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ABSTRACT: Inspired by the preferential, allosteric binding of 9
RAPTA-T and auranofin to the nucleosome core particle , we A

describe the design and synthesis of a series of heterobimetallic 5% %5
ruthenium(IT)—gold(I) complexes with varying spacer lengths v
ranging from four to eight polyethylene glycol units. Evaluation
of their cytotoxicity reveals ICy, values in the low micromolar
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range against cisplatin sensitive and resistant human ovarian carcinoma (A2780, A2780cisR) and nontumoral human embryonic
kidney (HEK293) cell lines. Binding studies monitored via mass spectrometry revealed an affinity for histidine residues on a
fragment of the amyloid f-protein (residues 1—16, employed as a model system), which is in accordance with the binding sites
of parent drugs, RAPTA-C and auranofin, to the nucleosome core particle.

B INTRODUCTION

Understanding and controlling the targets of metal-based drugs
remains of great importance in the development of selective
drugs."” Ruthenium-based drugs possess a plethora of targets
ranging from proteins to DNA,”* and yet directing these
complexes toward a desirable target remains challenging. A
degree of control can be established in ruthenium(II)-arene
complexes by exchanging the bidentate ethylenediamine ligand
of [(1%-p-cymene)Ru (en)]PF4 (where en = ethylene diamine)
(RAED-C) for the compact, water-soluble PTA ligand of [(1°-
p-cymene)RuCL(PTA)] (where PTA = 1,3,5-triaza-7-phos-
phaadamantane) (RAPTA-C, Figure 1), which directs the
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Figure 1. Parent drugs, RAPTA-C and auranofin, and selected
heterobimetallic complexes.

RANCE-1

complex preferentially toward histone protein binding sites on
the nucleosome over those of DNA.> Furthermore, DNA
binding of RAED-C can be enhanced by substituting the p-
cymene arene with the more hydrophobic 5,8,9,10-tetrahy-
droanthracene (THA), resulting in the intercalation of DNA
and bimodal binding on naked DNA.° On the other hand,
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RAPTA-C and [Ru(#%-toluene) (PTA)Cl,] (RAPTA-T), which
differ only by an iso-propyl group, form specific and identical
adducts on histone H2A and H2B histone dimers of the
nucleosome core.” Notably, a series of binuclear ruthenium-
(II)-arene complexes are able to cross-link these binding sites,
inducing a state of irreversible condensed chromatin, resulting
in apoptosis.” The binding of RAPTA-T’ at these sites,
consisting of two glutamic acid residues (RU1) and a glutamic
acid and histidine residue (RU2), causes a series of structural
changes in the nucleosome core that induces a kink in the long
a-helix of the H2A histone protein. This structural alteration
opens up a binding site for auranofin, a gold(I) drug of the
structure (1-thio-f-p-glucopyranose-2,3,4,6-tetraacetato-S)-
(triethylphosphine)gold(I) (Figure 1), approved for the
treatment of rheumatoid arthritis,"® that is inaccessible prior
to the binding of the RAPTA-T. A synergy between the two
drugs was discovered where RAPTA-T appears to sensitize the
cells to auranofin, resulting in a beneficial increase in tumor
cell cytotoxicity and a threefold increase in auranofin
chromatin adducts."'

Heterobimetallic complexes have emerged as a promising
family of complexes that can combine the attributes and targets
of two metals within one structure.'”~"® As well as the capacity
to possess markedly higher activities than the parent drugs
alone,"” heterometallic drugs have a myriad of potential
applications. Numerous heterometallic complexes possessing
photophysical properties have been considered for cellular
imaging,zo’21 as trackable probes,”>** and as drug carriers for
cytotoxic complexes.”* >® Ferrocenyl and titanocene com-
plexes are particularly versatile building blocks for hetero-
metallic complexes due to their facile functionalization and
favorable redox properties” >*
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Scheme 1. Synthesis of Heterobimetallic Ruthenium(II)—Gold(I) Complexes, where n = 4 (a), 5 (b), 6 (c), and 8 (d)
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However, heterometallic complexes combining cisplatin-,
RAPTA-, and auranofin-type drugs have been scarcely
explored. Ruthenium—gold and ruthenium—platinum species
have been shown to possess cytotoxicities comparable to
cisplatin against HeLa cells. A platinum (1) —gold(I) complex
was encapsulated within a ferritin cage with the aim of
enhancing its selectivity; however, the complex was unstable
with the gold(I) complex binding to the protein and platinum
remaining in the bulk, decreasing the efficacy of the agent.”® A
ruthenium(II)—platinum(IV) prodrug possessing high cyto-
toxicity against cisplatin resistant cells was also able to inhibit
cell migration.””

The combination of RAPTA complexes, which possess a
general low toxicity and antimetastatic properties,” and
auranofin, which is highly cytotoxic with anti-inflammatory
properties,”® offers great potential. Few heterometallic
complexes based on ruthenium(II)-arene compounds and
auranofin have been reported. [(1°-p-Cymene)RuCl,(u-
dppm)Au(IMes)]ClO, (RANCE-1, Figure 1), where dppm =
diphenylphophanylmethyl(diphenyl) phosphane and IMes
1,3-bis(2,4,6-trimethylphenyl)imidazole-2-ylidene), is a prom-
ising heterobimetallic complex exhibiting efficient inhibition of
thioredoxin reductase (TrX), vascular endothelial growth
factor (VEGF), pan-matrix metalloproteinases (pan-MPP),
and pan-cathepsin. When compared to auranofin, RANCE-1
presents similar antiproliferative activity against renal cancer
cell line (Caki-1) and improved inhibition of VEGF, pan-
MMP, and pan-cathepsin.”® Replacing the auranofin-like
thiolato-B-p-glucose tetraacetate ligand with a chloride ligand
results in a threefold decrease in cytotoxicity against human
ovarian carcinoma (A2780) cells.”” Other examples include
[(ﬂé-p—cymene)RuClz(ﬂ—dppm)AuCH (RUAU-1, Figure 1)
and [(#°-p-cymene)RuCl,(u-dppm)Au(S-thiazoline)], which
shows that differing the sacrificial ligand coordinated to the
gold center does not impact the activity in this case.”'
However, introducing N-heterocyclic carbene ligands to the
gold center in cationic ruthenium(II)—gold(I) complexes of
the same structure can enhance tumor cell selectivity.*”

Herein, we describe the synthesis, cytotoxicity, and target
binding studies of a series of heterobimetallic complexes
containing RAPTA-C— and auranofin-like fragments. The
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design of the complexes aims to preserve the structure of the
parent drugs, RAPTA-C and auranofin, as closely as possible
while allowing flexibility to enable binding at two different and
distal sites. A series of linker lengths was explored to determine
the impact of the linker length on the cytotoxicity of the
complexes. The ability of the complexes to bind to histidine
residues was explored via mass spectrometry using both single
amino acids and a fragment of the amyloid S-protein.

B RESULTS AND DISCUSSION

With the aim of targeting the binding sites of RAPTA-C and
auranofin, maintaining the key structural features of the parent
drugs is important. However, alterations are required in order
to tether the complexes via a flexible linker with the PTA and
triethylphosphine ligands, belonging to RAPTA-C and
auranofin, respectively, being replaced by 4-
(diphenylphosphosphino)benzoic acid ligands, which provide
a functionalizable carboxylic acid moiety and air stability. The
labile thio-f-p-glucose-2,3,4,6-tetraacetate ligand of auranofin
is replaced with a labile chloride ligand. The p-cymene arene
and the two labile chloride ligands present in RAPTA-C were
maintained due to the hydrophobic interactions provided by
the arene during binding and the vital role of the chlorides in
the activation of the complex via aquation. Polyethylene glycol
was selected as a suitable linker due to its flexibility and its
higher water solubility compared to that of alkyl chains.

As a 4-(diphenylphosphosphino)benzoic acid ligand is
coordinated to both the ruthenium(II) and the gold(I)
centers, care must be taken to achieve high selectivity in the
coupling step. Manipulation of reaction stoichiometry was
insufficient to control the monocoordination of either
ruthenium or gold to a bis-phosphine ligand. Therefore,
monophosphine ligands (la—1d) were prepared via the
esterification reaction between 1 equiv of 4-
(diphenylphosphosphino)benzoic acid and 1.5 equiv of the
appropriate polyethylene glycol chain using N-ethyl-N'-(3-
dimethlaminopropyl)carbodiimide hydrochloride (EDCI) as
coupling reagent and 4-(dimethylamino)pyridine (DMAP) as
base catalyst (Scheme 1). Ligands la—1d (Scheme 1) were
coordinated to the gold via a freshly prepared gold(I)-
tetrahydrothiophene intermediate to yield gold(I) complexes
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2a—2d in near-quantitative yields. The stability of the gold(I)-
phosphine complexes allows further reactions to take place
without effecting the integrity of the complex. The second 4-
(diphenylphosphosphino)benzoic acid was introduced to the
gold complex using identical coupling conditions to those
employed in the first synthetic step, resulting in cationic cyclic
gold complexes 3a—3d. The final step introduces the
ruthenium(II) center via the coordination of one of the
phosphine ligands previously interacting with the gold(I)
center.

All compounds were characterized by 'H, *'P{'H}, and
BC{'H} NMR spectroscopy, high-resolution mass spectrom-
etry, and elemental analysis. The coordination of the ligands to
the metal centers was monitored by *'P{'"H} NMR spectros-
copy. The phosphine ligand coordinated to the ruthenium
center produces a characteristic singlet at ca. 25 ppm, whereas
the gold-phosphine peak is observed at ca. 33 ppm (cf. ca. —§
ppm for the free ligand), allowing the reactions to be easily
monitored. The introduction of a second 4-
(diphenylphosphosphino)benzoic acid to 2a—2d results in
changes of differing magnitudes in the *'P{'"H} NMR spectra,
depending on the number of PEG units the complex possesses.
The resulting cyclic gold(I) complexes 3a—3d present a single
broad peak at 29.53 (3a), 31.78 (3b), 28.20 (3c), and 31.09
(3d) ppm. The broad *'P{'H} NMR peaks observed for 3a—
3d can be attributed to the strain placed on the Au—P bonds
by the cyclization, leading to fluctuations in the environment of
the phosphorus. Upon the introduction of the ruthenium(1I)
center, 3a—3d decyclize, and two peaks are observed in the
3P{'H} NMR spectra, as mentioned above at ca. 25 and 33
ppm for the ruthenium(II) and gold(II) coordinated
phosphine ligands, respectively (Figure 2).
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Figure 2. *'P{"H} NMR spectra (162 MHz, CDCl,) of the cyclic gold
complex 3b (top) and heterobimetallic complex 4b (bottom).

The 'H NMR spectra of the target complexes 4a—4d
confirmed their formation with the appearance of the
distinctive p-cymene peaks including doublets at 5.20—5.22
and 4.97—4.99 ppm, septet at 2.80—2.88 ppm, singlet at 1.85—
1.86 ppm, and a doublet at 1.09—1.12 ppm. The coordination
of a phosphine ligand to the ruthenium was observed via a
downfield shift of the (Ar)C—CH—CH—C—P—Ru phenyl
protons from 7.28 to 7.46 (3a—3d) to 7.77—7.83 ppm (4a—

2503

4d) as well as the O—(C=0)—(Ar)C—CH-CH-C—-P—Ru
protons from 7.28 to 7.46 ppm (3a—3d) to 7.89—7.95 ppm
(4a—4d) (Figure 3).
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Figure 3. "H NMR (400 MHz, CDCI;) spectra of cyclic gold complex
3b (top) and heterobimetallic complex 4b (bottom). Notable
resonances are identified with colored circles: phenyl protons (red),
nS-arene protons (blue), and PEG protons (green).

In Vitro Antiproliferative Activity. The antiproliferative
activity of 4a—4d was assessed using the 3-(4,5-dimethyl-2-
thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay
against cisplatin sensitive and resistant human ovarian
carcinoma (A2780 and A2780cisR) and nontumoral human
embryonic kidney (HEK-293) cell lines (Table 1).** Cisplatin,
auranofin, and RAPTA-C were tested as controls.

Table 1. In vitro Antiproliferative Activity of 4a—4d,
Cisplatin, Auranofin, and RAPTA-C against Human Ovarian
Carcinoma (A2780), Human Ovarian Carcinoma Cisplatin
Resistant (A2780cisR), and Human Embryonic Kidney 293
(HEK-293) Cell Lines after 72 h Exposure”

compound A2780 A2780 CisR HEK293
4a 25+03 3.1+£03 2.7 £0.1
4b 24 + 0.5 31+0.1 2.7+ 0.1
4c 24 +03 3.6 + 04 29+ 03
4d 1.8 + 0.6 39+£0.5 3.5+ 04
cisplatin 1.9 + 04 133 + 12 9+08
auranofin** 13+ 0S5 LS +05 19 + 0.6
RAPTA-C >200 >200 >200

“Values are given as the mean + SD (uM).

The cytotoxicity of the parent complex, RAPTA-C, is low
against a range of cell lines, with an IC, > 200 M against the
tested cell lines. Compounds 4a—4d possess ICs, values in the
low micromolar range against all tested cell lines, with values
comparable to those of cisplatin and auranofin against the
A2780 cell line and to auranofin against the A2780 CisR cell
line. Although the compounds overcome cisplatin resistance,
they do not show selectivity toward the tumoral cell lines
compared to the nontumoral cell lines. Moreover, the length of
the PEG linker has negligible impact on the cytotoxicity of the
complexes, showing that the cytotoxicity of these complexes is
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independent of linker length, as observed with homobimetallic
ruthenium(II) and gold(I) complexes.**

Compounds 4a—4d are considerably more cytotoxic toward
the A2780 cell line compared to [(1-methyl-3-(4-((4’-methyl-
2,2/-bipyridin-4-yl)methylcarbamoyl)benzyl)imidazole-2-yli-
dine gold(I) chloride][(7°p-cymene)ruthenium(II) chloride]
hexafluorophosphate and [(1-methyl-3-(4-((4'-methyl-2,2'-
bipyridin-4-yl)methylcarbamoyl)benzyl)imidazole-2-ylidine
gold(I) (thiolato-B-p-glucose tetraacetate)][(1°-p-cymene)-
ruthenium(II) chloride] hexafluoro-phosphate, which possess
ICs, values of 63.4 + 2.4 and 16.8 + 3.1 uM, respectively.*’
[(7%-p-Cymene)RuCl,(u-dppm)Au(NHC)]ClO, (where
NHC = N-heterocyclic carbene) complexes possess cytotox-
icity greater than that of cisplatin against human renal (Caki-1)
cells with ICs, values in the low micromolar range. They show
good selectivity toward nontumoral HEK-293 cells compared
to 4a—4d with ICq, values of >73 uM.*” The bimetallic
compounds [(17%-p-cymene)RuCl,(u-dppm)AuCl] (RUAU-1,
Figure 1) and [(1%p-cymene)RuCl,(u-dppm)Au(S-thiazo-
line)] show comparable cytotoxicity toward human colon
(HCT-116) cells to the Ru(p-cymene)Cl,(y-dppm)Au-
(NHC)]CIO, complexes with ICg, values of 4.6 + 0.1 uM
(1) and 6.5 + 0.1 uM (2) versus 8—10 uM for the cationic
NHC complexes."’ RANCE-1 (Figure 1) also presents
comparable cytotoxicity to the cationic NHC complexes with
an ICs, of 8.7 + 0.9 uM against Caki-1 cells, which is around
threefold more cytotoxic than cisplatin but threefold less
cytotoxic than auranofin against the same cell line.””

Amino Acid and Peptide Binding Studies. The ability
of the heterobimetallic complexes to bind to the amino acid
residues present in the RU1, RU2, AUI, and AU’ binding
sites in the nucleosome core particle was assessed using amino
acids and a model peptide. In crystallographic studies on the
nucleosome core particle, auranofin binds to histidine residues
while RAPTA-T binds to both histidine and glutamine
residues."’ Complex 4b was incubated with 1-histidine for 2
h in a 1:1 complex—amino acid ratio in unbuffered solution
(98% Milli-Q water, 2% DMSO) at 310 K, and the adducts
were analyzed by mass spectrometry.”™* ESI-MS revealed a
peak at m/z 894.6949 corresponding to the adduct [4b — 3Cl
+ 3His + 2K]**, in which dissociation of the three labile
chloride ligands and subsequent binding of three histidine
residues indicates that both the ruthenium and gold centers
bind to histidines.

Peptide binding studies were performed on a fragment of the
amyloid p-protein (residues 1—16, H-Asp'-Ala’-Glu’—
Phe*-Arg®-His®-Asp’-Ser®-Gly’-Tyr'%-Glu'!-Val'>-His"*-His'*-
GIn'*-Lys'S~OH). Complex 4a was incubated with the 16-mer
for 2 h in a 1:3 complex—peptide ratio in unbuffered solution
(98% Milli-Q, 2% DMSO) at 310 K. A 1:3 complex—peptide
ratio was required to suppress the facile ionization of the gold
center that suppresses the signal of peptide complex adducts.
ESI-MS revealed 1:1 adducts of 4a and the 1—16 amyloid -
peptide; 1:2 complex—peptides adducts were not observed
(Figure 4). The loss of the three labile chloride ligands in the
complex indicates that both the ruthenium and gold centers
are coordinated to at least one amino acid residue cross-linking
the peptide. Complex 4d, possessing the longest linker of the
series of PEGg, was incubated with the 1—16 amyloid p-
peptide under identical conditions. Similarly to 4a, 1:1
complex—peptide adducts were observed, while 1:2 com-
plex—peptide adducts were not found. To obtain further
information on the mode of binding in the 1:1 adduct
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Figure 4. ESI-MS spectrum of 4a incubated with 1—16 amyloid j-
peptide in a 1:3 complex—peptide ratio at 310 K for 2 h (peaks of
interest are labeled).

observed, the [peptide + 4a + 2H — 3CI]** ion
(Cy40H,79AuN,,0;P,Ru>"; theoretical m/z 631.8243; ob-
served m/z 631.8235; —1.16 ppm) (Figure S21) was chosen
for fragmentation due to its high charge state and intact 4a
adduct. Collision induced dissociation (CID), producing
predominantly b- and y-type fragments,*® and electron-transfer
dissociation (ETD) fragmentation, which breaks N—C, bonds
along the peptide backbone producing c- and z-type frag-
ments,”’ were performed. ETD fragmentation has recently
been used to evaluate the binding of dinuclear ruthenium(II)-
arene complexes on the amyloid f-peptide where the metal
centers were found to bind to histidine residues.’® The analysis
of the fragments produced was performed using an online
Apm’s application (available on http://www.cheminfo.org/
flavor/mass/ index.html),%’51 which enabled the identification
of both terminal and internal fragments that are otherwise
difficult to identify manually.

As both the ruthenium and gold centers can bind to
histidine, it is likely that the [peptide + 4a + SH — 3CI]** ion
represents a mixture of adducts in which the metals interact
with His®, His®, and His'* in different combinations. The
unmetalated peptide fragments produced by the CID and ETD
fragmentation processes reveal an interesting pattern (Figure
5). The unmetalated CID fragments bs—b,s and y,—y;5 were
observed, whereas the smaller fragments, y,—y; and b;—b,
were not present. The smallest fragments, bs and y,, consist of
residues H-Asp'-Ala>-Glu®—Phe*-Arg®-His® and His'*-
His'*-GIn'S-Lys'®~OH, respectively. In both directions, the
fragmentation process is interrupted at a histidine residue, His®
for b fragments and His" for y fragments, suggesting that there
is obstruction, presumably a bound metal center, which
interrupts fragmentation. The ETD fragmentation reveals an
identical pattern where the unmetalated peptide fragments, c,
C7 Co—Cy3, €15, and z,—7,, fragments, were observed (Figure ).
The smallest fragments observed, c¢ and z,, also consist of H-
Asp'-Ala®-Glu®-Phe*-Arg*-His® and His">-His'*-GIn'*-Lys'*—
OH, respectively. The similarity between the CID and ETD
fragmentation patterns suggest that the obstruction occurs at
His® and His'?, impeding both fragmentation processes.

Interestingly, the series of ETD peptide fragments
containing bound 4a (Figure 6) mirror the unmetalated
ETD fragments (Figure S). The fragments cs*—c;s* and z3*—

DOI: 10.1021/acs.inorgchem.8b03069
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Figure 5. Fragmentation of the [peptide + 4a + 2H — 3CI]** ion (m/z 631.8235): unmetalated CID, b (blue) and y (purple), and ETD, ¢ (red)
and z (green), fragments.
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Figure 6. Fragmentation of the [peptide + 4a + 2H — 3Cl]** ion (m/z 631.8235): metalated CID, b (blue) and y (purple), and ETD, ¢ (red) and z
(green), fragments containing the [4a — 3Cl] adduct.

z)5* containing the complete [4a — 3Cl] adduct are observed. Glu3—Phe4-Arg5—Hi56 and His'>-His'*-GIn'5-Lys'*~OH resi-
The smallest fragments, c¢; and zs, consisting of H-Asp'-Ala’- dues, respectively, are identical to the nonmetalated fragments.
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Figure 7. Fragmentation of the [peptide + 4a + 2H — 3CI]** ion (m/z 631.8235): metalated CID, b,y, (blue), and ETD, c,z, (red), internal

fragments containing the [4a — 3Cl] adduct.

As it is plausible that both the gold and the ruthenium centers
could bind to any of the His®, His'?, and His'* sites, a
ruthenium or gold center bound to the His® and His"? residues
could be impeding further fragmentation of the peptide-4a
adduct. Metalated b- and y-type fragments containing [4a —
3Cl] are also observed in the CID spectrum (Figure 6);
however, the smallest fragments found are b;;* and y;,* and
do not yield much information.

However, the observed unmetalated internal fragments only
include one, if any, histidine residues. Fragments c,3zg, ¢;3z;
and c,;z¢ include the His™ residue and the c,z,3, ¢;z14 Crzy5,
CoZ15, CoZiyy CioZ1s and fragments include the His® residue. The
other unmetalated fragments observed internal fragments, c,z,
and c,zy, do not contain any histidines residues. This suggests
that the histidine residues that are not included in the
fragments could be bound to 4a.

In contrast, all the observed metalated CID and ETD
internal fragments containing the [4a —3Cl] adducts contain at
least one histidine residue (Figure 7). The CID internal
fragments bgy,s* and b,y;,*, contain Ala’>-Glu®-Phe*-Arg®-His®
and Arg®-His®-Asp” residues, indicating that either the gold or
ruthenium centers are bound to the His® residue. On the other
hand, the metalated internal ETD fragments include all three
histidine residues in different combinations. Fragments ¢;;z,5*,
cnZiz®, CozisT, Cloz14¥, and ¢z,5* contain the His® residue;
C1321,* contains the His™, and ¢ 5z,* contains both His'® and
His"". Fragments c,52,,%, ¢;52;,%, and cy4z;,* contain all three
histidine residues His®, His'?, and His', suggesting that the
gold and ruthenium centers are both bound to the fragment via
at least one histidine.

Concluding Remarks. A series of heterometallic
ruthenium(IT)—gold(I) complexes inspired by the preferential
binding of RAPTA-T and auranofin in the nucleosome core
particle was synthesized with different lengths of linkers
ranging from 4 to 8 PEG units. They possess cytotoxicities in
the low micromolar range against A2780, A2780cisR, and
HEK293 cell lines. Although they do not show selectivity
toward cancer cells, they do have the ability to overcome
cisplatin resistance in the A2780cisR cell line. Binding studies
performed on L-histidine and the 1—16 mer amyloid S-protein
show that the both the ruthenium and gold centers can bind to
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histidine residues, suggesting that these complexes have the
capability to bind to the RU2, AU1, and AU1’ binding sites on
the nucleosome core particle.

B EXPERIMENTAL SECTION

Materials. All commercially available starting materials were
purchased from Sigma-Aldrich, TCI, ABCR and used without further
purification. Ruthenium trichloride hydrate was purchased from
precious metals online and used in the synthesis of the [Ru(p-
cymene)Cl,], dimer.>* L-histidine was purchased from ABCR and the
1-16 p-amyloid peptide (H-Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-
Tyr-Glu-Val-His-His-Gln-Lys—OH) was purchased as a trifluoroace-
tate salt from Bachem. Dichloromethane was purified and degassed
using a PureSolv solvent purification system (Innovative Technology
INC) prior to use. Reactions were monitored via thin-layer
chromatography carried out on silica plates (Merck 5554) and
visualized under UV radiation (254 nm). Flash column chromatog-
raphy was conducted in the normal phase on a CombiFlash-EZ prep
machine installed with prepacked Luknova columns and the stated
eluent system.

Instrumentation and Methods. 'H (400 MHz), *'P{'H} (101
MHz), and BC{'H} (162 MHz) NMR spectra were conducted on a
Bruker Advance II 400 and referenced to the residual solvent peak of
CDCl,; ("H: 7.26 ppm, *C: 77.16 ppm). Coupling constants (J) are
reported in hertz. High-resolution ESI-MS characterization was
performed on a Xevo G2-S QTOF mass spectrometer coupled to
the Acquity UPLC Class Binary Solvent manager and BTN sample
manager (Waters, Corporation, Milford, MA). Elemental Analysis was
performed on a Thermo Scientific Flash 2000 organic elemental
analyzer.

Synthesis. General Procedure of T1a-1d. 4-
(Diphenylphosphino)benzoic acid (1 equiv) and EDCI (1.3 equiv)
were dissolved in dry CH,Cl, (3 mL) and stirred under N, at room
temperature for 1 h. The solution was added dropwise to a solution of
the appropriate ethylene glycol (1.5 equiv) and DMAP (0.5 equiv) in
dry CH,Cl, (2 mL), and the reaction was stirred under N, at room
temperature for 21 h. The reaction mixture was washed with brine
(100 mL), dried over anhydrous sodium sulfate, filtered and
concentrated under reduced pressure. Purification was achieved via
flash column chromatography using an eluent system of C4H,,/
EtOAc and the product was isolated as a colorless oil.

Compound 1a. According to the general procedure, 4-
(diphenylphosphino)benzoic acid (0.300 g, 0.979 mmol, 1 equiv),
EDCI (0.244 g, 1.273 mmol, 1.3 equiv), tetraethylene glycol (0.285 g,
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1.273 mmol,0.25 mL, 1.5 equiv), and DMAP (0.060 g, 0.490 mmo],
0.5 equiv) in CH,Cl, (5 mL). The product was isolated as a colorless
oil (0.291 g, 0.603 mmol, 62%); Elemental Analysis (%): calcd for
Cy,Hy O4P C 67.21 H 6.48; found C 67.20 H 6.42. "H NMR (CDCl,
400 MHz): 7.97—8.00 (2H, m, 2X0O—(C=0)—(Ar)C—CH-CH—
C-P), 7.26—7.38 (12H, m, 2XO—(C=0)—(Ar)C—CH-CH-C-P,
4xP—(Ar)C—CH—CH-CH, 4XxP-(Ar)C—CH-CH-CH, 2XP—
(Ar)C—CH—CH—-CH), 4.46-4.49 (2H, m, Ar—(C=0)-0—
CH,—CH,-0), 3.80—3.83 (2H, m, Ar—(C=0)—0—-CH,—CH,—
0), 3.60-3.71 (10H, m, Ar—(C=0)-0—(CH,),—~0—(CH,),, Ar—
(C=O)_O_((CHz)z_o)z_(Cﬂg)z; Ar—(C=0)-0-((CH,),~
0);—CH,—-CH,—OH), 3.57-3.60 (2H, m, Ar—(C=0)-0-
((CH,),—-0),-CH,~CH,—OH); *P {'H} NMR (CDCl, 162
MHz): —4.95 (1P); *C {'H} NMR (CDCl; 101 MHz): 166.4
(1¢, 0—(C=0)-(Ar)C—CH-CH-C-P), 144.3 (1C, d, O—(C=
0)—(Ar)C—CH-CH-C-P, 'Jop = 14 Hz), 1363 (2C, d, 2xP—
(Ar)C—CH-CH-CH, YJ¢p = 11 Hz), 134.1 (4C, d, 4xP—(Ar)C—
CH-CH—CH, ¥, = 20 Hz), 133.3 (2C, d, 2xO—(C=0)—(Ar)C—
CH-CH-C-P, ’Jcp = 19 Hz), 130.1 (1C, O—(C=0)—(Ar)C—
CH-CH-C-P), 129.5 (2C, d, 2xO—(C=0)—(Ar)C—CH-CH-
C—P, *J¢p = 6 Hz), 129.2 (2C, 2XP—(Ar)C—CH-CH-CH), 128.8
(4C, d, 4xP—(Ar)C—CH—CH-CH, *Jcp = 7 Hz), 72.6 (1C, O—
CH,—CH,—OH), 70.8 (2C, Ar—(C=0)-0-((CH,),—0),-CH,,
Ar—(C=0)-0—-(CH,),—0—CH,-CH,), 70.7 (1C, Ar—(C=0)-
0-((CH,),—-0),—CH,—-CH,), 70.5 (1C, Ar—(C=0)-0-
(CH,),~0-CH,), 69.3 (1C, (Ar)—(C=0)-0-CH,~CH,-0),
642 (1C, (Ar)—(C=0)-0—-CH,—-CH,—0), 61.9 (1C, O—CH,—
CH,—OH), 2.19 (1H, bs, —OH); HRMS (ESI(+)-QTOF): m/z
found 483.1938 [M + H]* C,,H;,04P" requires 483.1931 (ppm =
1.45), 505.1768 [M + Na]* C,,H;,0¢PNa requires 505.1750 (ppm =
3.56).

Compound 1b. According to the general procedure, 4-
(diphenylphosphino)benzoic acid (0.300 g, 0.979 mmol, 1 equiv),
EDCI (0.244 g, 1.273 mmol, 1.3 equiv), pentaethylene glycol (0.350
g, 1.469 mmol, 0.31 mL, 1.5 equiv), and DMAP (0.060 g, 0.490
mmol, 0.5 equiv) in CH,Cl, (5 mL). The product was isolated as a
colorless oil (0.340 g, 0.646 mmol, 66%); Elemental Analysis (%):
caled For CyH;0,P C 66.15 H 6.70; found C 66.02 H 6.66; 'H
NMR (CDCl; 400 MHz): 7.97-8.00 (2H, m, 2xO—(C=0)-
(Ar)C—CH-CH-C-P), 7.26—7.38 (12H, m, 2xXO—(C=0)—
(Ar)C—CH-CH—-C—P, 4xP—(Ar)C—CH—CH—CH, 4xP—
(Ar)C—CH—CH-CH, 2xP—(Ar)C—CH—CH—-CH), 4.45—4.48
(2H, m, Ar—(C=0)-0-CH,—CH,—-0), 3.80—3.83 (2H, m, Ar—
(C=0)-0-CH,-CH,—-0), 3.60—3.71 (16H, m, Ar—(C=0)—0—
(CHz)z_O_(CH;)Zr Ar—(CZO)_O_((CHz)z_o)z_(Cﬂg)zr Ar—
(C=0)-0-((CH,),~0);=(CH,),, Ar—(C=0)-0-((CH,),~
0),—(CH,),—OH, 2.19 (1H, bs, —OH); *'P {'H} NMR (CDCl,
162 MHz): —5.05 (1P); C {'"H} NMR (CDCl; 101 MHz): 166.5
(1C, 0—(C=0)—(Ar)C—~CH-CH—C-P), 144.3 (1C, d, O—(C=
0)—(Ar)C—CH-CH-C-P, 'Jop = 14 Hz), 1363 (2C, d, 2xP—
(Ar)C—CH-CH-CH, YJ¢p = 11 Hz), 134.1 (4C, d, 4xP—(Ar)C—
CH-CH-CH, ¥, = 20 Hz), 133.3 (2C, d, 2xO—(C=0)—(Ar)C—
CH-CH-C-P, ¢, = 19 Hz), 1302 (1C, O—(C=0)—(Ar)C—
CH-CH-C-P), 129.5 (2C, d, 2xO—(C=0)—(Ar)C—CH-CH-
C—P, *¢p = 6 Hz), 129.3 (2C, 2XP—(Ar)C—CH-CH-CH), 128.8
(4C, d, 4xP—(Ar)C—CH—-CH—-CH, *Jp = 7 Hz), 72.6 (1C, O—
CH,—CH,-OH), 70.7-70.8 (5C, Ar—(C=0)-0-(CH,),—0O—
CH,~ CH,, Ar—(C=0)-0-((CH,),~0),~(CH,),, Ar—(C=
0)-0-((CH,),~0);—(CH,),), 70.5 (1C, Ar—(C=0)-0-
(CH,),—0-CH,), 69.3 (1C, (Ar)—(C=0)-0-CH,-CH,-0),
642 (1C, (Ar)—(C=0)-0—-CH,—CH,-0), 61.9 (1C, O—CH,—
CH,—OH); HRMS (ESI(+)-QTOF): m/z found 527.2198 [M + H]*
CyoH350,P" requires 527.2193 (ppm = 0.95), 549.2040 [M + Na]*
C,oH;50,PNa requires 549.2013 (ppm = 4.92).

Compound 1c. According to the general procedure, 4-
(diphenylphosphino)benzoic acid (0.300 g, 0.979 mmol, 1 equiv),
EDCI (0.244 g, 1.273 mmol, 1.3 equiv), hexaethylene glycol (0.414 g,
1.469 mmol, 0.37 mL, 1.5 equiv), and DMAP (0.060 g, 0.490 mmol,
0.5 equiv) in CH,Cl, (S mL). The product was isolated as a colorless
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oil (0.372 g, 0.652 mmol, 67%); Elemental Analysis (%): calcd for
C;,H3,04P C 65.25 H 6.89; found C 65.16 H 6.93; '"H NMR (CDCl,
400 MHz): 7.97-7.99 (2H, m, 2xO—(C=0)—(Ar)C—CH—CH—
C-P), 7.29-7.38 (12H, m, 2x0O—(C=0)—(Ar)C—CH-CH—C-P,
4xP—(Ar)C—CH—CH—-CH, 4xP—(Ar)C—CH-CH-CH, 2XxP—
(Ar)C—CH-CH—-CH), 4.45—4.47 (2H, m, Ar—(C=0)-0-
CH,—CH,—0), 3.80—-3.83 (2H, m, Ar—(C=0)—-0—-CH,—CH,—
0), 3.58—3.72 (20H, m, Ar—(C=0)—0—(CH,),—0—(CH,),, Ar—
(CZO)_O_((CHZ)Z_O)Z_(CH;)z; Ar—(C=0)-0-((CH,),~
0)3_(CH;)2/ Ar—(C:O)_O_((CHZ)Z_O)S_(CH;)ZJ Ar—(C=
O)_O_((CHz)z_O)s_(Cﬂg)z_OH: 2.65 (1H, bs, —OH); P
{'"H} NMR (CDCl; 162 MHz): —4.84 (1P); “C {'H} NMR
(CDCl;, 101 MHz): 1664 (1C, O—(C=0)—(Ar)C—CH—CH—-C—
P), 1443 (1C, d, 0—(C=0)—(Ar)C—CH-CH-C-P, 'J., = 14
Hz), 1363 (2C, d, 2xP—(Ar)C—CH—CH—CH, ", = 11 Hz), 134.1
(4C, d, 4xP—(Ar)C—CH—CH-CH, 2]C,P = 20 Hz), 133.3 (2C, 4,
2X0—(C=0)—(Ar)C—CH—-CH-C-P, *J.p = 19 Hz), 1302 (1C,
0—(C=0)—(Ar)C—CH-CH-C-P), 129.5 (2C, d, 2x0O—(C=
0)—(Ar)C—CH-CH—-C-P, *J.p = 6 Hz), 129.3 (2C, 2XP—(Ar)C—
CH-CH-CH), 128.8 (4C, d, 4xP—(Ar)C—CH—CH—CH, ¥, = 7
Hz), 72.7 (1C, O—CH,—CH,—0H), 70.7—70.8 (7C, Ar—(C=0)—
0—(CH,),—0—CH,-CH,, Ar—(C=0)-0~-((CH,),—0),~(CH,),,
Ar—(C=0)-0-((CH,),-0);-(CH,),, Ar—(C=0)-0-
((CH,)4—0),~(CH,),), 70.5 (1C, Ar—(C=0)-0—(CH,),—0—
CH,), 69.3 (1C, (Ar)—(C=0)-0-CH,—-CH,-0), 64.3 (IC,
(Ar)—(C=0)-0-CH,-CH,-0), 61.9 (1C, O—CH,—CH,—
OH); HRMS (ESI(+)-QTOEF): m/z found 571.2467 [M + H]*
C3,HyoOsP" requires 571.2461 (ppm = 1.05).

Compound 1d. According to the general procedure, 4-
(diphenylphosphino)benzoic acid (0.300 g, 0.979 mmol, 1 equiv),
EDCI (0.244 g, 1.273 mmol, 1.3 equiv), octaethylene glycol (0.544 g,
1.469 mmol, 1.5 equiv), and DMAP (0.060 g, 0.490 mmol, 0.5 equiv)
in CH,Cl, (5§ mL). The product was isolated as a colorless oil (0.309
g, 0.469 mmol, 48%); Elemental Analysis (%): calcd for C35H,,0,,P-
C¢H,, C 66.11 H 8.25, found C 66.31 H 8.02; '"H NMR (CDCl, 400
MHz): 7.96—7.98 (2H, m, 2X0—(C=0)-(Ar)C—CH-CH—-C-P),
7.30—7.36 (12H, m, 2XO—(C=0)—(Ar)C—CH—CH—-C-P, 4xP—
(Ar)C—CH-CH-CH, 4xP—(Ar)C—CH—CH—-CH, 2xP—(Ar)C—
CH-CH-CH), 444—4.46 (2H, m, Ar—(C=0)-0—-CH,—CH,—
0), 3.79-3.82 (2H, m, Ar—(C=0)—-0-CH,—CH,-0), 3.58—3.72
(28H, m, Ar—(C=0)-0-(CH,),—0—(CH,),, Ar—(C=0)-0-
((CHZ)Z_O)Z_O_(CE;)Z) Ar—(C=O)—O—((CH2)7_—O)3—
(CH,), Ar—(C=0)-0-((CH,),~0),~(CH,), Ar—(C=0)-
O_((CHZ)Z_O)S_(Cﬂ;)ZJ Ar—(C=0)-0-((CH,),—0)4—
(Cﬂg)zz AV—(CZO)_O_((CH2)2_0)7_(CH;)Z_OH)} p {IH}
NMR (CDCl,, 162 MHz): —5.08 (1P); '*C {'"H} NMR (CDCl, 101
MHz): 166.4 (1C, O—(C=0)—(Ar)C—CH-CH-C-P), 143.2
(1¢, d, 0—(C=0)—(Ar)C—CH-CH-C-P, 'Jcp = 14 Hz), 135.2
(2C, d, 2xP—(Ar)C—CH—CH-CH, 'J¢, = 11 Hz), 133.0 (4C, d,
4XP—(Ar)C—CH-CH-CH, *Jp = 20 Hz), 1322 (2C, d, 2XO—
(C=0)—(Ar)C—CH-CH-C-P, ’Jcp = 19 Hz), 129.1 (1C, O—
(C=0)-(Ar)C-CH-CH-C-P), 128.5 (2C, d, 2xO—(C=0)-
(Ar)C—CH-CH-C-P, ¥, = 6 Hz), 1282 (2C, 2xP—(Ar)C—
CH-CH-CH), 127.4 (4C, d, 4xP—(Ar)C—CH—CH—CH, ¥ = 7
Hz), 71.6 (1C, O—CH,—CH,—0H), 69.41-69.77 (12C, Ar—(C=
0)—0—(CH,),—0—(CH,),, Ar—(C=0)-0-((CH,),~0),~0—
(CH,),, Ar—(C=0)-0-((CH,),~0);—(CH,),, Ar—(C=0)-
0-((CH,),-0),—(CH,),, Ar—(C=0)-0-((CH,),~0);s—
(CH,),, Ar—(C=0)—-0-((CH,)—0),~(CH,),), 68.3 (1C, (Ar)—
(C=0)-0-CH,-CH,-0), 633 (1C, (Ar)—(C=0)—-0—-CH,—
CH,—0), 60.8 (1C, CH,—CH,—OH); HRMS (ESI(+)-QTOF): m/z
found 681.2808 [M + Na]* C3sH,,0;0PNa* requires 681.2805 (ppm
= 0.44).

General Procedure of 2a—2d. The appropriate monophosphine
ligand (1 equiv) and freshly prepared AuCl(tht)> (1 equiv) were
dissolved in CH,Cl, (10 mL) and stirred under N, and rt for 18 h.
The reaction mixture was concentrated to 1 mL under reduced
pressure and was purified via flash column chromatography using
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CH,Cl,/CH;0H as eluent. The product was isolated as a colorless
oil.

Compound 2a. According to the general procedure, 1a (0.291 g,
0.603 mmol, 1 equiv) and AuCl(tht) (0.193 g, 0.603 mmol, 1 equiv)
in CH,Cl, (10 mL). The product was isolated as a colorless oil (0.419
g, 0.587 mmol, 97%); Elemental Analysis (%): calcd for
C,,H;,AuCIOyP C 45.36 H 4.37; found C 45.71 H 4.57; '"H NMR
(CDCl;, 400 MHz): 8.02—8.04 (2H, m, 2XO—(C=0)—(Ar)C—
CH-CH-C-P), 7.38—7.51 (12H, m, 2XO—(C=0)—(Ar)C—CH-—
CH-C-P, 4xP—(Ar)C—CH-CH-CH, 4XxP—(Ar)C—CH-CH-
CH, 2xP—(Ar)C—CH-CH-CH), 4.38—440 (2H m, Ar—(C=
0)-0-CH,—CH,-0), 3.72—3.74 (2H, m, Ar—(C=0)—-0—CH,—
CH,-0), 3.54-3.59 (10H, m, Ar—(C=0)-0—(CH,),—0O—
(Cﬂ;)z; A"_(CZO)_O_((CHz)z_O)z_(Cﬂ;)z; Ar—(C=0)-
0—((CH,),—0);-CH,), 345-3.47 (2H, m, O—CH,—CH,—OH);
3P {'H} NMR (CDCl; 162 MHz): 32.89 (1P); “C {'H} NMR
(CDCl; 101 MHz): 165.1 (1C, O—(C=0)—(Ar)C—CH—-CH-C—
P), 134.0 (1C, d, 0—(C=0)—(Ar)C—CH-CH-C-P, 'J¢, = 60
Hz), 133.9 (4C, d, 4xP—(Ar)C—CH—CH—CH, J = 14 Hz), 133.7
(2C, d, 2xO—(C=0)—(Ar)C—CH-CH-C-P, ., = 14 Hz),
133.0 (1C, 0O—(C=0)—(Ar)C—CH-CH-C-P, *Jcp = 3 Hz),
132.2 (2C, 2xP—(Ar)C—CH—CH-CH, *J¢p = 3 Hz), 129.9 (2C, d,
2X0—(C=0)—(Ar)C—CH-CH-C-P, %], = 12 Hz), 129.3 (4C,
4XP—(Ar)C—CH—-CH-CH, ¥¢p = 12 Hz), 127.5 (2C, d, 2XP—
(Ar)C—CH—-CH—CH, Y, = 63 Hz), 72.3 (1C, O—CH,—CH,—
OH), 70.2-70.4 (3C, Ar—(C=0)-0-(CH,),—0—CH,-CH,, Ar—
(€C=0)-0-((CH,),~0),~(CH,),), 70.0 (1C, Ar—(C=0)-0—
(CH,),—0-CH,), 688 (1C, Ar—(C=0)-0-CH,—CH,), 64.4
(1¢, Ar—(C=0)-0-CH,-CH,), 61.3 (1C, O—CH,—CH,—OH);
HRMS (ESI(+)-QTOF): m/z found 737.1116 [M + Nal*
C,,H;,AuClOPNa* requires 737.1110 (ppm = 0.81).

Compound 2b. According to the general procedure, 1b (0.340 g,
0.646 mmol, 1 equiv) and AuCl(tht) (0.207 g, 0.646 mmol, 1 equiv)
in CH,Cl, (10 mL). The product was isolated as a colorless oil (0.482
g, 0.634 mmol, 98%); Elemental Analysis (%): calcd for
C,oH;5AuCIO,P C 45.89 H 4.65; found C 45.49 H 4.63; 'H NMR
(CDCl;, 400 MHz): 8.08—8.11 (2H, m, 2XO—(C=0)—(Ar)C—
CH-CH-C-P), 7.46—7.58 (12H, m, 2xO—(C=0)—(Ar)C—CH-
CH-C-P, 4xP—(Ar)C—CH-CH-CH, 4XP—(Ar)C—CH-CH-
CH, 2xXP—(Ar)C—CH-CH-CH), 445-448 (2H m, Ar—(C=
0)-0-CH,—CH,-0), 3.79-3.81 (2H, m, Ar—(C=0)—-O0—CH,—
CH,—-0), 3.58-3.68 (14H, m, Ar—(C=0)-0-(CH,),-O—
(Cﬂ;)m Ar—(CZO)_O_((CHz)z_O)z_(Cﬂ;)zx Ar—(C=0)~-
O—((CH2)2—0)3—(CH;)2, Ar—(C=O)—O—((CH2)2—0)4-CH;),
3.54-3.57 (2H, m, O—CH,—CH,—OH); *'P {'H} NMR (CDCl;
162 MHz): 33.00 (1P); “C {'"H} NMR (CDCl; 101 MHz): 165.3
(1¢, 0—-(€C=0)—(Ar)C-CH-CH-C-P), 134.3 (1C, d, O—(C=
0)—(Ar)C—CH—CH-C-P, 'Jcp = 60 Hz), 1342 (4C, d, 4xP—
(Ar)C—CH-CH-CH, /¢ = 14 Hz), 133.9 (2C, d, 2xO—(C=0)—
(Ar)C—CH-CH-C-P, *Jcp = 14 Hz), 1333 (1C, O—(C=0)-
(Ar)C—CH—-CH-C-P, 4]C,P = 3 Hz), 1324 (2C, 2xP—(Ar)C—
CH—CH-CH, ¢ = 3 Hz), 130.2 (2C, d, 2xO—(C=0)—(Ar)C—
CH—-CH-C-P, *Jp = 12 Hz), 129.3 (4C, 4XP—(Ar)C—CH—CH—
CH, ¥¢p = 12 Hz), 1279 (2C, d, 2XP—(Ar)C—CH—CH—CH, 'J,
= 63 Hz), 72.5 (1C, O—CH,—CH,—0H), 70.5—-70.7 (5C, Ar—(C=
0)-0-(CH,),~0-CH,-CH,, Ar—(C=0)-0-((CH,),~0),~
(CH,),, Ar—(C=0)-0-((CH,),~0);—(CH,),), 70.3 (1C, Ar—
(C=0)-0-(CH,),—0—-CH,), 69.1 (1C, Ar—(C=0)—0—-CH,—
CH,), 64.7 (1C, Ar—(C=0)—0—CH,—CH,), 61.7 (1C, O—CH,—
CH,—OH); HRMS (ESI(+)-QTOF): m/z found 781.1393 [M +
Na]" CyH;5AuClO,PNa* requires 781.1372 (ppm = 2.69).

Compound 2c. According to the general procedure, 1c (0.370 g,
0.652 mmol, 1 equiv) and AuCl(tht) (0.209 g, 0.652 mmol, 1 equiv)
in CH,Cl, (10 mL). The product was isolated as a colorless oil (0.503
g, 0.503 mmol, 96%); Elemental Analysis (%): calcd for
C;;H3yAuCIOgP C 46.37 H 4.90; found C 46.25 H 4.69; '"H NMR
(CDCl;, 400 MHz): 8.03—8.11 (2H, m, 2XO—(C=0)—(Ar)C—
CH-CH-C-P), 7.45—7.57 (12H, m, 2x0O—(C=0)—(Ar)C—CH-
CH-C-P, 4xP—(Ar)C—CH-CH-CH, 4XxP—(Ar)C—CH-CH-
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CH, 2XP—(Ar)C—CH-CH-CH), 445-447 (2H m, Ar—(C=
0)-0-CH,—CH,-0), 3.78—3.81 (2H, m, Ar—(C=0)—-0—CH,—
CH,-0), 3.53-3.67 (20H, m, Ar—(C=0)-0—(CH,),—0O—
(CH,),, Ar—(C=0)-0-((CH,),—-0),~(CH,),, Ar—(C=0)-
0-((CH,),-0);=(CH,),, Ar—(C=0)-0-((CH,),-0),—
(Cﬂg)zz A"_(CZO)_O_((CHz)z_O)s_(Cﬂg)z_OH)} P {IH}
NMR (CDCl; 162 MHz): 32.98 (1P); *C {'"H} NMR (CDCl, 101
MHz): 1654 (1C, O—(C=0)—(Ar)C—CH—CH-C-P), 134.2
(1¢, d, 0—(C=0)—(Ar)C—CH-CH—C-P, 'J¢p = 60 Hz), 134.2
(4C, d, 4xXP—(Ar)C—-CH—CH-CH, %/, = 14 Hz), 1339 (2C, d,
2X0—(C=0)—(Ar)C—CH—CH-C-P, ., = 14 Hz), 1333 (1C,
0-(C=0)-(Ar)C-CH-CH-C-P, ¥cp = 3 Hz), 1324 (2C,
2XP—(Ar)C—CH-CH-CH, ¥cp = 3 Hz), 1302 (2C, d, 2x0—
(C=0)—(Ar)C—CH-CH-C-P, 3], = 12 Hz), 129.5 (4C, 4xXP—
(Ar)C—CH-CH-CH, *Jcp = 12 Hz), 127.9 (2C, d, 2XP—(Ar)C—
CH-CH-CH, "J¢p = 63 Hz), 72.7 (1C, O—CH,—CH,—OH), 70.4—
70.6 (7C, Ar—(C=0)-0—(CH,),~O—CH,-CH,, Ar—(C=0)—
0-((CH,),—0),—-(CH,),, Ar—(C=0)-0-((CH,),~0);—
(CH,), Ar—(C=0)-0-((CH,),~0),~(CH,),), 70.1 (1C, Ar—
(C=0)-0—-(CH,),—0—-CH,), 69.1 (1C, Ar—(C=0)—-0—-CH,—
CH,), 64.7 (1C, Ar—(C=0)—0—CH,—CH,), 61.6 (1C, O—CH,—
CH,—OH); HRMS (ESI(+)-QTOF): m/z found 825.1644 (M +
Na]* C;;H;yAuClOgPNa’* requires 825.1635 (ppm = 1.09).

Compound 2d. According to the general procedure, 1d (0.309 g,
0.469 mmol, 1 equiv) and AuCl(tht) (0.150 g, 0.469 mmol, 1 equiv)
in CH,Cl, (10 mL). The product was isolated as a colorless oil (0.411
g, 0.461 mmol, 98%); Elemental Analysis (%): calcd for
CysH,,AuClO P C 47.17 H 5.32; found C 47.06 H 5.39; 'H NMR
(CDCl;, 400 MHz): 8.05—8.07 (2H, m, 2XO—(C=0)—(Ar)C—
CH-CH—C—P), 7.44—7.54 (12H, m, 2XO—(C=0)—(Ar)C—CH—
CH-C-P, 4xP—(Ar)C—CH—CH-CH, 4XxP—(Ar)C—CH-CH-
CH, 2xP—(Ar)C—CH-CH-CH), 4.42—4.44 (2H m, Ar—(C=
0)-0-CH,—CH,-0), 3.76—3.78 (2H, m, Ar—(C=0)—-O0—CH,—
CH,-0), 3.52—3.66 (28H, m, Ar—(C=0)-0—(CH,),—O—
(Cﬂg)zz A”_(CZO)_O_((CHz)z_O)z_(Cﬂg)zr Ar—(C=0)-
0—((CH,),=0)35~(CH,),, Ar—(C=0)-0-((CH,),~0),~
(CI;I;)Zz AT’_(CZO)_O_((CHz)z_O)s_(Cﬂ;)zr Ar—(C=0)-
0—((CH,),=0)s—(CH,),, Ar—(C=0)-0-((CH,),-0),~
(CH,),); *'P {'H} NMR (CDCl; 162 MHz): 32.95 (1P); “*C
{'"H} NMR (CDCl; 101 MHz): 165.2 (1C, O—(C=0)—(Ar)C—
CH—CH-C—P), 134.1 (1C, d, 0—(C=0)—(Ar)C—CH—CH—C—
P, YJep = 60 Hz), 134.1 (4C, d, 4xP—(Ar)C—CH~CH~CH, Y, =
14 Hz), 133.8 (2C, d, 2xO—(C=0)—(Ar)C—CH—CH-C-P, ’J¢»
= 14 Hz), 133.1 (1C, 0—(C=0)—(Ar)C—CH—CH—-C—P, ¥, = 3
Hz), 132.3 (2C, 2XP—(Ar)C—CH-CH-CH, ¥, = 3 Hz), 130.0
(2C, d, 2x0—(C=0)—(Ar)C-CH-CH-C-P, 3J.p, = 12 Hz),
129.3 (4C, 4xP—(Ar)C—CH—CH—CH, %] = 12 Hz), 127.7 (2C, d,
2XP—(Ar)C—CH-CH-CH, YJcp = 63 Hz), 72.4 (1C, O—CH,—
CH,—OH), 70.4-70.5 (11C, Ar—(C=0)-0—(CH,),~O—CH,-
CH,, Ar—(C=0)-0-((CH,),—0),-(CH,),, Ar—(C=0)-0-
((CH,),—0);=(CH,),, Ar—(C=0)-0-((CH,),—0),~(CH,),,
Ar—(C=0)-0-((CH,),-0)s—(CH,),, Ar—(C=0)-0-
((CH,),—0)s—(CH,),), 70.1 (1C, Ar—(C=0)-0—(CH,),—0~—
CH,), 68.9 (1C, Ar—(C=0)—0—CH,—CH,), 64.6 (1C, Ar—(C=
0)—0—CH,—CH,), 61.5 (1C, O—CH,—CH,—OH); HRMS (ESI-
(+)-QTOF): m/z found 9132172 [M + Na]* C3H,,AuClO,,PNa*
requires 913.2159 (ppm = 1.42).

General Procedure for 3a—3d. 4-(Diphenylphosphino)benzoic
acid (1.2 equiv) and EDCI (1.5 equiv) were dissolved in dry CH,Cl,
(2 mL) and stirred under N, at room temperature for 1 h. The
solution was added to a solution of the appropriate monophosphine
gold(I) complex (1 equiv) and DMAP (0.5 equiv) in dry CH,Cl, (3
mL), and the reaction mixture was stirred under N, at room
temperature for 20 h. The reaction mixture was washed with brine (40
mL), dried over anhydrous sodium sulfate, filtered, and concentrated
under reduced pressure. Purification was achieved via flash column
chromatography using an eluent system of CH,Cl,/CH;OH. The
product was washed with pentane (3 X 25 mL) and isolated as a
cream oil.
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Compound 3a. According to the general procedure, 4-
(diphenylphosphino)benzoic acid (0.097 g, 0.317 mmol, 1.2 equiv),
EDCI (0.097 g, 0.397 mmol, 1.5 equiv), 2a (0.189 g 0.264 mmol, 1
equiv) and DMAP (0.016 g, 0.132 mmol, 0.5 equiv) in CH,Cl, (§
mL). The product was isolated as a cream oil (0.220 g, 0.219 mmol,
83%); Elemental Analysis (%): calcd for C,4H,,AuClO,P,.>)CH,CI,
C 53.41 H 4.34; found C 53.07 H 4.46; 'H NMR (CDCl, 400 MHz):
7.87—7.89 (4H, m, 4xO—(C=0)—(Ar)C—CH—-CH—C—P), 7.28—
743 (24H, m, 4xO—(C=0)—(Ar)C—CH—CH—-C—P, $xP—
(Ar)C—CH-CH—CH, 8xP—(Ar)C—CH—CH—CH, 4xP—(Ar)C—
CH—CH-CH), 5.29 (s, residual CH,Cl,), 4.43—4.46 (4H m, Ar—
(C=0)-0-CH,—CH,—-0), 3.79-3.82 (4H, m, Ar—(C=0)-0—
CH,—CH,—0), 3.66—3.68 (8H, m, 2XAr—(C=0)—-0—(CH,),—
0—(CH,),); *'P {'"H} NMR (CDCl; 162 MHz): 29.53 (1P); "*C
{'H} NMR (CDCl; 101 MHz): 165.8 (2C, 2x0—(C=0)—(Ar)C—
CH-CH—-C—-P), 138.6 (2C, d, 2xO—(C=0)—(Ar)C—CH—CH—
C—P, 'Jop = 33 Hz), 134.1 (8C, 8XP—(Ar)C—CH—CH-CH), 133.5
(4C, 4x0O—(C=0)—(Ar)C—CH-CH-C-P), 131.8 (2C, 2xO-
(C=0)—(Ar)C—CH-CH-C-P), 131.5 (4C, d, 4xP—(Ar)C—
CH-CH—CH, 'J¢, = 38 Hz), 131.0 (4C, 4xP—(Ar)C—CH—CH—
CH), 129.7 (4C, 4xO—(C=0)—(Ar)C—-CH-CH-C-P), 129.1
(8C, 8xP—(Ar)C—CH—CH—CH), 128.8 (2C, d, 2XP—(Ar)C—CH—
CH-CH, 'Jcp = 12 Hz), 70.7-70.8 (4C, 2xAr—(C=0)—-0—
(CH,),—(CH,),), 69.2 (2C, Ar—(C=0)—0—-CH,—CH,), 64.7 (2C,
Ar—(C=0)—0-CH,—CH,), 53.5 (residual CH,Cl,); HRMS (ESI-
(+)-QTOF): m/z found 967.2210 [M-Cl]* C,sH,,AuO,P," requires
967.2228 (ppm = —1.86).

Compound 3b. According to the general procedure, 4-
(diphenylphosphino)benzoic acid (0.073 g, 0.237 mmol, 1.2 equiv),
EDCI (0.057 g, 0.296 mmol, 1.5 equiv), 2b (0.150 g, 0.198 mmol, 1
equiv), and DMAP (0.012 g, 0.099 mmol, 0.5 equiv) in CH,Cl, (§
mL). The product was isolated as a cream oil (0.185 g, 0.177 mmol,
89%); Elemental Analysis (%): calcd for C,H,AuClOgP,-'/,CH,Cl,
C 53.46 H 4.53; found C 53.27 H 4.76; "H NMR (CDCl, 400 MHz):
7.90—7.92 (4H, m, 4xO—(C=0)—(Ar)C—CH—CH-C-P), 7.29—
7.43 (24H, m, 4X0—(C=0)—(Ar)C—CH-CH-C-P, 8xP—
(Ar)C—CH-CH—CH, 8xP—(Ar)C—CH—CH—CH, 4xP—(Ar)C—
CH-CH—CH), 4.44—4.46 (4H m, Ar—(C=0)-0—CH,—CH,—
0), 3.79-3.81 (4H, m, Ar—(C=0)—0-CH,—CH,—-0), 3.54—3.59
(12H, m, 2xAr—(C=0)—-0—(CH,),—0—(CH,), Ar—(C=0)—
0—((CH,),—0),—(CH,),); *'P {'"H} NMR (CDCl; 162 MHz):
31.78 (1P); BC {'H} NMR (CDCl; 101 MHz): 165.7 (2C, 2XO—
(C=0)—(Ar)C—CH-CH-C-P), 1379 (2C, d, 2xO—(C=0)—
(Ar)C—CH—CH—-C-P, YJ¢, = 36 Hz), 134.0 (8C, 8xP—(Ar)C—
CH-CH-CH), 133.5 (4C, 4xO—(C=0)—(Ar)C—CH-CH-C—
P), 132.1 (2C, 2xO—(C=0)—(Ar)C—CH-CH-C-P), 131.4 (4C,
4xP—(Ar)C—CH—-CH—-CH), 130.9 (4C, d, 4xP—(Ar)C—CH—
CH-CH, "Jcp = 40 Hz), 129.9 (4C, 4xO—(C=0)—(Ar)C—CH—
CH-C-P), 1293 (8C, 8xP—(Ar)C—CH—CH—CH), 70.7—70.8
(6C, 2xAr—(C=0)—0—(CH,),~(CH,),, Ar—(C=0)-0-
((CH,),—0),—(CH,),), 692 (2C, Ar—(C=0)-0-CH,~CH,),
64.7 (2C, Ar—(C=0)-0-CH,—-CH,); HRMS (ESI(+)-QTOF):
m/z found 1011.2484 [M-CI]* C,sH,sAuOgP," requires 1011.2490
(ppm = —0.59).

Compound 3c. According to the general procedure, 4-
(diphenylphosphino)benzoic acid (0.082 g, 0.269 mmol, 1.2 equiv),
EDCI (0.064 g, 0.336 mmol, 1.5 equiv), 2c (0.180 g, 0.224 mmol, 1
equiv) and DMAP (0.014 g, 0.112 mmol, 0.5 equiv) in CH,Cl, (§
mL). The product was isolated as a cream oil (0.174 g, 0.150 mmol,
62%); Elemental Analysis (%): calcd for CsoHg,AuClOgP,. V2CsH ),
C §5.93 H 5.19; found C 56.14 H 5.04; "H NMR (CDCIl, 400 MHz):
7.89—7.91 (4H, m, 4x0O—(C=0)—(Ar)C—CH-CH-C-P), 7.28—
744 (24H, m, 4xO—(C=0)—(Ar)C—CH—CH—C—P, $xP—
(Ar)C—CH-CH—CH, 8xP—(Ar)C—CH—CH—CH, 4xP—(Ar)C—
CH—CH-CH), 5.29 (s, residual CH,Cl,), 4.44—4.47 (4H m, Ar—
(C=0)-0-CH,—CH,—-0), 3.80—3.82 (4H, m, Ar—(C=0)—-0—
CH,—CH,—0), 3.59-3.68 (16H, m, 2XAr—(C=0)—-0—(CH,),—
O_(Cﬂg)p ZXA"_(CZO)_O_((CHz)z_O)z_(Cﬂg)z)i 3p {IH}
NMR (CDCl;, 162 MHz): 28.20 (1P); *C {'"H} NMR (CDCl, 101
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MHz): 1659 (2C, 2xO—(C=0)—(Ar)C—CH—CH—C—P), 138.6
(2C, d, 2xO—(C=0)—(Ar)C—CH-CH-C-P, 'Jo, = 32 Hz),
134.1 (8C, 8xP—(Ar)C—CH—CH-CH), 133.5 (4C, 4xO—(C=
0)—(Ar)C—CH-CH-C-P), 131.8 (2C, 2x0O—(C=0)—(Ar)C—
CH-CH-C—P), 131.5 (4C, d, 4xP—(Ar)C—CH—-CH—CH, ¢, =
36 Hz), 131.1 (4C, 4xP—(Ar)C—CH—CH-CH), 129.8 (4C, 4XO—
(C=0)-(Ar)C—CH-CH-C-P), 129.2 (8C, 8xP—(Ar)C—CH-
CH-CH), 128.8 (2C, d, 2XP—(Ar)C—CH—CH—CH, Jc = 12 Hz),
70.6—70.8 (8C, 2xAr—(C=0)—0—(CH,),—(CH,),, 2XAr—(C=
0)-0-((CH,),—0),-(CH,),), 69.2 (2C, Ar—(C=0)-0—-CH,—
CH,), 64.6 (2C, Ar—(C=0)-0-CH,—CH,), 53.5 (residual
CH,Cl,); HRMS (ESI(+)-QTOF): m/z found 1055.2816 [M-CI]*
CsoHs,AuO4P, " requires 1055.2751 (ppm = 6.16).

Compound 3d. According to the general procedure, 4-
(diphenylphosphino)benzoic acid (0.066 g, 0.215 mmol, 1.2 equiv),
EDCI (0.052 g, 0.269 mmol, 1.5 equiv), 2d (0.160 g, 0.180 mmol, 1
equiv), and DMAP (0.011 g, 0.090 mmol, 0.5 equiv) in CH,Cl, (S
mL). The product was isolated as a cream oil (0.203 g, 0.172 mmol,
96%); Elemental Analysis (%): calcd for Cy,Hy,AuClO,,P, C 54.99 H
5.13; found C54.64 H 5.37; 'H NMR (CDC13‘ 400 MHz): 7.90—7.92
(4H, m, 4xO—(C=0)—(Ar)C—CH—CH-C-P), 7.30—7.46 (24H,
m, 4x0—(C=0)-(Ar)C—CH—CH-C—-P, 8xP—(Ar)C—CH—
CH-CH, 8XP—(Ar)C—CH—CH—CH, 4XP—(Ar)C—CH—CH—
CH), 5.29 (s, residual CH,Cl,)4.44—4.47 (4H m, Ar—(C=0)-
O0-CH,—CH,-0), 3.80-3.82 (4H, m, Ar—(C=0)-0O-CH,—
CH,—-0), 3.59-3.70 (24H, m, 2xAr—(C=0)-0—(CH,),-O—
(CH,), 2xAr—(C=0)-0—((CH,),~0),~(CH,),, 2xAr—(C=
0)-0-((CH,),—0);—(CH,),); *'P {'H} NMR (CDCl; 162
MHz): 31.09 (1P); *C {'H} NMR (CDCl; 101 MHz): 165.7
(2C, 2x0—(C=0)—-(Ar)C—CH—CH—-C—P), 137.8 (2C, d, 2xO—
(C=0)-(Ar)C—CH-CH-C-P, 'Jp = 36 Hz), 134.1 (8C, 8xP—
(Ar)C—CH—CH—CH), 133.5 (4C, 4xO—(C=0)—(Ar)C—CH—
CH-C-P), 132.1 (2C, 2xO—(C=0)—(Ar)C—CH—CH—C—P),
1314 (4C, 4xP—(Ar)C—CH-CH-CH), 130.8 (4C, d, 4xP—
(Ar)C—CH-CH-CH, YJ¢p = 39 Hz), 129.9 (4C, 4xO—(C=0)—
(Ar)C—CH—CH—C—P), 129.3 (8C, 8XP—(Ar)C—CH—CH—CH),
128.8 (2C, d, 2xP—(Ar)C—CH—CH—-CH, "J. = 12 Hz), 70.6—70.8
(12C, 2xAr—(C=0)—-0—(CH,),—(CH,),, 2XAr—(C=0)-0-
((CH,),-0),—(CH,),, 2XAr—(C=0)-0-((CH,),-0);—
(CH,),), 692 (2C, Ar—(C=0)-0—-CH,—CH,), 64.7 (2C, Ar—
(C=0)—0—CH,—CH,), 53.6 (s, residual CH,CL); HRMS (ESI-
(+)-QTOF): m/z found 1143.3398 [M-Cl]* Cg,HeoAuO,,P,*
requires 1143.3276 (ppm = 10.67), m/z found 1201.2952 [M +
Na]* Cy4HgAuClO,,P,Na* requires 1201.2863 (ppm = 7.41).

General Procedure for 4a—4d. The appropriate bis-phosphine
gold(I) complex (2 equiv) and [Ru(n®-p-cymene)CL], (1 equiv)
were dissolved in CH,Cl, (5§ mL) and stirred at rt under N, for 42 h.
The solvent was removed via rotary evaporation, and purification was
achieved via flash column chromatography using CH,Cl,/CH;0H as
the eluent system. The product was washed with pentane (3 X 25
mL) and was isolated as an oily, red solid.

Compound 4a. According to the general procedure, 3a (0.23 g,
0.22 mmol, 2 equiv) and [Ru(#°-p-cymene)Cl,], (0.69 g, 0.11 mmol,
1 equiv) in CH,Cl, (5 mL). The product was isolated as an oily, red
solid (0.064 g, 0.049 mmol, 29%); Elemental Analysis (%): calcd for
CysHAuCLO,P,Ru-CH,Cl, C 49.10 H 4.34; found C 49.25 H 4.37;
'H NMR (CDCl; 400 MHz): 8.09—8.11 (2H, m, 2xO—(C=0)—
(Ar)C—CH-CH—C—P—Au), 7.89—7.93 (4H, m, 2xO—(C=0)—
(Ar)C—CH-CH—C—P—Ru, 2XO—(C=0)—(Ar)C—CH—~CH—C—
P—Ru), 7.77—7.82 (4H, m, 4X(Ar)C—CH—CH—-C—P—Ru), 7.47—
7.56 (12H, m, 2XO0—(C=0)-(Ar)C—CH-CH—-C—P-Au,
4x(Ar)CH-CH—CH—C—P—Au, 4X(Ar)CH—CH—CH—C—P—Au,
2X(Ar)CH-CH—CH—-C—P—Au), 7.37—7.41 (6H, m, 4X(Ar)CH—
CH-CH-C-P-Ru, 2X(Ar)CH-CH-CH-C-P—Ru), 5.20-5.21
(2H, d, 2xCH;—(Ar)C—CH—CH-C, *uy = 6.1 Hz), 498—4.98
(2H, d, 2XCH;—(Ar)C—CH—CH—-C, ¥y = 5.9 Hz), 4.45—4.48
(2H, m, Au—P—-Ar—(C=0)-0-CH,—CH,-0), 439-4.42 (2H,
m, Ru—P-Ar—(C=0)-0-CH,-CH,-0), 3.74-3.81 (4H, m,
Au—P—Ar—(C=0)-0—-CH,—~CH,~0, Ru—P—Ar—(C=0)-0—
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CH,—CH,-0), 3.63-3.67 (8H, m, 2XAr—(C=0)—0—(CH,),—
0—(CH,),), 2.80—2.86 (1H, sept, (Ar)C—CH—CH—-C—CH(CH,),,
Tun = 6.9 Hz), 1.85 (3H, s, CH;—(Ar)C—CH—CH-C), 1.09—1.10
(6H, d, (Ar)C—CH—CH-C—CH(CH,),, ¥Jun = 6.9 Hz); *'P {'H}
NMR (CDCl; 162 MHz): 33.02 (Au—P, 1P), 25.03 (Ru—P, 1P); C
{'"H} NMR (CDCI; 101 MHz): 166.1 (1C, O—(C=0)—(Ar)C—
CH-CH-C-P-Ru), 1654 (1C, O—(C=0)—(Ar)C—CH—CH-
C—P—Au), 139.05—139.58 (2C, m, O—(C=0)—(Ar)C—CH—CH-
C—P—Ruy, O—(C=0)-(Ar)C—CH-CH—-C—P—Au), 133.95—
134.70 (12C, m, 4XRu—P—(Ar)C—CH-CH-CH, 4XAu—P-—
(Ar)C—CH-CH-CH, 2Xx0—(C=0)—(Ar)C—CH-CH-C—P-
Ry, 2X0O—(C=0)—(Ar)C—CH—CH-C-P—Au), 133.15-133.60
(3C, m, 0—(C=0)—(Ar)C—CH—CH—C—P—Au, 2XRu—P—(Ar)-
C—CH-CH-CH), 1324 (2C, d, 2XAu—P—(Ar)C—CH—CH-CH,
Yep =3 Hz), 131.3 (1C, 0—(C=0)—(Ar)C—CH-CH—C—P—Ru),
130.7 (2C, 2xRu—P—(Ar)C—CH—CH-CH), 130.1 (2C, 2xO—
(C=0)-(Ar)C—CH-CH—-C-P—Au), 129.5 (4C, d, 2XAu—P—
(Ar)C—CH-CH-CH, ¥, = 12 Hz), 128.7 (2C, O—(C=0)-
(Ar)C—CH-CH-C-P—Ru), 1282 (4C 2xRu—P—(Ar)C—CH-—
CH-CH), 127.8 (2C, m, 2XAu—P—(Ar)C—CH—CH-CH), 111.4
(1C, CH;—(Ar)C—CH-CH-C), 964 (1C, CH;—(Ar)C—CH-
CH-C), 89.1 (2C, CH;—(Ar)C—CH-CH-C), 87.4 (2C, CH;—
(Ar)C—CH-CH-C), 70.71-70.79 (4C, Ru—P—Ar—(C=0)-0—
(CH,),~0—(CH,),, Au—P—Ar—(C=0)-0~(CH,),~0—(CH,),),
69.2 (1C, Ru—P—Ar—(C=0)-0-CH,—CH,), 69.1 (1C, Au—P—
Ar—(C=0)-0-CH,—-CH,), 64.7 (1C, Au—P—Ar—(C=0)-0-
CH,—CH,), 644 (1C, Ru—P—Ar—(C=0)-0—-CH,—CH,), 30.4
(1C, (Ar)C—CH-CH-C-CH—-(CHj;),), 22.0 (2C, (Ar)C—CH—
CH-C-CH-(CH;),), 17.9 (1C, CH,—(Ar)C—CH-CH-C);
HRMS (ESI(+)—Orbitrap): m/z found 1331.1259 [M + Na]*
Cs6HsgAuCl,NaO,P,Ru* requires 1331.1323 (ppm = —4.78).
Compound 4b. According to the general procedure, 3b (0.14 g,
0.14 mmol, 2 equiv) and [Ru(#®-p-cymene)CL], (0.043 g, 0.069
mmol, 1 equiv) in CH,Cl, (5 mL). The product was isolated as an
oily, red solid (0.078 g, 0.058 mmol, 41%); Elemental Analysis (%):
caled for CggHg,AuCl;O4P,Ru-CH,Cl, C 49.27 H 4.49; found C
49.19 H 4.51; 'H NMR (CDCl; 400 MHz): 8.10-8.12 (2H, m,
2xX0—(C=0)—(Ar)C—CH-CH-C—P—Au), 7.90-7.95 (4H, m,
2X0—-(C=0)-(Ar)C—CH-CH-C-P—-Ru, 2Xx0—-(C=0)-
(Ar)C—CH-CH-C-P—-Ru), 7.78—7.83 (4H, m, 4x(Ar)C—CH-
CH-C—P—-Ru), 7.53—7.57 (12H, m, 2xO—(C=0)—(Ar)C—CH-
CH—C—P—Au, 4X(Ar)CH-CH—CH—C—P—Au, 4x(Ar)CH-CH—
CH-C-P-Au, 2X(Ar)CH-CH—CH—-C-P—Au), 7.38—7.50 (6H,
m, 4X(Ar)CH-CH—CH-C—P—Ru, 2X(Ar)CH-CH—CH-C—P—
Ru), 521-522 (2H, d, 2XCH;—(Ar)C—CH-CH-C, *Jyy = 62
Hz), 4.97—-4.99 (2H, d, 2XCH;—(Ar)C—CH—CH-C, ¥y = 5.9 Hz),
4.46—4.49 (2H, m, Au—P—Ar—(C=0)—-0-CH,—CH,-0), 4.41—
443 (2H, m, Ru—P-Ar—(C=0)-0-CH,—CH,-0), 3.76—3.82
(4H, m, Au—P—-Ar—(C=0)-0-CH,—CH,—0, Ru—P-Ar—(C=
0)—0-CH,—CH,—-0), 3.61-3.68 (12H, m, 2XAr—(C=0)—-0-
(CH;),—0—(CH,),, 2xAr—(C=0)-0~-((CH,),~0),-CH,),
2.83—2.87 (1H, sept, (Ar)C—CH—CH—C—CH(CH,),, ¥y = 6.9
Hz), 1.86 (3H, s, CH;—(Ar)C—CH—CH-C), 1.10-1.12 (6H, d,
(Ar)C—CH-CH—-C—CH(CHj3),, *Jun = 6.9 Hz); *'P {'"H} NMR
(CDCl; 162 MHz): 33.02 (Au—P, 1P), 25.00 (Ru—P, 1P); *C {'H}
NMR (CDCl; 101 MHz): 166.1 (1C, O—(C=0)—(Ar)C—CH—
CH-C-P-Ru), 165.4 (1C, O—(C=0)—(Ar)C—CH-CH-C—P—
Au), 139.09—139.61 (2C, m, O—(C=0)—(Ar)C—CH-CH-C-P-
Ru, O—(C=0)—(Ar)C-CH-CH—-C—P—Au), 133.99-134.71
(12C, m, 4XRu—P—(Ar)C—CH—-CH-CH, 4XAu—P—(Ar)C—CH-
CH-CH, 2x0—(C=0)—(Ar)C—CH—CH—-C—P—Ru, 2X0O—(C=
0)—(Ar)C—CH—CH-C—P—Au), 133.18—133.68 (3C, m, O—(C=
0)—(Ar)C—CH-CH—C—P—Au, 2XRu—P—(Ar)-C—CH-CH-—
CH), 1324 (2C, d, 2XAu—P—(Ar)C—CH—CH—-CH, ¥ = 3 Hz),
131.3 (1C, O—(C=0)-(Ar)C—CH-CH-C-P-Ru), 130.7 (2C,
2XRu—P—(Ar)C—CH-CH-CH), 130.1 (2C, d, 2xO—(C=0)—
(Ar)C—CH-CH-C—P—Au, ¥ = 12 Hz), 129.6 (4C, d, 2XAu—P—
(Ar)C—CH—-CH-CH, *Jcp = 12 Hz), 128.8 (2C, O—(C=0)-
(Ar)C—CH-CH—-C—P—Ru), 1283 (4C 2XRu—P—(Ar)C—CH-
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CH-CH), 127.8 (2C, m, 2xAu—P—(Ar)C—CH—CH-CH), 111.6
(1C, CH;—(Ar)C—CH-CH-C), 964 (1C, CH;—(Ar)C—CH-
CH-C), 89.1 (2C, CH;—(Ar)C—CH-CH-C), 87.5 (2C, CH;—
(Ar)C—CH-CH-C), 70.71-70.78 (6C, Ru—P—Ar—(C=0)-0—
(CH,),—0—(CH,),, Au—P—Ar—(C=0)-0~(CH,),~0—(CH,),),
Ru—P—-Ar—(C=0)-0-((CH,),—0),-CH,, Au—P—Ar—(C=0)—
0-((CH,),~0),-CH,), 69.2 (1C, Ru—P—Ar—(C=0)—0—CH,—
CH,), 69.1 (1C, Au—P—Ar—(C=0)-0-CH,—CH,), 64.8 (1C,
Au—P—Ar—(C=0)—-0-CH,-CH,), 64.5 (1C, Ru—P-Ar—(C=
0)-0-CH,—CH,), 304 (1C, (Ar)C—CH-CH-C-CH—(CH,),),
22.0 (2C, (Ar)C—CH-CH-C-CH-(CH,),), 17.9 (1C, CH,;—
(Ar)C—CH-CH-C); HRMS (ESI(+)-QTOF): m/z found
1317.1989 [M — Cl]* C4HgAuCLOgP,Ru* requires 1317.2017
(ppm = —2.13).

Compound 4c. According to the general procedure, 3¢ (0.20 g
0.18 mmol, 2 equiv) and [Ru(#®-p-cymene)ClL], (0.056 g, 0.091
mmol, 1 equiv) in CH,Cl, (5 mL). The product was isolated as an
oily, red solid (0.036 g, 0.025 mmol, 14%); Elemental Analysis (%):
caled for CoHgAuCl;O4P,Ru-CsH;, C 53.12 H 5.35; found C 52.96
H 5.35; 'H NMR (CDCl; 400 MHz): 8.09—8.12 (2H, m, 2XO—
(C=0)—(Ar)C—CH—-CH—C—P—Au), 7.89-7.94 (4H, m, 2XO—
(C=0)-(Ar)C-CH—CH-C—P—-Ru, 2X0-(C=0)-(Ar)C—
CH-CH-C—P-Ru), 7.78—7.82 (4H, m, 4x(Ar)C—CH-CH-C—
P—Ru), 7.52—7.59 (12H, m, 2xO—(C=0)—(Ar)C—CH-CH—-C—
P—Au, 4X(Ar)CH-CH—CH—-C—P—Au, 4x(Ar)CH-CH-CH-C—
P—Au, 2x(Ar)CH-CH-CH-C-P—Au), 7.37-7.49 (6H, m,
4x(Ar)CH-CH-CH-C-P-Ru, 2X(Ar)CH-CH-CH-C-P—
Ru), 5.20-522 (2H, d, 2XCH;—(Ar)C—CH—CH-C, *Jyy = 59
Hz), 497—4.98 (2H, d, 2XCH,—(Ar)C—CH-CH-C, *Jyy = 5.6
Hz), 446—4.49 (2H, m, Au—P—-Ar—(C=0)-0-CH,—CH,-0),
4.40—4.43 (2H, m, Ru—P—Ar—(C=0)—-0—-CH,—CH,-0), 3.76—
3.82 (4H, m, Au—P—Ar—(C=0)-0-CH,—CH,—O, Ru—P—-Ar—
(C=0)-0-CH,—-CH,-0), 3.58—3.68 (16H, m, 2xAr—(C=0)—
0-(CH,),-0~(CH,),, 2xAr—(C=0)-0~-((CH,),-0),~
(CH,),), 2.83-2.86 (1H, sept, (Ar)C—CH—CH—-C—CH(CH,),,
T = 6.9 Hz), 1.85 (3H, s, CH;—(Ar)C—CH—CH—-C), 1.09—1.11
(6H, d, (Ar)C—CH—CH-C—CH(CH,),, ¥y = 6.9 Hz); *'P {'H}
NMR (CDCl; 162 MHz): 33.02 (Au—P, 1P), 24.99 (Ru—P, 1P); C
{'"H} NMR (CDCl; 101 MHz): 166.1 (1C, O—(C=0)—(Ar)C—
CH-CH-C-P-Ru), 1654 (1C, O—(C=0)—(Ar)C—CH-CH-
C—P-Au), 139.15-139.58 (2C, m, O—(C=0)—(Ar)C—CH-CH-
C—P—Ru, O—(C=0)—(Ar)C—CH-CH-C—P—Au), 133.60—
134.67 (12C, m, 4XRu—P—(Ar)C—CH—CH-CH, 4xAu—P—
(Ar)C—CH-CH-CH, 2x0—(C=0)-(Ar)C-CH-CH-C-P—
Ru, 2X0O—(C=0)—(Ar)C—CH-CH-C—P—Au), 133.15—133.63
(3C, m, 0—(C=0)—(Ar)C—CH—CH—C—P—Au, 2XRu—P—(Ar)-
C—CH-CH-CH), 132.4 (2C, d,2xAu—P—(Ar)C—CH—CH-CH,
Yep =3 Hz), 131.3 (1C, 0—(C=0)—(Ar)C—CH-CH—C—P—Ru),
130.7 (2C, 2XRu—P—(Ar)C—CH-CH-CH), 130.2 (2C, d, 2x0O—
(C=0)—-(Ar)C—CH-CH-C—P—Au, ¥ = 12 Hz), 129.5 (4C, d,
2XAu—P—(Ar)C—CH-CH-CH, %], = 12 Hz), 128.8 (2C, O—
(C=0)-(Ar)C—CH-CH-C-P—Ru), 1283 (4C, d, 2XRu—P-—
(Ar)C—CH-CH-CH, *Jcp = 10 Hz), 127.8 (2C, d, 2XAu—P—
(Ar)C-CH-CH-CH, 'Jcp = 63 Hz), 111.6 (1C, CH;—(Ar)C—
CH-CH-C), 964 (1C, CH;—(Ar)C—CH-CH-C), 89.1 (2C,
CH;—(Ar)C—CH-CH-C), 87.4 (2C, CH;—(Ar)C—CH-CH-C),
70.68—70.77 (8C, Ru—P—Ar—(C=0)-0-(CH,),—0—(CH,),,
Au-P—Ar—(C=0)-0—-(CH,),—0—(CH,),), Ru—P—Ar—(C=
0)-0-((CH,),-0),-(CH,),, Au-P-Ar—(C=0)-0-
((CH,),—0),—(CH,),), 69.2 (1C, Ru—P—Ar—(C=0)-0-CH,—
CH,), 69.1 (1C, Au—P—Ar—(C=0)-0-CH,—CH,), 64.8 (1C,
Au—P—Ar—(C=0)-0-CH,-CH,), 64.5 (1C, Ru—P—Ar—(C=
0)-0-CH,—CH,), 304 (1C, (Ar)C—CH-CH-C—-CH—(CH,),),
22.0 (2C, (Ar)C—CH-CH-C—-CH-(CH,),), 179 (1C, CH;—
(Ar)C—CH-CH-C); HRMS (ESI(+)—Orbitrap): m/z found
1419.1779 [M + Na]* C4HgAuCl;NaOyP,Ru’ requires 1419.1849
(ppm = —4.93).

Compound 4d. According to the general procedure, 3d (021 g,
0.18 mmol, 2 equiv) and [Ru(;’-p-cymene)Cl,], (0.056 g 0.091
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mmol, 1 equiv) in CH,Cl, (5 mL). The product was isolated as an
oily, red solid (0.031 g, 0.021 mmol, 11%); Elemental Analysis (%):
caled for CyH,4,AuClL;0,,P,Ru-CDCl; C 48.61 H 4.77; found C
4895 H 4.44; 'H NMR (CDCl; 400 MHz): 8.10-8.12 (2H, m,
2X0—(C=0)—(Ar)C—CH-CH-C—P—Au), 7.90-7.94 (4H, m,
2X0—(C=0)—-(Ar)C—CH—CH—C~P—Ru, 2X0—(C=0)-
(Ar)C—CH-CH-C—P—Ru), 7.78—7.83 (4H, m, 4x(Ar)C—CH-—
CH-C—P—-Ru), 7.53-7.58 (12H, m, 2xO—(C=0)—(Ar)C—CH-
CH—C—P—Au, 4x(Ar)CH—CH—CH—C—P—Au, 4x(Ar)CH—CH—
CH-C-P-Au, 2X(Ar)CH-CH—-CH—-C-P—Au), 7.38—7.50 (6H,
m, 4X(Ar)CH-CH—CH—-C—P—Ruy, 2x(Ar)CH-CH—CH—-C—P—
Ru), 5.20-522 (2H, d, 2XCH;~(Ar)C—CH~CH-C, ¥y = 6.0
Hz), 4.97-4.99 (2H, d, 2XCH;—(Ar)C—CH-CH-C, Yy = 6.3
Hz), 447-4.50 (2H, m, Au—P—Ar—(C=0)—-0-CH,—CH,-0),
441-444 (2H, m, Ru—P—Ar—(C=0)-0-CH,—CH,-0), 3.77—
3.83 (4H, m, Au—P—Ar—(C=0)—0—CH,~CH,~O, Ru—P—Ar—
(C=0)—0—-CH,—CH,-0), 3.61-3.65 (24H, m, 2xAr—(C=0)—
0-(CH,),—0-(CH,),, 2XxAr—(C=0)-0-((CH,),-0),—
(Cﬂg)zr ZXAV_(CZO)_O_((CH2)2_0)3_(CH7_.)2); 2.81-2.88
(1H, sept, (Ar)C—CH—CH—C—CH(CH,),, ¥y = 69 Hz), 1.85
(3H, s, CH;—(Ar)C—CH-CH-C), 1.10—1.11 (6H, d, (Ar)C—CH—
CH-C—CH(CH,),, ¥y = 69 Hz); *'P {'H} NMR (CDCI, 162
MHz): 33.02 (Au—P, 1P), 24.95 (Ru—P, 1P); ®C {'H} NMR
(CDCl,, 101 MHz): 166.1 (1C, O—(C=0)—(Ar)C—CH-CH—-C—
P—Ru), 1654 (1C, O—(C=0)-(Ar)C—CH-CH-C—P—Au),
139.13—-139.60 (2C, m, O—(C=0)—(Ar)C—CH-CH-C—P—Ruy,
0—(C=0)—(Ar)C—CH—CH—-C—P—Au), 133.98—134.68 (12C, m,
4XRu—P—(Ar)C—CH—CH-CH, 4xAu—P—(Ar)C—CH-CH-CH,
2X0—(C=0)—-(Ar)C—CH-CH—C—P—Ru, 2X0—(C=0)-
(Ar)C—CH—CH-C-P—Au), 133.18—133.63 (3C, m, O—(C=
0)—(Ar)C—CH-CH-C-P—Au, 2XRu—P—(Ar)-C—CH-CH-
CH), 132.4 (2C, d, 2XAu—P—(Ar)C—CH—CH—-CH, ¥, = 3 Hz),
131.3 (1C, 0—(C=0)-(Ar)C—CH-CH-C—-P—-Ru), 130.7 (2C, d,
2XRu—P—(Ar)C—CH—CH—-CH, ¥ = 3 Hz), 130.2 (2C, d, 2x0—
(C=0)—(Ar)C—CH-CH-C—P—Au, *J.p = 12 Hz), 129.5 (4C, d,
2xAu~P—(Ar)C—CH—CH—-CH, %, = 12 Hz), 1288 (2C, d, O—
(C=0)—-(Ar)C—CH-CH-C—P—Ru, ., = 10 Hz), 128.3 (4C, d,
2XRu—P—(Ar)C—CH-CH-CH, *cp = 10 Hz), 127.8 (2C, d,
2XAu—P—(Ar)C—CH—-CH-CH, "Jcp = 63 Hz), 111.6 (1C, CH;—
(Ar)C—CH-CH-C), 964 (1C, CH;—(Ar)C—CH-CH-C), 89.1
(2C, CH,—(Ar)C—CH—CH—-C), 874 (2C, CH,—(Ar)C—CH—
CH-C), 70.65—70.77 (12C, Ru—P—Ar—(C=0)—0—(CH,),—O0—
(CH,), Au—P—Ar—(C=0)-0—(CH,),—0—(CH,),, Ru—P-Ar—
(C=0)-0-((CH,),~0),~(CH,),, Au—P-Ar—(C=0)-0—
((CH,),—0),~(CH,),, Ru—P—-Ar—(C=0)-0—((CH,),~0);~
(CH,), Au—P-Ar—(C=0)-0-((CH,),~0);-(CH,),), 69.2
(1C, Ru—P—Ar—(C=0)-0-CH,—CH,), 69.1 (1C, Au—P—Ar—
(C=0)-0-CH,—CH,), 64.8 (1C, Au—P—Ar—(C=0)—-0—-CH,—
CH,), 64.5 (1C, Ru—P—Ar—(C=0)-0—-CH,—CH,), 304 (1C,
(Ar)C—CH-CH-C—CH—(CH,),), 22.0 (2C, (Ar)C—CH—CH-—
C—CH-(CH,),), 17.9 (1C, CH,;—(Ar)C—CH—CH-C); HRMS
(ESI(+)—0Orbitrap): m/z found 1507.2302 [M + Nal*
Cg4H7,AuCl;NaO,,P,Ru" requires 1507.2375 (ppm = —4.80).

Cell Culture and Cytotoxicity Studies. Human ovarian carcinoma
(A2780 and A2780cisR) cell lines were obtained from the European
Collection of Cell Cultures. The human embryonic kidney (HEK-
293) cell line was obtained from ATCC (Sigma, Buchs, Switzerland).
Penicillin streptomycin, RPMI 1640 GlutaMAX (where RPMI =
Roswell Park Memorial Institute), and DMEM GlutaMAX media
(where DMEM = Dulbecco’s modified Eagle’s medium) were
obtained from Life Technologies, and fetal bovine serum (FBS) was
obtained from Sigma. The cells were cultured in RPMI 1640
GlutaMAX (A2780 and A2780cisR) and DMEM GlutaMAX (HEK-
293) media containing 10% heat-inactivated FBS and 1% penicillin—
streptomycin at 37 °C and CO, (5%). The A2780cisR cell line was
routinely treated with cisplatin (2 yM) in the media to maintain
cisplatin resistance. The cytotoxicity was determined using the 3-(4,5-
dimethyl 2-thiazolyl)-2,S-diphenyl-2H-tetrazolium bromide (MTT)
assay.”’ Cells were seeded in flat-bottomed 96-well plates as a
suspension in a prepared medium (100 uL aliquots and approximately
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4300 cells/well) and preincubated for 24 h. Stock solutions of
compounds were prepared in DMSO and were rapidly diluted in a
medium. The solutions were sequentially diluted to give a final
DMSO concentration of 0.5% and a final compound concentration
range (0—200 pM). Cisplatin and RAPTA-C were tested as positive
(0—100 M) and negative (200 uM) controls, respectively. The
compounds were added to the preincubated 96-well plates in 100 uL
aliquots, and the plates were incubated for a further 72 h. MTT (20
uL, S mg/mL in Dulbecco’s phosphate buffered saline) was added to
the cells, and the plates were incubated for a further 4 h. The culture
medium was aspirated, and the purple formazan crystals, formed by
the mitochondrial dehydrogenase activity of vital cells, were dissolved
in DMSO (100 uL/well). The absorbance of the resulting solutions,
directly proportional to the number of surviving cells, was quantified
at 590 nm using a SpectroMax MSe multimode microplate reader
(using SoftMax Pro software, version 6.2.2). The percentage of
surviving cells was calculated from the absorbance of wells
corresponding to the untreated control cells. The reported ICS0
values are based on the means from two independent experiments,
each comprising four tests per concentration level.

Mass Spectrometry Binding Studies. Binding Studies of 4b
with t-Histidine. Complex 4b was incubated under agitation with 1-
histidine for 2 h in a 1:1 complex—amino acid ratio in unbuffered
solution (98% Milli-Q water, 2% DMSO) at 310 K. The samples were
diluted first in millQ water (factor 100) and then in CH;OH/
HCOOH (0.1% HCOOH in CH;0H) by a factor of 10.

Binding Studies of 4a and 4d with 1—16-mer p-Amyloid
Peptide. Complex 4a or 4d was incubated under agitation with the
16-mer f-amyloid protein for 2 h in a 1:3 complex—peptide ratio in
unbuffered solution (98% Milli-Q, 2% DMSO) at 310 K. The samples
were diluted first in millQ water (factor 100) and then in CH;OH/
HCOOH (0.1% HCOOH in CH;0H) by a factor of 10.

Xevo G2-S QTOF. Routine analyses were conducted on a Xevo G2-
S QTOF mass spectrometer coupled to the Acquity UPLC Class
Binary Solvent manager and BTN sample manager (Waters,
Corporation, Milford, MA). The sample manager system temperature
was maintained at 10 °C, and the injection volume was 2 pL. Mass
spectrometer detection was operated in positive ionization using the
ZSpray dual-orthogonal multimode ESI/APCI/ESCi source. The
TOF mass spectra were acquired in the resolution mode over the
range of m/z 50—1200 at an acquisition rate of 0.036 s/spectra. The
instrument was calibrated using a solution of sodium formate (0.01
mg/L in isopropanol/H,0 90:10). A mass accuracy better than S
ppm was achieved using a Leucine Enkephalin solution as lock-mass
(200 pg/mL in ACN/H,O (50:50)) infused continuously using the
LockSpray source. Source settings were as follows: cone, 25 V;
capillary, 3 kV, source temperature, 150 °C; desolvation temperature,
500 °C, cone gas, 10 L/h, desolvation gas, 500 L/h. Data were
processed using MassLynx 4.1 software and QuanLynx application for
quantification.

LTQ Orbitrap FTMS. Mass spectrometry analyses were performed
on a LTQ Orbitrap FTMS instrument (LTQ_Orbitrap Elite FTMS,
Thermo Scientific, Bremen, Germany) operated in the positive mode
coupled with a robotic chip-based nano-ESI source (TriVersa
Nanomate, Advion Biosciences, Ithaca, NY, United States). A
standard data acquisition and instrument control system was utilized
(Thermo Scientific), whereas the ion source was controlled by
Chipsoft 8.3.1 software (Advion BioScience). Samples were loaded
onto a 96-well plate (Eppendorf, Hamburg, Germany) within an
injection volume of 5 uL. The experimental conditions for the
ionization voltage was +1.4 kV, and the gas pressure was set at 0.30
psi. The temperature of ion transfer capillary was 275 °C and the S-
lens value was settled at 67%.. FTMS spectra were obtained in the
200—2000 m/z range in the reduced profile mode with a resolution
set to 120 000. In all spectra, one microscan was acquired with a
maximum injection time value of 1000 ms. For CID, ETD and HCD
analysis, each precursor ion was isolated with a width window of 8.
Normalized collision energies for CID and HCD fragmentation were
30 and 18%, respectively. A total of 100 scans each consisting of 10
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piscans were acquired in reduced profile mode and averaged. ETD
reaction time was set at 180 ms.

General Input Apm?®s Parameters. Experimental MS were
exported as .txt files before being dropped into the Apm?s tool.**"’
Protons (+1 to +5), modifiable charge (+1 to +5), and metal adduct
(CsHssAuO,P,Ru) in the different boxes of “List of groups”. Zone
widths were selected based of the Ru expected isotopic pattern (—6.5
to 8.5), and the common zone parameter was fixed “as second”.
Minimal similarity was set at 70%, max results at 500, and best result
range at 0. b, y, and b/y (internal fragments) fragment ions were
selected for the CID experiments, whereas ¢, z, and c¢/z were chosen
for ETD.
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