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CONSPECTUS: Emerging applications of the Internet of Things in healthcare,
wellness, and gaming require continuous monitoring of the body and its
environment, fueling the need for wearable devices able to maintain intimate,
reliable, and unobtrusive contact with the human body. This translates in the
necessity to develop soft and deformable electronics that match the body’s
mechanics and dynamics. In recent years, various strategies have been proposed
to form stretchable circuits and more specifically elastic electrical conductors
embedded in elastomeric substrate using either geometrical structuring of solid
conductors or intrinsically stretchable materials.
Gallium (Ga)-based liquid metals (LMs) are an emerging class of materials
offering a particularly interesting set of properties for the design of intrinsically
deformable conductors. They concomitantly offer the high electrical
conductivity of metals with the ability of liquids to flow and reconfigure. The
specific chemical and physical properties of Ga-based LMs differ fundamentally from those of solid conductors and need to be
considered to successfully process and implement them into stretchable electronic devices.
In this Account, we report on how the key physical and chemical properties of Ga-based LMs can be leveraged to enable
repeatable manufacturing and precise patterning of stretchable LM conductors. A comprehensive understanding of the interplay
between the LM, its receiving substrate chemistry and topography, and the environmental conditions is necessary to meet the
reproducibility and reliability standards for large scale deployment in next-generation wearable systems.
In oxidative environments, a solid oxide skin forms at the surface of the LM and provides enough stiffness to counterbalance
surface tension, and prevent the LM from beading up to a spherical shape. We review techniques that advantageously harness
the oxide skin to form metastable structures such as spraying, 3D printing, or channel injection. Next, we explore how
controlling the environmental condition prevents the formation or removes the oxide skin, thereby allowing for selective wetting
of Ga lyophilic surfaces. Representative examples include selective plating and physical vapor deposition. The wettability of LMs
can be further tuned by engineering the surface chemistry and topology of the receiving substrate to form superlyophobic or
superlyophilic surfaces. In particular, our group developed Ga-superlyophilic substrates by engineering the surface of silicone
rubber with microstructures and a gold coating layer. Thermal evaporation of Ga on such engineered substrates allows for the
formation of smooth LM films with micrometric thickness control and design freedom.
The versatility of the available deposition techniques facilitates the implementation of LM conductors in a wide variety of
wearable devices. We review various epidermal electronic systems using LM conductors as interconnects to carry power and
information, transducers and sensors, antennas, and complex hybrid (soft-rigid) electronic circuits. In addition, we highlight the
limitations and challenges inherent to the use of Ga LM conductors that include electromigration, corrosion, solidification, and
biocompatibility.

■ INTRODUCTION

Wearable technologies are a driving force of the Internet of
Things. Diverse fields such as healthcare, wellness, and gaming
but also safety and connectivity benefit from continuous, real
time monitoring of the body and its environment. The
integration of electronics close to the body calls for new
engineering efforts in materials science, manufacturing, and
system integration. Electronic skin, called e-skin, provides a

scientific and engineering framework to design and manu-
facture electronic circuits matching the large surface area and
dynamic demands of the human body.1 A wide range of
materials and processes are being explored to manufacture e-
skins as described in recent reviews.2−4 Among the various

Received: September 27, 2018

Article

pubs.acs.org/accountsCite This: Acc. Chem. Res. XXXX, XXX, XXX−XXX

© XXXX American Chemical Society A DOI: 10.1021/acs.accounts.8b00489
Acc. Chem. Res. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

E
C

O
L

E
 P

O
L

Y
T

E
C

H
N

IC
 F

E
D

 L
A

U
SA

N
N

E
 o

n 
Fe

br
ua

ry
 1

9,
 2

01
9 

at
 0

9:
26

:3
4 

(U
T

C
).

 
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

 

https://pubs.acs.org/page/achre4/wearable-bioelectronics.html
https://pubs.acs.org/page/achre4/wearable-bioelectronics.html
pubs.acs.org/accounts
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.accounts.8b00489
http://dx.doi.org/10.1021/acs.accounts.8b00489


technological approaches, liquid metals (LMs) emerge as a
particularly interesting class of “electronic materials” to
prepare soft and stretchable electrical conductors, the building
blocks of e-skins. They combine the ability to intrinsically
rearrange, self-heal, and accommodate very large strains while
maintaining high electrical conductivity. When encased in
and/or patterned on a stretchable elastomeric substrate, LM
conductors may carry information and power, transmit, and
sense signals. Already in 1953, mercury was encased in a
rubber tube and used to sense human body deformation.5

Today, gallium (Ga)-based liquid metals have emerged as a
viable and safer alternative to mercury, as the price of
production has dropped with increasing demand from the
semiconductor industry.6 The physicochemical properties of
LMs significantly differ from those of conventional solid
metals, therefore innovative processing is needed for their
robust and reliable integration in wearable devices. An
exhaustive review of LM-based soft and stretchable devices
and their applications was reported elsewhere.7 Despite

showing promising results, these devices still fail to be
deployed at large scale out of the laboratory environment.
Among the different challenges, forming and patterning high
quality LM films at the industrial scale requires understanding
and overcoming the limitations associated with the LM
unconventional rheology and wetting properties. In this
Account, we review the unique properties of Ga-based LMs,
e.g., complex rheology, high surface tension, solid oxide skin,
and reactivity with most metals, and report on different
strategies that leverage these characteristics to create reversibly
deformable electronic components and circuits.

■ KEY PROPERTIES OF GALLIUM

Ga-based liquid metal properties are particularly suitable to
form stretchable conductors. Ga is liquid over a large
temperature range (29.7−2204 °C) and tends to remain
liquid below its freezing point due to the supercooling
effect.8−10 Combined with other metals such as indium or tin,
Ga forms eutectic alloys with further reduced melting points

Figure 1. Properties of bulk LMs. (a) Schematic illustration of LM drops deposited on lyophobic or lyophilic substrates in oxidative or
nonoxidative environments. (b,c) Contact angle of LM droplets (Ga68.5In21.5Sn10 wt %) on a PDMS substrate (left) and Au coated PDMS (right)
substrate before (top) and after (bottom) contact with a 10 wt % NaOH solution. Adapted with permission from ref 70. Copyright 2017 Nature
Publishing Group. (d) Rheological behavior of LM (EGaIn) showing the stabilizing effect of the oxide skin below a critical yield stress.
Reproduced with permission from ref 18. Copyright 2008 John Wiley and Sons (Wiley). (e) Injection of EGaIn and Hg LMs in microchannels
and stabilizing effect of the oxide skin upon pressure withdrawal. Adapted with permission from ref 18. Copyright 2008 Wiley.
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(e.g., 11 °C for eutectic Ga67In20.5Sn12.5 wt %, and 15.5 °C for
eutectic Ga75In25 wt %).11 At room temperature, Ga-based
LMs feature a low vapor pressure,12 low viscosity13 and high
electrical conductivity (≈ 3.4 × 106 S·m−1).14 In the presence
of oxygen, even in minute quantity (>1 ppm), a solid
passivation oxide skin forms at the surface of the LM.12,15

Despite being a few nanometers thick, this solid oxide skin
impacts LM rheology at the macroscopic scale.16

Shaping and forming LM conductors require a good
understanding and control of LM spreading over solid
surfaces. Most wearable and skinlike devices use thin metallic
conductors, of a length scale smaller than the capillary length
of Ga (3.5 mm).17 At this length scale, the influence of gravity
on the LM is negligible. The profile of the LM is thus resulting
from the interplay between adhesive and cohesive forces at the
interface, and the stiffness of the formed solid oxide skin.
In the presence of oxygen, the solid oxide skin is able to

counterbalance the cohesive attraction in the LM. A drop of
LM can thus adopt a wide variety of metastable, nonspherical

shapes depending on its strain history and the oxide skin
formation (Figure 1a−c).18 The oxide skin can withstand
surface stresses up to ≈0.5 N·m−1, above which it yields and
allows the LM to flow (Figure 1d).16 For example, it allows
the formation of stable structures in microchannels by
stabilizing injected LM in a prescribed shape upon pressure
withdrawal (Figure 1e).18

In the absence of oxide skin, LM flows into a shape that
minimizes the interfacial free energy (Figure 1a-b bottom).
Nonreactive surfaces such as glass, sapphire and polymers are
lyophobic toward Ga and will constrain the liquid to bead up
and form drops of large contact angles (>160°).19 On the
contrary, most metallic substrates are Ga lyophilic. Ga reacts
with most metals including gold, platinum or copper20 by
diffusing21 and forming intermetallic compounds that enable
reactive wetting (Figure 1c).22,23

Ga reactivity with metals can also be used to form Ga
amalgams. For instance, dispersing Cu particles in liquid Ga
leads to the formation of CuGa2 intermetallic compound

Figure 2. Liquid amalgams and stabilized dispersions. (a) Schematic of Ga amalgams and (b) pictures of Ga amalgams for different Cu particle
ratios (ϕ). Reproduced with permission from ref 24. Copyright 2017 American Chemical Society. (c) Functionalization of LM (EGaIn)
nanoparticles with thiols to (d) avoid coalescence and (e) control oxide skin regrowth after dispersion in solution. Reproduced with permission
from refs 26 and 27. Copyright 2018 American Chemical Society and 2011 American Chemical Society, respectively. (f,g) Encapsulation of LM
(EGaIn) nanodroplets with alginate to maintain colloidal and chemical stability of aqueous dispersions. Reproduced with permission from ref 29.
Copyright 2018 Wiley.
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(Figure 2a,b). Changing the Cu/Ga ratio (ϕ) enables one to
tune the mechanical and electrical properties of the amalgam,
transitioning from a liquid metal toward a thick, pastelike
material.24 Ga amalgams with other metals have also been
proposed and studied for dentistry.25

Ligands can be grafted on the surface of LMs to modify
their surface properties (Figure 2c−g). Thiols form self-
assembled monolayers on the surface of nonoxidized Ga and
have been used to stabilize and functionalize colloidal
dispersions of LM nanoparticles (NPs) or delay and mitigate
oxide skin formation26−28 Yet, the long-term stability of LM
NPs in aqueous solutions remains a challenge, as they tend to
oxidize and precipitate over time. Alginate hydrogels have
been proposed to maintain the colloidal and chemical stability
of LM NPs for a period of 7 days.29 More recently, Lin et al.
stabilized LM NPs for more than 60 days using an
hydrophobic polymer coating.30

■ ADAPTED PATTERNING TECHNIQUES

Many patterning methods have been developed or adapted to
the unconventional rheology of LMs. The definition of precise
layouts of LM films mostly depends on the control of the
oxide skin and the negotiation of LM high surface tension.

One approach consists of forcing the liquid metal to a
prescribed shape by pressurizing the liquid enough to allow
the oxide skin to yield and the liquid to flow (Figure 3). The
oxide skin spontaneously reforms once in contact with the
oxidative environment, stabilizing the LM in shape upon
release of the mechanical force. This approach is used to form
LM conductors by spraying,31 laser patterning,32 3D
printing,33 direct writing,34 mechanical sintering,35 micro-
channel injection, or vacuum filling,18,36,37 or rolling through a
stencil mask.38,39

Alternatively, LM conductors can be formed by first
removing the oxide skin in a reducing environment then
allowing the LM to selectively wet lyophilic patterns (Figure
4). Methods to reduce the solid oxide skin include exposure to
acidic or basic aqueous solutions,40,41 as well as acidic silicone
oil,42 or vapor.43 Li et al. formed patterns of LM by selectively
wetting thin films of Au deposited on a PDMS substrate
immersed in a HCl solution.44 Ozutemiz et al. used a similar
approach and took advantage of capillary forces to integrate
and self-align surface-mount device (SMD) components.45

Our group reported thermal evaporation of Ga to form thin
films of LM.46 In this physical vapor deposition (PVD)
process, the LM is heated up under vacuum and condenses on
a receiving substrate (Figure 5a). This bottom-up approach

Figure 3. Patterning methods relying on stabilization by the oxide skin. (a) Schematic of the patterning principle. LM is mechanically forced into a
prescribed shape in an oxidative environment and stabilized by the newly formed oxide skin. (b) Atomized spraying. Adapted with permission
from ref 31. Copyright 2013 Nature Publishing Group. (c) Laser machining. Reproduced with permission from ref 71. Copyright 2018 Wiley. (d)
3D printing. Reproduced with permission from ref 33. Copyright 2013 Wiley. (e) Direct writing. Adapted with permission from ref 34. Copyright
2014 Wiley. (f) Mechanical sintering of LM (EGaIn) nanoparticles. Reproduced with permission from ref 35. Copyright 2015 Wiley. (g) Injection
in microfluidic channels. Reproduced with permission from ref 36. Copyright 2013 Nature Publishing Group. (h) Rolling through stencil mask.
Reproduced with permission from ref 38. Copyright 2018 Wiley.
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allows for a precise control of the deposited LM quantity and
prevents the formation of the oxide skin until the chamber is
vented. On a lyophobic substrate, condensed LM forms a
nonconductive dispersion of nanodrops (Figure 5b,c).47 On
the contrary, deposition on a substrate coated with a lyophilic
gold layer allows reactive wetting and formation of a
continuous, conductive and stretchable biphasic LM thin
film (Figure 5d,e).
In addition, engineering the surface roughness of the

receiving substrate further enhances wetting effects. For
example, Kim et al. microstructured the surface of silicone
rubber with micropillars to create superlyophobic substrates
and manipulate oxidized LM drops (Figure 6a−c).48 Reducing
the interpillar distance prevents the penetration of LM within
the microstructures, similarly to the Cassie impregnation
regime, and restricts its adhesion to the substrate. In our
group, we engineered the topography and surface chemistry of
silicone rubber with microstructured pillars and a gold
precoating to produce superlyophilic substrates (Figure 6d−
f).49 Thermal evaporation of Ga on such substrates creates

smooth (Rq < 100 nm) and homogeneous films by imbibition
of the microstructures.50

The profile and roughness of the patterned LM tracks
depend on the selected patterning method, substrate material
and environmental deposition conditions. Patterning reso-
lution and repeatability are also particularly relevant in
applications where the LM tracks are used as electrical wiring
and should interface miniature and dense electrical compo-
nents. Microchannel filling techniques enable well-defined and
smooth structures, matching the predefined microchannel
geometry and roughness37 but are not well suited to prepare
electrical circuits. Unconfined planar deposition techniques
offer less surface control but are more adapted to large scale
processing and integration of surface mounted components.
Park et al. showed that the height of liquid metal tracks
patterned by rolling is ultimately determined by the photo-
resist mask thickness and reported RMS roughness of 0.61 μm
(Figure 7a,b).51 In contrast, the profile of LM traces patterned
using selective wetting is dictated by the contact angle.
Accordingly, the height of the features increases with their

Figure 4. Patterning methods relying on selective wetting in reducing environment. (a) Schematic illustration of LM selective wetting of a
lyophilic substrate in a reducing environment. (b) Schematic diagram of Ga oxides (Ga2O3/Ga2O) chemical reaction with HCl vapor. The oxides
(Ga2O3/Ga2O), chlorides (GaCl3/InCl3), and water are in solid, aqueous, and liquid phases, respectively. Adapted with permission from ref 43.
Copyright 2012 American Chemical Society. (c) Effect of acidified siloxane oil on Ga LM. Reproduced with permission from ref 42. Copyright
2016 American Chemical Society. (d) Complex LM patterns obtained by selective wetting of Au/Cr thin film in HCl reducing environment.
Reproduced with permission from ref 44. Copyright 2015 Elsevier. (e) Side and top view images of self-alignment of surface mounted component
with LM patterns before and after HCl vapor treatment and (f) images showing a circuit with and without LM bridging during the deposition step.
Adapted with permission from ref 45. Copyright 2018 Wiley.
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width (Figure 7c,d).44 LM thin films patterned on engineered
Ga superlyophilic substrates have a very smooth surface (RMS
roughness = 84 nm) independently of the LM track’s width
and thickness (Figure 7e,f).49

■ LIMITATIONS
The following section briefly reports on the major limitations
of liquid metal conductors.
Electromigration

LMs undergoing direct current (dc) stressing are subject to
electromigration as the liquid migrates toward the cathode and
depletes the anode (Figure 8a,b).52 Although this effect can be
beneficial and exploited to form conformal coatings of LMs,53

our group showed that continuous depletion of the LM at the
anode results in failure of the LM conductive tracks under
prolonged current stress (e.g., 1 h at 20 A·cm−2 or 60 h at 4 A·
cm−2).54 Similarly to Black’s empirical law on electro-
migration, we observed that the mean time to failure followed
an inverse power law relationship with the current density
(tfail∼ i−n with n = 3.2).
Corrosion

LM-based alloys may be damaged by pitting corrosion when
placed in aqueous solutions for prolonged periods of time
(Figure 8c−e). Water changes the chemical composition of
the oxide skin and weakens its mechanical strength.55 After
initial fissure of the passivating oxide skin, blisters, voids, and
pits form and lead to the mechanical and electrical breakdown
of LM metallic tracks.56 Encapsulation with low water
permeability materials or surface functionalization with
ligands57 can slow down the process of corrosion, but the
long-term applicability of Ga in liquid environments remains
an open question.
Solidification

Preventing solidification is fundamental to maintain the
elasticity of LM conductors. Even though LMs tend to

supercool and stay liquid below their melting point, solid-
ification may be initiated by contact with a solid crystal of
Ga58 or may occur spontaneously if the metal is cooled down
well below his melting temperature59 (Figure 8f,g).

Alloying

Interfacing LMs with conventional solid state components
may be challenging, in particular over time, as Ga reacts and
diffuses in most metals, resulting in mechanical embrittlement
or contamination.60 Coating of electrically conductive
diffusion barriers based on carbon derivatives impermeable
to LMs, such as graphene, or metals with a good resistance to
corrosion to Ga, such as tungsten, should be considered for
long-term applications.20,61

Biocompatibility

Even though Ga-based LMs are considered safe to manipulate,
applications involving close and prolonged contact with living
tissues should be considered with caution.62 Reports on acute
and chronic toxicity of LMs are still limited, but suggest that
their composition, format, and size, e.g., particle size, and
mechanical agitation of the medium may play an important
role in the compatibility of the LM with biological tissues. For
example, Lu et al. reported the use of a dispersion of LM
(EGaIn) nanospheres as an injectable drug release vehicle with
no chronic toxicity in animal models for a concentration of 45
mg/kg.28 Recently, Kim et al. investigated the cytotoxicity of
EGaIn releasates on various human cells. While naturally
released Ga and In ions did not impede the viability of the
tested cells, sonication drastically increased the release of In
ions and was associated with significant cytotoxicity (Figure
8h).63 More studies are thus necessary to determine how to
safely employ LMs in the context of biological and biomedical
applications.

Figure 5. Physical vapor deposition of LMs. (a) Schematic representation of the process. Evaporated LM condenses in nanodrops on a lyophobic
surface and a continuous film on a lyophilic substrate. (b,c) SEM and AFM images of LM (Ga−In) nanoparticles deposited on a Si wafer by
thermal evaporation. Adapted with permission from ref 47. Copyright 2018 Elsevier. (d) Biphasic thin films obtained by thermally evaporating Ga
on a PDMS substrate precoated with a Au thin film. (e) Growth of the biphasic thin films. Reproduced with permission from ref 46. Copyright
2016 Wiley.
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■ APPLICATIONS TO SOFT WEARABLES
LMs have been utilized to produce a range of electrical
components for soft wearable systems. We summarize a
nonexhaustive list of examples below.

Interconnects

Electrical conductors are the prime implementation of Ga-
based films. They are routed on a stretchable carrier substrate,
similarly to interconnects on a printed circuit board (PCB).
The high electrical conductivity of LMs guarantees low voltage
drops across the soft interfaces, thereby enabling efficient
transmission of power and/or transducing signals. For
example, a complete wearable system, designed to monitor
heart rate, relies on LM interconnect layout to link a voltage
regular, passive components, and an integrated pulse
oximeter32 (Figure 9a). Our group used LM alloy (EGaIn)
interconnects to contact extremely thin (50 nm) gold strain
gauges within a soft glove system encoding motion and
pressure64−66 (Figure 9b). The LM interconnects also act as a
mechanical buffer to interface delicate components or surfaces
and minimize mechanical stress concentrations.

Transducers/Sensors

LM films can be integrated in soft mechanical sensors based
on resistive or capacitive modes. For example, patterned
biphasic thin films enable epidermal sensors (<50 μm-thick)
that encode finger flexion and extension when attached to the
skin67 (Figure 9c). Other sensing modalities include proximity
and pressure sensing as the LM films are used as electro-
des.46,68

Antennas

The low electrical resistance of LM films offers a unique
opportunity to integrate “soft” antennas within e-skins. LM
dipoles or coil antennas prepared on stretchable substrate
maintain high conductivity and transmission capabilities even
under extensive deformations (Figure 9d).39 The ability to
interface standard surface-mount components also simplifies
the co-integration of RFID chips and antennas in a compact,
wearable system. To date, wearable LM antennas are mostly
prepared with microchannel designs filled with LM or

Figure 6. Effect of surface roughness on LM wetting. (a) Schematic
diagram of a LM drop in “Cassie state” on a superlyophobic substrate.
(b) SEM images of microstructured PDMS substrate. (c) Images of
LM drops in different wetting states as a function of micropillar gap
dimensions (top 150 μm, middle 200 μm, bottom 250 μm).
Reproduced with permission from ref 72. Copyright 2013 IEEE. (d)
Schematic diagram of a LM imbibition of a superlyophilic substrate in
a nonoxidative environment. (e) SEM images of a partially
microstructured lyophilic substrate after pure Ga evaporation.
Reproduced with permission from ref 57. Copyright 2018 EPFL.
(f) Microscope images of Ga thin films evaporated on unstructured
(left) or microstructured (right) lyophilic substrate. Reproduced with
permission from ref 49. Copyright 2018 Wiley.

Figure 7. LM profiles prepared with different patterning methods. (a) Picture and (b) height profile of LM (EGaIn) tracks patterned on PDMS by
rolling on photoresist. Reproduced with permission from ref 51. Copyright 2016 American Chemical Society. (c) Picture and (d) height profile of
LM (Ga68.5In21.5Sn10 wt %) patterned by selective plating. Adapted with permission from ref 44. Copyright 2015 Elsevier. (e) Topography and (f)
height profile of Ga deposited on Au-coated flat and microstructured PDMS by physical vapor deposition. Reproduced with permission from ref
49. Copyright 2018 Wiley.
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electrowetting setups and offer tunability and reconfigur-
ability.69

■ CONCLUSION AND OUTLOOK

In this Account, we reviewed the critical properties of Ga-
based LMs to pattern stretchable conductors suitable for
wearable applications. Depositing and shaping LM films across
scales require a comprehensive understanding of their
rheological and wetting properties, highlighted by the

influence of a solid oxide skin, high surface tension, and
reactivity with metals.
We accordingly classified LM patterning techniques as top-

down or bottom-up approaches relying either on the solid
oxide skin or on surface wetting. Guidelines were provided on
how manufacturing techniques may be selected to form
diverse key components of stretchable electronic circuits, such
as interconnects, antennas, and sensors. Nowadays, many
functional LM-based wearable devices and prototypes were

Figure 8. Limitations of LM conductors. (a) Migration of liquid Ga along the current direction on a copper stripe. Reproduced with permission
from ref 53. Copyright 2009 AIP Publishing. (b) Electromigration of Ga on a biphasic Au−Ga film after prolonged current stress. Reproduced
with permission from ref 54. Copyright 2017 EPFL. (c,d) Mechanism and observation of pitting corrosion of liquid Ga placed in KCl solution.
Adapted with permission from ref 56. Copyright 1994 Electrochemical Society. (e) Pitting corrosion of a biphasic Au−Ga metal film after
prolonged immersion in PBS solution. Reproduced with permission from ref 57. Copyright 2018 EPFL. (f) Solidification of supercooled Ga
induced by contact with a solid Ga crystal and (g) freeze casting of LM (EGaIn) 3D structures. Reproduced with permission from refs 58 and 59.
Copyright 2017 Wiley and 2013 Royal Society of Chemistry, respectively. (h) Human cells cultured in a growth media containing dispersed LM
(EGaIn) particles. Reproduced with permission from ref 63. Copyright 2018 American Chemical Society.

Accounts of Chemical Research Article

DOI: 10.1021/acs.accounts.8b00489
Acc. Chem. Res. XXXX, XXX, XXX−XXX

H

http://dx.doi.org/10.1021/acs.accounts.8b00489


demonstrated at the laboratory scale. Yet, the translation of
these concepts toward industrialization remains relatively
unexplored. We therefore discussed main limiting aspects of
LMs such as electromigration and corrosion, and reported
recent cytotoxicity studies of LMs relevant for body-related
applications. In conclusion, we believe that future research on
this exciting class of materials will enable new ways to tune
and optimize the reliability and long-term robustness of LM-
based devices and open up new avenues in the Internet of
Things.
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