
GEM5-X: A GEM5-BASED SYSTEM LEVEL SIMULATION FRAMEWORK TO
OPTIMIZE MANY-CORE PLATFORMS

Yasir Mahmood Qureshi
William Andrew Simon

Marina Zapater
David Atienza Katzalin Olcoz

Embedded Systems Lab (ESL) Department of Computer Architecture
Swiss Federal Institute of Technology Lausanne (EPFL) Complutense University of Madrid

1015 Lausanne, Switzerland 28040 Madrid, Spain
{yasir.qureshi,william.simon,marina.zapater,david.atienza}@epfl.ch katzalin@ucm.es

SpringSim-HPC, 2019 April 29-May 2, Tucson, AZ, USA; ©2019 Society for Modeling & Simulation International (SCS)

ABSTRACT

The rapid expansion of online-based services requires novel energy and performance efficient architectures to
meet power and latency constraints. Fast architectural exploration has become a key enabler in the proposal of
architectural innovation. In this paper, we present gem5-X, a gem5-based system level simulation framework,
and a methodology to optimize many-core systems for performance and power. As real-life case studies of
many-core server workloads, we use real-time video transcoding and image classification using convolutional
neural networks (CNNs). Gem5-X allows us to identify bottlenecks and evaluate the potential benefits of
architectural extensions such as in-cache computing and 3D stacked High Bandwidth Memory. For real-time
video transcoding, we achieve 15% speed-up using in-order cores with in-cache computing when compared
to a baseline in-order system and 76% energy savings when compared to an Out-of-Order system. When
using HBM, we further accelerate real-time transcoding and CNNs by up to 7% and 8% respectively.

Keywords: many-core, architectural exploration, gem5, in-cache, HBM.

1 INTRODUCTION

On-line based services are experiencing an unprecedented growth. Among them, streaming services and
machine-learning video analytics represent a wide range of applications like traffic control, surveillance and
security, self driving cars, personal digital assistants, augmented reality, etc. This results in an escalating
demand to meet the power and performance requirements of the server platforms hosting these services.
These platforms must be able to serve a diverse range of multi-threaded applications to multiple users
simultaneously. To meet the performance and Quality-of-Service (QoS) constraints, servers are comprised of
many-core processors as described by Hwu et al. (2008). The processor cores might be asymmetric with
different micro-architectures, such as in-order and out-of-order (OoO) cores used by ARM (2013), with thread
level allocation policies appropriately allocating the workload to respective cores, meeting QoS constraints
under limited power budget. To optimize energy efficiency and performance, a system level simulator is
required, capable of simultaneously executing multi-threaded applications in parallel on a many-core system.
Using such a simulation framework, we can identify application bottlenecks and develop fast architectural
exploration methodologies to assess novel techniques at the system level.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/211996006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Qureshi, Simon, Zapater, Olcoz and Atienza

In this paper we present gem5-X ("a gem5-based full-system simulator with architectural eXtensions"), a
simulation framework that enables fast profiling, architectural exploration and performance-power charac-
terization for system level architectural innovations. Gem5-X enables seamless simulation of applications
running on top of a modern Linux operating system. Without loss of generality, to demonstrate the gem5-X
framework and methodology, we use two applications as case studies in this paper: (i) real-time video
transcoding and (ii) image classification using convolutional neural networks (CNNs). We chose video
transcoding, as video streaming represents 58% of the overall downstream traffic in 2018 as presented
by SANDVINE (2018). Similarly, the choice for CNNs, specifically Alexnet by Krizhevsky et al. (2012), is
driven by the emergence of real-time video analytics, suggested by Ananthanarayanan et al. (2017) to be the
"killer app" for artificial intelligence, with already a great impact in various domains of our daily life.

We assess the bottlenecks of real-time transcoding when running on ARM-64 in-order and OoO architectures
equipped with the NEON SIMD accelerator. To demonstrate the capabilities of gem5-X for exploiting
architectural extensions, we implement a novel in-cache computing as proposed by Simon et al. (2019)
architecture as a use case in gem5-X, which executes a large number of operations simultaneously in-cache.
We assess the benefits of in-cache computing in terms of performance and energy consumption from the
system-level perspective across varying frequencies and core counts, within a fixed area limit. We further
evaluate the new bottlenecks created when running real-time transcoding utilizing in-cache computing
along with Alexnet. As a second case study to demonstrate gem5-X architectural extension capabilities, we
implement a High Bandwidth Memory (HBM) based on 3D die stacking technology. We implement the
HBM2 memory model as proposed by Sohn et al. (2017), which has bandwidth of 307 GB/s in comparison
to 25.2 GB/s for DDR4 architectures described by Hsueh et al. (2014) to alleviate the memory bottlenecks
generated due to the concurrent run of multiple memory bounded applications.

In particular, the contributions of our work are as follows:

• We present the gem5-X framework, which enhances gem5 developed by Binkert et al. (2011) with
a full-system simulation of ARM-64 in-order and OoO architectures running on a modern Linux OS.
We tune and validate performance of in-order and OoO against a real ARM JUNO platform developed
by ARM (2015) with a mean absolute error (MAE) below 4%. Gem5-X is open-sourced to the community,
enabling innovative extensions of ARM 64-bit architectures.

• We propose the gem5-X methodology to profile applications within gem5, identify bottlenecks, and
validate architectural modifications and extensions for application acceleration. We use real-time video
transcoding and Alexnet as application case studies, and in-cache computing and HBM2 as architectural
extension case studies to validate the gem5-X methodology and simulation framework.

• We show how in-cache computing provides a speed-up of 62% to 88% for the video transcoding critical
path function, resulting in an overall application speed-up of 15% and an energy efficiency improvement
of up to 80%, for an in-order system. Our results also reveal that an 8-core in-order system with in-cache
computing outperforms the energy consumption of the 4-core OoO system by up to 76% (both with
SIMD acceleration), while meeting latency constraints (i.e., transcoding at a 24 frame-per-second –FPS–
rate). HBM2 alleviates the memory bottlenecks generated when co-allocating video transcoding and
Alexnet on the same platform, resulting in performance improvements of up to 7% for video transcoding
and 8% for Alexnet.

2 RELATED WORK

The increasing complexity of emerging architectures as discussed by Shim et al. (2006) require methods
for fast design-space exploration of new architectural innovations. Full-system architectural simulators
tackle this challenge today by providing estimations of energy, performance and area trade-offs. Sniper,
developed by Carlson et al. (2011), is a multi-core parallel simulator with fast simulation time, whose main
drawback is that it only supports traditional x86 architectures. Simics, developed by Magnusson et al. (2002),

Qureshi, Simon, Zapater, Olcoz and Atienza

provides a virtualized environment to run applications on different hardware platforms and can be combined
with Simflex, developed by Hardavellas et al. (2004), to obtain timing information, but only for SPARC
architectures. Gem5, as discussed in Binkert et al. (2011), supports multiple ISAs, as well as different CPU
models like the in-order and OoO cores, capturing both the timing and functional behavior of a wide range
of systems, making it the best candidate for architectural exploration. However, its higher accuracy and
sequential nature result in slower simulation times. One of the major drawbacks of gem5 is that not all
components work out-of-the-box i.e., in all simulation modes. In particular, the hybrid memory cube (HMC)
is a memory type supported in gem5, but unavailable in full system (FS) mode. Similarly, system stability
is not guaranteed for all component combinations. The Linux distributions and kernels provided are quite
old with minimal package installation, and they can demonstrate FS mode, but are incapable of exploiting
all the features in FS mode. Even so, we choose gem5 as our base simulation platform as its flexibility
allows for straightforward architectural extensions. Our gem5-X simulation framework enhances gem5 with
out-of-the-box system level support for many-core ARM-64 architectures and architectural innovations. In
this paper, we showcase the architectural extension capabilities of gem5-X using in-cache computing and
HBM2. In-cache computing allows massive Single Instruction Multiple Data (SIMD)-like operations to
be performed in the cache hierarchy as proposed by Jeloka et al. (2016). In our work, we use an in-cache
computing architecture similar to BLADE proposed by Simon et al. (2019), targeted for the L1 cache of
ARM-based many-core systems, as opposed to the Last Level Cache (LLC), as in NeuralCache proposed
by Eckert et al. (2018). Regarding HBM proposed by Lee et al. (2014), emerging memory architectures have
been explored, but mainly for GPUs, as discussed in Chatterjee et al. (2017). To the best of our knowledge,
this is the first work that simulates in-cache acceleration along with HBM at system level in Linux-based
systems.

3 THE GEM5-X SIMULATION FRAMEWORK

The "gem5-based full-system simulator with architectural eXtensions", namely gem5-X, extends the latest
gem5 version (i.e., github commit a891159548) and supports out-of-the-box full-system (FS) many-core
ARM simulation using a modern Ubuntu Linux distribution, as well as support for application profiling and
architectural extensions. Gem5-X will be open-sourced to the community and a dockerized version will be
released to enable using it out-of-the-box, enabling researchers to assess and add architectural extensions.

Figure 1 shows the contributions brought by the gem5-X simulation framework, which can be split into
architectural extensions and support enhancements to the gem5 simulator.

In-Cache Computing
Accelerator

HBM2 Memory Model
with FS support

Full System
Support With
Ubuntu16.04

and later

Enhanced
Checkpointing

 9P over Virtio
gperf profiler
within gem5

Support
Enhancements

Architectural
Extensions

ARMv8 ISA Extensions
with FS support

Gem5

simulator

Figure 1: Gem5-X simulation framework

3.1 Architectural Extensions

Gem5 can be modified at any level of the architecture, from the multi-core pipeline through the interconnects
and cache down to the DRAM. Gem5-X modifies the gem5 core to support extensions such as scratchpad
memories, HBM2, modified CPU pipelines, in-cache computing architectures and ARMv8 ISA extensions.

Qureshi, Simon, Zapater, Olcoz and Atienza

All these extensions can be implemented and profiled to deduce their effectiveness for the target application.
In this work, we use in-cache computing along with HBM2 as a case study to demonstrate how gem5-X can
be used to simulate and explore new architectures and accelerators at the system level.

• In-cache Computing: To add an in-cache computing architecture to gem5, we modify gem5’s L1 cache
model, as discussed by Binkert et al. (2011), to simulate in-cache addition, subtraction, multiplication,
shifting, greater/less than and absolute operations in a timing and architecture-accurate manner. When
an in-cache instruction is decoded by the CPU, the required operations are scheduled and its operands
are loaded into cache from main memory. To guarantee architectural accuracy, we enforce data locality
constraints upon the operands, as discussed by Aga et al. (2017) and Simon et al. (2019). In order for
an operation to be performed between two operands, they must share the same bitlines. We ensure this
by reserving 1GB of cacheable memory that can be mmapped by an application, allowing us to have
fine grained control of where operands are stored in the cache. We also modify the target application to
guarantee data alignment during operations to be performed in-cache.
To guarantee timing accuracy and estimate power consumption, we develop and simulate our in-cache
architecture in 28nm bulk CMOS technology using Cadence Virtuoso as discussed by Simon et al. (2019).
We extract power and timing values and convert them to cycle counts that are integrated into gem5’s
event scheduler.

• High Bandwidth Memory: HBM, as described by Lee et al. (2014), is based on 3D stacked DRAM
banks made possible due to Through Silicon Vias (TSVs) achieving a high bandwidth of up to 307.2
GB/s. To implement the functional behavior of the HBM2 memory model in gem5-X, we extend the
DRAM controller model of gem5 according to the architectural details of HBM2, as summarized in
Table 1. To have 8-channels with memory interleaving, we initialized 8 DRAM controllers, each 128
bits wide. We connect all 8 DRAM controllers to a 1024-bit wide system bus, that connects to the cache
hierarchy. For accurate timing estimates we utilize the timing values as presented by Chatterjee et al.
(2017).
Gem5-X allows having hybrid memories i.e. both DDR and HBM in the same system, but for the case
studies in this paper, we will be using either DDR4 or HBM. No separate software support is required,
and hence we are able to boot the Ubuntu Linux distribution using HBM.

Table 1: Implemented HBM2 architecture

Parameter Value Parameter Value
Clock period (tCK), Bandwidth 0.833ns, 2.4Gbps/pin Channel width, #Channels 128 bits, 8
#I/Os 1024 pins Ranks per channel 1
Banks per rank 16 Burst length 4
Bank groups per ranks 4 - -

• ARMv8 ISA Extension: To support the in-cache computing architecture in FS mode in gem5-X, we
extend the ARMv8 ISA, by ARM (2017), using reserved op-codes. The added instruction, when decoded,
issues an in-cache computing request to the cache controller. To support the new instruction, the decoder
in the gem5 ISA domain-specific language (DSL) was modified. We also added a new cachecompute flag
with the instruction, so that the cache controller can recognize it as a cache compute request and handle it
accordingly. This instruction can be issued through in-line assembly from any C or C++ program.
By integrating the in-cache computing architecture into gem5, its performance can be measured on top of
a full software and Linux kernel stack, allowing events such as context switching, cache line eviction,
and performance loss due to complex data accesses to be evaluated. This is important when assessing the
real-world applicability of any architectural innovation, and its ability to generalize to other applications.

Qureshi, Simon, Zapater, Olcoz and Atienza

3.2 Support Enhancements

To enable gem5-X support of all architectural extensions from the software perspective, various support
enhancements are added to gem5.

• ARM-64 Full System Support: Current gem5 disk images utilize an Ubuntu 14.04 distribution with
minimal installed packages and HDD space limited to 3GB, therefore providing limited support for
ARMv8 (aarch64). In this work, we create an Ubuntu 16.04 LTS disk image with kernel v4.3, and 30GB
storage to allow complete full system (FS) support, including the pthread library to allow thread-level
parallelism on a multi-core system, which is required by most applications. This extension to gem5
allows the installation and execution of any application that runs on a regular Linux system, using both
in-order and OoO ARMv8 cores.

• Gperf Profiler: We include profiling capabilities within FS, by installing the gperf profiler on the disk
image. The gperf statistical profiler developed by Google (2011) provides profiling capabilities on gem5
itself with minimal overhead, enabling the identification of application bottlenecks and exploration of the
effectiveness of architectural modifications and extensions.

• Enhanced Checkpointing: Checkpointing in gem5 drastically reduces simulation time in FS mode.
Gem5-X enhances the existing checkpointing in gem5 by marking the Region-Of-Interest (ROI) of
applications. Gem5-X simulations are launched using a simple functional CPU, run until the ROI and
checkpointed. Then, simulations are switched to either in-order or OoO detailed models. Moreover,
checkpointing reduces the burden of the debugging process, by checkpointing just before the point-of-
failure and then resuming with the debug mode. Using this for the video transcoding, we reduced the
simulation from 10 hours to 2 hours in the worst case-scenario for the debug process.

• 9P over Virtio: We utilize the 9P protocol developed by Bell Labs (2018) over a virtio device driver
developed by OSDev (2017), to allow fast modification of files without modifying the root file system in
gem5-X. While this feature is available in vanilla gem5, it is not enabled by default and has no kernel
support. Both of these features are provided in gem5-X. Once Linux is booted, a folder on the host
machine can be mounted within gem5 to access files on the host system. Without 9P mounting, every
time a program is modified, we need to reload the disk image required for FS simulation and reboot
Linux. In gem5, this process can take up to 20-30 minutes, a bottleneck that gem5-X eliminates.

4 METHODOLOGY FOR ARCHITECTURAL EXPLORATION AND OPTIMIZATION

Using gem5-X, we present an architectural exploration and a flexible optimization methodology for any given
application, as shown in Figure 2. The methodology has 3 phases: application characterization, architecture
optimization and milestones. Each phase is then further divided into different stages. The different phases of
the methodology are discussed in this section.

Application
Identify

Bottlenecks
Profiling

Input

Application
Characterization

Phase 1: Architecture
Optimization

Phase 2:

Selection of
Architectures

Evaluate Performance
and Energy Efficiency

MilestonesPhase 3:

Optimized
Architecture

Constrainsts
Met ?

Yes

No

Figure 2: Architectural exploration methodology

Qureshi, Simon, Zapater, Olcoz and Atienza

4.1 Phase 1: Application Characterization

To optimize an architecture for any given application, we first profile it to identify bottlenecks.

• Profiling: Profiling provides two important insights. Firstly, it identifies the application kernels that are
compute and memory intensive, and secondly, it gives information about the system resources being
stressed by these kernels. In the gem5-X methodology, we use valgrind, developed by Nethercote and
Seward (2007), when profiling on a hardware platform to collect performance counter statistics (e.g.,
instruction counts, cache misses, etc.). Valgrind adds some code instrumentation to the application, hence
it is very slow. Therefore, we also use gperf statistical profiler developed by Google (2011) on both
hardware and in the gem5 simulator to profile applications with minimal profiling overhead, and generate
call graph trees showing what percentage of the total time each kernel takes.

• Identify Bottlenecks: Once we have the profiling information, we can identify the kernels that consume
most of the execution time. Then using the profiling data, we can further analyze resource utilization by
these kernels, giving us insight about the resources that are bottle-necked.

4.2 Phase 2: Architecture Optimization

Once the application is characterized and bottlenecks are identified, we optimize the architecture by alleviating
the bottlenecks and improving performance and energy efficiency using a two-stage process.

4.2.1 Selection of Architectures

Gem5-X enables different strategies and allows to select from a range of architectural extensions, which
comprise of but are not limited to, those discussed in Section 3.1.

• Architecture Parameter Sweeping: To accelerate the target application one can sweep through a
number of parameters such as clock frequencies, cache sizes (at all levels like at L1, LLC), depth of
the cache hierarchy, cache and DRAM latency and bandwidth, and number of integer or floating point
functional units. As a case study in this paper, we sweep through different cache sizes, as discussed in
Section 5.4.1.

• Type and Number of Cores: Selection of the type of cores between simple in-order cores and complex
OoO cores and also the core count for each core type can be varied to meet required performance and
power constraints. Simple in-order cores have low performance but consume low power as well in
comparison to OoO cores.

• Accelerators: Accelerators can be used to overcome compute bottlenecks in an application. The choice
and selection of accelerator is driven by profiling data. One of the accelerators enabled by gem5-X is the
in-cache computing architecture discussed in Section 3.1. If a kernel involves many operations upon the
same data chunk, resulting in low memory access times but high computation cost and processor-cache
traffic, it is a good candidate for in-cache acceleration. We will discuss this in more detail in Section 5.4.2.

• Higher Bandwidth Memories: If the system is bottlenecked at the main memory, due to low available
memory bandwidth, the HBM presented in Section 3.1 provides an alternative to speed-up the system by
easing the memory bottleneck.

4.2.2 Evaluate Performance and Energy Efficiency

Once we have optimized the architecture using the strategies discussed in the previous section, we evaluate
the performance and energy efficiency improvements achieved at the system level as well as application level.
We also look at the cost in terms of area of the optimized system.

Qureshi, Simon, Zapater, Olcoz and Atienza

4.3 Phase 3: Milestones

In the third and final phase of gem5-X methodology, we check if the optimized system meets the power,
performance and area constraints. We also co-locate different applications, in our case study real-time video
transcoding and Alexnet, and check if the performance remains the same or is degraded, due to interference
between applications. If any one of the constraints is not achieved in any of the cases, we go back to phase-1
and iterate over the whole methodology again. We iterate until all the constraints are met and milestones
achieved, obtaining an optimized architecture. If multiple architectures meet the constraints, we use Pareto
optimal architecture points, w.r.t., power, performance and area.

5 EXPERIMENTAL SETUP AND RESULTS

5.1 Validation of the Simulation Framework

To validate our framework against real hardware, we configure and tune gem5-X to match the architecture of
the in-order cores as well as OoO cores of the ARM JUNO platform from ARM (2015) which is based on
ARMv8 64-bit ISA. The starting points for the values of these parameters were ARM Cortex-A57 as presented
in Bolaria (2012) for OoO cores and ARM Cortex-A53 as presented in Krewell (2012) for in-order cores.
We tuned the gem5 in-order and OoO core parameters, specifically, the of number of fetch units, executions
stages, and number of functional units and their latencies, until we obtained a 4% error compared to the JUNO
platform in terms of execution time for a real-time video transcoding app Kvazaar, developed by Viitanen
et al. (2016), using different video resolutions, as described in Section 5.2, using all the components (all CPU
functional units, including NEON SIMD, caches, memory). We do not tune the network and disk models in
gem5-X as the purpose of this paper is to explore novel compute and memory architecture. Therefore, our
case study applications are compute and memory intensive, and we use application run-time to quantify both
of them during validation. As a result, validation of the simulation framework ensures full confidence in the
results provided by gem5-X.

5.2 Experimental Setup

• Applications: We use two applications; the real-time video transcoding app Kvazaar, and image classifi-
cation with CNNs (Alexnet), due to their current relevance, as described in section 1. To demonstrate our
methodology, we run experiments with three types of videos using Kvazaar, w.r.t. their resolution: high,
medium and low, which correspond to 1920x1080, 416x240 and 176x144 pixels, respectively. We utilize
an Alexnet model in the ARM Compute Library framework (ACL), developed by ARM (2018), for our
CNN experiments.

• Power Model: To compute energy values, we use the power model for 28nm bulk CMOS A57 OoO
cores proposed by Pahlevan et al. (2018). For in-order cores, we use the energy ratio between A57
and A53 cores at different frequencies as proposed by Frumusanu and Smith (2015a), Frumusanu and
Smith (2015b). The power model accounts for core active, wait-for-memory (WFM) and static energy
(in J/cycle), and the LLC read and write energy (in J/access). We did not use gem5 power model, as
proposed by Reddy et al. (2017) or McPAT power model, as proposed by (Butko et al. 2016), as they
both are for ARMv7 32-bit ISA, whereas we are using ARMv8 64-bit cores.

• Hardware Architecture: As a starting point for our exploration, we model the ARM JUNO platform in
gem5-X, with 4 OoO cores instead of 2 to have a fair comparison between different architectures and
core types, each with 4 cores as a starting point. The simulated architecture is summarized in Table 2.

Qureshi, Simon, Zapater, Olcoz and Atienza

Table 2: Initial architecture for simulation framework

Parameter Value Parameter Value
Core ISA ARMv8 64-bit # In-order, # OoO cores 4, 4
Core Frequency 2GHz DDR4 size 4GB
L1-I cache, L1-D cache 32kB, 32kB LLC 1MB

5.3 Profiling and Bottlenecks

The first step in the gem5-X methodology is to profile the target application to identify memory and compute
bottlenecks. We first use Valgrind on the JUNO platform to profile Kvazaar. Our results show that the FIR
filter and the Sum of Absolute Transform Differences (SATD) are the two main blocks in the application that
represent 21% and 26% of overall instructions executed, respectively. The remaining 53% of the computation
is spread in chunks of less than 10% (in average 7%). L1 cache read miss counts for FIR filter and SATD
blocks were as low as 4.8% and 5.2% respectively, demonstrating high data locality. We also profile Kvazaar
on the ARMv8 64-bit JUNO platform in both in-order and OoO using gperf. The profiling results are
consistent in both types of cores as well as across the profiler used, in terms of the bottlenecked functions.
Moreover, percentages only differ between 1% to 4% from valgrind to gperf due to gperf’s statistical profiling.

Profiling demonstrates that the FIR filter and SATD blocks are the primary bottlenecks in Kvazaar. Due to the
high locality in the L1 cache and the relatively simple arithmetic operations they perform, they are potential
candidates for our case study architectural extension of in-cache computing.

5.4 Strategies for Architecture Optimization

5.4.1 Sweeping the Cache Sizes

As discussed in the previous section, FIR filter and SATD, the primary bottlenecks in Kvazaar, exhibit high
cache locality. To explore the effect of cache size, we use gperf in gem5-X and vary the size of the L1 and
LLC. We observe that for an L1 of 32KB, varying the LLC from 512KB to 16MB provides 6% application
speed-up. Similarly, for an LLC of 16MB, increasing the L1 from 8KB to 128KB provides a 3.2% speed-up.
As the speed-up is not significant, indicating that data fits in all cache sizes, we select a 32KB L1 cache
and a 1MB LLC for the remainder of the paper, as they represent an adequate trade-off between energy,
performance, and area.

5.4.2 Acceleration with In-cache Computing

Table 3 shows the speed-up of the individual FIR filter and the overall application speed-up obtained via
in-cache computing with 4 in-order cores, using gem5-X. Note that all comparisons in this section are
against in-order (and OoO) architectures equipped with a Neon SIMD accelerator. The FIR filter block is
accelerated by 62% to 88% depending on the video resolution. The SATD acceleration is lower, reaching
~5% maximum, as not all SATD blocks can be accelerated, and because of the alignment constraints on the
operands for in-cache computing. However, accelerating SATD blocks is still very beneficial in terms of
energy. Accelerating both the FIR filter and the SATD block gives us ~15% application speed-up across low,
medium and high resolution videos compared to an in-order core without in-cache computing. As presented
in Table 3, we also get an overall energy reduction of 11.5% to 16.47%, for different video resolutions.

5.5 Architectural Exploration

Gem5-X allows us to assess different architectures with and without in-cache computing. Our goal is to
minimize the energy consumption while meeting the 24FPS requirement for all video resolutions.

Qureshi, Simon, Zapater, Olcoz and Atienza

Table 3: Filter and application acceleration and energy reduction for different video resolutions

Video Resolution Filter Speed-up Application Speed-up Overall Energy Reduction
Low Resolution 88% 14.4% 16.47%

Medium Resolution 62.34% 14.7% 14.1%
High Resolution 64.64% 15.36% 11.5%

We start by assessing all configurations capable of satisfying 24FPS for low resolution videos within a fixed
area budget of 4 OoO cores, i.e 8.2, as described by mm2 A. Frumusanu and R. Smith (2015b). Figure 3a
shows the energy consumption and area for various systems when running 24FPS of a low resolution video.
We see that 8 in-order cores with in-cache computing at 400MHz is 22.7% and 26% more energy efficient
when compared to 4 OoO cores at 500MHz and 8 in-order cores at 500MHz, respectively. Since in-order
cores are 3 times smaller than OoO cores, 8 in-order cores take 31% less area w.r.t. to 4 OoO cores. The
area overhead of the L1 in-cache computing unit is 0.5% of the core area using the estimates by Eckert et al.
(2018) and Wikichip (2016), which is not significant. Hence, it will not be considered for the rest of the
paper. The number of cores and frequency values are optimal, in terms of area and energy efficiency, when
doing a sweep across different core counts at different frequencies.

Figure 3b shows the energy consumption and area for optimal in-order and in-order with in-cache computing
systems in comparison to OoO system when satisfying 24FPS of a medium resolution video. We see that 8
in-order cores with in-cache computing at 950MHz gives 44% energy benefit w.r.t. 4 OoO cores at 1.2GHz
and area benefit of 31%. In comparison to 8 in-order cores without in-cache computing at 1.1GHz, the
in-order system with in-cache computing is 36% more energy efficient.

Finally, we assess high resolution videos, obtaining results consistent with lower resolutions, as shown in
Figure 3c. In-order with in-cache (8 cores @1.65GHz) provides the best results in terms of energy efficiency,
with energy savings of 76% in comparison to OoO cores (4 cores @2GHz) and 80% in comparison to in-order
cores (8 cores @2GHz). The area benefit remains the same, being 31% over OoO.

0
1
2
3
4
5
6
7
8
9

0

0.01

0.02

0.03

0.04

0.05

OoO
@ 500 MHz

(4 cores)

In-order
@ 500 MHz

8 cores)

In-order in-cache
@400 MHz

(8 cores)

A
re

a
(m

m
^2

)

En
e

rg
y

(J
)

Energy
Area

22.7%26% 31%

(a) Low resolution

0
1
2
3
4
5
6
7
8
9

0

0.1

0.2

0.3

0.4

0.5

0.6

OoO
@ 1.2 GHz
(4 cores)

In-order
@ 1.1 GHz

8 cores)

In-order in-cache
@ 950 MHz

(8 cores)

A
re

a
(m

m
^2

)

En
e

rg
y

(J
)

Energy
Area

44%
31%

36%

(b) Medium resolution

0
1
2
3
4
5
6
7
8
9

0

0.5

1

1.5

2

2.5

3

3.5

4

OoO
@ 2 GHz
(4 cores)

In-order
@ 2 GHz
8 cores)

In-order in-cache
@ 1.65 GHz

(8 cores)

A
re

a
(m

m
^2

)

En
e

rg
y

(J
)

Energy
Area

76%

31%

80%

(c) High resolution

Figure 3: Energy and area comparison for different video resolutions

Figure 3 also reveals that the energy savings of in-order cores with in-cache computing increases for higher
video resolution in comparison to both in-order and OoO cores without in-cache computing. This situation
implies that, as the computational requirements increase, the in-cache computing performs better as it has
larger data chunks to process and achieves more energy savings. The energy benefits shown in Figure 3 are
attributed to the lower operating frequency used, the in-order cores and the in-cache computing unit.

5.6 Many-core Multi-Application System

To demonstrate the many-core and multi-application simulation capabilities of gem5-X, we simulate a
realistic server scenario by concurrently executing Alexnet image classification inference, along with real-
time transcoding. The system uses in-cache computing to accelerate the dominant blocks in Kvazaar. The
in-simulator gperf profiler is useful in this case to look for new bottlenecks in the kvazaar application on the

Qureshi, Simon, Zapater, Olcoz and Atienza

architecture with in-cache computing when co-located with Alexnet, which is memory intensive application.
Analysis of the Kvazaar application for medium resolution and high resolution video reveals that memory
functions, like memcpy and memset together contribute 16.5% and 10% respectively towards execution time.
Profiling Alexnet reveals a 23.5% memset function contribution.

To accelerate the memory functions described above, HBM is used instead of the conventional DDR4 due to
its high bandwidth. The experimental setup includes HBM with 8 in-order cores. Kvazaar is allocated to the
4 cores equipped with in-cache computing, while Alexnet is allocated to the remaining 4 cores, all operating
at 2GHz. Table 4 shows the percentage speed-up achieved when using HBM instead of DDR. We see that
Alexnet is always accelerated by more than 7%. Moreover, Kvazaar achieves a higher acceleration in case of
medium resolution as compared to high resolution, because the contribution of memory functions is higher in
medium resolution videos as compared to high resolution ones.

Table 4: Speed-up using HBM instead of DDR

Application Medium Resolution + Alexnet Speed-up High Resolution + Alexnet Speed-up
Kvazaar Speed-up 7.72% 2.8%
Alexnet Speed-up 8.35% 7.48%

6 CONCLUSION

In this paper, we have presented the gem5-X simulation framework and methodology for optimizing perfor-
mance and power of a many-core system. Gem5-X extends the gem5 simulator with innovative architectural
extensions. Gem5-X is generic, allowing architecture optimization for any given application. As a case study,
we used gem5-X to analyze and accelerate a real-time video transcoding application. By properly selecting
the optimal number, type and operating frequency of the cores, we have showed that in-order cores with
in-cache computing achieve 15% speed-up w.r.t. in-order cores with SIMD, and reduce energy consumption
by up to 76% compared to OoO systems, while still meeting latency constraints. To further demonstrate the
system level capability of gem5-X, we co-simulated real-time transcoding along with a deep learning CNN,
thus achieving performance benefits of up to 7% and 8%, respectively by alleviating the memory bottlenecks
using HBM.

The gem5-X simulation framework is open-sourced to the community, together with a technical whitepaper,
enabling out-of-the-box, fast simulation of many-core ARM 64-bit architectures with innovative architectural
extensions. It is readily available at esl.epfl.ch/gem5-x

ACKNOWLEDGMENTS

This work has been partially supported by the EC H2020 RECIPE (GA No. 801137) project, the ERC
Consolidator Grant COMPUSAPIEN (GA No. 725657), the EU FEDER and the Spanish MINECO (GA No.
TIN2015-65277-R).

REFERENCES

Aga, S., S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das. 2017. “Compute Caches”. In
HPCA, pp. 481–492.

Ananthanarayanan, G., P. Bahl, P. Bodík, K. Chintalapudi, M. Philipose, L. Ravindranath, and S. Sinha. 2017.
“Real-Time Video Analytics: The Killer App for Edge Computing”. Computer, pp. 58–67.

ARM 2013. “big.LITTLE Technology Moves Towards Fully Heterogeneous Global Task Scheduling”.

ARM 2015. “ARM Versatile Express Juno r2 Development Platform”.

https://esl.epfl.ch/gem5-x

Qureshi, Simon, Zapater, Olcoz and Atienza

ARM 2017. “ARM Architecture Reference Manual ARMv8”.

ARM 2018. “ARM Compute Library Framework”. https://developer.arm.com/technologies/compute-library.

Binkert, N., B. Beckmann, G. Black, S. K. Reinhardt et al. 2011, August. “The Gem5 Simulator”. SIGARCH
Comput. Archit. News vol. 39 (2), pp. 1–7.

Bolaria, J. 2012. “Cortex-A57 extends ARM’s Reach High-End 64-bit CPU Strives for Servers”. Micropro-
cessor Report.

Butko, A., F. Bruguier, A. Gamatié, G. Sassatelli et al. 2016. “Full-System Simulation of big.LITTLE
Multicore Architecture for Performance and Energy Exploration”. In MCSOC, pp. 201–208.

Carlson, T. E., W. Heirman, and L. Eeckhout. 2011. “Sniper: Exploring the Level of Abstraction for Scalable
and Accurate Parallel Multi-core Simulation”. In SC, pp. 1–12.

Chatterjee, N., M. O’Connor, D. Lee, D. R. Johnson, S. W. Keckler, M. Rhu, and W. J. Dally. 2017, Feb.
“Architecting an Energy-Efficient DRAM System for GPUs”. In 2017 HPCA, pp. 73–84.

Eckert, C., X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaaauw, and R. Das. 2018. “Neural
Cache: Bit-Serial In-Cache Acceleration of Deep Neural Networks”. In ISCA, pp. 383–396.

A. Frumusanu and R. Smith 2015a. “Cortex A53 - Performance and Power”. https://www.anandtech.com/
show/8718/the-samsung-galaxy-note-4-exynos-review/4. Accessed Sep. 11, 2018.

A. Frumusanu and R. Smith 2015b. “Cortex A57 - Performance and Power”. https://www.anandtech.com/
show/8718/the-samsung-galaxy-note-4-exynos-review/6. Accessed Sep. 11, 2018.

Google 2011. “gperftools”. https://github.com/gperftools/gperftools.

Hardavellas, N., S. Somogyi, T. F. Wenisch, R. E. Wunderlich et al. 2004. “SimFlex: A Fast, Accurate, Flexible
Full-system Simulation Framework for Performance Evaluation of Server Architecture”. SIGMETRICS
Perform. Eval. Rev., pp. 31–34.

Hsueh, T., G. Balamurugan, J. Jaussi, S. Hyvonen et al. 2014, Feb. “26.4 A 25.6Gb/s differential and
DDR4/GDDR5 dual-mode transmitter with digital clock calibration in 22nm CMOS”. In 2014 IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 444–445.

Hwu, W.-m., K. Keutzer, and T. G. Mattson. 2008. “The Concurrency Challenge”. IEEE Des. Test, pp.
312–320.

Jeloka, S., N. B. Akesh, D. Sylvester, and D. Blaauw. 2016. “A 28 nm Configurable Memory
(TCAM/BCAM/SRAM) Using Push-Rule 6T Bit Cell Enabling Logic-in-Memory”. JSSC, pp. 1009–
1021.

Krewell, K. 2012, 11. “Cortex-A53 is ARM’s Next Little Thing New CPU Core Brings 64 Bits to Big.Little,
Mobile”. Microprocessor Report.

Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012. “ImageNet Classification with Deep Convolutional
Neural Networks”. In NIPS, pp. 1097–1105.

Labs, B. 2018. “Plan 9 from Bell Labs”. URL: https://9p.io/plan9/about.html.

Lee, D. U., K. W. Kim, K. W. Kim, H. Kim et al. 2014. “25.2 A 1.2V 8Gb 8-channel 128GB/s high-bandwidth
memory (HBM) stacked DRAM with effective microbump I/O test methods using 29nm process and
TSV”. In ISSCC), pp. 432–433.

Magnusson, P. S., M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt,
and B. Werner. 2002. “Simics: A full system simulation platform”. Computer, pp. 50–58.

Nethercote, N., and J. Seward. 2007. “Valgrind: A Framework for Heavyweight Dynamic Binary Instrumen-
tation”. In SIGPLAN PLDI, pp. 89–100.

OSDev 2017. “Virtio”. https://wiki.osdev.org/Virtio.

https://developer.arm.com/technologies/compute-library
https://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/4
https://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/4
https://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/6
https://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/6
https://github.com/gperftools/gperftools

Qureshi, Simon, Zapater, Olcoz and Atienza

Pahlevan, A., Y. M. Qureshi, M. Zapater, A. Bartolini et al. 2018. “Energy proportionality in near-threshold
computing servers and cloud data centers: Consolidating or Not?”. In DATE, pp. 147–152.

Reddy, B. K., M. J. Walker, D. Balsamo, S. Diestelhorst, B. M. Al-Hashimi, and G. V. Merrett. 2017.
“Empirical CPU power modelling and estimation in the gem5 simulator”. In PATMOS, pp. 1–8.

SANDVINE 2018. “Global Internet Phenomena Report. 2018”. URL:
https://www.sandvine.com/hubfs/downloads/phenomena/2018-phenomena-report.pdf .

Shim, H., S. Lee, Y. Woo, M. Chung, J. Lee, and C. Kyung. 2006, April. “Cycle-accurate Verification of
AHB-based RTL IP with Transaction-level System Environment”. In VLSI-DAT, pp. 1–4.

Simon, A., J.-M. Galicia, A. Levisse, M. Zapater, and D. Atienza. 2019. “A Fast, Reliable and Wide-Voltage-
Range In-Memory Computing Architecture”. In DAC, pp. 1–6.

Simon, W., Y. M. Qureshi, A. Levisse, M. Zapater, and D. Atienza. 2019. “BLADE: A BitLine Accelerator
for Devices on the Edge”. In GLSVLSI, pp. 1–6.

Sohn, K., W. Yun, R. Oh, C. Oh et al. 2017, Jan. “A 1.2 V 20 nm 307 GB/s HBM DRAM With At-Speed
Wafer-Level IO Test Scheme and Adaptive Refresh Considering Temperature Distribution”. JSSC, pp.
250–260.

Viitanen, M., A. Koivula, A. Lemmetti, A. Ylä-Outinen, J. Vanne, and T. D. Hämäläinen. 2016. “Kvazaar:
Open-Source HEVC/H. 265 Encoder”. In Multimedia Conference, pp. 1179–1182.

Wikichip 2016. “Cortex-A53 - Microarchitectures - ARM”. https://en.wikichip.org/wiki/arm_holdings/
microarchitectures/cortex-a53. Accessed Jan. 7, 2019.

AUTHOR BIOGRAPHIES

YASIR MAHMOOD QURESHI received his Master degree in Embedded Computing Systems from NTNU,
Trondheim in 2013. He is currently a Ph.D. student at the Electrical Engineering Doctoral program, in
Embedded Systems Laboratory, EPFL. His research interests are energy efficient servers, heterogeneous
compute and hybrid memory architectures. His email address is yasir.qureshi@epfl.ch.

WILLIAM ANDREW SIMON received his Master degree in Electrical Engineering, specialization in
micro and nanoelectronics, from EPFL in 2017. He is currently a Ph.D. student in Electrical Engineering
in the Embedded Systems Laboratory at EPFL. His research interests are in-memory computing, neural
networks, and emerging memory architectures. His email address is william.simon@epfl.ch.

MARINA ZAPATER is a Post-Doctoral researcher in ESL-EPFL since 2016. She received her Ph.D. degree
in Electronic Engineering from Universidad Politécnica de Madrid, Spain, in 2015. Her research interests
include thermal and power optimization of complex heterogeneous systems, and energy efficiency in novel
architectures, servers and data centers. Her email address is marina.zapater@epfl.ch.

KATZALIN OLCOZ received a Ph.D. degree in Physics in 1997 from the Complutense University of
Madrid. She is currently Associate Professor within the Department of Computer Architecture and System
Engineering of the UCM. Her current research addresses emerging issues related to asymmetric processors,
heterogeneous systems and energy-aware computing, with a special emphasis on the interaction between the
system software and the underlying architecture. Her email address is katzalin@ucm.es.

DAVID ATIENZA received his Ph.D. degree in computer science and engineering from UCM, Spain, and
IMEC, Belgium, in 2005. He is currently an Associate Professor in electrical and computer engineering,
and the Director of the Embedded Systems Laboratory at EPFL, Switzerland. His research interests include
system-level design methodologies for multiprocessor system-on-chip (MPSoC) and low-power embedded
systems, many-core servers and ultra-low-power system architectures for IoT systems. His email address is
david.atienza@epfl.ch.

https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a53
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a53
mailto://yasir.qureshi@epfl.ch
mailto://william.simon@epfl.ch
mailto://marina.zapater@epfl.ch
mailto://katzalin@ucm.es
mailto://david.atienza@epfl.ch

	Introduction
	Related Work
	The gem5-X simulation framework
	Architectural Extensions
	Support Enhancements

	Methodology for architectural exploration and optimization
	Phase 1: Application Characterization
	Phase 2: Architecture Optimization
	 Selection of Architectures
	 Evaluate Performance and Energy Efficiency

	Phase 3: Milestones

	Experimental setup and results
	Validation of the Simulation Framework
	Experimental Setup
	Profiling and Bottlenecks
	Strategies for Architecture Optimization
	 Sweeping the Cache Sizes
	 Acceleration with In-cache Computing

	Architectural Exploration
	Many-core Multi-Application System

	Conclusion

