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Introduction

I In tokamaks Scrape-Off Layer (SOL), magnetic
field lines intersect the walls of the fusion
device

I Heat and particles flow along magnetic field
lines and are exhausted to the vessel

I Turbulence amplitude and size comparable to
steady-state values

I Neutral particles interact with the plasma

I SOL plays a key role on determining the
refuelling of the plasma

The Global Braginskii Solver (GBS) code:
a 3D, flux-driven, global turbulence code in limited geometry

used to study plasma turbulence in the SOL

I GBS is a simulation code to evolve plasma turbulence in the edge of fusion devices.
[Halpern et al., JCP 2016], [Ricci et al., PPCF 2012]

I GBS solves 3D fluid equations for electrons and ions, Poisson’s and Ampere’s equations, and a
kinetic equation for neutral atoms.

The Global Braginskii Solver (GBS) code
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I Equations implemented in GBS, a flux-driven plasma turbulence code with limited geometry to study
SOL heat and particle transport

I System completed with first-principles boundary conditions applicable at the magnetic pre-sheath
entrance where the magnetic field lines intersect the limiter [Loizu et al., PoP 2012]

I Parallelized using domain decomposition, excellent parallel scalability up to ∼ 10000 cores
I Gradients and curvature discretized using finite differences, Poisson Brackets using Arakawa

scheme, integration in time using Runge Kutta method
I Code fully verified using method of manufactured solutions [Riva et al., PoP 2014]
I Note: L⊥→ ρs, L‖→ R0, t → R0/cs, ν = ne2R0/(miσ‖cs) normalization

The Poisson and Ampere equations
I Generalized Poisson equation, ∇ · (n∇⊥φ) = Ω− τ∇2

⊥pi

I Ampere’s equation from Ohm’s law,
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I Stencil based parallel multigrid implemented in GBS
I Elliptic equations separable in parallel direction allow for independent 2D solutions for x-y plane

The kinetic neutral atoms equation
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I Method of characteristics to obtain the formal solution of fn [Wersal et al., NF 2015]
I Two assumptions, τneutral losses < τturbulence and λmfp, neutrals� L‖,plasma, leading to a 2D steady

state system for each x-y plane
I Linear integral equation for neutral density obtained by integrating fn over ~v
I Spatial discretization leading to a linear system of equations[
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I This system is solved for neutral density, nn, and neutral particle flux at the boundaries, Γout, with the
threaded LAPACK or MUMPS (serial or parallel) solvers.

Past achievements of GBS

I Characterization of non-linear turbulent
regimes in the SOL

I SOL width scaling as a function of
dimensionless / engineering plasma
parameters

I Origin and nature of intrinsic toroidal
plasma rotation in the SOL

I Mechanisms regulating the SOL
equilibrium electrostatic potential
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Open questions on plasma fueling in tokamaks

I Where is the plasma created and how is it transported?
I How do neutral flows influence the plasma density profile?
I How is fueling affected by the n, T profiles and the poloidal location of the gas puffs?

This requires:
I Quantitative assessment of plasma and neutral flows
I Mass-conserving model (total ions + neutrals kept constant within the simulation)

These will also allow to address:
I Influence of neutrals in the formation of different SOL regions
I High density effects (formation of the density shoulder, Greenwald density limit...)

Moving towards a mass-conserving model
GBS was modified to ensure mass conservation (ions + neutrals):
I 2 changes were implemented to make the continuity equation exactly satisfied

I Radially variable inverse aspect ratio ε = r
R0

to take into account curvilinear geometry
I Parallel gradient terms included in Poisson brackets and curvature operators
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I Neutrals generated by boundary recycling were made to match the plasma outflow
I Boundary conditions were changed by adding the diamagnetic and E × B contributions
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Mass conservation is evaluated by checking the balance of the number of particles:
I Continuity equation is integrated over volume and time
I Neutral density is conserved within the model, so (nnνiz) = −~∇ · ~Γneutral
I Density balance given by
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1D radial model

Radial balance of particles by integrating over θ∗ and φ

I Density variation is slightly negative almost everywhere as a
result of neutral and ion outflow from the core

I Density variation profile is roughly flat (uniform variation rate)

I Reasonable matching at CFS region and SOL far from LCFS

I Curves strongly mismatch near LCFS due to very large
gradients - much greater resolution required.

I Neutrals are conserved during calculation up to an error that
converges with grid resolution (nx_neutrals and ny_neutrals)

GBS simulation parameters:
I Circular magnetic equilibrium
I R0 = 500ρs
I Lx = 150ρs, Ly = 800ρs
I Limiter at x = 75− 150ρs
I 7 GBS time units
I Time step of ∆t = 3.75× 10−5

Quantitative assessment of ion and neutral fluxes

I Ion and neutral fluxes profiles are similar but not symmetric since system is not in a steady state
I Both ions and neutrals outflow to the core
I Ion flux in the SOL is dominated by the E× B flux (outward pointing)
I Ion flux in CFS region determined by competition between E× B and diamagnetic contributions
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