing a distance-
bounding protocol that uses not one but two different secret keys for the slow
and fast phases. This bypasses the aforementioned problem of using just the
PRF-assumption to argue the security of (one-key) distance-bounding.
In [14, 16], the authors provide a rather general model that captures the

notion of concurrency (i.e., allowing adversaries to interact with many provers
and verifiers, sometimes with the same keys). Their notions of distance and
mafia frauds additionally capture the one of distance hijacking [26] and imper-
sonation [30], respectively. Furthermore, their definition for terrorist-fraud is
more general than the notion of terrorist fraud adopted in this manuscript: after
the initial collusion, the possible threats to protect against may be stronger
in [14, 16] (e.g., MiM in concurrent settings). The authors also propose a set of
distance-bounding schemes offering provable security against all forms of attacks
within their model. A simplified version of [14], where the elements of provable
security are played down to best-attack scenarios, is available in [15].

As depicted above, attention to provably secure distance-bounding is increasing.
However, we underline that there is little consensus on which formalizations are
appropriate, by different metrics. This is evident for instance in the formalization
of terrorist-fraud (TF) resistance, arguably due in part to its non-falsifiable
nature which –in turn– renders it hard to (provably) attain in distance-bounding
designs.

Firstly, we underline a distinction between a commonplace view on TF resis-
tance and the formal expressions of this. There is a wide-spread acceptation in
the distance-bounding literature that TF resistance ought to repose on the reduc-
tion to the impossibility to protect against the “trivial vulnerability” whereby a
prover gives away his secret-key to the adversary. That is, a protocol is often
popularly understood to be TF resistant if the dishonest prover who helps
the adversary authenticate fraudulently in one run leaks his secret key to the
adversary. Whilst this is a valid acceptation, the formal models above generally
do not formalize precisely this commonplace view on terrorist-fraud resistance.
Some approaches, e.g., [12, 34], formalize the following statement: the protocol
is resistant to TF or some generalizations thereof if whenever the dishonest
prover helps the adversary authenticate fraudulently, the adversary gains advan-
tages in future authentication attempts in the absence of the illicit help. Other
approaches [73] encode formally that the protocol is sound (or terrorist-fraud
resistant in a generalized sense) if the following holds: for all protocol-runs with
a verifier, there exists an extractor who reconstructs the secret when he is given
the knowledge of all participants which were close to the verifier in several
successful executions.

Secondly, authors have changed and abridged their own formal definitions of
these expressions of TF resistance. Dürholz et al. define 𝑆𝑖𝑚𝑇𝐹 , 𝑆𝑡𝑟𝑜𝑛𝑔𝑆𝑖𝑚𝑇𝐹 ,
and 𝐺𝑎𝑚𝑒𝑇𝐹 terrorist-fraud resistance [30, 34]. Boureanu et al. put forward
formalizations of terrorist-fraud resistance in [15], as well as formalizations of
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generalizations of TF resistance in notions of collusion-fraud resistance [12, 14].
To this end, Vaudenay took collusion-fraud resistance further into a notion of
soundness [73] akin to similar expressions in interactive proofs.

Thirdly, one can argue that some of these formal definitions for TF resistance
might yield a too strong requirement, disproving security all-throughout (like the
𝑆𝑖𝑚𝑇𝐹 formulation of terrorist-fraud resistance in [30]), or might be too general
(like aforementioned collusion-fraud resistance in [14] that suits the provable
security of the SKI schemes [12]), or less realistic (like the 𝑆𝑖𝑚𝑇𝐹 formulation for
terrorist-fraud resistance in [30] in which the dishonest prover and the adversary
are not allowed to communicate during the fast rounds). On the one hand,
when we fix the model, we can nonetheless see that some of these definitions
imply one another (𝑆𝑡𝑟𝑜𝑛𝑔𝑆𝑖𝑚𝑇𝐹 in [34] implies 𝑆𝑖𝑚𝑇𝐹 in [30], and soundness
in [73] implies collusion-fraud resistance in [12], for certain parameters). On
the other hand, even in one such fixed model, other definitions remain however
incomparable (e.g., 𝐺𝑎𝑚𝑒𝑇𝐹 and 𝑆𝑡𝑟𝑜𝑛𝑔𝑆𝑖𝑚𝑇𝐹 in [34]), underlying further
the unsettlement of formalizing terrorist-fraud resistance even within one and
the same formalism.
Last but not least, formal comparisons between the session-based model

in [30, 34] and the model inspired by interactive proofs in [12, 73] do not exist.
In the absence of a formal proof aligning the two models and their security
definitions, it appears that 𝑆𝑖𝑚𝑇𝐹 resistance in [30] is equivalent to the notion of
terrorist-fraud resistance in [15] and that 𝐺𝑎𝑚𝑒𝑇𝐹 resistance in [34] is equivalent
to collusion-fraud resistance in [14] (for some parameters).
Similar discussions apply –of course– to the formalizations of threats other

than terrorist-fraud in the aforementioned formalism. As such, formal relations
between the existing formal models for distance-bounding and their formal
definitions of security is an avenue of future research.
Due to such differences between the formal models, we decided to carry out

our analyses in the general framework by Avoine et al. [2]. This framework
does not repose on such fine-grained formalizations of the distance-bounding
threats1, but instead it formalizes classes of interactions between the provers
and the attackers in order to better classify attack strategies, towards an unitary
approach to assessing the security/insecurity of distance-bounding.

1.7 Contributions

This article provides an in-depth security comparison of many existing distance-
bounding protocols. After the introduction of the notation and the methodology
in Section 2, the next twelve sections present several important published
distance-bounding protocols. Each section presents in a unified way the con-
sidered protocol and its security analysis. Those who are not familiar with the
presented protocols will be able to consult Appendix A, which provides thor-
ough descriptions of the twelve protocols. Section 15 presents the comparison
methodology and results. The article also includes Appendix B, which discusses

1For instance, the popular take on TF resistance by reduction to impossible protection against

the “trivial vulnerability” is not attainable in the “white box model for TF” from [2], whilst

some of the formal expressions for TF resistance summarized above would be.
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about variants and extensions that can be applied to most of the considered
protocols.

2 ANALYSIS METHODOLOGY AND NOTATIONS

This paper analyzes twelve distance-bounding protocols using a unique methodol-
ogy, based on the distance-bounding framework published in [2]. Table 1 contains
the unified notations used throughout the paper. Each protocol description is di-
vided into 3 steps, namely initialization, protocol, and final phase, and includes a
table that summarizes the protocol parameters. Protocols consist of slow phases
that are not time-constrained, and fast phases where the verifier measures the
round-trip times of exchanged messages. The fast phases are identified with a
left square bracket. Anything in the bracket is repeated 𝑛 times, except if stated
otherwise. Each protocol description is followed by a security analysis according
to the template provided in Section 2.2. The properties and performance are
analyzed according to Section 2.3 and 2.4.

2.1 Fraud definitions

A distance-bounding protocol is a process whereby a party (known as verifier)
is assured (i) of the identity of a second party (known as prover) and (ii) that
the prover is located in his close vicinity (known as neighborhood). Four frauds
against distance-bounding are usually considered, impersonation, distance, mafia,
and terrorist frauds [2], which are introduced below.

Impersonation. An impersonation fraud is an attack where an adversary acting
alone purports to be a legitimate prover.

Distance fraud. A distance fraud is an attack where a dishonest prover purports
to be in the neighborhood of the verifier. He cheats without help of other entities
located in the neighborhood.

Mafia fraud. A mafia fraud is an attack where an adversary defeats a distance-
bounding protocol using a man-in-the-middle between the verifier and an honest
prover located outside the neighborhood.

Terrorist fraud. A terrorist fraud is an attack where an adversary defeats
a distance-bounding protocol using a man-in-the-middle between the verifier
and a dishonest prover located outside of the neighborhood under the following
circumstances. The dishonest prover actively helps the adversary to maximize
her current attack success probability, but without giving her any advantage for
future man-in-the-middle attacks. (In such attacks, the man-in-the-middle (MiM)
would attempt to pass the distance-bounding protocol as a valid prover/tag
which the MiM does not represent/possess.)

Note that protocols that are known to suffer from a key-recovery attack are
not analyzed in this article. This includes Tu and Piramuthu’s protocol [71]
whose flaws are discussed in [50, 56], Reid et al.’s protocol [64] broken in [5, 53],
and Hitomi whose vulnerabilities are described in [66]. While [9] points out a
key recovery attack on Bussard and Bagga’s protocol [18], this protocol is kept
in this analysis because the attacks presented in [9] could be applied to other
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Table 1. Notations

Prover and Verifier
𝑃 , ID𝑃 Prover, Prover identity
𝑉 , ID𝑉 Verifier, Verifier identity
𝑁𝑉 , 𝑁𝑃 Nonces sent by verifier and prover, respectively.

Rounds
𝑛 Number of rounds in the fast phase
𝑖 Index of the current round

Secrets
𝐾 Long-term secret key shared by prover and verifier
𝐾𝑒, 𝐾𝑑 Public/Private keys for Encryption/Decryption
𝐾𝑠, 𝐾𝑣 Private/Public keys for Signature/Verification

Time
Δ𝑡𝑖 Round Trip Time (RTT) measured during round 𝑖
𝑡max Threshold on the round-trip time (typically, there is a round failure if Δ𝑡𝑖>𝑡max)

Challenges and Responses
𝑐𝑖 Challenge sent by the verifier in round 𝑖
𝑐′𝑖 Challenge received by the prover in round 𝑖
𝑟𝑖 Response sent by the prover in round 𝑖
𝑟′𝑖 Response received by the verifier in round 𝑖

Registers
𝑅0, 𝑅1 Main registers
𝑍0,𝑍1,... Additional registers, when needed.
𝐻 Crypto function output, usually viewed as a register, e.g., 𝐻 = ℎ(𝑁𝑉 , 𝑁𝑃 )

Sizes
𝜎 Size of the signature, commitment, or MAC (in the slow phase)
𝜄𝑃 ,𝜄𝑉 ,𝜄 Size of ID𝑃 and ID𝑉 . If |ID𝑃 |=|ID𝑉 | then the value is denoted 𝜄 (bits)
𝜅 Size of 𝐾 (bits)
𝛿𝑃 , 𝛿𝑉 , 𝛿 Size of the nonces 𝑁𝑉 and 𝑁𝑃 . If |𝑁𝑉|= |𝑁𝑃| then the value is denoted 𝛿 (bits)

Errors
𝑒𝑋 Number of errors of type 𝑋, e.g., 𝑒𝐶 , 𝑒𝑅, 𝑒𝑇
𝑒max Threshold on the number of errors
Functions
𝑑ℋ(., .) Hamming distance
ℋ(.) Hamming weight
Sign𝐾𝑠

(.) Signature function with private key 𝐾𝑠

Verif𝐾𝑣 (.) Public-key signature verification function with public key 𝐾𝑣

Commit(.) Commitment function
Open(.) Open commitment function
ℎ(.) Cryptographic hash function
ℎ𝐾(.) Cryptographic hash function keyed with the secret key 𝐾
MAC𝐾(.) Message authentication code keyed with the secret key 𝐾
𝑓𝐾(.) Pseudorandom function keyed with the secret key 𝐾
𝐸𝐾(.) Encryption function keyed with the secret key 𝐾
𝐷𝐾(.) Decryption function keyed with the secret key 𝐾

Misc
E(.) Mathematical expectation
∈R Randomly and uniformly picked in...
∈R {0, 1}𝑥 Randomly and uniformly picked in the set {0, 1}𝑥, typically 𝑥 = 𝛿
|| Concatenation of words (possibly 1-bit words)
𝑝 Number of runs of the cryptographic function, in the analyzes
p,q Prime numbers.
𝑝𝑋 Probability of event 𝑋
𝑤 Hamming weight, e.g., 𝑤 = ℋ(𝑥)
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protocols and designers must be aware of their existence to avoid them. Note
also that the length of the long-term secret keys of the parties, the length of the
signatures (when appropriate), and the length of the nonces are assumed to be
large enough, such that exhaustive search and replay attack are not relevant.
Finally, the pseudo random functions used in the protocols are assumed to
be without design flaws, i.e., no trapdoor pseudo random functions, like those
discussed in [13].
Another type of fraud, known as distance hijacking, has recently been intro-

duced in [26]. The fraud considers a dishonest prover who aims to convince a
verifier that he is located within the verifier’s neighborhood, abusing for that
some other provers who are indeed in the verifier’s neighborhood. For example,
a dishonest prover can reach his goal by hijacking the fast phase of a distance-
bounding protocol executed between an honest (closer) prover and the verifier.
Conceptually, distance hijacking can be placed between distance fraud and
terrorist fraud. Unlike terrorist fraud, where a dishonest prover colludes with
another attacker, distance hijacking considers a dishonest prover who interacts
with (abuses) other honest provers. Unlike distance fraud that only involves a
dishonest prover and a verifier, distance hijacking also involves other honest
provers. These seemingly subtle differences have significant consequences, e.g.,
the countermeasures proposed against terrorist fraud strictly depend on the fact
that the dishonest prover needs to share data with another attacker. In fact,
the protocols BC [17], MAD [20], and RC [63] are not resistant against hijack-
ing fraud according to [26]. The version of RC presented in Section 10 comes
from [61]. This is a version that has been modified to be resilient to distance
hijacking. Cremers et al. provide in [26] a clear analysis of existing protocols
that resist to the hijacking fraud. Vaudenay analyzes additional protocols in [74].
We consequently refer the reader to these articles to get more information about
distance hijacking.

2.2 Security

The analyses usually performed in distance-bounding do not provide a security
proof, but state the resistance of a protocol given a clearly defined scenario, which
includes the type of fraud, but also the adversary’s capabilities and strategies,
described below and summarized in Table 2.

Prover model. Depending on the tamper-resistance of the prover, two models
are defined: black-box and white-box. In the black-box model, the prover can
neither observe nor tamper with the execution of the algorithm. In the white-box
model, the prover has full access to the implementation of the algorithm and a
complete control over the execution environment, as detailed in [2].

Prover computing capabilities. The prover computing capabilities may affect
the security of the protocol when considering distance and terrorist fraud in the
white box model, given that the prover is also the attacker in such frauds. For
example, in HK protocol, the prover may exploit a latency between the slow
and fast phases to generate registers with a low Hamming distance [2].
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Table 2. Attack scenarios

Fraud
Prover P’s Computing Adversary Success

Model Capability Strategy Probability

Impers. (1) (1) (4) PrImp

Mafia (1) (1)
pre-ask PrMF|pre
post-ask PrMF|post

Distance

black-box (2)
pre-ask & early-reply PrDF|BB|pre&early

post-ask & early reply PrDF|BB|post&early

white-box
single run

early-reply
PrDF|WB(1)|early

multiple run PrDF|WB(p)|early

Terrorist

black-box (2) (3) (3)

white-box
single run

early-provide
PrTF|WB(1)

multiple run PrTF|WB(p)

(1) The computing capability is not relevant with an honest prover.

(2) The computing capability is not relevant in the black box model.

(3) This case is equivalent to the mafia fraud case.

(4) No strategy is defined in [2] for impersonation.

Adversary strategies. The framework [2] points out that three relevant ad-
versary’s strategies should be considered when analyzing a distance-bounding
protocol: pre-ask, post-ask, and early-reply strategies. In the pre-ask strategy,
the adversary relays the first slow phase between the verifier and the prover,
then executes the fast phase with the prover before the verifier starts it. In the
post-ask strategy, the adversary relays the first slow phase, then executes the
fast phase with the verifier without involving the prover. The adversary then
queries the prover with the correct challenges received during the fast phase.
This strategy is meaningful when the protocol is completed with a second slow
phase used to check that the challenges received by the prover are correct. In the
early-reply strategy, the adversary anticipates the replies to make them arrive
on time, which is particularly relevant with distance fraud. No strategy for the
terrorist fraud is defined in [2]. We introduce here the early-provide strategy: in
this strategy, the adversary located inside the neighborhood, first relays the slow
phase to the prover. The latter then provides to the adversary some information
to help him to improve her success probability during the fast phase with the
verifier. Finally, the adversary relays the final slow phase, if any.

Remark 1 (Circle analysis). A prover located outside the neighborhood of
the verifier but not too far may receive some challenges while the protocol is still
running. When the rounds of the fast phase are independent, this late information
is useless. However, the adversary may use this information to increase her
success probability when the rounds are not independent. Consequently, when
analyzing the resistance of a protocol against distance and terrorist frauds the
area the prover is located should be considered. However, in all the analyzed
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protocols, either this scenario is not relevant due to the round independency, or
the calculation of the success probability is still an open problem.

Remark 2 (Multiple-execution). The framework also points out that
some information could leak when the protocol is executed several times. Typically,
this case occurs when the prover and the verifier generate two registers without
involving randomness from the prover. None of the protocols analyzed in the
paper are known to suffer from this weakness. Consequently, it is not explicitly
addressed in the analysis.

2.3 Properties

The protocol properties considered in the paper are described below and sum-
marized in Table 3. Note that the type of data exchanged during the fast phase
is usually binary. This is the case for all protocols considered in this analysis,
except the one discussed in Section 14.

Adaptiveness. Indicates whether the protocol provides an adjustable trade-off
between resistance to mafia and distance frauds.

Mutual authentication. Indicates whether the protocol provides mutual au-
thentication. Note that, mutual authentication does not imply mutual distance-
bounding: while the identity proof is bilateral in that case, the distance proof is
unilateral in all the analyzed protocols.

Second slow phase. Indicates whether there is a second slow phase in the
protocol after the fast phase.

Independence of the rounds. Indicates whether each expected response during
the fast phase depends on the current challenge only.

2.4 Performance

The protocol performance is described below and summarized in Table 4.

Cryptographic primitives. Type of cryptographic primitives needed to be
implemented on the prover side: cryptographically-secure pseudo-random number
generator, hash, encryption, commitment, and signature. Hash functions and
ciphers are actually aggregated into a single category that is denoted symmetric
primitive.

Exchanged bits (slow phase). Number of exchanged bits during the slow
phase(s).

Exchanged bits (fast phase). Number of exchanged bits during the fast phase.

Memory consumption. Amount of memory that is needed during the entire
fast phase by the prover.

3 BRANDS AND CHAUM’S PROTOCOL (1993)

In 1993, Brands and Chaum designed several distance-bounding protocols [17].
This analysis focuses on their protocol (Algorithm 1) that mitigates both mafia
and distance fraud.
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Table 3. Properties

Property Value
Adaptiveness Yes/No
Mutual authentication Yes/No/Optional
Second slow phase Yes/No
Round independence Yes/No

Table 4. Performance

Performance Value
Cryptographic primitives Type
Exchanged bits (slow phase) bits
Exchanged bits (fast phase) bits
Memory consumption bits

Algorithm 1: Brands and Chaum’s Protocol

Verifier Prover

(prover’s public key 𝐾𝑣) (prover’s private key 𝐾𝑠)

Commit(𝑚1|| . . . ||𝑚𝑛)
←−−−−−−−−−−−−−−−−−− 𝑚𝑖 ∈𝑅 {0, 1}[︃

Pick 𝑐𝑖 ∈𝑅 {0, 1} and Start
Timer

𝑐𝑖−−−−−−−−−−−−−−−−−−→

Stop Timer
𝑟𝑖←−−−−−−−−−−−−−−−−−− 𝑟𝑖 = 𝑚𝑖 ⊕ 𝑐𝑖

Open(Commit), Sign𝐾𝑠
(𝑐1||𝑟1|| . . .)

←−−−−−−−−−−−−−−−−−−−−−−−−
Check 𝑟𝑖 and Δ𝑡𝑖 ≤ 𝑡max for

1 ≤ 𝑖 ≤ 𝑛, then Verify Sign𝐾𝑠

3.1 Impersonation

Assuming that the signature scheme is secure, impersonating the prover can
only be done by sending a randomly selected correct signature. Such a naive
attack has success probability PrImp = (1/2)ℓ. However, while nonce-based
replay attacks are not addressed in this paper (Section 2.1), a challenge-based
replay attack should be considered. Indeed, if the challenges sent by the verifier
are used twice, then the adversary can reuse the same 𝑚𝑖’s and thus obtains the
correct Open(Commit) and Sign𝐾𝑠

(𝑐1||𝑟1|| . . . ||𝑐𝑛||𝑟𝑛). After eavesdropping one
execution before the attack, the success probability becomes PrImp = (1/2)𝑛.

3.2 Mafia Fraud

Pre-ask strategy. The adversary gets the commitment and queries the prover
with random bits (𝑐𝑖) during the fast phase. The adversary then receives the
responses (𝑟𝑖) and the final signature. With this information, the adversary
computes 𝑚𝑖 = 𝑐𝑖 ⊕ 𝑟𝑖, then sends the valid responses to the verifier during the
fast phase, and finally the commitment and the signature during the second
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slow phase. However, the signature received from the prover is not valid for this
protocol run, except if the challenges sent by the adversary to the prover and
the challenges sent by the verifier to the adversary are the same. The success
probability of this strategy is the probability of guessing the challenges correctly:
PrMF|pre =

(︀
1
2

)︀𝑛
[2].

Post-ask strategy. The adversary must predict the correct responses to be
sent to the verifier during the fast phase without any assistance. We thus have:
PrMF|post =

(︀
1
2

)︀𝑛
.

3.3 Distance Fraud (White Box)

Early-reply strategy with one run. Given that the adversary must predict the
current challenge correctly beforehand, her success probability is provided by
the formula: PrDF|WB(1)|early =

(︀
1
2

)︀𝑛
[2].

Early-reply strategy with 𝑝 runs. No cryptographic function is used to compute
registers, contrary to Hancke and Kuhn’s approach. This fact trivially yields:
PrDF|WB(p)|early = PrDF|WB(1)|early.

3.4 Distance Fraud (Black Box)

Pre-ask combined with early-reply strategy. With the pre-ask strategy, the
adversary learns all the possible answers. However, she does not know the
challenges, so when she sends her answers in advance, two cases occur: a) the
verifier uses the same challenge as she did with the verifier. Therefore she
always succeeds, b) the verifier picks another challenge and she has sent an
incorrect answer to the verifier. Hence, the success probability of this strategy
is: PrDF|BB|pre&early =

(︀
1
2

)︀𝑛
.

Post-ask combined with early-reply strategy. Given that the adversary must
commit during the first slow phase, she cannot just answer randomly during the
fast phase and she will therefore need to predict the responses expected by the
verifier. Hence we have: PrDF|BB|post&early =

(︀
1
2

)︀𝑛
.

3.5 Terrorist Fraud (White Box)

This protocol is not designed to resist to terrorist fraud in the white box model.
Indeed, the prover without revealing his secret 𝐾𝑠, is able to provide to his
accomplice the commitment and the signature, which are required to succeed.
Consequently: PrTF|WB = 1 [50].

4 ČAPKUN, BUTTYÁN, AND HUBAUX’S PROTOCOL (2003)

In 2003, Čapkun, Buttyán, and Hubaux introduced MAD [20], a protocol that
works quite similarly to the BC protocol [17], but provides mutual authentication.
Although denoted by 𝑃 and 𝑉 , the two parties act as both prover and verifier
during the execution of the protocol (Algorithm 2). The notations used in [20]
are kept in the description below.
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Algorithm 2: MAD Protocol

Prover Verifier

(secret 𝐾) (secret 𝐾)

Pick 𝑟′ ∈R {0, 1}𝛿
and 𝑟 ∈R {0, 1}𝑛

Pick 𝑠′ ∈R {0, 1}𝛿
and 𝑠 ∈R {0, 1}𝑛

ℎ(𝑟||𝑟′)−−−−−−−−−−−−−−−−−−→
ℎ(𝑠||𝑠′)←−−−−−−−−−−−−−−−−−−⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼1 = 𝑟1

Start Timer
𝛼1−−−−−−−−−−−−−−−−−−→

𝛽1 = 𝑠1 ⊕ 𝛼1

Stop Timer
𝛽1←−−−−−−−−−−−−−−−−−− Start timer

.

.

.

𝛼𝑖 = 𝑟𝑖 ⊕ 𝛽𝑖−1

Start Timer
𝛼𝑖−−−−−−−−−−−−−−−−−−→ Stop timer

𝛽𝑖 = 𝑠𝑖 ⊕ 𝛼𝑖

Stop Timer
𝛽𝑖←−−−−−−−−−−−−−−−−−− Start timer

.

.

.

𝛼𝑛 = 𝑟𝑛 ⊕ 𝛽𝑛−1

Start Timer
𝛼𝑛−−−−−−−−−−−−−−−−−−→ Stop timer

𝛽𝑛 = 𝑠𝑛 ⊕ 𝛼𝑛

Stop Timer
𝛽𝑛←−−−−−−−−−−−−−−−−−−

Compute 𝑠𝑖 = 𝛼𝑖 ⊕ 𝛽𝑖 for
1 ≤ 𝑖 ≤ 𝑛 and 𝜇𝑃 =

MAC𝐾(𝐼𝐷𝑃 ||𝐼𝐷𝑉 ||𝑟1||𝑠1|| . . . ||𝑟𝑛||𝑠𝑛)

Compute 𝑟1 = 𝛼1,
𝑟𝑖 = 𝛼𝑖 ⊕ 𝛽𝑖−1 (𝑖 > 1) and
𝜇𝑉 = MAC𝐾

(𝐼𝐷𝑉 ||𝐼𝐷𝑃 ||𝑠1||𝑟1|| . . . ||𝑠𝑛||𝑟𝑛)
𝑟′||𝜇𝑃−−−−−−−−−−−−−−−−−−→
𝑠′||𝜇𝑉←−−−−−−−−−−−−−−−−−−

Verify ℎ(𝑠||𝑠′) and 𝜇𝑉 Verify ℎ(𝑟||𝑟′) and 𝜇𝑃

Check Δ𝑡𝑖 ≤ 𝑡max (1 ≤ 𝑖 ≤ 𝑛) Check Δ𝑡𝑖 ≤ 𝑡max (1 ≤ 𝑖 ≤ 𝑛)

4.1 Impersonation

The basic way to impersonate the prover is to generate the random numbers 𝑟
and 𝑟′, and to complete the first slow phase and the fast phase. The adversary
must then guess the output of the MAC function in the second slow phase. The
probability of a correct guess is: PrImp =

(︀
1
2

)︀𝜎
.

4.2 Mafia Fraud

Without loss of generality, we assume that the adversary seeks to impersonate
𝑃 against 𝑉 .

Pre-ask strategy. To succeed in the mafia fraud, the output of the MAC
function in the second slow phase needs to be valid. Since the adversary cannot
compute this value, she needs to ensure that 𝑃 sends the correct output of the
MAC function to 𝑉 . This will only be the case if the adversary has guessed the
values 𝑠𝑖 correctly during the pre-ask stage. Hence: PrMF|pre =

(︀
1
2

)︀𝑛
[20].

20



Post-ask strategy. Similarly, the adversary needs to ensure that 𝑃 sends the
correct output of MAC𝐾 . This will only be the case if she guessed all correct 𝑟𝑖
values in advance: PrMF|post =

(︀
1
2

)︀𝑛
[20].

4.3 Distance Fraud (White Box)

Without loss of generality, we assume that 𝑃 wants to perform a distance fraud
(the distance fraud success probability of 𝑉 is equal to the one of 𝑃 ).

Early-reply strategy with one run. The responses 𝛼𝑖 are computed by XORing
the values of the responses 𝑟𝑖, which are completely controlled by the adversary,
and the challenges 𝛽𝑖. The latter are uniformly distributed, and the values 𝛼𝑖

inherit the same statistical distribution. So even if the adversary fully controls
her hardware, the best strategy is to guess the challenges 𝛽𝑖 in advance. We
have thus: PrDF|WB(1)|early =

(︀
1
2

)︀𝑛
.

Early-reply strategy with 𝑝 runs. Similarly to Algorithm 1, no cryptographic
function is used to compute registers, and so: PrDF|WB(p)|early = PrDF|WB(1)|early.

4.4 Distance Fraud (Black Box)

We assume that the fraudulent party that performs the distance fraud is 𝑃 .

Pre-ask combined with early-reply strategy. The best strategy consists in
guessing the 𝑛 challenges 𝛽𝑖. By querying itself in advance, the prover learns the
values 𝑟𝑖, and computes the responses 𝛼𝑖. The adversary uses these responses
in the early-reply strategy. They are correct when the values 𝛽𝑖 were guessed
correctly and consequently the MAC computed by the prover in the second slow
phase is correct as well. If one of the challenges is guessed incorrectly, the prover
will compute incorrect values 𝑠𝑖, and MAC𝐾(.) will be wrong. The distance

fraud success probability is: PrDF|BB|pre&early =
(︀
1
2

)︀𝑛
.

Post-ask combined with early-reply strategy. The adversary has no information
on the bits 𝑟𝑖. The best strategy is to send 𝑛 random responses 𝛼𝑖. In each
round, the adversary has a 1/2 probability of being successful. This occurs when
both 𝑟𝑖 and 𝛽𝑖 are guessed correctly, or when both guesses were wrong. When
one of these values is correct and the other one is incorrect, the response of the
adversary will be wrong. As a result, the distance fraud success probability is:
PrDF|BB|post&early =

(︀
1
2

)︀𝑛
.

4.5 Terrorist Fraud (White Box)

This protocol is not designed to resist to terrorist fraud in the white box model.
Indeed, the prover without revealing her secret 𝐾, gives her accomplice the
output of the commitment, and the values 𝛼𝑖 and 𝑟′, or 𝛽𝑖 and 𝑠′. After the fast
phase, the accomplice gives the observed values 𝑠𝑖 or 𝑟𝑖 to the prover, who can
then computes the MAC. This output is then sent back to the accomplice, who
finally forwards it to the verifier. Hence: PrTF|WB = 1 [50].
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5 HANCKE AND KUHN’S PROTOCOL (2005)

In 2005 Hancke and Kuhn published the first distance-bounding protocol [42]
(Algorithm 3) clearly dedicated to RFID. The protocol relies on the original ideas
of Desmedt et al. [10, 28] but is different from Brands and Chaum’s work [17]
in the sense that Hancke and Kuhn’s protocol does not have any final signature
after the fast phase.

Algorithm 3: Hancke and Kuhn’s Protocol

Verifier Prover

(secret 𝐾) (secret 𝐾)

Pick 𝑁𝑉 ∈R {0, 1}𝛿 Pick 𝑁𝑃 ∈R {0, 1}𝛿
𝑁𝑉−−−−−−−−−−−−−−−−−−→
𝑁𝑃←−−−−−−−−−−−−−−−−−−

𝐻 = ℎ(𝐾,𝑁𝑉 , 𝑁𝑃 )
𝑅0 = 𝐻1 ||𝐻2 || . . . ||𝐻𝑛

𝑅1 = 𝐻𝑛+1||𝐻𝑛+2|| . . . ||𝐻2𝑛

𝐻 = ℎ(𝐾,𝑁𝑉 , 𝑁𝑃 )
𝑅0 = 𝐻1 ||𝐻2 || . . . ||𝐻𝑛

𝑅1 = 𝐻𝑛+1||𝐻𝑛+2|| . . . ||𝐻2𝑛[︃
Pick 𝑐𝑖 ∈ {0, 1} and Start

Timer

𝑐𝑖−−−−−−−−−−−−−−−−−−→

Stop Timer
𝑟𝑖←−−−−−−−−−−−−−−−−−− 𝑟𝑖 = 𝑅

𝑐𝑖
𝑖

Check correctness of 𝑟𝑖
and Δ𝑡𝑖 ≤ 𝑡max for 1 ≤ 𝑖 ≤ 𝑛

5.1 Impersonation

The common attack consists in guessing all the answers during the fast phase:
PrImp =

(︀
1
2

)︀𝑛
.

5.2 Mafia Fraud

Pre-ask strategy. We have: PrMF|pre =
(︀
3
4

)︀𝑛
[42].

Post-ask strategy. This protocol does not contain any second slow phase and
the first slow phase consists of nonce exchanges only. As per Section 2 we have:
PrMF|post = PrImp.

5.3 Distance Fraud (White Box)

Early-reply strategy with one run. We have: PrDF|WB(1)|early =
(︀
3
4

)︀𝑛
[69].

Early-reply strategy with 𝑝 runs. The formula expressing the attack success
probability for this strategy was originally presented in [2], but it contained a
typing error. The correct formula is:

PrDF|WB(p)|early=
1

2𝑝𝑛
·

⎛⎝𝑖=𝑛−1∑︁
𝑖=0

(︂
1

2

)︂𝑖

·

⎡⎣⎛⎝𝑗=𝑛∑︁
𝑗=𝑖

(︂
𝑛

𝑗

)︂⎞⎠𝑝

−

⎛⎝ 𝑗=𝑛∑︁
𝑗=𝑖+1

(︂
𝑛

𝑗

)︂⎞⎠𝑝⎤⎦+(︂1

2

)︂𝑛
⎞⎠ .
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5.4 Distance Fraud (Black Box)

Pre-ask combined with early-reply strategy. With the pre-ask strategy, the
adversary learns half of the possible responses. However, she does not know the
challenge, so when she sends her responses in advance, two situations can occur:
1) the verifier asks her the same challenge that she asked the prover and therefore
her response is correct, 2) the verifier sends a different challenge in which case
she succeeds if the two possible responses were the same, i.e., her response is the
same as the alternative response, and fails if the possible responses are different.
Hence, the distance fraud success probability is: PrDF|BB|pre&early =

(︀
3
4

)︀𝑛
Post-ask combined with early-reply strategy. This protocol does not contain

any second slow phase and the first slow phase consists of nonce exchanges only.
As per Section 2 we have: PrDF|BB|post&early = PrImp.

5.5 Terrorist Fraud (White Box)

This protocol is not designed to resist to terrorist fraud in the white box
model. Indeed, the prover is able to provide to his accomplice the two registers
required to successfully execute the protocol, without revealing his secret 𝐾:
PrTF|WB = 1 [50].

6 BUSSARD AND BAGGA’S PROTOCOL (2005)

Bussard and Bagga published the DBPK-Log protocol (Algorithm 4), which is
a distance-bounding protocol based on a proof of knowledge and a commitment
scheme [18].

Algorithm 4: DBPK-Log Protocol

Verifier Prover

(prover’s public key 𝑦) (prover’s private key 𝑥)

Pick 𝑅0 ∈R {0, 1}𝑛

Compute 𝑅1 = 𝐸𝑅0 (𝑥) =

𝑥− 𝑅0 mod (𝑝− 1)
Compute ∀𝑖 ∈ [0, 𝑛− 1]:

𝐶𝑖(𝑅
0) = Commit(𝑅0

𝑖 )

𝐶𝑖(𝑅
1) = Commit(𝑅1

𝑖 )

∀𝑖, 𝐶𝑖(𝑅
0)𝐶𝑖(𝑅

1)
←−−−−−−−−−−−−−−−−−−[︃

Pick 𝑐𝑖 ∈ {0, 1} and Start
Timer

𝑐𝑖−−−−−−−−−−−−−−−−−−→

Stop Timer
𝑟𝑖←−−−−−−−−−−−−−−−−−− 𝑟𝑖 = 𝑅

𝑐𝑖
𝑖

Check 𝑟𝑖 = 𝑅
𝑐𝑖
𝑖

Open(𝑅
𝑐𝑖
𝑖

)
←−−−−−−−−−−−−−−−−−−

𝑃𝐾[(𝑥, 𝑣) : 𝑧 = Ω(𝑥, 𝑣) ∧ 𝑦 = Γ(𝑥)]

←−−−−−−−−−−−−−−−−−−−−−−−−→
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6.1 Impersonation

In [18], the authors described a statistical key recovery attack. They established

the success probability of this attack: PrImp = (1/2)−4𝑚
′
, where 𝑚′ is a security

parameter.

6.2 Mafia Fraud

Pre-ask strategy. The adversary must pass the final slow phase to defeat the
protocol. Forging the Open function is definitely not the best option. Instead
the adversary should try to send the correct challenges to the prover during
the pre-ask attack, and then relay the final slow phases. Her success probability
with such a strategy is: PrMF|pre = (1/2)𝑛.

Post-ask strategy. Due to the presence of a complex second slow phase, the
post-ask strategy is as good as the pre-ask strategy against DBPK-Log, which
yields the success probability: PrMF|post = (1/2)𝑛.

6.3 Distance Fraud (White Box)

Early-reply strategy with one run. The adversary can search for a random
𝑅0 that minimizes the Hamming distance between 𝑅0 and 𝑅1. Denoting 𝑎
as the Hamming distance between 𝑅0 and 𝑅1 (𝑎 = 𝑑ℋ(𝑅

0, 𝑅1)), we have:
PrDF|WB(1)|early = (1/2)𝑎. This points out that the analysis provided in [18]
under-evaluates the success probability of the adversary because the white box
model is not considered.

Example 6.1. Let us consider the safe prime 𝑝 = 59 (𝑞 = 29 and 𝑛 = 6) and
𝑥 = 27. If 𝑅0 = 32, then 𝑑ℋ(𝑅

0, 𝑅1) = 1 and so the success probability is (1/2).

Early-reply strategy with 𝑝 runs. Running the pseudo-random generator for
choosing 𝑅0 once, or several times, has no impact in the protocol security: the
malicious prover can choose an appropriate value for 𝑅0 in order to maximize its
success probability in distance fraud. Hence: PrDF|WB(p)|early = PrDF|WB(1)|early.

6.4 Distance Fraud (Black Box)

Pre-ask combined with early-reply strategy. The adversary must succeed in
the second slow phase and has the same success probability as mafia fraud. We
then have: PrDF|BB|pre&early = (1/2)𝑛.

Post-ask combined with early-reply strategy. The adversary must succeed in
the fast phase without the knowledge of the challenge. Then, the prover is
queried by the adversary to gain information for the final slow phase. Similar to
mafia fraud, the success probability is: PrDF|BB|post&early = (1/2)𝑛.

6.5 Terrorist Fraud (White Box)

Early-provide strategy with one run. This protocol is designed to resist to
terrorist fraud in the white box model. Indeed, the prover cannot reveal 𝑅0 and
𝑅1 without exposing the key, making him able to provide only 𝑅0 or 𝑅1 to the
external adversary. Note that the prover cannot try to optimize the Hamming
distance between 𝑅0 and 𝑅1 as in distance fraud.
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Remark 3. The probability of terrorist fraud calculated in [18] is lower than
the one provided here. Indeed, the authors considers that the final slow phase
cannot be relayed by the adversary.

Early-provide strategy with 𝑝 runs. Similarly to distance fraud strategy with
early provide one run, we have PrTF|WB(p) = PrTF|WB(1).

A Dedicated Distance Fraud and Terrorist Fraud. We describe here a distance
fraud attack from [9]. The key idea is that a malicious prover could select
𝑅0 ≈ 𝑥

2 mod (𝑝− 1). That is, if 𝑥 is even, he takes 𝑅0 = 𝑥
2 and gets 𝑅1 = 𝑅0.

Otherwise, he takes 𝑅0 = 𝑥±1
2 and get 𝑅1 = 𝑅0 ± 1 so that 𝑅0 and 𝑅1 differ

in their least significant bit only. He can then run the protocol normally. We
note that 𝑅0

𝑖 = 𝑅1
𝑖 except for one single round. So, the answers to the received

challenges do not depend on it, except in one round. By sending the answer
before the challenge arrives, the malicious prover can succeed in an early-reply
strategy to run a distance fraud with a success probability larger than 1

2 .
The paper [9] also describes a terrorist fraud attack. The idea of the attack

is that the malicious prover starts the protocol but does not give the commit
values. Instead, he computes 𝑧 and discloses it to the adversary through an
early-provide strategy. The adversary will commit to random bits for 𝑅0

𝑖 and 𝑅1
𝑖

except for round 𝑖 = 1. Then, he guesses the value 𝑐1 and commit to a random
bit for 𝑅𝑐1

1 . Finally, the commit value for 𝑅1−𝑐1
1 is adjusted so that the equation

𝑧 =
∏︀𝑛

𝑖=1(𝐶𝑖(𝑅
0)𝐶𝑖(𝑅

1))2
𝑖−1

mod 𝑝 holds. Clearly, the adversary can answer all
challenges (if his guess for 𝑐1 is correct), since he knows the bits he committed
to. Next, he can get the help of the malicious prover to run the PK protocol
through the slow phase. Due to the zero-knowledge property of the PK protocol,
this leaks no information about 𝑥. This attack works with probability 1

2 (due to
the guess of 𝑐1).

Finally, the paper [9] proposes some man-in-the-middle attacks against variants
of this protocol which are not using public-key cryptography, i.e., where PK is
not used and 𝑥 is shared.

7 MUNILLA AND PEINADO’S PROTOCOL (2006)

Munilla and Peinado introduced in [54, 57] the concept of void challenges as a
tool to improve distance-bounding protocols. These void challenges can also be
used to decrease the mafia fraud success probability when applied to Hancke
and Kuhn’s protocol [55], which is the case analyzed in this section. Thus, for
this protocol (Algorithm 5), the challenges can be 0, 1 or void, where a void
challenge means that no challenge is sent. Void challenges are used to detect a
mafia fraud attack using the pre-ask strategy.

7.1 Impersonation

The adversary must guess the responses to the non-void challenges and the
signature. Hence:

PrImp = (1− 𝑝𝑓
2
)𝑛 · (1

2
)3𝑛
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Algorithm 5: Munilla and Peinado’s Protocol

Verifier Prover

(secret 𝐾) (secret 𝐾)

Pick a random 𝑁𝑉 Pick a random 𝑁𝑃

𝑁𝑉−−−−−−−−−−−−−−−−−−→
𝑁𝑃←−−−−−−−−−−−−−−−−−−

𝐻 =ℎ(𝐾,𝑁𝑉 , 𝑁𝑃 )
𝑍 =𝐻1||𝐻2||𝐻𝑛

𝑅0=𝐻𝑛+1||𝐻𝑛+2|| . . . ||𝐻2𝑛

𝑅1=𝐻2𝑛+1||𝐻2𝑛+2|| . . . ||𝐻3𝑛

𝐻 =ℎ(𝐾,𝑁𝑉 , 𝑁𝑃 )
𝑍 =𝐻1 ||𝐻2 || . . . ||𝐻𝑛

𝑅0=𝐻𝑛+1||𝐻𝑛+2|| . . . ||𝐻2𝑛

𝑅1=𝐻2𝑛+1||𝐻2𝑛+2|| . . . ||𝐻3𝑛⎡⎢⎢⎢⎢⎣
If 𝑍𝑖 = 1: Pick 𝑐𝑖 ∈R {0, 1}

and Start Timer

𝑐𝑖−−−−−−−−−−−−−−−−−−→

If 𝑐𝑖 ̸= 𝑣𝑜𝑖𝑑 and 𝑍𝑖 = 1 then
𝑟𝑖 = 𝑅

𝑐𝑖
𝑖 . Elseif 𝑐𝑖 = 𝑣𝑜𝑖𝑑 and

𝑍𝑖 = 0 then send no response.
Else abort the protocol

Stop Timer
𝑟𝑖←−−−−−−−−−−−−−−−−−−

ℎ(𝐾,𝑅0, 𝑅1)←−−−−−−−−−−−−−−−−−−
Check correctness of 𝑟𝑖 and

Δ𝑡𝑖 ≤ 𝑡max for 1 ≤ 𝑖 ≤ 𝑛 and
verify ℎ(𝐾,𝑅0, 𝑅1)

7.2 Mafia Fraud

Pre-ask strategy. The calculation of the success probability of the pre-ask
strategy is:

PrMF|pre =

⎧⎨⎩
(︁
1− 𝑝𝑓

)︁𝑛
if 𝑝𝑓 < 4/7(︁

𝑝𝑓 · 3
4

)︁𝑛
if 𝑝𝑓 ≥ 4/7

[2]

Note that PrMF|pre calculated in [2] and provided above is an approximation
of the real value. Indeed, once the adversary is detected by the device, she does
not receive any useful information any more. However, she can still guess the
correct answers to be sent to the verifier. Given that being detected by the
device forces the adversary to guess the final signature, this case is nevertheless
negligible (Section 2.1).

Post-ask strategy. The adversary must predict the correct responses to the
non-void challenges. We so have:

PrMF|post =
(︁
1− 𝑝𝑓

2

)︁𝑛
. [2]

Remark 4 (Best strategy). The best strategy is post-ask when 𝑝𝑓 < 4/5,
and pre-ask when 𝑝𝑓 > 4/5.

7.3 Distance Fraud (White Box)

Early-reply strategy with one run. When the challenge is not void, the adversary
can correctly respond to the verifier with probability 1 if 𝑅0

𝑖 = 𝑅1
𝑖 , and with

probability 1/2 if 𝑅0
𝑖 ̸= 𝑅1

𝑖 . Consequently:

PrDF|WB(1)|early =
(︁
1− 𝑝𝑓

4

)︁𝑛
. [2]
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Early-reply strategy with 𝑝 runs. This strategy is efficient against the protocol
if the verifier sends his nonce first. This weakness can be easily fixed though.
The success probability is provided in [2]:

PrDF|WB(p)|early =

(︂
(1− 𝑝𝑓 ) + 𝑝𝑓 ·

(︂
1− 1

2
· E(𝑑𝐻(𝑣0, 𝑣1))

𝑛

)︂)︂𝑛

where E(𝑑𝐻(𝑅0, 𝑅1)) is the expected minimum Hamming distance between 𝑅0

and 𝑅1 for the non-void challenges after the hash function is run 𝑝 times with a
different 𝑁𝑃 . We have: lim[PrDF|WB(p)|early] = 1

𝑝→∞
.

7.4 Distance Fraud (Black Box)

Pre-ask combined with early-reply strategy. With the pre-ask strategy in the
black box model, the adversary carries out an attack similar to mafia fraud
but on its own device: PrDF|BB|pre&early ≈ PrMF|pre. The approximation is due
to a small difference in the two frauds as explained hereafter. As long as the
adversary is not detected by the device, she has the same strategy (and same
probability of success) in both mafia fraud and distance fraud. In particular,
she no longer receives useful information from the device once she is detected.
However, in mafia fraud, she can still determine whether or not a round contains
a void challenge when communicating with the verifier, as she does not have
time to get this information in distance fraud attacks. The difference is however
negligible because she has to guess the final signature in both cases.

Post-ask combined with early-reply strategy. In this strategy, the adversary
definitely obtains the correct final signature. However, she does not know when
a void challenge or a non-void challenge is expected. Therefore, if the probability
of a non-void challenge is lower (resp. higher) than 2/3 then her best strategy is
to keep quiet (resp. try to guess every response, with probability 1/2).

PrDF|BB|post&early =

⎧⎨⎩
(︁
1− 𝑝𝑓

)︁𝑛
if 𝑝𝑓 < 2/3(︁𝑝𝑓

2

)︁𝑛
if 𝑝𝑓 ≥ 2/3

[2]

7.5 Terrorist Fraud (White Box)

This protocol is not designed to resist to terrorist fraud in the white box model.
Indeed, the prover, without revealing his secret 𝐾, is able to provide to his
accomplice the two registers required to successfully complete the protocol. We
so have: PrTF|WB = 1 [2].

7.6 Published Attacks

A technique to reduce the required memory [54] consists in using only one (𝑛+1)-
bit register, where the responses are selected from the two edges. However, [2]
demonstrated that this technique opens the door to an attack where the adversary
queries in advance the two values of the edges.
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8 KIM, AVOINE, KOEUNE, STANDAERT AND PEREIRA’S
PROTOCOL (2008)

Kim, Avoine, Koeune, Standaert and Pereira introduced a protocol in [50]
known as the Swiss-knife distance-bounding protocol2 (Algorithm 6). We only
consider in this analysis the case where 𝑇 = 1, that is when the protocol is not
noise-resilient.

Algorithm 6: Swiss-knife Protocol

Verifier Prover

(secret 𝐾, constant 𝐶) (secret 𝐾, identifier 𝐼𝐷,
constant 𝐶)

Pick 𝑁𝑉 ∈R {0, 1}𝛿 Pick 𝑁𝑃 ∈R {0, 1}𝛿

Pick a random 𝐷 s.t.
ℋ(𝐷) = 𝑛

𝑎 = 𝑓𝐾(𝐶,𝑁𝑃 )

𝑍0 = 𝑎, 𝑍1 = 𝑎⊕𝐾
𝑁𝑉 ,𝐷

−−−−−−−−−−−−−−−−−−→
For 𝑖 = 1 to 𝑛: 𝑅0

𝑖 = 𝑍0
𝑗 and

𝑅1
𝑖 = 𝑍1

𝑗 , where 𝑗 is the index

of the next “1” in the binary
representation of 𝐷.

𝑁𝑃←−−−−−−−−−−−−−−−−−−[︃
Pick 𝑐𝑖 ∈R {0, 1} and Start

Timer

𝑐′𝑖−−−−−−−−−−−−−−−−−−→

Stop Timer
𝑟𝑖←−−−−−−−−−−−−−−−−−− 𝑟𝑖 = 𝑅

𝑐′𝑖
𝑖

𝑇𝐵, 𝑐′1, . . . , 𝑐′𝑛←−−−−−−−−−−−−−−−−−− 𝑇𝐵 =
𝑓𝐾(𝑐′1, . . . , 𝑐

′
𝑛, 𝐼𝐷,𝑁𝑉 , 𝑁𝑃 )

Check 𝐼𝐷 via DB

Compute 𝑅0, 𝑅1

Compute 𝑒𝑟𝑟𝐶 :=♯{𝑖 :𝑐𝑖 ̸=𝑐′𝑖},
𝑒𝑟𝑟𝑅 :=♯{𝑖 :𝑐𝑖=𝑐′𝑖∧𝑟𝑖 ̸=𝑣𝑖

𝑐𝑖},
𝑒𝑟𝑟𝑇 :=♯{𝑖 :𝑐𝑖=𝑐′𝑖∧Δ𝑡𝑖>𝑡max}

If 𝑒𝑟𝑟𝐶 + 𝑒𝑟𝑟𝑅 + 𝑒𝑟𝑟𝑇 ≥ 𝑇 ,
then REJECT

𝑇𝐴 = 𝑓𝐾(𝑁𝐵)
𝑇𝐴−−−−−−−−−−−−−−−−−−→ Compute and check 𝑇𝐴

8.1 Impersonation

The attacker could impersonate the prover by guessing all the answers during
the fast phase and 𝑇𝐵 in the second slow phase. To succeed the adversary would
need to guess 𝜎 + 𝑛 bits. Therefore, it is better for the adversary to guess 𝐾
which size is 𝜎. Consequently, we have: PrImp =

(︀
1
2

)︀𝜎
.

2Like Swiss-army knives used during WWII, the Swiss-knife protocol is a multi-purpose tool.

The authors claim their protocol “resists against both mafia fraud and terrorist attacks,
reaches the best known false acceptance rate, preserves privacy, resists to channel errors, uses

symmetric-key cryptography only, requires no more than 2 cryptographic operations to be

performed by the tag, can take advantage of precomputation on the tag, and offers an optional
mutual authentication” [50].
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8.2 Mafia Fraud

Pre-ask strategy. The success probability of the pre-ask strategy is PrMF|pre =(︀
1
2

)︀𝑛
[50].

Post-ask strategy. The adversary must guess the responses expected in the
fast phase: PrMF|post =

(︀
1
2

)︀𝑛
.

8.3 Distance Fraud (White Box)

Early-reply strategy with one run. As the prover can access to the internal
state of the registers, she knows the content of the two registers. If 𝑣0𝑖 = 𝑣1𝑖 , she
always responds correctly, otherwise she has to guess the correct answer with
probability 1

2 . Hence, PrDF|WB(1)|early =
(︀
3
4

)︀𝑛
.

Early-reply strategy with 𝑝 runs. The Swiss-knife Protocol generates only one
register. Hence, multiple-run of PRF does not increase the adversary success
probability: PrDF|WB(p)|early = PrDF|WB(1)|early.

8.4 Distance Fraud (Black Box)

Pre-ask combined with early-reply strategy. The adversary sends her own
challenges to the prover in advance. To obtain the correct signature in the
second slow phase, the challenges sent by the adversary must be the same as the
challenges sent by the verifier. We consequently have: PrDF|BB|pre&early =

(︀
1
2

)︀𝑛
.

Post-ask combined with early-reply strategy. The adversary has to correctly
guess the response in each round. Hence: PrDF|BB|post&early =

(︀
1
2

)︀𝑛
.

8.5 Terrorist Fraud (White Box)

Early-provide strategy with one run. PrTF|WB(1) =
(︀
3
4

)︀𝑛
[50].

Early-provide strategy with 𝑝 runs. For the same reason given at Section 8.3:
PrTF|WB(p) = PrTF|WB(1).

8.6 Published Attacks

Peris-Lopez et al. proposed a passive full disclosure attack on the Swiss-knife
RFID distance-bounding protocol [60]. However, their assumption is not correct:
they assume that the size of the secret key (𝐾) and random nonces (𝑁𝑉 and
𝑁𝑃 ) are equal to 𝑛 (number of iterations in the fast phase) and 𝑛 is insecurely
short, for example 32 bits or less in the Swiss-knife protocol. Based on this
assumption, they assert that the Swiss-knife protocol is insecure. The authors
of the Swiss-knife RFID distance-bounding protocol never claimed that their
protocol is secure when the size of the long-term key and random nonces are
so short. Under this assumption, all the distance-bounding protocols can be
broken.

9 AVOINE AND TCHAMKERTEN’S PROTOCOL (2009)

The protocol (Algorithm 7) introduced by Avoine and Tchamkerten in [7] is a
generalization of Hancke and Kuhn’s protocol that is more secure in terms of
mafia and distance fraud.
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Algorithm 7: Tree-based Protocol

Verifier Prover

(secret 𝐾) (secret 𝐾)

Pick 𝑁𝑉 ∈R {0, 1}𝛿 Pick 𝑁𝑃 ∈R {0, 1}𝛿

Compute ℎ𝐾(𝑁𝑉 , 𝑁𝑃 ) Compute ℎ𝐾(𝑁𝑉 , 𝑁𝑃 )
𝑁𝑉−−−−−−−−−−−−−−−−−−→

𝑁𝑃 , [ℎ𝐾 (𝑁𝑉 ,𝑁𝑃 )]𝑐1←−−−−−−−−−−−−−−−−−−
Labelization of the ℓ trees Labelization of the ℓ trees[︃

Pick 𝑐𝑖 ∈ {0, 1}
Start Timer

𝑐𝑖−−−−−−−−−−−−−−−−−−→
Stop Timer

𝑟𝑖←−−−−−−−−−−−−−−−−−− 𝑟𝑖

Check correctness of 𝑟𝑖’s and

if Δ𝑖 ≤ 𝑡max for 1 ≤ 𝑖 ≤ 𝑛

9.1 Impersonation

To impersonate a legitimate prover one needs to guess the 𝑐 authentication bits

and the 𝑛 replies of the fast phase. Hence: PrImp =
(︀
1
2

)︀𝑐+𝑛
.

9.2 Mafia Fraud

Pre-ask strategy. PrMF|pre = 2−𝑛(𝑑2 + 1)
𝑛
𝑑 = 2−𝑑·ℓ(𝑑2 + 1)ℓ with 𝑛 = 𝑑ℓ [7].

Post-ask strategy. Without any final slow phase, a post-ask strategy is useless:

PrMF|post =
(︀
1
2

)︀𝑐+𝑛
.

9.3 Distance Fraud (White Box)

Early-reply strategy with one run. The analysis of the distance fraud probability
in the case of the tree-based protocol is very similar to the analysis of the Poulidor
protocol (Section 11) that is provided in [69]. Unfortunately, this analysis only
yields rough upper bounds. To find such an upper bound on the adversary success
probability for distance fraud for the tree-based protocol, Theorem 3 available
in [69] is used. This theorem is related to Poulidor but the only difference
between Poulidor and the tree-based protocol is that the latter creates a full
tree as graph. Therefore, the distance fraud success probability of the tree-based
protocol is upper bounded by:

1

2

(︃
1

2𝑛
+

√︂
1

22𝑛
− 4

2𝑛
+ 4𝑞

)︃
where 𝑞 =

𝑖=𝑛∏︁
𝑖=1

(︃
1

2
+

1

22𝑖+1

𝑘=2𝑛−1∑︁
𝑘=0

(𝐴𝑖[0, 𝑘])2

)︃
.

The authors of [69] define 𝐴𝑖[0, 𝑘] for a tree, considering that the nodes in the
tree are labeled between 0 and 2𝑛 − 1 using a breadth-first algorithm, then:

𝐴𝑖[0, 𝑘] =

{︂
1 if 2𝑖 − 1 ≤ 𝑘 < 2𝑖+1 − 1,
0 otherwise,

and finally: 𝑞 =

𝑖=𝑛∏︁
𝑖=1

(︂
1

2
+

1

2𝑖+1

)︂
.

Early-reply strategy with 𝑝 runs. Similar to the Poulidor case (Section 11),
this strategy makes sense for this protocol but so far neither PrDF|WB(1)|early
nor PrDF|WB(p)|early have been calculated.
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9.4 Distance Fraud (Black Box)

Pre-ask combined with early-reply strategy. PrDF|BB|pre&early = 2−𝑛(𝑑2 +1)
𝑛
𝑑 [7]

Post-ask combined with early-reply strategy. Note that the post-ask strategy
will not allow the adversary to gain any information, i.e., PrDF|BB|post&early =(︀
1
2

)︀𝑐+𝑛
.

9.5 Terrorist Fraud (White Box)

This protocol is not designed to resist to terrorist fraud in the white box model.
An attacker can reveal the tree node labelization to an accomplice who so
successfully passes the fast phase with PrTF|WB = 1.

10 RASMUSSEN AND ČAPKUN’S PROTOCOL (2010)

The protocol (Algorithm 8) was introduced by Rasmussen and Čapkun and
originally appeared in [63]. In this paper we consider the updated version that
appeared in [61].

Algorithm 8: RC Protocol

Verifier Prover

Commit(𝑁𝑃 , 𝐼𝐷𝑃 )
←−−−−−−−−−−−−−−−−−− Pick a random 𝑁𝑃

Pick a random 𝑁𝑉[︂
Start Timer

𝑁𝑉−−−−−−−−−−−−−−−−−−→

Stop Timer
𝐶𝑅𝐶𝑆(𝑁𝑉 ,𝑁𝑃 )

←−−−−−−−−−−−−−−−−−−
From channels extract 𝑁 ′

𝑃 Measure delay 𝑛

From signal extract 𝑁 ′
𝑉

From signal extract delay 𝑛′

Sign(𝑀)←−−−−−−−−−−−−−−−−−− 𝑀 = Commit(𝑁𝑃 , 𝐼𝐷𝑃 )||
𝑛||𝐼𝐷𝑉 ||𝑁𝑃 ||𝑁𝑉

Verify {Δ𝑡, 𝑛 = 𝑛′,

𝑁 ′
𝑉 = 𝑁𝑉 , 𝑁 ′

𝑃 = 𝑁𝑃 ,

Sign(𝑀)}

10.1 Impersonation

We assume here that key size and nonce size are large enough to ensure that
the probability of a key-recovery attack and a replay attack are negligible. The
easiest manner to impersonate a prover is by forging the final signature. The
success probability of this attack is: PrImp =

(︀
1
2

)︀𝜎
.

10.2 Mafia Fraud

Pre-ask strategy. In order to implement a mafia fraud attack using a pre-ask
strategy an attacker has to guess the nonce 𝑁𝑉 of the verifier. Otherwise the

final signature will not be valid. So, PrMF|pre =
(︀
1
2

)︀𝛿𝑉
.
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Post-ask strategy. An attacker wishing to execute a mafia fraud attack must
guess all the bits of the prover’s nonce in order to be able to reply correctly.

Thus, PrMF|post =
(︀
1
2

)︀𝛿𝑃
.

10.3 Distance Fraud (White Box)

Early-reply strategy with one run. A malicious prover wishing to execute a
distance fraud attack must guess all the bits of the verifier’s nonce to reply

correctly. Hence: PrDF|WB(1)|early =
(︀
1
2

)︀𝛿𝑉
[61].

Early-reply strategy with 𝑝 runs. The concept of round does not exist in this
protocol, therefore: PrDF|WB(p)|early = PrDF|WB(1)|early.

10.4 Distance Fraud (Black Box)

The security of this protocol does not depend on a well behaved prover. Con-
sequently black-box success probabilities are the same as in the white-box
model.

10.5 Terrorist Fraud (White Box)

This protocol is not designed to resist to terrorist fraud in the white box
model. Indeed, the prover without revealing his secret 𝐾, is able to provide his
accomplice with 𝑁𝑃 , which is sufficient to successfully execute the fast phase.
Hence, PrTF|WB = 1.

11 TRUJILLO-RASUA, MARTIN AND AVOINE’S PROTOCOL (2010)

Poulidor, the graph-based distance-bounding protocol (Algorithm 9) designed by
Trujillo-Rasua, Martin, and Avoine [69], uses specific node and edge dependencies
in the tree of the AT protocol [7] – which then can alternatively be represented by
an acyclic graph. Poulidor benefits from a lower memory requirement compared
to the AT protocol. Security is also reduced.

11.1 Impersonation

The common manner to impersonate a prover is by guessing all the answers
during the fast phase. Hence, we have: PrImp =

(︀
1
2

)︀𝑛
.

11.2 Mafia Fraud

Pre-ask strategy. Let:

𝑔(𝑖, 𝑗, 𝑘) =
1

2
+

1

2𝑗+𝑖−2𝑘+2
×

𝑡=2𝑛−1∑︁
𝑡=0

(︀
𝐴𝑗−𝑡[1, 𝑡]𝐴𝑖−𝑡[2, 𝑡] +𝐴𝑗−𝑘[2, 𝑡]𝐴𝑖−𝑘[1, 𝑡]

)︀
where 𝐴 is the adjacency matrix of the graph which represents the graph-based
protocol [69]. Also, let:

𝑓(𝑖, 𝑗, 𝑘) =

⎧⎪⎨⎪⎩
1 if 𝑗 < 𝑘 and 𝑖 = 𝑗,
1
2 if 𝑗 < 𝑘 and 𝑖 ̸= 𝑗,
1
2 if 𝑗 ≥ 𝑘 and 𝑖 < 𝑘,
𝑔(𝑖, 𝑗, 𝑘) if 𝑗 ≥ 𝑘 and 𝑖 ≥ 𝑘.
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Algorithm 9: Poulidor Protocol

Verifier Prover

(secret 𝐾) (secret 𝐾)

Pick a random 𝑁𝑉 ∈R {0, 1}𝛿 Pick a random 𝑁𝑃 ∈R {0, 1}𝛿
𝑁𝑉−−−−−−−−−−−−−−−−−−→
𝑁𝑃←−−−−−−−−−−−−−−−−−−

𝐻1 . . . 𝐻4𝑛 = ℎ(𝐾,𝑁𝑃 , 𝑁𝑉 )
Fill the graph:
for 𝑖 = 0 to 2𝑛− 1:{︃

ℓ𝑖 = 𝐻𝑖+2𝑛+1 ⊕ 1
𝑠𝑖 = 𝐻𝑖+2𝑛+1
𝑞𝑖 = 𝐻𝑖+1

𝐻1 . . . 𝐻4𝑛 = ℎ(𝐾,𝑁𝑃 , 𝑁𝑉 )
Fill the graph:
for 𝑖 = 0 to 2𝑛− 1:{︃

ℓ𝑖 = 𝐻𝑖+2𝑛+1 ⊕ 1
𝑠𝑖 = 𝐻𝑖+2𝑛+1
𝑞𝑖 = 𝐻𝑖+1⎡⎢⎢⎢⎢⎢⎣

Pick 𝑐𝑖 ∈R {0, 1}
Start Timer

𝑐𝑖−−−−−−−−−−−−−−−−−−→
Move from 𝑞𝑝𝑖 to 𝑞𝑝𝑖+1

Stop Timer
𝑟𝑖←−−−−−−−−−−−−−−−−−− 𝑟𝑖 = 𝑞𝑝𝑖+1

Move from 𝑞𝑣𝑖 to 𝑞𝑣𝑖+1

if 𝑟𝑖 ̸= 𝑞𝑣𝑖+1
then abort the

protocol

Check that Δ𝑡𝑖≤ 𝑡max

(1 ≤ 𝑖 ≤ 𝑛)

We then have: PrMF|pre =

𝑘=𝑛∑︁
𝑘=1

1

2𝑘

⎛⎝𝑗=𝑛∏︁
𝑗=𝑘

max(𝑓(1, 𝑗, 𝑘), · · · , 𝑓(𝑛, 𝑗, 𝑘))

⎞⎠+
1

2𝑛
. [69]

Post-ask strategy. This protocol does not contain any second slow phase and
the first slow phase consists of nonce exchanges only. As per Section 2 we have:
PrMF|post = PrImp.

11.3 Distance Fraud (White Box)

Early-reply strategy with one run. PrDF|WB(1)|early is upper bounded by [69]:

1

2

(︃
1

2𝑛
+

√︂
1

22𝑛
− 4

2𝑛
+ 4𝑞

)︃
where 𝑞 =

𝑖=𝑛∏︁
𝑖=1

(︃
1

2
+

1

22𝑖+1

𝑘=2𝑛−1∑︁
𝑘=0

(𝐴𝑖[0, 𝑘])2

)︃
Computing in a similar way than in [69], we find the following relation for
𝐴𝑖[0, 𝑘]:

𝐴𝑖[0, 𝑘] =

{︂ (︀
𝑖

𝑘−𝑖
)︀

if 𝑖 ≤ 𝑘 ≤ 2𝑖,
0 otherwise,

and finally: 𝑞 =

𝑖=𝑛∏︁
𝑖=1

(︃
1

2
+

(︀
2𝑖
𝑖

)︀
22𝑖+1

)︃
.

Remark that finding an exact value for PrDF|WB(1)|early is an NP-hard prob-
lem [68].

Early-reply strategy with 𝑝 runs. This strategy makes sense for this protocol,
but so far, neither has been computed PrDF|WB(1)|early nor can be computed
PrDF|WB(p)|early.
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11.4 Distance Fraud (Black Box)

Pre-ask combined with early-reply strategy. With the pre-ask strategy, the
adversary may learn the values of a walk in the graph. Note that, this is
exactly the same knowledge obtained for an adversary attempting to perform
a mafia fraud attack by using the pre-ask strategy. However, contrary to the
mafia fraud attack, the adversary does not receive any challenge from the
verifier when she is performing a distance fraud attack. We consequently have
PrDF|BB|pre&early ≤ PrMF|pre. The equality of this equation holds when the
adversary actually receives every challenge before sending its corresponding
response, i.e., when the adversary is in the close vicinity of the verifier.

Post-ask combined with early-reply strategy. PrDF|BB|post&early = PrImp.

11.5 Terrorist Fraud (White Box)

This protocol is not designed to resist to terrorist fraud in the white box
model. Indeed, the prover is able, without revealing his secret 𝐾, to provide his
accomplice with the graph required to successfully pass thorough the protocol.
Hence: PrTF|WB = 1.

12 KIM AND AVOINE’S PROTOCOL (KA2) (2011)

Kim and Avoine introduced in 2009 a distance-bounding protocol with mixed
challenges [48], namely challenges known and challenges unknown in advance by
the prover. Challenges known in advance allow the prover to help the verifier
to detect an attack, but these challenges also allow the prover to succeed in
performing a distance fraud. Kim and Avoine improved their protocol in 2011,
yielding a new variant known as KA2 [49], which is analyzed in this section
(Algorithm 10).

12.1 Impersonation

Guessing the 𝑛 answers 𝑟𝑖 is enough to impersonate the prover: PrImp =
(︀
1
2

)︀𝑛
.

12.2 Mafia Fraud

Pre-ask strategy. PrMF|pre =
(︀
3
4

)︀𝑛−𝛼 (︀ 1
2

)︀𝛼
+ 𝛼

(︀
1
2

)︀𝑛+1
[49].

Post-ask strategy. This protocol does not contain any second slow phase and
the first slow phase consists of nonce exchanges only. As per Section 2 we have:
PrMF|post = PrImp.

12.3 Distance Fraud (White Box)

Early-reply strategy with one run. PrDF|WB(1)|early =
(︀
3
4

)︀𝑛−𝛼
[49].

Early-reply strategy with 𝑝 runs. The success probability in case of early-reply
strategy with 𝑝 runs of the pseudo-random function is provided in [2]:

1

2𝑝(𝑛−𝛼)
·

⎛⎝𝑖=𝑛−𝛼−1∑︁
𝑖=0

(︂
1

2

)︂𝑖

·

⎡⎣⎛⎝𝑗=𝑛−𝛼∑︁
𝑗=𝑖

(︂
𝑛− 𝛼

𝑗

)︂⎞⎠𝑝

−

⎛⎝𝑗=𝑛−𝛼∑︁
𝑗=𝑖+1

(︂
𝑛− 𝛼

𝑗

)︂⎞⎠𝑝⎤⎦+(︂1

2

)︂𝑛
⎞⎠ .
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Algorithm 10: KA2 Protocol

Verifier Prover

(secret 𝐾) (secret 𝐾)

Pick 𝑁𝑉 ∈R {0, 1}𝛿 Pick 𝑁𝑃 ∈R {0, 1}𝛿
𝑁𝑉−−−−−−−−−−−−−−−−−−→
𝑁𝑃←−−−−−−−−−−−−−−−−−−

𝐻 = ℎ(𝐾,𝑁𝑉 , 𝑁𝑃 )
𝑅0 = 𝐻1||𝐻2|| . . . ||𝐻𝑛

𝑅1 = 𝐻𝑛+1||𝐻𝑛+2|| . . . ||𝐻2𝑛−𝛼
𝐷 = 𝐻2𝑛−𝛼+1||𝐻2𝑛−𝛼+2|| . . . ||𝐻2𝑛

𝐻 = ℎ(𝐾,𝑁𝑉 , 𝑁𝑃 )
𝑅0 = 𝐻1||𝐻2|| . . . ||𝐻𝑛

𝑅1 = 𝐻𝑛+1||𝐻𝑛+2|| . . . ||𝐻2𝑛−𝛼
𝐷=𝐻2𝑛−𝛼+1||𝐻2𝑛−𝛼+2||. . .||𝐻2𝑛⎡⎢⎢⎢⎢⎢⎢⎣

For 𝑖 = 1 to 𝛼, Assign 𝑐𝑖 = 𝐷𝑖

Start Timer
𝑐𝑖−−−−−−−−−−−−−−−−−−→

Stop Timer
𝑟𝑖←−−−−−−−−−−−−−−−−−− 𝑟𝑖 ={︂

𝑅0
𝑖 , if 𝑐𝑖 = 𝐷𝑖

Rnd if 𝑐𝑖 ̸=𝐷𝑖(err. detected)

After error detection, only
send random answers until the
end of the protocol.⎡⎣ For 𝑖 = 𝛼 + 1 to 𝑛, Pick

𝑐𝑖 ∈ {0, 1}
Start Timer

𝑐𝑖−−−−−−−−−−−−−−−−−−→
Stop Timer

𝑟𝑖←−−−−−−−−−−−−−−−−−− 𝑟𝑖 = 𝑅
𝑐𝑖
𝑖

Check correctness of 𝑟𝑖’s

and Δ𝑡𝑖 ≤ 𝑡max for 1 ≤ 𝑖 ≤ 𝑛

12.4 Distance Fraud (Black Box)

Pre-ask combined with early-reply strategy. As with mafia fraud with pre-ask
strategy, the success probability is PrDF|BB|pre&early = PrMF|pre.

Post-ask combined with early-reply strategy. This protocol does not contain
any second slow phase and the first slow phase consists of nonce exchanges only.
As per Section 2 we have: PrDF|BB|post&early = PrImp.

12.5 Terrorist Fraud (White Box)

This protocol is not designed to resist to terrorist fraud in the white box model.
The prover can give the registers to his accomplice to successfully pass the
protocol: PrTF|WB = 1.

13 YUM, KIM, HONG AND LEE’S PROTOCOL (2010)

Yum, Kim, Hon and Lee created a distance-bounding protocol with mutual
authentication [76].

13.1 Impersonation

The only known way to succeed at the impersonation consists of guessing all
the answers during the fast phase, which leads to the probability PrImp =

(︀
1
2

)︀𝑛
.
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Algorithm 11: YKHL Protocol

User A User B

(secret 𝐾) (secret 𝐾)

Pick 𝑁𝐴 ∈R {0, 1}𝛿 Pick 𝑁𝐵 ∈R {0, 1}𝛿
𝑁𝐴−−−−−−−−−−−−−−−−−−→
𝑁𝐵←−−−−−−−−−−−−−−−−−−

𝐻 = ℎ(𝐾,𝑁𝐴, 𝑁𝐵)
𝐷 = 𝐻1 ||𝐻2 || . . . ||𝐻𝑛

𝑅0 = 𝐻𝑛+1||𝐻𝑛+2|| . . . ||𝐻2𝑛

𝑅1 = 𝐻2𝑛+1||𝐻2𝑛+2|| . . . ||𝐻3𝑛

𝐻 = ℎ(𝐾,𝑁𝐴, 𝑁𝐵)
𝐷 = 𝐻1 ||𝐻2 || . . . ||𝐻𝑛

𝑅0 = 𝐻𝑛+1||𝐻𝑛+2|| . . . ||𝐻2𝑛

𝑅1 = 𝐻2𝑛+1||𝐻2𝑛+2|| . . . ||𝐻3𝑛⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Case I: 𝐷𝑖 = 0Pick 𝑐𝑖 ∈ {0, 1}
Start Timer

𝑐𝑖−−−−−−−−−−−−−−−−−−→

Stop Timer
𝑟𝑖←−−−−−−−−−−−−−−−−−− 𝑟𝑖 =

{︂
𝑅0

𝑖 , if 𝑐𝑖 = 0
𝑅1

𝑖 , if 𝑐𝑖 = 1

If 𝑟𝑖 ̸= 𝑅
𝑐𝑖
𝑖 or a collision is

detected,
If a collision is detected 𝐵
enters into the protection
mode.

If 𝑟𝑖 ̸= 𝑅
𝑐𝑖
𝑖 or a collision is

detected,

Case II: 𝐷𝑖 = 1 Pick 𝑐𝑖 ∈ {0, 1}
𝑐𝑖←−−−−−−−−−−−−−−−−−− Start Timer

𝑟𝑖 =

{︂
𝑅0

𝑖 , if 𝑐𝑖 = 0
𝑅1

𝑖 , if 𝑐𝑖 = 1

𝑟𝑖−−−−−−−−−−−−−−−−−−→ Stop Timer

If a collision is detected, 𝐴
enters into the protection

mode.

If 𝑟𝑖 ̸= 𝑅
𝑐𝑖
𝑖 or a collision is

detected, 𝐵 enters into the
protection mode.

Check correctness of 𝑟𝑖’s and Check correctness of 𝑟𝑖’s and

Δ𝑡𝑖 ≤ 𝑡max for Case I Δ𝑡𝑖 ≤ 𝑡max for Case II

13.2 Mafia Fraud

Pre-ask strategy. Avoine and Kim proposed a new attack that yields a higher
adversary success probability [4]. Their attack depends on the probability of
finding 𝐷𝑖’s, Pr𝐷, which varies according to the system parameters. Following
this attack, the success probability of a mafia fraud attack is at least:

PrMF|pre =

{︂
( 58 )

𝑛 +
∑︀𝑛

𝑖=1
1
4 · ( 58 )

𝑖−1 · ( 34 )
𝑛−𝑖, if Pr𝐷 = 1

( 12 )
𝑛 +

∑︀𝑛
𝑖=1

3
8 · ( 12 )

𝑖−1 · ( 58 )
𝑛−𝑖, if Pr𝐷 = 3

4

. [4]

Post-ask strategy. This protocol does not contain any second slow phase and
the first slow phase consists of nonce exchanges only. As per Section 2 we have:
PrMF|post = PrImp.

13.3 Distance Fraud (White Box)

Early-reply strategy with one run. PrDF|WB(1)|early =
(︀
7
8

)︀𝑛
[76].

Early-reply strategy with 𝑝 runs. An attacker who impersonates 𝐵 wins when
𝐷𝑖 = 1 or 𝑅0

𝑖 = 𝑅1
𝑖 . Indeed, when 𝐷𝑖 = 1, the prover sends a challenge to

the verifier (𝐴) and so trivially wins the round. When 𝐷𝑖 = 0, the roles are
inverted. To win a round, the prover must send his response in advance. When
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𝑅0
𝑖 = 𝑅1

𝑖 , the potential answers are the same and the prover definitely wins.
Running the cryptographic function 𝑝 times allows the prover to find 𝐷 with
a higher Hamming weight than the average one, and 𝑅0 and 𝑅1 with a lower
Hamming distance. In conclusion, the probability of success is higher with
the YKHL Protocol than with the HK protocol, where the prover wins only
when 𝑅0

𝑖 = 𝑅1
𝑖 . The probability of success can be calculated by considering

Pr(𝑋 = 𝑥) =
(︀
𝑛
𝑥

)︀
( 14 )

𝑥( 34 )
𝑛−𝑥/23𝑛 instead of Pr(𝑋 = 𝑥) =

(︀
𝑛
𝑥

)︀
/2𝑛 in [2].

13.4 Distance Fraud (Black Box)

Pre-ask combined with early-reply strategy. A distance fraud attack with the
pre-ask strategy is similar to a mafia fraud in this case. Hence: PrDF|BB|pre&early =
PrMF|pre.

Post-ask combined with early-reply strategy. This protocol does not contain
any second slow phase and the first slow phase consists of nonce exchanges only.
As per Section 2 we have: PrDF|BB|post&early = PrImp.

13.5 Terrorist Fraud (White Box)

This protocol is not designed to resist to terrorist fraud in the white box model.
Indeed, the prover can give the registers to his accomplice to successfully pass
the protocol: PrTF|WB = 1.

13.6 Published Attacks

Avoine and Kim demonstrated in [4] that the security of YKHL protocol is far
below what is claimed in [76] and could be worse than the HK protocol w.r.t.
mafia fraud resistance.

14 SKI PROTOCOLS (2013)

In [14–16], the authors introduced a series of protocols called SKI. These protocols
are presented in Algorithm 12.

14.1 Impersonation

The only known way to do this attack is to guess all the answers during the fast

phase. So: PrImp =
(︁

1
q

)︁𝑛
.

14.2 Mafia Fraud

Pre-ask strategy. With this strategy, the adversary can obtain one set of
answers from the prover before executing the fast phase with the verifier. Without
loss of generality, we assume that he obtains {𝐹 (1, 𝑎1,𝐾

′
1), . . . , 𝐹 (1, 𝑎𝑛,𝐾

′
𝑛)},

i.e., the answers corresponding to the challenges 𝑐𝑖’s equal to 1. Hence, at each
rounds two cases occur: (a) the verifier’s challenge is 1 and she knows the answer,
this happens with probability 1/𝑡, or (b) the verifier’s challenge is not 1, thus she
has to guess the answer, and succeeds with probability 1/q. Thus, the rounds
independence yields to:

PrMF|pre =

(︂
1

𝑡
· 1 + (1− 1

𝑡
) · 1

q

)︂𝑛

=

(︂
q+ 𝑡− 1

q𝑡

)︂𝑛

. For SKIpro, this is

(︂
2

3

)︂𝑛

.
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Algorithm 12: The SKI Protocols

Verifier Prover

(secret 𝐾) (secret 𝐾)

𝑁𝑃←−−−−−−−−−−−−−−−−−− Pick 𝑁𝑃 ∈R {0, 1}𝛿

Pick 𝑎 ∈R F𝑡′𝑛
q , 𝐿 ∈ ℒ, and
𝑁𝑉 ∈R {0, 1}𝛿

𝑀, 𝐿, 𝑁𝑉−−−−−−−−−−−−−−−−−−→

𝑀 = 𝑎 + 𝑓𝐾(𝑁𝑃 , 𝑁𝑉 , 𝐿) 𝑎 = 𝑀 − 𝑓𝐾(𝑁𝑃 , 𝑁𝑉 , 𝐿),
𝐾′ = 𝐿(𝐾)⎡⎢⎢⎣

Pick 𝑐𝑖 ∈R {1, . . . , 𝑡}
Start Timer

𝑐𝑖−−−−−−−−−−−−−−−−−−→{︂
𝑟𝑖=𝐹 (𝑐𝑖, 𝑎𝑖, 𝐾

′
𝑖) if 𝑐𝑖∈{1,. . ., 𝑡}

Halt otherwise

Stop timer
𝑟𝑖←−−−−−−−−−−−−−−−−−−

Check the correctness of 𝑟𝑖s
and Δ𝑡𝑖 ≤ 𝑡max for at least
𝑛− 𝑥 rounds 𝑖 ∈ {1, . . . , 𝑡}

𝑂𝑢𝑡𝑉−−−−−−−−−−−−−−−−−−→

Post-ask strategy. This protocol does not contain any second slow phase and
the first slow phase consists of nonce exchanges only. As per Section 2 we have:
PrMF|post = PrImp.

14.3 Distance Fraud (White Box)

Early-reply strategy with one run. Using this strategy, the adversary has to send
her answers in advance. Due to the similarity between Hancke and Kuhn’s proto-
col and SKI’s protocol, the adversary applies a similar strategy to maximize her
success probability. At each rounds she answers the most probable value among
the possible registers. The most probable answer for a given round is the one
that appears the most within the set {𝐹 (1, 𝑎𝑖,𝐾

′
𝑖), 𝐹 (2, 𝑎𝑖,𝐾

′
𝑖), . . . , 𝐹 (𝑡, 𝑎𝑖,𝐾

′
𝑖)}

of possible answers for this round. In order to compute the adversary success
probability, let define the following events:

∙ 𝒲: the adversary provides the correct answer to the verifier at a given
round.

∙ ℬ𝑗 : 𝑗 = max
1≤𝑙≤q

{𝑋𝑙},

where 𝑋𝑙 is the number of appearance times of the 𝑙-th element from Fq

among the set {𝐹 (1, 𝑎𝑖,𝐾
′
𝑖), 𝐹 (2, 𝑎𝑖,𝐾

′
𝑖), . . . , 𝐹 (𝑡, 𝑎𝑖,𝐾

′
𝑖)}. We then trivially

have: Pr(𝒲) =
∑︀𝑗=𝑡

𝑗=1 Pr(𝒲|ℬ𝑗) Pr(ℬ𝑗), with Pr(𝒲|ℬ𝑖) = 𝑖
𝑡 . Thus, using the

above equation, we deduce: Pr(𝒲) = E
(︂
max
1≤𝑙≤q

{𝑋𝑙}
)︂
· 1
𝑡 . The tricky task con-

sists in computing E( max
1≤𝑙≤q

{𝑋𝑙}). This is done below for the SKI protocol

configurations suggested in [14].

∙ q = 2, and 𝑡 = 2: E( max
1≤𝑙≤q

{𝑋𝑙}) = 3
2 , and Pr(𝒲) = 3

4 .

∙ q = 2, and 𝑡 = 3: E( max
1≤𝑙≤q

{𝑋𝑙}) = 9
4 and Pr(𝒲) = 3

4 .
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∙ q = 2, and 𝑡 = 4: E( max
1≤𝑙≤q

{𝑋𝑙}) = 3 and Pr(𝒲) = 3
4 .

∙ q = 4, and 𝑡 = 3: E( max
1≤𝑙≤q

{𝑋𝑙}) = 15
8 and Pr(𝒲) = 5

8 .

Finally, the independence of the rounds provides PrDF|WB(1)|early = (Pr(𝒲))
𝑛
.

For SKIpro, this is
(︀
3
4

)︀𝑛
.

Early-reply strategy with 𝑝 runs. This strategy does not make sense against
these protocols. Indeed, since the prover does not have the verifier’s nonce before
he sends its, he cannot compute several outputs of the the pseudo-random
function.

14.4 Distance Fraud (Black Box)

Pre-ask combined with early-reply strategy. Distance fraud with the pre-ask
strategy is here similar to mafia fraud. Hence: PrDF|BB|pre&early = PrMF|pre.

Post-ask combined with early-reply strategy. This protocol does not contain
any second slow phase and the first slow phase consists of nonce exchanges only.
As per Section 2 we have: PrDF|BB|post&early = PrImp.

14.5 Terrorist Fraud (White Box)

Early-provide strategy with one run. Using this strategy, the adversary obtains
register(s) before the start of the fast phase. First, note that the setting in which
𝑡′ = 𝑡 = q = 2 (i.e., SKIlite) does not resist against terrorist fraud. Second, to
compute the success probability in the other cases, let denote 𝑘, the number of
registers given by the prover to the adversary. As stated in [5], the insurance
that no information could leak, is furnished by the following equality: 𝑘 = 𝑡− 2.
Once the adversary gets the 𝑡 − 2 registers, she starts the fast phase with

the verifier. Two cases occur, (a) the verifier asks an answer coming from one
of the 𝑡− 2 known registers. Thus, the adversary definitely knows the correct
answer. Or (b) the verifier asks her an answer coming from one the two unknown
registers, and she has to guess the correct answer. The adversary consequently
succeeds with probability 1

q . Given the rounds are independent, we finally have:

PrTF|WB(1)=

(︂
𝑡− 2

𝑡
· 1 + 2

𝑡
· 1
q

)︂𝑛

=

(︂
q𝑡+ 2(1− q)

q𝑡

)︂𝑛

. For SKIpro, this is

(︂
2

3

)︂𝑛

.

Early-provide strategy with 𝑝 runs. This strategy does not make sense against
these protocols. Indeed, since the prover does not have the verifier’s nonce
before he sends its answers, he cannot compute several outputs of the the
pseudo-random function.

15 PROTOCOL COMPARISON

This section provides a summary of the analyses done in Sections 3 to 14. It
then provides two approaches to compare the protocols: the first one consists
of charts, while the second one is based on the concept of clusters. The charts
depict the variation of a single parameter regarding another one, e.g., the mafia
fraud success probability as a function of the number of rounds. The second
approach introduces clusters of protocols sharing common security resistances
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and properties. It is worth remarking that a similar comparison approach based
on decision theory has been recently published in [6]. The findings of that
work do not contradict ours; indeed every protocol found relevant there is also
considered relevant here.

15.1 Summary of Properties and Performance

Table 5 presents the properties and performance of every protocol analyzed
through Sections 3 to 14. The description of the properties is provided in
Section 2. Table 6 and 7 summarize which cryptographic building blocks are
used and which properties are expected by each considered protocol. Greyed
cells in Table 7 contain results already known, while other cells contain values
provided by this survey.

On Table 7, we can see that only two protocols do not have any attack with
probability 1: Swiss-knife and SKI. In fact, there exists two other protocols
which are not in this table: TDB [5] (on which SKI is based) and the protocol
by [34] (which is based on Swiss-knife).

15.2 Chart-based Comparison

Figure 2 depicts the mafia fraud success probability as a function of the number
of rounds. The relative positions between the curves remain unchanged when the
number of rounds increases, except for the tree-based protocol (with 𝑙 =

√
𝑛),

which suffers from a step effect due to its structure. Several behaviors are
observed in the figure: BC, for example, has a success probability of (1/2)𝑛,
which is the optimal case, while HK, by contrast, has a (3/4)𝑛 success probability.
The extreme case would be probability equals to 1 but no protocol falls into
this category. Other intermediate behaviors are also present: protocols whose
associated probability is not (1/2)𝑛 but tends to (1/2)𝑛 when 𝑛 is large enough
(e.g., AT(

√
𝑛)), protocols whose associated probability is between (1/2)𝑛 and

(3/4)𝑛, and finally those whose associated probability is between (3/4)𝑛 and 1.
These categories are summarized in Table 8.

Figure 3 represents the distance fraud success probability as a function of
the number of rounds. As previously, several behaviors can be distinguished;
reported in Table 8. The worst protocols in terms of distance fraud share a
common mechanism where the prover helps the verifier to detect mafia fraud.
As a consequence, the prover knows (at least partially) the expected challenges,
which unfortunately helps him in mounting a successful distance fraud attack.
The best protocols in terms of distance fraud have a final slow phase. The best
ones without final slow phase have dependent rounds (see Section 18.4), namely
the tree-based protocol (with 𝑙 = 1 and with 𝑙 =

√
𝑛). Note that the tree-based

protocol and Poulidor do not have close formulas to express the associated
distance fraud success probability.

Figure 4 presents the memory needed to store intermediate values during the
execution of the protocol, including the registers. The memory consumption is
expressed as a function of the number of rounds. The curves can be classified
into three categories: linear curves, affine curves which are not linear due to
a fixed overhead, and non-affine curves. In the latter case, which includes the
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tree-based protocol (with 𝑙 = 1 and with 𝑙 =
√
𝑛), the memory consumption

is prohibitive. The overhead appears in the protocols that end with a final
slow phase (Swiss-knife, MAD, and RC). In such a phase, the value of the
challenges, or commitments used in the first slow phase, are usually stored all
along the protocol execution because they are required for the final cryptographic
operations. A final slow phase is consequently a handicap for implementations.
Figure 5 represents the mafia fraud success probability as a function of the

distance fraud success probability, with the number of rounds 𝑛 equal to 36.
The figure clearly shows that the protocols are more resistant to mafia fraud
than to distance fraud. Several reasons could probably explain this phenomenon.
In particular, the original objective of distance-bounding was – early in the
nineties – to protect authentication protocols against relay attacks. Distance
fraud was then a side effect of distance-bounding. It has been only recently,
when the need to protect geolocalisation applications against distance fraud
arose, especially when the prover is a mobile device, that distance fraud has
started to be considered seriously.

Table 5. Properties and performance
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BC No No Yes Yes 2ℓ+ 𝑛 2𝑛 2𝑛
MAD No Yes Yes No 2(ℓ+ 𝛿 + 𝜎) 2𝑛 2𝑛
HK No No No Yes 2𝛿 2𝑛 2𝑛
MP No Yes Yes Yes 2𝛿 + 3𝑛 2(𝑛− 𝑛𝑣𝑜𝑖𝑑) 3𝑛

Swiss-knife No Option Yes Yes 2(𝛿 + 𝜎) + 𝑛 2𝑛 3𝑛+ 2𝛿
(+𝜎 if mutual)

Tree-based No No No No iff 𝑑 ≥ 2 2𝛿 + 𝑐 2𝑛 ℓ(2𝑑+1 − 2)
RC No No Yes No rounds 𝜎 2𝛿𝑉 𝛿𝑉 + 𝛿𝑃

Poulidor No (*) No No No 2𝛿 2𝑛 4𝑛
KA2 Yes Yes No Yes 2𝛿 2𝑛 2𝑛
YKHL No Yes No Yes 2𝛿 2𝑛 3𝑛
SKIpro No No No Yes 2𝛿 + 2𝑛 3𝑛 2𝑛

(*) See Section 11 for a refined analysis about the adaptiveness.

15.3 Cluster-based Comparison

Comparing distance-bounding protocols is quite a tricky task given the large
number of parameters that can be considered. A given protocol 𝑃1 can be better
in terms of resistance against mafia fraud than another protocol 𝑃2, but at the
same time worse in terms of resistance against distance fraud. Thus, ranking
𝑃1 and 𝑃2 is very complicated. This section introduces a hierarchical clustering
of the distance-bounding protocols. The key-point of the method relies on the
observation that a protocol 𝑃1 is undeniably better than a protocol 𝑃2 if and
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Table 6. Cryptographic building blocks

Protocol PRNG Sym. Primitive Commitment Signature
BC Yes Yes Yes

MAD Yes Yes
HK Yes Yes
MP Yes Yes

Swiss-knife Yes Yes
Tree-based Yes Yes

RC Yes Yes Yes
Poulidor Yes Yes
KA2 Yes Yes
YKHL Yes Yes
SKI Yes Yes

Table 7. Adversary success probabilities

Protocol Imp Mafia Distance Terrorist

pre-ask post-ask early-reply pre & early post & early early-provide

BB BB WB(1) WB(p) BB BB WB(1)WB(p)

BC
(︀
1
2

)︀𝑛 (︀
1
2

)︀𝑛 (︀
1
2

)︀𝑛 (︀
1
2

)︀𝑛 (︀
1
2

)︀𝑛 (︀
1
2

)︀𝑛 (︀
1
2

)︀𝑛
1 1

MAD
(︀
1
2

)︀𝜎 (︀
1
2

)︀𝑛 (︀
1
2

)︀𝑛 (︀
1
2

)︀𝑛 (︀
1
2

)︀𝑛 (︀
1
2

)︀𝑛 (︀
1
2

)︀𝑛
1 1

HK
(︀
1
2

)︀𝑛 (︀
3
4

)︀𝑛 (︀
1
2

)︀𝑛 (︀
3
4

)︀𝑛
Sect. 5.3

(︀
1
2

)︀𝑛 (︀
3
4

)︀𝑛
1 1

MP (1− 𝑝𝑓
2
)𝑛

×( 1
2
)3𝑛

(︁
1− 𝑝𝑓

)︁𝑛
if 𝑝𝑓 < 4

7(︁
𝑝𝑓 ·

3

4

)︁𝑛

if 𝑝𝑓 ≥ 4
7

(︁
1− 𝑝𝑓

2

)︁𝑛 (︁
1− 𝑝𝑓

4

)︁𝑛
(︀(︀
1− 𝑝𝑓

)︀
+

𝑝𝑓 ·
(︁
1− E(𝑑𝐻 (𝑣0,𝑣1))

2𝑛

)︁)︁𝑛

(︁
1− 𝑝𝑓

)︁𝑛
if 𝑝𝑓 < 2

3(︁𝑝𝑓

2

)︁𝑛
if 𝑝𝑓 ≥ 2

3

(︁
1− 𝑝𝑓

)︁𝑛
if 𝑝𝑓 < 4

7(︁
𝑝𝑓 ·

3

4

)︁𝑛

if 𝑝𝑓 ≥ 4
7

1 1

Swiss-knife
(︀
1
2

)︀𝜎 (︀
1
2

)︀𝑛 (︀
1
2

)︀𝑛 (︀
3
4

)︀𝑛 (︀
3
4

)︀𝑛 (︀
1
2

)︀𝑛 (︀
1
2

)︀𝑛 (︀
3
4

)︀𝑛 (︀
3
4

)︀𝑛
Tree-based

(︀
1
2

)︀𝑐+𝑛
2−𝑑ℓ(𝑑/2 + 1)ℓ

(︀
1
2

)︀𝑛
Sect. 9.3 Open Prob

(︀
1
2

)︀𝑐+𝑛
2−𝑛(𝑑/2 + 1)𝑛/𝑑 1 1

RC
(︀
1
2

)︀𝜎 (︀
1
2

)︀𝛿𝑉 (︀
1
2

)︀𝛿𝑃 (︀
1
2

)︀𝛿𝑉 (︀
1
2

)︀𝛿𝑉 (︀
1
2

)︀𝛿𝑉 (︀
1
2

)︀𝛿𝑉 1 1

Poulidor
(︀
1
2

)︀𝑛
Sect. 11.2

(︀
1
2

)︀𝑛
Sect. 11.3 Open Prob

(︀
1
2

)︀𝑛 ≤ PrMF|pre 1 1

KA2
(︀
1
2

)︀𝑛 (︀
3
4

)︀𝑛−𝛼 (︀
1
2

)︀𝛼
+

𝛼
(︀
1
2

)︀𝑛+1

(︀
1
2

)︀𝑛 (︀
3
4

)︀𝑛−𝛼
Sect. 12.3

(︀
1
2

)︀𝑛 (︀
3
4

)︀𝑛−𝛼 (︀
1
2

)︀𝛼
+

𝛼
(︀
1
2

)︀𝑛+1 1 1

YKHL
(︀
1
2

)︀𝑛
Sect. 13.2

(︀
1
2

)︀𝑛 (︀
7
8

)︀𝑛
Sect. 13.3

(︀
1
2

)︀𝑛
Sect. 13.4 1 1

SKIpro
(︀
1
2

)︀𝑛 (︀
2
3

)︀𝑛 (︀
1
2

)︀𝑛
Sect. 14.3 Sect. 14.3

(︀
2
3

)︀𝑛 (︀
1
2

)︀𝑛 (︀
2
3

)︀𝑛 (︀
2
3

)︀𝑛
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only if 𝑃1 is better than 𝑃2 for every considered parameter. In such a case, 𝑃1

should be used, instead of 𝑃2, whatever the considered scenario.
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Table 8. Parameters and their values

ℳ𝑎 𝒯 𝒟 ℒ ℬ ℰ ℳ𝑒

Val 1 ma =
(︀
1
2

)︀𝑛 t =
(︀
1
2

)︀𝑛 d =
(︀
1
2

)︀𝑛
N Y e=2𝑛+cst linear

Val 2 lim
𝑛→∞

ma =
(︀
1
2

)︀𝑛
lim

𝑛→∞
t =
(︀
1
2

)︀𝑛
lim
𝑛→∞

d =
(︀
1
2

)︀𝑛
Y N e=3𝑛+cst affine

Val 3
(︀
1
2

)︀𝑛
<ma<

(︀
3
4

)︀𝑛 (︀ 1
2

)︀𝑛
< t<

(︀
3
4

)︀𝑛 (︀ 1
2

)︀𝑛
<d<

(︀
3
4

)︀𝑛 e ≥ 4 · 𝑛 non affine

Val 4 ma =
(︀
3
4

)︀𝑛 t =
(︀
3
4

)︀𝑛 d =
(︀
3
4

)︀𝑛
Val 5

(︀
3
4

)︀𝑛
<ma<1

(︀
3
4

)︀𝑛
< t<1

(︀
3
4

)︀𝑛
<d<1

Val 6 ma = 1 t = 1 d = 1

Seven parameters are considered for the cluster-based comparison: mafia fraud
resistance (ℳ𝑎), terrorist fraud resistance (𝒯 ), distance fraud resistance (𝒟),
the presence of a final slow phase (ℒ), single bit exchanges during the fast phase
(ℬ), the number of bits exchanged by the two parties during the whole protocol3

(ℰ), and the memory dependency on the prover side regarding the number of
rounds (ℳ𝑒). Note the implementation complexity is not considered as it would
be difficult to find a technology suitable to implement fairly all the protocols
(some protocols depend on a given technology).

It is worth mentioning that each parameter can be assigned with a value
belonging to an (obviously) ordered set. The method, for example, sorts the
resistance to the mafia fraud ℳ𝑎 according to six values and, to illustrate
the concept, it is clearly better for a protocol to have a mafia fraud success
probability equal to ( 12 )

𝑛 than ( 34 )
𝑛. Also, it is better not to need a final

slow phase in the protocol, and to use binary messages than ternary messages,
etc. For each parameter, the values can be ordered: (Value 6) ≺ (Value 5) ≺
(Value 4) ≺ (Value 3) ≺ (Value 2) ≺ (Value 1), where (Value 𝑖) ≺ (Value 𝑗)
means that (Value 𝑗) is better than (Value 𝑖) or, said differently, (Value 𝑗) is

3Note that in Table 8, no value is given to the constant. Since we are interested in how the

number of exchanged bits scales the number of rounds, the actual value of the constant does
not really matter.
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more convenient than (Value 𝑖) when implementing a distance-bounding protocol.
The parameters and their values are provided in Table 8.

The configuration of a protocol is an element of the Cartesian product ℳ𝑎×
𝒯 ×𝒟 × ℒ× ℬ × ℰ ×ℳ𝑒. All the possible configurations can be deduced from
Table 8, and the configuration of each protocol presented in this work is provided
in Table 9. Note that there is no total order relation in ℳ𝑎× 𝒯 ×𝒟 ×ℒ×ℬ ×
ℰ ×ℳ𝑒, but a configuration (ma, d, t, l, b, e,me) is better than a configuration
(ma′, d′, t′, l′, b′, e′,me′) if it is better for every considered parameter: ma′ ≺ ma,
d′ ≺ d, ..., me′ ≺ me. As a consequence, there exist several best configurations in
ℳ𝑎× 𝒯 ×𝒟 × ℒ× ℬ × ℰ ×ℳ𝑒.

A cluster is a set (possibly empty) of protocols which have the same configu-
ration (ma, d, t, l, b, e,me). A cluster is said to be better than another one if its
configuration is better. The total number of clusters is large; it is actually equal
to the cardinality of ℳ𝑎×𝒯 ×𝒟×ℒ×ℬ×ℰ ×ℳ𝑒, which is 63 · 22 · 32 = 7776.
However, 5774 clusters are empty, meaning that no protocol matches the config-
uration of these clusters. The remaining 2002 non-empty clusters still represent
a large amount of information, which is difficult to condense in a paper. To
further reduce this information, only best configurations are kept.
This process can be easily automated. A hierarchy of clusters is built and

the best cluster of every branch is kept. After performing this operation, only 5
clusters remain: {Poulidor}, {Swiss-Knife}, {SKIshamir}, {RC}, and {BC, MAD}.
Four of the remaining clusters are actually singletons, which means that among
all the published protocols, none of them are equivalent with respect to the
seven considered parameters. In the remaining cluster, {BC, MAD}, BC and
MAD are equivalent since the mutual authentication is not considered in the
configurations. We can also raise that, given constraints on memory, probabilities,
etc. the best known protocol to be used belongs to these 6 finalists.

It is finally interesting to compare these 6 finalists with the distance-bounding
evolution provided in Figure 1. A protocol that is not a finalist should not
necessarily be blamed: most of them have been useful at some point and led
to more evolved protocols. However, protocols published today should be new
finalists in the cluster-based comparison, possibly after considering additional
parameters in the comparison.

16 CONCLUSION

Distance-bounding authentication protocols represent a new class of protocols
aiming to thwart distance-based attacks whose feasibility is rendered possible
by emerging technologies. This survey provides a thorough state-of-the-art of
existing protocols and introduces refined security analyses. The comparisons
made provide designers with new means to evaluate their performance in a
unified manner according to several security and resource parameters. It may be
worthwhile pointing out that the provided cluster-based comparison can easily
be modified to better reflect specific practical considerations and/or to include
other protocols. Finally, we are aware that attacks other than those considered
in this paper might exist. Addressing provable security of distance-bounding
protocols is therefore a challenge for future research.
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Table 9. Protocol configurations

Protocols ma d t l b e me

BC
(︀
1
2

)︀𝑛 (︀
1
2

)︀𝑛
1 Y Y 3𝑛+cst linear

MAD
(︀
1
2

)︀𝑛 (︀
1
2

)︀𝑛
1 Y Y 3𝑛+cst linear

HK
(︀
3
4

)︀𝑛 (︀
3
4

)︀𝑛
1 N Y 2𝑛+cst linear

MP 𝑝𝑓 = 0.5
(︀
3
4

)︀𝑛
>
(︀
3
4

)︀𝑛
and<1 1 Y Y ≥ 4𝑛 linear

MP 𝑝𝑓 = 0.75 >
(︀
3
4

)︀𝑛
and<1 >

(︀
3
4

)︀𝑛
and<1 1 Y Y ≥ 4𝑛 linear

Swiss-Knife
(︀
1
2

)︀𝑛 (︀
3
4

)︀𝑛 (︀
3
4

)︀𝑛
Y Y 3𝑛+cst affine

Tree-Based lim
𝑛→∞

=
(︀
1
2

)︀𝑛
lim

𝑛→∞
=
(︀
1
2

)︀𝑛
1 N Y 3𝑛+cst non

ℓ =
√
𝑛 affine

Tree-Based lim
𝑛→∞

=
(︀
1
2

)︀𝑛
lim

𝑛→∞
=
(︀
1
2

)︀𝑛
1 N Y 3𝑛+cst non

ℓ = 1 affine

RC
(︀
1
2

)︀𝑛 (︀
1
2

)︀𝑛
1 Y N 2𝑛+cst affine

Poulidor lim
𝑛→∞

=
(︀
1
2

)︀𝑛
lim

𝑛→∞
=
(︀
1
2

)︀𝑛
1 N Y 2𝑛+cst linear

KA2 𝛼 = 𝑛 lim
𝑛→∞

=
(︀
1
2

)︀𝑛
1 1 N Y 2𝑛+cst linear

KA2 𝛼 = 𝑛
2 >

(︀
1
2

)︀𝑛
and<

(︀
3
4

)︀𝑛
>
(︀
3
4

)︀𝑛
and<1 1 N Y 2𝑛+cst linear

YKHL >
(︀
3
4

)︀𝑛
and<1 >

(︀
3
4

)︀𝑛
and<1 1 N Y 2𝑛+cst linear

SKIshamir

(︀
1
2

)︀𝑛
>
(︀
1
2

)︀𝑛
and<

(︀
3
4

)︀𝑛 (︀
1
2

)︀𝑛
N N ≥ 4𝑛 linear

SKIpro >
(︀
1
2

)︀𝑛
and<

(︀
3
4

)︀𝑛 (︀
3
4

)︀𝑛
>
(︀
1
2

)︀𝑛
N N ≥ 4𝑛 linear

and<
(︀
3
4

)︀𝑛
SKI4 >

(︀
1
2

)︀𝑛
and<

(︀
3
4

)︀𝑛
>
(︀
1
2

)︀𝑛
and<

(︀
3
4

)︀𝑛 (︀
3
4

)︀𝑛
N N ≥ 4𝑛 linear
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17 SUPPLEMENTARY MATERIALS: APPENDIX A

This section provides the full description of the protocols considered in this
paper.

17.1 Brands and Chaum’s Protocol (1993)

In 1993, Brands and Chaum designed several distance-bounding protocols [17].
This analysis focuses on their protocol (Algorithm 1) that mitigates both mafia
fraud and distance fraud.

Initialization. The prover should own a signature public/private key.

Protocol. The prover randomly generates 𝑛 commitment bits 𝑚𝑖 ∈𝑅 {0, 1} and
the verifier randomly generates 𝑛 challenge bits 𝑐𝑖 ∈R {0, 1} (𝑖 = 1 . . . 𝑛). The
prover commits on 𝑚1|| . . . ||𝑚𝑛 and sends this commitment to the verifier. Then,
a phase of 𝑛 rapid bit exchanges starts. In each round, the verifier starts his
timer and sends 𝑐𝑖 to the prover, who replies with 𝑟𝑖 = 𝑐𝑖 ⊕𝑚𝑖. Upon receiving
the response bit the verifier stops its timer. Finally, the prover concatenates 𝑐𝑖
and 𝑟𝑖, signs the 2𝑛 bits result, Sign𝑘(𝑐1||𝑟1|| . . . ||𝑐𝑛||𝑟𝑛), and sends it to the
verifier together with the opening of the commitment.

Final Decision. Upon reception of the signature, the verifier concatenates
the 2𝑛 bits 𝑐𝑖 and 𝑟𝑖, and verifies the received signature, the commitment, the
measured ∆𝑡𝑖’s and whether 𝑟𝑖 = 𝑐𝑖 ⊕𝑚𝑖 for 𝑖 = 1 . . . 𝑛.

Table 10. Parameters and functions (Algorithm 1)

𝑛 Number of iterations in the fast phase
ℓ Lower bound for the size of the commitment and the signature

(ℓ >> 𝑛)
𝑡max Threshold of the round-trip time
Commit Secure commitment function that outputs ℓ bits
𝑆𝑖𝑔𝑛𝐾𝑠

Signature function whose private key is 𝐾𝑠

17.2 Čapkun, Buttyán, and Hubaux’s Protocol (2003)

In 2003, Čapkun, Buttyán, and Hubaux introduced MAD [20], a protocol that
works quite similarly to the BC protocol [17], but provides mutual authentication.
Although denoted by 𝑃 and 𝑉 , the two parties act as both prover and verifier
during the execution of the protocol (Algorithm 2). The notations used in [20]
are kept in the description below.

Initialization. Prior to the protocol execution, the two parties (𝑃 and 𝑉 )
agree on the security parameters and functions described in Table 11, and a
common secret key 𝐾.

Protocol. In the first slow phase, 𝑃 and 𝑉 generate two random numbers (𝑟,
𝑟′ and 𝑠, 𝑠′ respectively) and send a commitment to the other party on the two
random numbers (ℎ(𝑟||𝑟′) and ℎ(𝑠||𝑠′) respectively). During the fast phase the
following steps are repeated 𝑛 times:
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∙ 𝑃 sends the bit 𝛼𝑖 to 𝑉 , where 𝛼1 = 𝑟1 and 𝛼𝑖 = 𝑟𝑖 ⊕ 𝛽𝑖−1 for 𝑖 > 1;
∙ 𝑉 sends the bit 𝛽𝑖 = 𝑠𝑖 ⊕ 𝛼𝑖 to 𝑃 .

In the second slow phase, 𝑃 retrieves the bit sequence 𝑠 by assuming that
𝑠𝑖 = 𝛼𝑖 ⊕ 𝛽𝑖 for every 𝑖 ∈ {1, 2, · · · , 𝑛} and computes using the secret key 𝐾
the value 𝜇𝑃 = MAC𝐾(𝐼𝐷𝑃 ||𝐼𝐷𝑉 ||𝑟1||𝑠1|| . . . ||𝑟𝑛||𝑠𝑛). Similarly, 𝑉 computes
the bits 𝑟1 = 𝛼1 and 𝑟𝑖 = 𝛼𝑖 ⊕ 𝛽𝑖−1 for 𝑖 > 1, with which 𝑉 computes 𝜇𝑉 =
MAC𝐾(𝐼𝐷𝑉 ||𝐼𝐷𝑃 ||𝑠1||𝑟1|| . . . ||𝑠𝑛||𝑟𝑛). Finally, 𝑃 and 𝑉 open the commitment
sent in the first slow phase by transmitting 𝑟′ and 𝑠′, and exchange the values
𝜇𝑃 and 𝜇𝑉 .

Final Decision. The users 𝑃 and 𝑉 accept each other’s entity only if:

∙ the 𝑛 responses of the fast phase are correct,
∙ the commitment that was sent in the first slow phase is correctly opened
in the second slow phase and corresponds to the bit sequence (𝑟 or 𝑠)
exchanged during the fast phase,

∙ the output of the MAC function is correct, and
∙ the time constraint ∆𝑡𝑖 ≤ 𝑡max is met for 𝑖 ∈ {1, 2, . . . , 𝑛} and some
threshold 𝑡max > 0.

Table 11. Parameters and functions (Algorithm 2)

𝑛 Number of iterations in the fast phase, which is also the size of the
random numbers 𝑟 and 𝑠

𝛿 Size of the random numbers 𝑟′ and 𝑠′

𝜅 Size of the secret key 𝐾
𝑡max Threshold of the round-trip time
MAC𝐾 MAC function keyed with 𝐾
𝜎 Output size of the MAC function
ℎ Collision-resistant one-way hash function used to compute the

commitment

17.3 Hancke and Kuhn’s Protocol (2005)

In 2005 Hancke and Kuhn published the first distance-bounding protocol [42]
(Algorithm 3) clearly dedicated to RFID. The protocol relies on the original ideas
of Desmedt et al. [10, 28] but is different from Brands and Chaum’s work [17]
in the sense that Hancke and Kuhn’s protocol does not have any final signature
after the fast phase.

Initialization. Prior to the protocol execution, the legitimate prover and the
verifier agree on the security parameters and functions described in Table 12,
and a common secret key 𝐾.

Protocol. During the slow phase, the verifier sends to the prover a nonce 𝑁𝑉

and the prover sends to the verifier a nonce 𝑁𝑃 . Both the prover and the verifier
then use the pseudo-random function ℎ and the secret key 𝐾 in order to generate
two 𝑛-bit sequences 𝑅0 and 𝑅1. For each of the 𝑛 rounds of the fast phase, the
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verifier generates and sends a random challenge bit 𝑐𝑖, and the prover replies
instantly with a one-bit response that is either 𝑅0

𝑖 or 𝑅1
𝑖 , selected by the value

of 𝑐𝑖.

Final Decision. The verifier accepts the prover’s identity only if the 𝑛 responses
of the fast phase are correct while meeting the time constraint ∆𝑡𝑖 ≤ 𝑡max,
𝑖 ∈ {1, 2, . . . , 𝑛}, for some threshold 𝑡max > 0.

Table 12. Parameters and functions (Algorithm 3)

𝑛 Number of iterations in the fast phase
𝜅 Size of the secret key 𝐾
𝛿 Size of nonces 𝑁𝑉 and 𝑁𝑃

𝑡max Threshold of the round-trip time
ℎ Hash function whose output size is 2𝑛

17.4 Bussard and Bagga’s Protocol (2005)

Bussard and Bagga published the DBPK-Log protocol (Algorithm 4), which is
a distance-bounding protocol based on a proof of knowledge and a commitment
scheme [18].

Initialization. Prior to protocol execution, the prover and the verifier agree on
the security parameters and functions described in Table 13. A trusted authority
then chooses and publishes the following values: 𝑝, a large safe prime such that
𝑝 = 2𝑞 + 1 with 𝑞 a large prime; 𝑔, a generator of Z⋆

𝑝; and ℎ, a random value
in Z⋆

𝑝. Once done, the prover selects a secret 𝑥 ∈ Z𝑝−1 ∖ {𝑞} and the trusted
authority then needs to create and publish a certificate for his public key 𝑦 = 𝑔𝑥.

Protocol. The prover 𝑃 possesses a private key 𝑥 which is an odd secret,
randomly chosen in Z𝑝−1 ∖ {𝑞}, whose corresponding public key is 𝑦 = 𝑔𝑥 mod 𝑝.
The prover picks a random one-time key 𝑅0 ∈ {0, 1}𝑛, and encrypts his private
key 𝑥 with 𝑅0, using the encryption scheme 𝐸, i.e., he gets 𝑅1 = 𝐸𝑅0(𝑥) = 𝑥−
𝑅0 mod (𝑝−1). The prover then commits to each bit of 𝑅0 and 𝑅1 independently
using the Commit function (see Remark 5). Then, for each of the 𝑛 rounds of
the fast phase, the verifier generates and sends a random challenge bit 𝑐𝑖, and
the prover replies instantly with a 1-bit response that is either 𝑅0

𝑖 or 𝑅1
𝑖 , selected

by the value 𝑐𝑖. A second slow phase then starts, where the prover allows the
verifier to open the commitment of each bit 𝑅𝑐𝑖

𝑖 , for each challenge 𝑐𝑖 that has
been sent in the previous phase.

Final Decision. The verifier checks the timing and verifies that the received
values correspond to the committed ones (Open function is described in the
original paper). A verification protocol is finally executed between 𝑃 and 𝑉
using a proof of knowledge. Note that [18] only states that “at the end of
distance-bounding stage, the verifier 𝑉 is able to compute an upper bound on
the distance to 𝑃 .”
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Table 13. Parameters and functions (Algorithm 4)

𝑛 Number of iterations in the fast phase,
𝑛 = 𝑚+𝑚′

𝑚 Security parameter 𝑚 = ⌈log2 𝑝⌉
𝑚′ Security parameter
𝐸 Encryption scheme (additive cipher):

𝐸(𝑥) = 𝑥− 𝑘 mod (𝑝− 1)
Commit Commit function of the commitment

scheme
Open Open function of the commitment

scheme
𝑃𝐾[(𝑥, 𝑣) : 𝑧 = Ω(𝑥, 𝑣) ∧ 𝑦 = Γ(𝑥)] Proof of knowledge for 𝑥 and 𝑣

Remark 5 (Commitment). The suggested Commit function works as fol-
lows: (a) a value ℎ is randomly chosen in Z⋆

𝑝, (b) the values 𝑣𝑅0,𝑖 and 𝑣𝑅1,𝑖,

∀𝑖 ∈ {0, ..., 𝑁 −1}, are randomly chosen in Z𝑝−1, (c) 𝐶𝑖(𝑅
0) = 𝑔𝑅

0
𝑖 ℎ𝑣𝑅0,𝑖 mod 𝑝

and 𝐶𝑖(𝑅
1) = 𝑔𝑅

1
𝑖 ℎ𝑣𝑅1,𝑖 mod 𝑝.

17.5 Munilla and Peinado’s Protocol (2006)

Munilla and Peinado introduced in [54, 57] the concept of void challenges as a
tool to improve distance-bounding protocols. These void challenges can also be
used to decrease the mafia fraud success probability when applied to Hancke
and Kuhn’s protocol [55], which is the case analyzed in this section. Thus, for
this protocol (Algorithm 5), the challenges can be 0, 1 or void, where a void
challenge means that no challenge is sent. Void challenges are used to detect a
mafia fraud using the pre-ask strategy.

Initialization. Prior to the protocol execution, the prover and the verifier
agree on the security parameters and the functions described in Table 14, and a
common secret key 𝐾.

Protocol. During a first slow phase, the verifier sends to the prover a nonce
𝑁𝑉 and the prover sends to the verifier a nonce 𝑁𝑃 (Remark 6). They both then
use the pseudo-random function ℎ and the secret key 𝐾 to generate three 𝑛-bit
sequences: 𝑅0, 𝑅1 and 𝑍. The values 𝑅0 and 𝑅1 are, as in Hancke and Kuhn’s
protocol, the responses to the challenges, while 𝑍 defines which challenges are
void. In the fast phase, the verifier sends random challenges 𝑐𝑖 when 𝑍𝑖 = 1,
and the prover instantly replies with 1-bit responses 𝑟𝑖 that are either 𝑅0

𝑖 or
𝑅1

𝑖 , depending on the value of 𝑐𝑖: 𝑟𝑖 = 𝑅𝑐𝑖
𝑖 . If the prover receives a challenge

for an interval where 𝑍𝑖 = 0, he assumes that the system is being attacked and
aborts the protocol. Finally, the prover sends ℎ(𝐾,𝑅0, 𝑅1) in a final slow phase
to confirm that no adversary has been detected.

Final Decision. The verifier accepts the prover as genuine only if the final
signature is correct and all the responses 𝑟𝑖 are correct and timely: ∆𝑡𝑖 ≤ 𝑡max,
𝑖 ∈ 1, 2, · · · , 𝑛, for some threshold 𝑡max > 0.
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Table 14. Parameters and functions (Algorithm 5)

𝑛 Number of iterations in the fast phase (it coincides with the length of
vectors 𝑅0, 𝑅1 and 𝑍)

𝜅 Size of the secret key 𝐾 (not defined in the original paper)
𝛿 Size of random numbers 𝑁𝑉 and 𝑁𝑃 (not defined in the original

paper)
𝑡max Threshold of the round-trip time
𝑝𝑓 Probability of an interval being non-void (optimal value 𝑝𝑓 = 4/5, and

practical value 𝑝𝑓 = 3/4)
ℎ Hash (or pseudo-random) function whose output size is 3𝑛

Remark 6. The paper does not specify whether the verifier or the prover
sends its nonce in first.

Remark 7. During the fast phase, 2(𝑛 − 𝑛𝑣𝑜𝑖𝑑) bits are exchanged, where
𝑛𝑣𝑜𝑖𝑑 is the number of void challenges for the protocol run. Given the average
number of void challenges, namely 𝑛(1− 𝑝𝑓 ), the average number of exchanged
bits is 2𝑛𝑝𝑓 .

17.6 Kim, Avoine, Koeune, Standaert and Pereira’s Protocol (2008)

Kim, Avoine, Koeune, Standaert and Pereira introduced a protocol in [50] known
as the Swiss-knife distance-bounding protocol4 (Algorithm 6).

Initialization. Prior to the protocol execution, the legitimate prover and the
verifier agree on the security parameters and functions described in Table 15, a
system-wide constant 𝐶 known to the verifier and the prover, and a common
secret key 𝐾.

Protocol. During the first slow phase, the verifier chooses a nonce 𝑁𝑉 ∈R

{0, 1}𝛿 and a random binary vector 𝐷 with Hamming weight 𝑛 and length 𝜎.
Intuitively,𝐷 corresponds to a mask pointing to the positions on which the prover
will be questioned during the fast phase. He transmits 𝑁𝑉 and 𝐷 to the prover.
The prover chooses a nonce 𝑁𝑃 ∈R {0, 1}𝛿 and computes 𝑎 := 𝑓𝐾(𝐶,𝑁𝑃 ). The
prover then computes two registers using its permanent key 𝐾 as follows: 𝑍0 := 𝑎
and 𝑍1 := 𝑎 ⊕𝐾. He finally prepares the possible answers by extracting the
relevant parts of 𝑍0, 𝑍1 according to the mask 𝐷, building the 𝑛-bit vectors 𝑅0

and 𝑅1. The prover ends the slow phase transmitting 𝑁𝑃 to the verifier. During
the fast phase, the verifier generates and sends a random challenge bit 𝑐𝑖, and the
prover replies instantly with a 1-bit response that is either 𝑣0𝑖 or 𝑣1𝑖 , selected by the
value of 𝑐𝑖. After 𝑛 iterations, the prover computes 𝑇𝐵 := 𝑓𝐾(𝑐′1, . . . , 𝑐

′
𝑛, 𝐼𝐷,𝑁𝑉 ,

𝑁𝑃 ) and transmits 𝑇𝐵 and the challenges 𝑐′1, . . . , 𝑐
′
𝑛 received during the fast

4Like Swiss-army knives used during WWII, the Swiss-knife protocol is a multi-purpose tool.

The authors claim their protocol “resists against both mafia fraud and terrorist attacks,

reaches the best known false acceptance rate, preserves privacy, resists to channel errors, uses
symmetric-key cryptography only, requires no more than 2 cryptographic operations to be

performed by the tag, can take advantage of precomputation on the tag, and offers an optional
mutual authentication” [50].
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phase. The verifier performs a search over its database until he finds a pair
(𝐼𝐷,𝐾) and computes 𝑅0, 𝑅1. If mutual authentication is expected, the verifier
computes 𝑇𝐴 := 𝑓𝐾(𝑁𝑃 ), sends it to the prover who checks its correctness.

Final Decision. The authentication succeeds if and only if 𝑒𝑟𝑟𝐶+𝑒𝑟𝑟𝑅+𝑒𝑟𝑟𝑇 <
𝑇 .

Table 15. Parameters and functions (Algorithm 6)

𝑛 Number of iterations in the fast phase
𝜎 Size of the output of 𝑓 and consequently size of the secret key 𝐾
𝛿 Size of nonces 𝑁𝑉 and 𝑁𝑃

𝑡max Threshold of the round-trip time
𝑇 Threshold of tolerable errors
𝑓 Pseudo-random function whose output size is 𝜎

17.7 Avoine and Tchamkerten’s Protocol (2009)

The protocol (Algorithm 7) introduced by Avoine and Tchamkerten in [7] is a
generalization of Hancke and Kuhn’s protocol that is more secure in terms of
mafia and distance fraud.

Initialization. Prior to the protocol execution, the legitimate prover and the
verifier agree on the security parameters and functions described in Table 16, in
addition to a common secret key 𝐾.

Protocol. It consists of a slow authentication phase followed by a fast proximity
check phase. Both phases have their own security parameters: the credential size
𝑐 for the authentication and the number of bit exchanges 𝑛 between the prover
and the verifier during the fast phase.

Authentication. The verifier sends a nonce 𝑁𝑉 to the prover, in the form
of a uniformly random bit-string of size 𝛿. The prover then generates a 𝛿-bit
nonce 𝑁𝑃 and, based on 𝑁𝑉 and 𝑁𝑃 , computes a keyed-hash value ℎ𝐾(𝑁𝑉 , 𝑁𝑃 )
whose output is a string of at least 𝑐+ ℓ · (2𝑑+1 − 2) bits where 𝑑, ℓ ≥ 1 are such
that 𝑑 · ℓ = 𝑛. The prover sends to the verifier both 𝑁𝑃 and the first 𝑐 bits of
ℎ𝐾(𝑁𝑉 , 𝑁𝑃 ) denoted [ℎ𝐾(𝑁𝑉 , 𝑁𝑃 )]

𝑐
1.

Proximity Check. Using the subsequent 𝑞 = ℓ · (2𝑑+1−2) bits of the hash value

ℎ𝐾(𝑁𝑉 , 𝑁𝑃 ), denoted by [ℎ𝐾(𝑁𝑉 , 𝑁𝑃 )]
𝑐+𝑞
𝑐+1, the prover and the verifier label ℓ

full binary trees of depth 𝑑 as follows (see Figure 6 for an example). The left
and the right edges of each tree are labeled 0 and 1 respectively, and each node
of each tree, except the root, is associated with the value of a particular bit in
[ℎ𝐾(𝑁𝑉 , 𝑁𝑃 )]

𝑐+𝑞
𝑐+1 in a one-to-one fashion.5 This labeling is possible since each

5To do this, one sequentially assigns the bit values of [ℎ𝐾(𝑁𝑉 , 𝑁𝑃 )]𝑐+𝑞
𝑐+1 to all the nodes of

each tree, starting with the lowest level nodes, moving left to right, and moving up after

assigning the nodes of the current level.
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tree has 2𝑑+1 − 2 nodes (excluding the root), which gives a total of ℓ · (2𝑑+1 − 2)
nodes to be labeled.

An 𝑛-round fast bit exchange between the verifier and the prover proceeds using
the trees: the edge and the node values represent the verifier’s challenges and the
prover’s replies, respectively. At each step 𝑖 ∈ {1, 2, . . . , 𝑛} the verifier generates a
challenge in the form of a randomly uniform bit 𝑐𝑖 and sends it to the prover. Now
let 𝑗 ≥ 1 be such that (𝑗−1)(2𝑑+1−2)+1 ≤ 𝑖 ≤ 𝑗(2𝑑+1−2). Upon receiving 𝑐𝑖, the
prover replies 𝑟𝑖, which corresponds to the value of the node in the 𝑗-th tree whose
edge path from the root is given by 𝑐(𝑗−1)(2𝑑+1−2)+1, 𝑐(𝑗−1)(2𝑑+1−2)+2, . . . , 𝑐𝑖. The
example illustrated by Figure 6 uses the following parameters: 𝑛 = 6, ℓ = 2,
and 𝑑 = 3. The sequence of challenges is (1, 1, 0, 0, 1, 0), which corresponds to
the two thick edge paths in the trees starting with the tree on the left. The
corresponding sequence of replies is (1, 1, 1, 0, 1, 0). Note that each reply 𝑟𝑖 is a
function of at most 𝑑 previous 𝑐𝑗 ’s. Finally, for all 𝑖 ∈ {1, 2, . . . , 𝑛}, the verifier
measures the time interval ∆𝑡𝑖 between the instant 𝑐𝑖 is sent until the instant 𝑟𝑖
is received.

Final Decision. The verifier accepts the prover’s identity only if the 𝑐 authen-
tication bits are correct and if the 𝑛 replies of the fast phase are correct while
meeting the time constraint ∆𝑡𝑖 ≤ 𝑡max, 𝑖 ∈ {1, 2, . . . , 𝑛}, for some threshold
𝑡max > 0.
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Fig. 6. Two decision trees of depth 3, i.e., ℓ = 2, 𝑑 = 3

Remark 8. The case 𝑛 = 𝑑 · ℓ is the maximum situation where all 𝑑 replies of
the ℓ-th tree are used. We impose this constraint only to have somewhat simpler
performance expressions. It is easy to see that this constraint can be replaced by
𝑑 · ℓ ≥ 𝑛, which is the situation where the last tree is only partly used.

Remark 9. When 𝑑 = 1 and ℓ = 𝑛, the fast phase of the protocol reduces to
the HK Protocol.

17.8 Rasmussen and Čapkun’s Protocol (2010)

The protocol (Algorithm 8) was introduced by Rasmussen and Čapkun and
originally appeared in [63]. In this paper we consider the updated version that
appeared in [61].

Initialization. Prior to the protocol execution, the legitimate prover and the
verifier agree on the security parameters, the functions described in Table 17,
and a common secret key 𝐾.
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Table 16. Parameters and functions (Algorithm 7)

𝑛 Number of iterations in the fast phase
𝜅 Size of secret key
𝛿 Size of nonces 𝑁𝑉 and 𝑁𝑃

𝑐 Credential size
𝑑 Depth of each tree
ℓ Number of trees (𝑑 and ℓ satisfy 𝑑 · ℓ = 𝑛)
𝑡max Threshold of the round-trip time
ℎ𝐾 Keyed-hash function whose output size is a bit string of size at least

𝑐+ ℓ · (2𝑑+1 − 2)

Protocol. The prover starts the protocol by picking a fresh (large) nonce 𝑁𝑃 .
The prover then commits (using for example a hash) on 𝑁𝑃 and its identity.
This commitment is not keyed. The prover now activates its distance-bounding
hardware and set the output channel according to the opposite of the first bit
of the nonce 𝑁𝑃 . From this moment on, any signal that the prover receives on
channel 𝐶0 will be reflected on the output channel that is set. However, the
prover does not start switching between output channels yet.
Upon receiving the commitment, the verifier picks a fresh (large) nonce 𝑁𝑉

and prepares to initiate the distance-bounding phase, in which it will measure
the distance bound to the prover. The verifier starts a high precision clock to
measure the (round trip) time-of-flight of the signal, ∆𝑡, and begins to transmit
his nonce 𝑁𝑉 on channel 𝐶0. From this point on, the verifier also listens on the
two reply channels 𝐶1 and 𝐶2 and keeps listening on the two channels until he
either receives the expected response from the prover or until he detects an error
and aborts the protocol.
As soon as the prover receives (and, in parallel demodulates) the first bit of

𝑁𝑉 on 𝐶0, he starts switching reply channels according to the bits of his nonce
𝑁𝑃 . When the first few bits are being demodulated, the prover is still reflecting
the input (challenge) bits and the switching of the channels is not started yet
(i.e., the prover does not start sending back 𝑁𝑃 yet). This function, used by
the prover to form its reply to the verifier, is called “Challenge Reflection with
Channel Selection” (CRCS). The demodulation of the bits is not done within
the distance-bounding hardware (called the distance-bounding extension), but
is done in the prover’s regular radio. A possible implementation of the distance-
bounding extension (i.e., of CRCS) using analog mixers is described in [61]. It
is not important how long it takes for the prover’s radio to demodulate the first
bits since the prover does not need to begin to switch the output channels within
any predefined time as long as the prover keeps track of the delay 𝑛. The delay
represents the time taken by the prover to react to the incoming signal, i.e., to
switch its circuit to transmit the first bit of its answer. The switching starts
within the duration of 𝑁𝑉 , and allows the transmission of 𝑁𝑃 . The first part
of 𝑁𝑉 could even be known and constitute a public and fixed-length preamble,
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upon the detection of which the prover would start switching the channels (i.e.,
would start sending 𝑁𝑃 ).

When the prover starts sending 𝑁𝑃 , he sends the bits of 𝑁𝑃 with a fixed
frequency (e.g., every 100𝑚𝑠) by switching channels depending on the value of
the current bit. In each interval, the prover reflects back several bits of 𝑁𝑉 and
a single bit of 𝑁𝑃 . The bit of 𝑁𝑃 is encoded in the choice of the reply channel.
The prover also receives in parallel the verifier’s challenge nonce (i.e., 𝑁𝑉 ) on
channel 𝐶0 using his regular radio.

When the verifier has sent all the bits of his nonce, he waits for the prover to
complete the reflection of the signal and then both the prover and verifier disable
their distance-bounding extensions. The verifier can then use an auto-correlation
detector like the ones used in GPS receivers to determine the exact time of flight,
∆𝑡, of the reflected signal. This can also be done during the distance-bounding
phase, i.e., in parallel to the analog distance-bounding circuit. Finally, the prover
sends a signed message compounded by the commitment sent during the first
slow phase, the delay 𝑛, his nonce 𝑁𝑃 , and the verifier’s identity and nonce.

Final Decision. The verifier accepts the prover’s identity only if the bits of
𝑁𝑃 were sent within the same time duration, these bits match with those he
received in the final message of the prover, the reflection of 𝑁𝑉 through the
channel switch was correct, the signature in the final message is correct, the
delay 𝑛′ he computed match with the prover’s one 𝑛 (including in the final
message), and finally that the round-trip time is below the time threshold 𝑡max.

Table 17. Parameters and functions (Algorithm 8)

𝛿𝑉 Size of the verifier’s challenge nonce 𝑁𝑉

𝛿𝑃 Size of the prover’s nonce 𝑁𝑃

𝜎 Lower bound for the size of the commitment and the signature
𝑡max Threshold of the round trip time
Commit Secure commitment function that outputs 𝜎 bits.
Sign Signature function whose output size is 𝜎

17.9 Trujillo-Rasua, Martin and Avoine’s Protocol (2010)

Poulidor, the graph-based distance-bounding protocol (Algorithm 9) designed by
Trujillo-Rasua, Martin, and Avoine [69], uses specific node and edge dependencies
in the tree of the AT protocol [7] – which then can alternatively be represented by
an acyclic graph. Poulidor benefits from a lower memory requirement compared
to the AT protocol. Security is also reduced.

Initialization. Prior the protocol execution, the legitimate prover and the
verifier agree on the security parameters and functions described in Table 18,
and a common secret 𝐾.

Protocol. During the slow-phase, both the verifier and the prover build a
directed graph 𝐺. The proposed graph requires 2𝑛 nodes {𝑞0, 𝑞1, . . . , 𝑞2𝑛−1},
and 4𝑛 edges {𝑠0, 𝑠1, · · · , 𝑠2𝑛−1, ℓ0, ℓ1, · · · , ℓ2𝑛−1} such that, 𝑠𝑖 (0 ≤ 𝑖 ≤ 2𝑛− 1)
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Table 18. Parameters and functions (Algorithm 9)

𝑛 Number of iterations in the fast
phase

𝜅 Size of the secret key 𝐾
𝛿𝑃 and 𝛿𝑉 Size of nonces 𝑁𝑃 and 𝑁𝑉

respectively
𝑡max Threshold of the round-trip

time
𝐻 Hash function whose output size

is 2𝑛
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Fig. 7. Graph when 𝑛 = 4

is an edge from 𝑞𝑖 to 𝑞(𝑖+1) mod 2𝑛, and ℓ𝑖 (0 ≤ 𝑖 ≤ 2𝑛− 1) is an edge from 𝑞𝑖
to 𝑞(𝑖+2) mod 2𝑛. Figure 7 depicts the graph when 𝑛 = 4.
In order to build 𝐺, the verifier sends a nonce 𝑁𝑉 to the prover, and the

latter sends a nonce 𝑁𝑃 to the verifier. From these values, and the secret 𝐾,
they compute 𝐻 = ℎ(𝐾,𝑁𝑃 , 𝑁𝑉 ) and set up a graph 𝐺 as follows: the first
2𝑛 bits are used to value the nodes while the remaining bits are used to value
the edges 𝑠𝑖 (0 ≤ 𝑖 ≤ 2𝑛 − 1), and finally ℓ𝑖 = 𝑠𝑖 ⊕ 1 (0 ≤ 𝑖 ≤ 2𝑛 − 1). After
agreeing on the graph, the fast phase begins. This phase consists of 𝑛 stateful
rounds numbered from 0 to 𝑛− 1. Initially 𝑞𝑝0 = 𝑞𝑣0 = 𝑞0, but in the 𝑖-th round
𝑃 ’s state and 𝑉 ’s state are represented by the nodes 𝑞𝑝𝑖

and 𝑞𝑣𝑖 respectively.
Upon reception of the 𝑖-th challenge 𝑐𝑖, 𝑃 moves from the node 𝑞𝑝𝑖

to 𝑞𝑝𝑖+1

in the following way: 𝑞𝑝𝑖+1
= 𝑞(𝑝𝑖+1) mod 2𝑛 if 𝑠𝑖 is labeled with 𝑐𝑖, otherwise

𝑞𝑝𝑖+1
= 𝑞(𝑝𝑖+2) mod 2𝑛. Finally, the prover sends as response 𝑟𝑖 the bit-value

of the node 𝑞𝑝𝑖+1 . Upon reception of the prover’s answer 𝑟𝑖, the verifier stops
his timer, and computes ∆𝑡𝑖, i.e., the round trip time spent for this exchange.
Besides this, 𝑉 moves to the node 𝑞𝑣𝑖+1

using the challenge 𝑐𝑖 (as the prover
did but from the node 𝑞𝑣𝑖) and checks if 𝑞𝑣𝑖+1

= 𝑟𝑖.

Final Decision. The verifier accepts the prover’s identity only if 𝑛 responses of
the fast phase are correct and the time constraint ∆𝑡𝑖 ≤ 𝑡max, 𝑖 ∈ {1, 2, . . . , 𝑛},
for some threshold 𝑡max > 0.

17.10 Kim and Avoine’s Protocol (KA2) (2011)

Kim and Avoine introduced in 2009 a distance-bounding protocol with mixed
challenges [48], namely challenges known and challenges unknown in advance by
the prover. Challenges known in advance allow the prover to help the verifier
to detect an attack, but these challenges also allow the prover to perform a
distance fraud. Kim and Avoine improved their protocol in 2011, yielding a new
variant known as KA2 [49], which is analyzed in this section (Algorithm 10).

Initialization. Prior to the protocol execution, the legitimate prover and the
verifier agree on the security parameters and functions described in Table 19,
along with a common secret key 𝐾.
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Protocol. The verifier sends the prover a nonce 𝑁𝑉 and the prover sends the
verifier a nonce 𝑁𝑃 . They then use the pseudo-random function ℎ and the secret
key 𝐾 to generate a 2𝑛-bit sequence 𝐷||𝑅0||𝑅1.

During the first 𝛼 rounds, the verifier sends predefined 1-bit challenges 𝑐𝑖. In
every round, the prover sends a 1-bit response that is 𝑅0

𝑖 if 𝑐𝑖 = 𝐷𝑖. Otherwise,
he sends random answers until the end of the fast phase.

During the remaining 𝑛−𝛼 rounds, the verifier sends random 1-bit challenges
𝑐𝑖. In every round, the prover sends a 1-bit response that is 𝑅𝑐𝑖

𝑖 , or he sends
random answers until the end of the fast phase if a problem (𝑐𝑖 ̸= 𝐷𝑖) was
detected during the first 𝛼 rounds.

Final Decision. The verifier accepts the prover’s identity only if 𝑛 responses
of the fast phase are correct, while also meeting the time constraint ∆𝑡𝑖 ≤ 𝑡max,
𝑖 ∈ {1, 2, . . . , 𝑛}, for a threshold 𝑡max > 0.

Table 19. Parameters and functions (Algorithm 10)

𝑛 Number of iterations in the fast phase
𝜅 Size of the secret key 𝐾
𝛿 Size of nonces 𝑁𝑉 and 𝑁𝑃

𝑡max Threshold of the round-trip time
𝛼 Number of predefined rounds
ℎ Pseudo-random function whose output size is 2𝑛

17.11 Yum, Kim, Hong and Lee’s Protocol (2010)

Yum, Kim, Hon and Lee created a distance-bounding protocol with mutual
authentication [76].

Initialization. Prior to the protocol execution the users 𝐴 and 𝐵 agree on
the security parameters and functions described in Table 20, in addition to a
common secret key 𝐾.

Protocol. The protocol consists of a slow phase where two nonces (𝑁𝐴 and
𝑁𝐵) are exchanged, and a fast phase where challenge bits 𝑐𝑖 and response bits
𝑟𝑖 are exchanged. In the slow phase, the users compute three 𝑛-bit sequences,
𝐷,𝑅0, and 𝑅1 using a pseudo-random function applied to 𝑁𝐴 and 𝑁𝐵 . In the
𝑖-th round of the fast phase, each user acts as a prover or a verifier according to
the “direction bit” 𝐷𝑖. When 𝐷𝑖 = 0, 𝐴 sends a random challenge bit 𝑐𝑖 and 𝐵
answers with 𝑅𝑖

𝑐𝑖 , i.e., the 𝑖-th bit of the register 𝑅𝑐𝑖 . When 𝐷𝑖 = 1, 𝐵 sends a
challenge and 𝐴 responds. If the received response bit is incorrect, the recipient
moves to a “protection mode”: he sends random bits for all subsequent rounds.
Each user also checks that no collision occurred in the round, that is, the two
users did not talk or remain silent simultaneously.

Final Decision. 𝐴 accepts 𝐵 as legitimate only if the responses of the fast
phase are correct and meet the time constraint ∆𝑡𝑖 ≤ 𝑡max for Case I, for some
threshold 𝑡max > 0. So does 𝐵 for Case II.
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Table 20. Parameters and functions (Algorithm 11)

𝑛 Number of iterations in the fast phase
𝜅 Size of the secret key 𝐾
𝛿 Size of nonces 𝑁𝐴 and 𝑁𝐵

𝑡max Threshold of the round-trip time
ℎ Pseudo-random function whose output size is 3𝑛

17.12 SKI Protocols (2013)

In [14–16], the authors introduced a series of protocols called SKI. These protocols
(presented in Algorithm 12) are described as follows.

Initialization. Prior to the protocol execution, the legitimate prover and the
verifier agree on the security parameters and functions described in Table 21,
and a common secret 𝐾.

Table 21. Parameters and functions (Algorithm 12)

𝑛 Number of iterations in the fast phase
𝑡 Size of the challenges domain
𝑡′ Security parameter
q Power of a prime number
𝜅 Size of the secret key 𝐾
𝛿 Size of the nonces 𝑁𝑃 and 𝑁𝑉

𝑡max Threshold of the round-trip time
𝑓 Pseudo random function whose output size is 𝑡′𝑛 elements of Fq

𝑥 Maximum number of incorrect rounds

Protocol. During the slow phase, the prover first generates a nonce 𝑁𝑃 , and
sends it to the verifier. The verifier then generates its nonce 𝑁𝑉 along with
𝑎 = (𝑎1, . . . , 𝑎𝑡′) (𝑎𝑖 ∈ F𝑛

q where Fq is the finite fields of order q and the
authors of [14] employ in concrete examples q = 2) and a mapping 𝐿 ∈ ℒ,
where ℒ is defined below. Using its nonce and the prover’s nonce, he computes
𝑓𝐾(𝑁𝑃 , 𝑁𝑉 , 𝐿) and XORs it with 𝑎, in order to obtain the mask 𝑀 . Finally,
the verifier sends 𝑁𝑉 , 𝐿, and 𝑀 to the prover. Using these two values and its
nonce, the prover computes 𝑎 and 𝐾 ′ = 𝐿(𝐾).
Then the 𝑛-round fast phase begins. In each round, the verifier picks a

challenge 𝑐𝑖 ∈ {1, . . . , 𝑡} at random. Then, he starts a timer and sends 𝑐𝑖 to
the prover. Upon reception of the challenge, the prover first checks whether 𝑐𝑖
belongs to {1, . . . , 𝑡}. If 𝑐𝑖 /∈ {1, . . . , 𝑡} the protocol stops. If 𝑐𝑖 ∈ {1, . . . , 𝑡}, the
prover computes its answer, 𝑟𝑖 = 𝐹 (𝑐𝑖, 𝑎𝑖,𝐾

′
𝑖), where the function 𝐹 is presented

in more details below. The prover then sends its answer back to the verifier.
Once the verifier received 𝑟𝑖, he stops its timer and stores ∆𝑡𝑖, the round trip
time of the round 𝑖, as well as 𝑟𝑖.
As discussed below, the SKI protocol is specified with another set ℒ = ℒbit

containing all functions 𝐿𝜇, for 𝜇 ∈ F𝜅
q defined by 𝐿𝜇(𝐾) = (𝜇 ·𝐾, . . . , 𝜇 ·𝐾)
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i.e., 𝐿𝜇(𝐾) is the 𝑛-bit vector in which all bits are set to the dot product of 𝜇
and 𝐾.

Final Decision. The protocol succeeds if there are at least 𝑛− 𝑥 rounds 𝑖 for
which 𝑟𝑖 is correct and ∆𝑡𝑖 ≤ 𝑡max. The verifier then outputs a message 𝑂𝑢𝑡𝑉 ,
denoting the success or failure of the protocol.

Remark 10. With respect to the mapping in ℒ introduced along with SKI,
note that usual distance-bounding protocols would employ ℒ = ℒclassic i.e., the set
containing a single function 𝐿 which is the identity function. Thus, in those case,
𝐿(𝐾) = 𝐾 (imposing further that 𝜅 = 𝑛). The value of 𝑥 also introduced along
with SKI is used to tolerate some level of noise in the time-critical exchanges.
However, introducing this tolerance brings a new type of terrorist fraud, as it
will be discussed in Section 18.5. The purpose of ℒ = ℒbit is precisely to defeat
this attack. But, to compare with other protocols, our analyses below assume
𝑥 = 0 and ℒ = ℒclassic.

Remark 11. The function 𝐹 is essential for the SKI protocols. Using a
different function leads to different protocol security achievements. Specifically,
the authors mainly refer to the efficient cases of q = 2, 𝑡′ = 2, and 𝐹 (1, 𝑎𝑖,𝐾

′
𝑖) =

(𝑎𝑖)1, 𝐹 (2, 𝑎𝑖,𝐾
′
𝑖) = (𝑎𝑖)2, and 𝐹 (3, 𝑎𝑖,𝐾

′
𝑖) = 𝐾 ′𝑖 + (𝑎𝑖)1 + (𝑎𝑖)2, where 𝐾 ′𝑖 ∈

𝐺𝐹 (2), (𝑎𝑖)𝑗 ∈ 𝐺𝐹 (2), 𝑗 = 1, 2. Generally speaking, this response function,

denoted Fxor, can be given as follows: Fxor(𝑐𝑖, 𝑎𝑖,𝐾
′
𝑖) = 𝐾 ′𝑖1𝑐𝑖=𝑡+(𝑎𝑖)11𝑐𝑖∈{𝑡,1}+

. . .+(𝑎𝑖)𝑡−11𝑐𝑖∈{𝑡,𝑡−1}, where 𝑐𝑖 ∈ {1, . . . , 𝑡}, 𝐾 ′𝑖 ∈ 𝐺𝐹 (q), q ≥ 2, (𝑎𝑖)𝑗 ∈ 𝐺𝐹 (q),

𝑗 ∈ {1, . . . , 𝑡− 1}, and 1𝑅 is 1 if 𝑅 is true and 0 otherwise.
The authors actually consider two variants SKIpro with 𝑡 = 3 and SKIlite

with 𝑡 = 2, namely SKIlite never uses the 𝑐𝑖 = 3 challenge. Other cases (treated
separately) are summarized as follows:

∙ SKI4: defined by the response-function Fxor above, with q = 2, 𝑡 = 4,
𝑡′ = 3, i.e., 𝐹 (𝑐𝑖, 𝑎𝑖, 𝑥𝑖) = (𝑎𝑖)𝑐𝑖 for 𝑐𝑖 ∈ {1, 2, 3} and 𝐹 (4, 𝑎𝑖,𝐾

′
𝑖) =

𝐾 ′𝑖 + (𝑎𝑖)1 + (𝑎𝑖)2 + (𝑎𝑖)3, with (𝑎𝑖)1, (𝑎𝑖)2, (𝑎𝑖)3,𝐾
′
𝑖 ∈ 𝐺𝐹 (2);

∙ SKIshamir: defined by a variant of response-function based on the Shamir
secret sharing, with q = 4, 𝑡 = 3, 𝑡′ = 2, i.e., 𝐹 (𝑐𝑖, 𝑎𝑖,𝐾

′
𝑖) = 𝐾 ′𝑖 +

(𝑎𝑖)1𝑐𝑖+(𝑎𝑖)2𝑐
2
𝑖 for 𝑐𝑖 ∈ 𝐺𝐹 (4)*, with (𝑎𝑖)1, (𝑎𝑖)2 ∈ 𝐺𝐹 (4). Here, 𝑐 ↦→ 𝑐

denotes a one-to-one mapping from {1, 2, 3} to 𝐺𝐹 (4)*.

While SKIpro can be presented as a variant of the TDB protocol proposed in [5]
and SKIlite is very similar to the Hancke and Kuhn protocol [42], other variants
of 𝐹 can be suggested, yielding different SKI protocols. These functions have to
respect the requirements provided in [14]. These are informally summarized in
Remark 12.

Remark 12 (Requirements for the function 𝐹 and the set ℒ;
(see [14] for details)). The 𝐹 function must comply to the following condi-
tions, in order to ensure security, as stated in Section 1.6.

(1) For any 𝑐𝑖, 𝐹 (𝑐𝑖, ·, ·) must be 𝐺𝐹 (q)-linear and non-degenerate in the
𝑎𝑖 part.

(2) For any two values 𝑐𝑖 and 𝑐′𝑖 of the 𝑖-th challenge and for any 𝑎𝑖,
𝐹 (𝑐𝑖, 𝑎𝑖,𝐾

′
𝑖) and 𝐹 (𝑐′𝑖, 𝑎𝑖,𝐾

′
𝑖) give no information about 𝐾 ′𝑖.
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(3) For any 𝑎𝑖, one can compute 𝐾 ′𝑖 from the table of the map 𝑐𝑖 ↦→
𝐹 (𝑐𝑖, 𝑎𝑖,𝐾

′
𝑖).

(4) For any 𝐾 ′𝑖, the largest preimage of 𝑐𝑖 ↦→ 𝐹 (𝑐𝑖, 𝑎𝑖,𝐾
′
𝑖) must be small,

on average over 𝑎𝑖.

The third requirement above is used for resistance to terrorist fraud. Note that
SKIlite does not satisfy it, so it does not resist to terrorist fraud. The requirement
on ℒ is that given a source generating some (𝐿,𝐿(𝐾) + 𝑒) for 𝐿 ∈ ℒ uniformly
distributed and 𝑒 of “small” Hamming weight, and arbitrary distribution, then
𝐾 can be reconstructed.

18 SUPPLEMENTARY MATERIALS: APPENDIX B

This section presents generic improvements that can be applied on distance-
bounding protocols.

18.1 MUltiState Enhancement: MUSE

Although location-based authentication services that measure the round trip
time of entire data packets have been proposed [75], most of the distance-
bounding protocols are based on the measurement of the round trip time of
1-bit messages. Munilla and Peinado [54, 55] initiated a new family of protocols
that use an additional third state during the fast phase. Although binary data
are still exchanged during that phase, Munilla and Peinado suggest to use void
challenges. These void challenges, which means that no challenge is sent, are
used to authenticate the verifier, reducing thus the success probability of a
pre-ask strategy.

MUSE is a generalization of this idea proposed by Avoine, Floerkemeier, and
Martin [3], where the number of possible states used during the fast phase can be
still larger: the authors indeed extend the concept of void challenges to 𝑝-symbols
where 𝑝 ≥ 2. Using 𝑝-symbols is a generic technique that reduces the number of
rounds during the fast phase. Algorithm 13 describes MUSE-3 HK, which is the
3-symbol variant of HK. In MUSE-3 HK, 𝐻 = ℎ(𝐾,𝑁𝑉 , 𝑁𝑃 ) is used to fill up
three registers 𝑅𝑗 (𝑗 = 0, 1, 2) that each contains 𝑛 3-symbols {𝑆𝑗𝑛+1, ..., 𝑆𝑗𝑛+𝑛}.
When considering the mafia fraud against MUSE-3 HK, the success probability
is PrMF|pre =

(︀
5
9

)︀𝑛
, which is better than the 3-symbol protocol of Munilla and

Peinado [54, 55]. Note that to be able to easily generate and store 𝑝-symbols
(𝑝 > 2) on prover side the authors suggested to encode challenges and responses
on ⌈log2(𝑝)⌉ bits.

18.2 PUF-based protocols

Kardaş, Kiraz, Bingöl, and Demirci introduce in [46] two novel distance-bounding
protocols based on Physically Unclonable Functions (PUFs). A PUF is defined as
an unclonable function embedded in a physical structure that is easy to implement
but practically impossible to duplicate, even given the exact manufacturing
process definitions. The output of the function is obtained as a result of inherent
physical properties such as delays of gates and wires in a circuit, variations in the
temperature and supply voltage. The unclonability of the function is guaranteed
by these physical processes, and some mechanisms (e.g., Fuzzy Extractors)
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Algorithm 13: Hancke and Kuhn’s Protocol with MUSE-3

Verifier Prover

(secret 𝐾) (secret 𝐾)

Pick 𝑁𝑉 ∈R {0, 1}𝛿 Pick 𝑁𝑃 ∈R {0, 1}𝛿
𝑁𝑉−−−−−−−−−−−−−−−−−−→
𝑁𝑃←−−−−−−−−−−−−−−−−−−

𝐻 = ℎ(𝐾,𝑁𝑉 , 𝑁𝑃 )
𝑅0 = 𝑆1 ||𝑆2 || . . . ||𝑆𝑛

𝑅1 = 𝑆𝑛+1||𝑆𝑛+2|| . . . ||𝑆2𝑛

𝑅2 = 𝑆2𝑛+1||𝑆2𝑛+2|| . . . ||𝑆3𝑛

𝐻 = ℎ(𝐾,𝑁𝑉 , 𝑁𝑃 )
𝑅0 = 𝑆1 ||𝑆2 || . . . ||𝑆𝑛

𝑅1 = 𝑆𝑛+1||𝑆𝑛+2|| . . . ||𝑆2𝑛

𝑅2 = 𝑆2𝑛+1||𝑆2𝑛+2|| . . . ||𝑆3𝑛[︂
Pick 𝑐𝑖∈R {0, 1, 2}, Start Timer

𝑐𝑖−−−−−−−−−−−−−−−−−−→
Stop Timer

𝑟𝑖←−−−−−−−−−−−−−−−−−− 𝑟𝑖 = 𝑅
𝑐𝑖
𝑖

Check correctness of 𝑟𝑖’s and

Δ𝑡𝑖 ≤ 𝑡max for 1 ≤ 𝑖 ≤ 𝑛

are used to ensure the determinism. Since PUFs behave as a random function
(if one assumes that all the physical properties cannot be predicted), without
having the actual PUF circuit it is hard to predict the outputs as given the
inputs. Moreover, their intrinsic structure yields resistance against tampering
since physically tampering will most likely change its physical structure.

The authors define a strong adversary model in which the adversary has access
to volatile memory of the prover, namely an RFID tag. PUF functions are used
to prevent an adversary from obtaining the long-term secrets and clone the tags.
The main idea is that long-term secrets are not stored in the memory of the
prover but they are reconstructed from pre-secrets using a PUF circuit during
each protocol execution.

The first protocol proposed by Kardaş et al. is described in Algorithm 14. They
use two different long-term keys 𝐾 and 𝐿 which are consecutively generated as
outputs of the PUF function. Note that 𝐾 and 𝐿 never appear in the volatile
memory at the same time. First, 𝐾 is constructed by using PUF, and then
completely deleted from the memory after being used as a key of PRF function.
Then similarly, 𝐿 is generated and deleted after generation of registers. Hence,
whenever an adversary tampers the tag she can only obtain one of the keys,
under the assumption that the structure of the PUF circuit has been destroyed
after the attack thus PUF cannot be re-evaluated anymore. The authors state
that since the adversary cannot retrieve all the long-term keys, she can only
perform the attack in black-box model.

Given that the success probability of mafia and terrorist frauds remains high,
namely (3/4)𝑛, the authors introduce an extended protocol with a final signature
that reaches (1/2)𝑛 against these frauds.

18.3 Threshold Distance-Bounding Protocol to Defeat Terrorist Fraud

Many distance-bounding protocols are subject to terrorist fraud as the long-term
key cannot be retrieved in practice from the information needed to successfully
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Algorithm 14: Kardaş et al.’s protocol based on PUF without final signature

Verifier Prover

(secret 𝐾,𝐿) (pre-secret 𝐺1, 𝐺2)

Pick 𝑁𝑉 ∈R {0, 1}𝛿 Pick 𝑁𝑃 ∈R {0, 1}𝛿
𝑁𝑉−−−−−−−−−−−−−−−−−−→

𝐾 = 𝑃𝑈𝐹 (𝐺1)

𝑇 = 𝑓𝐾(𝑁𝑃 , 𝑁𝑉 )

Delete 𝐾

𝐿 = 𝑃𝑈𝐹 (𝐺2)

𝑣,𝑅0, 𝑅1 = 𝑓𝐿(𝑇 )

|𝑣| = |𝑅0| = |𝑅1| = 𝑛

Delete 𝐿
𝑁𝑃 , 𝑣

←−−−−−−−−−−−−−−−−−−

𝑣′, 𝑅0′ , 𝑅1′ = 𝑓𝐿(𝑓𝐾(𝑁𝑃 , 𝑁𝑉 ))
If 𝑣′ ̸= 𝑣 then abort[︃
Pick 𝑐𝑖∈{0, 1}, Start Timer

𝑐𝑖−−−−−−−−−−−−−−−−−−→
𝑟𝑖 = 𝑅

𝑐𝑖
𝑖

Stop Timer
𝑟𝑖←−−−−−−−−−−−−−−−−−−

Check correctness of 𝑟𝑖’s and

Δ𝑡𝑖 ≤ 𝑡max for 1 ≤ 𝑖 ≤ 𝑛

pass the protocol. Avoine, Lauradoux, and Martin in [5] suggest that a secret-
sharing scheme, possibly based on threshold cryptography can be used to thwart
terrorist fraud. In their proposal, the authentication material consists of 𝑝 shares
of a (𝑝, 𝑘) threshold scheme: if the prover reveals any combination of 𝑘 shares
to the adversary, the long-term secret leaks. By contrast, gathering strictly less
than 𝑘 shares reveals no information about the secret.
To illustrate this, the authors describe a variant of HK, which they call

TDB (Threshold Distance-Bounding), where the responses to the challenges
are generated using a threshold scheme. This protocol differs from HK in the
way the registers are generated during the slow phase: after the nonce exchange,
verifier and prover use their shared secret 𝐾 to compute a 𝑝× 𝑛 matrix ℛ over
a group 𝐺. The matrix ℛ is used to respond to the challenges as follows. The
verifier requires the prover during the 𝑖-th round the value 𝑟𝑐𝑖,𝑖 in ℛ (𝑐𝑖-th row
and 𝑖-th column). The challenges consequently consist of ⌈log2 𝑝⌉ bits and the
responses of ⌈log2 |𝐺|⌉ bits. The calculation of ℛ is such that the knowledge of
any combination of 𝑘 elements of a given column reveals a coordinate of the key.

ℛ =

⎛⎜⎝ 𝑟1,1 . . . 𝑟1,𝑛
...

. . .
...

𝑟𝑝,1 . . . 𝑟𝑝,𝑛

⎞⎟⎠
The authors introduce in [5] three classes of adversaries: i.) BD-ADV or blind-
adversary, who does not learn whether the protocol succeeds, ii.) RE-ADV or
result-adversary, who can observe if the protocol succeeds and, iii.) RD-ADV or
round-adversary, who has the capability of observing the result of each round.
They then analyze the resistance of their approach when facing each of these
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adversaries, according to the parameters 𝑝 and 𝑘. The parameter 𝑝 is actually
critical regarding mafia fraud, while 𝑘 impacts the probability of a successful
terrorist fraud.
For BD-ADV, the maximum number of elements of a column of ℛ which can

be safely given to the adversary is 𝑘 − 1. As a result, and for this adversary,
TDB implemented with (𝑝, 2) threshold scheme is secure against terrorist fraud
(this probability coincides with that for the mafia fraud) for any 𝑝 ≥ 2.

When the other adversaries are considered, the post-ask strategy must be
analyzed. These adversaries can learn two elements of each column of ℛ for
each protocol round, modifying all the challenges 𝑐𝑖 received from the verifier
and sending the modified versions ̂︀𝑐𝑖 to the prover; i.e., ∀𝑖 ̂︀𝑐𝑖 ≠ 𝑐𝑖. If a round
succeeds, then ̂︁𝑟𝑐𝑖 = 𝑟𝑐𝑖 . The RD-ADV can do this on all rounds in parallel, while
RE-ADV is limited to a single round per attack. So, TDB should be used with
𝑘 ≥ 3 if we want to protect the key against those stronger adversaries. On the
other hand, the prover should give to the adversary at most 𝑘− 2 shares at each
round (and not 𝑘 − 1 as when BD-ADV was analyzed). Thus, in the context of
RE-ADV and RD-ADV, to be secure against terrorist fraud attack, schemes (𝑝, 3)
for any 𝑝 ≥ 3 should be used.
The authors also describe a variant, called TTDB, that reduces the number

of systems of shares computed. Whereas a column of ℛ is used only once in
TDB, the same column is used 𝑞 times in TTDB. TTDB actually differs from
TDB on three points: i.) The size of prover’s answers; TTDB works on vectors
of 𝑞 coordinates in 𝐺, and therefore the responses of the prover are elements in
𝐺𝑞. ii.) The matrix computation; each distinct column is repeated 𝑞 times in
the matrix. The overall number of rounds is kept constant 𝑛, and consequently
there are only 𝑛/𝑞 distinct columns in ℛ. The resulting 𝑝× 𝑛 matrix ℛ over 𝐺𝑞

is defined by: ⎛⎜⎜⎜⎝
𝑞 times 𝑞 times⏞  ⏟  
𝑟1,1...𝑟1,1 . . .

⏞  ⏟  
𝑟1,𝑛/𝑞...𝑟1,𝑛/𝑞

...
. . .

...
𝑟𝑝,1...𝑟𝑝,1 . . . 𝑟𝑝,𝑛/𝑞...𝑟𝑝,𝑛/𝑞

⎞⎟⎟⎟⎠
Finally: iii.) when working on a given distinct column of ℛ, the challenges 𝑐𝑖
are not allowed to be repeated.

The results show that TTDB is a generalization of TDB for the terrorist fraud.
For BD-ADV, TTDB is secure when 𝑞 = 𝑘 − 1. Stronger adversaries, with the
post-ask strategy, can recover at most 2𝑞 shares for round. Therefore (𝑝, 2𝑞 + 1)
threshold schemes should be used, and the prover, when colluding with the
adversary, should only reveal 𝑞 shares. For these values, TTDB is also secure
against terrorist fraud.

18.4 Previous-Challenge Dependent Protocols

Previous-challenge dependent distance-bounding protocols are analyzed by Kara,
Kardaş, Bingöl, and Avoine in [45]. They focus on the low-cost distance-bounding
protocols having bitwise fast phases and no final signature. As for the classifi-
cation, they introduce the notion of 𝑘-previous challenge dependent (𝑘-PCD)
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protocols where each response bit depends on the current and the 𝑘 previous
challenges. First, the authors analyze the case 𝑘 = 0, that is when each response
bit depends on the current challenge only, and the case 𝑘 = 1. They show that
the latter provides a better security than the former one and propose a natural
extension to transform 0-PCD protocols into 1-PCD protocols. This modification
consists in a simple polynomial arithmetic operation to compute the responses.
The authors show that mafia fraud and distance fraud are correlated by

providing trade-off curves between the security levels of these two attacks. They
give the theoretical security bounds for two classes: 0-PCD and 1-PCD. The
authors thus claim that protocols can be designed to enforce the mafia or distance
fraud resistance, but not both at the same time, without increasing the memory
needs. For 𝑘 = 0 they find that 𝑃𝑟MF(𝑅)+𝑃𝑟DF(𝑅) ≥ 3/2, where 𝑃𝑟MF(𝑅) and
𝑃𝑟DF(𝑅) are the maximum probabilities for an adversary of correctly guessing
one bit response for mafia fraud and distance fraud respectively. As a consequence
of this result, one can conclude that protocols with 𝑘 = 0 cannot attain the
ideal security against distance fraud, i.e., 𝑃𝑟DF(𝑅) = 1/2, without being totally
vulnerable against mafia fraud; and also that the security of mafia fraud cannot
be better than 3/4.

The optimal security limit for mafia fraud and the trade-off curve for protocols
with 𝑘 = 1 turn out to be 𝑃𝑟MF(𝑅) ≥ 5/8 and 𝑃𝑟MF(𝑅) + 𝑃𝑟DF(𝑅) ≥ 5/4
respectively, and therefore it lies below that the previous one for 𝑘 = 0. Thus, the
ideal security level against distance fraud can be reached with 𝑃𝑟MF(𝑅) ≥ 3/4.

Finally, the authors apply the natural extension to HK for improving distance
fraud resistance in one case, and for improving mafia fraud resistance in the
other case6.

The authors leave as an open question to construct trade-off curves for 𝑘 ≥ 2,
but they conjecture that the security should be enhanced when 𝑘 is increased.

18.5 Distance-bounding over noisy channels

Distance-bounding protocols are conducted over noisy wireless ad hoc channels.
The fast phase consists, for the most part, of single bits sent between the prover
and the verifier. Due to the unreliability of the channel, the communicating
parties might receive erroneous bits during this phase. Being robust to relatively
high bit-error rates is a desirable property for a distance-bounding protocol.
There are two main approaches in the literature to make distance-bounding

protocols noise-resilient, both requiring to increase the number of rounds during
the fast phase.

The first and easiest approach to deal with noise is to allow up to 𝑥 incorrect
responses during the fast phase: the distance-bounding protocol succeeds if at
least (𝑛− 𝑥) bit-responses sent by the prover are correct. This technique can be
easily applied when the correctness of each of the 𝑛 responses can be verified
independently, which is the case for most distance-bounding protocols.
The second approach consists of using an error correcting code. It can be

applied on many protocols but it is particularly useful in protocols where one

6Note that there is a typo in [45], where it should be 𝑦𝑖𝑐𝑖 ⊕ 𝑦𝑖−1
𝑐𝑖−1

instead of 𝑦𝑖𝑐𝑖 ⊕ 𝑦𝑖𝑐𝑖−1
.
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single bit error does not allow the verifier to check the correctness of the other
rounds (e.g., in BC protocol). The idea is to apply an (𝑛, 𝑘) error correcting code
on a bitstring of length 𝑘, which is used by the prover to compute the responses
in the fast phase (e.g., to compute a XOR of the 𝑖-th bit of this bitstring and the
challenge). The error correcting code is constructed in such a way that it can
correct at least 𝑥 bit errors. By applying this code to the bitstring, its length
increases to 𝑛 bits. These 𝑛 bits are then used in the fast bit exchange phase.
After this phase, the verifier applies the error correcting code to compute and
verify the original bitstring of 𝑘 bits. Note that only the parameter 𝑘 has an
influence on the security, in contrast to 𝑛.

Note that most distance-bounding protocols can be easily made noise-resilient
by applying one of the two approaches. The second approach can be used by BC
and MAD protocols, while the first approach can be easily applied on most other
distance-bounding protocols. However, it seems harder to make DBPK-Log,
Tree-based, Poulidor, and RC protocols noise-resilient.

When implementing a noise-resilient distance-bounding protocol, it is of the
utmost importance to accurately estimate the bit error rate expected during the
fast phase. If the estimation on the number 𝑥 of expected bit errors is lower than
the actual bit error rate then the false rejection ratio is significant, meaning that
some honest provers are not accepted by the verifier. However, a high 𝑥 affects
the security level of the protocol in a negative way: an attacker can guess some
responses wrongly, and blame it on the noise. Consequently, when analyzing the
security properties of a noise-resilient distance-bounding protocol, it is typically
assumed that no noise is present during the fast phase, but the verifier allows
up to 𝑥 bit errors. This is the worst case scenario. The success probability of
an attacker depends on 𝑥. This often makes the analysis more complex and the
comparison of various distance-bounding protocols difficult. Noise resilience has
consequently not been considered in the analyses of the protocols provided in
Sections 3 to 14.
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