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ABSTRACT

The timebase of mechanical watches is a harmonic oscilla-
tor consisting of a balance wheel attached to a hairspring piv-
oting on a jeweled bearing. The jeweled bearing has frictional
losses limiting watch autonomy and oscillator quality factor. Re-
placement by flexure pivots leads to a drastic reduction in fric-
tion and an order of magnitude increase in quality factor. How-
ever, flexure pivots have drawbacks including gravity sensitivity,
restoring torque nonlinearity, limited stroke and parasitic shift.
These properties have been studied by the authors in a previous
article for two flexure pivots: the generalized cross-spring pivot
(GCSP), which is widely used in the field of compliant mecha-
nisms, and the novel gravity insensitive flexure pivot (GIFP), de-
signed by the authors to solve the problem of gravity sensitivity.
However no analytical solution for the restoring torque nonlin-
earity has been found. This property is crucial for oscillators
as it directly affects isochronism, the capacity of an oscillator to
have a constant frequency regardless of its amplitude. This paper
addresses the issue by finding an empirical quadratic expression
for restoring torque nonlinearity through numerical simulation.
We use this expression to improve the analytical formula for ro-
tational stiffness of GCSP and GIFP. We give an explicit formula
for the effect of restoring torque nonlinearity on isochronism.
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INTRODUCTION
Flexure pivots as mechanical watch oscillators

Classical mechanical watches use a harmonic oscillator con-
sisting of a spiral spring attached to a balance wheel as timebase.
The balance wheel pivots on jeweled bearings which have sig-
nificant friction. Flexure pivots have been introduced in watch-
making to reduce this friction [5] [6], thus supressing the need
for lubrication, increasing the watch autonomy and increasing
the oscillator quality factor, the quantity believed to be the most
significant indicator of chronometric performance [2]. In addi-
tion to their rotational bearing function, flexure pivots provide an
elastic restoring torque which can be used as spring for harmonic
oscillators. Hence one single part, monolithically fabricated, can
replace classical balance wheel, spring and bearing.

However some issues intrinsic to flexure mechanisms limit
their application to timebases.

Limitation 1. Gravity sensitivity: spring stiffness can be af-
fected by the orientation of gravity load.

Limitation 2. Restoring torque nonlinearity: spring restoring
torque can be a nonlinear function of rotation angle leading to an
isochronism defect.

Limitation 3. Limited stroke: stroke of flexure bearings is lim-
ited by the yield stress of the material. Limited stroke makes it
difficult to maintain and count oscillation using classical watch
escapements.
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Limitation 4. Parasitic shift: by construction, the kinematics
of flexure pivots closely approximate rotational motion around
a fixed axis but small translation can occur as angular rotation
increases.

Studied flexure pivots

We study the common flexure pivot called Generalized
Cross-Spring Pivot (GCSP, see Fig.1) and our novel flexure pivot
presented by the authors in [10] called Gravity Insensitive Flex-
ure Pivot (GIFP, see Fig.2). We showed in [10] that the behavior
of these pivots can be described by a geometric parameter 6.

In the case of GCSP, 6 = d. /L., where L, is the length of the
leaf springs and d, is the distance between the rotation axis and
the mobile end of the springs, see Fig.1. When é < 0, the axis of
rotation passes through the leaf springs, see Fig.1(a), this pivot
first described by Wittrick [15] is sometimes called cross-spring
pivot in literature [9] [4] [11] [7]. When & > 0, the axis of rota-
tion is outside of the physical spring structure, see Fig.1(b), this
pivot is sometimes called Remote Center Compliance (RCC) in
literature [4]. Note that only the configuration where the flexure
beams cross at an angle of 90 is studied.

The GIFP depicted in Fig.2 consists of a rigid-body (1) at-
tached to the ground (0) by five beams: four bending beams (2),
(3), (4) and (5), and a single torsional beam (6). The single de-
gree of freedom is rotation around the torsional beam axis [10].
The geometric parameter is 6 = d,/L,, where L, is the length
of the bending beams and dj is the distance between the rotation
axis and the mobile end of the beams. Similarly to GCSP, when
6 < 0, the bending beams cross the rotation axis (see Fig.2(a))
and when & > 0 the beams do not intersect it, see Fig.2(b).

Focus of the study

We addressed limitations 1 and 3 for GCSP and GIFP in [10]
by deriving analytical formulas for gravity sensitivity and stroke
and validating them by finite element analysis (FEA). We gave
special values of geometric parameter & to overcome limitations
1 and 3 and showed that for any value of 8, GIFP stiffness vari-
ation due to gravity load affects the timebase precision in the
order of 1 second per day, which is acceptable in watchmaking.
Limitation 4, parasitic shift of flexure pivot center of rotation, is
a well-studied subject, see [9] [11], and is already addressed by
minimizing gravity sensitivity. Indeed, since gravity sensitivity
is caused by the work of gravity load acting along the parasitic
shift of the center of gravity, minimizing gravity sensitivity also
minimizes parasitic shift.

Limitation 2 has not been adressed yet and is the focus of
this paper. The analytical formula for restoring torque nonlin-
earity derived in [10] does not describe the behavior observed
in FEA simulation. Since this expression is crucial for designing
timebases, we derive an empirical expression for the nonlinearity
curve of pivots with crossed beams obtained by FEA.

(a) 6 < 0 (Cross-spring pivot)

Rotation axis

(b) 6 > 0 (Remote center compliance pivot)

FIGURE 1: TWO CONFIGURATIONS OF THE GENERAL-
IZED CROSS SPRING PIVOT

Effect of restoring torque nonlinearity on isochronism

In order for an oscillator to have the chronometric perfor-
mance necessary for a timebase, its frequency must be as con-
stant as possible. In the case of a mechanical harmonic oscilla-
tors, it must obey Hooke’s Law which means that spring restor-
ing torque should be a linear function of displacement, in other
words spring stiffness should be constant. If this property is re-
spected, a harmonic oscillator with constant inertia and no ex-



(a) GIFP with § <0

Rotation axis
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FIGURE 2: TWO CONFIGURATIONS OF GIFP

(b) GIFP with § >0

ternal influences will have a constant frequency regardless of its
oscillation amplitude. This property called isochronism in horol-
ogy [3] is essential for chronometric performance. Pendulums,
such as the ones used in clocks, are isochronous only for small
angles. The spiral spring associated to a balance wheel by Chris-
tiaan Huygens in 1675 significantly improved the precision of
portable timekeepers by having a low sensitivity to gravity ori-
entation and a quasi-linear restoring torque for a wide range of

amplitude. The first flexure pivot used as a mechanical watch
timebase, a cross-spring pivot oscillator introduced in 2014 [1],
uses a a special geometry [8] which minimizes the effect of grav-
ity on stiffness and a separate mechanism called isochronism cor-
rector to compensate for its nonlinearity. The GIFP oscillator on
the other hand can be isochronous by choosing the right value of
design parameter & for which it is linear and gravity insensitive,
see [10].

For a pivot whose rotational stiffness varies with respect
to angular amplitude, we defined in [10] relative nonlinear-
ity to be the relative deviation of the rotational stiffness from
the nominal value. For small amplitudes of the pivot, its stiff-
ness can be expressed by a power series with first two terms
k = ko + k262 + & (6*) and the relative nonlinearity is defined
to be

ko
=—. 1
= ey
The effect of restoring torque nonlinearity on oscillator rate can
be derived. Given an oscillator with nominal amplitude o, and
nominal angular frequency ,, the daily rate of the same oscil-
lator at amplitude o with corresponding frequency w is defined
to be

0 — o,
— 86400 , 2
P o, (2)

see [13], where p is described in second per day (s/day) and
86400 is the number of seconds in one day. Daily rate is es-
sentially the gain or loss of the timekeeper with respect to time at
nominal frequency after one day of running. The frequency @ of
a non-linear oscillator at amplitude o with relative nonlinearity
U can be derived using [12, Eqn. 2.3.34]:

o(a) = ay(1+ 2 a?) 3)

where @y = \/ko/J is the frequency for infinitesimal amplitude
and J is the moment of inertia of the oscillator.

The classical horological definition of isochronism consid-
ers oscillator rate with respect to oscillator amplitude [3]. We
favour the approach described in [14] which analyzes how os-
cillator rate varies as oscillator energy E varies. This method is
valid for any kind of oscillator and is equivalent to to the horo-
logical definition since in that case energy is proportional to the
square of oscillator amplitude. Using this proportionality, the rel-
ative energy variation with respect to oscillator energy at nominal
amplitude E, expressed in percentage is

_ 100(E—E,) 100(0*— o)

Eq,
’ E, o?
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Finally, isochronism defect ¢ is evaluated by dividing the rate
p by the relative energy variation Eg,. Inserting Eqn. (3) into
Eqn. (2) we obtain

3 2
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3
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We arrive to a simpler expression using Taylor series expansion
around o7 = 0

o =324pe+0 (o). (6)

In practice, isochronism can be obtained from the slope of the
plot of daily rate ¢ vs relative energy variation expressed in per-
centage Eg,. Such curves can be seen in the “Results” section.

METHODOLOGY

We use nonlinear FEA to find the nonlinear torque-angle
relationship of flexure pivots with different values of geometric
parameter 6. For each geometry, 100 incremental displacement
values are applied on the mobile part of the pivot and the re-
action torque on the fixed frame is measured. The simulations
are performed using ANSYS®Workbench, Release 18.2, with
shell elements for the flexible blades. The simulations are done
for values of 6 ranging from -0.5 to 1. Due to interchangeabil-
ity of the rotating rigid body and the fixed frame, to analyze a
pivot with § < —0.5, one can use the results presented here with
&’ = —6 — 1. The behavior of the pivots for values of & > 1 is
not investigated due to high stiffness, high nonlinearity and short
stroke of these pivots limiting their application. The results ob-
tained should however also be valid in this range.

We use the analytical formula for nominal stiffness of the
pivots to validate the finite element model. The nominal stiffness
of GIFP for an infinitesimal rotation in absence of gravity, is

16E1,

8

ko = ko + (367 +38+1), (7

where E and I, are the Young’s modulus and the area moment

of inertia of the bending beams and k, is the torsional stiffness
of the torsional beam. It has been found in [10] that the stiffness
of the torsional beam does not play a major role in the restoring
torque nonlinearity of the pivot. The rest of the analysis is thus
done neglecting this beam. The resulting normalized nominal
stiffness is

ko=38>+38+1, (8)

which is the same formula as the normalized nominal stiffness of
GCSP. It corresponds to the normalized nominal stiffness of the
cross-spring pivot when 6 < 01in [10, Eqn. 9], and the normalized
stiffness of the RCC pivot when & > 0 in [4, Eqn. 5.6]. The
numerical simulations are thus done for the GCSP and the results
are applicable to GIFP. Figure 3 shows a good match between
FEA results and analytical nominal stiffness validating the finite
element model.

T T T T
—— Analytical
o FEA

|
-04 02 O 02 04 06 038 1

FIGURE 3: NORMALIZED NOMINAL STIFFNESS ky OF
THE GCSP VERSUS GEOMETRIC PARAMETER §.

RESULTS

The restoring torque nonlinearity is obtained by fitting an
odd cubic polynomial to the torque-angle relationship obtained
by numerical simulations for chosen values of §. The relative
nonlinearity (t = ky/ko is extracted from the torque-angle rela-
tionship M(8) = ko8 + k,0% according to Eqn. (1). The results
are shown in 4. A quadratic curve fits the data well with a co-
efficient of determination R*> = 0.9999. The resulting empirical
expression for stiffness nonlinearity is

u = 0.0803 4 1.008 + 1.0282. )

Remark: Geometric parameter § = 0.088 solves the equation
1 =0 and cancels the nonlinearity.

The analytical solution derived by Haringx for the nonlin-
ear torque-angle relationship of GCSP with § = —0.5 (see [7,
Eqn. 37]) is plotted on Fig.4 and matches the FEA results. Note
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FIGURE 4: RELATIVE RESTORING TORQUE NONLIN-
EARITY u OF GCSP VERSUS GEOMETRIC PARAMETER
S.

that Haringx’s analytical model is limited to the generalized

cross-spring pivot with § = —0.5 since he solved the nonlinear
equations using the inherent symmetry which holds only for this
configuration.

Since the quadratic curve for the relative nonlinearity fits the
data well, we can use it to give a new formula for the stiffness of
our pivots. Substituting Eqn. (9) into [10, Eqn. 11] which has
been validated for describing the effect of normalized external
load N on the stiffness of GIFP, we obtain the new formula for
GIFP stiffness

ke zliilg (367 +38+1) [1—(0.0803+1.005 + 1.028%) 6°]
__El
12600L

+0 (0°N?) + 0 (N*) .

(98%+98 + 1) N> +k,+ O (%)

(10)
Similarly we obtain the new formula for stiffness of GCSP

ke = SLH (362 +38+1) [1— (0.0803+1.005 + 1.025%) 6]

c

2EI
15L,
EI
6300,

(962 +95 + 1) N (sin@ +cos 9)

(1)
where E, I. are the Young’s modulus and area moment of
inertia and of the leaf springs and ¢ is the angle between a nor-

(962 +95+11)N*+ 0 (6°N) + 0 (6%) + 0 (N?)

malized external load N and the mid-plane of one of the leaf
springs in undeflected position.

Figure 5 shows isochromism curves for 5 chosen values of
0. Isochronism defect is obtained from the slope of the linear
curves of daily rate ¢ vs relative energy variation. We can see
that the special value for geometric parameter § = 0.088 which
cancels the restoring torque nonlinearity in Eqn. (9) shows no
isochronism defect. Note that the sign of nonlinearity defines the
sign of isochronism defect.
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FIGURE 5: DAILY RATE p OF GCSP WITH DIFFERENT
VALUES OF GEOMETRIC PARAMETER 6 FOR AMPLI-
TUDES o BETWEEN 10° AND 20° AND REFERENCE AM-
PLITUDE a, = 15°.

CONCLUSION

An empirical quadratic formula for the restoring torque
nonlinearity of GIFP and GCSP has been found which closely
matches the results obtained by finite element simulation. This
property is crucial when using flexure pivots as oscillators for
mechanical watch timebase as it is directly linked to isochronism
defect, the variation of oscillator frequency with amplitude which
deteriorates chronometric performance. An analytical formula is
given to predict isochronism defect from restoring torque nonlin-
earity and resulting isochronism curves are shown.

The restoring torque nonlinearity results have been com-
bined with the existing analytical formulas describing the effect
of external load on rotational stiffness to provide an improved
description of rotational stiffness of GIFP and GCSP.
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