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You would measure time the measureless and the immeasurable.
Yet the timeless in you is aware of life’s timelessness,
And knows that yesterday is but today’s memory and

tomorrow is today’s dream.
And is not time even as love is, undivided and paceless?

— Gibran Khalil Gibran, The Prophet



Abstract

In any communication system, there exist two dimensions through which the infor-
mation at the source becomes distorted before reaching the destination: the noisy
channel and time. Messages transmitted through a noisy channel are susceptible to
modification in their content, due to the action of the noise of the channel. Claude E.
Shannon, in his seminal paper of 1948 “A Mathematical Theory of Communication”,
introduces the bit as a unit of measure of information, and he lays down the theoretical
foundations needed to understand the problem of sending bits reliably through a
noisy channel. The distortion measure, which he used to quantify reliability, is the
error probability. In his paper, Shannon shows that any channel is characterized
by a number that he calls capacity : It represents the highest transmission rate that
can be used to communicate information with, through this same channel, while
guaranteeing a negligible error probability. These foundations led to the development
of the field of information theory.

Whereas, even if the messages are sent through a perfect channel, the time
they take to reach their destination causes the receiver to acquire a distorted view
of the status of the source that generated these messages. For instance, take the
case of a monitor interested in the status of a distant process. A sender observes
this process and, to keep the monitor up-to-date, sends updates to it. However, if,
at any time t, the last received update at the monitor was generated at time u(t),
then the information at the receiver reflects the status of the process at time u(t),
not at time t. Hence, the monitor has a distorted version of reality. In fact, it has
an obsolete version with an age of t− u(t). This concept is common in astronomy
where, due to the extremely long distances between the observed process and the
monitor (Earth), the reality that astronomers have about the status of distant stars
corresponds to the state of these stars millions or billions years ago. This is a clear
illustration of how the information (or bits) that a monitor seeks can be distorted
by time. This example shows the importance, from the receiver point of view, of
building a communication system that maintains the monitor up-to-date. In other
words, the monitor needs a system that ensures a negligible age.

The concept of age as a distortion measure in communication systems was first
used in 2011 by Kaul et al., in order to assess the performance of a given vehicular
network. The aim of the authors was to come up with a transmission scheme that
would minimize an age-related metric: the average age. Since then, a growing body
of works has used this metric to evaluate the performance of multiple communication
systems; some of them being subject to resource allocation constraints. The drive
behind this interest lies in the importance that status-update applications are gaining
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in today’s life (in vehicular networks, warehouse and environment surveillance, news
feed, etc.).

In this thesis, we choose age as a distortion measure and derive expressions for
the average age and the average peak-age (another age-related metric) for different
communication systems. Therefore, we divide this dissertation into two parts: In the
first part, we assume that the the updates are transmitted through a noiseless channel
that has a random service time. In the second part, we consider a special category of
noisy channels, namely the erasure channel. In the first part of this thesis, in order to
compute the age-related metrics, we employ queue-theoretic concepts. We study and
compare the performance of various transmission schemes under different settings: (i)
when we are interested in only one source and the service time is gamma distributed,
(ii) when we are interested in multiple sources with equal priority and, (iii) when
the sources are assigned different priorities. We show that the optimal transmission
scheme when the monitor is interested in a single source loses its optimality when
another source of higher priority shares the system.

In the second part of this thesis, we introduce, in our age calculations, the
distortion caused by the erasure channel on the transmitted updates. In order
to combat the erasures of the channel, we first consider two flavors of the hybrid
automatic repeat request (HARQ), an error-correcting protocol implemented in
cellular systems: the infinite incremental redundancy (IIR) HARQ and the fixed
redundancy (FR) HARQ. We compute, under two different transmission schemes,
the average age for both IIR and FR; and we show that IIR leads always to a lower
average age compared to FR. Finally, we focus on the optimal average age that could
be achieved over an erasure channel. We prove that if the channel-input alphabet is
identical to that of the source, then no error coding is needed to achieve the optimal
average age for which we compute the closed-form expression. However, when the
two alphabets are different, we use a random-coding argument to tightly bound the
optimal average age.

Keywords: Average age, average peak-age, renewal processes, Poisson processes,
random codes, HARQ, ergodic theory, erasure channel, Markov chains.



Résumé

Dans tout système de communication, deux facteurs distordent l’information à la
source avant sa réception par le destinataire : le canal à bruit et le temps. En un
premier temps, les messages transmis á travers un canal á bruit sont susceptibles de
voir leur contenu modifié suite á l’action du bruit. Claude E. Shannon introduit, dans
son article fondateur de 1948 intitulé « Mathematical Theory of Communication », la
notion de bit comme unité de mesure de l’information et pose les bases théoriques
nécessaires á la compréhension du problème de transmission sûre de bits à travers
un canal à bruit. Shannon définit la probabilité d’erreur comme étant la mesure de
distorsion nécessaire pour évaluer la sûreté d’un système de communication. En fait,
Shannon prouve que chaque canal se charactérise par un nombre qu’il nomme capacité
et qui représente le débit de transmission maximal qu’aucun peut adopter tout en
étant sûr de pouvoir garantir une probabilité d’erreur négligeable. Ces fondations
causèrent le développement du domaine de la Théorie de l’Information.

En un second temps, même si les messages (ou updates) sont transmis à travers
un canal parfait, l’intervalle de temps que ces updates mettent à arriver á leur
destination cause le récepteur de constituer une image tordue de l’état de la source
qui génère ces messages. Par example, prenons le cas d’un moniteur intéressé par l’état
d’un processus éloigné. Un transmetteur observe ce processus et transmet des updates
au moniteur pour le garder á jour. Cependant, si à un certain moment t, le dernier
update reçu par le destinataire était généré à l’instant u(t) alors l’information que le
moniteur détient ne reflète l’état de la source telle que qu’elle était à l’instant u(t). De
là, le moniteur possède une version tordue de la réalité. En effet, ce dernier possède
une version obsolète âgée de t − u(t). Cette notion est récurrente en astronomie
où la réalité que les astronomes peuvent reconstruire à propos d’une étoile éloignée
correspond à l’état de l’étoile telle qu’elle se portait il y a des millions voire des
milliards d’années. Dans ce cas, la distorsion est surtout dûe aux grandes distances
séparant le processus observé (les étoiles) du moniteur (la Terre). Ceci présente une
illustration claire sur l’effet que le temps exerce sur l’information demandée par un
moniteur. Cet example souligne aussi l’importance, du point de vue du récepteur,
de construire un système de communication qui garantit une mise à jour efficace du
moniteur. En d’autres termes, le moniteur a besoin d’un système qui puisse assurer
un âge minimal.

La notion d’âge, en tant que mesure de distorsion dans les systèmes de commu-
nication, fut utilisée en premier par Kaul et al. en 2011 afin d’évaluer la performance
d’un certain réseau véhiculaire. Le but des auteurs consistait à trouver un schéma
de transmission qui minimize l’âge moyen. Depuis, un nombre croissant d’articles
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utilisent cette nouvelle mesure pour évaluer la performance de différents systèmes
de communication dont certains sont sujets à des contraintes sur les ressources dis-
ponibles. L’intérêt accru envers ce sujet vient de l’importance croissante que les
applications de mise à jour gagnent dans notre vie d’aujoud’hui (tels les réseaux
véhiculaires, la surveillance des dépôts et de l’environnement, les sources de nouvelles,
etc.).

Dans cette thèse, nous choisissons l’âge comme mesure de distorsion et dérivons
des expressions pour l’âge moyen ainsi que l’âge de pointe moyen pour différents
systèmes de communications. La thèse se divise en deux parties : dans la première
partie nous supposons que les updates sont transmis à travers un canal sans bruit
mais avec un temps de service aléatoire. Par contre, dans la seconde partie, nous
considérons une catégorie spéciale de canaux à bruit, celle des canaux d’effacements.
Dans la première partie de cette dissertation, nous employons des notions empruntées
à la théorie des queues afin de calculer les deux mesures d’âge mentionnées précé-
demment. Nous étudions et comparons les performances d’une variété de schémas
de communication sous différents angles : (i) lorsque le moniteur n’est intéressé que
par une seule source et que le temps de service possède une distribution gamma, (ii)
lorsque le moniteur est intéressé par plusieurs sources avec des priorités similaires et
(iii) lorsque les sources possèdent des priorités différentes. Nous démontrons que le
schéma optimal de transmission dans le cas d’une source unique devient sous-optimal
lorsqu’une nouvelle source avec une priorité plus élevée vient partager le système.

Dans la seconde partie de cette dissertation, nous prenons en considération dans
nos calculs la distorsion apportée par le canal d’effacements. Afin de combattre les
effacements du canal, nous considérons en un premier temps deux versions du protocol
de hybrid automatic repeat request (HARQ) qui est implémenté dans les systémes
cellulaires : la redondance incrémentale infinie (RII) HARQ et la redondance fixe
(RF) HARQ. Nous calculons pour deux schémas de transmission différents les âges
moyens relatifs à la RII et à la RF. Nous démontrons que la RII présente toujours un
âge moyen plus petit que celui réalisé par la RF. Finalement, nous nous concentrons
sur l’âge moyen optimal qui puisse être atteint en présence d’un canal d’effacements.
Nous prouvons que si l’alphabet de la source est identique à celui de l’entrée du canal,
alors le codage de canal s’avère inutile pour atteindre l’âge moyen dont nous dérivons
la forme exacte. Toutefois, lorsque les deux alphabets sont différents, nous utilisons
un argument basé sur le codage aléatoire afin de trouver des bornes serrées sur l’âge
moyen optimal.

Mots-clés : Âge moyen, âge de pointe moyen, processus de renouvellement, pro-
cessus de Poisson, codes aléatoires, HARQ, théorie de l’ergodicité, canal d’effacements,
chaîne de Markov.



Acknowledgements

No ship, no matter how strongly built and technologically advanced it is, can make it
safely to the destination without the guidance of an experienced captain. Luckily,
my PhD-ship had Emre Telatar at its helm. Being a veteran captain, Emre does
not content himself in bringing the ship just safely to port but he brings it full of
treasures. That’s why, I am deeply indebted to Emre for two things: First, for his
crucial technical advices that were essential in the development of my technical skills,
and without which I would not have completed my work. In fact, I would like to
thank him especially for his patience during the first year of my PhD when I was still
learning the tools of my trade. Second, I am also grateful for all our non-technical
discussions that helped me develop intellectually and acquire a better taste at fine
arts. These are treasures that I will always cherish.

I am also grateful to my ex-officemate and my friend Rajai Nasser with whom
I spent countless hours trying to solve two kinds of problems: problems related to
the subject of this thesis and problems related to the conflicts in the Middle East.
Whereas our collaboration was fruitful in solving problems of a technical nature, we
are still at lost on how to address even a single conflict in the Levant.

I would also like to thank the members of the jury committee: Anthony
Ephremides, Nicolas Macris, Patrick Thiran and Roy Yates. I really appreciate
the time they spent on reading this work and their detailed feedback helped improve
the final version of this thesis.

During my second year of PhD, I had the chance to visit Rutgers university
and work with Emina Soljanin. I would like to use this opportunity to thank her
for the wonderful time she helped me spend in the U.S. as well as for the extremely
productive collaboration. Here, I would like to extend my thanks to the members of
Emina’s lab for their welcoming spirit and the friendships that we built: Jing, Fatih,
Nadia, Navid, Pei, Chryssalenia. During this stay and thanks to Emina, I had the
happy opportunity to meet and work with Roy Yates on multiple problems.

Back in Lausanne, as a member of the Information Processing Group (IPG)
at EPFL, I was part of a family that made my journey smooth and the working
environment very enjoyable. For that, I would like to thank first the senior members
of our group: Bixio Rimoldi, Rüdiger Urbanke, Micheal Gastpar and Olivier Lévêque.
In addition to the professors, I would like to thank the invisible soldiers working
behind the scenes. A big thanks to Muriel Bardet and Françoise Behn for taking care
of all the logistical dimensions during this period. A special thanks also to Muriel
for all the administrative advices and for making the lab run without any problems.
Another invisible soldier that I would like to thank is Damir Laurenzi, who made

vii



viii Acknowledgements

sure we always had the best equipment and who was always there to help whenever
some apocalyptic IT problem stroke.

What made the PhD journey enjoyable is the presence of my brothers-in-arms
and sister-in-arm with whom I shared many memories in ISIT and in Lausanne. I
am grateful to my officemates, Marco, Rajai and Clément, for sharing not just an
office with me but also valuable memories and friendships. Thanks also to the other
members (current and previous) of IPG: Mani, Young, Eric, Erixhen. A big and
special thanks for the Lebanese gang in IPG for all the moral support and help you
gave me during these four years: Rafah, Mohammad, Serj, Ibrahim. We have created
some memories which became defining moments in my life.

Outside IPG, I had the chance to make many friends from the PhD program
with whom I shared many memories and adventures. Special thanks to Renata
and Artem for the uncountable fun times we spent together. Also, I am grateful to
the members of LTS4 for adopting me as one of their own and for all the lunches,
activities and baby-foot matches we shared together. Among the first PhD friends
that I made are the first-year residents of the middle room in the PhD-office: Agatha,
Ajay, Handan, Mario, Miranda, Utku and Yoannis.

In order for a foreign person to be productive two conditions are necessary: first,
to have a nice working environment, and second, to have a rich set of friends who
would turn Lausanne into a second home. Since I have already thanked the people
responsible for fulfilling the first condition, I would like to express my gratitude to
my Lebanese friends in Lausanne and Zurich for all the support and memories they
have given me. Special thanks to Abbas, Abdo, Amer, Chris, Elsa, Elio, Farah, Feyiz,
John, Hiba, Lama, Marwa, Mireille, Hani & Carole, Raed, Roula, Samer, Sarah,
Yamane.

I would also like to extend my thanks to my friends back in Lebanon and in
Europe for their continuous support which transcended the thousands of kilometers
that separate us. Special thanks to Nancy and Giorgio.

Finally, it is always the hardest to thank the people closest to you. Words
become scarce or insufficient and you struggle to fully convey what you really feel
with the limited vocabulary at your disposal. I will try my best in the next few lines
to express my deep gratitude towards my extended family. A big thanks to my aunts,
uncle and cousins who believed in me since day one and fueled me with love and
support despite the long distances and the time differences. A very special thanks for
my brother Jad for always being besides me whenever I needed him, for being my best
friend, and for offering me a second home in Paris whenever I needed a small break
from the stress of the PhD life. As for my Mother and my Father, words just come
short of encompassing the importance of their support, their endless sacrifices and
their worries during all these years. I would have never been able to complete this
PhD-journey without them by my side, and for that I will remain happily indebted.

Lausanne, February 8th, 2019 E.N.



Contents

Abstract iii

Résumé v

Acknowledgements vii

Contents ix

List of Figures xii

1 Introduction 1
1.1 The Classic Communication Problem . . . . . . . . . . . . . . . . . . 4

1.1.1 The Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Source Coding or Noiseless Communication . . . . . . . . . . 7
1.1.3 Channel Coding or Noisy Communication . . . . . . . . . . . 7

1.2 The Age Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 The Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 The Age Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.3 To Send or not to Send . . . . . . . . . . . . . . . . . . . . . 15

1.3 AoI and its Applications . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 Analysis and Optimization . . . . . . . . . . . . . . . . . . . 18
1.3.2 Age and Information Theory . . . . . . . . . . . . . . . . . . 22
1.3.3 Scheduling under Resource Allocation Constraints . . . . . . 25
1.3.4 Other AoI Applications . . . . . . . . . . . . . . . . . . . . . 26

1.4 Outline and Main Contributions . . . . . . . . . . . . . . . . . . . . 26

2 System Model and General Settings 29
2.1 General Setup and Notations . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Interarrival Time . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.2 Service Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.3 Waiting Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.4 System Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.5 Interdeparture Time . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 The InterArrival Time Approach (ATA) . . . . . . . . . . . . . . . . 33
2.2.1 Computing the Average Age (AoI) . . . . . . . . . . . . . . . 34
2.2.2 Computing the Average Peak Age (PAoI) . . . . . . . . . . . 37

2.3 The InterDeparture Time Approach (DTA) . . . . . . . . . . . . . . 38

ix



x Contents

2.3.1 Computing the Average Age . . . . . . . . . . . . . . . . . . . 38
2.3.2 Computing the Average Peak Age . . . . . . . . . . . . . . . 39

I Age in the Absence of Noise 41

3 The gamma Awakening 43
3.1 Introduction and Main Results . . . . . . . . . . . . . . . . . . . . . 43
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 General Definitions . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 Computing the Average Age . . . . . . . . . . . . . . . . . . . 45
3.2.3 Computing the Average Peak-Age . . . . . . . . . . . . . . . 47
3.2.4 Defining the Service Time . . . . . . . . . . . . . . . . . . . . 47

3.3 Age of Information for LCFS with Preemption . . . . . . . . . . . . 48
3.3.1 Verifying Convergence . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 Average Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.3 Average Peak-Age . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Age of Information for LCFS with Preemption in Waiting . . . . . . 55
3.4.1 Verifying Convergence . . . . . . . . . . . . . . . . . . . . . . 56
3.4.2 Average Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.3 Average Peak Age . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Age of Information for Deterministic Service Time . . . . . . . . . . 61
3.5.1 LCFS with Preemption . . . . . . . . . . . . . . . . . . . . . 61
3.5.2 LCFS without Preemption . . . . . . . . . . . . . . . . . . . . 61

3.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Status Update in a Multi-stream M/G/1/1 Preemptive Queue 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Age of a Multi-stream M/G/1/1 Preemptive Queue . . . . . . . . . . 67
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Content Based Status Updates 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 FCFS for the Low-Priority Stream . . . . . . . . . . . . . . . . . . . 79

5.3.1 System Stability and Stationary Distribution . . . . . . . . . 79
5.3.2 Ages of Streams U1 and U2 . . . . . . . . . . . . . . . . . . . 82
5.3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 M/G/1/1 with Preemption for the Low-Priority Stream . . . . . . . 91
5.4.1 Ages of Streams U1 and U2 . . . . . . . . . . . . . . . . . . . 91

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7.1 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . 100
5.7.2 Proof of Corollary 5.1 . . . . . . . . . . . . . . . . . . . . . . 105



Contents xi

II Age in the Presence of Noise 107

6 Status Updates through M/G/1/1 Queues with HARQ 109
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3 M/G/1/1 with Blocking . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3.1 Average Age Calculation . . . . . . . . . . . . . . . . . . . . . 111
6.3.2 Finding the Optimal Arrival Rate . . . . . . . . . . . . . . . 113

6.4 M/G/1/1 with Blocking HARQ System . . . . . . . . . . . . . . . . 113
6.4.1 Infinite Incremental Redundancy . . . . . . . . . . . . . . . . 113
6.4.2 Fixed Redundancy . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5 M/G/1/1 with Preemption . . . . . . . . . . . . . . . . . . . . . . . 115
6.6 M/G/1/1 with Preemption and HARQ . . . . . . . . . . . . . . . . . 116

6.6.1 Infinite Incremental Redundancy . . . . . . . . . . . . . . . . 116
6.6.2 Fixed Redundancy . . . . . . . . . . . . . . . . . . . . . . . . 117

6.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.9 Appendix: Alternate Proof of Theorem 6.5 . . . . . . . . . . . . . . . 122

7 Optimal Age over Erasure Channels 125
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.3 Optimal Age with the Same Source & Channel Alphabets . . . . . . 127

7.3.1 The Optimal Transmission Policy . . . . . . . . . . . . . . . . 128
7.3.2 The Optimal Average Age . . . . . . . . . . . . . . . . . . . . 129

7.4 Optimal Age with Different Source & Channel alphabets . . . . . . . 133
7.4.1 The Optimal Transmission Policy . . . . . . . . . . . . . . . . 133
7.4.2 The Random Code . . . . . . . . . . . . . . . . . . . . . . . . 135
7.4.3 Average Age of Random Codes . . . . . . . . . . . . . . . . . 136
7.4.4 Exact Upper Bound on the Optimal Average Age . . . . . . . 137
7.4.5 Bounding ∆ε,C . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.4.6 Age-Optimal Codes . . . . . . . . . . . . . . . . . . . . . . . 147
7.4.7 Other Bounds and Approximations . . . . . . . . . . . . . . . 148
7.4.8 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 150

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.6 Appendix: On the Equidistribution Theory . . . . . . . . . . . . . . 153

7.6.1 Equidistribution and Weyl’s Equidistribution Theorem . . . . 153
7.6.2 Proof of Lemma 7.1 . . . . . . . . . . . . . . . . . . . . . . . 156
7.6.3 Proof of Lemma 7.2 . . . . . . . . . . . . . . . . . . . . . . . 156

8 Conclusion and Further Directions 159
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.2 Further Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Bibliography 165

Curriculum Vitae 173



List of Figures

1.1 Diagram of a general communication system. . . . . . . . . . . . . . . . 2
1.2 The Binary Erasure Channel (BEC). . . . . . . . . . . . . . . . . . . . . 5
1.3 Modified diagram of a general communication system. . . . . . . . . . . 6
1.4 The age problem communication setup. . . . . . . . . . . . . . . . . . . 9
1.5 A status update packet generated by source M . . . . . . . . . . . . . . . 11
1.6 Variation of the instantaneous age for a single source. . . . . . . . . . . 12
1.7 Simplified view of the just-in-time transmission scheme with a single source

and single server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8 Variation of the instantaneous age for a single just-in-time source. . . . 19
1.9 Sketch of the communication setup with multiple/parallel servers. Each

server can serve its packets according to its own service time distribution. 21
1.10 The age problem with energy constraints. The source can only generate

an update if there is a sufficient energy amount in the buffer. . . . . . . 25

2.1 The simplified age communication setup. . . . . . . . . . . . . . . . . . . 30
2.2 Variation of the instantaneous age for source i. . . . . . . . . . . . . . . 31

3.1 Variation of the instantaneous age for both schemes . . . . . . . . . . . 45
3.2 Semi-Markov chain representing the queue for LCFS with preemption . 48
3.3 Markov chain representing the queue for LCFS-with-preemption-in-waiting 55
3.4 Average age for gamma service time S with E(S) = 1, different k and

LCFS with preemption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Average age for gamma service time S with E(S) = 1, different k and

LCFS-with-preemption-in-waiting . . . . . . . . . . . . . . . . . . . . . . 62
3.6 Average age for gamma service time S with k = 2 and E(S) = 1 . . . . . 63
3.7 Average age and average peak age for deterministic service time . . . . . 63

4.1 The multi-stream setup: M processes are observed continuously, and the
sender generates updates according to a Poisson process with rate λ. At
each generation instant, the sender turns on a switch (source) i with
probability pi and sends its observation of the related process through a
single server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Variation of the instantaneous age of Stream 1 for M/G/1/1 queue with
preemption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Semi-Markov chain representing the M/G/1/1 interdeparture time for
stream 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xii



List of Figures xiii

4.4 Detour flow graph of the M/G/1/1 interdeparture time for stream 1. . . 72

5.1 Diagram representing the model with FCFS for the low priority stream. 79
5.2 Variation of the instantaneous age of stream U1. . . . . . . . . . . . . . 80
5.3 Markov chain governing the number of packets in the system. . . . . . . 81
5.4 Semi-Markov chain representing the “virtual” service time Yj . . . . . . . 83
5.5 Detour flow graphs for (a) Y and (b) Y ′. . . . . . . . . . . . . . . . . . . 85
5.6 Plot of the average age for stream U2 and average peak age and lower

bound on the average age for stream U1. . . . . . . . . . . . . . . . . . . 90
5.7 Diagram representing the model with preemption for the low priority stream. 91
5.8 Variation of the instantaneous age of stream U1. . . . . . . . . . . . . . 92
5.9 Semi-Markov chain representing the M/G/1/1 interdeparture time for

stream U1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.10 Detour flow graph of the M/G/1/1 interdeparture time for stream U1. . 96
5.11 Comparison between the average peak ages of the low priority source U1

when using the FCFS and the preemption schemes and exponential service
times. We fix λ1 = 2, µ1 = 10, µ2 = 5. . . . . . . . . . . . . . . . . . . . 100

6.1 Variation of the instantaneous age for M/G/1/1 with blocking . . . . . . 111
6.2 Semi-Markov chain representing the queue for LCFS with preemption . 115
6.3 Comparing the performance of the FR-HARQ for the M/G/1/1 with

preemption scheme when varying the number of information symbols in
each packet. We assume the update has 100 information symbols, ε = 0.2,
kp = 100/ks. ns is chosen to minimize the average age. . . . . . . . . . . 119

6.4 Average age with respect to codeword length for the M/G/1/1 with
preemption scheme with FR-HARQ. We assume the update has 100
information symbols, λ = 0.0066, ks = 20 and kp = 100/ks. . . . . . . . 119

6.5 Comparing the performance of the FR-HARQ for the M/G/1/1 without
preemption scheme when varying the number of information symbols in
each packet. We assume the update has 100 information symbols, ε = 0.2,
kp = 100/ks. ns is chosen to minimize the average age. . . . . . . . . . . 120

6.6 Average age with respect to codeword length for the M/G/1/1 without
preemption scheme with FR-HARQ. We assume the update has 100
information symbols, λ = 1, ks = 20 and kp = 100/ks. . . . . . . . . . . 121

6.7 Comparing the performance of the two M/G/1/1 schemes when using IIR
and FR. We assume the update has 100 information symbols and ε = 0.2. 121

6.8 Variation of the instantaneous age for LCFS with preemption . . . . . . 122

7.1 The communication system. . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2 Markov chain governing the number of transmissions since the reception

instant of the last successful source symbol. . . . . . . . . . . . . . . . . 131
7.3 Variation of the instantaneous age for an MDS code C and a non-MDS

code C′. We assume the erasure probability ε = 0.4, n = 10 and k = 3. . 135
7.4 Variation of the instantaneous age when using a random code C with

n = 5, k = 3. We assume we begin observing after a successful reception.
Since λ = µ = 1 then the interval between channel uses is one second. . 137

7.5 Markov chain representing the dimension of a codeword at the receiver. 138



xiv List of Figures

7.6 Bounds on ∆ε,C with respect to the blocklength n, with k = 3 and a
channel-input alphabet of size q = 5. The age is in log scale. . . . . . . . 150

7.7 Bounds on ∆ε,C with respect to the blocklength n, with k = 3 and a
channel-input alphabet of size q = 25. . . . . . . . . . . . . . . . . . . . 151

7.8 Bounds on the optimal achievable age ∆ε with k = 3. . . . . . . . . . . . 152



Introduction 1
Life begins with an act of communication. The first action newborns take after only
seconds of seeing the light is to announce, through a cry, that they are alive. The
parents and doctors present in the room interpret this announcement as a sign that the
child is healthy. The limited alphabet at the disposal of the newborn ({cry, silence})
renders this act one of the first instances of binary communication. However, life and
communication are much more intertwined than that and share a deep relationship.
In fact, communication is at the origin of life. The infants who were just born will
grow into men and women with their physical development (at least1) dictated by
the information stored in their respective DNA sequences. Similar to any storage
medium (floppy disk, CDs, USB,. . . ), the DNA encodes the genetic information in a
format that guarantees an almost negligible modification of its content2 and that can
be accessed at any point in time. Although communication principles govern even
the smallest aspects of life, we had to wait until 1948 in order for Claude E. Shannon
to provide a systematic mathematical model of generic communication systems in
his landmark paper “A Mathematical Theory of Communication” [63]. In this paper,
Shannon describes the communication problem:

The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another point.

Fig. 1.1 illustrates the above definition. The receiver’s responsibility is to recreate
at the destination the message chosen by the information source and transmitted
through the channel. The destination and the source does not have to be two different
physical entities. They can be the same entity; in which case, the transmission is done
in time. In other words, the communication problem becomes a storage problem: The

1We don’t mention the intellectual development since much of the brain’s characteristics are
still not fully understood hence we would like to avoid any controversial statements.

2Some mutations might occur during the cellular division (which can be compared to copying
the content of a CD) but the probability of that event occurring is very close to zero.

1



2 Introduction

Information
source Transmitter Channel Receiver Destination

Message Physical
signal

Received
signal

Estimated
message

Figure 1.1 – Diagram of a general communication system.

source seeks to access some message it has already generated but at a later moment in
the future. This is also known as data compression or source coding. The storage of
the genetic information as DNA sequences falls into this category. Aside from being
separated in time, the source and destination could be separated in space. In this case
they are necessarily different entities. The newborn crying and two persons talking
to each other illustrate this case. In fact, the simple instinctive act of saying “Hello”
covers all the components of a communication system as presented in Fig. 1.1: In
order for Alice (the information source) to greet Bob (the destination), she first has to
choose a message that consists of one or multiple words from the English vocabulary.
Having chosen the word “Hello” as her message, she now uses her speaking mechanism
(brain, vocal cords, mouth) to convert this message into physical sound waves that
propagate through the air to reach the hearing mechanism (brain, ears) of Bob. At
this point, Bob’s hearing mechanism reconverts the received sound waves into English
words that he can understand. In this scenario the speaking mechanism plays the role
of the transmitter, the air is the channel, the hearing mechanism is the receiver. In
an ideal world, Alice and Bob would be alone and close to each other so that Bob will
understand Alice, the first time she speaks. However, it might happen that they are
in a public space with much noise around them. This interference might force Alice
to repeat her message in order for Bob to correctly understand it. This necessary
redundancy comes at the expense of the amount of information Alice can share with
Bob in a given interval of time: Every time a message is repeated, Alice loses an
opportunity to share a new message. The ratio of the amount of distinct messages
over the number of times the channel needs to be used to deliver them is called the
rate of the communication system. Whereas the process of adding redundancy to a
message in order to combat the channel noise is known as channel coding.

Until 1948, it was believed that in order to communicate with negligible error
probability, the rate of the communication system should be close to zero. In other
words, the fewer errors we want to have, the larger the amount of redundancy we
need, hence the fewer number of messages we can send. However, Shannon (in his
paper [63]) contradicts this belief and shows that every channel W is characterized
by a number C(W), called capacity of the channel; it indicates the highest rate the
communication system (using channel W) can adopt while achieving an arbitrarily
small probability of error. Any communication system using channelW that operates
at a rate strictly higher than C(W) is guaranteed to have a strictly positive error
probability. The rate of a communication system is determined by the channel-coding
paradigm adopted by the transmitter. Surprisingly, Shannon proves the existence
of a channel code that achieves capacity using a probabilistic approach and thus
without suggesting any concrete code. These results paved the way for a plethora
of new problems that collectively form the fields of Information Theory and Coding
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Theory.

Seven decades after Shannon’s work, the technological and theoretical advances3 in
the field of communication and computing opened the door for new categories of
applications and services. One such group is real-time status-monitoring systems that
are used in healthcare, finance, transportation, smart homes, warehouse and natural
environment surveillance, to name but a few. In such systems, a remote monitor
is interested in the status of one or multiple processes. A sender takes samples of
the observed processes and sends them to the monitor. However, the aim of the
communication system in this case is not to transmit as fast as possible but to keep
the information the destination has about the observed processes as fresh as possible.
Let’s take the example of Alice following the course of the New York Stock Exchange
(NYSE) from her home in Beirut. Although this scenario would have been very
unlikely 40 years ago due to the challenges faced in transmitting information over
long distances, today we frequently encounter such cases. Therefore, even though
the traditional communication problem does not weigh much in the performance of
the communication system used by Alice, another question arises: How reliable is
the information at Alice’s disposal? In fact, Alice’s decision to buy or sell a certain
amount of company X’s stocks is based on the information she received about the
status of this enterprise’s stock from an observer present at the New York Stock
Exchange. According to a pre-chosen algorithm, the observer creates packets at
certain instants in time and sends them to Alice. These packets contain the value of
company X’s stock at the moment of their generation. But, if at a random time t,
the information that Alice has about the stock value is “relatively old”, the decision
she will make will not be optimal and she might even lose money. Hence, although
she might receive update packets with negligible error in the content, the information
that Alice possesses is still unreliable. Ideally, she would use a communication system
that enables her to be constantly up-to-date as if she was physically in the NYSE.
However, due to physical constraints such an objective cannot be achieved, but it
introduces the engineering problem that we study in this dissertation: How can we
design an efficient communication system such that the information the destination
has about the status of a remote process is as fresh as possible at any point in time?
In order to measure the freshness achieved by a system; a new metric called the Age
of Information (AoI) is introduced in [33]. Our focus in this thesis is to study this new
metric and its behavior under different communication system settings, as well as to
compute the lowest achievable age of information for a special category of channels.

The rest of this chapter is organized as follows: In Section 1.1, we give a quick
summary of the most important notions in information theory. In Section 1.2, we
define in detail the age problem and the age-of-information metric before presenting
the most important results in this field in Section 1.3. Finally in Section 1.4, we
describe our main contributions of this dissertation.

3Technological advances include the development of the transistor, processors, embedded sys-
tems. . .



4 Introduction

1.1 The Classic Communication Problem

If two distant parties can communicate, this implies the existence of a physical
medium that connects them and through which the communication signal propagates.
This medium is called the channel.

Definition 1.1. 4 A channel W is represented by the triplet (V,Z, QW) where

• V is called the input alphabet and each symbol v ∈ V is called a letter. V is
the set of symbols that are permitted to be sent over the channel. We assume in
this text that the input alphabet is discrete.

• Z is called the output alphabet. It is the set of symbols that can be observed at
the output of the channel. The output alphabet and the input alphabet are not
necessarily the same. We also consider only discrete output alphabets.

• QW is the stochastic matrix that describes the behavior of the channel. This
means that QW(z|v) = P(Z = z|V = v) and

∑
z∈Z QW(z|v) = 1 for all v ∈ V.

We associate the random variable Z with the observed output of the channel
and the random variable V with its chosen input. QW(z|v) is the probability of
observing the letter z at the output of the channel, given that the input letter
was v.

The above definition describes the channel as governed by randomness. For every
input letter, v ∈ V, the channel is characterized by a probability distribution that
indicates the relationship between the input letter v and the different output letters.
This randomness models the noise that channel might add to the input letter and its
statistics are considered to be known beforehand by the transmitter and the receiver.
In this dissertation, we are mostly interested in discrete, memoryless channels. This
means that the output of the channel only depends on the current input and not on
previous or future ones. One of the most encountered models of discrete memoryless
channels is the erasure channel. We will consider this type of channel in Part II of
this thesis, that is why we define it here.

Definition 1.2. An erasure channel W with erasure probability ε is defined by an
input alphabet V = {v1, v2, · · · , vK}, with K ∈ N, an output alphabet Z = V ∪ {?}
and for every input letter v ∈ V the probability distribution of the output is

QW(z|v) =


ε if z = ?
1− ε if z = v

0 otherwise.

The above definition implies that if the output of the erasure channel is not {?},
then we can infer the input from the observation with probability 1. Otherwise, if
the output is an erasure {?}, then the input could be any of the letters in V with
probability P(V = v|Z = ?) = P(V = v).

4The definitions and results presented in this section are based on the work of Shannon [63].
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Example 1.1. The Binary Erasure Channel (BEC) with erasure probability ε is an
erasure channel where V = {0, 1} and Z = {0, 1, ?}. The probability rule between the
input and the output can be represented using the graph in Fig. 1.2.

0 0

?

11

1− ε

ε

ε

1− ε

Figure 1.2 – The Binary Erasure Channel (BEC).

In [63], Shannon also uses randomness to model the information source (see Fig. 1.1).
The concept of randomness in the source matches well with our intuition: If the
output of a source is deterministic and known beforehand, then there is no need to
communicate it to a different party.

Definition 1.3. A source generates symbols U1, U2, U3, · · · according to a certain
random process model. The random variable Ui takes value in the discrete alphabet5

U = {α1, α2, · · · , αM}, where M ∈ N.

In this text we are mostly interested in memoryless sources; this means that the
generated symbols U1, U2, U3, · · · are independent and identically distributed (i.i.d).

From Fig. 1.1, we gave a formal definition for the information source and the channel.
We now elaborate on the transmitter and the receiver.

Definition 1.4. Given two positive integers k and n,

• a transmitter (or an encoder)6is a function f defined on the set Uk = {u1u2 · · ·uk; ui ∈
U , ∀ 1 ≤ i ≤ k} onto the set Vn = {v1v2 · · · vn; vi ∈ V, ∀ 1 ≤ i ≤ n}:

f : Uk → Vn

u1u2 · · ·uk 7→ v1v2 · · · vn.

The encoder associates with each sequence of source letters of length k a sequence
of channel input letters of length n. The sequences in f(Uk) ⊂ Vn are called
codewords of blocklength n. The set of all the codewords forms a code.

5We give the definition for discrete-time discrete-value sources. However, the definition can be
easily generalized for continuous time, uncountable alphabet sources.

6The definition of encoder given here assumes there is no feedback from the receiver. In the
presence of feedback, the definition becomes: Given three positive integers k, n and l, the encoder is
a function f such that

f : Uk ×Zl → Vn

(u1u2 · · ·uk, z1z2 · · · zl) 7→ v1v2 · · · vn.
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Information
source Encoder Channel Decoder Destination

U1U2 · · ·Uk V1V2 · · ·Vn Z1Z2 · · ·Zn Û1Û2 · · · Ûk

Figure 1.3 – Modified diagram of a general communication system.

• a receiver (or decoder) is a function g defined on the set Zn = {z1z2 · · · zn; zi ∈
Z, ∀ 1 ≤ i ≤ n} onto the set Ûk = {û1û2 · · · ûk; ûi ∈ Ûk, ∀ 1 ≤ i ≤ k}:

g : Zn → Ûk

z1z2 · · · zn 7→ û1û2 · · · ûk.

The decoder maps the channel output sequence of length n into a sequence of
length k that estimates the sequence generated by the source. To indicate that
it is not necessarily equal to the source alphabet, we denote Û as the output
alphabet of the decoder. However, for all intents and purposes, we assume that
Û = U in this thesis.

In this text we adopt the convention where capital letters refer to random variables
and lower-case letters refer to deterministic realizations. For instance, Vi corresponds
to the random variable associated with the channel input symbol at time i, whereas
v is its realization. Similarly, Zi refers to the channel output symbol at time i, and z
refers to its realization. Moreover, the notation V n will be used to denote a vector of n
random variables (V1V2 · · ·Vn) and vn to denote a vector of n realization (v1v2 · · · vn).

1.1.1 The Metrics

Based on the aforementioned definitions, the general communication system can be
depicted as shown in Fig. 1.3: A source generates in an i.i.d fashion a sequence Uk

of symbols that are encoded into a codeword V n = f(Uk) by the encoder. This
codeword is sent one symbol at a time over the channel; and once the decoder observes
a sequence Zn, it tries to retrieve the original source symbols and outputs an estimate
Ûk = g(Zn). In order to assess the performance of a given communication system,
two metrics are used: the communication rate and the block-error probability.

Definition 1.5. Given a source alphabet U and an encoder f : Uk → Vn, we define
the rate of the communication system shown in Fig. 1.3 as

R =
k

n
source symbols/channel use.

The rate is the average number of source symbols transmitted per channel use and
indicates how fast we can transmit.

We use “log” to refer to the base 2 logarithm and “ln” to refer to the natural logarithm.

Definition 1.6. Given a source alphabet U , an encoder f : Uk → Vn and a decoder
g : Zn → Uk, the block probability of error Pe is the probability that the decoder gives
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an estimate different from the actual transmitted sequence. Formally,

Pe = P(Ûk 6= Uk) = P(g(Zn) 6= Uk).

The block error probability measures the reliability of the communication system at
hand: The lower the error probability the more reliable our system is.

The goal of a system engineer is to come up, for a given source and channel, with
a communication setup (k, n, encoder f , decoder g) that achieves the highest rate
possible while ensuring a negligible error probability. This is the classic communication
problem.

1.1.2 Source Coding or Noiseless Communication

A noiseless channel W is a channel where the output is exactly equal to the input.
This means that V = Z and for all v ∈ V we have

QW(z|v) =

{
1 if z = v

0 otherwise.

In his paper [63], Shannon shows that solving the classic communication problem
for noiseless channels is equivalent to solving a data compression problem. As the
channel in this context is simply a noiseless wire, let’s assume that it transmits bits.
Thus V = Z = {0, 1}. Hence, the encoder f maps a sequence of k source symbols
into a sequence V n = (V1V2 · · ·Vn) of n bits and the decoder g estimates the original
sequence of source symbols using V n. Moreover, maximizing the communication
rate R = k

n (source symbols/bit) is equivalent to minimizing the compression rate
C = 1

R = n
k (bits/source symbol) that is the average number of bits per source symbol.

For a given source generating symbols (Ul)l≥1 in an i.i.d fashion from an alphabet U ,
Shannon shows that each source symbol can be compressed losslessly7 up to

H(U) = −
∑
u∈U

P(U = u) log (P(U = u)) bits,

where U is the generic random variable with the same distribution as the Ul, l ≥ 1.
The quantity H(U) is called the entropy of U . It measures, in bits, the amount of
randomness that is contained in U .
However, in order to achieve this entropy bound we need to compress a large number
of symbols at the same time, i.e. k → ∞ [11, 12]. As we will see later, this is not
optimal from an age point of view.

1.1.3 Channel Coding or Noisy Communication

In the noisy channel scenario, Shannon assumes that the channel is discrete and
memoryless, meaning

P (Zn = zn|V n = vn) =

n∏
i=1

P (Zi = zi|Vi = vi) .

7By losslessly we mean that the decoder g can reconstruct the original sequence correctly from
(V1V2 · · ·Vn) with probability 1.
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Furthermore, he considers that the source chooses independently at random one
message out of M messages that constitutes the source alphabet8 U . Denoting by
U the random variable relative to the chosen message, the encoder maps U to a
codeword of blocklength n, V n = f(U) and sends it over n channel uses to the
destination. The decoder uses the observed sequence Zn and outputs an estimate of
the original message, Û = g(Zn).

The rate of the communication scheme (also called coding scheme) defined by the
4-tuple (U , n, f , g) is

R =
log(M)

n
bits/channel use.

Moreover, the block error probability becomes Pe = P(Û 6= U). Shannon considers a
rate R to be achievable if for every ε, σ > 0 there exists a coding scheme of rate at
least R− ε and a block error probability Pe < σ.

Theorem 1.1. Given a channel W with an input alphabet V and an output alphabet
Z, a coding scheme (U , n, f , g) has an achievable rate R if and only if

R ≤ C(W).

The quantity C(W) is called the capacity of the channel W and is defined as:

C(W) = max
PV ∈DV

I(V ;Z),

where

• I(V ;Z) =
∑

v∈V, z∈Z
P (V = v, Z = z) log

(
P(V=v, Z=z)
P(V=v)P(Z=z)

)
,

• DV is the set of all probability distributions PV of the random variable V on
the alphabet V.

Theorem 1.1 says that, given a channel W, if a coding scheme tries to send at a
rate strictly higher than the channel capacity C(W), the block error probability will
always be lower bounded by a strictly positive number. Shannon does not give a
constructive proof for Theorem 1.1 but uses a random coding argument to show
the existence of a coding scheme that achieves channel capacity as the blocklength
n→∞. A similar argument will be used in Chapter 7 to give an upper bound on
the minimum achievable age over an erasure channel.

1.2 The Age Problem

While the classic communication problem described in Section 1.1 is transmission
centric, the age problem presents itself as reception centric. In fact, these two
problems study the communication system from two different perspectives: In classic
information theory, the transmitter is the main instigator of the transmission process.

8Comparing it to the noiseless channel scenario, we assume here that k = 1 and we call each
source symbol a message.
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Figure 1.4 – The age problem communication setup.

Indeed, a source wants to share with a remote target (remote in time or space) the
maximum amount of information (usually measured in bits). This can be achieved
through transmission at channel capacity that is the maximum possible rate that
ensures a negligible decoding error probability. Whereas, in the age of information
(AoI) theory, the receiver is the one who initiates the communication. A monitor
follows the evolution of the status of one or multiple remote processes (in this case
remote refers only to distance in space) in a timely manner: Specifically, at any time
instant t the information the receiver has about the status of a process should be as
close as possible to the current status of the process. This goal can be accomplished
by adopting the transmission scheme that would minimize a new metric: the age. We
will see later that there exist different definitions for the age metric but first we start
by giving a detailed description of the communication frame that is common to all
Age of Information (AoI) problems.

1.2.1 The Setup

The communication setup that the age of information literature addresses, shown in
Fig. 1.4, can be described as follows:

- Observed Processes : These are the set of continuous-time random processes that a
distant receiver wants to monitor. This means that the receiver (or interchange-
ably, the monitor) would like to receive updates describing the status of these
processes at multiple instants in time. Examples of such processes include (i)
the evolution of the price of a certain commodity in the stock market (process
1 in Fig. 1.4), (ii) the variation of the level of carbon dioxide in a forest (
measured using a sensor [19,39,42,57,60]) to detect fire hazards (process 2 in
Fig. 1.4) and (iii) keeping track of the positions of nearby cars in a vehicular
network [33, 37, 51] (process M in Fig. 1.4). This last potential application
inspired the authors in [33] to introduce the age as a new metric.
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- The Sender : It observes the processes on behalf of the receiver and sends it infor-
mation on the status of the observed processes, according to some “mechanism”.
This information is called status updates or just updates. We will see later that
“mechanism” can take on many definitions depending on the generation model
assumed. The sender is constituted of two parts:

• The Sources: They have direct access to the processes of interest. A
source m observes process m and generates at time t a packet containing
the status of the process at this same instant, as well as a time stamp,
u(t) = t, of the generation time. The time stamp will help the receiver
assess how old the information about the status of the observed process is
if it receives this packet (see Fig 1.5 for an example of update generated
by source M). As the main objective of a packet is to deliver status
updates then we will use interchangeably throughout this text the terms
packet, status update and update. Each source can adopt its own sampling
or generation mechanism that can take the form of a renewal process, a
periodic (deterministic) process or just-in-time generation (more on that
later). Given that each source represents an observed process and that
there are no delays assumed when generating the packets, we can see
the sources as the origin of the information, hence the word source will
hereafter refer to the underlying observed process and its sampling device.
Finally, we will denote by stream the set of packets produced by a certain
source.

• The Transmitter/Scheduler : This is the brain of the sender. It stores
the generated packets in one or multiple queues and assigns priorities
to the different sources, as well as to the multiple packets generated by
the same source. The transmitter decides according to a certain model,
for each source, which packets need to be sent and which ones can be
discarded. Similarly, at each transmission instant, it chooses with respect
to the sources’ priorities from which stream to transmit first. Depending
on the number of servers the transmitter has at its disposal, it can send
one or multiple packets at the same time (each server serves one packet
at a time). In the case of noisy channel, the transmitter can encode the
packets received from the source to combat the noise. As we will see later,
the choices taken by the transmitter play a major role in the computation
of the age.

From an engineering point of view, the generation mechanism(s) adopted by
the sources, as well as the transmission policy executed by the transmitter, can
be seen as design parameters that can be tuned in order to minimize the age.

- Network/Channel : This is the medium through which the packets are transmitted.
It can be the Internet, the air, an erasure point-to-point channel, etc. The
channel can be assumed to be noiseless, meaning that from the channel point
of view any transmitted packet will be delivered correctly with probability 1.
However, we can also consider noisy channels where the content of the packets
becomes distorted or the whole packet is simply erased. We will address both
models in this work: In Part I we tackle the age problem under the noiseless
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Figure 1.5 – A status update packet generated by source M .

channel assumption, whereas in Part II we take a more physical approach and
study this problem for the noisy erasure channel model.

- The Receiver/Monitor : This is the device that is interested in the status of the
remote processes. It poses the condition of having at any point in time the
freshest information concerning the status of the observed processes. In order
to measure this freshness, the concept of average age was introduced in [33] and
defined more rigorously in [34]. This new concept is fundamentally different
from the notion of delay, as the latter is packet-centric and measures how
long a status update spends in transit and thus does not give the receiver any
indication on how stale his knowledge about the remote processes is.

1.2.2 The Age Metrics

We now define the main metrics that quantify the notion of freshness. Without loss
of generality, we consider a single source. The same concepts can be applied to each
one of the multiple sources.

First notice that not all generated packets will necessarily be received by the monitor.
In fact, some updates will be discarded by the chosen transmission policies, and
others could be erased by the channel. This means that only the successfully received
packets will affect the freshness of the information at the monitor. We call these
packets successful packets or successful updates.

Definition 1.7. Denoting by u(t) the generation time of the last successfully received
packet before time t, the instantaneous age of the information— relative to the status
of a source— at the receiver at time t is defined as

∆(t) = t− u(t). (1.1)

Note that ∆(t) is a continuous-time continuous-value stochastic process.

Observe that ∆(t) increases linearly in the intervals between packet receptions. This
agrees with our intuition, because whenever the monitor is waiting for a new update
the information it has about the observed process becomes obsolete with each passing
time unit. However when the jth successful packet, generated at time tj , is received
at time t′j , ∆(t) jumps down to the delay experienced by this packet, namely to
T = t′j − tj . This results in a sawtooth sample path, as shown in Fig. 1.6. Using this
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Figure 1.6 – Variation of the instantaneous age for a single source.

definition of the instantaneous age, we are interested in two age metrics: the average
age and the average peak age.

The Average Age

Definition 1.8. We call Average age the time average of the instantaneous age, given
by

∆ = lim
τ→∞

1

τ

∫ τ

0
∆(t)dt. (1.2)

Observe that the average age is the area under the instantaneous age curve shown in
Fig 1.6.

This is the first metric that was used to assess, from an age point of view, the
performance of a communication system. It was suggested in [33] as a measure of
freshness in vehicular network then studied in a more theoretical approach in [34].
This last work considers the following setup: One source generates updates according
to a Poisson process of rate λ and sends them according to the First-Come-First-Serve
(FCFS) policy through the network to the monitor. The transmitter, in this case,
is a queue where the generated packets wait for their turn whenever they find the
network busy or previous updates also waiting. This network is assumed to be lossless,
which means all packets are received correctly at the monitor. However, the time
spent by an update in service, i.e., the time spent in the network, is considered to be
exponential with rate µ. Such a model is known in Queuing Theory as an M/M/1
queue9. Notice that in this model all generated packets are successful packets. In this
work, the authors make three crucial observations:

9This notation is known as Kendall notation. The first letter indicates the distribution of
the time interval between the generation of two successive packets. This time interval is call the
interarrival time. The second letter refers to the distribution of the service time of a packet and the
last number points to the number of packets served at a time. In the case of M/M/1 the transmitter
can only send one packet at a given time. Moreover, the letter “M” indicates that the considered
distribution is the exponential distribution that is the only memoryless continuous distribution, [58].
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1. The concepts of age, delay, and throughput are fundamentally differ-
ent.
In fact, they might lead to conflicting optimal transmission policies. For instance,
assuming a fixed service rate µ, we can increase the throughput by increasing the
average generation rate λ as much as possible10. However, generating updates
at an elevated11 rate can lead to congestion, and a high number of packets will
be waiting in the queue for their turn to be served. From an age point of view,
this implies that the updates are getting “old” while still at the transmitter
side. Hence, the average age for systems operating at high average generation
rate will be large. Therefore, maximizing the throughput and minimizing the
average age appear to be two contradictory objectives. A similar observation
can be made concerning minimizing both delay and average age. Indeed, from
the jth packet perspective, the delay time Tj is the interval of time between
its generation time tj and its reception time t′j , namely Tj = t′j − tj12. In the
FCFS model, this delay consists of two components: a waiting time and a
service time. The waiting time of a packet represents the amount of time this
update needed to wait in the queue before starting service. Although the service
time is usually dictated by physical realities and constraints, we can still affect
the waiting time through manipulation of the update generation process. For
example, assuming a fixed average service rate µ, a small average generation
rate λ� µ means that, on average, a packet service time is much smaller than
the time interval between the generation of two successive updates. Therefore,
a newly created packet will, on average, find the network free and start its
service instantaneously. Hence, the average waiting time will be negligible
and the delay is dominated by the service time. Whereas λ � µ is optimal
from a packet delay point of view, it is intuitively not the best strategy to
adopt from an age point of view. This can be explained by noting that while
waiting for a new update to be generated, the instantaneous age ∆(t) at the
receiver is increasing linearly with time as the information the monitor has
becomes obsolete. Therefore, a small average generation rate λ means a long
inter-generation time interval that will negatively affect the age.

2. There exists a non-trivial optimal average generation rate13.
The above observations lead us to suspect that the optimal average generation
rate λ∗ that minimizes the average age should be neither too small (λ� µ) nor
too big (λ ≈ µ). In fact, it is shown that the optimal operating point is when
λ
µ ≈ 0.53. This means that the average generation rate should be chosen so
that the amount of time the network is busy serving packets is slightly longer
than the amount of time it is idle.

3. There exists a non-trivial optimal update generation policy.
In [34], the authors also compute the average age when assuming a deterministic
generation mechanism, but they keep the FCFS policy and a service time

10In a FCFS M/M/1 queue the average generation rate λ should be strictly less than the average
service rate µ. Otherwise, the waiting queue will grow indefinitely and the system becomes unstable.

11By elevated we mean close to the average service rate µ.
12This is also known in the Queuing Theory literature as the system time.
13We have seen in §1.2.1 that the generation mechanism is a design parameter that we can tune

to optimize the average age.
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exponentially distributed. This means that packets are created periodically
at the exact rate of λ packets per second. In Kendall notation, this model
translates into D/M/1 queue. It is shown through simulations that this new
update generation strategy performs better than the one discussed before and
leads to a lower average age.

The Average Peak Age

The peak age Kj in Fig. 1.6 denotes the instantaneous age just before the reception
of the jth successful packet.

Definition 1.9. Let tj and t′j be respectively the generation time and the reception
time of the jth successful packet. Then we define the peak age Kj as

Kj = lim
t→t′j
t<t′j

∆(t). (1.3)

The authors in [9] introduce the average peak age as the time average of the peak
ages.

Definition 1.10. The average peak age is given by

∆peak = lim
N→∞

1

N

N∑
j=1

Kj . (1.4)

This metric, apart from displaying a similar behavior as the average age, is much
more tractable and easier to compute in most cases. In this work, we are interested
in both age measures.

Other Functionals of the Age

While the average age and average peak age are considered to be the two main age
metrics, one can choose any measurable, non-decreasing, non-negative functional of
the instantaneous age as a cost function. This idea is first introduced by Sun et
al. in [66] where the authors define the age penalty function g : [0,∞)→ [0,∞) to
express the level of “dissatisfaction” in data staleness. Thus instead of optimizing
the average age or average peak age, the authors aim to minimize the average age
penalty defined as follows:

Definition 1.11. Given a measurable, non-decreasing, non-negative function g(.)
and the instantaneous age function ∆(t), the average age penalty is defined as

∆g = lim
τ→∞

1

τ

∫ τ

0
g(∆(t))dt. (1.5)

Note that if we take g to be the identity function (g(t) = t) the average age penalty
becomes the average age, ∆g = ∆. The notion of age penalty is revisited in [40]
where the authors refer to it as cost of update delay (CoUD). However, in this work
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the choice of the CoUD function g(.) depends on the observed process statistics. On
one hand, if the observed process has a high autocorrelation, meaning that any two
samples are highly correlated and the status of the process can most likely be inferred
using the updates that the receiver already has, then the cost of waiting for a new
update at the monitor can be assumed not to increase very fast. This translates into
choosing, for example, g(t) = log(αt+ 1), where α > 0 is a tuning parameter. On
the other hand, if the observed process has a low autocorrelation— meaning that any
two samples are weakly correlated and we cannot deduce much of the current status
of the process based on previous updates— the cost of information staleness at the
monitor becomes important as the uncertainty on the process status quickly increases
with time. This idea can be reflected by using an exponential CoUD, g(t) = eαt − 1
with α > 0, also a tuning parameter. For processes with intermediate autocorrelation
the authors in [40] suggest using a linear CoUD, g(t) = αt. In addition to the CoUD,
Kosta et al. define another measure called the value of information update (VoIU).

Definition 1.12. Given an age penalty function or CoUD g(.) and assuming that the
jth update is generated at time tj and received at time t′j, then the value of information
of update (VoIU) j is

Vj =
g(t′j − tj−1)− g(t′j − tj)

g(t′j − tj−1)
. (1.6)

The VoIU measures the contribution a certain update brings to the reduction of the
age penalty function.

The maximum value of Vj is 1 and this is achieved when the jth update is instan-
taneously received after its generation, thus dropping the instantaneous age to 0.
Similarly to the average age penalty, we can define the average value of information.

Definition 1.13. Assuming that in the interval (0, τ) the monitor receives N(τ)
updates, then the average value of information is

V = lim
τ→∞

1

τ

N(τ)∑
j=1

Vj . (1.7)

1.2.3 To Send or not to Send

We already pointed out in §1.2.1 that the choice of the generation and transmission
policy greatly affects the value of the age. Now that we have defined the metrics
used to evaluate the age, we still need to define the major scheduling policies. For
this purpose, we distinguish between two types of transmission: Dumb transmission
and transmission with packet management. Here too, without loss of generality, we
assume a single source.

Dumb Transmission

In this scheme, there is no intelligence at the transmitter side. All generated packets
have the same priority and are automatically queued for transmission. No update is
dropped or delayed. In this case, we can transfer the decision making to the source
instead.
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Figure 1.7 – Simplified view of the just-in-time transmission scheme with a single
source and single server.

• First-Come-First-Served (FCFS): In this policy, the transmitter consists
of one queue with one or multiple servers serving one or multiple packets at
the same time. If the scheduler has only a single server, the packets generated
by the source are placed in the queue in chronological order with the oldest
update at the head. The server starts the transmission of a packet only after
the reception of the previous one (we assume an acknowledgment (ACK) is
sent back by the monitor upon reception of a new update). If the scheduler has
s > 1 servers at its disposal, this means that it can transmit up to s packets at
the same time. In this case, the transmitter places the newly generated packet
in the queue if all the servers are busy. Otherwise, it directs the new update
to an idle server. Such schemes assume that the source does not have access
to the state of the transmitter (busy or idle). Examples of FCFS policies are
G/G/114 , G/G/s and G/G/∞15. As we have discussed before, [34] deals with
M/M/1, D/M/1 and also M/D/1 scheme, whereas [26–28] study the average
age for M/M/2 and M/M/∞.

Packet Management at the Source

In the following policies, the transmitter is still primitive but the source has some
intelligence.

• Zero-wait/Just-in-time: This scheme assumes the source has access to the
status of the server(s) and it can generate updates at will. Whenever a server is
done transmitting a packet it signals the source which generates instantaneously
a new sample (see Fig. 1.7). As the source only generates a packet whenever
one of the servers becomes idle, this means that there are no updates waiting
in a queue, hence there are no queues. The sender is reduced to just the source
and a “dumb” transmitter. Moreover, a new packet starts service immediately
upon generation. This policy maximizes the throughput while minimizing the
delay per packet. To obtain a lower bound on the average age achieved with a
FCFS policy, it was first introduced in [34] then revisited in [66,71].

• Lazy generation: This model revolves around the same concept as the just-
in-time scheme but with a twist. In addition to the fact that it has access

14In Kendall notation, G/G/1 means that the time between the generation of two consecutive
updates has a general distribution G. Similarly, the time spent by a packet in service has also a
general distribution F (not necessarily the same as G).

15In Kendall notation, the s in G/G/s refers to the number of servers or packets that can be
sent at the same time. In this case, on can transmit up to s updates at the same time. G/G/1 and
G/G/∞ are special cases where s = 1 and s→∞ respectively.
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to the status of the server(s) and generates updates at will, the source can
delay the generation of a packet if it sees fit (hence the adjective lazy). More
explicitly, rather than creating an update at the exact moment when the server
becomes idle, the source can wait a certain amount of time before generating
and submitting its new packet to the transmitter. The source waiting time is a
design parameter that can be random or deterministic. Yates in [71] shows that
just-in-time transmission scheme is not necessarily optimal and that a fine-tuned
lazy transmission performs better, an idea further developed in [66,67].

Transmission with Packet Management

Intuitively, compared to the FCFS policy, giving the transmitter some degrees of
freedom and enabling it to choose which packets to send and which ones to discard,
we might get better performance from an age point of view. Such a transmitter is said
to have packet-management capabilities. There are three main packet-management
strategies at the transmitter level that are studied in the age of information literature.

• Last-Come-First-Served (LCFS) with no buffer or G/G/1/1 with
blocking16: In this model the transmitter does not save any packets and
consists only of the server. If a new packet finds the server idle, it is immediately
served. However, if it finds the server busy transmitting a previous update, the
transmitter simply discards the new sample. Hence, there can be at most one
packet in the system at a time and all other updates are blocked and dropped.
This policy is first introduced in [9, 10] where the authors compute the average
age and average peak age for the M/M/1/1 case.

• G/G/1/2* or Last-Come-First-Served (LCFS) with preemption in
waiting17: In this model the transmitter consists of a buffer of size 1 and a
server. This means it can store up to 1 packet while serving an additional
one. However, if a newly generated update finds the buffer full, the transmitter
discards the waiting packet and replaces it with the newcomer. An intuitively
less optimal scheme is the G/G/1/2 (without the *) where the transmitter
discards any new packets that find the system full. These two strategies were also
first studied in [9,10] for the special cases of M/M/1/2 and M/M/1/2*, where it
is shown that the M/M/1/2* outperforms the M/M/1/1 with blocking as well
as the M/M/1/2. Such a result agrees with our intuition, because compared to
the M/M/1/1 with blocking scheme, the M/M/1/2* increases the throughput
by decreasing the amount of time the server is idle waiting for a new update.
Furthermore, compared to the M/M/1/2 strategy, the M/M/1/2* decreases the
waiting time of the waiting packets as only the most recent generated packet
stays in the buffer. These two observations explain the superior performance of
the M/M/1/2*. In [52], the authors analyze the behavior of the queue when
considering N sources instead of one and an M/M/1/2* policy for each source.

16In this notation, the first three entries still have the same meaning as in a classic Kendall
notation. The fourth entry, however, refers to the total number of packets allowed in the system at
a given point in time (including packets in service).

17As for the G/G/1/1 case, the 2 refers to the total number of packets allowed in the system at
the same time. In this case, the system can buffer up to 1 packet in addition to the one in service.
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• Last-Come-First-Served (LCFS) with preemption or G/G/1/1 with
preemption: In this model also, the transmitter does not save any packets.
However, the priority is given to the newly generated updates. This means that,
whenever a new packet is generated and finds the server busy transmitting an
old one, the transmitter preempts the transmission of the current update and
starts sending the new one. This transmission scheme is proposed in [38] where
the authors study the special case M/M/1/1 with preemption.

1.3 AoI and its Applications

1.3.1 Analysis and Optimization

Numerous factors affect the evaluation of the average age and the average peak age,
such as the model of the source update process, the number of sources, the model of
the transmitter and the number of servers available at the transmitter. The major
fraction of the AoI literature tries to answer the following questions: For a given
channel model, transmission and source generation policies, what is the optimal
update generation rate? More generally, for a given channel model, what is the
optimal transmission and/or source generation policies?

Age Analysis in a Single-server Network under an M/M/1/. Scheme

We have already seen that Kaul et al. in [34] solve one aspect of the problem where
they consider a single source that generates packets as a rate λ Poisson process
feeding them to a single FCFS queue with exponential service time. The authors
also consider the cases of a deterministic source and exponential service time, i.e.
FCFS D/M/1 system, as well as a random source and deterministic service time, i.e.
FCFS M/D/1 system. Yates and Kaul in [74] generalize the problem solved in [34]
by considering the presence of multiple sources that send updates through one FCFS
queue to the same monitor. In this case, the goal is to find the region of feasible
ages at the receiver and the corresponding optimal update rates at the sources. This
leads to the point of the region that minimizes the sum of these ages. As in [34], the
queue is assumed to have an exponential service time, and the sources are assumed
to be independent Poisson processes with different rates. An interesting result of [74]
is that we gain in efficiency if we let two sources share the same queue instead of
sending the updates of each source over a separate queue with half the service rate.

In [75], Yates et al. generalize the previous results by assuming an arbitrary number
of sources and deriving closed form expressions for the average age when assuming an
M/M/1 FCFS policy, an M/M/1/2* and a M/M/1/1 with preemption strategies. In
this work, the authors introduce a new analytical method to compute the average age
relative to each source, namely the stochastic hybrid system (SHS) [21]. In [29,31],
Kam et al. return to the single source single server model but they introduce a new
modification on the M/M/1/2 scheme: When a new packet is placed in the buffer of
size 1, the transmitter starts a timer. If this timer exceeds a certain deadline and
the packet is still waiting in the buffer, the waiting packet is considered too obsolete
to be worth transmitting hence is discarded. The authors compute the average age
of such model and show that a M/M/1/2 scheme with a carefully chosen deadline
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Figure 1.8 – Variation of the instantaneous age for a single just-in-time source.

outperforms the traditional M/M/1/2 as well as the M/M/1/1 with blocking schemes.
Kam et al. also study through simulations in [30] the effect of the buffer size, the
deadline and packet management on the age. Simulations show that when using
packet management schemes (such as M/M/1/2*), enforcing a deadline does not
affect the age performance much. Moreover, for the optimal choice of the buffer size
and deadline in the case with no packet management, we can potentially get an age
performance close to the M/M/1/2* scheme.

Age Analysis in a Single-server with Intelligence at the Source

In [66,67], Sun et al. replace the random update generation scheme by a generation-
at-will model. They show that even if the source is able to create updates at a time
instant of its choosing, generating a new packet immediately when the previous one
is received (just-in-time generation) is not necessarily the optimal method to adopt.
This concept is illustrated by the following example [66,67].

Example 1.2. Suppose we have a single source, a single server, and a single monitor.
Assuming an idle initial state of the system, the service times of the packets follow
this periodic sequence (the unit is seconds): 0,0,2,2,0,0,2,2,0,0,2,2,0,0,. . . . Let us
first consider a just-in-time generation policy and that the first update is generated
and delivered at time t. This means that the third generated packet will not give any
new information about the source status than the first two updates as they were all
generated at time t. Thus we would have wasted our resources to send three times the
same packet. As the service time sequence is periodic, the aforementioned problem
appears periodically over time: Every time two successive packets have zero service
time, we waste the benefit of the second service time by sending the same packet again.
The variation of the instantaneous age is given in Fig. 1.8. Intuitively it would be
more beneficial after the first packet to wait for a bit before generating the second
update so that it would not be redundant. Indeed, from Fig. 1.8 we can see that the
average age for the just-in-time model is ∆just−in−time = 2 seconds. However, if we
consider a policy which that 0.5 seconds after each update with zero service time before
generating a new packet than it can be shown that the average age is ∆wait = 1.85
seconds. Waiting is hence better than the just-in-time strategy.
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This example shows that whenever two successive packets have short service times
it is better to introduce a waiting time before generating the second update (lazy
generation) so that the latter will have a higher impact on the value of the age. In
fact, Sun et al. in [66,67] show that the just-in-time model is optimal if one of the
following conditions is met:

• The correlation between two successive service time random variables is -1.

• The service time process is constant.

• The age penalty function g(.) is constant.

Age Analysis in Multi-server Network

Up till this point in our discussion, the network was assumed to be composed of
one hop or server. This means the network is seen as one black box that processes
the packet sent by the transmitter according to a certain stochastic model and then
delivers it to the monitor. A natural question arises here: How is the age affected if
we consider a more granular representation of the network? More explicitly, what
is the effect of the presence of multiple hops in series in the network on the age?
These multiple hops can be seen as modeling the different routers and switches a
packet has to traverse when traveling through the Internet. Bedewy et al. in [6]
answer a variant of these questions: Which causal transmission policy at the sender
optimizes (in a stochastic order sense18) the instantaneous age at the monitor in a
multihop network? In this work, it is assumed the packets arrive out-of-order at
the transmitter, which has access to a single gateway server, and the service time
experienced at each subsequent hop is exponentially distributed. The authors show
that the last-generated-first-served (LGFS) with preemption transmission scheme at
each hop ensures the lowest, in a stochastic order sense, age penalty g(∆(t)) for any
age penalty function g(.). However, no closed-form expression of the average age is
given in [6]. Yates et al. in [72] use the SHS method presented in [75] to compute the
average age at the receiver, as well as the average ages at each one of the n successive
preemptive hops which form the network. Interestingly, this paper shows that even if
the hops have different service rates, the order in which they are traversed does not
affect the average age at the monitor.

Along the same generalization direction as in [74], we ask: What would happen if we
increase the number of servers available at the transmitter, i.e. if the source is able
to serve multiple updates at the same time? This question is tackled in [26], where
a single Poisson process is sending updates over the network. This can be seen as
an infinite number of servers with exponential service rate, M/M/∞. The challenge
here is that packets are received not in a chronological order at the receiver, hence
rendering some received packets useless. In this case, the higher the update rate the
smaller the average age ∆.

Yates in [73] solve a slight variation of the same problem: The transmitter has access
to n servers at the same time and applies a LCFS with preemption policy at each

18 [61] Let X and Y be two random variables. X is said to be stochastically smaller than Y if
P(X > x) < P(Y > x), ∀x ∈ R.
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Figure 1.9 – Sketch of the communication setup with multiple/parallel servers. Each
server can serve its packets according to its own service time distribution.

server that follows an exponential service time model (see Fig. 1.9). Using SHS, the
author derives the expression for the average age and shows that as n → ∞ the
average age converges to the formula obtained in [26] for the M/M/∞. The study of
the LCFS with preemption policy in such setup is based on the results in [5] where
Bedewy et al. show that for a network with n parallel servers (same setup as in
Fig. 1.9), the optimal transmission strategy to adopt at each server is the LGFS
with preemption. If the updates arrive at the transmitter queue in chronological
order, then this scheme is equivalent to the LCFS with preemption. Moreover, if
we assume infinite buffer size, Bedewy et al. show that the LGFS with preemption
policy optimizes the throughput and the delay.

Age Analysis for Generally Distributed Interarrival Time and/or Service Time

Huang et al. in [22] compute exact expressions of the average peak age when assuming
multiple sources sharing a single queue. The novelty stems from the fact that no
assumption on the service time distribution relative to each source is made. Two
transmission policies are studied: M/G/1 FCFS and M/G/1/1 with blocking (or
LCFS with no buffer). Following the same direction of generalization, upper bounds
on the average age are given for G/G/1/1 systems (both with preemption and with
blocking) in [64]. In a similar line of thought, Inoue et al. in [23] derive the Laplace
transform of the stationary distribution of the instantaneous age ∆(t) and of the
peak age when assuming a FCFS G/G/1 scheme. They also compute the average
age and average peak age for the special cases of FCFS M/G/1 and FCFS G/M/1
policies. Using results from [22] and [23], Talak et al. in [68] show that deterministic
service and interarrival time optimizes the average age and average peak age for
FCFS M/G/1 and FCFS G/M/1 respectively. This means

∆FCFS, M/G/1 ≥ ∆FCFS, M/D/1 and ∆FCFS, G/M/1 ≥ ∆FCFS, D/M/1.

Furthermore, they show that for M/G/1/1 with preemption and G/G/∞, determin-
istic service time leads to the highest average age overall all possible service time
distributions, i.e.

∆M/G/1/1, preempt ≤ ∆M/D/1/1, preempt and ∆G/G/∞ ≤ ∆G/D/∞.
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An interesting observation pointed in [68] is that for a fixed average service time, the
deterministic distribution minimizes the average packet delay when considering the
M/G/1/1 with preemption scheme. However, it also maximizes the age. This shows
further that the age and the delay are two fundamentally different metrics.

Age Analysis with Source Priority

Up till here, we assumed all sources have the same priorities vis-à-vis transmission
precedence. In [36], Kaul et al. rank the sources according to their importance:
source 1 has the highest priority and source M has the lowest one. This means that
the transmitter gives precedence to packets from source i compared to packets from
source j > i. Two types of transmission schemes are investigated: (i) an M/M/1/1
with preemption where any new packet from source i preempts the packet currently
in service if this update belongs to source j with j ≥ i, and (ii) an M/M/1/2* where
any new packet from source i that finds the server busy would be placed in a buffer of
size 1. However, if the buffer is already occupied by an update from source j, j ≥ i,
then the waiting packet is dropped and replaced by the new one from source i. Kaul
et al. use the SHS method to compute the average age relative to each one of the M
independent sources.

In this thesis, we solve the aforementioned problems under different assumptions, as
we will see in Chapters 3 to 5.

1.3.2 Age and Information Theory

In our previous discussion in §1.3.1, we considered mainly the queuing theoretic
aspects of the age problem and assumed noiseless channels and perfect reception
of packets. However, this approach gives only a high-level understanding of the
age-communication challenges without delving into the physical layer problems.
Nonetheless, age is a communication metric and, as such, is affected by multiple
information-theoretic concepts that we have discussed in Section1.1: The source-
coding scheme adopted for compression and the channel-coding strategy used to
combat the noise in the channel. Whereas the results obtained in the information
theory literature mostly assume an asymptotic regime, such an assumption would
not be adequate in the age problem. For instance, if we take every packet to be
composed of k ∈ N∗ informative symbols, mapping it to a codeword of length n→∞
in order to achieve a low probability of error means that the monitor would wait
indefinitely for a new update. During this waiting time, the information the monitor
has about the source becomes more and more obsolete. Hence, from an age point
of view, applying information theoretic results from the finite-blocklength regime
(e.g. [54]) appears to be the best approach. Nevertheless, if the blocklength is too
small, the probability that the packet will not be correctly decoded and thus will not
contribute to decreasing the instantaneous age is high. This means that we might
need to send a large number of packets so that one of them is correctly decoded. This
too leads to a high average age. Hence we might expect the existence of an optimal
blocklength that solves this tradeoff.
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Effect of Channel Coding on the Age

Chen et al. in [8] use a model similar to the one used by the works presented before,
but they assume that the channel might not deliver the update with a positive
probability 1− p. This means that the source generates status updates according to
a Poisson process with rate λ and sends them through a network with an exponential
service time with rate µ. At the end of the service time, the packet might be received
correctly with probability p > 0, otherwise it is considered lost. Chen et al. compute
the average peak age for multiple transmission scenarios: M/M/1 FCFS, M/M/1/1
with preemption, M/M/1/1 with blocking, retransmission with preemption and
retransmission without blocking. In the last two schemes, the authors assume an
instantaneous lossless feedback that acknowledges the correct reception of the packet.
If the packet is declared lost, then the sender retransmits it (instead of just waiting
for a new update). The retransmission with preemption scheme is numerically shown
to have the best performance.

Parag et al. in [53] consider a more physical approach and assume the channel to
be the binary erasure channel (BEC). They also adopt a just-in-time generation
process with each packet formed of k information bits and then encoded into an
n-bit codeword, n ≥ k using a linear code. The authors compute the average age for
two transmission schemes: single transmission and hybrid automatic repeat request
(HARQ). In the single transmission scheme, every packet is sent only once and after
n channel uses a new one is generated and transmitted. Whereas, in the HARQ
model, we assume a lossless instantaneous feedback that notifies the transmitter
whether the transmitted packet was correctly decoded or not after n channel uses.
Moreover, the packet is encoded into αn bits instead of just n bits, with α ∈ N∗.
If the update could not be decoded after the first n channel uses, the transmitter
sends the next n bits from the αn-bit codeword. As long as the transmitter receives
negative acknowledgment from the receiver it keeps on sending batches of length
n bits until the entire codeword is sent. If after sending αn bits the packet could
not be decoded, then the transmitter drops it and a new update is generated and
starts transmission. For both transmission schemes, the authors show numerically
that there exists an optimal value of the blocklength n that minimizes the average
age when using random codes.

Yates et al. in [76, 77] also examine the transmission of coded updates generated
using a zero-wait policy through a binary erasure channel to a monitor/receiver. The
authors derive the average status update age of an infinite incremental redundancy
(IIR) system in which the transmission of a k-symbol update continues until k symbols
are received. This system is then compared to a fixed redundancy (FR) system in
which each update is transmitted as an n symbol packet and the packet is successfully
received if and only if at least k symbols are received. If fewer than k symbols are
received, the update is discarded. Unlike the IIR system, the FR system requires
no feedback from the receiver. For a single monitor system, Yates et al. show that
tuning the redundancy to the symbol erasure rate enables the FR system to perform
almost as well as the IIR system. As the number of monitors is increased, the FR
system outperforms the IIR system that guarantees delivery of all updates to all
monitors.
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The BEC is also treated in [59] where the authors study a FCFS M/G/1 transmission
policy. In this case also, the packet at the head of the queue is encoded into a
fixed-blocklength codeword before being transmitted. Sac et al. compute the average
age and average peak age and show that, in this model also, an optimal blocklength
exists. In [14] Devassy et al. explore the additive white Gaussian noise channel
(AWGN). The transmitter is considered to follow a FCFS policy with the packet at
the head of the queue encoded into a fixed blocklength codeword before transmission.
On top of this, the transmitter uses an automatic repeat request (ARQ). This means
that, at the end of each packet transmission, the monitor sends a one-bit lossless
feedback to the transmitter; this feedback indicates whether the update was correctly
decoded or not. As long as the feedback is negative, the transmitter continues to send
the same packet until it is correctly decoded. The authors derive the distribution of
the peak age and show that there exists an optimal blocklength that minimizes the
probability that the peak age is higher than a given threshold.

In this thesis, we focus on the BEC channel and explore different update generation
and transmission strategies, as well as different coding techniques (rateless coding in
Chapter 6 and random coding in Chapter 7) and their effect on the average age and
average peak age.

Effect of Source Coding on the Age

Transmitting maximally compressed symbols (or packets) might appear attractive, at
first glance, from an age point of view, because each symbol requires the minimum
amount of transmission time. Nevertheless, traditional optimal source coding schemes
are in fact not adequate for the age problem. In fact, though optimal source codes
reduce the transmission delay to its minimum, they achieve this feat at the expense
of a long waiting time. In order for the compression to achieve a rate arbitrarily
close to the entropy rate of a stationary source, the number of symbols compressed
in one block should be large [11, 12]. This observation leads us to think that the
source codes that optimize the compression might not optimize the age. Zhong et al.
in [78] address this question by considering fixed-to-variable coding schemes and a
FCFS queue. They show through simulations that when the channel service rate is
close to the source entropy rate, large blocklength codes should be chosen in order
to ensure the stability of the system and that the queue’s size does not grow out of
bounds. Whereas, in the case where the channel rate is much higher than the source
entropy rate, a symbol-by-symbol code achieves the best age performance, because in
this regime the average age is mostly dominated by the waiting time needed to form
the block that will be compressed. The bigger the block is, the longer the waiting
time is. In a subsequent paper [79], the authors assume that the source encoder has
access to the state of the channel. They show that, while still using fixed-to-variable
codes, dynamically changing the blocklength of the source encoder input, depending
on the state of the channel, achieves better performance from an age point of view
than adopting a single blocklength size, irrespective of the channel conditions. In [43],
Mayekar et al. design a fixed-to-variable prefix-free code that minimizes the average
age. The encoder uses a symbol-by-symbol code and if a newly generated symbol
finds the channel busy, it is dropped.
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Figure 1.10 – The age problem with energy constraints. The source can only generate
an update if there is a sufficient energy amount in the buffer.

1.3.3 Scheduling under Resource Allocation Constraints

More practical models have been studied in the AoI literature, where the scarcity of
physical resources is taken into account. The energy constraint is one such resource
that is heavily investigated [1–4,15,70,71]. In such models, the number of updates that
can be transmitted is upper bounded by an arbitrary time-varying upper bound [2].
This upper bound can be seen as a process (random or deterministic) that mimics the
harvest of the energy necessary to the sender to function and transmit the updates.
The main setup is shown in Fig 1.10. In [2], Bacinoglu et al. assume instantaneous
propagation (service time is zero), which means that no queue is formed. They
present the optimal update generation scheme when assuming the energy harvesting
process is deterministic and use dynamic programming to solve the problem when the
energy harvesting process is stochastic. Yates in [71] considers a just-in-time scheme
as well as a lazy generation policies and an i.i.d service process. Moreover, the energy
harvesting process is considered to be Poisson. Yates shows that in this context, the
just-in-time is not optimal and it is better to wait before generating a new update.
The intuition behind this result is that to use the energy to reduce an instantaneous
age that is relatively high is better than to reduce an already low age; because the
latter scheme might cause us to miss a “better” late opportunity. Other works add
different new settings: In [1] Arafa et al. assume the packet is transmitted to the
receiver through a relay that is also subject to energy constraints, in [3, 4] Bacinoglu
et al. assume a finite battery size and transmission over an erasure channel.

Given that resource allocation is at the core of wireless communications, the primary
communication system nowadays, it is natural to study the AoI in such setup. Kadota
et al. in [25] study the optimal scheduling policies when assuming a base station
sends time-sensitive updates to multiple users. In this case, the metric to optimize is
the expected weighted sum of the instantaneous age. In [17], He et al. show that it
is NP-hard to find the optimal scheduler that would minimize the peak age when
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assuming N sources, N transmitters, and N receivers in the presence of interference.
He et al. in [18] generalize this setup by considering M sources and N transmitters.
Similarly, they show that the minimum age scheduling problem for this setup is
NP-hard. In [24], throughput constraints are considered.

1.3.4 Other AoI Applications

As a measure of freshness, age is a logical metric to use to assess the freshness of
cache contents [80]. Moreover, the freshness dimension might suggest that we could
use AoI optimal scheduling in order to estimate or predict remote stochastic processes.
Sun et al. in [65] show that the sampling policies that optimize the average age does
not necessarily minimize the estimation error when the process of interest is a Wiener
process. This observation motivated the authors in [32] to suggest two effective age
metrics whose optimization implies the minimization of the estimation error: the
sampling age, which gives the age of the sample with respect to the ideal sampling
time, and the cumulative marginal error, which represents the total estimation error
during a sampling period.

For a detailed survey about the early works in Age of Information, the reader is
encouraged to read [41].

1.4 Outline and Main Contributions

This thesis is divided into two parts: Part I “Age in the Absence of Noise”, and
Part II “Age in the Presence of Noise”. In Part I, we compute the average age and
average peak age from a queue-theoretic perspective that takes a high-level view on
the system and does not make any assumptions on the nature of the physical channel.
In Part II, we focus on the erasure channel and shed some light on the behavior of
the average age and average peak age over this channel when specific transmission
schemes are considered.

However, we first start by presenting, in Chapter 2, a quick review of the graphical
method used in order to compute the average age and the average peak-age, in the
majority of the work on AoI. We also set in this chapter a uniform notation that
would be followed throughout this text.

Age in the Absence of Noise

We first start by assuming that the channel consists of a network where packets are
delivered with probability 1 but with a random service time. As we have already seen
in §1.2.2, the first service time distribution to be studied in the AoI literature was the
exponential service time. In Chapter 3, we consider a Gamma distributed service
time and transmission with packet management. Indeed, in this chapter, we assume
that a single source generates updates according to a Poisson process and feeds them
to a transmitter that implements either an M/G/1/1 with preemption scheme or an
M/G/1/2* scheme. We consider a service time that is gamma distributed for the
former policy and that has an Erlang distribution for the latter. Our motivation
behind using the gamma distribution is that it is a good approximation for the service
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time encountered in networks with multiple relays. We derive closed-form expressions
for the average age and the average peak age for both schemes and show numerically
that M/G/1/2* has an average age (and average peak age) lower than M/G/1/1 with
preemption.

In Chapter 4, we generalize part of the results of Chapter 3 in two directions: In
the first direction, we consider multiple sources that generate updates according
to Poisson processes with different rates and feed them to a single transmitter by
applying an M/G/1/1 with preemption policy. Moreover, all sources have the same
priority, which means that whenever a packet from source i finds the system busy,
the transmitter preempts the update currently in service (irrespective of its source of
origin) and transmits the new packet. In the second direction, we assume the same
general service time distribution for all packets. The closed-form expressions of the
average age and average peak age are derived. For a fixed total update rate, we show
that if we want to minimize the aggregate average age, then all sources should be
generating updates according to the same rate. However, if we seek to decrease the
average age relative to a given source, then we should allocate it a higher generation
rate.

In Chapter 4, we assume all sources have equal priority. However, in practical
scenarios this is not always the case. Some sources observe processes that are more
important to the monitor than others. Chapter 5 considers this last scenario for two
transmission schemes for the low-priority streams: First, we assume the presence of
only two sources and a transmitter that adopts an M/M/1/1 with preemption policy
for the high-priority source while using a FCFS M/M/1 strategy for the low-priority
stream. We compute a closed-form expression for the average peak ages and give an
upper and lower bound on the average ages of both streams. Second, we also consider
two sources with the difference that both the high-priority and low-priority streams
are served by the transmitter according to an M/G/1/1 with preemption strategy.
Each stream is assumed to have its own service time distribution (which is considered
general). The closed-form expressions for the average ages and average peak ages
relative to each stream are derived.

Age in the Presence of Noise

In Part II, channels are not considered ideal anymore and noise is taken into account.
To combat such noise different coding schemes are explored and their effect on the
average age studied.

In Chapter 6, we consider a system where randomly generated updates are to
be transmitted to a monitor, but only a single update can be in the transmission
service at a time. Therefore, the source has to prioritize between the two possible
transmission policies: preempting the current update or discarding the new one.
We consider Poisson arrivals and general service time, which means that the two
policies we are interested in are the M/G/1/1 with preemption and the M/G/1/1
with blocking. We start by studying the average status-update age and the optimal
update-arrival rate for these two schemes under general service time distribution. We
then apply these results to two practical scenarios in which updates are sent through
an erasure channel by using (a) an infinite incremental redundancy (IIR) HARQ
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system and (b) a fixed redundancy (FR) HARQ system. In IIR, the transmission
of an update continues until ks unerased symbols are received. In the FR system,
the update is divided into kp packets encoded ratelessly and each packet is encoded
using an (ns, ks)-maximum distance separable (MDS) code. We show that, in both
schemes, the best strategy would be to not preempt. Moreover, we also prove that,
from an age point of view, IIR is better than FR.

Chapter 6 raises some interesting questions: Given a single source and an erasure
channel, what is the optimal coding scheme from an age point of view and what is
the optimal achievable average age? Chapter 7 answers these two questions in the
following two scenarios:

• The source alphabet and the erasure-channel input alphabet are the same. We
show that in this case sending the packets without any coding is the optimal
policy from an age point of view. Assuming the source generates updates
at a deterministic rate of λ updates/seconds and the channel can be used
at a deterministic rate of µ channel uses/seconds, we compute a closed-form
expression for the optimal average age achieved on an erasure channel.

• The source alphabet and the erasure-channel input alphabet are different. In
this case, some kind of encoding is necessary. Assuming the source generates
updates at a rate λ = 1 update/second and we can use the channel at a rate of
µ = 1 channel use/second, we use a random coding argument over the linear
codes to show the existence of a code that provides an upper bound on the
optimal-achievable average age. Using results from [76, 77], we also find a tight
approximation of the optimal-achievable average age. Finally, we numerically
show that there exists an optimal blocklength that depends on the erasure
probability.



System Model and General
Settings 2
Kaul et al., in their first analytical paper on the computation of the average age [34],
introduced a graphical solution that was later used by the majority of the works in
the age of information literature, with various flavors . In this chapter, we present
the two main variations of this proof technique and set up a general framework that
constitutes the backbone of this thesis.

2.1 General Setup and Notations

We consider the simplified age communication setup shown in Fig. 2.1. In this setup,
we assume multiple sources generate updates and send them to the monitor. In
this thesis, we adopt the following convention: the average age and average peak-
age relative to the status of source i are denoted by ∆i and ∆peak,i, respectively.
Concerning random variables, we use superscript to indicate the source and subscript
to indicate the packet or the epoch number. For instance, the random variable X(i)

k

is related to source i and to the kth packet of this same source. We show later that
an important cornerstone in the derivation of the average age and average peak
age is the ergodicity of the status updating system. This means that we deal with
steady-state versions of the different random variables involved in these computations.
Such variables are denoted by dropping the subscript index from the non steady-state
version. For instance, X(i) refers to the steady-state version of the variable X(i)

k

relative to stream (or source) i. Whenever it is clear from context which source we
are interested in, we drop the superscript notation.

In [75], Yates et al. present a generic graphical method for computing the average age
relative to source i without any assumptions on the adopted policy or the probability
distributions of the different random variables. The only hypothesis needed is that
the age process ∆(t) is ergodic. For completeness, we repeat this argument here and
use this opportunity to define the random variables that we will encounter regularly
in the following chapters. We present the derivation for source i only because the

29
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Figure 2.1 – The simplified age communication setup.

same argument and the same quantities can be applied for all other sources. Hence,
unless stated otherwise, all quantities in the remainder of this chapter are related to
source i (we drop the superscript notation).

Using the model presented in Section 1.2 and in Fig. 2.1, we assume the sender chooses
a status update policy Π for source i. This policy defines the updates’ generation and
transmission schemes. As mentioned before in §1.2.3, some transmission schemes (e.g.
M/G/1/1 with preemption or M/G/1/1 with blocking) discard some updates, which
means that not every generated packet is necessarily received. In order to differentiate
between these two types of updates we use successful updates/packets or delivered
updates/packets to refer to source i updates that were successfully received by the
monitor. We denote by Ij the number of packets generated up to and including the
jth successful update or

Ij = min

{
k ≥ 1;

k∑
l=1

1{lth generated packet is received} = j

}
, (2.1)

where 1{.} is the indicator function.

Fig. 2.2 shows a snapshot of the instantaneous age relative to source i. Without
loss of generality we assume this snapshot was taken at time t = 0 when the age
value is ∆0. This plot shows the generation and reception times of the successful
packets: The jth successful update is generated at time tj and received at time t′j .
While the monitor is waiting for a new delivered packet from source i, the age relative
to this source increases linearly. The computation of the age metrics involve different
quantities which we now define, and we fix the notation to be used throughout this
dissertation.

2.1.1 Interarrival Time

We assume that, according to Π, the time intervals between the generation of two
consecutive updates (not necessarily successful) are given by the random process
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Figure 2.2 – Variation of the instantaneous age for source i.

(Xk)k≥1. The random variable Xk is called the interarrival time between the k − 1th

and kth consecutively generated packets. However, as only successful packets affect
the age ∆i(t), we also define the random process (X̃j)j≥1 where the random variable
X̃j denotes the time interval between the generation of the j − 1th and jth delivered
updates. We call X̃j the effective interarrival time and it can be written as

X̃j = tj − tj−1 =

Ij∑
k=Ij−1+1

Xk, (2.2)

where Ij is given by (2.1) and tj and tj−1 are the generation time of the j − 1th and
jth successful packets (see Fig. 2.2).

Example 2.1. A generation scheme that is recurrent in the AoI literature assumes
the interarrival times Xk to be independent and identically distributed (i.i.d). This
means that the number of events or renewals (in this case the number of generated
updates) in an interval [0, t) forms a renewal process [16,58]. A particular instance
of renewal processes is the Poisson process. A Poisson process N(t) of rate λ is a
renewal process with the interarrival times being distributed according to an exponential
distribution with rate λ. Denoting by X a random variable with such distribution, the
probability density function (pdf) of X, fX(x), is

fX(x) = λe−λx, for x ≥ 0.

Moreover, the probability that the number of renewals N(t) in the interval [0, t) is
equal to k ≥ 0 is given by the Poisson probability mass function (pmf)

P (N(t) = k) =
(λt)k

k!
e−λt.

The Poisson process is used in the queuing theory literature to model packets’ generation
or arrivals and will be adopted in Chapters 3 to 6. One attractive feature of the
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exponential distribution is its memoryless property given by

P (X > x+ s|X > x) = P (X > s) ∀ x, s > 0.

From a packet generation point of view, the memoryless property translates into
the following: Given that we already waited x seconds since the last arrival (or
generation), the probability distribution over the next s seconds is the same as the
probability distribution over the first s seconds. This means that, at any moment in
time, the exponential random variable X forgets its history and stochastically resets
as if it were starting fresh.

Example 2.2. If the status update policy Π = FCFS M/M/1 queue, all generated
packets are received. In this case, the interarrival time process (Xk)k≥1 is the same
as the effective interarrival time process (X̃j)j≥1 and they are an i.i.d process with
each Xk (or X̃j) distributed according to the exponential distribution of rate λ.

Example 2.3. If Π = M/G/1/1 with preemption policy, we consider that the trans-
mitter has access to a single server with no buffer to store packets that are not in
service. This means that any update that finds the system busy is discarded. Hence,
not all generated packets are successful and the effective interarrival process X̃j differs
from the interarrival process (Xk)k≥1. However, the “M” in M/G/1/1 concerns the
interarrival time and not the effective interarrival time. Thus (Xk)k≥1 is an i.i.d
exponential process.

2.1.2 Service Time

Depending on the policy Π, some packets might be transmitted through the network
while some packets might be dropped even before transmission. For the transmitted
updates (they could be successful or not), we define the system time as the interval
of time spent by the transmitted packets in the network. For a certain transmitted
packet k we denote its service time by Sk. In all the policies that we discuss in this
thesis, we assume the interarrival-time process (Xk)k≥1 and the service-time process
(Sk)k≥1 to be independent.
In Fig. 2.2, the second successful packet generated at t2 finds the system empty and
thus is instantaneously transmitted. As it is received at t′2, this means that its service
time S2 = t′2 − t2. On the contrary, the third successful packet generated at t3 had
to wait for the previous update to leave the network before being transmitted. Thus
in this case, its service time is given by S3 = t′3 − t′2. If the transmitter can only
transmit one packet at a time, the service time of the jth successful packet is given
by

Sj = t′j −max(t′j−1, tj). (2.3)

Example 2.4. If Π = FCFS M/M/1 queue, the service time process (Sk)k≥1 is an
i.i.d process with each Sk distributed according to the same exponential distribution of
rate µ. The interarrival time and service processes, respectively (Xk)k≥1 and (Sk)k≥1,
are considered to be independent from each other.

Example 2.5. If Π = M/G/1/1 with preemption policy, all generated packets are
transmitted. Moreover, the service-time process (Sk)k≥1 is considered to be i.i.d with
each random variable distributed according to a general probability density function
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fS(t). In this policy also, the interarrival-time process and the service-time process
are independent.

2.1.3 Waiting Time

Some policies Π assume the transmitter has a buffer and stores a number of packets
when all the servers at its disposal are busy. In this case, the packets in the buffer
have to wait for their transmission turn to come hence incur a waiting time. The
only waiting times that are relevant from an age point of view are those experienced
by the successful packets. For the jth successful packet, we denote by Wj its waiting
time. From Fig. 2.2, we notice that the second successful packet finds the system
empty hence its waiting time W2 = 0. Whereas the forth successful packet finds the
system busy serving the third successful update, hence it has to wait for W4 = t′3− t4.
If the transmitter can transmit only one packet at a time, the waiting time of the jth

successful packet is given by

Wj = max(0, t′j−1 − tj). (2.4)

2.1.4 System Time

For any policy Π, the system time concerns only successful packets. We define the
system time Tj of the jth successful update as the time elapsed between the generation
and the reception by the monitor of this update. In other words, Tj is the time spent
by the jth successful update in the system (waiting and in service) and it is given by

Tj = t′j − tj = Wj + Sj . (2.5)

In Fig. 2.2, we see that T2 = S2 but that T3 = W3 + S3.

2.1.5 Interdeparture Time

The interdeparture1 time Yj is the interval of time elapsed between the reception of
the jth and the j + 1th successful updates. This means that

Yj = t′j+1 − t′j . (2.6)

2.2 The InterArrival Time Approach (ATA)

Now that the important quantities are defined, we can present the first method
for computing the average age and the average peak age: The interArrival Time
Approach (ATA). We assume an arbitrary status-updating policy Π, which leads to
the age snapshot seen in Fig. 2.2 for source i. As we have already mentioned in the
previous section, the sawtooth shape is due to the fact that whenever the monitor
waits for a new update, the age of the information on the status of source i, ∆i(t)
increases linearly with time. However, when the jth successful update is received, the
instantaneous age drops to the current age of this last received packet, given by its
system time Tj = t′j − tj . Furthermore, we assume the snapshot covers the interval

1The name “interdeparture” is borrowed from queuing theory where delivered packets are said
to depart from the queue while newly generated packets are said to arrive at the queue.
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[0, τ ]; and without loss of generality, we consider τ = t′n, the reception time of the
nth successful packet. We denote by Ni(τ) the number of successful source i packets
generated up to time t = τ , Ni(τ) = sup{j ∈ N; tj ≤ τ}. In this particular example,
Ni(τ) = n.

2.2.1 Computing the Average Age (AoI)

Let
∆τ,i =

1

τ

∫ τ

0
∆i(t)dt. (2.7)

∆τ,i is equal to the normalized area under the curve ∆i(t), for t ∈ [0, τ ]. From Fig. 2.2,
the reader can notice that this area could be divided into Ni(τ) + 1 geometric parts:
The polygon with area Q1, the isosceles triangle of area Q̃Ni(τ) and the Ni(τ) − 1
trapezoids of areas Qj , j = 2, · · · , Ni(τ). Thus, ∆τ,i can be rewritten as

∆τ,i =
1

τ

Q1 + Q̃Ni(τ) +

Ni(τ)∑
j=2

Qj


=
Q1 + Q̃Ni(τ)

τ
+
Ni(τ)− 1

τ

1

Ni(τ)− 1

Ni(τ)∑
j=2

Qj . (2.8)

Recall from Chapter 1 that the average age relative to source i is given by

∆i = lim
τ→∞

1

τ

∫ τ

0
∆i(t)dt.

This means that

∆i = lim
τ→∞

∆τ,i

= lim
τ→∞

Q1 + Q̃Ni(τ)

τ
+
Ni(τ)− 1

τ

1

Ni(τ)− 1

Ni(τ)∑
j=2

Qj


= lim

τ→∞

Ni(τ)− 1

τ

1

Ni(τ)− 1

Ni(τ)∑
j=2

Qj , (2.9)

where the third equality is due to the fact that the areas Q1 and Q̃Ni(τ) = T 2
n
2 form

boundary effects hence they are finite with probability 1. This implies limτ→∞
Q1+Q̃Ni(τ)

τ =
0.

The ATA consists in writing the trapezoidal area Qj (hashed surfaces in Fig. 2.2) as
the difference of the areas of two right isosceles triangles: One big triangle with a
side of length X̃j + Tj and one small triangle with a side of length Tj . Thus,

Qj =

(
X̃j + Tj

)2

2
−
T 2
j

2

=
X̃2
j

2
+ X̃jTj . (2.10)

Before going any further, we need to give the following definitions:
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Definition 2.1. Let (Zn)n∈Z be a stationary discrete-time stochastic process with
E(Z) <∞, where Z is a generic random variable with the same distribution as any
of the Zn, n ∈ Z. The process (Zn)n∈Z is said to be mean-ergodic if the time average
of the first moment converge to its ensemble average, i.e.,

lim
n→∞

1

n

n∑
i=1

Zi = E(Z), (2.11)

with probability 1.

Definition 2.2. Let (Zn)n∈Z be a stationary discrete-time stochastic process with
E(Z) < ∞ and E(Z2) < ∞, where Z is a generic random variable with the same
distribution as any of the Zn, n ∈ Z. The process (Zn)n∈Z is said to be second-order-
ergodic if the time average of the first and second moments converge to their ensemble
averages, meaning that with probability 1

lim
n→∞

1

n

n∑
i=1

Zi = E(Z) and lim
n→∞

1

n

n∑
i=1

ZiZi+k = E(Z0Zk) ∀ k ∈ Z. (2.12)

Definition 2.3. Let (Zn, Rn)n∈Z be a stationary discrete-time stochastic process with
marginal distributions similar to (Z,R). This means that the processes (Zn)n∈Z and
(Rn)n∈Z are both stationary and have marginal distributions identical to Z and R
respectively.The process (Zn, Rn)n∈Z is said to be jointly second-order-ergodic if with
probability 1

lim
n→∞

1

n

n∑
i=1

Zi = E(Z), lim
n→∞

1

n

n∑
i=1

Ri = E(R), (2.13)

lim
n→∞

1

n

n∑
i=1

ZiZi+k = E(Z0Zk), lim
n→∞

1

n

n∑
i=1

RiRi+k = E(R0Rk), ∀ k ≥ 0 (2.14)

and lim
n→∞

1

n

n∑
i=1

ZiRi = E(XT ). (2.15)

We now state the main theorem of this section.

Theorem 2.1. Assume that the status updating policy Π is such that the process
(X̃j , Tj)j≥1 is stationary jointly second-order-ergodic with marginal distributions sim-
ilar to (X̃, T ). In particular, this means that

lim
n→∞

1

n

n∑
i=1

X̃i = E(X̃), lim
n→∞

1

n

n∑
i=1

Ti = E(T ),

lim
n→∞

1

n

n∑
i=1

X̃2
i = E(X̃2), lim

n→∞

1

n

n∑
i=1

T 2
i = E(T 2)

and lim
n→∞

1

n

n∑
i=1

X̃iTi = E(XT ).
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For such an updating policy Π, the process (Qj)j≥2 is stationary and mean-ergodic
with a marginal distribution similar to Q = X̃2

2 + X̃T , and the average age (AoI)
relative to source i is

∆i =
E(Q)

E(X̃)
=

E
(
X̃2
j

)
+ 2E

(
X̃jTj

)
2E(X̃)

. (2.16)

Remark 2.1. In [75], Yates et al. refer to a status-updating system with stationary,
jointly second-order-ergodic (X̃j , Tj)j≥1 process as a stationary and ergodic system.
We take a slightly different approach as we consider the term ergodic to infer an
implication much stronger than the convergence, to their ensemble averages, of the
time average of the first and second moments of a process.

To prove Theorem 2.1 we first need the following lemma:

Lemma 2.1. let N(t) be a counting process. This means that at instant t > 0,
N(t) ∈ N is the number of events occurring in the interval [0, t]. Let Zi be the random
variable representing the time interval between the occurrence of the i− 1th and ith

events. If the process (Zi)i≥1 is stationary second-order-ergodic2, the following equality
holds

lim
t→∞

N(t)

t
=

1

E(Z)
. (2.17)

Proof. By definition, N(t) = sup{n :
∑n

i=1 Zi ≤ t}. This means that

N(t)∑
i=1

Zi ≤ t ≤
N(t)+1∑
i=1

Zi.

Thus,

1

N(t)

N(t)∑
i=1

Zi ≤
t

N(t)
≤ N(t) + 1

N(t)

1

N(t) + 1

N(t)+1∑
i=1

Zi.

As t → ∞, N(t) → ∞ and N(t)+1
N(t) → 1. Moreover, since (Zi)i≥1 is stationary

second-order-ergodic, then lim
N(t)→∞

1
N(t)

N(t)∑
i=1

Zi = lim
N(t)→∞

1
N(t)+1

N(t)+1∑
i=1

Zi = E(Z).

This proves our claim.

We now provide the proof for Theorem 2.1.

Proof of Theorem 2.1. Let (X̃j , Tj)j≥1 be a stationary jointly second-order-ergodic
process as in Definition 2.3. This means that each of the processes (X̃j)j≥1 and
(Tj)j≥1 is stationary second-order-ergodic.

Since for any τ > 0 Ni(τ) = sup{j ∈ N :
j∑

k=1

X̃k ≤ τ}, then using Lemma 2.1 we get

lim
τ→∞

Ni(τ)− 1

τ
=

1

E(X̃)
.

2For Lemma 2.1 it is sufficient to have a stationary mean-ergodic process.
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From (2.10) we can deduce that the process (Qj)j≥2 is stationary and mean-ergodic
with a marginal distribution similar to Q = X̃2

2 + X̃T , as it is a quadratic function of
a stationary jointly second-order-ergodic process. Thus,

lim
Ni(τ)→∞

1

Ni(τ)− 1

Ni(τ)∑
j=2

Qj = lim
Ni(τ)→∞

1

Ni(τ)− 1

Ni(τ)∑
j=2

X̃2
j

2
+ X̃jTj

=
E
(
X̃2
)

2
+ E (XT )

= E(Q)

where the second equality is justified by the fact that (X̃j , Tj)j≥1 is stationary jointly
second-order-ergodic. Hence

∆i =
E(Q)

E(X̃)
.

Replacing E(Q) by its expression, we obtain the second equality of (2.16).

2.2.2 Computing the Average Peak Age (PAoI)

Theorem 2.2. Assume that the status updating policy Π is such that the process
(X̃j , Tj)j≥1 is stationary jointly second-order-ergodic with marginal distributions sim-
ilar to (X̃, T ). Then the average peak age (PAoI) relative to source i is

∆peak,i = E(X̃) + E(T ) (2.18)

Proof. From (1.4), we know that

∆peak,i = lim
Ni(τ)→∞

1

Ni(τ)

Ni(τ)∑
j=1

Kj .

From Fig. 2.2 we observe that Kj = X̃j + Tj , for all j ≥ 1. As we are assuming the
status updating policy Π to be such that (X̃j , Tj)j≥1 is stationary jointly second-
order-ergodic, then (Kj)j≥1 is a stationary mean-ergodic process with a marginal
distribution similar to K = X̃ + T . Thus,

∆peak,i = lim
Ni(τ)→∞

1

Ni(τ)

Ni(τ)∑
j=1

Kj

= E(K)

= E(X̃ + T )

= E(X̃) + E(T )
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2.3 The InterDeparture Time Approach (DTA)

As in ATA, the trapezoidal area Qj is also expressed as the difference of the areas of
a two right isosceles triangles. Whereas in the ATA we choose to express the length
of the side of the big triangle as the sum of the effective interarrival time and system
time (X̃j + Tj), in the DTA we express it as the sum of the interdeparture time and
the system time (Tj−1 + Yj−1). The side of the small triangle is still of length Tj .
Thus

Qj =
(Tj−1 + Yj−1)2

2
−
T 2
j

2
. (2.19)

2.3.1 Computing the Average Age

Theorem 2.3. Assume that the status updating policy Π is such that the process
(Yj , Tj)j≥1 is stationary jointly second-order-ergodic with marginal distributions simi-
lar to (Y, T ). For such a policy, the process (Qj)j≥2 is stationary and mean-ergodic
with a marginal distribution identical to Q = Y 2

2 + Y T . Then the average age (PAoI)
relative to source i is

∆i =
E(Q)

E(Y )
=

E
(
Y 2
)

+ 2E(Y T )

2E(Y )
. (2.20)

Proof. Let (Yj , Tj)j≥1 be a stationary jointly second-order-ergodic process with
marginal distributions similar to (Y, T ). Denote by Ri(τ) the number of successful
receptions of source i packets up to time t = τ , i.e. Ri(τ) = sup{j ∈ N : t′j ≤ τ},
where t′j is the reception time of the jth successful packet. As we considered τ = t′n
then Ri(τ) = Ni(τ) = n. Thus ∆τ,i given in (2.7) can be written as

∆τ,i =
1

τ

Q1 + Q̃Ri(τ) +

Ri(τ)∑
j=2

Qj


=
Q1 + Q̃Ri(τ)

τ
+
Ri(τ)− 1

τ

1

Ri(τ)− 1

Ri(τ)∑
j=2

Qj .

Similarly as in the ATA, this leads to

∆i = lim
τ→∞

Ri(τ)− 1

τ

1

Ri(τ)− 1

Ri(τ)∑
j=2

Qj .

Moreover, Ri(τ) can also be written as Ri(τ) = sup{j ∈ N :
j−1∑
k=0

Y k ≤ τ}. Thus by

using Lemma 2.1 and the fact that (Yj)j≥0 is stationary second-order-ergodic, we
obtain

lim
τ→∞

Ri(τ)− 1

τ
=

1

E(Y )
.
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Using (2.19) and the fact that (Yj , Tj)j≥1 is a stationary jointly second-order-ergodic
process, we know that

lim
τ→∞

1

Ri(τ)− 1

Ri(τ)∑
j=2

Qj = lim
τ→∞

1

Ri(τ)− 1

Ri(τ)∑
j=2

(
T 2
j−1 − T 2

j

2
+
Y 2
j−1

2
+ Tj−1Yj−1

)

=
E(T 2)− E(T 2)

2
+

E
(
Y 2
)

2
+ E (TY )

=
E
(
Y 2
)

2
+ E (TY ) .

Finally, the result above shows that the process (Qj)j≥2 is stationary mean-ergodic
with a marginal distribution similar to Q = Y 2

2 + TY . Thus,

lim
τ→∞

1

Ri(τ)− 1

Ri(τ)∑
j=2

Qj = E(Q)

and
∆i =

E(Q)

E(Y )
.

This concludes our proof.

2.3.2 Computing the Average Peak Age

Theorem 2.4. Assume that the status updating policy Π is such that the process
(Yj , Tj)j≥1 is stationary jointly second-order-ergodic with marginal distributions simi-
lar to (Y, T ). Then the average peak age (PAoI) relative to source i is

∆peak,i = E(Y ) + E(T ) (2.21)

Proof. As in the proof of Theorem 2.3, we define Ri(τ) = sup{j ∈ N; t′j ≤ τ} the
number of successful receptions of source i packets up to time t = τ . From (1.4), we
know that

∆peak,i = lim
Ri(τ)→∞

1

Ri(τ)− 1

Ri(τ)∑
j=2

Kj .

From Fig. 2.2 we observe that Kj = Tj−1 + Yj−1, for all j ≥ 2. As we are assuming
the status updating policy Π to be such that (Yj , Tj)j≥1 is stationary jointly second-
order-ergodic, then (Kj)j≥2 is a stationary mean-ergodic process with a marginal
distribution similar to K = Y + T . Thus,

∆peak,i = lim
Ri(τ)→∞

1

Ri(τ)− 1

Ri(τ)∑
j=1

Kj

= E(K) = E(Y + T ) = E(Y ) + E(T )
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It is interesting to observe that, in our computations for the ATA and DTA, we
assumed only that the status updating scheme Π considered leads to a stationary
second-order-ergodic processes (X̃j , Tj)j≥1 and (Yj , Tj)j≥1, respectively. No further
assumptions on the status updating scheme or on the probability distributions of the
different random variables involved were considered. In the following chapters, we
use either ATA or DTA depending on the situation and which approach seems easier
to handle.



Part I

Age in the Absence of Noise
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The gamma Awakening 3
3.1 Introduction and Main Results

In this chapter1 , we consider two status-updating policies: Π1 = { LCFS with
preemption and exponentially distributed interarrival times} = { M/G/1/1 with
preemption}, and Π2 = { LCFS-with-preemption-in-waiting with exponentially
distributed interarrival times} = { M/G/1/2*}. The main novelty is however
the assumption of a gamma distribution for the service time in age of information
problems. In this chapter, we use LCFS with preemption to refer to Π1 and LCFS-
with-preemption-in-waiting to refer to Π2. As for the reasons behind our choice of
the gamma distribution, it is twofold:

• Based on the classic applications of gamma distributions in queuing theory,
these distributions can be seen as a reasonable approximation if we want to
model relay networks. Indeed, in such network, a transmitter and a receiver are
separated by k relays with each relay taking an exponential amount of time to
complete transmission to the next hop. This means that the total transmission
time is the sum of k independent exponential random variables, which induces
a gamma distribution.

• As we will see later, a deterministic random variable can be seen as the limit of
a sequence of gamma-distributed random variables. Therefore, we can study
the performance of the LCFS-based schemes under deterministic service time
by taking the limit of the result obtained for a gamma distributed service time.
Although this is an indirect method of calculating (1.2), it is simpler than the
direct approach.

As already explained in Section 1.2.3, the two updating schemes studied in this
chapter can be described as follows:

1The material of this chapter is based on [44,49].
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• LCFS with preemption: Any new update will prompt the source to drop
the packet being served and start transmitting the newcomer.

• LCFS-with-preemption-in-waiting: If the queue is busy, any new update
will have to wait in a buffer of size 1. This means that the new update will
replace any older packet already waiting to be served.

In both cases, we consider a single source and a single monitor, and we assume the
interarrival time process (Xj)j≥1

2 to be i.i.d. exponentially distributed with rate
λ and the service time process (Sj)j≥1 relative to the transmitted packets to be
i.i.d. with a gamma distribution. Moreover, (Xj)j≥1 and (Sj)j≥1 are assumed to be
independent.

In this chapter, we compute the average age (AoI) and the average peak age (PAoI) for
each one of the chosen two status updating policies and compare their performances.
We show through simulations that, for an interarrival rate λ� E(Sj), the LCFS-with-
preemption-in-waiting policy achieves an age lower than the LCFS with preemption.
Moreover, we claim that among all gamma distributions, the deterministic service
time leads to the worst age performance for the LCFS with preemption scheme.
Nonetheless, it leads to the best age performance for the LCFS-with-preemption-in-
waiting.

This chapter is organized as follows: In Section 3.2, we present the preliminary
results that will be used throughout later. In Section 3.3, we derive the closed-form
expressions for both the average age and the average peak age when assuming an
LCFS scheme with preemption. In Section 3.4, we compute the formulas for these
quantities when considering an LCFS queue without preemption. In these last two
sections, the service time is assumed to be gamma distributed. However, in Section 3.5,
we calculate the two ages for a deterministic service time for each of the two schemes.
Finally, in Section 3.6, we present numerical simulations that validate our theoretical
results.

3.2 Preliminaries

3.2.1 General Definitions

As we have seen in the previous section, our two schemes of interest are LCFS with
preemption and LCFS-with-preemption-in-waiting. The variation of the instantaneous
age for these two scenarios is given in Figure 3.1. In contrast to Fig. 2.2, these two
figures show all the generated packets whether they were successfully delivered or not.
For instance, in Fig. 3.1a the updates generated at times t2, t3 and t4 are discarded.
In this chapter, we use the notation introduced in Chapter 2. This means

• Ii is the true index of the ith successfully received packet.

2The reader should note that it is the interarrival time process and not the effective interarrival
time process that is assumed to be i.i.d. exponentially distributed.
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Figure 3.1 – Variation of the instantaneous age for both schemes

• Sj is the service time of the jth generated packet, with a distribution identical
to the random variable S, fS(s).

• Yi = t′Ii+1
− t′Ii is the interdeparture time between the ith and i+1th consecutive

successfully received packets.

• Xj = tj+1 − tj is the interarrival time between two consecutive generated
packets, distributed similarly as X with fX(x) = λe−λx, λ > 0.

• Ti = t′Ii − tIi is the system time of the ith successful packet.

In this chapter, we use the subscript j to indicate random variables related to the jth

generated packet (e.g. Xj), and we use the subscript i to denote random variables
relative to the ith successful packet (e.g. Ti).

3.2.2 Computing the Average Age

In Chapter 2, we have shown that if the process (Yi, Ti)i≥1 is stationary second-order-
ergodic, then using the DTA we can write

∆ = lim
τ→∞

1

τ

∫ τ

0
∆(t)dt =

E(Q)

E(Y )
= λeE(Q), (3.1)
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where λe = 1
E(Y ) is the effective update rate, E(Y ) is the expected value of the

interdeparture time Yi at steady state and E(Q) is the expected value of the area Qi
at steady state. We choose to use the concept of effective update rate introduced in [10],
instead of computing 1

E(Y ) , so that the reader is exposed to diverse computation
methods related to age of information. Hence, we need to determine these two
quantities: λe and E(Q).

Computing the Effective Rate

To calculate the effective rate λe, we will use the following lemma:

Lemma 3.1. Let 1{jth generated packet received} = 1 if the jth generated packet is received

and 0 otherwise. If the process
(
1{jth generated packet received}

)
j≥1

is stationary mean-

ergodic, then
λe = λ · P ({packet is received successfully}) (3.2)

where λ = 1
E(X) and P ({packet is received successfully}) is the probability that a

packet in the queue will be delivered to the receiver.

Proof. Denoting by R(τ) the number of successful receptions up to time t = τ , i.e.
R(τ) = sup{i ∈ N : t′Ii ≤ τ}. Let’s denote by M(τ) the number of packets generated

in the interval [0, τ ]. Then R(τ) =
M(τ)∑
j=1

1{jth generated packet received}. Thus,

λe = lim
τ→∞

R(τ)− 1

τ
= lim

τ→∞

R(τ)− 1

R(τ)

R(τ)

τ

= lim
τ→∞

R(τ)

τ

= lim
τ→∞

M(τ)

τ

1

M(τ)

M(τ)∑
j=1

1{jth generated packet received}

(a)
=

E ({packet is received successfully})
E(X)

= λP ({packet is received successfully}) ,

where equality (a) is obtained by noticing thatM(τ) is a Poisson process with interar-
rival time distributed as X and using the fact that

(
1{jth generated packet received}

)
j≥1

is stationary mean-ergodic.

In the following sections, we will prove that, for the LCFS with preemption and
without preemption, the process

(
1{jth generated packet received}

)
j≥1

is stationary mean-

ergodic hence (3.1) and Lemma 3.1 can be applied.
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Computing E(Qi)

Using Figures 3.1a and 3.1b, it was shown in Section 2.3 that

E(Q) = E(Qi) = E (Ti−1Yi−1) + E
(
Y 2
i−1

2

)
, (3.3)

where the choice of i does not matter due to stationarity.

3.2.3 Computing the Average Peak-Age

Another metric of interest is the average peak-age. From Figures 3.1a and 3.1b and
Section 2.3, we showed that, for any i ≥ 2, the average peak-age is given by:

∆peak = E(Ti−1) + E(Yi−1) = E(T ) + E(Y ). (3.4)

3.2.4 Defining the Service Time

In this chapter, we study two models for the service time: a gamma-distributed
service time with parameters (k, θ) and a deterministic service time. Here is a brief
description of the gamma distribution.

Definition 3.1. A random variable S with gamma distribution γ(k, θ) has the fol-
lowing probability density function:

fS(s) =
sk−1e−

s
θ

θkγ(k)
.

The Erlang distribution E(k, θ) is a special case of the gamma distribution where
k ∈ N.

Such a random variable has a mean of E(S) = kθ and a variance Var(S) = kθ2.
These quantities will come in handy later. Another important property of gamma
random variables is given by the following lemma:

Lemma 3.2. Suppose Sn ∼ γ(kn, θn) is a sequence of random variables such that
E(Sn) = 1

µ , for some µ > 0. Then the sequence Sn converges in distribution to a
deterministic variable Z as k becomes very large, i.e,

Sn
d→ Z, as k →∞,

where Z = 1
µ with probability 1.

The above lemma obviously still holds if Sn ∼ E(kn, θn). This lemma provides
additional motivation for studying the average age and the average peak-age under
the assumption of a gamma-distributed service time, as we can easily extend the
results to the deterministic service time model by letting k →∞.
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1
0, 1
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1-p

Figure 3.2 – Semi-Markov chain representing the queue for LCFS with preemption

3.3 Age of Information for LCFS with Preemption

In this section, we compute the average age ∆ and the average peak-age ∆peak for the
Last-Come-First-Served (LCFS) scheme with preemption and a gamma-distributed
service time. As we have seen in §1.2.3, in this scenario, if a new packet arrives,
any packet being served is preempted, and the new packet is served instead. Hence,
the number of packets in the queue can be modeled as a continuous-time two-state
semi-Markov chain depicted in Figure 3.2.

The 0-state corresponds to the state where the queue is empty and no packet is
being served while the 1-state corresponds to the state where the queue is full and
is serving one packet. However, given that the interarrival time between packets is
exponentially distributed with rate λ, then we spend an exponential amount of time
X in the 0-state before jumping with probability 1 to the other state. Once in the
1-state, two independent clocks are started: The gamma-distributed service time
clock of the packet being served and the rate λ memoryless clock of the interarrival
time between the current packet and the next one to be generated. We jump back to
the 0-state if the service time clock happens to tick before that of the interarrival
time. Given that the interarrival times between packets are i.i.d. as well as the service
time of each packet, then the probability to jump from the 1-state to the 0-state
does not depend on the index of the current packet. Hence, the jump from the
1-state to the 0-state occurs with probability p = P(S < X), where S is a generic
gamma-distributed service time and X is a generic rate λ memoryless interarrival
time which is independent of S. Whereas if the interarrival time clock happens to
tick before the service time clock, then the current packet being served is preempted
and the newly generated packet takes its place in the queue. Therefore, we stay in
the 1-state and the two clocks are started anew independently from before. This
explains the 1− p probability seen in Figure 3.2 for staying in the 1-state.

Given that the probability p will be useful in the computation of the average age, as
well as the average peak-age, we start by deriving its expression here:

p = P(S < X) =

(
1

1 + λθ

)k
. (3.5)

3.3.1 Verifying Convergence

Lemma 3.3. For the LCFS with preemption status updating scheme, the process(
1{jth generated packet received}

)
j≥1

is i.i.d. Bernoulli(p), where p = (1 + λθ)−k. By the

strong law of large numbers, this process is also mean-ergodic and Lemma 3.1 holds.
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Proof. Let’s consider the jth generated packet. The variable 1{jth generated packet received}
depends only on the interarrival time Xj between the jth and the j + 1th generated
packets and the service time Sj of the jth generated packet. Indeed, the event {jth

generated packet received} is equivalent to {Xj > Sj}. Since we assume i.i.d. interar-
rival times and i.i.d. service times and that, for any j, Sj is independent of (Xl)l≥1,
then the process

(
1{jth generated packet received}

)
j≥1

is i.i.d. Bernoulli(p).

Lemma 3.4. Consider a LCFS scheme with preemption. For any i ≥ 1, the system
time, Ti, and interdeparture time, Yi, relative to the ith successful packet, are indepen-
dent. Moreover the process (Yi)i≥1 is i.i.d. and the process R(τ) = sup{i ∈ N : t′Ii ≤ τ}
is a renewal process.

Proof. The ith successful packet leaves the queue empty hence Yi = X̂i + Zi where
X̂i = Xi − Ti is the remaining of the interarrival time (between the departure of the
ith successful packet and the arrival of the next generated one) and Zi is the time for
a new packet to be successfully delivered. Zi does not overlap with Ti and thus is
independent from it. As for X̂i, we also obtain that it is independent of Ti. To prove
this, notice that for a successfully received packet i the joint distribution fXi,Ti(x, t)
can be written as

fXi,Ti(x, t) =

{
0 if x < t
fX,S(x,t)
P(S<X) if x > t

, (3.6)

where X and S are the generic independent interarrival time and service time
respectively. Now, using a change of variable we obtain

fX̂i,Ti(x̂, t) = fXi−Ti,Ti(x̂, t) = fXi,Ti(x̂+ t, t)

=

{
0 if x̂ < 0
fX,S(x̂+t,t)
P(S<X) if x̂ > 0

=

{
0 if x̂ < 0
λe−λ(x̂+t)fS(t)

P(S<X) if x̂ > 0

=

{
0 if x̂ < 0(
λe−λx̂

) e−λtfS(t)
P(S<X) if x̂ > 0

=

{
0 if x̂ < 0
h(x̂)g(t) if x̂ > 0

. (3.7)

Moreover, X̂i is exponential with rate λ since

P
(
X̂i > t

)
= P (Xi > t+ Si|Xi > Si)

=
P (Xi > t+ Si)

P(Xi > Si)

=
1

P(Xi > Si)

(∫ ∞
0

e−λ(t+s)fSi(s)ds

)
= (1 + λθ)k

(
e−λt

(1 + λθ)k

)
= e−λt. (3.8)
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(3.7) and (3.8) show that X̂i and Ti are indeed independent. Given that X̂i and Zi
are both independent from Ti, then Yi and Ti are also independent.

Furthermore, since Yi−1 = X̂i−1 +Zi−1, X̂i is independent from Ti and the interarrival
process is i.i.d. and independent from the i.i.d. service process, then X̂i and Zi are
independent of Yi−1. This implies that for any i ≥ 1, Yi−1 and Yi are independent.
Moreover, it is clear that the Zi’s have the same distribution (which will be computed
later). Since the X̂i’s are exponential with rate λ then the (Yi)i≥1 is an i.i.d. process.
Given that Yi is the interval of time between the receptions of two consecutive
successful packets, then the number of successfully received packets in the interval
[0, τ ], R(τ), is a renewal process.

Corollary 3.1. In the case of a LCFS with preemption scheme and i.i.d. service time
process, the average age exists. This implies that the process (Ti, Yi)i≥1 is stationary
jointly second-moment-ergodic.

Proof. By Lemma 3.4 we have shown that the process R(τ) = sup{i ∈ N : t′Ii ≤ τ} is
a renewal process with (Yi)i≥1 being the inter-renewal time process. Thus by defining

Di =

∫ t′Ii+1

t′Ii

∆(t)dt

to be the reward function over the renewal period Yi, we get using renewal reward
theory [16,58] that

∆ = lim
τ→∞

1

τ

∫ τ

0
∆(t)dt =

E(Di)

E(Yi)
<∞.

This implies that (Ti, Yi)i≥1 is stationary jointly second-moment-ergodic.

3.3.2 Average Age

We start by deriving the expression for the average age. We need to compute two
quantities for this purpose: E(Qi) and the effective rate λe.

Computing the Effective Rate

Using (3.2) and (3.5) we get

λe = λP (packet is received successfully) = λp = λ

(
1

1 + λθ

)k
. (3.9)

Computing E(Qi)

Using (3.3) and Lemma 3.4, we obtain

E(Qi) = E (Ti−1Yi−1) + E
(
Y 2
i−1

2

)
= E (Ti−1)E (Yi−1) + E

(
Y 2
i−1

2

)
. (3.10)
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Henceforth, we will drop the subscript index because at steady state Ti−1 and Ti
have same the distribution, which is also the case for Yi−1 and Yi. The following
lemma will be used to evaluate (3.10):

Lemma 3.5. Let G be gamma distributed with parameters (k,θ) and F be a rate
λ exponential random variable independent of G. Then, conditioned on the event
{G < F}, the distribution of G becomes gamma with parameters

(
k, θ

1+λθ

)
.

fG|G<F (t) =
tk−1e−t(

1+λθ
θ )(

θ
1+λθ

)k
γ(k)

. (3.11)

Proof. In order to prove this lemma, we will compute the probability density function
fG|G<F :

fG|G<F (t) = lim
ε→0

P(t ≤ G < t+ ε|G < F )

ε
(a)
= lim

ε→0

P(t ≤ G < t+ ε)P(G < F |t < G < t+ ε)

εP(G < F )

= fG(t)
P(F > t)

P(G < F )

(b)
= fG(t)

e−tλ

p

=
tk−1e−

t
θ e−tλ

θkγ(k)
(

1
1+λθ

)k
=

tk−1e−t
1+λθ
θ(

θ
1+λθ

)k
γ(k)

where (a) is obtained by applying Bayes rule and in (b), p is given by (3.5).

Proposition 3.1. At steady state the system time T of a successful packet in a LCFS
with preemption scheme is gamma distributed with parameters

(
k, θ

1+λθ

)
. Therefore,

E(T ) =
kθ

1 + λθ
. (3.12)

Proof. We first notice that for a given packet i, the event {Si < Xi} is equivalent to
the event {packet i was successfully received}. Hence the probability P = P(Si <
α|Si < Xi) is the probability that the service time of the ith packet is less than α,
given that this packet was successfully transmitted. However, as the service times
and interarrival times are i.i.d. , then P does not depend on the index i. Now, as T
is the service time of a successful packet then this leads us to

P(T < α) = P(Si < α|Si < Xi) = P(S < α|S < X), (3.13)

where S and X are the generic service and interarrival time respectively. By replacing
G by S and F by X in Lemma 3.5, we deduce that the system time T is gamma
distributed with parameters

(
k, θ

1+λθ

)
.
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Now we turn our attention to the distribution of Y , for which we compute its moment
generating function. Before going further in our analysis, we state the following
lemma.

Lemma 3.6. Let G be gamma distributed with parameters (k,θ) and F be a rate λ
exponential random variable independent of G. If F ′ is a random variable such that

P(F ′ < α) = P(F < α|F < G),

then the moment generating function of F ′ is given by

φF ′(s) = E
(
esF

′
)

=
1

1− p

(
λ

λ− s
− λ

λ− s
1

(1 + θ(λ− s))k

)
, (3.14)

where p =
(

1
1+λθ

)k
.

Proof. We first start by computing the probability density function of F ′.

fF ′(t) = lim
ε→0

P(t ≤ F < t+ ε|F < G)

ε

= lim
ε→0

P(t ≤ F < t+ ε)P(F < G|t ≤ F < t+ ε)

εP(F < G)

=
λe−tλP(G > t)

1− p
,

where p =
(

1
1+λθ

)k
.

So now we can calculate the moment generating function of F ′.

φF ′(s) =

∫ ∞
0

fF ′(t)e
stdt

=

∫ ∞
0

1

1− p
λe−tλP(G > t)estdt

=
1

1− p

(
λ

λ− s
− λ

∫ ∞
0

P(G < t)estdt

)

Using integration by parts and the fact that d
dtP(G < t) = fG(t) = tk−1e−

t
θ

θkγ(k)
, we

obtain

φF ′(s) =
1

1− p

(
λ

λ− s
− λ

(λ− s)(1 + θ(λ− s))k

)

Lemma 3.7. The moment generating function of Y is given by:

φY (s) =
λ

λ− s (1 + θ(λ− s))k
. (3.15)
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Proof. By observing Figure 3.2, we notice that Y is the smallest time needed to go
from the 0-state back to the 0-state. Hence Y can be written as Y = X + Z, where
X is the generic interarrival time and Z is the time spent in the 1-state before the
first jump back to the 0-state. So Z can be written as

Z =


S′ with probability p
X ′1 + S′ with probability (1− p)p
X ′1 +X ′2 + S′ with probability (1− p)2p
...

=

M∑
j=0

X ′j + S′, (3.16)

where X ′j is such that P(X ′j < α) = P(X < α|X < S), S′ is such that P(S′ < α) =
P(S < α|S < X) and M is a Geometric(p) random variable that is independent of
X ′j and S

′, and that gives the number of discarded packets before the first successful
reception. Applying Lemmas 3.5 and 3.6 on S′ and X ′ respectively and using the
fact that M , S′ and X ′j are all mutually independent, it follows that

φZ(s) = E
(
es
∑M
j=0X

′
j

)
φS′(s)

= E
(
φX′(s)

M
)( 1 + λθ

1 + θ(λ− s)

)k
=
∞∑
j=0

φX′(s)
jp(1− p)j

(
1 + λθ

1 + θ(λ− s)

)k
=

λ− s
λ− s (1 + θ(λ− s))k

. (3.17)

Moreover, since X and W are independent and φX(s) = λ
λ−s , we obtain using (3.17)

φY (s) = φX(s)φZ(s) =
λ

λ− s (1 + θ(λ− s))k
.

Now that we have found φY , we can compute the first two moments of Y as

E(Y ) =
dφY (s)

ds

∣∣∣∣
s=0

=
(1 + λθ)k

λ
. (3.18)

E(Y 2) =
d2φY (s)

ds2

∣∣∣∣
s=0

=
2(1 + λθ)k−1

λ2

(
(1 + λθ)k+1 − kθλ

)
. (3.19)

Combining these results with (3.12), we obtain,

E(Qi) =
(1 + λθ)2k

λ2
. (3.20)

Now we are ready to compute the average age.
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Theorem 3.1. The average age in the LCFS with preemption scheme that assumes
γ(k, θ) service time is given by:

∆ = λeE(Qi) =
(1 + λθ)k

λ
. (3.21)

Proof. Using (3.20) and (3.9).

As we have discussed in Chapter 1, the interarrival rate λ can be a design parameter.
If this is the case, then for the LCFS with preemption scheme there exists an optimal
rate λ that achieves the minimal average age. This concept is presented in the
following lemma.

Lemma 3.8. Given a LCFS with preemption and gamma(k, θ)-distributed service
time, then

• if k > 1, there exists a finite optimal update rate λ∗ < ∞ that achieves the
optimal average age ∆∗ with

λ∗ =
1

θ(k − 1)
∆∗ = kθ

(
k

k − 1

)k−1

.

• if k ≤ 1, then the average age is a decreasing function of λ and the minimum
∆∗ is achieved as λ→∞ with ∆∗ = 0.

Proof. From Theorem 3.1 we know that

∆ =
(1 + λθ)k

λ
.

Thus
d∆

dλ
=

(λθ(k − 1)− 1)(1 + λθ)k−1

λ2
.

Since λ, k, θ > 0, then for k < 1, d∆
dλ ≤ 0, ∀ λ > 0. This means that ∆ is a decreasing

function of λ and
∆∗ = lim

λ→∞
∆ = 0.

However, if k > 1, the equation d∆
dλ = 0 has a unique solution at λ∗ = 1

θ(k−1) .
Replacing this value of λ in (3.21) we obtain ∆∗.

3.3.3 Average Peak-Age

Theorem 3.2. The average peak-age in the LCFS with preemption scheme that
assumes γ(k, θ) service time is given by:

∆peak = E(T ) + E(Y ) =
kθ

1 + λθ
+

(1 + λθ)k

λ
. (3.22)

Proof. We replace the expectations in (3.4) by their expressions in (3.12) and (3.18).
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Figure 3.3 – Markov chain representing the queue for LCFS-with-preemption-in-
waiting

3.4 Age of Information for LCFS with Preemption in
Waiting

Another interesting scheme worth studying is the LCFS-with-preemption-in-waiting.
In this scenario, we assume that the queue has a buffer of size 1 and wait for the
packet being served to finish before serving a new one. If a new update arrives while
serving a packet, it replaces any packet waiting in the buffer. In this section, we
derive a closed-form expression for the average age ∆ and the average peak-age ∆peak

for LCFS-with-preemption-in-waiting, and we assume an Erlang distribution for the
service time with parameter (k, θ). An Erlang distribution is simply a special case of
the gamma distribution where k ∈ N. Moreover, an Erlang distribution (k, θ) can be
seen as the sum of k independent memoryless random variables Aj , each with rate 1

θ .
Using this observation, we model the state of the queue as a two-level Markov chain
as shown in Figure 3.3.

As in the previous section, we denote the generic rate-λ interarrival time by X and
the generic Erlang distributed service time by S =

∑k
j=1Aj . Using this notation, we

notice that the service time can be represented as the succession of k exponential-time
steps that need to be accomplished for a successful reception. Hence, a packet in
state j ∈ {1, . . . , k} or j′ ∈ {1′, . . . , k′} is a packet completing his jth step out of
a total of k. Moreover, the 0-state represents an empty queue, all the states of
level 0 represent an empty buffer and those of level 1 represent a full buffer. After
spending an exponential amount of time in the 0-state, we can only jump to the
1-state once a new update arrives. Using the memoryless property of the exponential
distribution, we can describe the evolution of this packet in the queue as follows:
at state j ∈ {1, . . . , k}, two exponential clocks start simultaneously: one clock —
denoted Aj— of rate 1

θ and another one — denoted Λj— of rate λ. If clock Aj ticks
first, then the packet jumps to state j + 1, and the buffer stays empty. Otherwise it
jumps to state j′, as now the buffer is full. Whereas, if the packet is at state j′ and
the Aj clock ticks first, then the packet jumps to state (j + 1)′ without updating the
buffer. However, if the Λj ticks first then the packet stays in state j′ but we update
the buffer with the new arrival.
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3.4.1 Verifying Convergence

Lemma 3.9. For the LCFS-with-preemption-in-waiting status updating scheme with
Erlang service time distribution, the Markov chain shown in Fig. 3.3 is ergodic. This
means that all processes induced by this chain are ergodic, in particular the process(
1{jth generated packet received}

)
j≥1

is ergodic. Hence, the latter is also mean-ergodic

and Lemma 3.1 holds.

Proof. First we ‘uniformize’ the Markov chain so that the time spent at each state
is exponential with rate λ + 1

θ , We denote by πj , j = 0, 1, · · · , k the steady-state
probabilities of the level-0 states in Fig. 3.3, and we denote by π′l, l = 1, · · · , k the
steady-state probabilities of the level-1 states. Let q = 1

1+λθ . The analysis of the
embedded chain ( [58], chapter 5) gives the system

π1 = q(1−q)
qk+1+k(1−q)

π0 = qk

1−qπ1 = qk+1

qk+1+k(1−q)

πj = qj−1π1 = qj(1−q)
qk+1+k(1−q) , for j = 2, 3, · · · k

π′l = 1−ql
q π1 = (1−ql)(1−q)

qk+1+k(1−q) , for l = 1, · · · , k.

(3.23)

This shows that the embedded Markov chain has a steady-state distribution thus the
chain depicted in Fig. 3.3 is ergodic. Moreover we can observe that the event {packet
is successfully received} is equivalent to the event {packet passes by the 1-state},
which implies that the process

(
1{jth generated packet received}

)
j≥1

is ergodic.

Lemma 3.10. The effective rate of the LCFS-with-preemption-in-waiting status-
updating scheme with Erlang(k, θ) service-time distribution is

λe =
λ(1 + λθ)k

1 + kλθ(1 + λθ)k
. (3.24)

Proof. We already observed that the event {packet is successfully received} is equiv-
alent to the event {packet passes by the 1-state}. Hence if we ‘uniformize’ the
Markov chain so that the time spent at each state is exponential with rate λ + 1

θ ,
we get λe =

(
λ+ 1

θ

)
π1 where π1 is the steady-state probability of the 1-state in the

‘uniformized’ Markov chain. Using (3.23), we get our result.

3.4.2 Average Age

Theorem 3.3. The average age in the LCFS-with-preemption-in-waiting scheme
assuming Erlang E(k, θ) service time is

∆ =
kθ(1 + λθ)k(2 + λθ + 3kλθ)

2(1 + kλθ(1 + λθ)k)
+

2(1− k2λθ)

λ(1 + kλθ(1 + λθ)k)

+
kθ(1 + kλθ + 2k)

1 + λθ + kλθ(1 + λθ)k+1

− 1 + λθ + kλθ

λ(1 + λθ) ((1 + λθ)k + kλθ(1 + λθ)2k)
. (3.25)
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Proof. Let q = 1
1+λθ . As in the previous section, we need to compute the effective

rate (given by (3.2)) and E(Qi) (given by (3.3)). Since the effective rate is already
given by Lemma 3.10, we still need to compute E(Qi).

Following the same line of thought as in Section 3.3, we calculate E(Ti−1Yi−1) by ex-
pressing it as the average of two conditionally independent variables, given some set of
events. To this end, we define the family of events Ψi

j =
{
Aij > Λij ;

∑k
l=j+1A

i
l < X

}
,

where 1 ≤ j ≤ k. Hence Ψi
j is the event that during the service time of the ith

successful packet a new update arrived at the jth step of the service time (i.e, state
j or j′), then no new update arrived for the remainder of the service time. The
superscript (i) is used to indicate that we are dealing with the ith successful packet.
For j = 0, Ψi

0 is the event that the ith successful packet leaves the queue empty. Note
that for every i, {Ψi

j , 1 ≤ j ≤ k} is a partition of the probability space.

It is sufficient to condition on the event Ψi−1
0 , in order to ensure conditional indepen-

dence between Ti−1 and Yi−1. This is due to the following fact: given Ψi−1
0 , we know

that the (i− 1)th successful packet left the queue empty hence we have a situation
identical to that of the with preemption case (see Section 3.3) and Ti−1 and Yi−1 are
independent. Whereas, given Ψi−1

0 , the buffer is not empty, hence a new packet will
be served directly after the departure of the (i− 1)th successful packet. In this case,
the interdeparture time Yi−1 is simply the service time of the ith successful packet
whose value is independent of Ti−1 = Wi−1 + Si−1, where Wi−1 the waiting time and
Si−1 is the service time of the (i− 1)th successful packet (see Figure 3.1b).

Although conditioning on Ψi−1
0 is enough to obtain independence between Ti−1 and

Yi−1, we need to condition on the two independent events Ψi−1
j and Ψi−2

l in order
to be able to calculate the conditional expectation of Ti−1. However, it is clear that
conditioning on these two events also leads to the independence between Ti−1 and
Yi−1. Hence we obtain

E(Ti−1Yi−1)

=

k∑
j,l=0

(
E
(
Ti−1|Ψi−1

j Ψi−2
l

)
E
(
Yi−1|Ψi−1

j Ψi−2
l

)
× P(Ψi−1

j )P(Ψi−2
l )

)
. (3.26)

We start by computing E
(
Ti−1|Ψi−1

j Ψi−2
l

)
= E

(
Wi−1|Ψi−1

j Ψi−2
l

)
+E

(
Si−1|Ψi−1

j Ψi−2
l

)
.

The waiting time of the (i− 1)th successful packet does not depend on Ψi−1
j , as they

are disjoint in time; but it does depend on Ψi−2
l . In fact, given Ψi−2

0 , the (i− 1)th

successful packet will not wait and will start service upon arrival since the (i− 2)th

successful packet left the queue empty. However, given Ψi−2
l with l 6= 0, the (i− 1)th

successful packet arrived when the (i − 2)th successful packet was at state l or l′

of its service time. In order to find the distribution of Wi−1 conditioned on Ψi−2
l ,

we introduce the following event: Ψi
l,n =

{∑n
g=1 Λil,g < Ail,

∑n+1
g=1 Λil,g >

∑k
m=lA

i
m

}
,

where {Λil,g}g≥1 is the sequence of interarrival times after the (i)th successful packet
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enters state l. Notice that Ψi
l,n is the event that exactly n updates arrived when the

ith successful packet was in state l (or l′) and then no more updates were generated
for the remainder of the service time. Hence Ψi

l = ∪∞n=1Ψi
l,n. So conditioned on

Ψ
(i−2)
l,n we have

Wi−1 =
k∑

m=l

A(i−2)
m −

n∑
g=1

Λ
(i−2)
l,g

= (A
(i−2)
l −

n∑
g=1

Λ
(i−2)
l,g ) +

k∑
m=l+1

A(i−2)
m (3.27)

It can be shown that, conditioned on {
∑n

g=1 Λil,g < Ail}, (A
(i−2)
l −

∑n
g=1 Λ

(i−2)
l,g ) has

an exponential distribution with rate 1
θ . This means that under this condition alone,

Wi−1 has the same distribution as the sum of k − l + 1 independent exponential
random variables with rate 1

θ . If we further condition on
{∑n+1

g=1 Λil,g >
∑k

m=lA
i
m

}
and use Lemma 3.5, we deduce that conditioned on Ψ

(i−2)
l,n , Wi−1 has a gamma

distribution with parameters
(
k − l + 1, θ

1+λθ

)
. Now since Ψi−2

l = ∪∞n=1Ψi−2
l,n , we

conclude that if we condition on Ψi−2
l , Wi−1 is distributed as γ

(
k − l + 1, θ

1+λθ

)
.

Therefore,

E
(
Wi−1|Ψi−1

j Ψi−2
l

)
=

{
0 if l = 0
(k−l+1)θ

1+λθ if l 6= 0
. (3.28)

Now we turn our attention to E
(
Si−1|Ψi−1

j Ψi−2
l

)
. We first notice that the service

time Si−1 of the (i− 1)th successful packet is independent of its arrival time, given by
the event Ψi−2

l , as we assumed independence between service time and interarrival
time. Hence, E

(
Si−1|Ψi−1

j Ψi−2
l

)
= E

(
Si−1|Ψi−1

j

)
. For the case j = 0, we obtain

E
(
Si−1|Ψi−1

0

)
= E

(
k∑

m=1

Ai−1
m |

k∑
m=1

Ai−1
m < X

)

=
kθ

1 + λθ
(3.29)

where the last equality is obtained by applying Lemma 3.5 with G =
∑k

m=1A
i−1
m and
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F = X. As for the case j 6= 0, we get

E
(
Si−1|Ψi−1

j

)
= E

 k∑
m=1

Ai−1
m |Ai−1

j > Λi−1
j ,

k∑
m=j+1

Ai−1
m < X


=

j−1∑
m=1

E(Ai−1
m ) + E(Ai−1

j |A
i−1
j > Λi−1

j )

+ E

 k∑
m=j+1

Ai−1
m

∣∣∣∣∣
k∑

m=j+1

Ai−1
m < X


(a)
= (j − 1)θ +

θ(2 + λθ)

1 + λθ
+

(k − j)θ
1 + λθ

=
θ(1 + k + jλθ)

1 + λθ
(3.30)

where the third term in (a) is obtained by applying Lemma 3.5 withG =
∑k

m=j+1A
i−1
m

and F = X. Therefore, combining (3.29) and (3.30) we get,

E
(
Ti−1|Ψi−1

j Ψi−2
l

)
=


kθ

1+λθ if l = 0, j = 0
θ(k+1+jλθ)

1+λθ if l = 0, j > 0
θ(2k−l+1)

1+λθ if l > 0, j = 0
θ(2k−l+2+jλθ)

1+λθ if l > 0, j > 0

. (3.31)

Now we need to compute E
(
Yi−1|Ψi−1

j Ψi−2
l

)
. To this end, observe that Yi−1 is

independent of Ψi−2
l given that they do not overlap in time. Moreover, for j = 0,

the (i− 1)th successful packet leaves the queue empty, hence we will need to wait an
exponential amount of time X ′ of rate λ before the ith successful packet arrives and is
served directly. Hence, conditioned on Ψi−1

0 , Yi−1 has same distribution as (X ′ + S)
with X ′ and S independent. Whereas for j 6= 0, the (i− 1)th successful packet leaves
the queue with another packet that is waiting in the buffer ready to be served. Thus
in this case, Yi−1 is simply the service time of the ith successful packet. To sum up,

E
(
Yi−1|Ψi−1

j Ψi−2
l

)
=

{
1
λ + kθ if j = 0
kθ if j > 0

(3.32)

To compute E(Ti−1Yi−1) we still need the probability P(Ψi−1
j ). For j > 0, we

use the fact that Ψi−1
j is the intersection of two independent events and find that

P(Ψi−1
j ) = λθ

(1+λθ)k−j+1 . As for j = 0, we have already seen in Section 3.3 that

P(Ψi−1
0 ) = p =

(
1

1+λθ

)k
. These probabilities are independent of the index i hence

we can find P(Ψi−2
l ) by replacing j by l in the previous expressions. Combining this

results with (3.31), (3.32) we obtain after some tedious calculations

E(Ti−1Yi−1) =
kθ

λ
(1 + kλθ) + qk

(
1− kλθ(2k + 1)

λ2

)
+ qk+1

(
kθ(1 + kλθ + 2k)

λ

)
− 1

λ2
q2k − kθ

λ
q2k+1 (3.33)
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with q = 1
1+λθ .

The last term to compute, in order to obtain E(Qi), is

E(Y 2
i−1) = E(Y 2

i−1|Ψi−1
0 )P(Ψi−1

0 ) + E(Y 2
i−1|Ψi−1

0 )P(Ψi−1
0 ).

Due to our previous observations, we know that E(Y 2
i−1|Ψ

i−1
0 ) = E((X ′ + S)2) and

E(Y 2
i−1|Ψ

i−1
0 ) = E(S2). Using these facts, we get

E(Y 2
i−1) = kθ2 + k2θ2 + qk

(
2 + 2kλθ

λ2

)
. (3.34)

Combining (3.33) and (3.34), we finally get

E(Qi) =
kθ(2 + λθ + 3kλθ)

2λ
+ 2qk

(
1− k2λθ

λ2

)
+ qk+1

(
kθ(1 + kλθ + 2k)

λ

)
− 1

λ2
q2k − kθ

λ
q2k+1. (3.35)

Finally, replacing E(Qi) and λe in ∆ = λeE(Qi) by their expressions in (3.35) and
(3.24), we obtain our result.

3.4.3 Average Peak Age

Theorem 3.4. The average peak-age in the LCFS-with-preemption-in-waiting scheme
assuming Erlang E(k, θ) service time is:

∆peak =
1

λ
+ 2kθ − kθ

(1 + λθ)k+1
. (3.36)

Proof. Let q = 1
1+λθ . We know that ∆peak = E(Ti−1) + E(Yi−1). We calculate these

two terms as follows

E(Ti−1) =

k∑
j,l=0

E
(
Ti−1|Ψi−1

j Ψi−2
l

)
P(Ψi−1

j )P(Ψi−2
l )

=
1

λ
+ kθ − qk+1

(
1 + λθ + kλθ

λ

)
, (3.37)

where we used (3.31) for the last equality. For E(Yi−1) we will only condition on
Ψi−1

0 . Thus using (3.32), we get

E(Yi−1) = E(Yi−1|Ψi−1
0 )P(Ψi−1

0 ) + E(Yi−1|Ψi−1
0 )P(Ψi−1

0 )

= kθ +
qk

λ
. (3.38)

Thus, combining the above two results we obtain our result.
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Figure 3.4 – Average age for gamma service time S with E(S) = 1, different k and
LCFS with preemption

3.5 Age of Information for Deterministic Service Time

In order to compute the four ages of interest under a deterministic service time
assumption, we use Lemma 3.2. For this, we fix the mean of the service times Sn to
E(Sn) = 1

µ , for some µ > 0, and let k →∞. It is beyond the scope of this chapter to

show that if Sn
d→ Z, as k →∞, then we also have convergence in the average ages,

i.e, ∆Sn → ∆Z . Here ∆Sn refers to the average age corresponding to service time Sn.
However, we will use this result to derive the different ages.

3.5.1 LCFS with Preemption

Letting k →∞ in (3.21) and (3.22), we get

∆ =
eλ/µ

λ
(3.39)

∆peak =
1

µ
+
eλ/µ

λ
(3.40)

3.5.2 LCFS without Preemption

Letting k →∞ in (3.25) and (3.36), we get

∆ =
2(2 + ρ− ρ2)− 2e−ρ(1 + ρ) + ρeρ(2 + 3ρ)

2λ (1 + ρeρ)
(3.41)

∆peak =
1

λ
+

2− e−ρ

µ
(3.42)

where ρ = λ
µ .

3.6 Numerical Results

In this section, we show that the theoretical results obtained in the previous sections
match the simulations. We also compare the performance of the two transmission
schemes of interest, as well as the effect of the parameter k on each of them. First it
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Figure 3.5 – Average age for gamma service time S with E(S) = 1, different k and
LCFS-with-preemption-in-waiting

is worth specifying that all simulations were done using gamma distributed service
times with all having the same mean kθ = 1, except for the deterministic case where
the service time is fixed to 1. Figure 3.4 presents the average age under LCFS
with preemption scheme and gamma distributed service time. Two observations can
be made based on this plot: (i) the theoretical curves given by (3.21) and (3.39)
coincide with the empirical curves, and (ii) as the value of k increases, the average
age increases for all values of λ. This means that, under LCFS with preemption,
the average age, assuming deterministic service time (k → ∞), is higher than the
average age, assuming a regular gamma-distributed service time. In particular, the
average age when we assume deterministic service time is higher than the average
age assuming memoryless time. This observation can be explained by the fact that

the probability of a packet being preempted is given by 1− p = 1−
(

1
1+λθ

)k
(refer

to Section 3.3), an increasing function of k. Therefore, as k increases, the receiver
will have to wait on average a longer time till a new update is delivered because the
preempting rate becomes higher. This analysis is true for any value of λ, hence the
phenomenon seen in Figure 3.4.

In a parallel setting, Figure 3.5 presents the average age under LCFS-with-preemption-
in-waiting. In this case also, two observations can be made: (i) the theoretical curves
given by (3.25) and (3.41) match the empirical results and (ii) as the value of k
increases, the average age decreases for almost all λ (except for values close to 0 where
all distributions behave similarly). This difference in performance is seen especially at
high λ. We explain the intuition behind this behavior. When λ is high (λ→∞), the
time where the queue is empty goes to 0 and thus the queue is always transmitting.
This also means that on average the waiting time Wi−1 goes to 0. Given these two
observations, we can say that the system time Ti−1 and the interdeparture time
Yi−1 will have almost the same distribution as the service time, while being almost
independent. Thus

E(Qi)
λ→∞−→ E(S)2 +

E(S2)

2
.

As for the effective rate λe, since the queue is almost always busy, the average rate
at which the receiver gets a new update is simply the inverse of the average service
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Figure 3.6 – Average age for gamma service time S with k = 2 and E(S) = 1
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Figure 3.7 – Average age and average peak age for deterministic service time

time, i.e λe
λ→∞−→ 1

E(S) . Therefore,

∆
λ→∞−→ E(S) +

E(S2)

2E(S)
=
θ

2
+

3kθ

2
.

This result — which is also obtained by taking the limit over λ in (3.25) — is
decreasing with k. Hence the behavior seen in Figure 3.5.

Next, we compare the performance of the two transmission schemes in two models:
for gamma distributed and deterministic service time. Figure 3.6 shows the average
age under LCFS with and without preemption when the service time is taken to be
gamma distributed with k = 2. In this case we notice that for small λ the two schemes
perform similarly. However, for λ’s around 1, the LCFS with preemption scheme
performs slightly better before being outperformed by the LCFS without preemption
scheme at high λ’s. In practice, this means that if we use a medium whose service
time is modeled as a gamma random variable, the best strategy (among the ones
considered) is to not preempt and increase the update generation rate as much as
possible. This strategy also applies when the service time is deterministic as seen in
Figure 3.7. In fact, we observe that for deterministic service time and for all values of
λ, the average age and the average peak-age for the LCFS-with-preemption-in-waiting
scheme are smaller than the average age and average peak age for the LCFS with
preemption, respectively.
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3.7 Conclusion

We have considered the gamma distribution as a model for the service time in status
update systems. We have computed and analyzed the average and average peak-age of
information under two schemes: LCFS with preemption and LCFS-with-preemption-
in-waiting. This have enabled us to evaluate these metrics for the deterministic
service time. This suggests that considering gamma distributions for similar problems
is a good idea because the gamma distributions (or at least Erlang distributions) are
relevant, in practice, as they can be used to model the total service time for relay
networks. Moreover, we have shown that, for the LCFS with preemption scheme,
there exists an optimal rate λ that achieves the minimal average age. As for the
LCFS-with-preemption-in-waiting, simulations indicated that the average age is a
decreasing function of λ with an asymptotic value ∆∗ = limλ→∞∆ = θ

2
3kθ
2 .

Another interesting observation is that the average age is highest for the LCFS with
preemption scheme when the service time is deterministic, whereas it is lowest for
the LCFS-with-preemption-in-waiting among different gamma distributions. Finally,
we noticed that depending on the gamma distribution at hand and the value of λ, we
could choose either one of the two updating schemes. Whereas for large λ, we should
always adopt a LCFS-with-preemption-in-waiting scheme, for small update rates the
choice depends on the gamma distribution of the service time.



Status Update in a
Multi-stream M/G/1/1
Preemptive Queue 4
4.1 Introduction

In this chapter1, we assume that an ‘observer’ (we will call sender), which generates
updates according to a Poisson process with rate λ, observes M streams of data.
At each generation instant, the source chooses to ‘observe’ stream i and send its
observation (update) of this stream with probability pi, i = 1, . . . ,M . This probability
distribution is a design parameter that can be controlled. Moreover, we assume that
the system can handle only one update at a time, without any buffer to store incoming
updates. This means that whenever a new update is generated and the system is
busy, the transmitter preempts the packet being served and starts sending the new
update. As we consider a general service-time distribution for the updates, we denote
this transmission scheme by M/G/1/1 preemptive queue. It has been shown that for
a single-stream source and an exponential update service-time, preemption ensures
the lowest average age [5, 35]. However, we have seen in Chapter 3 that under the
assumption of gamma-distributed service time, preemption might not be the best
policy. We generalize the result of Chapter 3 by deriving in this chapter a closed-form
expression for the average age and average peak-age per stream of the multi-stream
M/G/1/1 preemptive queue. To this end, we use the detour flow graph method that
is also used to find an upper bound on the error probability of a Viterbi decoder
(see [56]). As mentioned in Chapter 1, a special case of this problem is studied in [75]
where the service time is assumed to be exponentially distributed. In their paper the
average age of each stream was obtained in closed form by using a stochastic hybrid
system.

Given a fixed total-update rate λ, we also show in this chapter that if we want to
decrease the age of a certain stream i with respect to other streams, we need to
increase its update rate (by increasing its choice probability pi) hence decrease the
update rates of the other streams. Moreover, if we choose the sum of the ages as our

1The material in this chapter is based on [46].
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Figure 4.1 – The multi-stream setup: M processes are observed continuously, and
the sender generates updates according to a Poisson process with rate λ. At each
generation instant, the sender turns on a switch (source) i with probability pi and
sends its observation of the related process through a single server.

performance metric and we seek to minimize it, then we prove that we need to adopt
a fair strategy: all streams should be given the same update rate.

This chapter is structured as follows: In Section 4.2, we begin by defining the model
and the different variables needed in our study. In Section 4.3, we derive the closed-
form expressions of the average age and average peak-age and state the conditions
necessary for minimizing the sum of the ages.

4.2 System Model

In this model, a sender generates updates according to a Poisson process with rate λ
and sends them through the network. However, we assume that the updates belong
to M different streams, each stream i being chosen independently at generation time
with probability pi,

∑M
i=1 pi = 1. This setup is equivalent to having M independent

Poisson sources with rates λi = λpi, i = 1, . . . ,M , and λ = λ1 + · · ·+ λM (see [58]).
We consider an M/G/1/1 queue with preemption. This means that only one update
can be in the system at a time, hence the different streams preempt each other and
even the same stream preempts itself. This setup was analyzed in [75], where the
authors considered an exponential service time. In this chapter, we assume a service
time S with general distribution. Given that the system is symmetric from the point
of view of each stream, we focus, without loss of generality, on Stream 1 as the main
stream. Thus, unless stated otherwise, all random variables correspond to packets
from Stream 1.

In this chapter, we follow the convention where a random variable U with no subscript
corresponds to the steady-state version of Uj , which refers to the random variable
relative to the jth received packet from Stream 1. To differentiate between streams
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Figure 4.2 – Variation of the instantaneous age of Stream 1 for M/G/1/1 queue with
preemption

we use superscripts, thus U (i) corresponds to the steady-state variable U relative to
the ith stream.

In this chapter, we also use the notation introduced in Chapter 2. Thus,

• Yj = t′j+1−t′j is the interdeparture time between the jth and j + 1th successfully
received updates from Source 1,

• X(i) is the interarrival time between two consecutive generated updates from
stream i, i = 1, . . . ,M , (which might or might not be successfully transmitted),
so fX(i)(x) = λie

−λix,

• S is the service time random variable for any update (from any stream) with
distribution FS(t),

• Tj is the system time, or the time spent by the jth successful update of Source
1 in the queue,

• R(τ) = max {n : t′n ≤ τ} is the number of successfully received updates from
Stream 1 in the interval [0, τ ].

In our model, we assume that the service time of the updates from the different streams
are independent of the interarrival time between consecutive packets (belonging to
the same stream or not). These concepts are illustrated in Fig. 4.2, where only
successfully transmitted packets from stream 1 are shown.

4.3 Age of a Multi-stream M/G/1/1 Preemptive Queue

We denote by Pλ, the Laplace transform of the service time distribution evaluated at
λ = λ1 + · · ·+ λM , i.e. Pλ = E

(
e−λS

)
.

Before stating the main result of this section, we need the following lemmas.

Lemma 4.1. Let X, Λ and S be three non-negative independent random variables
with respective distributions: fX(x) = λ1e

−λ1x, fΛ(x) = (λ − λ1)e−(λ−λ1)x and
fS(t), with λ > λ1 > 0. Let A, Z, B, V be random variables such that P (A > t) =
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P (X > t|X < Λ), P (Z > t) = P (Λ > t|X > Λ), P (B > t) = P (X > t|X < min (S,Λ))
and P (V > t) = P (Λ > t|Λ < min (S,X)). Then,

(i) E
(
esA
)

= E
(
esZ
)

= λ
λ−s ,

(ii) E
(
esB
)

= E
(
esV
)

=
λ(1−Pλ−s)

(λ−s)(1−Pλ) ,

with Pλ and Pλ−s being the Laplace transforms of the random variable S evaluated at
λ and λ− s, respectively.

Proof. We will only prove the result for the variable B, since we can apply the same
technique for the others. Denote by F̄S(t) the complementary CDF of S. Then,

P (min(S,Λ) ≥ t) = P (S ≥ t,Λ ≥ t)
= P (S ≥ t)P (Λ ≥ t)
= F̄S(t)e−(λ−λ1)t.

Moreover,

fB(t) = lim
ε→0

P (B ∈ [t, t+ ε])

ε

= lim
ε→0

P (X ∈ [t, t+ ε]|X ≤ min(S,Λ))

ε

= lim
ε→0

P (X ∈ [t, t+ ε])P (X ≤ min(S,Λ)|X ∈ [t, t+ ε])

εP (X ≤ min(S,Λ))

=
λ1e
−λ1tP (min(S,Λ) ≥ t)
P (X ≤ min(S,Λ))

=
λ1e
−λtF̄S(t)

P (X ≤ min(S,Λ))
,

and

P (X ≤ min(S,Λ)) =

∫ ∞
0

P (min(S,Λ) ≥ t|X = t)λ1e
−λ1tdt

=

∫ ∞
0

λ1e
−λtF̄S(t)dt =

λ1

λ
(1− Pλ) ,

where the last equality is obtained using integration by parts. Thus fB(t) = λe−λtF̄S(t)
1−Pλ .

Using again integration by parts, we find that

E
(
esB
)

=

∫ ∞
0

fB(t)estdt =
λ (1− Pλ−s)

(λ− s) (1− Pλ)
.

Lemma 4.2. For the M/G/1/1 queue with preemption described above, the moment
generating function of the system time T (i) corresponding to a stream i is given by

φT (i)(s) =
Pλ−s
Pλ

. (4.1)

Note that the right-hand side of (4.1) does not depend on the chosen stream.
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Proof. Without loss of generality, we will prove Lemma 4.2 for Stream 1. The system
time Tj of the jth successfully received packet corresponds to the service time of
the jth received packet, given that service was completed before any new arrival
(since any new packet from any stream will preempt the current update being served).
So, in steady-state, P (T > t) = P

(
S > t|S < min

(
X(1), . . . , X(M)

))
. Hence, for

L = min
(
X(1), . . . , X(M)

)
,

fT (t) = lim
ε→0

P (T ∈ [t, t+ ε])

ε

= lim
ε→0

P (S ∈ [t, t+ ε]|S < L)

ε

= lim
ε→0

P (S ∈ [t, t+ ε])P (S < L|S ∈ [t, t+ ε])

εP (S < L)

=
fS(t)P (L > t)

P (S < L)
=
fS(t)e−λt

P (S < L)
,

where the last equality is due to the fact that L is exponentially distributed with rate
λ. Thus,

φT (s) = E
(
esT
)

=

∫ ∞
0

fS(t)

P (S < L)
e−(λ−s)tdt =

Pλ−s
P (S < L)

.

Finally,

P (S < L) =

∫ ∞
0

fS(t)P (L > t) dt =

∫ ∞
0

fS(t)e−λtdt

= Pλ. (4.2)

Lemma 4.3. The moment generating function of the interdeparture time of the ith

stream, Y (i), is

φY (i)(s) =
λiPλ−s

λiPλ−s − s
. (4.3)

Proof. Without loss of generality, we will prove Lemma 4.3 for Stream 1. We
define L = min

(
X(1), . . . , X(M)

)
and Λ = min

(
X(2), . . . , X(M)

)
. Since L and Λ

are the minimum of independent exponential random variables, then they are also
exponentially distributed with rates λ = λ1 + · · · + λM and λ − λ1, respectively.
Fig. 4.3 shows the semi-Markov chain relative to the interdeparture time Yj between
the jth and j + 1th received packet of the first stream. When the jth packet leaves
the queue, the system enters the idle state q0 where it waits for a new packet from
any stream to be generated. Hence two clocks start: a clock X(1) and a clock Λ.
Clock X(1) ticks first with probability a = P

(
X(1) < Λ

)
, at which point a new packet

from Stream 1 will be generated first and the system goes to state q1. The value
A of the clock when it ticks has distribution P (A > t) = P

(
X(1) > t|X(1) < Λ

)
.

Clock Λ ticks first with probability z = 1 − a = P
(
Λ < X(1)

)
, at which point a

new packet from one of the other M − 1 streams is generated first and the system
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Figure 4.3 – Semi-Markov chain representing the M/G/1/1 interdeparture time for
stream 1.

goes to state q1′ . The value Z of this second clock when it ticks has distribution
P (Z > t) = P

(
Λ > t|Λ < X(1)

)
.

When the system arrives in state q1, this means a packet from Stream 1 is beginning its
service. Thus, due to the memoryless property of Λ, three clocks start: a service clock
S, clock X(1) and clock Λ. The service clock ticks first with probability u = P (S < L)
and its value U has distribution P (U > t) = P (S > t|S < L). At this point, the
Stream 1 packet currently being served finishes service before any new packet is
generated, then the system goes back to state q0. This ends the interdeparture time
Yj . Whereas, clock X(1) ticks first with probability b = P

(
X(1) < min (S,Λ)

)
and its

value B has distribution P (B > t) = P
(
X(1) > t|X(1) < min (S,Λ)

)
. At this point,

a new stream 1 update is generated before any other update from other streams
and preempts the one currently in service. In this case, the system stays in state q1.
The third clock Λ ticks first with probability v = P

(
Λ < min

(
S,X(1)

))
and its value

V has distribution P (V > t) = P
(
Λ > t|Λ < min

(
S,X(1)

))
. At this point, a new

update, but not from Stream 1, is generated, preempts the one currently in service
and the system switches to state q1′ .

When the system arrives in state q1′ , this means a packet not from Stream 1 is
beginning its service. Thus, due to the memoryless property of X(1), three clocks
start: a service clock S, clock X(1) and clock Λ. As for state q1, the service clock
ticks first with probability u and has value U . At this point, the packet currently
being served finishes service before any new packet is generated and the system goes
to state q0′ . Also like before, clock X(1) ticks first with probability b and has value
B. At this point, a new Stream 1 update is generated before any other update from
other streams and preempts the one currently in service. In this case, the system
switches to state q1. The third clock Λ ticks first with probability v and has value V .
At this point, a new update, but not from Stream 1, is generated, preempts the one
currently in service and the system stays in state q1′ .

Finally, when the system arrives in state q0′ , this means the system is idle but no
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update from Stream 1 has been delivered. Given X(1) and Λ are memoryless, the
system in state q0′ behaves exactly as if it were in state q0.

From the above analysis, we see that the interdeparture time is given by the sum
of the values of the different clocks on the path starting and finishing at q0. For
example, for the path q0q1q1′q0′q1′q1q0 in Fig. 4.3 the interdeparture time

Y = A1 + V1 + U1 + Z1 +B1 + U2,

where all the random variables in the sum are mutually independent. This value
of Y is also valid for the path q0q1′q0′q1q1′q1q0. Hence, Y depends on the variables
Aj , Bj , Uj , Vj , Zj and their number of occurrences and not on the path itself. There-
fore, the probability that exactly (i1, i2, i3, i4, i5) occurrences of (A,B,U, V, Z) occur,
which is equivalent to the probability that

Y =

i1∑
k=1

Ak +

i2∑
k=1

Bk +

i3∑
k=1

Uk +

i4∑
k=1

Vk +

i5∑
k=1

Zk

is given by ai1bi2ui3vi4zi5Q(i1, i2, i3, i4, i5), where Q(i1, i2, i3, i4, i5) is the number of
paths with this combination of occurrences. Taking into account the fact that the
{Ak, Bk, Uk, Vk, Zk} are mutually independent, the moment generating function of Y
is

φY (s) = E
(
E
(
esY | (I1, I2, I3, I4, I5) = (i1, i2, i3, i4, i5)

))
=

∑
i1,i2,i3,i4,i5

[
ai1bi2ui3vi4zi5Q(i1, i2, i3, i4, i5)

E
(
e
s
(∑i1

k=1 Ak+
∑i2
k=1Bk+

∑i3
k=1 Uk+

∑i4
k=1 Vk+

∑i5
k=1 Zk

))]
=

∑
i1,i2,i3,i4,i5

[
ai1bi2ui3vi4zi5Q(i1, i2, i3, i4, i5)

E
(
esA
)i1 E (esB)i2 E (esU)i3 E (esV )i4 E (esZ)i5] , (4.4)

where {I1, I2, I3, I4, I5} are the random variables associated with the number of
occurrences of {A,B,U, V, Z} respectively.

Moreover, given a directed graph G = (V,E) with algebraic label L(e) on its edges,
and a node u ∈ V with no incoming edges, the transfer function H(v) from u to a
node v is the sum over all paths from u to v with each path contributing the product
of its edge labels to the sum (see [56, pp. 213–216]). The complete set of transfer
functions {H(v) : v ∈ V } can be computed easily by solving the linear equations:{

H(u) = 1

H(w) =
∑

w′:(w′,w)∈E H(w′)L((w′, w)), w 6= u.

Observe that the sum in (4.4) is nothing but the transfer function from q0 to q̄0 in
the graph shown in Fig. 4.4 with

(D1, D2, D3, D4, D5)

=
(
E
(
esA
)
,E
(
esB
)
,E
(
esU
)
,E
(
esV
)
,E
(
esZ
))
.



72 Status Update in a Multi-stream M/G/1/1 Preemptive Queue

q0 q1′ q1 q̄0

q0′

aD1

zD5

bD2

uD3

vD4

uD3

vD4

bD2

zD5
aD1

Figure 4.4 – Detour flow graph of the M/G/1/1 interdeparture time for stream 1.

Solving the system of linear equations above yields the transfer function as

H(D1, D2, D3, D4, D5)

=
∑

i1,i2,i3,
i4,i5

[
Q(i1, i2, i3, i4, i5)ai1bi2ui3vi4zi5Di1

1 D
i2
2 D

i3
3 D

i4
4 D

i5
5

]

=
uD3 (bD2zD5 + aD1 − aD1vD4)

(1− bD2) (1− uD3zD5)− vD4 (1 + uD3aD1)
. (4.5)

Thus
φY (s) = H

(
E
(
esA
)
,E
(
esB
)
,E
(
esU
)
,E
(
esV
)
,E
(
esZ
))
.

From Lemma 4.1, we know that

E
(
esB
)

= E
(
esV
)

=
λ (1− Pλ−s)

(λ− s) (1− Pλ)
and E

(
esA
)

= E
(
esZ
)

=
λ

λ− s
.

Moreover, we notice that U has the same distribution as the system time T hence
E
(
esU
)

=
Pλ−s
Pλ

. Simple computations show that a = λ1
λ , b = λ1

λ (1− Pλ), u = Pλ,
v = λ−λ1

λ (1− Pλ), z = λ−λ1
λ . Finally, replacing the above expressions into (4.5), we

get our result.

Theorem 4.1. Given an M/G/1/1 queue with preemption and service time S and a
source generating packets belonging to M streams according to M independent Poisson
processes with rates λi, i = 1, . . . ,M , such that λ = λ1 + · · ·+ λM , then

1. the average age of stream i is given by

∆i =
1

λiPλ
, (4.6)

2. and the average peak-age of stream i is given by

∆peak,i =
1

λiPλ
+

E
(
Se−λS

)
Pλ

. (4.7)
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Proof. Due to the symmetry in the system from a stream point of view, then, without
loss of generality, we will prove 4.1 only for Stream 1. The same proof applies for the
other M − 1 streams.

As in Chapter 3, we use the DTA introduced in Section 2.3 to compute the average
age. We have shown that the average age for Stream 1 of the M/G/1/1 queue can
be also expressed as the sum of the geometric areas Qi under the instantaneous age
curve of Fig. 4.2:

∆1 = lim
τ→∞

R(τ)− 1

τ

1

R(τ)− 1

R(τ)∑
j=2

Qj =
E(Q)

E(Y )
, (4.8)

where Y is the steady-state counterpart of Yj , Q is the steady-state counterpart
of Qj and the second equality is justified by the fact that (Yj , Tj)j≥1 is stationary
jointly second-order-ergodic. Using a similar argument as in the proof of Lemma 3.4
and corollary 3.1, and given that the interarrival time of all streams are memoryless,
the interdeparture times, Yj and Yj+1, between two consecutive received updates are
i.i.d. Hence R(τ) forms a renewal process and by [58], limτ→∞

R(τ)−1
τ = 1

E(Y ) , where

Y is the steady-state interdeparture random variable. By defining Dj =
∫ t′j+1

t′j
∆(t)dt

to be the reward function over the renewal period Yj , we obtain using renewal reward
theory [16,58] that

∆ = lim
τ→∞

1

τ

∫ τ

0
∆(t)dt =

E(Dj)

E(Yj)
=

E(Qj)

E(Yj)
<∞.

This implies that (Tj , Yj)j≥1 is stationary jointly second-moment-ergodic.

Moreover, using Fig. 4.2, we see, that by applying the same argument presented in
the proof of Lemma 3.4, the variables Tj and Yj are independent for any j ≥ 1. Thus,
using (2.20),

E (Q) =
1

2
E
(
Y 2
)

+ E (TY ) =
1

2
E
(
Y 2
)

+ E (T )E (Y ) .

Therefore,

∆1 = E (T ) +
E
(
Y 2
)

2E (Y )
(4.9)

From Fig. 4.2 we see that the peak age at the instant before receiving the jth packet
is given by

Kj = Tj−1 + Yj−1.

Hence, as given by (2.21), at steady state we get

∆peak,1 = E (K) = E (T ) + E (Y ) . (4.10)

Using Lemma 4.2, we obtain that

E (T ) = P−1
λ E

(
Se−λS

)
.
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Using Lemma 4.3, we obtain that

E (Y ) = (λ1Pλ)−1 and E
(
Y 2
)

= 2

(
−
E
(
Se−λS

)
λ1P 2

λ

+
1

λ2
1P

2
λ

)
.

Using these expressions in (4.9) and (4.10) we achieve our result for Stream 1. The
same argument can be applied to any stream i by replacing λ1 by λi. This proves
our theorem.

Note that, for M = 1 and replacing Pλ in (4.6) by the Laplace transform of the
gamma distribution evaluated at λ, we recover (3.21). Moreover, if we replace Pλ by
the Laplace transform of the exponential distribution evaluated at λ, we recover the
expression stated in [75, Theorem 2(a)].

Corollary 4.1. Let a sender generate updates according to a Poisson process with
fixed rate λ. These updates belong to M different streams, each stream i chosen
independently with probability pi at generation time. Then if we use an M/G/1/1 with
preemption transmission scheme, we can decrease the average age (and the average
peak-age) of a high priority stream k with respect to the other streams by increasing
the probability pk with which it is chosen.

Proof. From Theorem 4.1, we know that for any two streams i and k, in order to
have ∆i < ∆k or ∆peak,i < ∆peak,k we must have λi > λk. Given that λi = λpi,
i = 1, . . . ,M , then we must have pi > pk.

Given that the sender generates multiple streams, one interesting performance measure
of the system would be the total average age or total average peak age defined
respectively as

∆tot =
M∑
i=1

∆i, ∆peak,tot =
M∑
i=1

∆peak,i. (4.11)

The next theorem gives the distribution over the pi, i = 1, . . . ,M , that minimizes
the metrics in (4.11), as well as their minimum achievable value.

Theorem 4.2. For the M/G/1/1 multi-stream preemptive system described above
with fixed total generation rate λ, the optimal strategy that achieves the smallest
value for the total average age, ∆tot, and the total average peak-age, ∆peak,tot, is the
fair strategy: all streams should have the same generation rate. This means that
the probability distribution {pi} over the choices of streams should be the uniform
distribution with pi = 1

M , i = 1, . . . ,M . The optimal values of ∆tot and ∆peak,tot are
given by

∆tot =
M2

λPλ
, ∆peak,tot =

M2

λPλ
+
ME

(
Se−λS

)
Pλ

(4.12)



4.4. Conclusion 75

Proof. From (4.6), (4.7) and (4.11), we get that

∆tot =
1

Pλ

M∑
i=1

1

λi
=

1

λPλ

M∑
i=1

1

pi

∆peak,tot =
1

Pλ

M∑
i=1

1

λi
+
ME

(
Se−λS

)
Pλ

=
1

λPλ

M∑
i=1

1

pi
+
ME

(
Se−λS

)
Pλ

(4.13)

Given that λ is fixed, then minimizing ∆tot and ∆peak,tot over (p1, . . . , pM ) is equivalent
to minimizing

∑M
i=1

1
pi
. As this is a symmetric convex function, it is minimized when

p1 = · · · = pM = 1/M with the value M2, which proves our theorem.

From Corollary 4.1 and Theorem 4.2, we see that prioritizing a stream over the
others from an age point of view and minimizing the total age are two contradictory
objectives.

4.4 Conclusion

In this chapter, we have studied the M/G/1/1 preemptive system with a multi-stream
updates sender. The problem solved here is a generalization of the problem solved in
Section 3.3 where we considered multiple sources, instead of one, and a general service
time distribution, instead of the gamma distribution. We have derived closed-form
expressions for the average age and average peak-age using the detour flow graph
method. Using these results we have shown that, for a fixed total generation rate,
we cannot prioritize one of the streams while minimizing the total age. In fact, we
prove that in order to optimize the total age, the source needs to generate all streams
at the same rate. This means that no single stream can be given a higher rate, a
necessary condition to reduce its age with respect to the other streams.





Content Based Status
Updates 5
5.1 Introduction

In the previous chapter, we investigated the case where the sender consists of multiple
sources (or streams) that generate updates and send them through one transmitter
with one server at its disposal. We assumed that from a content point of view, packets
from different streams have the same importance hence no updates belonging to a
certain source i are given precedence over packets belonging to other sources. In this
chapter1, we distinguish between the streams and assume that there are sources that
generate updates whose content is more important than that of the other sources
hence these packets should always be served first.

As in Chapter 3, we assume that updates are generated according to a Poisson process
with rate λ, and that the updates belong to two different streams (or sources) where
each stream i is chosen independently with probability pi, i = 1, 2. Thus we have
two independent Poisson streams with rates λ1 = λp1 and λ2 = λp2. The chapter is
divided into two parts:

• In the first part, unlike in Chapter 3, we assume a different transmission policy
for each stream. To the best of our knowledge, this model has not been studied
before, although it models a natural scenario. In fact, the two independent
streams generated by the source can be used to model different types of content
carried by the packets of each stream. For example, if the source is a sensor,
one stream could carry emergency messages (fire alarm, high pressure, etc.),
hence it needs to be always as fresh as possible, whereas the other stream will
carry regular updates and hence is not age sensitive. Therefore, it is reasonable
to transmit these two streams in a different manner. The regular stream will be
transmitted according to a FCFS policy, whereas the high priority stream will
be sent by preemption; packets of the high priority stream preempt all packets

1The material in this chapter is based on [45,50].
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including packets of their own stream. We further assume that the service time
requirements of the two streams are different; a packet of the regular stream is
served at rate µ1, a packet of the priority scheme at rate µ2.

• In the second part, we assume the same transmission policy for both streams.
We use an M/G/1/1 with preemption scheme. However, we consider that
a packet from the low-priority (or regular) stream is served according to a
service-time distribution similar to that of the random variable S1, whereas
an update from the high-priority stream is served according to a service time
distribution identical to that of the variable S2. We denote by fS1(t) and fS2(t)
the respective probability density functions (p.d.f) of these service times.

In the first part of this chapter, we will answer the following questions: What should
the relation between λ1, µ1, λ2 and µ2 be for the system to be stable? How does each
stream affect the average age of the other one? What are the ages of each stream?
To answer these questions, we give a necessary and sufficient condition for the system
stability and find the steady-state distribution of the underlying state-space. We also
give closed-form expressions for both the average peak-age and a lower bound on
the average age of the regular stream, and compare them to the average age of the
high-priority stream. For the second part, we will use the detour flow graph method,
introduced in Chapter 3, to compute closed-form expressions of the average age and
average peak-age relative to the regular and high-priority streams.

This chapter is structured as follows: In Section 5.2, we start by defining the update
generation mechanism, common to both models and the different variables needed in
our study. In Section 5.3, we study our first model and derive the stability condition
of the system and its stationary distribution. The closed-form expressions of the
average peak-age and the lower bound on the average age of the regular stream are
computed in Section 5.3.2. In Section 5.4, we analyze the second model and compute
the average age and average peak-age relative to both streams.

5.2 System Model

We consider a sender that generates packets (or updates) according to a Poisson
process of rate λ. Each packet, independently of the previous packets, is of type 1
with probability p1 and of type 2 with probability p2 = 1 − p1. We can thus see
our sender as consisting of two sources generating two independent Poisson streams
U1 and U2 with rates λ1 = λp1 and λ2 = λp2 respectively, λ = λ1 + λ2 (see [58]).
As noted in the introduction, the different streams can be used to model packets of
different types of content, for example, emergency messages, alerts, error messages,
warnings, notices, etc.

We also assume that the updates are sent through a single server (or transmitter) to
a monitor. The service times of packets from stream U1 are i.i.d according to fS1(t),
and those for stream U2 are i.i.d according to fS2(t). The difference in service rates
between the two streams accounts for the possible difference in compression, packet
length, etc., between the two streams. In Section 5.3, the service time of each packet
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Source 1

Source 2

Monitor

Figure 5.1 – Diagram representing the model with FCFS for the low priority stream.

is considered to be exponentially distributed, with rate µ1 for stream U1 and rate µ2

for stream U2. However, in Section 5.4 we keep the distributions general.

5.3 FCFS for the Low-Priority Stream

In this model, we constrain the transmitter so that all packets from stream U1 should
be sent. Hence, the server applies a FCFS policy on the packets from stream U1

with a buffer to save waiting updates. Whereas, we assume that the information
carried by stream U2 is more time sensitive (or has higher priority) hence we aim
to minimize its average age. To this end, the transmitter is permitted to perform
packet management: In this case, we assume the server applies a preemption policy
whenever a packet from U2 is generated. This means that if a newly generated packet
from stream U2 finds the system busy (serving a packet from U1 or U2), the server
preempts the update currently in service and starts serving the new packet. On the
one hand, if the preempted packet belongs to U1, this packet is placed back at the
head of the U1-buffer so that it can be served once the system is idle again. On the
other hand, if the preempted packet belongs to U2 then it is discarded. However, if a
newly generated U1-packet finds the system busy serving a U2-packet, it is placed in
the buffer and served when the system becomes idle. This choice of policy for the
age sensitive stream is based on the conclusion reached in [6], that for exponentially
distributed packet transmission times, the M/M/1/1 with preemption policy is the
optimal policy among causal policies. Fig. 5.1 gives a graphical representation of this
model.

These ideas are illustrated in part in Fig. 5.2 which also shows the variation of the
instantaneous age of stream U1. In this plot, ti and Di refer to the generation and
delivery times of the ith packet of stream U1 while t′i and D

′
i are the start and end

times of the ith period during which the system is busy serving packets from stream
U2 only. Notice that for stream U1 all generated packets are successful packets.

5.3.1 System Stability and Stationary Distribution

The fact that we seek to receive all of stream U1 updates and that stream U2 has a
higher priority and preempts stream U1 might lead to an unstable system. In order to
derive the necessary and sufficient condition for the stability of the system, we study
the Markov chain of the number of packets in the system (in service and waiting)
shown in Fig. 5.3. In this chain, q0 is the idle state where the system is completely
empty. States qi, i > 0, in the upper row refer to states where the queue is serving
a packet from stream U1, whereas states q′i, i > 0, in the row below correspond to
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Figure 5.2 – Variation of the instantaneous age of stream U1.

the queue serving a packet from stream U2. In both cases, there are i− 1 stream U1

updates waiting in the buffer.

The system leaves state q0 at rate λ1 to state q1 when a packet from stream U1 is
generated first and it leaves q0 at rate λ2 to state q′1 when a packet from stream U2

is generated first. However, when the system enters state qi, i > 0, three exponential
clocks start: (i) a clock with rate µ1, which corresponds to the service time of the
stream U1 packet being served, (ii) a clock with rate λ1, which corresponds to the
generation time of stream U1 packets and (iii) a clock with rate λ2, which corresponds
to the generation time of stream U2 packets. If the µ1-clock ticks first, the system
goes to state qi−1: This means that the current stream U1 packet was delivered and
the queue begins the service of the next one in the buffer (if there is any). However,
if the λ1-clock ticks first, a new stream U1 update is generated and added to the
buffer, hence the system goes to state qi+1. Whereas, if the λ2-clock ticks first, the
system preempts the packet currently in service and places it back at the head of
the buffer and starts the service of the newly generated stream U2 update. Thus the
system goes to state q′i+1. When the system enters a state q′i, i > 0, two exponential
clocks start: the clock with rate λ1 and a clock with rate µ2, which corresponds to
the service time of a stream U2 packet. If the λ1-clock ticks first, the newly generated
stream U1 packet is placed in the buffer and the stream U2 update is continued to be
served. Hence the system goes to state q′i+1. However, if the µ2-clock ticks first, the
stream U2 packet has finished service and the system starts serving the first stream
U1 packet in the buffer (if there is any). Hence the system goes to state qi−1.

This next theorem gives the necessary and sufficient condition for the above system
to be stable, as well as its stationary distribution.

Theorem 5.1. The system described in Section 5.3 is stable, i.e. the average number



5.3. FCFS for the Low-Priority Stream 81

q0 q1 q2 q3

q′1 q′2 q′3 q′4

λ1

λ2

µ1

λ1

λ2

µ1

λ1

λ2

µ1

λ2

λ1

µ2

λ1

µ2

λ1

µ2 µ2

Figure 5.3 – Markov chain governing the number of packets in the system.

of packets in the queue is finite, if and only if

µ1 > λ1

(
1 +

λ2

µ2

)
. (5.1)

In this case the Markov chain shown in Fig. 5.3 has a stationary distribution Π =
[π0, π1, . . . , πi, . . . , π

′
1, . . . , π

′
i, . . . ], where πi denotes the stationary probability of state

qi, i ≥ 0, and π′i denotes the stationary probability of state q′i, i > 0. This stationary
distribution is described by the following system of equations,

π0 =
µ2

µ2 + λ2
− λ1

µ1
, (5.2)

[
πi
π′i

]
=
[
0 I2

]
Hi


λ
µ1
− µ2λ2

µ1(λ1+µ2)
λ2

λ1+µ2
1
0

π0, i ≥ 1 (5.3)

where λ = λ1 + λ2, H =

[
C D
I2 0

]
,

C =

[
1 + λ

µ1
− µ2λ2

µ1(µ2+λ1) − µ2λ1
µ1(µ2+λ1)

λ2
µ2+λ1

λ1
µ2+λ1

]
,D =

[
−λ1
µ1

0

0 0

]
.

I2 is the 2× 2 identity matrix and 0 is the 2× 2 zero matrix.

Corollary 5.1. If we define N(t) to be the number of stream U1 packets in the system
at time t, then its moment generating function is φN(t)

φN(t)(s) = π0

(
µ1 (λ1 + λ2 + µ2 − λ1e

s)

µ1µ2 + µ1λ1 − es
(
λ2

1 + λ1λ2 + λ1µ1 + λ1µ2

)
+ λ2

1e
2s

)
, (5.4)

where π0 is given by (5.2). Particularly, the expected value of N(t) is

E (N(t)) =
λ1

(
2λ2µ2 + λ2µ1 + λ2

2 + µ2
2

)
(µ2 + λ2) (µ1µ2 − λ1 (µ2 + λ2))

. (5.5)

Proof. The distribution given by (5.2) and (5.3) satisfy the detailed balance equations
of the Markov chain shown in Fig. 5.3. Moreover, (5.1) is the condition needed to
have π0 > 0. As for the expression for φN(t)(s), it is a consequence of (5.2) and
(5.3). The appendix in Section 5.7 presents a full technical version of the proof for
Theorem 5.1 and Corollary 5.1.
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The condition in (5.1) can be interpreted as follows: Define the map f from the state-
space of the chain as f(s) = 0 if s is in {q0, q1, . . .} and f(s) = 1 if s ∈ {q′1, q′2, . . .}.
For each s and s′ for which f(s) = 0 and f(s′) = 1 the transition rate from s to s′

is the same (λ2) and similarly the transition rate is µ2 for s and s′ with f(s) = 1,
f(s′) = 0. Consequently F (t) = f(s(t)), with s(t) being the state at time t, is Markov
(which would not be the case for an arbitrary F ), and it is easily seen that F (t) = 0
a fraction φ0 = µ2/(λ2 + µ2) amount of time, F (t) = 1 a fraction φ1 = λ2/(λ2 + µ2)
amount of time. Thus, while the Markov chain in Fig. 5.3 moves right at rate λ1,
it moves left at a rate µ1φ0. The system is stable only if the rate of moving left is
larger than the rate of moving right; which gives the condition (5.1).

5.3.2 Ages of Streams U1 and U2

Preliminaries

In this section, unless stated otherwise, all random variables correspond to stream
U1. We also follow the convention where a random variable U with no subscript
corresponds to the steady-state version of Uj that refers to the random variable
relative to the jth received packet from stream U1. To differentiate between streams,
we will use superscripts, which means that U (i) corresponds to the steady-state
variable U relative to stream Ui , i = 1, 2.

In addition to this, we adopt part of the notation introduced in Chapter 22, i.e.,

• X(i) is the interarrival time between two consecutive generated updates from
stream Ui, so fX(i)(x) = λie

−λix, i = 1, 2

• S(i) is the service time random variable of stream Ui updates, so fS(i)(t) =
µie
−µit, i = 1, 2,

• Tj is the system time, or the time spent by the jth stream U1 update in the
queue.

In our model, we assume the service time of the updates from the different streams
to be independent of the interarrival time between consecutive packets (belonging to
the same stream or not).

Deviating from the previous two chapters, to compute the average peak age and the
lower bound on the average age relative to stream U1, in this section we use the
interarrival time approach (ATA) presented in Section 2.2. As all generated packets
are received, this means that the effective interarrival time process (X̃k)k≥1 and the
interarrival time process (Xk)k≥1 are actually the same for stream U1. Thus, for this
low-priority stream, all the formulas derived in Section 2.2 apply by just replacing X̃
by X(1).

2In this section, the random variable Yj is not used to refer to the interdeparture time between
the jth and j + 1th received updates. It is used to refer to a special case of service time.



5.3. FCFS for the Low-Priority Stream 83

s0start

s1

s2

1

a

v

b

u

Figure 5.4 – Semi-Markov chain representing the “virtual” service time Yj .

Analysis of the System

Given the aforementioned description of the model, we can define for each U1 packet
j a “virtual” service time Zj that could be different from its “physical” service time
S

(1)
j . We define the “virtual” service time Zj as follows:

Zj = Dj −max(Dj−1, tj), (5.6)

where Dj is the delivery time of the jth packet and tj is its generation time. Fig. 5.2
shows the “virtual” service time for packets 3 and 4.

For stream U1, given that the average age calculations seem to be intractable, we
compute its average peak age and give a lower bound on its average age. To this end,
we first study the steady state “virtual” service time Z.

We define the event

Ψj =
{
packet j finds the system in state q′1

}
and its complement Ψj . Then, we need the following lemmas.

Lemma 5.1. Let Yj be the “virtual” service time of packet j given that this packet
does not find the system in state q′1, i.e. P (Yj > t) = P

(
Zj > t|Ψj

)
. Then, in steady

state,

φY (s) = E
(
esY
)

=
µ1(µ2 − s)

s2 − s(µ2 + µ1 + λ2) + µ1µ2
. (5.7)

Similarly, let Y ′j be the “virtual” service time of packet j given that this packet finds

the system in state q′1, i.e. P
(
Y ′j > t

)
= P (Zj > t|Ψj). Then, in steady state,

φY ′(s) = E
(
esY

′
)

=
µ1µ2

s2 − s(µ2 + µ1 + λ2) + µ1µ2
. (5.8)

Proof. We start by proving (5.7). For this, we use the detour flow graph method.
Fig. 5.4 shows the semi-Markov chain relative to the “virtual” service time Yj of the
jth packet of first stream U1. When the jth packet reaches the head of the buffer, the
system is in the idle state s0. Hence, with probability 1 it goes immediately to state
s1 where it starts serving the jth packet. Due to the memoryless property of the
interarrival time of the second stream X(2), two clocks start: a service clock S(1) and
a clock X(2). The service clock ticks first with probability a = P

(
S(1) < X(2)

)
and

its value A has distribution P (A > t) = P
(
S(1) > t|S(1) < X(2)

)
. At this point, the
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stream U1 packet, currently being served, finishes service before any packet from the
other stream is generated, and the system goes back to state s0. This ends the “virtual”
service time Yj . Clock X(2) ticks first with probability v = 1− a = P

(
X(2) < S(1)

)
and its value V has distribution P (V > t) = P

(
X(2) > t|X(2) < S(1)

)
. At this point,

a new stream U2 update is generated and preempts the stream U1 packet currently
in service. In this case, the system goes to state s2, where the preempted stream U1

update is placed back at the head of the buffer, and the system starts service of the
stream U2 update.

When the system arrives in state s2, this means a new stream U2 packet was just
generated and is starting its service. Thus, two clocks start: a service clock S(2) and
a clock X(2). The service clock ticks first with probability u = P

(
S(2) < X(2)

)
and

its value U has distribution P (U > t) = P
(
S(2) > t|S(2) < X(2)

)
. At this point, the

packet currently being served finishes service before any new stream U2 packet is
generated, and the system goes back to state s1 where the jth packet of stream U1

starts its service again. However, clock X(2) ticks first with probability b = 1−u, and
its value B = has distribution P (B > t) = P

(
X(2) > t|X(2) < S(2)

)
. At this point,

a new stream U2 update is generated and preempts the one currently in service. In
this case, the system stays in state s2.

From the above analysis, we see that the “virtual” service time is given by the
sum of the values of the different clocks on the path starting and finishing at s0.
For example, for the path s0s1s2s1s2s2s1s0 in Fig. 5.4, the “virtual” service time
Y = V1 + U1 + V2 + B1 + U2 + A1, where all the random variables in the sum are
mutually independent. This value of Y is also valid for the path s0s1s2s2s1s2s1s0.
Hence, Y depends on the variables Aj , Bj , Uj , Vj and their number of occurrences and
not on the path itself. Therefore, the probability that exactly (i1, i2, i3, i4) occurrences
of (A,B,U, V ) occur, which is equivalent to the probability that

Y =

i1∑
k=1

Ak +

i2∑
k=1

Bk +

i3∑
k=1

Uk +

i4∑
k=1

Vk

is given by ai1bi2ui3vi4Q(i1, i2, i3, i4), where Q(i1, i2, i3, i4) is the number of paths with
this combination of occurrences. Taking into account the fact that the {Ak, Bk, Uk, Vk}
are mutually independent and denoting by {I1, I2, I3, I4} the random variables as-
sociated with the number of occurrences of {A,B,U, V } respectively, the moment
generating function of Y is,

φY (s) = E
(
E
(
esY | (I1, I2, I3, I4) = (i1, i2, i3, i4)

))
=

∑
i1,i2,i3,i4

[
ai1bi2ui3vi4Q(i1, i2, i3, i4)E

(
e
s
(∑i1

k=1 Ak+
∑i2
k=1Bk+

∑i3
k=1 Uk+

∑i4
k=1 Vk

))]
=

∑
i1,i2,i3,i4

[
ai1bi2ui3vi4Q(i1, i2, i3, i4)E

(
esA
)i1 E (esB)i2 E (esU)i3 E (esV )i4] .

(5.9)

However (5.9) is simply the generating function H1(D1, D2, D3, D4) of the detour
flow graph shown in Fig. 5.5a, where D1, D2, D3, D4 are dummy variables (see [56, pp.
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Figure 5.5 – Detour flow graphs for (a) Y and (b) Y ′.

213–216]). Simple calculations give

H1(D1, D2, D3, D4)

=
∑

i1,i2,i3,i4

[
Q(i1, i2, i3, i4)ai1bi2ui3vi4Di1

1 D
i2
2 D

i3
3 D

i4
4

]
=

aD1(1− bD2)

1− bD2 − uD3vD4
. (5.10)

Thus
φY (s) = H1

(
E
(
esA
)
,E
(
esB
)
,E
(
esU
)
,E
(
esV
))
.

From [75, Appendix A, Lemma 2], we know that A, B, U and V are exponentially
distributed with E

(
esB
)

= E
(
esU
)

= λ2+µ2
λ2+µ2−s and E

(
esA
)

= E
(
esV
)

= λ2+µ1
λ2+µ1−s .

Simple computations show that a = µ1
µ1+λ2

, b = λ2
µ2+λ2

, u = µ2
µ2+λ2

, v = λ2
µ1+λ2

. Finally,
replacing the above expressions into (5.10), we get our result.

To prove (5.8), we use the same method as before. But in this case, we notice that
the jth packet from stream U1 finds the system busy serving a packet from stream U2.
This translates in the detour flow graph shown in Fig. 5.5b. The generating function
of this graph is

H2(D1, D2, D3, D4) =
aD1uD3

1− bD2 − vD4uD3
. (5.11)

For (D1, D2, D3, D4) =
(
E
(
esA
)
,E
(
esB
)
,E
(
esU
)
,E
(
esV
))

and replacing a, b, u and v
by their values in (5.11), we obtain (5.8).

Lemma 5.2. The first and second moments of the “virtual” service time Z are given
by

E (Z) =
λ2

(λ1 + µ2) (µ2 + λ2)
+
λ1 + λ2 + µ2

µ1 (λ1 + µ2)
,

E
(
Z2
)

=
2
(

(λ2 + µ2)
2

(λ2 + µ2 + λ1) + λ2µ1 (2λ2 + µ1 + 2µ2)
)

µ2
1µ2 (λ1 + µ2) (λ2 + µ2)

(5.12)
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Proof. For any packet j of stream U1, conditioning on the event Ψj , we get

E (Zj) = P (Ψj)E (Zj |Ψj) + P
(
Ψj

)
E
(
Zj |Ψj

)
= P (Ψj)E

(
Y ′j
)

+ P
(
Ψj

)
E (Yj) , (5.13)

where Y ′j and Yj are defined as in Lemma 5.1. From Theorem 5.1 we deduce that
P (Ψj) = π′1 = λ2

λ1+µ2
π0. So in steady state, E (Z) = π′1E (Y ′) + (1 − π′1)E (Y ).

Moreover, using (5.7) and (5.8) we get

E (Y ) =
µ2 + λ2

µ1µ2
, E

(
Y ′
)

=
µ1 + µ2 + λ2

µ1µ2
.

Similarly, E
(
Z2
)

= π′1E
(
Y ′2
)

+ (1− π′1)E
(
Y 2
)
. Using (5.7) and (5.8) we get

E
(
Y 2
)

=
2
(
(µ2 + λ2)2 + µ1λ2

)
(µ1µ2)2

and

E
(
Y ′

2
)

=
2
(
(µ1 + µ2 + λ2)2 − µ1µ2

)
(µ1µ2)2

.

Average Peak-Age of Stream U1

It is worth noting that the system under consideration cannot be seen as an M/G/1
queue with service time distributed as Z, because the “virtual” service times of
different packets are correlated. Indeed, if we know that the “virtual” service time
of packet j, Zj , is big, then with very high probability the (j + 1)th packet will be
generated during the service of the jth packet. Hence, with high probability, Zj+1 will
be distributed as Y . Whereas, if Zj is small, then there is a non-negligible probability
with which the (j + 1)th packet will find the system serving stream U2. Hence, Zj+1

will be distributed as Y ′.

Theorem 5.2. The average peak age of stream U1 is given by

∆peak,1 =
1

λ1
+

2λ2µ2 + λ2µ1 + λ2
2 + µ2

2

(µ2 + λ2) (µ1µ2 − λ1 (µ2 + λ2))
. (5.14)

Proof. As we can deduce from Fig. 5.2 and (2.18), the jth peak Kj = X
(1)
j +Tj where

X
(1)
j is the jth interarrival time for stream U1 and Tj is the system time of the jth

stream U1 update. At steady state, we get ∆peak,1 = E (K) = E
(
X(1)

)
+E (T ). From

Little’s law we know that E (T ) = E (N(t))E
(
X(1)

)
, with the expected number of

stream U1 packets E (N(t)) given by (5.5) and E
(
X(1)

)
= 1/λ1.
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Lower Bound on the Average Age of Stream U1

We now compute a lower bound of the average age.

Consider a fictitious system where if a stream U1 arrival finds the system in state
q′1, then the stream U2 packet that is being served is discarded (and the stream U1

packet enters service immediately). The instantaneous age process of this fictitious
system is pointwise less than the instantaneous age of the true system, consequently
its average age lower bounds the true average age. Note that the fictitious system
from the point of view of the stream U1 is M/G/1, with service time distributed like
Y in (5.7).

Lemma 5.3. Assume an M/G/1 queue with interarrival time X(1) exponentially
distributed with rate λ1 and service time Y whose moment generating function is given
by (5.7). The service time and the interarrival time are assumed to be independent.
Then the distribution of the system time T is

fT (t) = C1e
−α1t(µ2 − α1)− C1e

−α2t(µ2 − α2), t ≥ 0, (5.15)

where α1, α2 > 0 are the roots of the quadratic expression

s2 − s(µ1 + µ2 + λ2 − λ1) + µ1µ2 − λ1µ2 − λ1λ2,

C1 =
(1− ρ)µ1

α2 − α1
,

and ρ = λ1E (Y ) = λ1(µ2+λ2)
µ1µ2

.

Proof. From [13, p. 166], we know that the Laplace transform of the system time T
is

E
(
e−sT

)
=

(1− ρ)sφY (−s)
s− λ1(1− φY (−s))

.

Replacing φY (−s) by its expression in (5.7) we get

E
(
e−sT

)
=

(1− ρ)µ1(µ2 + s)

s2 + s(µ1 + µ2 + λ2 − λ1) + µ1µ2 − λ1µ2 − λ1λ2

=
(1− ρ)µ1(µ2 + s)

(s− s1)(s− s2)

= s
(1− ρ)µ1

(s− s1)(s− s2)
+

(1− ρ)µ1µ2

(s− s1)(s− s2)
, (5.16)

where s1 and s2 are two real roots of the quadratic equation

s2 + s(µ1 + µ2 + λ2 − λ1) + µ1µ2 − λ1µ2 − λ1λ2.

Moreover, due to condition (5.1),

s1 + s2 = −µ1 − µ2 − λ2 + λ1 < 0

and
s1s2 = µ1µ2 − λ1µ2 − λ1λ2 > 0.
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This proves that both roots s1 and s2 are negative. Let

G(s) =
(1− ρ)µ1

(s− s1)(s− s2)
,

and g(t) its inverse Laplace transform. Using the initial value theorem:

g(0+) = lim
s→∞

sG(s) = 0. (5.17)

Using (5.17) and the expression of G(s), (5.16) can be written as

E
(
e−sT

)
= sG(s)− g(0+) + µ2G(s). (5.18)

Therefore, the probability density function of the system time fT (t) (which is the
inverse Laplace transform of E

(
e−sT

)
) is

fT (t) = g′(t) + µ2g(t). (5.19)

By partial fraction expansion,

G(s) =
C1

s− s1
− C1

s− s2
,

where C1 = (1−ρ)µ1
s1−s2 . Denoting α1 = −s1 > 0 and α2 = −s2 > 0, we get

G(s) =
C1

s+ α1
− C1

s+ α2
, and C1 =

(1− ρ)µ1

α2 − α1
.

Thus,
g(t) = C1e

−α1t − C1e
−α2t,

and
fT (t) = C1e

−α1t(µ2 − α1)− C1e
−α2t(µ2 − α2).

From [34] and (2.16), we know that the average age of the M/G/1 queue with
interarrival time X(1) and service time Y is

∆LB = λ1

(
1

2
E
(
X

(1)
j

2
)

+ E
(
TjX

(1)
j

))
, (5.20)

where for the jth packet we have Tj = (Tj−1 −X(1)
j )+ + Yj , f(x) = (x)+ = x1{x≥0}

and 1{.} is the indicator function. So E
(
TjX

(1)
j

)
becomes

E
(
TjX

(1)
j

)
= E

(
X

(1)
j (Tj−1 −X(1)

j )+
)

+ E (Yj)E
(
X

(1)
j

)
, (5.21)

where the second term is due to the independence between Yj and X
(1)
j .
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Proposition 5.1.

E
(
X

(1)
j (Tj−1 −X(1)

j )+
)

=
λ1µ2 + 2λ1λ2

µ2
1(µ1µ2 − λ1(µ2 + λ2))

+
λ2λ1

µ2

(
(µ2 + µ1 + λ2)2 − 2µ1µ2

µ2
1(µ2 + λ1)(µ1µ2 − λ1(µ2 + λ2))

)
+
λ2λ1

µ2

(
2µ2λ1(µ1 + λ2) + λ2(λ2

1 + µ2)

µ2
1(µ2 + λ1)2(µ1µ2 − λ1(µ2 + λ2))

)
. (5.22)

Proof. Given that Tj−1 and X(1)
j are independent then

E
(
X

(1)
j (Tj−1 −X(1)

j )+
)

=

∫ ∞
0

∫ ∞
x

x(t− x)fT (t)λ1e
−λ1xdtdx

Replacing fT (t) by its value in (5.15) and using the fact that

α1 + α2 = µ1 + µ2 + λ2 − λ1,

α1α2 = µ1µ2 − λ1µ2 − λ1λ2,

we get (5.22) after some computations.

Theorem 5.3.

∆LB =
1

λ1
+
µ2 + λ2

µ1µ2
+

λ2
1µ2 + 2λ2

1λ2

µ2
1(µ1µ2 − λ1(µ2 + λ2))

+
λ2λ

2
1

µ2

(
(µ2 + µ1 + λ2)2 − 2µ1µ2

µ2
1(µ2 + λ1)(µ1µ2 − λ1(µ2 + λ2))

)
+
λ2λ

2
1

µ2

(
2µ2λ1(µ1 + λ2) + λ2(λ2

1 + µ2)

µ2
1(µ2 + λ1)2(µ1µ2 − λ1(µ2 + λ2))

)
. (5.23)

This is also a lower bound on the true average age of stream U1 packets.

Proof. Using (5.22),

E (Yj) = E (Y ) =
µ2 + λ2

µ1µ2
and E

(
X

(1)
j

)
= E

(
X(1)

)
=

1

λ1
,

we can find a closed-form expression for E
(
TjX

(1)
j

)
. Replacing this expression in

(5.20) and using the fact that E
(
X

(1)
j

2
)

= 2
λ21
, we obtain a closed-form expression

of the average age ∆LB of an M/G/1 queue with interarrival time X(1) and service
time Y .

Average Age of Stream U2

By design, stream U2 is not interfered at all by stream U1 hence behaves like a
traditional M/M/1/1 with preemption queue with generation rate λ2 and service rate
µ2. The average age of this stream was computed in [35] to be

∆U2 =
1

µ2
+

1

λ2
. (5.24)
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(b) µ1 = 6, µ2 = 18, λ1 = 4 and λ2 < 9.

Figure 5.6 – Plot of the average age for stream U2 and average peak age and lower
bound on the average age for stream U1.

5.3.3 Numerical Results

Fig. 5.6a shows the simulated average age, the average peak-age (∆peak,1) and the
lower bound on the average age (∆LB), as computed in the previous section for
stream U1, and the average age (∆U2) of stream U2. In this plot, we fix µ1 = 10,
µ2 = 5, λ1 = 2 and vary λ2. As we can see, for stream U1 the average age, the
lower bound, and the average peak-age grow without bounds when λ2 gets close to
µ1µ2
λ1
−µ2. This observation is in line with our result in Theorem 5.1 and the stability

condition (5.1). In this simulation, we also notice that the average peak age and the
lower bound appear to be good bounds on the average age, especially for small λ2

and for values of λ2 ∼ 0 close to the limit µ1µ2
λ1
− µ2.

It is easy to see via a coupling argument that if we increase λ2, the age process ∆U1(t)
of the U1 stream will stochastically increase. We see from the plots that the lower
bound on ∆U1 and that its average peak-age exhibit the same behavior. However, the
average age of stream U2 is decreasing in λ2 (from (5.24)). Consequently, minimizing
∆U2 and minimizing ∆U1 are conflicting goals.

We have seen that the average age of stream U2 is not affected by the presence of
the other stream. However, Fig. 5.6a shows the effect of stream U2 on the average
age of stream U1 (∆1). For this, we plot the average age (∆ref ) of an M/M/1 queue
with generation rate λ1 = 2 and service rate µ1 = 10 (given in [34]). We observe
an expected behavior: for very low values of λ2, the two average ages and the lower
bound ∆LB are close (they are all equal at λ2 = 0). However, as λ2 increases the
presence of stream U2 quickly leads to an increase in ∆1. In fact, for λ2 = 5, ∆1 is
already 50% higher than ∆ref . This shows that the presence of the priority stream
U2 takes a heavy toll on the stream U1 age. Another observation is that the average
age curve of stream U2 crosses the average age of stream U1 at a value of λ2, denoted
λ∗2 = 1.9. This means that for λ2 ≤ λ∗2, stream U2 has an average age higher than
stream U1. These observations show that not all values of λ2 are suitable for our
system. A small λ2 will not ensure for stream U2 the priority it needs, whereas a
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Source 1

Source 2

Server Monitor

Figure 5.7 – Diagram representing the model with preemption for the low priority
stream.

large λ2 will make the average age of stream U1 large and the system unstable.

Fig. 5.6b plots the same quantities as Fig. 5.6a but under different settings: in this
case, µ1 = 6, µ2 = 18, λ1 = 4 and λ2 < 9. In this particular scenario, we notice that
the lower bound is a tight bound on the simulated average age for all values of λ2,
and it is tighter than the average peak age.

5.4 M/G/1/1 with Preemption for the Low-Priority
Stream

Fig. 5.7 presents an illustration of the model. In this model, we assume we have no
memory, hence packets from stream U1 preempt each other. However, if an arriving
U1 packet finds the system busy serving a U2 packet, the server discards the stream U1

packet because stream U2 packets are given higher priority. Furthermore, the server
applies a preemption policy whenever a packet from U2 is generated. This means
that if a newly generated packet from stream U2 finds the system busy (serving a
packet from U1 or U2), the server preempts the update currently in service and starts
serving the new packet. Moreover, if the preempted packet belongs to U1 or U2, this
packet is discarded.

These ideas are illustrated in part in Fig. 5.8, which also shows the variation of the
instantaneous age of stream U1. In this plot, tj refers to the generation time of the
jth packet, and Di corresponds to the delivery time of the ith successfully received
packet of stream U1. As in this case not all the packets generated by source U1 are
received, we distinguish between generated packets and successful packets. Moreover,
t′i and D

′
i are the start and end times of the ith period during which the system is

busy serving packets only from stream U2.

5.4.1 Ages of Streams U1 and U2

Preliminaries

In this section also, unless stated otherwise, all random variables correspond to stream
U1. We also follow the convention where a random variable U with no subscript
corresponds to the steady-state version of Uj that refers to the random variable
relative to the jth received packet from stream U1. To differentiate between streams,
we use superscripts, so that U (i) corresponds to the steady-state variable U relative
to stream Ui , i = 1, 2.
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Figure 5.8 – Variation of the instantaneous age of stream U1.

In contrast to Section 5.3, here we follow exactly the notation introduced in Chapter 2,
meaning

• X(i) is the interarrival time between two consecutive generated updates from
stream Ui, so fX(i)(x) = λie

−λix, i = 1, 2,

• S(i) is the service time random variable of stream Ui updates with p.d.f. fS(i)(t),
i = 1, 2,

• Tj is the system time, or the time spent by the jth successfully received stream
U1 update in the queue,

• Yj is the interdeparture time between the jth and j + 1th successfully received
stream U1 updates.

• R(τ) = max {n : Dn ≤ τ} is the number of successfully received updates from
stream 1 in the interval [0, τ ].

The reuse of the symbol Yj , as it is defined in Chapter 2, is due to the fact that we
use the interdeparture time approach (DTA) to compute the average age and average
peak-age relative to source U1. Moreover, given that in this model there is no waiting
in the queue, the system time of a received packet is equal to its service time. In our
model, we assume the service time of the updates from the different streams to be
independent of the interarrival time between consecutive packets (regardless if they
belong to the same stream).

Finally, two important quantities that we will use extensively are

• Pλ = E
(
e−λS

(1)
)

=
∫
fS(1)(t)e−λtdt,

• Lλ2 = E
(
e−λ2S

(2)
)

=
∫
fS(2)(t)e−λ2tdt.
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These are the Laplace transform of fS(1)(t) and fS(2)(t) evaluated at λ = λ1 + λ2 and
λ2, respectively.

Average Age and Average Peak age of Stream U1

Lemma 5.4. For the priority preemption system described above, the moment gener-
ating function of the system time T corresponding to stream U1 is given by

φT (s) =
Pλ−s
Pλ

. (5.25)

Note that the right-hand side of (5.25) does not depend on the chosen stream.

Proof. We use the same proof as in Lemma 4.2 with the number of streams M = 2.
All variables in this proof corresponds to stream U1. The system time Tj of the jth

successfully received packet corresponds to the service time of the jth received packet
given that service was completed before any new arrival (because any new packet from
any stream will preempt the current update being served). Therefore, in steady state,
P (T > t) = P

(
S(1) > t|S(1) < min

(
X(1), X(2)

))
. Hence, for L = min

(
X(1), X(2)

)
,

fT (t) = lim
ε→0

P (T ∈ [t, t+ ε])

ε

= lim
ε→0

P
(
S(1) ∈ [t, t+ ε]|S(1) < L

)
ε

= lim
ε→0

P
(
S(1) ∈ [t, t+ ε]

)
P
(
S(1) < L|S(1) ∈ [t, t+ ε]

)
εP
(
S(1) < L

)
=
fS(1)(t)P (L > t)

P
(
S(1) < L

) =
fS(1)(t)e−λt

P
(
S(1) < L

) ,
where the last equality is due to the fact that L is exponentially distributed with rate
λ = λ1 + λ2. Thus,

φT (s) = E
(
esT
)

=

∫ ∞
0

fS(1)(t)

P
(
S(1) < L

)e−(λ−s)tdt =
Pλ−s

P
(
S(1) < L

) .
Finally,

P
(
S(1) < L

)
=

∫ ∞
0

fS(1)(t)P (L > t) dt =

∫ ∞
0

fS(1)(t)e−λtdt = Pλ.

Lemma 5.5. The moment generating function of the interdeparture time of stream
U1, Y , is

φY (s) =
λ1Pλ−s (λ2Lλ2−s − s)

λ1Pλ−s (λ2Lλ2−s − s)− s(λ2 − s)
. (5.26)

Proof. We use the detour flow graph method, introduced in Chapter 4. We define
Λ = min

(
X(1), X(2)

)
. As Λ is the minimum of independent exponential random

variables, then they are also exponentially distributed with rates λ = λ1 +λ2. Fig. 5.9
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Figure 5.9 – Semi-Markov chain representing the M/G/1/1 interdeparture time for
stream U1.

shows the semi-Markov chain relative to the interdeparture time Yj between the jth

and j+1th successfully received packet of stream U1. When the jth packet is delivered
to the monitor, the system is in the idle state q0. Due to the memoryless property of
the interarrival times of both streams, two clocks start: a clock X(1) and a clock X(2).
Clock X(1) ticks first with probability a = P

(
X(1) < X(2)

)
, at which point a new

packet from stream U1 will be generated first and the system goes to state q1. The value
A of the clock when it ticks has distribution P (A > t) = P

(
X(1) > t|X(1) < X(2)

)
.

Clock X(2) ticks first with probability z = 1 − a = P
(
X(2) < X(1)

)
, at which

point a new packet from stream U2 is generated first and the system goes to state
q1′ . The value Z of this second clock when it ticks has distribution P (Z > t) =
P
(
X(2) > t|X(2) < X(1)

)
.

When the system arrives in state q1, this means a packet from stream U1 is starting
its service. Thus, due to the memoryless property of X(2), three clocks start: a service
clock S(1), clock X(1) and clock X(2). The service clock ticks first with probability u =
P
(
S(1) < Λ

)
and its value U has distribution P (U > t) = P

(
S(1) > t|S(1) < Λ

)
. At

this point, the stream U1 packet currently being served finishes service before any new
packet is generated and the system goes back to state q0. This ends the interdeparture
time Yj . Clock X(1) ticks first with probability b = P

(
X(1) < min

(
S(1), X(2)

))
and

its value B has distribution P (B > t) = P
(
X(1) > t|X(1) < min

(
S(1), X(2)

))
. At this

point, a new stream U1 update is generated before any other update from other streams
and preempts the one currently in service. In this case the system stays in state
q1. The third clock X(2) ticks first with probability d = P

(
X(2) < min

(
S(1), X(1)

))
and its value D has distribution P (D > t) = P

(
X(2) > t|X(2) < min

(
S(1), X(1)

))
.

At this point, a new update from stream U2 is generated, preempts the one currently
in service and the system switches to state q1′ .

When the system arrives in state q1′ , this means a packet from stream U2 is starting
its service. Thus, due to the memoryless property of X(1), two clocks are of interest:
a service clock S(2) and clock X(2). What happens to stream U1 is irrelevant, as it
has lower priority and any generated packet will be discarded. The service clock ticks
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first with probability f = P
(
S(2) < X(2)

)
and its value F is distributed according to

P (F > t) = P
(
S(2) > t|S(2) < X(2)

)
. At this point, the stream U2 packet currently

being served finishes service before any new packet is generated and the system goes to
state q0′ . Otherwise, clockX(2) ticks first with probability v = 1−f = P

(
X(2) < S(2)

)
and has value V distributed as P (V > t) = P

(
X(2) > t|X(2) > S(2)

)
. At this point,

a new update from stream U2 is generated, preempts the one currently in service and
the system stays in state q1′ .

Finally, when the system arrives in state q0′ , this means the system is idle but no
update from stream U1 has been delivered. Given that X(1) and X(2) are memoryless,
the system in state q0′ behaves exactly as if it were in state q0.

From the above analysis, we see that the interdeparture time is given by the sum
of the values of the different clocks on the path starting and finishing at q0. For
example, for the path q0q1q1′q0′q1′q0′q1q0 in Fig. 5.9, the interdeparture time Y =
A1 +D1 + F1 + Z1 + F2 +A2 + U1, where all the random variables in the sum are
mutually independent. This value of Y is also valid for the path q0q1′q0′q1q1′q0′q1q0.
Hence Y depends on the variables Aj , Bj , Dj , Fj , Uj , Vj , Zj and their number of
occurrences and not on the path itself. Therefore, the probability that exactly
(i1, i2, i3, i4, i5, i6, i7) occurrences of (A,B,D, F, U, V, Z) happen, which is equivalent
to the probability that

Y =

i1∑
k=1

Ak +

i2∑
k=1

Bk +

i3∑
k=1

Dk +

i4∑
k=1

Fk +

i5∑
k=1

Uk +

i6∑
k=1

Vk +

i7∑
k=1

Zk,

is given by
ai1bi2di3f i4ui5vi6zi7Q(i1, i2, i3, i4, i5, i6, i7),

where Q(i1, i2, i3, i4, i5, i6, i7) is the number of paths with this combination of oc-
currences. Taking into account the fact that the {Ak, Bk, Dk, Fk, Uk, Vk, Zk} are
mutually independent, the moment generating function of Y is

φY (s) = E
(
E
(
esY | (I1, I2, I3, I4, I5, I6, I7) = (i1, i2, i3, i4, i5, i6, i7)

))
=

∑
i1,i2,i3,
i4,i5,i6,i7

[
ai1bi2di3f i4ui5vi6zi7Q(i1, i2, i3, i4, i5, i6, i7)

E
(
e
s
(∑i1

k=1 Ak+
∑i2
k=1Bk+

∑i3
k=1Dk+

∑i4
k=1 Fk+

∑i5
k=1 Uk+

∑i6
k=1 Vk+

∑i7
k=1 Zk

))]
=

∑
i1,i2,i3,
i4,i5,i6,i7

[
ai1bi2di3f i4ui5vi6zi7Q(i1, i2, i3, i4, i5, i6, i7)

E
(
esA
)i1 E (esB)i2 E (esD)i3 E (esF )i4 E (esU)i5 E (esV )i6 E (esZ)i7] , (5.27)

where {I1, I2, I3, I4, I5, I6, I7} are the random variables associated with the number
of occurrences of {A,B,D, F, U, V, Z}, respectively.

However (5.27) is simply the generating function H(W1,W2,W3,W4,W5,W6,W7) of
the detour flow graph shown in Fig. 5.10, where W1,W2,W3,W4,W5,W6,W7 are
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Figure 5.10 – Detour flow graph of the M/G/1/1 interdeparture time for stream U1.

dummy variables (see [56, pp. 213–216]). Observe that the sum in (5.27) is the
transfer function from q0 to q̄0 in the graph shown in Fig. 5.10 with

(W1,W2,W3,W4,W5,W6,W7)

=
(
E
(
esA
)
,E
(
esB
)
,E
(
esD
)
,E
(
esF
)
,E
(
esU
)
,E
(
esV
)
,E
(
esZ
))
.

Solving the system of linear equations above yields the transfer function as

H(W1,W2,W3,W4,W5,W6,W7)

=
∑

i1,i2,i3,
i4,i5,i6,i7

[
Q(i1, i2, i3, i4, i5, i6, i7)ai1bi2di3f i4ui5vi6zi7

W i1
1 W

i2
2 W

i3
3 W

i4
4 W

i5
5 W

i6
6 W

i7
7

]
=

uW5aW1(1− vW6)

(1− zW7fW4 − vW6) (1− bW2)− dW3aW1fW4
. (5.28)

Thus

φY (s) = H
(
E
(
esA
)
,E
(
esB
)
,E
(
esD
)
,E
(
esF
)
,E
(
esU
)
,E
(
esV
)
,E
(
esZ
))
.

Using Lemma 4.1 and Lemma 5.4, we know that

E
(
esB
)

= E
(
esD
)

=
λ (1− Pλ−s)

(λ− s) (1− Pλ)
, E

(
esA
)

= E
(
esZ
)

=
λ

λ− s
,

E
(
esF
)

=
Lλ2−s
Lλ2

and E
(
esV
)

=
λ2(1− Lλ2−s)

(λ2 − s)(1− Lλ2)
.

Moreover, we can notice that U has the same distribution as the system time T so
E
(
esU
)

=
Pλ−s
Pλ

. Simple computations show that

a =
λ1

λ
, b =

λ1

λ
(1− Pλ) , d =

λ2

λ
(1− Pλ) , f = Lλ2 ,

u = Pλ, v = 1− Lλ2 , z =
λ− λ1

λ
.

Finally, replacing the above expressions into (5.28), we get our result.
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Theorem 5.4. Assume an M/G/1/1 queue with preemption and a sender consisting
of two sources generating packets according to two independent Poisson processes with
rates λi, i = 1, 2, such that λ = λ1 + λ2. Moreover, packets belonging to stream i are
served according to S(i). If stream U2 is given higher priority over stream U1, then

1. the average age of stream U1 is given by

∆1 =
1

λ1PλLλ2
+

1− Lλ2 − λ2E
(
S(2)e−λ2S

(2)
)

λ2Lλ2
(5.29)

2. and the average peak age of stream U1 is given by

∆peak,1 =
1

λ1PλLλ2
+

E
(
S(1)e−λS

(1)
)

Pλ
. (5.30)

Proof. As in Chapters 3 and 4, to compute the average age, we use the DTA
introduced in Section 2.3. We have shown that the average age for Stream 1 of the
M/G/1/1 queue can be also expressed as the sum of the geometric areas Qi under
the instantaneous age curve of Fig. 5.8:

∆ = lim
τ→∞

1

τ

∫ τ

0
∆(t)dt =

E(Q)

E(Y )
, (5.31)

where Y is the steady-state counterpart of Yj , Q is the steady-state counterpart
of Qj and the second equality is justified by the fact that (Yj , Tj)j≥1 is stationary
jointly second-order-ergodic. Using a similar argument as in the proof of Lemma 3.4
and corollary 3.1 and given that the interarrival time of all streams are memoryless,
then the interdeparture times, Yj and Yj+1, between two consecutive received updates
are i.i.d. Hence, R(τ) forms a renewal process and by [58],

lim
τ→∞

R(τ)− 1

τ
=

1

E(Y )
,

where Y is the steady-state interdeparture random variable. Introducing the quantity

Cj =

∫ Dj+1

Dj

∆(t)dt

to be the reward function over the renewal period Yj , we obtain using renewal reward
theory [16,58] that

∆ = lim
τ→∞

1

τ

∫ τ

0
∆(t)dt =

E(Cj)

E(Yj)
=

E(Qj)

E(Yj)
<∞.

This implies that (Tj , Yj)j≥1 is stationary jointly second-moment-ergodic.

Moreover, using Fig. 5.8, we see that, by applying the same argument presented in
the proof of Lemma 3.4, the variables Tj and Yj are independent for any j ≥ 1. Thus,
using (2.20),

E (Q) =
1

2
E
(
Y 2
)

+ E (TY ) =
1

2
E
(
Y 2
)

+ E (T )E (Y ) .
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Therefore,

∆1 = E (T ) +
E
(
Y 2
)

2E (Y )
(5.32)

Moreover, from Fig. 5.8 we see that the peak age at the instant before receiving the
jth packet is given by

Kj = Tj−1 + Yj−1.

Hence, as given by (2.21), at steady state we get

∆peak,1 = E (K) = E (T ) + E (Y ) . (5.33)

Using Lemma 5.4, we obtain E (T ) = P−1
λ E

(
S(1)e−λS

(1)
)
. Using Lemma 5.5, we get

that E (Y ) = (λ1PλLλ2)−1 and

E
(
Y 2
)

2E (Y )
= − 1

λ2
−

E
(
S(1)e−λS

(1)
)

Pλ
−

E
(
S(2)e−λ2S

(2)
)

Lλ2

+
1

λ1PλLλ2
+

1

λ2Lλ2
.

Using these expressions in (5.32) and (5.33), we achieve our result for stream U1.

Average Age of Stream U2

By design, stream U2 is not at all interfered by stream U1 hence behaves like a
traditional M/M/1/1 with preemption queue with generation rate λ2 and service
time S(2). The average age of this stream was computed in Chapter 4 to be

∆2 =
1

λ2Lλ2
. (5.34)

5.5 Discussion

A close observation of Equations (5.29) and (5.30) leads to the following remarks:

• If the service time for stream U2 is 0, ∆1 = 1
λ1Pλ

≥ 1
λ1Pλ1

, where ∆ = 1
λ1Pλ1

is
the value of the average of stream U1 if stream U2 is not present. This result is
due to the fact that whenever a stream U2 packet is generated, it immediately
preempts the stream U1 packet being served hence increases the instantaneous
age of the latter stream.

• By using L’Hopital’s rule, we can show that

lim
λ2→0

∆1 = ∆ =
1

λ1Pλ1

as it is expected. The average peak-age also converges to its value when no
stream U2 exists.
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• Special case: assume S(1) ∼ Exp(µ1) and S(2) ∼ Exp(µ2). Then

∆1 =
(µ1 + λ1)

λ1µ1

(
µ2 + λ2

µ2

)
+
λ2

µ2

(
µ2 + λ2

λ1µ1
+

1

µ2 + λ2

)
(5.35)

and
∆peak,1 =

1

µ1 + λ1 + λ2
+

(µ1 + λ1 + λ2)(µ2 + λ2)

λ1µ1µ2
. (5.36)

Denoting ∆Norm = µ1+λ1
µ1λ1

to be the average age of stream U1 when stream U2

does not exist, we can compute the additional age the presence of stream U2

costs to stream U1:

∆diff = ∆1 −∆Norm

=
λ2

λ1µ1
+

λ2

λ1µ2
+

λ2

µ1µ2
+

λ2
2

λ1µ1µ2
+

λ2

µ2(µ2 + λ2)
.

By letting µ2 → ∞ we obtain ∆diff → λ2
λ1µ1

> 0, and by taking λ2 = 0 we
obtain ∆diff = 0 as predicted by the previous two remarks.

• Using (5.14), (5.35) and (5.36), we compare the performance of the preemption
policy on stream U1 with that of the FCFS scheme from an age point of view
when the service times corresponding to both sources are exponential. Fig. 5.11
plots the average ages and average peak-ages relative to stream U1 for the
preemption, as well as for the FCFS schemes. In both cases, we assume stream
U1 packets are generated according to a Poisson process of rate λ1 = 2 and
served according to an exponential service time with rate µ1 = 10. As for
stream U2 updates, they are generated according to a Poisson process with rate
λ2 and served according to an exponential service time with rate µ2 = 5. We
observe from Fig. 5.11 that the preemption scheme performs worse than the
FCFS except when λ2 is close to the FCFS stability condition. This observation
comes as a surprise because we would think that the constraint of delivering all
generated packets imposed by a FCFS system would pull the age up, compared
to the more flexible preemptive scheme. However, we can explain this result
in the following way: When using the preemptive scheme and not storing any
updates, the system incurs a substantial idle time (from the source U1 point
of view) during which it waits for a new stream U1 update to be generated.
In fact, this is a direct consequence of the first remark. Interestingly, Bedewy
et al. in [6] show that for a single source and exponential service time, the
optimal policy to adopt is the preemptive scheme. Fig. 5.11 proves that the
introduction of an another source with higher priority has a significant impact
on the performances of the different transmission schemes. For instance, the
preemption scheme is not optimal anymore even for exponential service times.

5.6 Conclusion

In this chapter, we have studied the effect of implementing content-dependent policies
on the average age of the packets. We have considered a sender that generates two
independent Poisson streams with one stream having higher priority than the other
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Figure 5.11 – Comparison between the average peak ages of the low priority source
U1 when using the FCFS and the preemption schemes and exponential service times.
We fix λ1 = 2, µ1 = 10, µ2 = 5.

stream. The “high priority” stream is sent using a preemption policy, whereas at first
the “regular” stream is transmitted using a FCFS policy and then it is transmitted
using preemption. We derived the stability condition for the former system, as well
as closed-form expressions for the average peak-age and a lower bound on the average
age of the “regular” stream. For the latter system we have given exact expressions for
the average age and average peak-age relative to the “regular” stream and we have
shown through simulations that, even if the service times relative to both streams
are exponential, preemption is not the optimal strategy to adopt for the “regular”
stream. In fact, for fixed service rates and “regular” stream generation rate, the FCFS
strategy performs better for a large interval of “high priority”- stream generation rate.

5.7 Appendix

5.7.1 Proof of Theorem 5.1

Assume that

µ1 > λ1

(
1 +

λ2

µ2

)
. (5.37)

The detailed balance equations of the Markov chain given by Fig. 5.3 are given by:

λπ0 = µ1π1 + µ2π
′
1,

(λ1 + µ2)π′1 = λ2π0,

for i ≥ 1,

πi+1 =

(
1 +

λ

µ1
− µ2λ2

µ1(µ2 + λ1)

)
πi −

µ2λ1

µ1(µ2 + λ1)
π′i

− λ1

µ1
πi−1,

π′i+1 =
λ2

µ2 + λ1
πi +

λ1

µ2 + λ1
π′i,

(5.38)
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where λ = λ1 + λ2. For easier notation we denote

a1 = 1 +
λ

µ1
− µ2λ2

µ1(µ2 + λ1)
,

a2 =
µ2λ1

µ1(µ2 + λ1)
,

a3 =
λ1

µ1
,

a4 =
λ2

µ2 + λ1
,

a5 =
λ1

µ2 + λ1
.

Rewriting (5.38) in matrix form and using the above notation, we get
πi+1

π′i+1

πi
π′i

 =


a1 −a2 −a3 0
a4 a5 0 0
1 0 0 0
0 1 0 0



πi
π′i
πi−1

π′i−1

 .

Let Ai =


πi+1

π′i+1

πi
π′i

, C =

[
a1 −a2

a4 a5

]
, D =

[
−a3 0

0 0

]
and H =

[
C D
I2 0

]
. Then

Ai = HAi−1.

Thus
Ai = HiA0, i ≥ 0 (5.39)

where A0 =


π1

π′1
π0

0

 =


λ
µ1
− µ2λ2

µ1(λ1+µ2)
λ2

λ1+µ2
1
0

π0, using the first two equations of system

(5.38).

(5.39) shows that in order to find the stability criterion of the system in (5.38) we first
need to study the properties of H. For that we compute its eigenvalues l0, l1, l2, l3 by
solving the characteristic equation |lI4 −H| = 0. This leads to

|lI4 −H| = l(l − 1)(l2 − l(a1 + a5 − 1) + a3a5). (5.40)

H has two obvious eigenvalues l0 = 0 and l3 = 1. To find the last two eigenvalues,
let’s find the root of the quadratic polynomial

p(l) = l2 − l(a1 + a5 − 1) + a3a5. (5.41)

It can be shown through simple algebra that the discriminant of the above polynomial
is strictly positive. Hence the remaining eigenvalues l1 and l2 are real and distinct.
Let’s assume that l1 < l2. This means that the matrix H is diagonalizable and can
be written as

H = BΛB−1,
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where the columns of B are the eigenvectors of H and form a basis of R4. We denote
by e0, e1, e2, e3 the eigenvectors corresponding to l0, l1, l2, l3.

So we can write A0 as

A0 = (α0e0 + α1e1 + α2e2 + α3e3)π0, (5.42)

with α0, α1, α2, α3 ∈ R. Hence for i > 0,

Ai = HiA0

= (α0H
ie0 + α1H

ie1 + α2H
ie2 + α3H

ie3)π0

= (α0l
i
0e0 + α1l

i
1e1 + α2l

i
2e2 + α3l

i
3e3)π0

= (α1l
i
1e1 + α2l

i
2e2 + α3e3)π0, (5.43)

since l0 = 0 and l3 = 1. Equation (5.43) shows that three conditions need to be
satisfied for the system to be stable and a steady-state distribution to exist:

• Condition 1: |l1| < 1 and |l2| < 1.

• Condition 2: α3 = 0.

• Condition 3: α1l
i
1e1 + α2l

i
2e2 has positive components for all i > 0.

Condition 1 and Condition 2 ensure that

lim
i→∞

πi = lim
i→∞

π′i = 0.

Condition 3 makes sure that the components of Ai are positive probabilities. We
will show that (5.37) is sufficient for the above three conditions to hold.

Given that l1 and l2 are the roots of (5.41) then the following holds

l1l2 = a3a5

l1 + l2 = a1 + a5 − 1. (5.44)

However, l1l2 = a3a5 =
λ21

µ1(µ2+λ1) ≥ 0. This means that either both l1 and l2 are
positive or they are both negative. Using (5.44) again, we notice that

l1 + l2 = a1 + a5 − 1 =
λ1µ2 + λ2

1 + λ1λ2 + λ1µ1

µ1(µ2 + λ1)
≥ 0.

This shows that both l1 and l2 are strictly positive (since 0 is not a root of p(l)). So
to prove that Condition 1 is satisfied we need to prove that l1 < l2 < 1. This is
equivalent to show that (5.41) evaluated at 1 is strictly positive and that l1l2 < 1
since p(l) is a convex quadratic function in l > 0. Using simple algebra it can be
shown that

p(1) = 1− (a1 + a5 − 1) + a3a5 =
µ1µ2 − λ1(µ2 + λ2)

µ1(µ2 + λ1)
> 0,
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where the last inequality is due to (5.37). Moreover, (5.37) tells us that µ1 should be
strictly bigger that λ1. Thus we get that

l1l2 =
λ1

µ1

λ1

µ2 + λ1
< 1.

This shows that 0 < l1 < l2 < 1 and that Condition 1 is satisfied.

To prove Condition 2 we start by computing the eigenvectors of H. For l0 = 0, we
solve the system given by He0 = 0. If e0 =

[
u1 u2 u3 1

]T then
a1 −a2 −a3 0
a4 a5 0 0
1 0 0 0
0 1 0 0



u1

u2

u3

1

 =


0
0
0
0

 .
This system leads to e0 =

[
0 0 0 1

]T . Similarly, for j = 1, 2, 3, if ej =[
u1 u2 u3 1

]T then solving the system
a1 −a2 −a3 0
a4 a5 0 0
1 0 0 0
0 1 0 0



u1

u2

u3

1

 = lj


u1

u2

u3

1


leads to ej =

[
lj(lj − a5) lja4 lj − a5 a4

]T .
We know that H = BΛB−1. If

Λ =


1 0 0 0
0 l2 0 0
0 0 l1 0
0 0 0 0

 ,
then

B =


1− a5 l2(l2 − a5) l1(l1 − a5) 0
a4 l2a4 l1a4 0

1− a5 l2 − a5 l1 − a5 0
a4 a4 a4 1

 .
Note that the determinant of B, |B|, is non-zero when we assume (5.37). Indeed,

|B| = a4a5(l2 − l1)(−2 + a5 − a3a5 + a1) < 0

since l2 > l1 and −2 + a5 − a3a5 + a1 = −p(1) < 0 as shown before. In order to
compute α3, we rewrite (5.42) as follows

A0 =
[
e3 e2 e1 e0

] 
α3

α2

α1

α0

π0 = B


α3

α2

α1

α0

π0.
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But we also know that

A0 =


λ
µ1
− µ2λ2

µ1(λ1+µ2)
λ2

λ1+µ2
1
0

π0 =


a1 − 1
a4

1
0

π0.

Thus

B


α3

α2

α1

α0

 =


a1 − 1
a4

1
0

 . (5.45)

Solving the system in (5.45) with respect to α3, α2, α1 and α0 we get that
α3

α2

α1

α0

 =


0
1

l2−l1−1
l2−l1

0

 .
Thus α3 = 0 and Condition 2 is proved. Note that we didn’t need any assumptions
to prove this condition.

Given the above results, we can now rewrite the system in (5.43) as

Ai = (α2l
i
2e2 + α1l

i
1e1)π0, i > 0

A0 = (α2e2 + α1e1)π0 =


a1 − 1
a4

1
0

π0.
(5.46)

Using (5.46) we can prove Condition 3. In fact, for any i > 0,

α2l
i
2e2 + α1l

i
1e1

(a)
= α2

(
li2e2 − li1e1

)
(b)
� α2l

i
1(e2 − e1)

(c)
= li1


a1 − 1
a4

1
0


(d)
� 0,

where x � y for some vectors x and y means that the components of x − y are
strictly positive and

(a) is because α2 = −α1,

(b) is because 0 < l1 < l2,

(c) is obtained from the second equality in (5.46),
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(d) follows since a1 − 1 > 0 and a4 > 0.

Up till now we have shown that if µ1 > λ1

(
1 + λ2

µ2

)
, the system described in

Section 5.2 is stable and a steady-state distribution exists given by (5.46). The final
point to prove in Theorem 5.1 is the expression of π0. For that we solve for π0 the
following equation

π0 +
∞∑
i=1

πi + π′i = π0 +
[
0 0 1 1

] ∞∑
i=1

Ai = 1.

Using the first equation of (5.46) and replacing α1 and α2 by their expressions in
function of l1 and l2, using the fact that l1 + l2 and l1l2 are given by (5.44) and finally
replacing a1, a2, a3, a4 and a5 by their expressions in function of λ1, λ2, µ1, µ2 we
get

π0 =
µ2

µ2 + λ2
− λ1

µ1
.

5.7.2 Proof of Corollary 5.1

At any point in time, there are exactly i stream U1 packets in the system if we are in
state qi or q′i+1 in the Markov chain given by Fig. 5.3. This means that the probability
of having exactly i stream U1 packets in the system is πi + π′i+1. Hence, using the
same quantities as in Section 5.7.1

φN(t)(s) = E
(
esN(t)

)
=
∞∑
n=0

esn(πi + π′i+1) =
∞∑
n=0

esn

AT
n


0
1
1
0




=
∞∑
n=0

esnα2π0

(ln2 e2 − ln1 e1)T


0
1
1
0




= α2π0

 ∞∑
n=0

(esl2)n eT2


0
1
1
0

− ∞∑
n=0

(esl1)n eT1


0
1
1
0




= α2π0

(
1

1− l2es
(l2a4 + l2 − a5)− 1

1− l1es
(l1a4 + l1 − a5)

)
= α2π0(l2 − l1)

(
a4 + 1− a5e

s

1− (l1 + l2)es + l1l2e2s

)
. (5.47)

where the quantities used here are the one defined in the proof of Theorem 5.1. Thus,

φN(t)(s) = π0

(
µ1 (λ1 + λ2 + µ2 − λ1e

s)

µ1µ2 + µ1λ1 − es(λ1µ2 + λ2
1 + λ1λ2 + λ1µ1) + λ2

1e
2s

)
.

This last equality is obtained by using (5.44), α2 = 1
l2−l1 and replacing a1, a2, a3, a4,

a5 by their expressions in function of λ1, λ2, µ1 and µ2 in (5.47). Finally,

E(N(t)) =
dφN(t)(s)

ds

∣∣∣∣
s=0

=
λ1

(
2λ2µ2 + λ2µ1 + λ2

2 + µ2
2

)
(µ2 + λ2) (µ1µ2 − λ1 (µ2 + λ2))

.
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Status Updates through
M/G/1/1 Queues with
HARQ 6
6.1 Introduction

In the first part of this thesis, we assumed the channel to be error-free and always
correctly delivering the transmitted packets. In this second part of the dissertation,
we consider a more practical channel example: The erasure channel defined in
Definition 1.2. This type of channel could model the Internet where packets can be
lost (or erased) with a certain probability ε > 0.

In this chapter1, we assume updates are generated by a single source according to a
Poisson process with rate λ. However, the system can handle only one update at a
time without any buffer to store incoming updates. This means that whenever a new
update is generated and the system is busy, the transmitter has to make a decision:
does it give higher priority to the new update or to the one being transmitted? In
other words, does it preempt or not? The two transmission schemes studied here
are M/G/1/1 with blocking and M/G/1/1 with preemption (see Section 1.2.3). It
has been shown that for exponential update service times, preemption ensures the
lowest average age [35]. However, our results in Chapter 3 suggest that under the
assumption of gamma distributed service time, preemption might not be the best
policy.

This chapter answers the previous question when we assume updates are sent through
a symbol erasure channel with erasure rate ε, while using hybrid ARQ (HARQ)
protocols to combat erasures. Two HARQ protocols, introduced in [20], are studied:
(a) infinite incremental redundancy (IIR) and (b) fixed redundancy (FR). In both cases
we assume a generated update contains K information symbols. In IIR, encoding
is performed at the physical layer where the K information symbols are encoded
using a rateless code. Hence, the transmission of an update continues until ks = K
unerased symbols are received. As for the FR, coding is applied at the physical and
packet layer. This means that the update is divided into kp packets with each packet

1The material in this chapter is based on [47,48].
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encoded using an (ns, ks)-Maximum Distance Separable (MDS) code. So, in this case,
the total number of information symbols is K = kpks. At the packet level we apply a
rateless code and thus the transmission of an update terminates when kp unerased
packets are received. In order to decode a packet, the receiver needs to wait for ns
encoded symbols. Once received, a packet is declared erased if fewer than ks symbols
are successful. It is worth noting that in this setup we send one symbol per channel
use and thus the arrival rate λ is the number of updates generated per channel use.
The effect of these schemes on the transmission time of data was studied in [20]. It
was shown that FR leads to a slower delivery than IIR. While the main aim of [20] is
the successful delivery of every update, in this chapter we are ready to sacrifice some
updates for fresher information.

This chapter is organized as follows: We first begin by deriving in Section 6.3 an
expression for the average age under general service time distribution when we choose
M/G/1/1 with blocking. In Section 6.4, we use this expression to compute the average
age when we consider the IIR and FR protocols. Sections 6.5 and 6.6 follow the
same logic but in this case we choose M/G/1/1 with preemption. Finally, Section 6.7
compares the performances of both models for a given HARQ protocol as well as the
performance of both protocols given a model. We show that no matter the protocol,
prioritizing the current update is better than preempting it. Moreover, in the case of
FR, we show that no matter the model and for a fixed arrival rate λ, there exists an
optimal codeword length ns.

6.2 Preliminaries

In this chapter, we use the notation introduced in Chapter 2. This means that we call
the updates that are not dropped, and thus delivered to the receiver, as “successfully
received updates” or “successful updates”. In addition to that, we also define:

• Ii to be the true index of the ith successfully received update,

• tj to be the generation time of the jth packet (not necessarily successful),

• t′Ii to be the reception time of the ith successful packet,

• Yi = t′Ii+1
−t′Ii to be the interdeparture time between two consecutive successfully

received updates,

• Xi = tIi+1− tIi to be the interarrival time between the successfully transmitted
update and the next generated one (which may or may not be successfully
transmitted), so fX(x) = λe−λx,

• Sj to be the service time of the jth generated update with cumulative distribution
probability FS(t). In the case of the M/G/1/1 with blocking scenario, Si denotes
the service time of the ith successful packet,

• Ti to be the system time, or the time spent by the ith successful update in the
queue,
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Figure 6.1 – Variation of the instantaneous age for M/G/1/1 with blocking

• R(τ) = max
{
n : t′In ≤ τ

}
, to be the number of successfully received updates

in the interval [0, τ ].

In our models, we assume the service time Sk of the kth update is independent from
the interarrival time random variables {X1, X2, ..., Xk, ...} and that the sequence
{S1, S2, ...} forms an i.i.d process.

From (1.2), Fig. 6.1 and Fig. 6.8, the average age for both M/G/1/1 queues can be
also expressed as the sum of the geometric areas Qi under the instantaneous age
curve. We will use DTA (see Section 2.3) to compute the average age. Thus, as we
have already shown in Chapter 3

∆ = lim
τ→∞

R(τ)

τ

1

R(τ)

R(τ)∑
i=1

Qi = λeE(Qi), (6.1)

where λe = limτ→∞
R(τ)
τ and the second equality is due to the fact that (Yi, Ti)i≥1 is

jointly second-moment-ergodic as we will see later.

6.3 M/G/1/1 with Blocking

In this setup, a generated update is discarded if it finds the system busy. This means
an update is served only if it arrives at an idle system. This concept is depicted in
Fig. 6.1: For instance, the update generated at time t2 is served since the system
is empty at that time. However, the updates generated at times t3 and t4 find the
system busy and are thus discarded. One important note here is that the system
time Ti of the ith successful update is equal to its service time.

6.3.1 Average Age Calculation

Lemma 6.1. For an M/G/1/1 blocking system we have,

λe =
1

E(Y )
=

1

E(X) + E(S)
, (6.2)

where Y , X and S are the steady-state counterparts of the variables defined in
Section 6.2.
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Proof. R(τ) is a renewal process with inter-renewal time between two renewals given
by the random variable Y . As shown in Fig. 6.1, the renewal period is the interval:

Yi = Zi + Si+1. (6.3)

Because each departure leaves the system empty and the interarrival times are
memoryless, then the interval Zi, which is the residual interarrival time until a new
update is generated, is independent of Yi−1 and it has an exponential distribution.
Hence, all the Yi’s are identically distributed and the Zi’s are stochastically equal
to the interarrival time X. This proves why R(τ) is a renewal process. The claim
follows [58].

Now we can compute the average age which is given by the following theorem,

Theorem 6.1. The process (Yi, Ti)i≥1 is jointly second-moment-ergodic and the
average age of an M/G/1/1 system with blocking is

∆ = E(S)

(
β

2
(CS + 1) +

1

β

)
, (6.4)

where CS = Var(S)
E(S)2

is the squared coefficient of variation and β = ρ
ρ+1 with ρ =

E(S)
E(X) = λE(S).

Proof. We have seen in Lemma 6.1 that R(τ) is a renewal process with (Yi)i≥1 being

the inter-renewal intervals. By defining Di =
∫ t′Ii+1

t′Ii
∆(t)dt to be the reward function

over the renewal period Yi, we get using renewal reward theory [16,58] that

∆ = lim
τ→∞

1

τ

∫ τ

0
∆(t)dt =

E(Di)

E(Yi)
=

E(Qi)

E(Yi)
<∞.

This implies that (Ti, Yi)j≥1 is stationary jointly second-moment-ergodic. We need
to compute the average area of the trapezoid Qi. To do that, notice first that, using
a similar argument as the one used in the proof of Lemma 6.1, the service time Si
and Yi are independent. Thus,

E(Qi) = E
(

(Si−1 + Yi−1)2

2
− S2

i

2

)
=

1

2
E
(
Y 2
i−1

)
+ E(Si−1)E(Yi−1). (6.5)

Since we are interested in the steady-state behavior, we will drop the subscript index
on the random variables. Hence,

E(Q) =
1

2
E
(
Y 2
)

+ E(S)E(Y )

=
1

2
E
(
(X + S)2

)
+ E(S)E(S +X)

=
1

2

(
E
(
X2
)

+ E (S)2
)

+
1

2
Var(S) + 2E(S)E(X) + E(S)2

=
1

2

(
E (S)2 + Var(S)

)
+ E (X)2 + 2E(S)E(X) + E(S)2

= (E(X) + E(S))2 +
1

2

(
E(S)2 + Var(S)

)
, (6.6)
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where the third equality is obtained by adding and subtracting 1
2E(S)2 to the second

equality, and the fourth equality is obtained by noticing that for the exponential
random variable X we have E

(
X2
)

= 2E(X)2. Using (6.2) and (6.6), we get (6.4).

6.3.2 Finding the Optimal Arrival Rate

When the arrival rate of the updates is a parameter that we can control, it is interesting
to have an idea on its value that minimizes the average age.

Theorem 6.2. For the M/G/1/1 blocking system, the minimum average age ∆∗ is
achieved for:

• If CS > 1, then λ∗ = β∗

(1−β∗)E(S) with β∗ =
√

2
CS+1 and

∆∗ = E(S)
√

2(CS + 1)

• If CS ≤ 1, λ∗ →∞ and ∆∗ = E(S)
(

1
2(CS + 1) + 1

)
Proof. Setting the derivative of (6.4) with respect to β to zero, we get:

β∗2 =
2

CS + 1
, (6.7)

where β∗ is the optimal value of β. Since 0 ≤ β∗ = ρ∗

ρ∗+1 < 1, CS has to be strictly

bigger than 1 for β∗ to exist. In this case, β∗ =
√

2
CS+1 and solving for λ we get

λ∗ = β∗

(1−β∗)E(S) . Using β
∗ in (6.4) gives the value of the minimum age ∆∗.

If the service time distribution is such that CS ≤ 1, then ∂ε
∂β = − 1

β2 + CS+1
2 < 0.

However, ∂β
∂λ = E(S)

(λE(S)+1)2
≥ 0. Therefore, ∂ε

∂λ = ∂ε
∂β

∂β
∂λ < 0. Thus the average age

is a strictly decreasing function of the arrival rate and the minimal average age is
obtained as λ→∞.

6.4 M/G/1/1 with Blocking HARQ System

Now, we study the effect of different HARQ policies on the average age when
considering an M/G/1/1 queue with blocking. We assume that the updates are sent
through a symbol erasure channel with erasure rate ε. Moreover, two HARQ protocols
are visited: the infinite incremental redundancy (IIR) and the fixed redundancy (FR).

6.4.1 Infinite Incremental Redundancy

In this policy, an update consists of ks information symbols and is encoded using
a rateless code. This means that the monitor needs to receive at least ks symbols
in order to decode the update. The transmission of an update finishes whenever ks
symbols are successfully transmitted. All updates arriving when the system is busy
are discarded. Therefore, we define the service time S of an update as the number of
channel uses needed for the monitor to receive ks symbols. Hence, S is distributed as
a negative binomial with ks successes and success probability 1− ε.
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Theorem 6.3. The average age of the M/G/1/1 blocking IIR-HARQ system is:

∆NIIR =
1

λ
+

ks
1− ε

+
λks(ks + ε)

2(1− ε)(λks + 1− ε)
. (6.8)

Moreover, the minimum average age is achieved for λ→∞ and its value is given by,

∆∗NIIR =
3ks + ε

2(1− ε)
(6.9)

Proof. Since we are using IIR policy then the service time S of each update is
distributed as a negative binomial (ks, 1− ε), S ∈ {ks, ks + 1, . . .}. In this case the
mean and variance of S are given by:

E(S) =
ks

1− ε
, Var(S) =

ksε

(1− ε)2
. (6.10)

Hence, we compute the quantities ρ, β and CS present in (6.4):

ρ =
λks

1− ε
, β =

ρ

ρ+ 1
=

λks
λks + 1− ε

, CS =
ε

ks
. (6.11)

Using the above expression in (6.4) and performing some simplifications we get (6.8).

Moreover, since ε ≤ 1 and ks ≥ 1, CS = ε
ks
≤ 1. By Theorem 6.2, the optimum

average age is achieved as λ→∞. Taking the limit on (6.8) gives (6.9).

6.4.2 Fixed Redundancy

In this policy, we apply two levels of coding: a packet level and a physical level.
Each update consists of kp packets encoded using a rateless code. This means that
the monitor needs to receive kp decodable packets in order to decode the update.
Moreover, each packet contains ks information symbols and is encoded using a (ns, ks)-
Maximum Distance Separable (MDS) code. Hence, a packet can be decoded if at
least ks symbols are not erased. Since the packets are being transmitted through a
symbol erasure channel with erasure probability ε than the probability for the receiver
to be unable to decode a packet is:

εp = P(less than ks symbols received)

=

ks−1∑
i=0

(
ns
i

)
εns−i(1− ε)i. (6.12)

Theorem 6.4. The average age of the M/G/1/1 FR-HARQ blocking system is

∆NFR =
1

λ
+

nskp
1− εp

+
λn2

skp(kp + εp)

2(1− εp)(λnskp + 1− εp)
. (6.13)

Moreover, the minimum average age is achieved as λ→∞ and its value is given by,

∆∗NFR =
3nskp + εp
2(1− εp)

(6.14)
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Figure 6.2 – Semi-Markov chain representing the queue for LCFS with preemption

Proof. The number M of packets needed to be transmitted to decode an update is
distributed as a negative binomial (kp, 1− εp) random variable with kp successes and
success rate (1 − εp), M ∈ {kp, kp + 1, . . .}. Since the transmission of each packet
consumes ns channel uses then the service time S of each update is S = nsM . Thus,
the mean and variance of S are given by:

E(S) = E(nsM) = nsE(M) =
nskp

1− εp
, (6.15)

Var(S) = Var(nsM) = n2
sVar(M) =

n2
skpεp

(1− εp)2
. (6.16)

Hence, we compute the quantities:

ρ =
λkp

1− εp
, β =

λkp
λkp + 1− εp

, CS =
εp
kp
. (6.17)

Using the above expressions in (6.4) and performing some simplifications we get
(6.13).

Moreover, since εp ≤ 1 and kp ≥ 1, CS =
εp
kp
≤ 1. By Theorem 6.2, the optimum

average age is achieved as λ→∞. From (6.13) this yields (6.14).

6.5 M/G/1/1 with Preemption

In the M/G/1/1 with preemption scenario, any packet being served is preempted if
a new packet arrives and the new packet is served. In fact, while in the M/G/1/1
with blocking the priority is given to the update being served, in this setup, the
priority goes to the newly generated update. Moreover, the number of packets in the
queue can be modeled as a continuous-time two-state semi-Markov chain depicted
in Figure 6.2. An interpretation of this chain can be found in Section 3.3, which we
repeat here for convenience. The 0-state corresponds to empty queue and no packet
is being served while the 1-state corresponds to the state where the queue is full and
is serving one packet. However, given that the interarrival time between packets is
exponentially distributed with rate λ then one spends an exponential amount of time
X in the 0-state before jumping with probability 1 to the other state. Once in the
1-state, two independent clocks are started: the service time clock of the packet being
served and the rate λ memoryless clock of the interarrival time between the current
packet and the next one to be generated. If the memoryless clock ticks first, we stay
in the 1-state, otherwise we go back to the 0-state. Hence, the jump from the 1-state
to the 0-state occurs with probability p = P(S < X), where S is a generic service
time with distribution fS(t) and X is a generic rate λ memoryless interarrival time
which is independent of S.
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Theorem 6.5. The average age of an M/G/1/1 system with preemption with a single
source is given by,

∆ =
1

λPλ
, (6.18)

where Pλ =
∫∞

0 fS(t)e−λtdt is the Laplace transform of the service-time distribution.

Proof. We obtain (6.18) by applying Theorem 4.1 and taking the number of sources
M = 1. In Section 6.9, we present an alternative proof technique for this theorem.

For the M/G/1/1 with preemption, the average age depends on the Laplace transform
of the service time distribution.

6.6 M/G/1/1 with Preemption and HARQ

In this Section we study the effect of different HARQ policies on the average age
when considering an M/G/1/1 queue with preemption. Indeed, we assume that the
updates are sent through a symbol erasure channel with erasure rate ε. Moreover,
two HARQ models are visited: the infinite incremental redundancy (IIR) and the
fixed redundancy (FR).

6.6.1 Infinite Incremental Redundancy

In this setup, the transmission of an update finishes whenever one of these events
happen first: (i) ks symbols are successfully transmitted, or (ii) a new update is
generated. Hence the following theorem.

Theorem 6.6. The average age of an M/G/1/1 with preemption system when using
the IIR policy is given by,

∆PIIR =
1

λ

(
eλ − ε
1− ε

)ks
. (6.19)

Moreover, εPIIR has a minimum and the arrival rate λ∗ that achieves it should satisfy
the condition

λ∗ ≤ 1

ks
. (6.20)

The minimum age ∆∗PIIR can be lower bounded using

∆∗PIIR ≥
1

λIIR

(
1 +

λIIR

1− ε

)ks
, (6.21)

where λ∗ ≈ λIIR =
1−ks+

√
(ks+1)2−4ksε

2ks
.

Proof. Under the IIR policy, the service time S of each update is distributed as a
negative binomial (ks, 1− ε), S ∈ {ks, ks+ 1, . . .}. In this case the moment generating
function of S is given by:

φS(s) = E
(
esS
)

=

(
1− esε
es(1− ε)

)−ks
. (6.22)
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Noting that Pλ = φS(−λ) and using (6.18) and (6.22), we get (6.19). To prove
condition (6.20) we differentiate ∆PIIR with respect to λ and equate it to zero. This
yields

− 1

λ

(
eλ − ε
1− ε

)
+
kse

λ

1− ε
= 0. (6.23)

Thus, to satisfy (6.23) we need

eλ(ksλ− 1) = −ε. (6.24)

Since 0 ≤ ε ≤ 1, (6.24) implies that ksλ− 1 ≤ 0. Hence (6.20) holds. Moreover, since
λ > 0, we have that eλ > 1 + λ. This means that if λ∗ minimizes ∆PIIR, then

∆∗PIIR = ∆PIIR(λ∗) >
1

λ∗

(
1 +

λ∗

1− ε

)ks
. (6.25)

Finally, in order to obtain λ∗ one needs to solve equation (6.24) which does not
have a simple closed form expression. As an alternative, we can make the small λ
approximation eλ∗ ≈ 1 + λ∗. In this case, (6.24) reduces to

(1 + λ)(ksλ− 1) = −ε. (6.26)

This is a quadratic equation whose only positive root is given by

λIIR =
1− ks +

√
(ks + 1)2 − 4ksε

2ks
.

To obtain (6.21), we replace λ∗ by λIIR in (6.25).

Since λ∗ ≤ 1
ks
≤ 1, the lower bound in (6.21) becomes a tight approximation of the

average age for typical values of ks.

6.6.2 Fixed Redundancy

In this case also the transmission of an update is terminated whenever one of these
events happen first: (i) kp packets are successfully transmitted, or (ii) a new update
is generated. As in the M/G/1/1 blocking system, we define the packet erasure
probability εp =

∑ks−1
i=0

(
ns
i

)
εns−i(1− ε)i.

Theorem 6.7. The average age of the information for an M/G/1/1 with preemption
system using the FR policy is given by,

∆PFR =
1

λ

(
1− e−λnsεp
e−λns(1− εp)

)kp
. (6.27)

Moreover, ∆PFR has a minimum and the arrival rate λ∗ that achieves it should satisfy
the condition

λ∗ ≤ 1

nskp
. (6.28)
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The minimum age ∆∗PIIR can be lower bounded using

∆∗PFR ≥
1

λFR

(
1 +

λFRns
1− εp

)kp
, (6.29)

where λ∗ ≈ λFR =
1−kp+

√
(kp+1)2−4kpεp
2nskp

.

Proof. The number M of packets needed to be transmitted to decode an update is
distributed as a negative binomial (kp, 1− εp) random variable with kp successes and
success rate (1 − εp), M ∈ {kp, kp + 1, . . .}. Since the transmission of each packet
consumes ns channel uses, the service time S of each update is S = nsM . Thus, the
moment generating function of S is:

φS(s) = E
(
esnsM

)
= φM (nss) =

(
enss(1− εp)
1− enssεp

)kp
. (6.30)

Using (6.18), the fact that Pλ = φS(−λ) and the above expression we obtain (6.27).

To prove condition (6.28) we differentiate ∆PFR with respect to λ and equate it to
zero, yielding

− 1

λ

(
eλns − εp

1− εp

)
+
kpnse

λns

1− εp
= 0. (6.31)

Thus, to satisfy (6.31) we need

eλns(kpnsλ− 1) = −εp. (6.32)

Since 0 ≤ εp ≤ 1, (6.32) implies that kpnsλ− 1 ≤ 0. Hence (6.28) holds.

As in the proof for Theorem 6.6, here also we have:

∆∗PFR = ∆PFR(λ∗) >
1

λ∗

(
1 +

nsλ
∗

1− εp

)kp
. (6.33)

Finally, also as in the proof for Theorem 6.6, we approximate the real value of λ∗ by
solving the quadratic equation

(1 + λns)(kpnsλ− 1) = −εp. (6.34)

The only positive root is given by

λFR =
1− kp +

√
(kp + 1)2 − 4kpεp
2nskp

.

To obtain (6.29), we replace λ∗ by λFR in (6.33).

Since nsλ∗ ≤ 1
kp
≤ 1, the lower bound in (6.29) becomes a tight approximation for

typical values of kp.
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Figure 6.3 – Comparing the performance of the FR-HARQ for the M/G/1/1 with
preemption scheme when varying the number of information symbols in each packet.
We assume the update has 100 information symbols, ε = 0.2, kp = 100/ks. ns is
chosen to minimize the average age.
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Figure 6.4 – Average age with respect to codeword length for the M/G/1/1 with
preemption scheme with FR-HARQ. We assume the update has 100 information
symbols, λ = 0.0066, ks = 20 and kp = 100/ks.

6.7 Numerical Results

In this section, we first compare the two HARQ policies, IIR and FR, for the
M/G/1/1 with and without preemption. Then, for each HARQ policy, we compare
the performances of the two M/G/1/1 schemes. Moreover, for the simulation results
discussed in this section, we assume the following setting: a symbol erasure channel
with erasure rate ε = 0.2 and each update in IIR-HARQ and FR-HARQ contain
K = 100 information symbols. So for IIR-HARQ we have fs = 100 while for FR-
HARQ, we assume each update is divided into kp = K/ks packets where each packet
is encoded using an MDS-(ks, ns) code.

We first start analyzing the M/G/1/1 system with preemption. Fig. 6.3 shows the
average age for different values of ks around its minimum point. As we can notice,
if we choose the optimum ns for a fixed ks and range of λ then the average age
decreases as the number of packets per update decreases. In fact, the black curve
which corresponds to kp = 1 has the lowest average age around its minimum, followed
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Figure 6.5 – Comparing the performance of the FR-HARQ for the M/G/1/1 without
preemption scheme when varying the number of information symbols in each packet.
We assume the update has 100 information symbols, ε = 0.2, kp = 100/ks. ns is
chosen to minimize the average age.

by the blue curve associated with kp = 5 and the worst performance is for the system
with kp = 10. Fig. 6.3 also confirms the results in Theorem 6.6 and Theorem 6.7
saying that εPIIR and εPFR achieve a minimum at a small value of λ. This figure also
suggests that no matter how we choose ks and ns, IIR outperforms FR. The values of
ns chosen in Fig. 6.3 are such that they minimize the average age for a given ε and
ks. The existence of such optimum packet length in FR can be deduced from Fig. 6.4.
Here we set λ = 0.0066, which minimizes the average age for ε = 0.2, and ks = 20.
Fig. 6.4 can be explained using the lower bound (6.29): for a given λ, as ns gets
large, εp → 0 and the lower bound will be increasing with ns since

(
1 + nsλ∗

1−εp

)
> 1.

However, for ns close to ks, εp → 1 which also increases this lower bound. Thus,
the packet length should be neither too small (equal to ks) nor too large. As it is
expected, Fig. 6.4 also shows that the optimal packet length ns increases as the
erasure rate ε increases.

The above results concerning the M/G/1/1 system with preemption apply also for
the M/G/1/1 blocking system as it can be seen in Fig. 6.5 and 6.6. However, some
differences need to be noted. (i) Fig. 6.5 confirms the results of Theorems 6.3 and
6.4 that the average age is a decreasing function of λ. (ii) Fig. 6.5 shows that for any
value of λ, increasing the number of packets per update increases the average age.
(iii) Fig. 6.6 shows the existence of an optimal packet length ns for a given ε, λ and
ks.

Finally, we compare the performance of the M/G/1/1 with preemption and the
M/G/1/1 blocking systems for each one of the HARQ policies. In both cases, Fig. 6.7
shows that the M/G/1/1 blocking system performs better than its counterpart for
all values of λ.
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Figure 6.6 – Average age with respect to codeword length for the M/G/1/1 without
preemption scheme with FR-HARQ. We assume the update has 100 information
symbols, λ = 1, ks = 20 and kp = 100/ks.
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Figure 6.7 – Comparing the performance of the two M/G/1/1 schemes when using
IIR and FR. We assume the update has 100 information symbols and ε = 0.2.

6.8 Conclusion

In this chapter, we have studied the M/G/1/1 system along with the possible update
management policies it presents: preempting the current update or discarding the
newly generated one. We have derived general expressions for their average age
and have used this result to compute the average age when considering a practical
scenario: updates are sent over a symbol erasure channel using two different HARQ
protocols, IIR and FR. In both cases, prioritizing the current update being sent and
not preempting it turned out to be the best strategy. Moreover, as it is expected,
the IIR protocol gives a better performance from an age point of view than FR.
Finally, we have argued through simulations that for the FR protocol, ensuring
reliable delivery of every update packet (by using large codeword length ns) does not
achieve the optimal average age.
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Figure 6.8 – Variation of the instantaneous age for LCFS with preemption

6.9 Appendix: Alternate Proof of Theorem 6.5

In this appendix we present an alternate method for computing the average age and
average peak age of an M/G/1/1 with-preemption scheme. Whereas in Chapter 4 we
computed these two age metrics for multiple sources, in this section we consider the
system to have a single source.

The quantity p = P(S < X) will play an important role in our derivation, so we will
take a closer look at it:

p =

∫ ∞
0
fS(t)P(X > t) dt =

∫ ∞
0
fS(t)e−λt dt = Pλ, (6.35)

where Pλ is the Laplace transform of the service time distribution.

Given an M/G/1/1 with-preemption scheme, Lemma 3.4 applies for any service-time
distribution. Thus, we can apply it here also. This means that, for any i, Yi and Ti
are independent. Using Fig. 6.8 and (2.20) we have that the average age ∆ is:

∆ = λeE(Q) = λe

(
1

2
E
(
Y 2
)

+ E(T )E(Y )

)
, (6.36)

where T and Y as defined in Section 6.2. Using Lemma 3.1 and a similar proof to
Lemma 3.3 we can write λe = λPλ as the effective arrival rate. We start with E(T ).

Lemma 6.2. The PDF of the system time, T , of a successful update is

fT (t) =
fS(t)

Pλ
e−λt. (6.37)

Its expected value is

E(T ) = − 1

Pλ

∂Pλ
∂λ

. (6.38)

Proof.

fT (t) = lim
ε→0

P(S ∈ [t, t+ ε]|S < X)

ε

= lim
ε→0

P(S ∈ [t, t+ ε])

εPλ
P(S < X|S ∈ (t, t+ ε))

=
fS(t)

Pλ
P(X > t) =

fS(t)

Pλ
e−λt. (6.39)
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Using (6.37) we calculate the expected value of T :

E(T ) =
1

Pλ

∫ ∞
0

tfS(t)e−λtdt = − 1

Pλ

∂Pλ
∂λ

. (6.40)

Now we only need to calculate the first and second moments of Y . For that we will
derive its moment generating function.

Lemma 6.3. The moment generating function of the interdeparture time Y is given
by

φY (s) =
λPλ−s

λPλ−s − s
, (6.41)

where Pλ−s =
∫∞

0 fS(t)e−(λ−s) dt.

Proof. From Fig. 6.8 we can deduce that Y is the shortest time to go from the 0-state
back to the 0-state. This means that

Y = X +W, (6.42)

where X is exponentially distributed with rate λ and W is

W =


T with probability p
X ′1 + T with probability (1− p)p
X ′1 +X ′2 + T with probability (1− p)2p
...

=

M∑
j=0

X ′j + T, (6.43)

where X ′0 = 0 and for j > 0, X ′j is such that P(X ′j < α) = P(X < α|X < S). M ,
which gives the number of discarded packets before the first successful reception, is a
geometric(p) random variable independent of X ′j and T . We start first by deriving
the moment generating function of X ′.

fX′(t) = lim
ε→0

P(X ∈ [t, t+ ε]|S > X)

ε

= lim
ε→0

PX ∈ [t, t+ ε])

ε(1− Pλ)
P(S > X|X ∈ (t, t+ ε))

=
fX(t)

1− Pλ
P(S > t)

fX′(t) = [1− FS(t)]
λe−λt

1− Pλ
, (6.44)



124 Status Updates through M/G/1/1 Queues with HARQ

where FS(t) is the cdf of the service time S. Hence,

φX′(s) = E
(
esX

′
)

=

∫ ∞
0

est (1− FS(t))
λe−λt

1− Pλ
dt

(a)
=

λ

λ− s
1

1− Pλ
− λ

1− Pλ
Pλ−s
λ− s

=
λ(1− Pλ−s)

(λ− s)(1− Pλ)
, (6.45)

where (a) is obtained by using integration by parts with u = 1 − FS(t) and dv
dt =

e−t(λ−s). On the other hand, (6.37) implies

φT (s) = E
(
esT
)

=

∫ ∞
0

fS(t)

Pλ
e−λtest dt =

Pλ−s
Pλ

. (6.46)

Using (6.45) and (6.46), we deduce the moment generating of W ,

φW (s) = E
(
es(
∑M
i=0X

′
i+T)

)
= E

(
esT
)
E
(
E
(
esX

′
)M)

=
Pλ−s
Pλ

∞∑
i=0

(
λ(1− Pλ−s)

(λ− s)(1− Pλ)

)i
(1− Pλ)iPλ

=
(λ− s)Pλ−s
λPλ−s − s

. (6.47)

Using (6.47) and that φX = E
(
esX
)

= λ
λ−s , we get (6.41) from φY (s) = E

(
esX
)
E
(
esW

)
.

Theorem 6.8. The average age of an M/G/1/1 system with preemption is given by,

∆ = λeE(Q) =
1

λPλ
. (6.48)

Proof. Deriving (6.41) once and twice and setting s = 0 gives:

E(Y ) =
1

λPλ
and E(Y 2) =

2

λ2P 2
λ

(
1 + λ

∂Pλ
∂λ

)
(6.49)

Using (6.38) and (6.49) we get E(Q) = 1
λ2P 2

λ
. This last expression and the fact that

λe = λPλ give (6.48).



Optimal Age over Erasure
Channels 7
7.1 Introduction

In the previous chapters we have mostly focused on computing the average age (AoI)
and/or the average peak age (PAoI) given a certain status updating policy. In this
chapter, we take an information-theoretic approach to the age problem and provide a
characterization of the optimal achievable age when the channel used is the erasure
channel and no feedback is assumed. This means that we consider the following
question: Given an erasure channel with no feedback and with input alphabet V and
a source with alphabet U , what is the lowest average age that can be achieved in this
system? To answer this problem we distinguish two cases:

• Case 1: The source alphabet and the channel-input alphabet are the same or
there exists a bijection from U onto V.

• Case 2: The source alphabet and the channel-input alphabet are different and
of different size. This means that there is no bijection such that V is the image
of U by this bijection.

For the first case we derive an exact closed-form expression for the average age and
show that the optimal average age is achieved without any encoding done on the
source symbols. Whereas for the second case, encoding is mandatory and we use
random coding to give an upper and lower bounds on the achievable average age of
the system, as well as an approximation of the lower bound inspired by [76,77].

The rest of this chapter is organized as follows: In Section 7.2, we present the system
model and some definitions which are common to all later sections. In Section 7.3,
we derive the optimal average age for Case 1 and in Section 7.4 we characterize the
optimal achievable region of the average age for Case 2.

125
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Information
source Encoder Erasure

Channel Decoder Destination
U1U2 · · ·Uk V1V2 · · ·Vn Z1Z2 · · ·Zn Û1Û2 · · · Ûk

Sender Receiver

Figure 7.1 – The communication system.

7.2 Preliminaries

We first start by defining the communication system we will study. Fig. 7.1 illustrates
such a system. The following discussion is based on the definitions presented in
Section 1.1:

• The channel : We assume a discrete memoryless erasure channel with erasure
probability ε. We refer to such channel by EC(ε). The channel-input alphabet is
given by V = {0, 1, · · · , q−1}, q being a power of prime, and the channel-output
alphabet by V ∪ {?} = {0, 1, · · · , q− 1, ?}. We also assume there is no feedback
from the receiver. This means that the output of the encoder depends only
on the source messages (or symbols) and the sender does not know whether a
sent symbol was successfully received or not. In addition to that, we assume
that transmitted channel-symbols are received instantaneously. However, there
exists a period Tc between two consecutive channel uses. Thus, we define the
channel-use rate µ = 1

Tc
to be the allowed number of channel uses per second.

• The source: We assume a single discrete memoryless source generating messages
that belong to the set U = {1, 2, · · · , L}. So each symbol in this set is a message
and we will use interchangeably the terms source symbol and message in this
chapter. We also pose k = dlogq(L)e = d ln(L)

ln(q) e where logq(x) for some x > 0
is the base-q logarithm of x. Hence, in order to represent one source symbol
we need k channel-input symbols. This means that there exists an injective
function h(.) that maps every message m ∈ U to a length-k sequence uk ∈ Vk,
with uj ∈ V for 1 ≤ j ≤ k. Thus, h(U) ⊆ Vk. Similar to the channel-use case,
the source symbol generation is assumed periodic with period Ts. Thus, we
define the message generation rate λ = 1

Ts
as the fixed number of source symbols

generated per second. Finally, the reader can notice that, when both the source
alphabet and the channel-input alphabet have the same size, h(U) = V and
k = 1. In this case, we take U = V. In the case where the source alphabet
and channel-input alphabet have different sizes, we focus on strategies induced
by linear codes. For such strategies, without loss of generality and for ease
of notation, we will consider the source alphabet U = Vk and every message
or source symbol to be a random sequence U1, U2, · · · , Uk chosen in an i.i.d
fashion from Vk.

• The encoder and decoder : At the ith channel use, the encoder uses all the
generated source symbols and encodes them into a single channel-input letter, fi :

Ub
iTc
Ts
c → V . The decoder, at the ith channel use, uses all received channel-output
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letters to output an estimate of the latest message that was fully transmitted,
along with its index. Thus, gi : (V ∪{?})i → (U ∪{erasure})×{1, 2, . . . , b iTcTs c}.

In the previous section, we indicated that we are interested in bounding the optimal
achievable average age. Here, we define the concepts of achievable age and optimal
achievable age.

Definition 7.1. We call C = (fi, gi)i≥1 to be a coding scheme where (fi)i≥1 is
the sequence of encoders and (gi)i≥1 is the sequence of decoders. The average age
corresponding to such scheme is denoted by

∆C = lim
τ→∞

1

τ

∫ τ

0
∆C(t)dt,

where ∆C(t) is the instantaneous age.
Such a definition is independent of the choice of the channel. However, for the special
case of the erasure channel with erasure probability ε, the average age relative to the
coding scheme C will be denoted by

∆ε,C = lim
τ→∞

1

τ

∫ τ

0
∆ε,C(t)dt, (7.1)

where ∆ε,C(t) is the instantaneous age.

Definition 7.2. We say that an age D is achievable for an erasure channel with
erasure probability ε (EC(ε)), if ∀δ > 0 there exists a coding scheme C = (fi, gi)i≥1

1

such that
∆ε,C ≤ D + δ, (7.2)

and the error probability on the decoded messages is zero.

Definition 7.3. Given a channel EC(ε), we define the optimal average age ∆ε to be
the minimum achievable average age. Formally,

∆ε = inf
C∈Γ

∆ε,C , (7.3)

where Γ is the set of all possible coding schemes.
The set R = {(ε,D);D ≥ ∆ε and ε ∈ [0, 1]} forms the set of achievable average ages
over all erasure channels.

7.3 Optimal Age with the Same Source & Channel
Alphabets

In this first case, we take k = 1 which means that the source and channel-input
alphabets are the same. We first show that to achieve the optimal age, no encoding is
required and provide the optimal transmission policy. We then compute the optimal
average age.

1Given that the source alphabet is usually fixed, the only variables left to tune in any coding
scheme are the blocklength, the encoder and the decoder.
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7.3.1 The Optimal Transmission Policy

Theorem 7.1. For a channel EC(ε), if the source alphabet and the channel-input
alphabet are the same, then in order to minimize the average age no encoding is
required.

Proof. If an oracle were to give the erasure pattern to the transmitter then the
optimal thing to do from an age perspective is to send the newest source symbol
at the non-erased channel-uses since each message needs only one channel use to
be transmitted. This means that at every channel use the sender is sending the
freshest information. If instead we encode the messages using a coding scheme C
into codewords of length n > 1 then each message will need strictly more than one
channel use to be transmitted, hence, at any instant t and for an arbitrary erasure
pattern, the instantaneous age would be larger than the one that corresponds to the
uncoded messages, i.e. ∆ε,C(t) ≥ ∆ε,uncoded(t). Therefore, ∆ε,C ≥ ∆ε,uncoded. This is
so since with encoded messages, the transmitter is not necessarily sending the freshest
information at every channel use.

Theorem 7.2. For a channel EC(ε), if the source alphabet and the channel-input
alphabet are the same, then the optimal stable transmission policy from an age
perspective is to keep transmitting the last-generated source-symbol until a new one is
generated and discard all previous messages. This is a LCFS system with no buffer
policy.

Proof. Let’s assume that an oracle provide us with the erasure pattern. From
Theorem 7.1 we know that we should not encode the source symbols. It is clear that
at each non-erased channel use we should send the latest update so that the drop in
the instantaneous age is the most important. Indeed, if there is a non-erased channel
use at time t′ and the latest update is generated at tlast then the instantaneous age,
∆opt(t), that corresponds to the LCFS with no buffer policy drops to ∆opt(t) = t′−tlast.
If, instead, we use a different policy Π′ where we send at t′ any message generated
at time t < tlast then its instantaneous age ∆Π′(t) = t′ − t > ∆opt(t). This means
that from t′ onward ∆Π′(t) will be point-wise larger or equal to ∆opt(t), hence the
average age ∆Π′ ≥ ∆opt. This argument shows that the optimal transmission policy
would send the latest generated source symbol at every non-erased channel use while
it can transmit anything at the erased channel uses. However, since in practice the
transmitter do not have access to the erasure pattern beforehand, the policy that
consists of keeping on transmitting the last generated update until a new one is
created satisfies the optimality criterion that is to send the latest generated message
at each non-erased channel use.

For the case where Tc ≤ Ts or µ ≥ λ, the LCFS with no buffer policy leads to the
transmission of all source symbols at least once. Whereas for the case of Tc > Ts or
µ < λ, some messages will be dropped since they will never be sent.
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7.3.2 The Optimal Average Age

Theorem 7.3. Given an erasure channel EC(ε) with channel-use rate µ, a source
with message-generation rate λ and utilization ρ = λ

µ , then the optimal average age
achieved over EC(ε) is:

• For irrational utilization ρ ∈ R \Q,

∆ε =
1

2λ
+

1 + ε

2µ(1− ε)
. (7.4)

• For rational utilization ρ ∈ Q,

∆ε =
l − 1

2lλ
+

1 + ε

2µ(1− ε)
, (7.5)

where ρ = λ
µ can be written in an irreducible form ρ = m

l with m, l ∈ N, l 6= 0
and gcd(m, l) = 1.

Before giving the proof of Theorem 7.3, we need the following lemmas.

Lemma 7.1. Let α ∈ R be an irrational number. Then for n ∈ N,

lim
n→∞

1

n

n−1∑
i=0

[iα] =
1

2
, (7.6)

where [iα] = iα− biαc is the fractional part of iα.

Proof. This lemma is a consequence of Weyl’s equidistribution theorem [69]. A full
proof of this lemma and an overview of the equidistribution theory behind it are
presented in Section 7.6.

Lemma 7.2. Let α ∈ R \Q be a positive rational number. Moreover, assume that
α can be written in an irreducible form as α = m

l , where m,n ∈ N, l 6= 0 and
gcd(m, l) = 1. Then, for n ∈ N,

lim
n→∞

1

n

n−1∑
i=0

[iα] =
l − 1

2l
, (7.7)

where [iα] = iα− biαc is the fractional part of iα.

Proof. A full proof of this lemma is presented in Section 7.6.3.

Proof of Theorem 7.3. In this proof we will use a different approach than the ATA
and DTA presented in Chapter 2. We know that µ = 1

Tc
. In Chapter 1, we saw that

the average age is given by (1.2) which is

∆ε = lim
τ→∞

1

τ

∫ τ

0
∆ε(t)dt.



130 Optimal Age over Erasure Channels

Noticing that τ = τ
Tc
Tc =

(
b τTc c+

[
τ
Tc

])
Tc, with

[
τ
Tc

]
being the fractional part of

τ
Tc
, we can rewrite the average age as

∆ε = lim
τ→∞

1

τ

b τTc c∑
n=1

∫ nTc

(n−1)Tc

∆ε(t)dt+

∫ τ

b τ
Tc
cTc

∆ε(t)dt


= lim

τ→∞

1

τ

b τ
Tc
c∑

n=1

∫ nTc

(n−1)Tc

∆ε(t)dt

= lim
τ→∞

Tc
τ

b τ
Tc
c∑

n=1

1

Tc

∫ nTc

(n−1)Tc

∆ε(t)dt. (7.8)

The second equality is due to the fact that the instantaneous age ∆ε(t) is bounded
over a finite interval. This means that for t ∈ [b τTc cTc, τ ], there exists a positive real
number L > 0 such that

max
t∈[b τ

Tc
cTc,τ ]

∆ε(t) < L.

Given that τ − b τTc cTc < Tc, then

0 ≤ 1

τ

∫ τ

b τ
Tc
cTc

∆ε(t)dt ≤
1

τ
LTc.

Hence,

lim
τ→∞

1

τ

∫ τ

b τ
Tc
cTc

∆ε(t)dt = 0.

Let

Mτ = b τ
Tc
c and ∆ε,n =

1

Tc

∫ nTc

(n−1)Tc

∆ε(t)dt.

Therefore, because

lim
τ→∞

Mτ
τ
Tc

= 1,

(7.8) becomes

∆ε = lim
τ→∞

1

Mτ

Mτ∑
n=1

∆ε,n. (7.9)

At time t ∈ [(n− 1)Tc, nTc],

∆ε(t) = t− u(t) = t− 1

λ
bλ
µ

(btµc −Kn)c,

where u(t) is the timestamp of the last successfully received source symbol at time
t and Kn is the number of transmissions since the newest reception instant before
time nTc of the last successfully received source symbol. For example, if Kn = 0, this
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ε

1− ε
1− ε

ε

1− ε

ε

1− ε
1− ε

Figure 7.2 – Markov chain governing the number of transmissions since the reception
instant of the last successful source symbol.

means that the last successful source symbol was received at the channel-use slot
directly prior to t, in other words it was received at time (n− 1)Tc. Hence,

∆ε,n =
1

Tc

∫ nTc

(n−1)Tc

∆ε(t)dt

=
1

Tc

∫ nTc

(n−1)Tc

(
t− 1

λ
bλ
µ

(btµc −Kn)c
)

dt

=
1

Tc

(∫ nTc

(n−1)Tc

tdt− Tc
λ
bλ
µ

(n− 1−Kn)c

)

=
1

Tc

(
nT 2

c −
T 2
c

2
− Tc
λ
bλ
µ

(n− 1−Kn)c
)

= nTc −
Tc
2
− 1

λ
bλ
µ

(n− 1−Kn)c

=
1

λ

(
λ

µ
(n− 1−Kn)− bλ

µ
(n− 1−Kn)c

)
− 1

µ
(n− 1−Kn) +

n

µ
− 1

2µ

=
1

λ

(
λ

µ
(n− 1−Kn)− bλ

µ
(n− 1−Kn)c

)
− 1

µ
(n− 1−Kn) +

n

µ
− 1

2µ

=
1

2µ
+
Kn

µ
+

1

λ

(
λ

µ
(n− 1−Kn)− bλ

µ
(n− 1−Kn)c

)
(7.10)

where the third equality is due to the following fact: for all t ∈ [(n − 1)Tc, nTc],
btµc = n− 1.

Setting K1 = 0, then for n ≥ 2 we can write Kn as

Kn =

{
Kn−1 + 1 with probability ε
0 with probability 1− ε.

So the Kn’s form a Markov process represented by the Markov chain in Fig. 7.2. This
Markov process is ergodic and has a stationary distribution which is identical to a
geometric random variable K. This means,

P(Kn = 0) = P(K = 0) = 1− ε
P(Kn = i) = P(K = i) = εi(1− ε) ∀ i ≥ 1

and

lim
N→∞

1

N

N∑
n=1

Kn = E(K) =
ε

1− ε
. (7.11)
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Replacing (7.10) in (7.9), we get

∆ε = lim
τ→∞

1

Mτ

Mτ∑
n=1

(
1

2µ
+
Kn

µ
+

1

λ

(
λ

µ
(n− 1−Kn)− bλ

µ
(n− 1−Kn)c

))

= lim
τ→∞

1

Mτ

Mτ∑
n=1

(
1

λ

(
λ

µ
(n− 1−Kn)− bλ

µ
(n− 1−Kn)c

)
+

1

2µ
+
Kn

µ

)

=
1

2µ
+

1

µ
lim
τ→∞

1

Mτ

Mτ∑
n=1

Kn +
1

λ
lim
τ→∞

1

Mτ

Mτ∑
n=1

(
λ
µ(n− 1−Kn)− bλµ(n− 1−Kn)c

)
=

1

2µ
+

E(K)

µ
+

1

λ
lim
τ→∞

1

Mτ

Mτ∑
n=1

(
λ

µ
(n− 1−Kn)− bλ

µ
(n− 1−Kn)c

)

=
1

2µ
+

ε

µ(1− ε)
+

1

λ
lim
τ→∞

1

Mτ

Mτ∑
n=1

[
λ

µ
(n− 1−Kn)

]
(7.12)

where the last two equalities are justified by (7.11) and
[
λ
µ(n− 1−Kn)

]
is the

fractional part of λµ(n− 1−Kn). Observe that ∀ n ≥ 1, Kn ≤ n− 1 and as τ →∞,
Mτ →∞. Therefore, it is clear that the residual process

Rn = (n− 1−Kn)n≥1

and the process (Kn)n≥1 are identically distributed [16]. In addition to that, given
that (Kn)n≥1 is ergodic then so is (Rn)n≥1.

lim
τ→∞

1

Mτ

Mτ∑
n=1

[
λ

µ
(n− 1−Kn)

]
= lim

N→∞

1

N

N∑
n=1

[
Rn

λ

µ

]

= lim
N→∞

1

N

N∑
n=1

[
n
λ

µ

]
.

At this point, we need to distinguish between two cases:

• ρ = λ
µ is irrational. Then, by Lemma 7.1,

lim
Mτ→∞

1

Mτ

Mτ∑
n=1

[
n
λ

µ

]
=

1

2
.

Using this result in (7.12) we get (7.4).

• ρ = λ
µ = m

l is rational with m, l ∈ N, l 6= 0 and gcd(m, l) = 1. Then, by
Lemma 7.2,

lim
Mτ→∞

1

Mτ

Mτ∑
n=1

[
n
λ

µ

]
=
l − 1

2l
.

Using this result in (7.12) we get (7.5).
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7.4 Optimal Age with Different Source & Channel
alphabets

In this setup, we consider the model described Section 7.2: The channel is a q − ary
erasure channel EC(ε) with no feedback and an input alphabet V = {0, 1, · · · , q − 1}.
The source alphabet is U = Vk where k > 1. In addition to that we consider a special
case where λ = µ, so that at every channel use, a new source symbol is generated.
Without loss of generality, let’s assume λ = µ = 1. The difference between the source
alphabet and the channel-input alphabet as well as the presence of erasures impose
the use of channel coding on the generated source symbols before their transmissions.
However, the absence of feedback forces us to use fixed blocklength codes so that
the transmitter and the receiver are always synchronized. We will focus on coding
schemes that are induced by linear codes, so we will assume that V = Fq, where q is
a power of a prime number. More precisely, for the lth message to be transmitted, let
fl : Vk → Vn be an (n, k) linear code. We sequentially transmit messages generated
from the source as follows: Assume that the jth message to be transmitted (which
belongs to Vk) is generated at the instant tl and discard all previous messages. We
encode this source symbol using fl, and obtain n symbols in V . Finally, we transmit
the n V-symbols during the next n channel uses (i.e., at tl,. . . , tl + n− 1). Fig. 7.1
illustrates this concept. The encoders (fl)l≥1 used to encode different messages can
be different. This means that the encoder-decoder pairs (fl, gl)l≥1 can be different.
We denote a coding scheme defined by a given sequence of (fl, gl)l≥1 that is induced
by (n, k) linear codes as C(n, k).

7.4.1 The Optimal Transmission Policy

Definition 7.4. An (n, k)−linear code is called maximum distance separable (MDS)
if it achieves the Singleton bound:

d = n− k + 1,

with d denoting the minimum distance2 between the codewords of the code.

Proposition 7.1. If the encoder f generates an MDS code, then

• any k columns of the generator matrix G are linearly independent,

• any subset of size k taken from a length-n codeword is sufficient to recover, with
probability 1, the transmitted message.

This means that if the channel is an EC(ε), the decoder needs to observe only k
unerased channel-input symbols in order to perfectly decode the transmitted source
symbol.

The proof of Proposition 7.1 is outside the scope of this text and we refer the reader
to [55] for more details. The following theorem presents the optimal channel codes
from an age point of view when the channel does not have any feedback.

2See [55] for more details.
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Theorem 7.4. Consider an EC(ε) with no feedback. Among all fixed-blocklength
linear codes, MDS codes are age optimal. This means, to achieve age optimality, all
codes used in the scheme C(n, k) should be MDS.

Proof. Fix two positive integers k and n, an erasure pattern E . Consider there exists a
coding scheme C(n, k) where all encoders (fC,l)l≥1 use MDS codes and another scheme
C′(n, k) that uses the same encoders as C(n, k) except for the pth message for which
the encoder, fC′,p, uses a non-MDS linear code. This means that (fC,l)l 6=p = (fC′,l)l 6=p.
Notice that, for the pth message encoded using fC,p and fC′,p and for fixed n and
k, the MDS code has a minimum distance dC,p = n − k + 1 larger than that of
any non-MDS linear code used by fC′,p. This means that if the decoder g correctly
decodes the channel output Zn using fC′,p, then it will certainly decode Zn correctly
using fC,p. However, the converse is not true. Now consider a source with alphabet
Vk generating messages and sending them through two parallel ECs(ε) but with the
same erasure pattern E . For the first channel we use the coding scheme C′(n, k), while
for the second channel we use the coding scheme C(n, k). We assume the scenario
where both schemes C(n, k) and C′(n, k) decode correctly exactly the same messages.
This is a worst case scenario from the scheme C point of view since it can do better.
However, even with such an assumption, the instantaneous age ∆ε,C(t), relative to the
scheme C, is pointwise smaller or equal than the instantaneous age ∆ε,C′(t) relative
to the scheme C′. We use Fig. 7.3 to prove this claim: Given that the transmission of
each message takes exactly n channel uses and that the successful updates (source
symbols) are the same whether using C or C′, then if the transmission of the pth

update begins at time t1, we have ∆ε,C(t1) = ∆ε,C′(t1). If the pth message is declared
erased by both schemes, both instantaneous ages behave similarly and increase by
nµ = n seconds. In the case of a successful transmission of the pth message, ∆ε,C′(t)
increases linearly till the nth channel use, at which instant it drops to (n−1)µ = n−1
seconds. Whereas, ∆ε,C(t) increases linearly till the kth successful channel use, at
which instant it drops to (k − 1)µ = k − 1 seconds. ∆ε,C(t) then increases linearly
to n − 1 seconds at the end of the transmission. Since k ≥ n, this means that
∆ε,C(t) ≤ ∆ε,C′(t), ∀ t > 0. This result also implies that the average age relative to C,
∆ε,C , is smaller or equal to ∆ε,C′ , the average age relative to C′.

Now we are ready to present the optimal transmission policy for a coding scheme
C(n, k) with λ = µ = 1.

Lemma 7.3. For λ = µ, at every channel use, a new source symbol is generated.
The optimal transmission scheme from an age point of view is to use an MDS codes,
and, whenever a message finishes its transmission after n channel uses, we begin
transmitting, at the (n+ 1)th channel use, the source symbol generated at that same
time instant. This means that when the packet (or message) generated at time t0
finishes its transmission at time t′ = t0 + n− 1, the next packet to be transmitted at
t0 + n is the one generated at this same time instant. All messages generated between
t0 + 1 and t0 + n− 1 are dropped.

Proof. Storing any number of packets and sending them will lead to a non-zero
waiting time incurred by the stored messages since n ≥ k > 1. Whereas the policy
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beginning of transmission
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∆ε,C(t)
∆ε,C′ (t)

x channel erasure

Figure 7.3 – Variation of the instantaneous age for an MDS code C and a non-MDS
code C′. We assume the erasure probability ε = 0.4, n = 10 and k = 3.

presented in Lemma 7.3 guarantees zero waiting time and whenever the system is
idle, the freshest message is transmitted. Moreover, since we are assuming a constant
service-time, then using [67, Lemma 3] we deduce that the just-in-time policy is
optimal. In our case, the just-in-time policy translates into the scheme described in
Lemma 7.3.

Theorem 7.4 shows that for a given couple (n, k), the optimal coding scheme is the
one that uses only MDS codes. However, an explicit construction of such codes is not
available for all values of (n, k). In the rest of this paper, we use random codes to give
an upper bound on the optimal average age achieved using MDS codes. The use of
random coding to construct fountain-like codes was used by Shamai et al. in [62]. In
this paper, the authors show that without any randomness we cannot properly define
the notion of fountain capacity because there is always a case where the deterministic
fountain codes cannot achieve any positive rate with an error probability tending
to 0. Nevertheless, we use the rateless (or fountain) codes, previously adopted in
Chapter 6, to give a lower bound on the optimal achievable average-age ∆ε. As shown
in [62], these codes cannot be implemented in practice, that’s why we do not consider
them part of the possible coding schemes.

7.4.2 The Random Code

Before presenting our age analysis, we begin by defining the encoder and decoder used
in this setup. Consider a C(n, k) coding scheme. The encoder-decoder pair (fl, gl),
corresponding to the lth message to be transmitted, is constructed as follows: Since
we are interested in linear codes, we use the generator matrix in order to create our
code. For that, we choose the n columns of the generator matrix Gl independently
and uniformly at random from the set Vk \ {0k}, where 0k is the sequence of k zeros.
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We denote by (g1,g2, · · · ,gn) 3 the n columns of Gl. Thus

Gl =
[
g1 g2 · · · gn.

]
Once this matrix is generated, it is shared between the encoder and the decoder. For
each new message to be transmitted, we generate a new generator matrix. However,
the encoder and decoder work in a similar fashion for all messages:

• Let u = uk =
[
u1 u2 · · · uk

]
∈ Vk be the lth message to be sent. Then, we

transmit, at the ith channel use, the following coded bit zi

zi =
k∑
j=1

ujgji,

where gji is the jth element of gi. For each message u, we send n coded symbols.
Hence, the encoder is given by:

fl : Vk → Vn

u 7→ z = fl(u) = uTGl.

• The decoder decodes on the fly. Whenever it receives k linearly independent
coded symbols, it decodes the message. Otherwise, it declares the packet to be
erased.

7.4.3 Average Age of Random Codes

Fix the couple (n, k) and let C1(n, k) be a given coding scheme generated as described
in §7.4.2. We define ∆ε,(n,k) to be the expected average age of the coding scheme
induced by a random linear (n, k)-scheme generated as above.

Definition 7.5. For fixed (n, k),

∆ε,(n,k) = EC(n,k) (∆ε,C) , (7.13)

where the expectation is taken over all random linear (n, k)-schemes C(n, k).

Due to the ergodicity of the system, almost surely, for any randomly generated
(n, k)-scheme C, we obtain ∆ε,C = ∆ε,C1 . Thus,

∆ε,(n,k) = EC(n,k) (∆ε,C) = ∆ε,C1 . (7.14)

The contribution of the random coding argument in this context is the following:
if we show that, for a given (n, k)-scheme C, ∆ε,C < ∞, then ∆ε,(n,k) = ∆ε,C < ∞
and there must exist a linear (n, k)-scheme C′ such that ∆ε,C′ ≤ ∆ε,(n,k). Thus, the
optimal average age ∆ε ≤ ∆ε,C′ ≤ ∆ε,(n,k) for all possible values of n4. Therefore,

∆ε ≤ min
n≥k

∆ε,(n,k). (7.15)

Equation (7.15) gives an upper bound on the optimal average age. In the rest of this
chapter we will focus on characterizing this bound.

3In this chapter, we assume all vectors to be column vectors.
4The value of k is considered fixed since we assume we have no control over the source alphabet.
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Figure 7.4 – Variation of the instantaneous age when using a random code C with
n = 5, k = 3. We assume we begin observing after a successful reception. Since
λ = µ = 1 then the interval between channel uses is one second.

7.4.4 Exact Upper Bound on the Optimal Average Age

Preliminaries

Let C be a randomly generated (n, k)-scheme. Fig. 7.4 illustrates the variation of
the instantaneous age ∆ε,C(t) when n = 5 and k = 3. Without loss of generality,
we assume we begin observing right after the reception of a successful packet. We
denote by tj the generation time of the jth successful packet and by t′j the end of
transmission time of this packet. We notice that for the jth successfully received
message, the instantaneous age at the end of transmission is n− 1 since we assume
the transmission to begin at the same time as a packet is generated. Thus, when the
transmission of this successful packet ends at time t′j after n channel uses, the age of
this packet is ∆ε,C(t

′
j) = n− 1.

In the scenario depicted in Fig. 7.4, the first packet u1 is generated and encoded
into a codeword z1 = (z11, z12, · · · , z1n) of length n = 5 at time t = 1. At that same
instant, z11, the first symbol of z1, is sent and received at the monitor. Since it is
the first symbol, z11 is linearly independent. At time t = 2, the coded symbol z12 is
erased but the coded symbol z13, which is linearly independent from z11, is received
at t = 3. The forth coded symbol is also erased and the last coded symbol z15 is
received. However, since z15 is linearly dependent on the previously received symbols,
namely z11 and z13, the first packet u1 is declared erased by the decoder and ∆ε,C(t)
increases linearly by an additional n = 5 seconds. The packet generated at t1 = 6 is
a successful update since the monitor receives k = 3 linearly independent symbols.
Therefore, ∆ε,C(t) drops to n− 1 at t′1 = 10. An interesting observation is that, for a
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0 1 · · · s · · · k
p0 = ε̄ = 1− ε

ε 1− p1
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1− ps
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ps = ε̄qs(qk−s−1)

qk−1

1

pk−1

Figure 7.5 – Markov chain representing the dimension of a codeword at the receiver.

given successful packet, once k linearly independent coded symbols are received, any
additional coded symbol is linearly dependent on them.

In this section we use a notation slightly different than the one introduced in Chapter 2:

• Yj = t′j−t′j−1 is the interdeparture time between the jth and j − 1th successfully
received updates.

• Tj is the number of channel uses between the decoding instant of the jth

successful packet and its generation time tj .

• R(τ) = max {n : t′n ≤ τ} is the number of successfully received updates in the
interval [0, τ ].

• For a given packet i (not necessarily successful), Bi is the number of channel
uses (or sent coded symbols) in order to receive exactly k linearly independent
equations (coded symbols). Thus, a packet i is correctly decoded if Bi ≤ n for
a fixed n ≥ k.

Since the channel is memoryless and the different codes used in the scheme C are
generated independently and in the same fashion, then the process (Bi)i≥1 is i.i.d
with a distribution identical to the random variable B.

The Distribution of B

Fig. 7.5 shows the Markov chain that represents the dimension, at the receiver, of the
codeword relative to a certain update. The monitor receives the first coded symbol
of a new codeword with probability p0 = ε̄ = 1− ε and hence the dimension of this
codeword at the receiver jumps to 1. If the first coded symbol is erased then the
dimension of the codeword stays at 0. If the monitor has already received s linearly
independent coded symbols, then it will receive the s+1th linearly independent coded
symbol if: (i) The next transmitted coded symbol is not erased, and, (ii) the next
transmitted coded symbol is linearly independent of all previously received symbols.
Event (i) occurs with probability ε̄ = 1− ε and event (ii) happens with probability
qs(qk−s−1)

qk−1
. Hence, for a given message, the dimension of its codeword at the receiver

jumps from s to s+ 1 with probability

ps =
ε̄qs(qk−s − 1)

qk − 1
,
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where 0 ≤ s ≤ k − 1. If the next transmitted coded symbol is erased or linearly
dependent on the previously received coded symbols, then the dimension of the
codeword at the monitor stays s. As discussed before, once the monitor receives k
linearly independent coded symbols, the dimension of the codeword stays at k and
all subsequent coded symbols are linearly dependent on the previously non-erased
coded symbols.

From the above description, we can deduce that B is the number of visits to the
states {0, 1, · · · , k − 1} before reaching state k for the first time.

Remark 7.1. Since ps = ε̄(qk−qs)
qk−1

, then ps is a decreasing function of s. This
means that whenever the decoder receives a non-erased coded symbol that is linearly
independent from all previously received coded symbols, and the system jumps to state
s, then it becomes harder to receive a new linearly independent coded symbol. That’s
why, the system has a higher probability to spend more time in state s than in previous
states.

Definition 7.6. Let Ls be the number of trials to pass from state s to state s + 1
in Fig. 7.5, 0 ≤ s ≤ k − 1. Ls has a geometric distribution with success probability
ps = ε̄qs(qk−s−1)

qk−1
. Thus,

P(Ls = l) = (1− ps)l−1ps, l = 1, 2, 3, · · ·

Corollary 7.1. From Definition 7.6, we can write

B =
k−1∑
s=0

Ls, (7.16)

where the Ls’s are independent.

Lemma 7.4. The moment generating function of the random variable B is

φB(t) = E
(
etB
)

=

(
k−1∏
s=0

(
qk − qs

))(k−1∏
s=0

ε̄et

qk − 1 + et(1− εqk − ε̄qs)

)
. (7.17)

Proof.

E
(
etB
)

= E
(
et
∑k−1
s=0 Ls

)
=

k−1∏
s=0

E
(
etLs

)
=

k−1∏
s=0

∞∑
l=1

etl(1− ps)l−1ps

=
k−1∏
s=0

pse
t

1− (1− ps)et
,

where the third equality is because the (Ls)
k−1
s=0 are mutually independent. Replacing

ps by its expression ps = ε̄qs(qk−s−1)
qk−1

, we obtain (7.17).
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Corollary 7.2. The expected value of B is

E(B) =
qk − 1

1− ε

k−1∑
s=0

1

qk − qs
. (7.18)

Proof.

E(B) =
dφB(t)

dt

∣∣∣∣
t=0

,

where φB(t) is given by (7.17).

Remark 7.2. The expected value of B can be also computed by using (7.16):

E(B) =
k−1∑
s=0

E(Ls) =
k−1∑
s=0

1

ps
.

Packet Erasure Probability

A packet or source symbol j is correctly received if for a given blocklength n, we have
Bj ≤ n. Otherwise, we declare the packet to be lost. Thus, we define the packet
erasure probability εp to be

εp = P(B > n) =
∞∑

l=n+1

P(B = l), (7.19)

where the distribution of B is given by Lemma 7.4. We call 1− εp = P(B ≤ n) to be
the packet success probability.

The Age Analysis

Definition 7.7. In every interdeparture interval Yj, we call Hj the number of erased
packets before the reception of a successful update. Hj is geometric with success
probability εp, so

P(Hj = x) = εxp(1− εp), x = 0, 1, 2, · · ·

We use Definition 7.7 to characterize the interdeparture interval. Indeed, any inter-
departure interval is the sum of two components: The time spending unsuccessful
packets followed by the service time of the successful update. Since each transmitted
packet takes n channel uses and µ = 1, then the jth interdeparture time can be
written as

Yj =
n

µ
Hj +

n

µ
= n(Hj + 1), j ≥ 1. (7.20)

Given that we assume a memoryless erasure channel and independently generated
packets, then the process that consists of the number of erased packets (Hj)j≥1 is
i.i.d. Since the interdeparture interval Yj is function of only Hj then the sequence
(Yj)j≥1 is also i.i.d. Hence the following lemma:
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Lemma 7.5. The process R(τ) = max {n : t′n ≤ τ} is a renewal process with the
interdeparture times (Yj)j≥1 being the renewal intervals.

The importance of Lemma 7.5 stems from the fact that it shows that the instantaneous
age process ∆ε,C(t) is mean-ergodic (see Definition 2.1).

Lemma 7.6.
∆ε,C = lim

τ→∞

1

τ

∫ τ

0
∆ε,C(t)dt =

E(Q)

E(Y )
, (7.21)

where Q is the steady-state counterpart of the shaded area Qj shown in Fig. 7.4 and
Y is the steady-state counterpart of the interdeparture interval Yj.

Proof. We will use the DTA introduced in Section 2.3 to compute the average age.
By Lemma 7.5, R(τ) forms a renewal process and hence by [58] we know that
limτ→∞

R(τ)
τ = 1

E(Y ) , where Y is the steady-state interdeparture random variable. By

defining Qj =
∫ t′j
t′j−1

∆ε,C(t)dt to be the reward function over the renewal period Yj ,
we get using renewal reward theory [16,58] that

∆ε,C = lim
τ→∞

1

τ

∫ τ

0
∆ε,C(t)dt = lim

τ→∞

R(τ)

τ

1

R(τ)

R(τ)∑
j=1

Qj =
E(Qj)

E(Yj)
<∞.

Before computing the average age, we still need one more lemma that gives the
distribution of the random variable Tj , j ≥ 1.

Lemma 7.7. Let T be the steady-state counterpart of the number of channel uses Tj
between the decoding instant of the jth successful packet and its generation time tj.
Then,

P(T = x) =
P(B = x)1{x≤n}

P(B ≤ n)
, (7.22)

where 1{.} is the indicator function.

Proof. A packet is successfully decoded if the decoder receives exactly k linearly
independent coded symbols in less than n channel uses. Thus, for the jth successful
packet we have that

P(Tj = x) = P(B = x|B ≤ n).

We are now ready to give the main theorem of this section.

Theorem 7.5. Assume an EC(ε) and an (n, k)-coding scheme C as defined in Sec-
tion 7.4.2. The average age ∆ε,C corresponding to such setup is given by

∆ε,C = E(T )− 1 +
n(1 + εp)

2(1− εp)
, (7.23)

where εp is the packet erasure probability given by (7.19).
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Proof. From (7.21), we know that we need to compute E(Q) and E(Y ). We start
with E(Y ). We have shown that for any j ≥ 1, Yj = n(Hj + 1). Thus, in steady-state,
we can write Y = n(H + 1), where H is the steady-state counterpart of Hj . Hence,

E(Y ) = n(E(H) + 1) = n

(
εp

1− εp
+ 1

)
=

n

1− εp
, (7.24)

where the second equality is due to the fact that H has a geometric distribution with
success probability εp as seen in Definition 7.7.

Now we turn to E(Q). For any j ≥ 1, the shaded area Qj shown in Fig. 7.4 is the
sum of the areas of two trapezoids: a large trapezoid with height n(Hj + Tj) and a
smaller one with height n− Tj . Thus,

Qj =
(n− 1 + n− 1 + nHj + Tj)(nHj + Tj)

2
+

(Tj − 1 + n− 1)(n− Tj)
2

=
1

2

(
2n(n− 1)Hj + 2nTj(1 +Hj) + n2H2

j + n(n− 2)
)
.

Note that Hj and Tj are independent. Therefore,

E(Qj) =
1

2

(
E
(
2n(n− 1)Hj + 2nTj(1 +Hj) + n2H2

j + n(n− 2)
))

= n(n− 1)E(Hj) + nE(Tj(1 +Hj)) +
n2E

(
H2
j

)
2

+
n(n− 2)

2

= n(n− 1)E(Hj) + nE(Tj)E(1 +Hj) +
n2E

(
H2
j

)
2

+
n(n− 2)

2
.

In steady-state, we obtain

E(Q) = n(n− 1)E(H) + nE(T )E(1 +H) +
n2E

(
H2
)

2
+
n(n− 2)

2
. (7.25)

Replacing E(Y ) and E(Q) in (7.21) by their expressions in (7.24) and (7.25), we
obtain (7.23).

In the expression of ∆ε,C , E(T ) and εp cannot be easily expressed in function of ε, k
and n. That is why we study ∆ε,C in the next two subsections by presenting upper
and lower bounds on the expression in (7.23).

7.4.5 Bounding ∆ε,C

Definition 7.8. We define B̃ to be the sum of k i.i.d random variables distributed
like L0. We also define B̂ to be the sum of k i.i.d random variables distributed like
Lk−1. Formally,

B̃ =

k−1∑
i=0

L
(i)
0 and B̂ =

k−1∑
i=0

L
(i)
k−1, (7.26)

where L0 is geometrically distributed with success probability ε̄ = 1− ε and Lk−1 is
also geometrically distributed with success probability pk−1 = ε̄qk−1(q−1)

qk−1
.
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Lemma 7.8. The random variables B̃ and B̂ defined in Definition 7.8 are both
negative binomials with

P(B̃ = x) =

(
x− 1

k − 1

)
(1− ε)kεx−k,

and

P(B̂ = x) =

(
x− 1

k − 1

)
(pk−1)k(1− pk−1)x−k,

where x = k, k + 1, k + 2, etc.

Proof. B̃ is the sum of k i.i.d geometric random variables with success probability
1 − ε. Similarly, B̂ is the sum of k i.i.d geometric random variables with success
probability pk−1.

Lemma 7.9. Given B =
∑k−1

s=0 Ls and B̃ and B̂ as defined in Definition 7.8, the
following relations hold for n ≥ k:

1. P(B̃ ≤ n) ≥ P(B ≤ n),

2. E(B̃) ≤ E(B),

3. P(B̂ ≤ n) ≤ P(B ≤ n).

4. E(B̂) ≥ E(B),

Proof. We use a coupling argument to prove these relations. We first start by
proving the first two identities. First notice that the probabilities ps = ε̄qs(qk−s−1)

qk−1
are decreasing in s, where 0 ≤ s ≤ k − 1. This means that

p0 ≥ p1 ≥ · · · ≥ pk−1.

Let B̃ =
∑k−1

s=0 L
(s)
0 , with the (L

(s)
0 )k−1

s=0 being i.i.d and similarly distributed to L0.
Define the random variables As = L

(s)
0 + Js with L(s)

0 and Js independent and Js
distributed as follows, for 0 ≤ s ≤ k − 1:

P(Js = x) =


ps
p0

if x = 0
p0−ps
p0

(1− ps)x−1ps if x = 1, 2, 3 · · ·
0 else.
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Therefore, the distribution of As, for 0 ≤ s ≤ k − 1 and for x ≥ 1, is

P(As = x) = P(L
(s)
0 + Js = x)

= P(Js = x− L(s)
0 )

=
x∑
l=1

P(L
(s)
0 = l)P(Js = x− l|L(s)

0 = l)

=

x∑
l=1

(1− p0)l−1p0

(
ps
p0
1{x−l=0} +

p0 − ps
p0

(1− ps)x−l−1ps1{x−l 6=0}

)

= ps(1− p0)x−1 + ps(p0 − ps)(1− ps)x−2
x−1∑
l=1

(
1− p0

1− ps

)l−1

= ps(1− p0)x−1 + ps(p0 − ps)(1− ps)x−1

1−
(

1−p0
1−ps

)x−1

p0 − ps


= ps(1− ps)x−1.

This means that, for any s ∈ {0, 1, · · · , k− 1}, As is distributed similarly to Ls: They
are both geometric random variables with success probability ps. Since the sequence
(L

(s)
0 )k−1

s=0 is i.i.d and, for any s, the variable Js is independent of L
(s)
0 and independent

of Ji, i 6= s, then, for any s 6= i, As and Ai are independent. Define

O =

k−1∑
s=0

As = B̃ +

k−1∑
s=0

Js.

Then, O and B =
∑k−1

s=0 Ls are identically distributed, i.e. P(O = x) = P(B = x)
∀ x ≥ 1. Using this fact and noticing that O ≥ B̃ with probability 1, we deduce that
the event {O ≤ n} is a subset of the event {B̃ ≤ n}. Hence,

P(B ≤ n) = P(O ≤ n) ≤ P(B̃ ≤ n).

This inequality also implies P(B ≥ n) ≥ P(B̃ ≥ n). To prove item 2., we first notice
that

E(O) = E(B̃) +
k−1∑
s=0

E(Js).

Since Js ≥ 0 for any s, then E(O) ≥ E(B̃). Given that O and B are identically
distributed, then

E(O) = E(B) ≥ E(B̃).

To prove items 3. and 4. of Lemma 7.9 we use a similar argument as the one used for
items 1. and 2.. However, here, we define As = Ls + Js with Ls and Js independent
and Js distributed as follows, for 0 ≤ s ≤ k − 1:

P(Js = x) =


pk−1

ps
if x = 0

ps−pk−1

ps
(1− pk−1)x−1pk−1 if x = 1, 2, 3 · · ·

0 else.



7.4. Optimal Age with Different Source & Channel alphabets 145

In this case, for any s, As has the same distribution as Lk−1. Since (Ls)
k
s=1 are

independent and, for any s, Js is independent of Ls then, for any s 6= i, As and Ai
are independent and identically distributed. Define

O =

k−1∑
s=0

As = B +

k−1∑
s=0

Js.

Then, O and B̂ =
∑k−1

s=0 L
(s)
k−1 are identically distributed, i.e. P(O = x) = P(B̂ = x)

∀ x ≥ 1. Using this fact and noticing that O ≥ B with probability 1, we deduce that
the event {O ≤ n} is a subset of the event {B ≤ n}. Hence,

P(B̂ ≤ n) = P(O ≤ n) ≤ P(B ≤ n).

This inequality also implies P(B̂ ≥ n) ≥ P(B ≥ n). To prove item 4., we first notice
that

E(O) = E(B) +
k−1∑
s=0

E(Js).

Since Js ≥ 0 for any s, then E(O) ≥ E(B). Given that O and B̂ are identically
distributed, then

E(O) = E(B̂) ≥ E(B).

Lemma 7.9 can be interpreted as follows: B̃ can be seen as the number of channel uses
in order to receive exactly k linearly independent coded symbols when any k coded
symbols are linearly independent. This means that B̃ corresponds to the number
of channel uses needed to decode a packet when the encoders of the (n, k)-scheme
only use MDS codes. Hence, B̃ is equivalent to the number of channel uses needed to
receive exactly k non-erased coded symbols. Intuitively, we would expect to need a
number B̃ of channel uses to receive k non-erased coded symbols which is smaller
than the number B needed to receive k linearly independent coded symbols. This
explains the intuition behind items 1. and 2. in Lemma 7.9. On the opposite side of
the spectrum, B̂ can be seen as a worst case scenario since the jump from state s
to state s+ 1 in Fig. 7.5 occurs with the smallest possible probability, namely pk−1.
This discussion leads us to the idea that ∆ε,C could be upper bounded by the average
age corresponding to a coding system with B̂ as the number of channel uses need to
receive exactly k linearly independent coded symbols. Similarly, ∆ε,C could be lower
bounded by the average age achieved using only MDS codes with B̃ as the number
of channel uses needed to receive k linearly independent coded symbols.

Upper Bound on ∆ε,C

Recall from Theorem 7.5 that

∆ε,C = E(T )− 1 +
n(1 + εp)

2(1− εp)
.



146 Optimal Age over Erasure Channels

Based on Lemma 7.9 and Lemma 7.7, we can write

E(T ) =

n∑
x=k

x
P(B = x)

P(B ≤ n)
=

E(B1{B≤n})

P(B ≤ n)

≤
E(B̂1{B̂≤n})

P(B̂ ≤ n)

=
n∑
x=k

x
P(B̂ = x)

P(B̂ ≤ n)
. (7.27)

From Lemma 7.8, we know that B̂ is a negative binomial random variable. Hence
the bound in (7.27) becomes

E(T ) ≤
n∑
x=k

x
P(B̂ = x)

P(B̂ ≤ n)

=
n∑
x=k

x

(
x−1
k−1

)
(1− pk−1)x−kpk−1

k

P(B̂ ≤ n)

=
k

P(B̂ ≤ n)

n∑
x=k

(
x

k

)
(1− pk−1)x−k(pk−1)k. (7.28)

Let ˆ̂
B =

∑k
i=0 L

(i)
k−1, where (L

(i)
k−1)ki=0 are i.i.d with a marginal distribution identical

to Lk−1. Hence
ˆ̂
B is also a negative binomial and

P(
ˆ̂
B = x) =

(
x− 1

k

)
(1− pk−1)x−k−1(pk−1)k+1, x ≥ k + 1.

We use the same trick as in [76] and set x′ = x+ 1 in (7.28). This leads to

E(T ) ≤ k

P(B̂ ≤ n)

n+1∑
x′=k+1

(
x′ − 1

k

)
(1− pk−1)x

′−k−1(pk−1)k =
kP(

ˆ̂
B ≤ n+ 1)

pk−1P(B̂ ≤ n)
,

(7.29)

where P(
ˆ̂
B ≤ n+ 1) =

∑n+1
x=k+1

(
x−1
k

)
(1− pk−1)x−k−1(pk−1)k+1. In addition to that,

we know from Lemma 7.9 that

εp = P(B ≥ n+ 1) ≤ P(B̂ ≥ n+ 1).

This means that 1+εp
1−εp ≤

1+P(B̂≥n+1)

1−P(B̂≥n+1)
. Using this result and (7.29) on ∆ε,C , we get

∆ε,C ≤
kP(

ˆ̂
B ≤ n+ 1)

pk−1P(B̂ ≤ n)
− 1 +

n
(

1 + P(B̂ ≥ n+ 1)
)

2
(

1− P(B̂ ≥ n+ 1)
)

=
2npk−1 − pk−1P(B̂ ≤ n)(n+ 2) + 2kP(

ˆ̂
B ≤ n+ 1)

2pk−1P(B̂ ≤ n)
,
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where the second equality is obtained by using P(B̂ ≥ n+ 1) = 1− P(B̂ ≤ n). We
denote by ∆ub

ε,C the upper we just found. Thus,

∆ub
ε,C =

2npk−1 − pk−1P(B̂ ≤ n)(n+ 2) + 2kP(
ˆ̂
B ≤ n+ 1)

2pk−1P(B̂ ≤ n)
. (7.30)

Lower Bound on ∆ε,C

Let ˜̃B =
∑k

i=0 L
(i)
0 , where (L

(i)
0 )ki=0 are i.i.d with a marginal distribution identical to

L0. Hence
˜̃B is also a negative binomial and

P( ˜̃B = x) =

(
x− 1

k

)
εx−k−1(1− ε)k+1, x ≥ k + 1.

Using Lemma 7.9 and an argument identical to that used for the computation of the
upper bound ∆ub

ε,C we show that ∆ε,C ≥ ∆lb
ε,(n,k), where

∆lb
ε,(n,k) =

2n(1− ε)− (1− ε)P(B̃ ≤ n)(n+ 2) + 2kP( ˜̃B ≤ n+ 1)

2(1− ε)P(B̃ ≤ n)
. (7.31)

Remark 7.3. The lower bound found here is similar to the average age derived in [76]
for the finite redundancy (FR) case. However, the time scale is different since Yates
et al. in [76] assume the source generates a new update at the same instant it finishes
transmitting the previous one. Whereas in our case we assume we generate and begin
transmitting a new packet 1

µ seconds after the last update finishes transmission.

7.4.6 Age-Optimal Codes

We have already discussed that the lower bound on ∆ε,C , ∆lb
ε,(n,k), corresponds to the

average age when the (n, k)-scheme uses only MDS codes with B̃ as the number of
channel uses needed to receive k linearly independent coded symbols. Recall from
Lemma 7.3 that, for a given couple (n, k), using an MDS code is optimal. This
observation gives a different explanation on why the expression found in (7.31) is
indeed a lower bound on the average age corresponding to a scheme using any other
type of codes than MDS, in particular a code generated randomly. This means that
the lower bound is universal over all codes and the optimal achievable age

∆ub
ε,C ≥ ∆ε,C ≥ ∆ε ≥ min

n≥k
∆lb
ε,(n,k), (7.32)

where C is an (n, k)-random code. However, for a given (n, k), an explicit construction
of an MDS code is not always available. In this section, we show that if the channel-
input alphabet is large enough, then random codes are age-optimal.

Theorem 7.6. Fix a couple (n, k). We have that ∀ δ > 0, ∃q0 > 0 such that ∀ q ≥ q0,
there exists an (n, k)-random code C such that

|∆ε,C −∆lb
ε,(n,k)| < δ. (7.33)
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This means that for a channel-input alphabet large enough (q large), random codes
are age-optimal and

∆ε
.
= min

n≥k
∆ε,C , (7.34)

where C is an (n, k)-random code and the dot above the equal sign refers to the fact
that the difference between the two sides approaches zero as q gets large.

Proof. For a given random code C, recall that

∆ε,C = E(T )− 1 +
n(1 + εp)

2(1− εp)
.

We notice that E(T ) and εp both depend only on the distribution of B =
∑k−1

s=0 Ls.
However, for any s ∈ {0, 1, · · · , k − 1},

lim
q→∞

ps = lim
q→∞

(1− ε)q
k − qs

qk − 1
= 1− ε = p0.

This means that, for any s, Ls converges in distribution to L0 as q →∞. Therefore,
B converges in distribution to B̃ =

∑k−1
s=0 L

(s)
0 , as q → ∞. Hence, as q → ∞, ∆ε,C

converges to ∆lb
ε,(n,k). So, for q large enough, we can write

∆ε,C = ∆ε,(n,k)
.
= ∆lb

ε,(n,k).

From (7.15), we know that the optimal age, for a given q, is ∆ε ≤ minn≥k ∆ε,(n,k).
For large enough q, we have ∆ε,(n,k)

.
= ∆lb

ε,(n,k). This means that asymptotically,
∆ε≤̇minn≥k ∆lb

ε,(n,k). However, from (7.32), we have that ∆ε ≥ minn≥k ∆lb
ε,(n,k) for

any q. Therefore, asymptotically

∆ε
.
= min

n≥k
∆lb
ε,(n,k).

7.4.7 Other Bounds and Approximations

Upper Bounding the Lower Bound

In Remark 7.3, we discussed how the lower bound found in (7.31) is similar, up to
a time scale difference, to the average age computed by Yates et al. in [76, Section
3]. In this paper, the authors present a tight upper bound on the computed average
age. We borrow the same techniques as in [76, Section 3.A] to upper bound ∆lb

ε,(n,k).
Interestingly, simulations will show that the upper bound to ∆lb

ε,(n,k) is a tight
approximation to ∆ε,C , the average age achieved when using a (n, k)-random code C.

Recall that

∆lb
ε,(n,k) =

2n(1− ε)− (1− ε)P(B̃ ≤ n)(n+ 2) + 2kP( ˜̃B ≤ n+ 1)

2(1− ε)P(B̃ ≤ n)

=
kP( ˜̃B ≤ n+ 1)

(1− ε)P(B̃ ≤ n)
− 1 +

n(2− P(B̃ ≤ n))

2P(B̃ ≤ n)
. (7.35)
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Denote by µ̃n = kP( ˜̃B≤n+1)

(1−ε)P(B̃≤n)
. From [76, Lemma 1], we know that µ̃n ≤ min

(
n, k

1−ε

)
.

Hence,

∆lb
ε,(n,k) ≤

k

1− ε
− 1 +

n(2− P(B̃ ≤ n))

2P(B̃ ≤ n)
.

We denote by ∆∗ε,(n,k) this approximation. Thus,

∆∗ε,(n,k) =
k

1− ε
− 1 +

n(2− P(B̃ ≤ n))

2P(B̃ ≤ n)
. (7.36)

Remark 7.4. We can apply the techniques discussed in [76, Section 3.A] in order
to approximate the optimal codeword length n for ∆lb

ε,(n,k) and write ∆∗ε,(n,k) solely in
function of ε, k, n and the size q of the channel-input alphabet.

Another Upper Bound on ∆ε,C

We derive here a second upper bound on ∆ε,C which is easier to compute than ∆ub
ε,C .

First recall from Theorem 7.5 that

∆ε,C = E(T )− 1 +
n(1 + εp)

2(1− εp)
.

However,

E(T ) =

n∑
x=k

x
P(B = x)

P(B ≤ n)

=
1

P(B ≤ n)

( ∞∑
x=k

xP(B = x)−
∞∑

x=n+1

xP(B = x)

)

=
1

P(B ≤ n)

(
E(B)−

∞∑
x=n+1

xP(B = x)

)

≤ 1

P(B ≤ n)
(E(B)− (n+ 1)(1− P(B ≤ n))) .

Hence,

∆ε,C ≤
1

P(B ≤ n)
(E(B)− (n+ 1)(1− P(B ≤ n)))− 1 +

n(1 + εp)

2(1− εp)

=
1

1− εp
(E(B)− (n+ 1)εp))− 1 +

n(1 + εp)

2(1− εp)

=
E(B)− 1

1− εp
+
n

2
. (7.37)

Whereas E(B) in (7.18) is easy to compute, εp = P(B ≥ n+ 1) is hard to compute
due to the complex nature of the distribution of B (given in Lemma 7.4). To solve
this problem, we use B̂ as defined in Definition 7.8 to upper bound εp. Indeed, from
Lemma 7.9 we know that

εp = P(B ≥ n+ 1) ≤ P(B̂ ≥ n+ 1).
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Figure 7.6 – Bounds on ∆ε,C with respect to the blocklength n, with k = 3 and a
channel-input alphabet of size q = 5. The age is in log scale.

Hence,

∆ε,C ≤
E(B)− 1

P(B̂ ≤ n)
+
n

2
.

Therefore, using (7.18), the new upper bound ∆̂ε,C is

∆̂ε,C =
E(B)− 1

P(B̂ ≤ n)
+
n

2

=
−1 + qk−1

1−ε
∑k−1

s=0
1

qk−qs

P(B̂ ≤ n)
+
n

2

=
ε+

(
qk − 1

)∑k−1
s=1

(
qk − qs

)−1

(1− ε)P(B̂ ≤ n)
+
n

2
. (7.38)

7.4.8 Numerical Results

Fig. 7.6 and Fig. 7.8a corresponds to a system with a coding scheme where k = 3,
q = |V| = 5 and using a (n, k)-random code C. Fig. 7.6 plots ∆ε,C as well as the
bounds and the approximation derived in Sections 7.4.5 and 7.4.7 with respect to the
blocklength n, for four erasure channels with erasure probabilities 0.1, 0.3, 0.5, 0.8.
The tightness of the bounds with respect to ∆ε,C differs according to the erasure
probability:



7.4. Optimal Age with Different Source & Channel alphabets 151

3 4 5 6 7 8 9 10
n

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Av
er

ag
e 

ag
e 

in
 se

co
nd

s

Age vs blocklength with = 0.1, k =  3.0 and q =  25
,

,
ub
,

lb
, (n, k)

*
, (n, k)

4 6 8 10 12 14
n

6

7

8

9

10

11

12

Av
er

ag
e 

ag
e 

in
 se

co
nd

s

Age vs blocklength with = 0.3, k =  3.0 and q =  25

,

,
ub
,

lb
, (n, k)

*
, (n, k)

4 6 8 10 12 14 16
n

10

12

14

16

18

20

Av
er

ag
e 

ag
e 

in
 se

co
nd

s

Age vs blocklength with = 0.5, k =  3.0 and q =  25
,

,
ub
,

lb
, (n, k)

*
, (n, k)

5 10 15 20 25 30
n

16

18

20

22

24

26

28

30

Av
er

ag
e 

ag
e 

in
 se

co
nd

s

Age vs blocklength with = 0.7, k =  3.0 and q =  25

,

,
ub
,

lb
, (n, k)

*
, (n, k)

Figure 7.7 – Bounds on ∆ε,C with respect to the blocklength n, with k = 3 and a
channel-input alphabet of size q = 25.

• For all error probabilities, we notice that the upper bound ∆̂ε,C (the orange
curve) is very tight (almost equal to ∆ε,C) at large enough n. However, the
value n∗ of the blocklength n starting which ∆̂ε,C becomes tight depends on ε:
The larger the erasure probability, the larger the blocklength n. For instance,
for ε = 0.1 we have n∗ = 7. But for ε = 0.5, n∗ = 12 and for ε = 0.8 we have
n∗ = 30. For n > n∗, the upper bound ∆̂ε,C is tighter than all other bounds.
Notice that for any n and any ε, ∆ε,C ≤ ∆̂ε,C .

• For the approximation ∆∗ε,(n,k), we notice that it becomes tighter as the erasure
probability becomes larger. This is true especially at low values of n, more
particularly for n < n∗. For this range of blocklength values the approximation
∆∗ε,(n,k) is the extremely close to ∆ε,C .

• For any value of n and any value of ε we observe that ∆lb
ε,(n,k) ≤ ∆ε,C and

∆lb
ε,(n,k) ≤ ∆∗ε,(n,k). We notice that, for all values of ε, ∆lb

ε,(n,k) is close to ∆ε,C at
large n. Whereas, for small values of n, this lower bound does not show any
noticeable behavioral modification as ε increases.

• The upper bound ∆ub
ε,C is always larger than ∆ε,C . Even though at n > n∗

we observe that ∆̂ε,C ≤ ∆ub
ε,C , for n ≤ n∗ the upper bound ∆ub

ε,C is closer to
∆ε,C than ∆̂ε,C . In fact, as ε increases the gap between the two upper bounds
increases also.
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Figure 7.8 – Bounds on the optimal achievable age ∆ε with k = 3.

Fig. 7.6 also suggests that there exists, for each erasure probability, an optimal
blocklength that minimizes ∆ε,C . This echoes the observations presented in Chapter 6
and in [76]. Moreover, each bound also has its optimal blocklength. Although the
channel-input alphabet chosen is small (k = 3 and q = 5), we remark that the gap
between ∆ε,C and the lower bound ∆lb

ε,(n,k) is not too great irrespective of the value
of ε. This means that even for small channel-input alphabets, the performance of the
optimal linear code is not too far from the performance achieved by random coding.
This idea is illustrated in Fig. 7.8a. In this last figure, we find and plot, at each value
of ε, the minimum (with respect to n) of ∆ε,C and ∆lb

ε,(n,k). We observe that these
two minimums are close to each other. Since

min
n≥k

∆lb
ε,(n,k) ≤ ∆ε ≤ min

n≥k
∆ε,C ,

then Fig. 7.8a suggests that, for any ε, if we use the optimal blocklength, then random
codes achieve an age-performance close to the optimal linear code.

Fig. 7.7 and Fig. 7.8b mirror Fig. 7.6 and Fig. 7.8a respectively, but for a larger
channel-input alphabet with q = 25. We can apply the same analysis as the one we
just presented for the case q = 5. In this case we can notice the effect of increasing
the size of the channel-input alphabet, while keeping k constant. In fact, comparing
Fig. 7.6 and Fig. 7.7, we observe a clear convergence of ∆ε,C toward the lower bound
∆lb
ε,(n,k). In Fig. 7.7, the approximation ∆∗ε,(n,k) is not as tight as for the case of q = 5,

for all ε and n. Indeed, we can notice that, for ε = 0.9, ∆∗ε,(n,k) is worse than ∆ub
ε,C

for n ≤ 20. For large n, all bounds are tight except for the upper bound ∆ub
ε,C . In

fact, in Fig. 7.7, the lower bound ∆lb
ε,(n,k) is the tightest bound on ∆ε,C . However, the

convergence of ∆ε,C toward the lower bound ∆lb
ε,(n,k) is best observed in Fig. 7.8b. In

this figure, we remark that the performance of the random code with the optimal
blocklength is almost optimal. These simulations support our claim that random
codes are age-optimal as q grows and the channel-input alphabet becomes large.
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7.5 Conclusion

In this chapter, we have studied the optimal achievable average age over an erasure
channel in two scenarios: In the first scenario we have considered the source alphabet
and channel-input alphabet to be the same. Whereas, in the second scenario, we
have assumed the source alphabet to be different than the channel-input alphabet.
We have demonstrated that in the first case, we do not need any type of channel
coding to achieve the minimal average age, for which we have computed the exact
expression. As for the second case, we have used the random coding technique to
compute bounds on the optimal achievable age. We have also shown that random
codes are age-optimal for large enough channel-input alphabet. Finally, the numerical
results have pointed out an interesting observation: Even for a small channel-input
alphabet, the performance of random codes is not too far from optimal from an age
point of view.

7.6 Appendix: On the Equidistribution Theory

7.6.1 Equidistribution and Weyl’s Equidistribution Theorem

In this section5, for any real number x, we use [x] to denote its fractional part, i.e.
[x] = x− bxc.

Definition 7.9. A sequence (ui)i≥1 ∈ [0, 1] is said to be equidistributed on [0, 1] if
for any interval (a, b) ⊂ [0, 1] we have

lim
N→∞

1

N
|{1 ≤ i ≤ N ;ui ∈ (a, b)}| = b− a, (7.39)

where |A| denotes the cardinality of the set A.

Lemma 7.10. Definition 7.9 implies that we can replace (a, b) with [a, b), (a, b] or
[a, b] in (7.39) and the limit will still hold. We will prove this claim for the interval
[a, b].

Proof. For any α, ε ∈ (0, 1),

lim
N→∞

1

N

∣∣∣{1 ≤ i ≤ N ;ui ∈
(
α− ε

2
, α+

ε

2

)}∣∣∣ ≤ ε.
However,

0 ≤ 1

N
|{1 ≤ i ≤ N ;ui = α}| ≤ 1

N

∣∣∣{1 ≤ i ≤ N ;ui ∈
(
α− ε

2
, α+

ε

2

)}∣∣∣ .
Thus,

0 ≤ lim sup
N→∞

|{1 ≤ i ≤ N ;ui = α}| ≤ lim
N→∞

1

N

∣∣∣{1 ≤ i ≤ N ;ui ∈
(
α− ε

2
, α+

ε

2

)}∣∣∣ ≤ ε.
Since the last inequality is true for any ε, this implies

lim
N→∞

1

N
|{1 ≤ i ≤ N ;ui = α}| = 0.

5The material in this section is based on [7, 69].
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For the case of α = 0 or α = 1, we first notice that |{1 ≤ i ≤ N ;ui ∈ [0, 1]}| = N .
Hence limN→∞

1
N |{1 ≤ i ≤ N ;ui ∈ [0, 1]}| = 1. We also know that

1 =
1

N
|{1 ≤ i ≤ N ;ui ∈ [0, 1]}|

=
1

N
|{1 ≤ i ≤ N ;ui ∈ (0, 1)} ∪ {1 ≤ i ≤ N ;ui = 0} ∪ {1 ≤ i ≤ N ;ui = 1}|

=
1

N
|{1 ≤ i ≤ N ;ui ∈ (0, 1)}|+ 1

N
|{1 ≤ i ≤ N ;ui = 0}|+ 1

N
|{1 ≤ i ≤ N ;ui = 1}|

≥ 1

N
|{1 ≤ i ≤ N ;ui ∈ (0, 1)}| .

This means

0 ≤ 1

N
|{1 ≤ i ≤ N ;ui = 0}|+ 1

N
|{1 ≤ i ≤ N ;ui = 1}| ≤ 1− 1

N
|{1 ≤ i ≤ N ;ui ∈ (0, 1)}| .

Since the sequence (ui)i≥1 is equidistributed over [0, 1] then by (7.39) we have that

lim
N→∞

1

N
|{1 ≤ i ≤ N ;ui ∈ (0, 1)}| = 1.

Hence, limN→∞
1
N |{1 ≤ i ≤ N ;ui = 0}|+ 1

N |{1 ≤ i ≤ N ;ui = 1}| = 0. This implies
that limN→∞

1
N |{1 ≤ i ≤ N ;ui = 0}| = 0 and limN→∞

1
N |{1 ≤ i ≤ N ;ui = 1}| = 0.

Finally, for any a, b ∈ [0, 1],

lim
N→∞

1

N
|{1 ≤ i ≤ N ;ui ∈ [a, b]}|

= lim
N→∞

1

N
|{1 ≤ i ≤ N ;ui ∈ (a, b)} ∪ {1 ≤ i ≤ N ;ui = a} ∪ {1 ≤ i ≤ N ;ui = b}|

= lim
N→∞

1

N
|{1 ≤ i ≤ N ;ui ∈ (a, b)}|+ 1

N
|{1 ≤ i ≤ N ;ui = a}|+ 1

N
|{1 ≤ i ≤ N ;ui = b}|

= lim
N→∞

1

N
|{1 ≤ i ≤ N ;ui ∈ (a, b)}| .

Proposition 7.2. If (ui)i≥1 is an equidistributed sequence on [0, 1] then the set
{(ui)i≥1} is dense in [0, 1].

Proof. Fix α ∈ (0, 1) and ε ∈ (0, 1). Since (ui)i≥1 are equidistributed over [0, 1] then
by (7.39)

lim
N→∞

∣∣∣{1 ≤ i ≤ N ;ui ∈
(
α− ε

2
, α+

ε

2

)}∣∣∣ = ε > 0.

This means that ∀δ > 0,∃N0(δ) ∈ N such that ∀N ≥ N0(δ)∣∣∣∣ 1

N

∣∣∣{1 ≤ i ≤ N ;ui ∈
(
α− ε

2
, α+

ε

2

)}∣∣∣− ε∣∣∣∣ < δ.

Hence, ∀δ > 0, ∃jδ ≥ N0(δ) such that

ujδ ∈
(
α− ε

2
, α+

ε

2

)
and |ujδ − α| < ε.
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Given that the choice of ε is arbitrary, then there exists a subsequence (ujδ) of (ui)i≥1

that converges to α.

If α = 0 we use Lemma 7.10. Thus,

lim
N→∞

|{1 ≤ i ≤ N ;ui ∈ (0, ε)}| = lim
N→∞

|{1 ≤ i ≤ N ;ui ∈ [0, ε)}| = ε > 0.

Hence, ∀δ > 0, ∃jδ ≥ N0(δ) such that

ujδ ∈ [0, ε) and |ujδ | < ε.

Given that the choice of ε is arbitrary, then there exists a subsequence (ujδ) of (ui)i≥1

that converges to 0. A similar argument can be applied for α = 1. This proves our
lemma.

Theorem 7.7. Let (ui)i≥1 be a sequence of real numbers and denote by [ui] = ui−buic
the fractional part of ui. Then the following are equivalent:

1. The sequence ([ui])i≥1 is equidistributed on [0, 1].

2. For any k ∈ N∗,

lim
N→∞

1

N

N∑
i=1

ej2πkui = 0, (7.40)

where j2 = −1.

3. For any Riemann-integrable function f : [0, 1]→ C we have

lim
N→∞

1

N

N∑
i=1

f([ui]) =

∫ 1

0
f(x)dx. (7.41)

The proof of Theorem 7.7 is outside the scope of this text but we encourage the
reader to check [7] for the full proof. An important application of this theorem is
given next.

Corollary 7.3. Let α be an irrational number. Then the sequence ([nα])n≥0 is
equidistributed over [0, 1].

Proof. We use the second criterion of Theorem 7.7 with (ui)i≥1 = ((i − 1)θ)i≥1.
Hence,

lim
N→∞

1

N

N∑
i=1

ej2πkui = lim
N→∞

1

N

N∑
i=1

ej2πk(i−1)α

= lim
N→∞

1

N

N−1∑
n=0

ej2πknα

= lim
N→∞

1

N

(
1− ej2πkαN

1− ej2πkα

)
= 0,

where the last inequality is justified by the fact that ej2πkα 6= 1 for any k ∈ N∗ since
θ is irrational and that ej2πkαN has a modulus of 1 for any k and N .
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7.6.2 Proof of Lemma 7.1

Let α be an irrational number. From Corollary 7.3 we know that the sequence ([iα])i≥1

is equidistributed over [0, 1]. Therefore, using the third criterion from Theorem 7.7
with the Riemann-integrable function f being the identity function, i.e.

f : [0, 1]→ [0, 1]

x 7→ x,

we get

lim
N→∞

1

N

N−1∑
i=0

[iα] =

∫ 1

0
xdx =

1

2
.

7.6.3 Proof of Lemma 7.2

Before presenting the proof of Lemma 7.2 proper, we need the following lemma.

Lemma 7.11. Let α ∈ R\Q be a rational positive number. Assume also that α = m
l ,

with m, l ∈ N, l 6= 0 and gcd(m, l) = 1. Then, for x = 0, 1, · · · , l − 1,

lim
N→∞

1

N

∣∣∣{0 ≤ i ≤ N − 1; [iα] =
x

l

}∣∣∣ =
1

l
, (7.42)

with [iα] being the fractional part of iα.
This lemma says that the fractional part of iα, for any integer i, can only take values
in {0, 1

l , · · · ,
l−1
l } and in a uniform manner.

Proof. We have that α = m
l with m, l ∈ N and gcd(m, l) = 1. First notice that for

any i ∈ N, we can write

iα =
im

l
=
pl + r

l
= p+

r

l
,

where p, r ∈ N and 0 ≤ r ≤ (l − 1). Thus,

[iα] =
im [mod l]

l
.

Hence the quantity of interest is im [mod l] for any i ∈ N. However, ∀i ∈ N,
im [mod l] ∈ {0, 1, · · · , l − 1}. This means that there should be at least two integers
i1 and i2 such that i1 6= i2 and i1m ≡ i2m [mod l]. Without loss of generality,
assume that i2 > i1. This means that there exists at least one integer n = i2− i1 6= 0
such that nm ≡ 0 [mod l]. Let n̂ be the smallest integer different than 0 such that
n̂m ≡ 0 [mod l], i.e. n̂ = min{n;n 6= 0, nm ≡ 0 [mod l]}.

Fact 7.1. In the set {0,m, 2m, · · · , (n̂− 1)m} there cannot be any two elements that
are equal modulo l. This means that for any k1 6= k2 and k1, k2 ∈ {0, 1, · · · , n̂− 1},

k1m 6≡ k2m [mod l].
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Proof of Fact 7.1. To prove this claim let’s assume that there exist two integers
k1 6= k2, k1, k2 ∈ {0, 1, · · · , n̂ − 1} and k1m ≡ k2m [mod l]. Without loss of
generality, take k2 > k1. Hence, k̂ = k2 − k1 6= 0 is such that k̂m ≡ 0 mod l.
Moreover, k̂ < n̂ which contradicts the minimality of n̂. Therefore, no two elements
of {0,m, 2m, · · · , (n̂− 1)m} are equal modulo l.

Fact 7.2. If n̂ = min{n;n 6= 0, nm ≡ 0 [mod l]}, then n̂ = l.

Proof of Fact 7.2. From the definition of n̂ and the fact that lm ≡ 0 [mod l], we know
using Fact 7.1 that n̂ ≤ l. Using Bézout’s identity and given that gcd(m, l) = 1, we
know that there exist two integers n1 and n2 such that n1l+n2m = 1. Hence n2m ≡
1 [mod l]. Given that n2m ≡ 1 [mod l], then jn2m ≡ j [mod l], ∀j ∈ {0, 1, · · · , l−1}.
This means that n̂ = l and

{0,m [mod l], 2m [mod l], · · · , (n̂− 1)m [mod l]} = {0, 1, · · · , l − 1}.

This can be explained using the following argument: For any integer j, jn2 = xjn̂+yj
with xj ∈ Z and 0 ≤ yj ≤ n̂ − 1. Hence, jn2m ≡ yjm [mod l] ≡ j [mod l] since
xjn̂m ≡ 0 [mod l]. Given that the set {yjm [mod l]; 0 ≤ j ≤ l − 1} has l distinct
elements, this means that n̂ ≥ l. But n̂ ≤ l. Therefore, n̂ = l.

Fact 7.2 shows that the sequence (im [mod l])i≥0 is a periodic sequence with period
l. Moreover, in each period, we visit each element of the set {0, 1, · · · , l − 1} exactly
once. This means that over a discrete interval of length N , the number of time an
integer x ∈ {0, 1, · · · , l − 1} is visited can be bounded as follows:

N − l
l
≤
∣∣∣∣{0 ≤ i ≤ N − 1; [iα] =

im [mod l]

l
=
x

l

}∣∣∣∣ ≤ N + l

l

N

l
− 1 ≤

∣∣∣∣{0 ≤ i ≤ N − 1; [iα] =
im [mod l]

l
=
x

l

}∣∣∣∣ ≤ N

l
+ 1.

Therefore,

1

l
− 1

N
≤ 1

N

∣∣∣∣{0 ≤ i ≤ N − 1; [iα] =
im [mod l]

l
=
x

l

}∣∣∣∣ ≤ 1

l
+

1

N
.

Hence,

lim
N→∞

1

N

∣∣∣{0 ≤ i ≤ N − 1; [iα] =
x

l

}∣∣∣ =
1

l
.

This proves our lemma.

Now we can give the proof for Lemma 7.2.

Proof of Lemma 7.2. First notice that (7.42) can be written as

lim
N→∞

1

N

∣∣∣{0 ≤ i ≤ N − 1; [iα] =
x

l

}∣∣∣ = lim
N→∞

1

N

N−1∑
i=0

1{[iα]=x
l
} =

1

l
, (7.43)
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with 1{.} is the indicator function. Hence, using Lemma 7.11,

lim
N→∞

1

N

N−1∑
i=0

[iα] = lim
N→∞

1

N

N−1∑
i=0

l−1∑
x=0

x

l
1{[iα]=x

l
}

(a)
=

l−1∑
x=0

x

l

[
lim
N→∞

1

N

N−1∑
i=0

1{[iα]=x
l
}

]
(b)
=

l−1∑
x=0

x

l2

=
l − 1

2l
,

where the exchange of the sum and limit in (a) is justified by the fact that the sum
over x is finite. Moreover, the equality in (b) is due to (7.43).



Conclusion and Further
Directions 8
8.1 Conclusion

In this thesis, we have used the age-of-information metric in order to assess the
performance of different communication systems. The two main computational
approaches of this metric have been presented in Chapter 2 and have constituted
the framework we have used, in the various chapters of this work, to derive two age
metrics: the average age and/or the average peak-age. The communication systems
that we have considered in this dissertation are divided into two categories: systems
with a noiseless channel and systems with a noisy channel.

In the first part of the thesis, we have focused on systems with a noiseless channel.
This means that any transmitted packet is received at the monitor with probability
1, unless the transmitter decides to preempt it. For such a model, we use a queue-
theoretic approach to analyze the system and compute the average age and the average
peak-age. Indeed, in this part, we assume the packets are generated according to a
Poisson process with rate λ and transmitted to the monitor through a network whose
service-time depends on the studied transmission scheme. In Chapter 3, we have
assumed the network has a gamma distributed service-time, and we have considered
two transmission policies: LCFS with preemption and with-preemption-in-waiting.
In this chapter, we have shown that the LCFS with-preemption-in-waiting policy
achieves in general an average age lower than the LCFS with-preemption scheme.
Using our results for gamma distributed service-time, we derive exact expressions of
the average age and average peak-age under deterministic service-time. We notice
that for the LCFS with-preemption scheme, deterministic service-time leads to a
higher average age, compared to the one achieved when assuming any regular gamma
distribution. Whereas, for the LCFS with-preemption-in-waiting policy, the average
age attained by a system with deterministic service-time is lower than the one attained
by a system with gamma distributed service-time.

In Chapter 4, we have generalized a section of the results of Chapter 3 in two
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directions: (i) We consider that the sender comprises multiple sources instead of only
one packet source, and (ii) we assume a general distribution for the service-time. The
transmission policy that we have studied is the LCFS with preemption or M/G/1/1
with preemption (in queue-theoretic terms). This means that each source i generates
updates according to a Poisson process with rate λi, but all packets are transmitted
according to the same service-time distribution. In order to compute the average
age and the average peak-age of such a model, we introduce the detour-flow graph
method as a tool that could be used to solve age-of-information problems. We have
demonstrated that the average age relative to each source i depends only on λi and
the Laplace transform of the service-time distribution. We have considered a new
age metric which is the sum of all individual average ages. We have shown that in
order to minimize this metric, all sources should generate packets at the same rate.

In the analysis presented in Chapter 4, we have looked at the different sources as
being interchangeable with all of them enjoying the same priority level. However, in
practice, this assumption is not always accurate. When multiple data streams share
the same transmitter, some streams have contents more important than others thus
are assigned a higher transmission priority. In Chapter 5, we consider a sender with
two sources with different priorities. A source with a high priority, whose packets
are given precedence over those of another source, tagged as low priority. We have
assumed an M/G/1/1 transmission scheme for the high-priority source and have
studied two different transmission policies for the low-priority source: an FCFS with
exponential service time and an M/G/1/1 with preemption. For the FCFS model, we
have presented the stability condition needed for the queue of the low-priority stream
to stay stable and to give bounds on the average age. Using the detour-flow graph
method of Chapter 4 and assuming M/G/1/1 with preemption, we have computed the
average age and average peak-age relative to the low-priority source. It has also been
shown that the introduction of a higher priority stream into an age-optimal system
renders it suboptimal. Indeed, it is shown in [6] that under exponential service-time,
the LCFS with preemption policy is optimal. Nevertheless, in Chapter 5 we observe
that, under exponential service-time, the average age of the low-priority stream, when
we consider an FCFS model, is lower than the average age of this stream when we
assume a preemption model.

In the second part of this thesis, we have considered a faulty channel. This means
that some transmitted packets could be erased and never delivered to the receiver.
We have modeled this concept by adopting an erasure channel as the transmission
medium. In Chapter 6, we have applied the age-of-information metrics to assess the
performance of two error-correcting protocols that are used in real-life communication
systems (such as 5G and Wimax): HARQ with infinite incremental redundancy
(IIR-HARQ) and HARQ with fixed redundancy (HARQ-FR). For each of these
protocols, we have considered two transmission schemes: M/G/1/1 with blocking
and M/G/1/1 with preemption. We have computed the average age for each one
of the four combinations and have observed the following: First, for any of the two
error correcting protocols, the M/G/1/1 with blocking scheme achieves an average
age lower than that of the M/G/1/1 with preemption. Second, for any of the two
transmission schemes, IIR-HARQ exhibits a better performance, from an age point
of view, than FR-HARQ.
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Up till here, we have assumed random update-generation mechanisms. In particular,
we have considered, in the previous chapters, that packets are generated according
to a Poisson process. In Chapter 7, we have adopted a different approach: A single
source generates updates periodically in a deterministic manner and the transmitter
also has periodic access to the channel. As in Chapter 6, we have transmitted over
an erasure channel, but this time with no feedback. Given such a model, we have
answered the following question: What is the best average age that could be achieved
on an erasure channel with no feedback? We have divided this problem into two
scenarios: In the first scenario, the source alphabet and the channel-input alphabet
are the same, whereas in the second scenario they are different. In the first scenario,
we have proved that the optimal average age is achieved without any channel coding
and we have derived a closed-form expression of the average age. For the second
scenario, finding the optimal coding scheme constitutes a more difficult challenge. To
solve this problem, we have called on an information-theoretic tool: A random coding
argument is used to give bounds on the optimal achievable age. We have also shown
that random linear codes achieve the optimal age for large enough channel-input
alphabet. This means, that random codes are not just tools for existential proof but
also explicit age-optimal error correcting codes.

8.2 Further Directions

In the Absence of Noise

In Chapter 4, we have generalized only the results related to the LCFS with preemption
scheme. However, we have seen in Chapter 3, the LCFS without preemption or
M/M/1/2∗ scheme exhibits a better performance from an age point of view. Therefore,
it would be interesting to compute the average age of a multi-stream M/G/1/2∗

system and compare it to the average age of a multi-stream M/G/1/1 preemptive
scheme, for general service time. Yates et al. solve this problem in [75] when the
service time is exponentially distributed. However, we could then answer the question:
For what types of service times is preemption in service preferable over preemption
in waiting? A further generalization of the result in Chapter 4 would be to consider
a multi-stream system with a G/G/1/1 with preemption scheme.

In Chapter 5, we have seen that, for the low-priority stream, adopting an FCFS
policy is more beneficial than an M/M/1/1 with preemption scheme. This leads us to
think that an M/M/1/2∗ strategy would outperform both previous policies because it
appears to have all the advantages of an FCFS policy and reduces the waiting time of
the packets since only the freshest update is stored. Therefore, we could compute the
average age of the low priority stream under a M/G/1/2∗ strategy and compare its
performance to the FCFS and M/G/1/1 with preemption policies, when we assume
an exponential service time. Moreover, in Chapter 5, we have given bounds only
on the average age of the low priority stream. It would be interesting to derive a
closed-form expression of this average age, at least when we assume exponential
service time.
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In the Presence of Noise

In Chapter 7 we have shown that random codes are age optimal when the channel-
input alphabet is large enough. However, for a small channel-input alphabet, random
codes give only an upper bound on the optimal achievable age and the search for the
optimal channel code is still open. Indeed, for low erasure probability, we believe that
we will achieve an average age lower than the one achieved with random codes, if we
use an (n, k)-linear code that transmits first the systematic part of the codeword (this
means the part that corresponds to the k information symbols) and then randomly
chooses the n − k remaining symbols of the codeword. The intuition behind this
is as follows: For a low erasure probability, we have a high probability of correctly
receiving any transmitted symbol. Therefore, by sending the systematic part first, we
have a high probability of correctly decoding the transmitted codeword after just k
channel uses. This would lead to a lower average age, compared to a full random code
that might need more than k channel uses to send the first k linearly independent
coded symbols (as it might generate linearly dependent symbols among the first k
coded symbols).

The presence of noise in the channel opens multiple research paths on the age of
information. In this thesis, we have considered only erasure channels because the
concept of age is easily defined in this case: a packet is either received or erased.
However, we could consider various types of channels such as binary symmetric
channels (BSC) or simply a general channel modeled by a stochastic matrix. In this
case, a new definition of the average age needs to be developed: This new definition
should assign some age penalty to the packet decoded incorrectly, as they will not
convey the correct information about the source. One approach would be to keep the
definition of the average age as presented in Chapter 1, but we add a second metric
that measures the confidence (or the precision) of the decoded packets. Therefore, a
communication system would be characterized by a couple of two metrics: the average
age that indicates how fresh the receiver’s information about the observed process is,
and a confidence measure that reflects the level of decoding error. We believe that
these two metrics have a negative correlation. This means that any scheme that aims
at reducing the average age would lead to higher decoding error rates, and that any
coding scheme that reduces the decoding error would increase the average age.

Finally, we can think of the average age as a measure of the distortion of the
information in time (in contrast to the distortion in content that is usually studied in
information theory). This view on the age raises an interesting rate-distortion kind of
problem: Given two random processes (Xn)n≥1 and (Yn)n≥1, what is the minimum
needed rate between these two processes to achieve an average age less than or equal
to a given threshold. Formally, let Xn and Y n be two processes, with the Xi’s drawn
from alphabet X and the Yi’s drawn from an alphabet Y. We assume we are given
the distribution of Xn. For now, we will consider that the Xi are i.i.d distributed
according to pX . We define a distortion measure between Xn and Y n, denoted by

Definition 8.1.

Age(Xn, Y n) =
1

n

n∑
i=1

E(i− Ji),
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where
Ji = max

j≤i s.t.
PY i|Xj (y

i|x),∀x∈X\{Xj}

j.

This means that Ji is the index j of the highest correctly retrieved Xj.

Let WY n|Xn(yn|xn) be the channel that outputs yn given a certain sequence xn.
Based on Definition 8.1, we can see that the age is function of the channel W.

Definition 8.2. We define the rate-age function R(D) to be

R(D) = min
Y, WY n|Xn s.t.
WY n|Xncausal,

Age(WY n|Xn )≤D

1

n
I(Xn;Y n).

Our aim would be to compute and characterize this rate-age function R(D).
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