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a b s t r a c t 

The Species–Area Relation (SAR), which describes the increase in the number of species S with increasing 

area A , is under intense scrutiny in contemporary ecology, in particular to probe its reliability in predicting 

the number of species going extinct as a direct result of habitat loss. Here, we focus on the island SAR, 

which is measured across a set of disjoint habitat patches, and we argue that the SAR portrays an aver- 

age trend around which fluctuations are to be expected due to the stochasticity of community dynamics 

within the patches, external perturbations, and habitat heterogeneity across different patches. This proba- 

bilistic interpretation of the SAR, though already implicit in the theory of island biogeography and mani- 

fest in the scatter of data points in plots of empirical SAR curves, has not been investigated systematically 

from the theoretical point of view. Here, we show that the two main contributions to SAR fluctuations, 

which are due to community dynamics within the patches and to habitat heterogeneity between different 

patches, can be decoupled and analyzed independently. To investigate the community dynamics contri- 

bution to SAR fluctuations, we explore a suite of theoretical models of community dynamics where the 

number of species S inhabiting a patch emerges from diverse ecological and evolutionary processes, and 

we compare stationary predictions for the coefficient of variation of S , i.e. the fluctuations of S with respect 

to the mean. We find that different community dynamics models diverge radically in their predictions. In 

island biogeography and in neutral frameworks, where fluctuations are only driven by the stochasticity of 

diversification and extinction events, relative fluctuations decay when the mean increases. Computational 

evidence suggests that this result is robust in the presence of competition for space or resources. When 

species compete for finite resources, and mass is introduced as a trait determining species’ birth, death 

and resource consumption rates based on empirical allometric scalings, relative fluctuations do not decay 

with increasing mean S due to the occasional introduction of new species with large resource demands 

causing mass extinctions in the community. Given this observation, we also investigate the contribution of 

external disturbance events to fluctuations of S in neutral community dynamics models and compare this 

scenario with the community dynamics in undisturbed non-neutral models. Habitat heterogeneity within 

a single patch, in the context of metapopulation models, causes variability in the number of coexisting 

species which proves negligible with respect to that caused by the stochasticity of the community dynam- 

ics. The second contribution to SAR fluctuations, which is due to habitat heterogeneity among different 

patches, introduces corrections to the coefficient of variation of S . Most importantly, inter-patches hetero- 

geneity introduces a constant, lower bound on the relative fluctuations of S equal to the coefficient of 

variation of a habitat variable describing the heterogeneity among patches. Because heterogeneity across 

patches is inevitably present in natural ecosystems, we expect that the relative fluctuations of S always 

tend to a constant in the limit of large mean S or large patch area A , with contributions from community 

dynamics, inter-patches heterogeneity or both. We provide a theoretical framework for modelling these 

two contributions and we show that both can affect significantly the fluctuations of the SAR. 

© 2018 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Although natural ecosystems are often characterized by strik-

ing diversity of form and function, regularities emerge almost in-

evitably across scales of space, time and organizational complex-

ity ( Harte et al., 2009; Levin, 1992; Rybicki and Hanski, 2013 ).

Such regularities are subsumed by macroecological ‘laws’ that de-

scribe statistical patterns in species’ numbers, abundances and

sizes ( Banavar et al., 2007; Marquet et al., 2005; Zaoli et al.,

2017 ). Arguably, the most important example of ecological ‘law’

is the Species–Area Relation (SAR). The SAR quantifies the obser-

vation that species richness S tends to increase with increasing

sampling or patch area A , in a relationship firmly placed at the

origins of quantitative ecology ( Arrhenius, 1921; Gleason, 1922;

MacArthur and Wilson, 1967 ). A distinction should be made be-

tween types of SARs under study, which radically differ in the

way area and species sampling are chosen ( Dengler, 2009; Drakare

et al., 2006 ) thus reflecting different measures of biodiversity. No-

tably, the island SAR, which is the focus of this paper, is ob-

tained by counting species inhabiting disjoint, isolated patches

in the same biogeographical region (e.g. islands, lakes, moun-

tain tops or any set of areas separated by environmental barri-

ers, MacArthur and Wilson (1967) ). This form of the SAR stems

from the eco-evolutionary dynamics shaping communities on eco-

logical and evolutionary timescales. The island SAR formulation

most supported by empirical data ( Triantis et al., 2012 ) states that

the number of species S inhabiting a habitat patch increases as

a power of its area, A , such that S = cA 

z , where c is a constant

and z ≤ 1 is the SAR scaling exponent. SARs measured on adja-

cent, non-adjacent or nested patches ( Dengler, 2009; Drakare et al.,

2006 ) within a larger contiguous domain are not considered in

this paper, and compared to island SARs they are affected by the

spatial distribution of individuals (say, the degree of species clus-

tering) within the domain and may not be best described by a

power-law at all scales ( Harte et al., 2009 ). One empirical discov-

ery that is worth mentioning, but will not be directly addressed

here, is that some SARs are not well described by a power law and

may show different patterns in small islands versus larger ones,

where in situ speciation is possible (see Losos and Schluter (20 0 0) ,

Wagner et al. (2014) , Schluter and Pennell (2017) and references

therein). 

The interest in the SAR and in the value of its exponent has

been broad from all of ecology, in particular for its implied pre-

dictive use to forecast the effects of large-scale environmental or

climatic change on biodiversity ( Thomas et al., 2004 ), in particu-

lar as a consequence of habitat loss or fragmentation ( Borile et al.,

2013; Durrett and Levin, 1996; Hanski et al., 2013 ). In fact, within

a deterministic power-law framework, the fraction of species sur-

viving a habitat reduction from an area A to A 

′ would simply be

equal to ( A 

′ / A ) z . Note that only the scaling exponent z matters for

such a prediction (and not the proportionality constant), explain-

ing the interest in the exponent’s value, see e.g. Rybicki and Han-

ski (2013) . Although such an estimate certainly neglects some im-

portant factors which have an impact on the number of surviv-

ing species, e.g. the spatial configuration of the remaining habi-

tat ( Rybicki and Hanski, 2013 ) and the temporal dynamics of ex-

tinctions ( Pimm and Raven, 1995 ), the SAR still provides an order-

of-magnitude estimate of species loss and can be used as a starting

point to build more specific estimates. Against this background, as-

sessing theoretically the nature of the SAR and the reliability of its

predictions is an issue of longstanding interest to community ecol-

ogy, biogeography, and macroecology. 

Empirical island SAR curves typically display scatter around

the mean trend and this scatter can have multiple origins. The

first cause is measurement error, for example due to insufficient
ampling effort missing rare species. Secondly, different environ-

ental conditions on the disjoint patches included in the anal-

sis could imply different proportionality constants c in the SAR

 = cA 

z for each patch, producing a scatter in the plot of S vs A .

he importance of this contribution to the observed scatter di-

ectly depends on the diversity of environmental conditions across

he patches included in the analysis, e.g. their climate and re-

ource availability. Finally, even in the absence of measurement

rror and for perfectly identical environmental conditions across

atches, the number of species S has a residual noise due to

he stochastic community dynamics within each patch (defined

turnover noise’ by Diamond and Gilpin (1980) ). In models of com-

unity dynamics, the number of species S in stationary conditions

esults from the balance of competing stochastic processes, which

ccording to neutral theory ( Hubbell, 2001 ) are speciation, immi-

ration and drift. Therefore, the number of species S should be

een as a stochastic variable subject to fluctuations. If we were

ble to measure the evolution of S with time within a patch, or

ompare it across exact replicates of the same patch with identical

rea A and in the absence of inter-patches habitat heterogeneity,

 would assume different values according to its stationary distri-

ution p(S, t → ∞| A ) = p(S| A ) , where the symbol ‘| A ’ indicates the

onditional probability given that patches have area A . The mag-

itude and relevance of these fluctuations in the observed scatter

f the SAR can be investigated by means of stochastic models of

ommunity dynamics. However, past theoretical work ( MacArthur

nd Wilson, 1963, 1967; Rosenzweig, 1995 ) focused mainly on the

eterministic SAR emerging for the mean value of the number of

pecies in patches of area A , 〈 S | A 〉 , by determining its functional

ependence on A and related coefficients ( Azaele et al., 2016; Dur-

ett and Levin, 1996; Lomolino, 20 0 0 ), and studying its behavior

ollowing changes in speciation rate, typical dispersal length and

atch size ( Cencini et al., 2012; Pigolotti and Cencini, 2009; Shem-

ov et al., 2017 ). Much less attention has been devoted to de-

ermining and isolating the causes of scatter and to understand-

ng to what extent such scatter might invalidate the significance

f the observed SAR curve. One exception has been provided by

iamond and Gilpin (1980) , who tackled the issue of the scal-

ng of the relative fluctuations of S with patch area A in a model

f the equilibrium theory of island biogeography ( MacArthur and

ilson, 1967 ). 

While the interest in studying average trends is not question-

ble, we argue that fluctuations of S may not be negligible with

espect to their mean ( Fig. 1 ) and thus they may be an important

omponent of the SAR. Quantifying the effects of community dy-

amics stochasticity and inter-patches heterogeneity on the fluc-

uations of the SAR is a theoretically interesting problem. There

ould exist cases where, depending on the community dynam-

cs within patches or the inter-patches heterogeneity, a particu-

ar value of S measured in field studies may differ significantly

rom its expected value across a set of disjoint patches or differ-

nt measurement times. Mathematically, the magnitude of the rel-

tive fluctuations of the number of species S can be described via

ts coefficient of variation: 

V (S) ≡
√ 〈 S 2 〉 − 〈 S〉 2 

〈 S 〉 = 

√ 

var (S ) 

〈 S 〉 . (1)

hen the relative fluctuations CV( S ) decay with increasing 〈 S 〉 , the

andom variable S can be considered essentially deterministic for

ollections of disjoint patches with large enough 〈 S 〉 , because ob-

ervable values lie within a negligible distance from the mean. In

his work, we ask whether (and why) relative fluctuations may not

ecay with increasing 〈 S 〉 . In such a scenario, when using a deter-

inistic SAR one should be aware of its reduced predictive power

ue to the potential large distance of any single observation from
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Fig. 1. A conceptual scheme highlighting the probabilistic structure of the SAR and 

the contribution of community dynamics to the fluctuations of S : (top panels) Three 

independent patches of area A , 10 A , 10 2 A are sketched. The patches are meant to 

comply with the stipulations of the theory of island biogeography and we assume 

that there is no habitat heterogeneity among them; (lower panels) Three SAR sce- 

narios are shown, differing for the value of the exponent β describing the scaling 

of the variance of S with the mean 〈 S 〉 , i.e. var( S ) ∝〈 S 〉 β . On the left, we plot the 

SAR prediction for the mean number of species with its confidence interval and an 

example of the outcome of a hypothetical measurement for each of the three ar- 

eas. The plot, in double logarithmic scale, is based on a power-law SAR with slope 

equal to z , i.e. 〈 S| A 〉 = cA z . On the right, we plot examples of what a time-series of 

the measured number of species would look like in the three test patches, should 

a replicated field study be staged therein. From top to bottom, we considered the 

case of the Taylor’s law exponent β < 2 in which relative fluctuations go to zero as 

A increases, the case β = 2 for which the variance scales with the mean and thus 

relative fluctuations are constant at all scales, and the case β > 2 for which relative 

fluctuations of S increase with A . 
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he average, depending of course on the value of CV( S ). The scal-

ng of the variance with the mean of positive random variables has

een often found to conform to a power-law with exponent be-

ween 1 and 2, var( S ) ∝〈 S 〉 β , an empirical observation that is often

eferred to as ‘Taylor’s law’ or ‘fluctuation scaling’ ( Cohen, 2014;

iometto et al., 2015; Taylor, 1961 ). This observation allows us to

xpress the relative fluctuations of S , CV( S ), in terms of the mean

umber of species 〈 S 〉 , and the value of the exponent β determines

he behavior of the relative fluctuations ( Fig. 1 ): 

V (S) ∝ 〈 S〉 β/ 2 −1 . (2)

or β < 2, relative fluctuations decay with increasing 〈 S 〉 , while for

> 2, relative fluctuations increase with increasing 〈 S 〉 . For the ex-

onent value β = 2 , relative fluctuations are constant at all scales,

.e. for all values of 〈 S 〉 . As an example, for a Poisson random vari-

ble X , var (X ) = 〈 X 2 〉 − 〈 X〉 2 = 〈 X〉 , therefore β = 1 and the rela-

ive fluctuations vanish in the limit 〈 X 〉 → ∞ . On the other hand,

or a random variable X distributed as a power-law with exponent
∈ (1, 2), the sample mean and variance ( Newman, 2005 ) yield

= (3 − α) / (2 − α) ≥ 2 , i.e. relative fluctuations are either con-

tant or diverge in the 〈 X 〉 → ∞ limit, depending on the value of

. The value of β is therefore a useful quantity to characterize the

uctuations of S , and classify different models of community dy-

amics as done below. 

In this work, we acknowledge that the number of species S in-

abiting a patch of area A is a random variable with probability

istribution p ( S | A ) and thus we refer to the SAR as the relationship

 S| A 〉 = cA 

z . Note that the mean number of species 〈 S | A 〉 increases

ith the patch size A when z > 0, which is almost always found

mpirically, in particular for the island SAR. Therefore, when the

elative fluctuations CV (S| A ) ≡
√ 

var (S| A ) / 〈 S| A 〉 (here, var (S| A ) ≡
 S 2 | A 〉 − 〈 S| A 〉 2 ) decay with increasing 〈 S | A 〉 , we can equivalently

tate that they decay with increasing patch size A . Some of the

ommunity dynamics models considered in Section 2 do not model

he patch size A explicitly, but are useful as starting points for

ur investigation. For those models, the probability distribution

 ( S ) and its cumulants are not conditional on A , and we study

he behavior of relative fluctuations CV (S) ≡
√ 

var (S) / 〈 S〉 in the

imit of large 〈 S 〉 . We examine the statistics of S in a number of

ommunity dynamics models which include a diverse set of eco-

ogical processes and we characterize the scaling of the relative

uctuations of S with the mean. Exact results, which we review

n Section 2.1 , exist for the simplest models, i.e. the model of

acArthur and Wilson (1963, 1967) and the non-interacting neu-

ral model, offering a natural starting point for the study of the

ehavior of fluctuations. We then show that species competition,

nder certain circumstances, can cause severe perturbations to the

ynamics of S within a patch, leading to relative fluctuations of S

hich do not decay as the mean increases. Furthermore, we ex-

mine the effects of different types of external perturbations on

he community inhabiting a patch, addressing the effects of their

ize and frequency in relation to patch size and recovery rate (due

o speciation/immigration). The scope of such model comparison

s to further our understanding of the possible statistical proper-

ies of S which we should expect in field observations of a single

atch. Finally, we show that habitat heterogeneity across different

atches causes an additional contribution to the relative fluctua-

ions of S , which may dominate over the contribution due to com-

unity dynamics, or may be comparable in magnitude, depend-

ng on the community dynamics within the patches. Table 1 sum-

arizes the results for the various community dynamics models

onsidered. 

. Community dynamics contribution to SAR fluctuations 

.1. Species richness from minimalist models of community dynamics 

We first consider a specific model of the equilibrium theory of

sland biogeography ( MacArthur and Wilson, 1963 ) and review the

esults of Diamond and Gilpin (1980) on such model. In this model,

he stationary number of species emerges from the balance be-

ween immigration from a species pool containing P species and

xtinction, with rates I ( S ) and E ( S ), respectively. In this approach,

he variance of S is exactly ( Diamond and Gilpin, 1980; MacArthur

nd Wilson, 1967 ): 

ar (S) = 

I(〈 S〉 ) 
d E/d S − d I/d S 

, (3) 

here the average number of species 〈 S 〉 is obtained from the con-

ition: 

(〈 S〉 ) = E(〈 S〉 ) . (4)
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Table 1 

Summary of the community dynamics models investigated and their predictions for the exponent β describing how the relative fluctuations of S due to community 

dynamics scale with the average number of species. 

Model Relative fluctuations scaling 

Poisson model ( Section 2.1 ) Relative fluctuations decay with the mean, CV (S) ∝ 〈 S〉 −1 / 2 

Mean-field multi-species voter model ( Section 2.1 ) Relative fluctuations decay with the mean, CV (S) ∝ 〈 S〉 −1 / 2 

Multi-species voter model (MSV, Section 2.2.1 ) Relative fluctuations decay with the mean, CV (S) ∝ 〈 S〉 −1 / 2 

Neutral-spatially implicit model (N-SI, Section 2.2.2 ) Relative fluctuations decay with the mean, CV (S) ∝ 〈 S〉 −1 / 2 

Non-neutral spatially implicit model with diversification rate independent of area (M1, Section 2.3 ) Relative fluctuations are constant, CV( S ) ∝ 1 

Non-neutral spatially implicit model with diversification rate decreasing with area (M2, 

Section 2.3 ) 

Relative fluctuations are constant, CV( S ) ∝ 1 

Neutral-spatially implicit model with external perturbations independent of S (N-SI-P1, Section 2.4 ) Relative fluctuations decay with the mean, CV (S) ∝ 〈 S〉 −1 / 2 

Neutral-spatially implicit model with external perturbations proportional to S (N-SI-P2, Section 2.4 ) For small areas relative fluctuations are constant, CV( S ) ∝ 1 

Metapopulation dynamics model ( Section 2.5 ) The variance decreases with the mean with a 

non-power-law pattern. Relative fluctuations decrease 

with the mean much faster than in all other models. 
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Diamond and Gilpin (1980) showed that, for a specific choice of

I ( S ) and E ( S ), at stationarity var( S ) increases linearly with 〈 S 〉 when

〈 S 〉  P , reaches a maximum around 〈 S〉 = P/ 2 and then decays to

zero as 〈 S 〉 approaches P . Such result implies, therefore, that rel-

ative fluctuations decay as 1 / 
√ 〈 S〉 when 〈 S 〉  P and even faster

afterwards. This behavior is related to the lack of speciation in the

model, limiting the maximum number of species to the number of

species in the pool. 

We can compare such predictions with the ones of a neutral

model where new species are introduced by speciation and immi-

gration without a fixed upper limit on S . Consider a community

dynamics where new species appear as a point Poisson process

with rate λ and are characterized by a birth rate b and a death

rate d that are identical for all species, i.e. the model is neutral.

For this model with non-interacting species, which we refer to as

the Poisson model , the number of species S at stationarity is a Pois-

son random variable ( Suweis et al., 2012 ) with mean: 

〈 S〉 = λ〈 τ 〉 , (5)

where 〈 τ 〉 is the average lifetime of a species, also called persis-

tence time ( Appendix B ). An alternative formulation of this model

is the following: the arrival of new species in the community is a

Poisson process of rate λ and their lifetimes τ are i.i.d. variables

with mean 〈 τ 〉 . With this formulation, the fact that S is Poisson-

distributed with mean given by Eq. (5) corresponds to a known re-

sult of queuing theory ( Benes, 1965 ). As a consequence of p ( S ) be-

ing a Poisson distribution, one has β = 1 . Therefore, relative fluctu-

ations decay with the mean and S is effectively deterministic in the

limit of large S . The same result can be proved for the mean-field

multi-species Voter model ( Suweis et al., 2012 ) in patches of area

A , where species interact through the competition for space, in

the large A limit (when interactions become negligible). The Voter

model is a spatially explicit stochastic model on a lattice ( Clifford

and Aidan, 1973; Durrett and Levin, 1996; Liggett, 1985 ), where

each site is occupied by an individual characterized by its species.

When an individual dies, it is replaced either by an individual of a

new species (interpreted as a speciation event or immigration from

outside the lattice) or by an offspring of another species present

in the lattice (adjacent to the empty site in the nearest-neighbor

version or from anywhere in the lattice in the well-mixed case).

Note that, with the introduction of space, the mean lifetime 〈 τ | A 〉
in a patch of size A becomes a function of A . For this model, Eq.

(5) reads 〈 S| A 〉 = λ〈 τ | A 〉 , and provides a link between persistence

times and the SAR ( Bertuzzo et al. (2011) , see also Appendix B ). 

The introduction of more realistic features such as a finite dis-

persal length, non-negligible interactions or the relaxation of the

neutral assumption prevent exact results to be obtained for p ( S | A ).

In fact, interactions make persistence times τ not independent,
hile introducing a trait differentiating species, e.g. mass, makes

he persistence times τ not identically distributed across species

nd the above results do not necessarily apply. Therefore, we ex-

lored numerically the statistical properties of S in a variety of

tochastic models of community dynamics, varying the assumption

f neutrality and the presence or absence of competition. We stud-

ed the stationary distributions p ( S | A ) in different generalizations

f the simple neutral model of non-interacting species presented

bove: we compared different mechanisms of competition for re-

ources ( Section 2.2 ), neutral and non-neutral models and differ-

nt speciation mechanisms ( Section 2.3 ). For each model and each

f the simulated patch sizes A , we computed p ( S | A ), its average

 S | A 〉 , its variance var (S| A ) ≡ 〈 S 2 | A 〉 − 〈 S| A 〉 2 and the relative fluc-

uations CV( S | A ). Furthermore, we computed p ( τ | A ) (i.e., the prob-

bility that a species in a patch of area A has a persistence time

) and its average 〈 τ | A 〉 . In addition, we also explored the effect

f intra-patch habitat heterogeneity by considering a metapopula-

ion model ( Rybicki and Hanski, 2013 ), where the biodiversity level

s determined by the habitat diversity within the patch, allowing

pecies with different niches to survive ( Section 2.5 ). Also for this

odel, for each simulated patch size A, p ( S | A ) was computed under

andomization of the intra-patch landscape, along with its average,

ariance and relative fluctuations. 

.2. Neutral models with competition 

We considered two different ways of introducing competi-

ion for a shared resource, i.e. interaction among species: a spa-

ially explicit one in Section 2.2.1 and a spatially implicit one in

ection 2.2.2 . 

.2.1. Multi-species voter model (MSV) 

First, we studied the Multi-Species Voter model (MSV) with

peciation and nearest-neighbors dispersal. Here, each individual

ccupies a node of an L × L lattice (a patch of size A = L 2 ) and

 = L 2 is the total number of individuals, therefore space is the

ommon resource in this model. At each time step, one individ-

al chosen at random dies and is replaced with probability λ by

n individual of a new species and with probability 1 − λ by an

ffspring of one of its nearest neighbors. The probability λ should

e interpreted as the sum of the probability of speciation and of

he probability of immigration of a new species from outside the

attice, and will be called “diversification rate” hereafter. While for

he well-mixed case (or equivalently for infinite dispersal length),

n the limit A → ∞ , a parallel can be established with the non-

nteracting case ( Suweis et al., 2012 ) allowing to extend the an-

lytical results, no analytical results are known when the disper-

al length is finite. A semi-analytical approach gives an approxima-
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Fig. 2. p ( S | A ) for the N-SI model. Colors refer to different values of A . Continuous 

lines are Poisson distributions with mean λ〈 τ | A 〉 . 

Fig. 3. Conditional probability distribution of the number of species S within a 

patch of area A . Here we show p ( S | A ) for the MSV model with λ = 10 −3 and A = L 2 

with L = 50 , 100 , 200 obtained from 1000 simulations of the model with the coa- 

lescent method. Continuous lines are Poisson distribution with mean λ〈 τ | A 〉 , where 

〈 τ | A 〉 was obtained from a forward model simulation. 
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f  
ion for 〈 S | A 〉 ( Shem-Tov et al., 2017 ), but not for p ( S | A ). The MSV

odel has been studied extensively in Bertuzzo et al. (2011) , where

he resulting species’ persistence time distribution p ( τ | A ) was com-

ared with the empirical one computed from presence/absence

ata of breeding birds. We simulated the MSV model on periodic

attices (patches) of size A = L 2 with L = 50 , 10 0 , 20 0 and diver-

ification rate λ = 10 −3 . We expect results to be robust with re-

pect to the diversification rate λ. To compute p ( S | A ) for the differ-

nt areas, we obtained 10 0 0 independent realizations of S at the

tationary state for each value of A by simulating the model with

he coalescent method ( Etienne and Olff, 2004 ), which takes ad-

antage of the dual representation of the Voter model ( Holley and

iggett, 1975; Rosindell and Cornell, 2009; Rosindell et al., 2008 ).

his method assures that the realizations of S are independent.

ince persistence times cannot be measured with the coalescent

ethod, we also performed one forward simulation of the model

or each value of A . Species’ persistence times were measured as

he interval between the appearance of a species and its extinc-

ion. The simulations were continued until the estimate of 〈 τ | A 〉
id not increase further with simulation length. 

.2.2. Neutral-spatially implicit model (N-SI) 

Competition for resources can also be introduced in a spatially-

mplicit model, in which an A -dependent resource constraint is

mplemented in the birth and death rates. We consider here a

eutral version of the community dynamics model introduced in

aoli et al. (2017) . Let A be the area of a patch, and let R ∝ A be the

esources supply rate. In the model, individual births and deaths

re Poisson-distributed events, and an individual of a species with

bundance n i is born or dies with rates, respectively: 

 i (t) = n i , 

v i (t) = 

[
v 0 + (1 − v 0 ) r 

N(t) 

R 

]
n i , (6) 

here r is the resource consumption rate of an individual, N ( t ) is

he total number of individuals in the community at time t and the

er-capita birth rate of an individual of unit mass is taken equal

o one without loss of generality. We refrain from introducing a

roportionality constant u 0 between u i and n i , which corresponds

o re-scaling time by 1/ u 0 . When the resource consumption of the

ommunity rN ( t ) is equal to the resource supply rate R , the birth

ate is equal to the death rate, u = v , and the community has no

et growth, but N ( t ) will continue to fluctuate with time. Diversi-

cation is implemented as a Poisson process with constant rate λ.

t each diversification event, a species is chosen at random and a

andom fraction of individuals from such species is assigned to a

ew species (this mode of speciation is analogous to what is fre-

uently referred to as ‘fission speciation’). In this model, space is

ntroduced implicitly via the assumption R ∝ A, which determines

he number of individuals that the patch can sustain. We simulated

he model for A = 10 i with i = 2 , 3 , 4 , 5 , λ = 10 −4 , v 0 = 1 / 2 and

 = 10 −4 . Also in this case, we expect the results to be robust with

espect to a broad range of parameters’ variations. The stationary

tate was considered attained when the number of species S did

ot show a net change in time, but only fluctuations around a sta-

ionary mean value. To compute p ( S | A ) at the stationary state, we

ampled the number of species S with frequency f = 10 −5 . Such a

ow sampling frequency guarantees the independence of the sam-

led values of S . Persistence times were measured as explained in

ection 2.2.1 . In the following, we will refer to this model as N-SI

Neutral-Spatially Implicit). Differently from the MSV model, where

ach individual always occupies one node, i.e. consumes a fixed

mount of resources, here the neutral assumption for the resource

onsumption rate can be easily relaxed (see Section 2.3 ). 
.2.3. Comparison with the neutral model without competition 

Numerical results suggest that the exact results valid in the

on-interacting case (i.e., S being a Poisson variable with mean

iven by Eq. (5) ) are still valid for the two models with competi-

ion in the large-area limit. Figs. 2 and 3 show p ( S | A ) obtained from

imulations of, respectively, the N-SI and MSV model for different

alues of A and the corresponding theoretical predictions for the

on-interacting case, i.e. Poisson distributions with mean λ〈 τ | A 〉 .
he results match closely the predictions and, as expected for a

oisson random variable, var( S | A ) scales as a power of 〈 S | A 〉 with

n exponent β compatible with 1, i.e S is asymptotically determin-

stic. The estimates of β for the two models are, respectively β =
 . 985 ± 0 . 005 ( R 2 = 1 . 0 ) and β = 1 . 08 ± 0 . 06 ( R 2 = 0 . 99 ). Fig. 4 (a)

isplays the time-evolution of S for two different areas in the N-SI

odel (a similar dynamics is found for the MSV model). The aver-

ge number of species is found to scale as a power-law of A . The

alues of z estimated by linear least squares fitting of (log A , log S )

or the MSV and N-SI models are, respectively, z = 0 . 998 ± 0 . 002
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Fig. 4. Dynamics of the number of species S in the models presented in the main text. a) Model N-SI with λ = 10 −4 , areas 10 3 (green) and 10 4 (purple); b) model M1 with 

λ = 10 −2 , areas 10 3 (green) and 10 4 (purple); c) model M2 with λ = A −0 . 5 , areas 10 3 (green) and 10 4 (purple); d) model N-SI-P1 with λ = 10 −4 , areas 10 3 (green) and 10 4 

(purple); e) model N-SI-P2 with λ = 10 −4 , areas 10 3 (green), 10 4 (purple) and 10 5 (blue). Note that the decrease in the number of species at fixed frequencies is due to the 

specific perturbations that we added by design to the neutral dynamics (see text). Black dotted lines mark the average S . The metapopulation dynamics model is not shown 

because we don’t solve for its temporal dynamics to compute the statistics of S . (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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( R 2 = 1 . 0 ) and z = 0 . 496 ± 0 . 001 ( R 2 = 0 . 99 ). Note that the value

z = 1 for the MSV model is expected from the results of Shem-

ov et al. (2017) to hold independently of λ. Some considerations

regarding the distribution of persistence times in the two models

are presented in Appendix B . 

2.3. Non-neutral models 

The assumption of neutral dynamics, which neglects differences

in species traits such as vital rates, is often employed in ecolog-

ical modeling because analytic results can often be derived and

compared to empirical measurements ( Azaele et al., 2016 ), often

with good levels of accuracy. Not distinguishing different species

by characteristic traits such as body size, however, prevents the

comparison between theoretical models and empirical patterns

that are related to such traits, for example scale-invariant com-

munity size spectra ( Marañón, 2015 ), the power-law relationship

between the typical body mass of a species and its average abun-

dance ( Damuth, 1981 ), and others ( Zaoli et al., 2017 ). To repro-

duce these patterns in community dynamics models, we recently

showed in Zaoli et al. (2017) that different species must be dis-

tinguished by their characteristic body size and the scaling of vi-

tal ( Brown et al., 2004 ) and resource consumption ( Kleiber, 1932 )

rates with body size needs to be accounted for. In these com-

munity dynamics models, the dependence of physiological rates

on body mass explains the observed difference in the success (in

terms of abundance) of species with different body sizes. These

results suggest that individual body mass, which is a key biolog-

ical trait affecting a species’ physiology and ecology ( Brown et al.,

2004; Giometto et al., 2013; Kleiber, 1932; Marañón, 2015 ), is also

fundamental for the emergence of widespread ecological patterns

in natural ecosystems. In this section, we investigate the dynamics

and relative fluctuations of S in variants of the community dynam-

ics models introduced in Zaoli et al. (2017) , which are generaliza-

tions of the model N-SI to the non-neutral case. In these models,

an individual of a species with abundance n and body mass m is
i i 
orn or dies with rates, respectively: 

 i = n i m 

−1 / 4 
i 

, 

v i = 

[ 

v 0 + (1 − v 0 ) r 
∑ 

j n j m 

3 / 4 
j 

R 

] 

n i m 

−1 / 4 
i 

, (7)

here r is the resource consumption rate of an individual with

nit mass and the per-capita birth rate for an individual of unit

ass is taken equal to one without loss of generality. The expo-

ent values −1 / 4 and −3 / 4 are the typical values for the corre-

ponding allometries and it was shown ( Zaoli et al., 2017 ) that

hey affect the scaling exponents of macroecological patterns, but

ot their functional form and covariations. Similarly to the corre-

ponding neutral model (N-SI), the community net growth rate is

ero when the community consumes all the available resources,

.e. when r 
∑ 

j n j m 

3 / 4 
j 

= R ∝ A . The two variants that we investi-

ated here differ in the diversification mechanism: in model M1,

iversification is implemented as a Poisson process with constant

ate λ. In model M2, the overall rate of diversification λ depends

n the area of the patch as λ(A ) = λ0 A 

−ξ . This choice accounts for

he finding of Bertuzzo et al. (2011) , which showed that the species

iversification rate scales with the area as λ ∝ A 

−ξ with ξ = 0 . 84 .

his result agrees with the interpretation of λ as the sum of the

ate of immigration and that of speciation, as the arrival of new

pecies by immigration is expected to diminish as the patch area

ncreases ( Chisholm and Lichstein (2009) , Appendix A ). 

In models M1 and M2, diversification is implemented via a fis-

ion mechanism as in model N-SI. The mass m j of the descen-

ant species j is obtained as m j = max { m 0 ; k · m i } , where k is a

ositive random number extracted from a lognormal distribution

ith mean and variance equal to one. The maximum in the ex-

ression for m j introduces a bound on the minimum mass m 0 that

 species can attain ( Zaoli et al., 2017 ). The mass of the parent

pecies is left unchanged. The distribution of species’ masses in

he patch is determined by the combination of this multiplica-
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Fig. 5. Statistics of S for model M1. (a) p ( S | A ), different colors refer to different values of A = 10 i , from i = 1 . 5 to i = 4 . (b) Collapse of p ( S | A ). Eq. (8) of the main text 

is verified because Sp ( S | A ) versus S / A z collapse on the same curve for different values of A . Inset: the minimum of the functional E ( z ) provides the best estimate for the 

exponent and the associated error ( Bhattacharjee and Seno, 2001 ). (c) Scaling of the ratio of consecutive moments with 〈 S 〉 . 

Fig. 6. Statistics of S for model M2. (a) p ( S | A ), different colors refer to different values of A = 10 i , from i = 1 . 5 to i = 4 . (b) Collapse of p ( S | A ). Eq. (8) is verified because 

Sp ( S | A ) versus S / A z collapse on the same curve for different values of A . Inset: the minimum of the functional E ( z ) provides the best estimate for the exponent and the 

associated error ( Bhattacharjee and Seno, 2001 ). (c) Scaling of the ratio of consecutive moments with 〈 S 〉 . 

t  

R  

i  

m  

w  

r  

t  

s  

s  

c  

t  

m  

t  

w  

i  

d  

u  

t

 

p  

c  

v  

T  

v  

t  

(  

t  

fi

 

w  

s  

c  

e  

a  

c  

d  

m  

s  

m  

b  

2  

d  

f  

t  

S  

b  
ive bounded process, known to produce power-laws ( Didier and

ama, 1997; Solomon and Levy, 1996 ), and the birth/death dynam-

cs. We note here that models M1 and M2 differ from the com-

unity dynamics model studied in Zaoli et al. (2017) because here

e don’t impose the constraint that the total metabolic rate should

emain unchanged before and after a diversification event. We lift

his constraint here because the diversification event may corre-

pond to the immigration of a species with high resource con-

umption rate, which may cause the community to temporarily

onsume more resources than the resource supply rate R . When

his occurs, species’ abundances rapidly decline to bring the com-

unity back to an overall consumption rate equal to R . Imposing

he constraint would therefore restrain the fluctuations which we

ant to study. We simulated models M1 and M2 for A = 10 i with

 = 1 . 5 , 2 , 2 . 5 , 3 , 3 . 5 , 4 and parameters values c = 10 −3 , m 0 = 1 . The

iversification rate was set to λ = 10 −2 for M1, while for M2 we

sed λ0 = 1 and ξ = 0 . 5 . The number of species and the persis-

ence times were measured as for the N-SI model. 

The dynamics of the random variable S in the two models, dis-

layed in Fig. 4 (b) and (c), shows strikingly different features in

omparison with the neutral model. In particular, the coefficient of

ariation CV (S| A ) ∝ 〈 S| A 〉 β/ 2 −1 does not decrease with A , i.e. β � 2.

he species’ number distributions, shown in Figs. 5 (a) and 6 (a), de-

iate strongly from a Poisson distribution, with fluctuations quan-

m  
ified, respectively, by β = 1 . 88 ± 0 . 05 (M1) and β = 1 . 93 ± 0 . 14

M2). Rather than being Poisson distributed, species number dis-

ributions in models M1 and M2 are described by the following

nite-size scaling form ( Giometto et al., 2013 ): 

p(S| A ) = 

1 

S 
F 

(
S 

cA 

z 

)
, (8)

here F is a function such that F(x ) → 0 for x → 0, ∞ and c de-

cribes the quality of the habitat, which we will assume to be

onstant for this section. Eq. (8) accounts for the fact that in an

cosystem of area A , like in many other complex systems, there is

n emerging scale for the number of species, S , that diverges as

A 

z . This suggests that the probability distribution of S , instead of

epending on both A and S separately, depends only on the di-

ensionless ratio S /( cA 

z ). The pre-factor, 1/ S , is there for dimen-

ional reason since ∫ p ( S | A ) dS has to be a pure number, i.e. p ( S | A )

ust have the dimension of 1/ S . The validity of Eq. (8) is shown

y data collapse ( Bhattacharjee and Seno, 2001; Giometto et al.,

013 ), which consists in plotting the curves Sp ( S | A ) versus S / A 

z for

ifferent values of A and showing that curves computed with dif-

erent values of A collapse, as shown in Figs. 5 (b) and 6 (b). Note

hat an attempt to collapse the distributions obtained with the N-

I model according to Eq. (8) fails ( Fig. 7 ), due to the different

ehavior of the fluctuations of S in neutral and non-neutral com-

unity dynamics models. To visually highlight the difference be-
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Fig. 7. Failure of the collapse in Eq. (8) of the main text for the N-SI model. (a) p ( S | A ) (log-log scale). Colors refer to different values of A . (b) Attempt to collapse the 

distributions as suggested by Eq. (8) of the main text. The failure of the collapse shows that, in the neutral models, the fluctuations behave in a remarkably different way 

than in the non-neutral models. 

Fig. 8. Comparison of Poisson distributions (continuous lines) and lognormal dis- 

tributions (dashed lines) with means A z , namely with z = 1 / 4 and A = 10 2 (black), 

10 5 (blue) and 10 8 (grey). The lognormal distribution satisfies Eq. (8) with F (x ) = 

1 / 
√ 

2 πσ 2 e −( log (x ) −μ) 2 / ( 2 σ 2 ) . To have 〈 S| A 〉 = A z , we set μ = −σ 2 / 2 . We set the pa- 

rameter σ such that the variance of the lognormal for A = 10 2 is equal to the vari- 

ance of the Poisson distribution for A = 10 2 (but not for larger or smaller areas, 

otherwise the lognormal distribution would not satisfy Eq. 8 ). Inset: values of S ex- 

tracted from a Poisson distribution (red) and from a lognormal distribution (blue) 

with mean A z , with z = 1 / 4 and A = 10 i for i = 2 , . . . , 10 . The parameter σ of the 

lognormal distribution was set as explained above. For each value of the area, 10 

extracted values are shown. The black line is S = cA z . (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version of 

this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Scaling of the average number of species 〈 S | A 〉 vs the patch size A for models 

N-SI (circles), M1 (squares) and M2 (diamonds). Lines are least square fit of log- 

transformed data, see text for exponent estimates. Error bars are SEM. 
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tween distributions that satisfy Eq. (8) and the Poisson distribu-

tion, we plot in Fig. 8 a lognormal distribution that satisfies Eq.

(8) and a Poisson distribution with the same mean and the same

variance at a small value of the patch area A . Because of the scal-

ing properties of p ( S | A ) with A implied by Eq. (8) , the variance of

the two distributions is only identical at such small value of A .

Accordingly, Fig. 8 shows that the distribution of the form in Eq.

(8) spreads out much faster than the Poisson distribution as the

patch area A is increased, showing that fluctuations of S are much

larger for the former class of distributions. The effect of the dif-

ferent behavior of fluctuations of S on the uncertainty of hypo-

thetical field measurements is exemplified in the inset of Fig. 8 ,

which compares the scattering of single values of S around the

S = cA 

z line in a ( A, S ) plot for values distributed according to Eq.

(8) and according to a Poisson distribution. The values of z yield-

ing the best collapses for M1 and M2, computed with the algo-

rithm of Bhattacharjee and Seno (2001) , are, respectively, z = 0 . 46

with 95% confidence interval [0.44, 0.52], and z = 0 . 222 with 95%
onfidence interval [0.216, 0.244]. A consequence of the validity

f Eq. (8) (see Appendix C ) is that 〈 S | A 〉∝ A 

z ( Fig. 9 ). We verified

hat the values of the exponent z estimated by performing a least-

quares linear fit of the pairs (log A , log 〈 S | A 〉 ) are compatible with

he values obtained by the collapse of the distributions. The least-

quares linear fit estimates of z in models M1 and M2 are, re-

pectively: z = 0 . 464 ± 0 . 001 , and z = 0 . 233 ± 0 . 002 . Eq. (5) proves

till valid: Figs. B.14 (c) and B.15 (c) in Appendix B show the points

 λ( A ) 〈 τ | A 〉 , 〈 S | A 〉 ) for different values of A falling on the 1:1 line.

s expected from Eq. (8) (see Appendix C ), consecutive moments

f p ( S | A ) satisfy 〈 S j+1 | A 〉 / 〈 S j | A 〉 ∝ 〈 S| A 〉 (see Figs. 5 (c) and 6 (c)).

herefore, var (S| A ) = 〈 S 2 | A 〉 − 〈 S| A 〉 2 ∝ 〈 S| A 〉 2 , i.e. β = 2 . Using Eq.

2) , this implies that the relative fluctuations of S remain constant

s the patch area A grows, i.e. CV (S) = constant at any value of

 S 〉 and A . As a consequence, for the two non-neutral models M1

nd M2 it is not possible to define a threshold area above which

he deviation of S from the deterministic prediction is smaller than

ny prescribed value. Note, however, that for practical purposes the

onstant value of the relative fluctuations CV( S ) may be sufficiently

mall to treat S as an effectively-deterministic variable. 

We speculate that the reason for the different scaling of the rel-

tive fluctuations of S with respect to 〈 S 〉 between the neutral and

he non-neutral community dynamics models lies in the different

haracteristics of the perturbations to the community caused by

iversification events. In the neutral case, the appearance or disap-
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Fig. 10. Scaling of the average number of species 〈 S | A 〉 versus patch size A in mod- 

els N-SI (circles), N-SI-P1 (diamonds) and N-SI-P2 (squares). Lines are least square 

fit of log-transformed data, see text for exponent estimates. Error bars are SEM. 
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earance of a species causes a fixed change in the available re-

ources (and therefore in the death rates) because each species

as the same consumption rate (or occupies the same space, in

he case of the MSV model). When A increases (and so does R ),

his change becomes relatively smaller and so do the relative fluc-

uations around stationary mean values. In the non-neutral mod-

ls investigated here, instead, the appearance or disappearance of

 species brings a change in the total resource consumption rate

hich depends on its mass. As A increases, the patch can sustain

arger and larger species, therefore the potential amplitude of fluc-

uations increases with A . These observation motivated us to in-

estigate how the presence and magnitude of external perturba-

ions can influence the relative fluctuations of S . In Section 2.4 we

xamine the dynamics of neutral models in which external per-

urbations are imposed to the community in order to disentangle

heir effect from the diversification mechanism, and to better un-

erstand how external perturbations affect the stationary probabil-

ty distribution of the number of species S . 

.4. Role of external perturbations 

In Section 2.3 , we hypothesized that perturbations are the most

mportant factor in determining the temporal fluctuations of S

ithin a single habitat patch, and in particular that the depen-

ence of their amplitude on the patch area A is key to discriminate

etween the two limiting behaviors found for the relative fluctua-

ions of S in the limit of large 〈 S 〉 . In the two non-neutral models

1 and M2, perturbations arise naturally from the diversification

ynamics, where a new species entering the community by spe-

iation or immigration would increase resource consumption and

herefore determine a resource debt causing extinctions, i.e. down-

ard fluctuations of S . Recovery from perturbations, on the other

and, is controlled by the diversification rate. In models M1 and

2, the rate at which perturbations happen is related to the re-

overy rate, rendering the exploration of their interplay impossi-

le. Also, it is not possible to control the size of such perturba-

ions a priori . In general, however, the rates of perturbation and

iversification may be unrelated, for example when perturbations

re caused by the environment. In this section, we examine the

ffect of imposing external perturbations of a given size and fre-

uency, which can be controlled independently from the diversifi-

ation rate. Here, we have chosen to assign a constant frequency

f perturbations that does not vary with the patch area A , to as-

ess the effect of perturbations of equal magnitude and frequency

n patches of different areas. The N-SI community dynamics is an

ppropriate model to study the effect of external perturbations on

he community, as the fluctuations of S in the N-SI model vanish

n the limit of large 〈 S 〉 . 
Perturbations may have different sources, e.g. climatic or envi-

onmental events or temporary shifts in resource availability. As

uch, they vary in frequency and in the way in which they af-

ect habitat patches. Here, we model the effect of transient dis-

urbances directly in terms of species loss. For simplicity, we as-

ume that disturbances occur with a fixed frequency, but expect

quivalent results if they occur as a Poisson process. We compare

wo types of perturbations. In model N-SI-P1, we add perturba-

ions of fixed magnitude to the dynamics of model N-SI, regard-

ess of S : with a fixed frequency νp , a fixed number of species

 p is removed from the community. In model N-SI-P2, instead,

erturbations grow with the number of species S in the patch:

ith a fixed frequency νp , a fraction f p of species is removed

rom the community. This second type of perturbation could de-

cribe, for example, responses to environmental change: imagine

hat each species has a certain probability q to survive, adapting

o the new environmental conditions; then, on average (1 − q ) S

pecies will go extinct. We simulated the two models for A =
0 i with i = 2 . 5 , 3 , 3 . 5 , 4 , 4 . 5 , 5 , 5 . 5 , S p = 5 , f p = 3 / 4 and 1 /νp =
 · 10 6 . Fig. 4 (d) and (e) display the temporal dynamics of S in the

wo cases. As expected, the statistics of S in model N-SI-P1 do not

iffer strongly from the unperturbed case, yielding β = 0 . 96 ± 0 . 07

 R 2 = 0 . 975 ). Relative fluctuations therefore vanish rather fast with

ncreasing patch size. The SAR shows a power-law pattern with

 slope comparable with the value of z measured in the unper-

urbed case ( Fig. 10 ), z = 0 . 436 ± 0 . 005 ( R 2 = 0 . 99 ). The dynamics

f model N-SI-P2, shown in Fig. 4 (e), is instead rather different.

or small areas, between two perturbations the community is able

o return to the stationary state of the unperturbed model, with

oisson fluctuations around the mean value of S . Although β � 2

nd thus CV( S ) is constant, i.e. relative fluctuations do not decay

n the limit of large 〈 S 〉 , if the patch is observed at timescales

hat are smaller than the perturbation timescale 1/ νp one would

ee no differences with respect to the unperturbed case. However,

ncreasing the area causes the recovery time to increase, and the

ommunity will spend less and less time in the stationary state

orresponding to the unperturbed patch, until a threshold value of

 is reached, above which the community is unable to ever reach

he unperturbed stationary state. When this situation occurs, the

bserved value of S might be far from the average corresponding

o the stationary undisturbed community even at small timescales,

nd strongly dependent on the history of perturbations. The patch

rea at which this behavior starts depends on the interplay of di-

ersification rate and perturbation rate. This non-stationary regime

hows deviations from a pure power-law both in the SAR ( Fig. 10 ),

hose slope decreases gradually towards zero, and in Taylor’s law.

he decreasing slope of the SAR is qualitatively explained by a sim-

lified deterministic description of the model dynamics, where S

rows linearly in time with rate s with a hard limit at S̄ stat = cA 

z 

corresponding to the stationary average of S in the unperturbed

odel N-SI) and a perturbation occurring with rate νp makes fS

pecies go extinct, where S is the number of species when the per-

urbation occurs. As shown in Appendix D , one can distinguish be-

ween two cases: when η = νp f cA 

z /s ≤ 1 the unperturbed station-

ry value S̄ stat is reached, while when η > 1 it is never reached.

ne can show (see Appendix D ) that the slope of the scaling of

 S | A 〉 with increasing A is z when η  1, but decreases as η in-

reases, reaching zero when η ≥ 1. For Taylor’s law, a value of β = 3

s predicted at small η values, decreasing with increasing η. Tay-

or’s law in model N-SI-P2 indeed shows a slope β ∼ 3 for inter-

ediate areas, but the decrease is not seen at the simulated areas.

his simple model identifies the factors playing a role in determin-

ng the dynamics of biodiversity in the presence of perturbations.



400 S. Zaoli, A. Giometto and J. Giezendanner et al. / Journal of Theoretical Biology 462 (2019) 391–407 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l  

a  

s  

s  

t  

1  

t  

w  

u  

D  

c  

t  

e  

s  

s  

φ  

w  

p  

γ  

e

 

t  

b  

a  

w  

s  

T  

d  

a  

i  

β  

a  

a  

t  

t  

f  

h  

i  

c  

b  

m

3

fl

 

h  

s  

r  

s  

p  

a  

c  

c  

w  

o

C  

w  

a  

c  

u  

r  

w  
When the size of perturbations increases with S (as in model N-SI-

P2), the quantity η = νp f cA 

z /s determines whether the community

spends most of the time in its unperturbed stationary state (small

η) or whether it spends most or all the time recovering from per-

turbations ( η ≥ 1). In particular, all the other factors being fixed,

a larger community will spend more time recovering, as is seen

clearly in Fig. 4 (e). This differs from the case in which perturbation

size and diversification rate are independent of patch size, as in

model N-SI-P1, in which patches of all sizes have the same behav-

ior: either they all return to the stationary state, or no one does. 

2.5. Effect of intra-patch habitat heterogeneity in a metapopulation 

dynamics model 

Within a given patch, the availability of different niches might

change in time, affecting the number of species surviving in

it and therefore creating additional variability. We studied a

spatially-explicit metapopulation model, a well-established tool

to study biodiversity patterns in a spatially-heterogeneous envi-

ronment ( Bertuzzo et al., 2015; Grilli et al., 2015; Hanski and

Ovaskainen, 20 0 0; Rybicki and Hanski, 2013 ) which allows us to

assess the contribution of intra-patch habitat heterogeneity to the

fluctuations of S . The metapopulation model originally proposed

in Hanski (1998) describes a metapopulation composed of sub-

populations of a single species inhabiting different sites of a het-

ereogeneous landscape. The model does not include interaction

among species, therefore species survival is only driven by the

heterogeneous characteristics of the landscape. Rybicki and Han-

ski (2013) have shown that, considering metapopulations of several

different species with different niches, such metapopulation model

is a highly meaningful metacommunity model if the strengths of

the species competition remain relatively weak. The metapopula-

tion model is based on the interplay between extinction and colo-

nization dynamics. Each species has a probability p i to be present

(with one or more individuals) in a site i of the landscape (patch),

which is a L × L lattice of area A = L 2 . Species do not interact and

thus they have independent dynamics. Let E i be the rate at which

a species becomes extinct in site i and C i the rate at which the

site is colonized. The probability of occupancy p i of site i is then

governed by 

dp i 
dt 

= C i ( 1 − p i ) − E i p i . (9)

Each site is characterized by a habitat type, determined by the

value of a parameter h , 0 ≤ h ≤ 1. A species is characterized by 5

parameters: the colonization rate c , the extinction rate e , the phe-

notype φ, the niche width γ and the average dispersal distance

1/ α. For a focal species, the fitness in a site i with habitat param-

eter h i is q = exp 

[
−(h i − φ) 2 / (2 γ 2 ) 

]
. The fitness, which is larger

when φ is similar to h i , determines how well the species will per-

form in that site, i.e. the probability that it will become extinct,

the extinction rate being defined as E i = e/q i . In turn, the coloniza-

tion rate, given by C i = c/ (2 π) 
∑ 

j � = i α2 e −d i j αq j p j , governs the in-

teractions between the different sites. Species parameters are ex-

tracted at random from a uniform distribution in a suitable in-

terval. The values of h characterizing the landscape are also ex-

tracted at random, but with a fixed spatial correlation (see below

for details) and are constant in time. It was shown ( Hanski and

Ovaskainen, 20 0 0 ) that the condition under which Eq. (9) has an

equilibrium solution different from p i = 0 ∀ i is: 

λM 

> e/c, (10)

where λM 

is the metapopulation capacity, i.e. the leading eigen-

value of an appropriate matrix, which depends on the landscape

and on the species phenotype φ, niche width γ and dispersal

range 1/ α. It is therefore said that a species is persistent in the
andscape if it satisfies the condition in Eq. (10) . To study the vari-

bility in the number of species persisting in a patch of a given

ize in the presence of intra-patch habitat heterogeneity, we con-

idered a pool of S 0 = 500 species, evaluated how many satisfied

he condition in Eq. (10) and repeated the evaluation in a set of

0 0 0 different random landscapes at fixed spatial correlation with

he same pool of species. Spatially correlated random landscapes

ere generated with two alternative methods. The first is the one

sed in Rybicki and Hanski (2013) , while the second uses the HY-

RO _ GEN algorithm ( Bellin and Rubin, 1996 ) for the generation of

orrelated random fields, which has the advantage of allowing us

o set a prescribed correlation. We considered the landscape ar-

as A = 25 2 , 50 2 , 100 2 , 200 2 . We initially generated 1000 land-

capes of size 200 2 , then obtained the 10 0 0 smaller landscapes as

ubsets. Species parameter ranges were: c ∈ [0.25, 2], e ∈ [0.025, 0.4],

∈ [0.1, 0.9], γ ∈ [0.1, 0.5], α ∈ [0.07, 1]. To increase the species pool

ithout increasing the computational time (which is mainly de-

endent on the λM 

computation), for each of the 500 sets of φ,

and λ we extracted 15 additional values of c and e , effectively

nlarging the species pool to S 0 = 80 0 0 . 

This model differs from the ones presented in the previous sec-

ions in that the number of persisting species is not determined

y the equilibrium of the competing stochastic processes of speci-

tion and extinction, but to the diversity of habitat types present

ithin a patch. A larger patch tends to have more habitat diver-

ity, therefore more species (on average) are able to persist in it.

he p ( S | A ) resulting from the metapopulation model with the two

ifferent methods of landscape generation are shown in Figs. 11 (a)

nd (b). The variance decreases with the mean with a pattern that

s not described by a power-law, and therefore an estimation of

is not possible. However, relative fluctuations decrease with the

verage much faster than in all other considered models, at least

s 1/ 〈 S | A 〉 . Note that by using the condition in Eq. (10) to count

he number of surviving species, we are effectively averaging over

he stochasticity of the dynamics in each individual patch. There-

ore, the observed variability is only that due to the intra-patch

abitat heterogeneity. We can therefore conclude that the variabil-

ty generated by intra-patch habitat heterogeneity at fixed spatial

orrelation is negligible with respect to the one possibly caused

y community dynamics, at least within the assumptions of this

odel. 

. Contribution of inter-patches habitat heterogeneity to SAR 

uctuations 

In this section, we consider the contribution of inter-patches

abitat heterogeneity to the relative fluctuations of the number of

pecies S . We assume that the patches over which the species-area

elationship is measured differ in a habitat variable c (e.g., the re-

ource supply rate) that takes values in [0, ∞ ) and has distribution

 ( c | A ) across patches of area A . Within a patch with habitat vari-

ble c and area A , we assume that the mean number of species S ,

omputed over time, scales linearly with c , i.e. 〈 S | A, c 〉 ≡S Sp ( S | A,

 ) ∝ c , where the symbol ‘| c ’ denotes the temporal mean computed

ithin a patch with habitat variable c . The coefficient of variation

f S across patches of area A is given by: 

V (S| A ) ≡
√ 

var (S| A ) 

〈 S| A 〉 = 

√ ∫ ∞ 

0 dc p(c| A ) 〈 S 2 | A, c〉 [∫ ∞ 

0 dc p(c) 〈 S| A, c〉 ]2 
− 1 , (11)

hich depends on how the community dynamics within patches of

rea A and habitat variable c affect the moments 〈 S | A, c 〉 and 〈 S 2 | A,

 〉 , and on the distribution of the habitat variable, p ( c | A ). We can

se Eq. (11) and the results of the previous sections to compute the

elative fluctuations of S assuming different community dynamics

ithin each patch. The results derived in the previous sections give



S. Zaoli, A. Giometto and J. Giezendanner et al. / Journal of Theoretical Biology 462 (2019) 391–407 401 

Fig. 11. p ( S | A ) for the metapopulation model with landscapes generated according to Rybicki and Hanski (2013) (a) and with the HYDRO _ GEN algorithm (see text) (b). Colors, 

from blue to orange, refer to landscape sizes A = 25 2 , 50 2 , 100 2 , 200 2 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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s 〈 S | A, c 〉 , as shown in the following subsections for two classes

f community dynamics models. For models in which space is not

odeled explicitly, the distributions of S and c and their cumulants

re not conditional on A , as seen in the next subsection. 

.1. Poisson model with implicit space 

We consider here the neutral model that we discussed in

ection 2.1 , in which new species are introduced by speciation and

mmigration with rate λ and species are neutral with birth and

eath rates b and d , respectively. In this model, the mean number

f species is equal to −λ/b log (1 − b/d) = −γ log (1 − x ) , where we

efined γ = λ/b and x = b/d for ease of notation. Our assumption

hat 〈 S | c 〉∝ c can be satisfied if we assume that the diversification

ate λ is proportional to c , i.e. λ(c) = cλ. With these assumptions,

he distribution of species numbers within a patch with habitat

ariable c is given by: 

p(S| c) = (1 − x ) cγ
[ −cγ log (1 − x )] S 

S! 
, (12)

nd thus: 

 S| c〉 ≡ ∑ 

S 

Sp(S| c) = −cγ log (1 − x ) , (13)

 S 2 | c〉 ≡ ∑ 

S 

S 2 p(S| c) = −cγ log (1 − x ) + c 2 γ 2 [ log (1 − x ) ] 
2 

= 〈 S| c〉 + 〈 S| c〉 2 . (14) 

e find, for the relative fluctuations of S : 

V (S) ≡
√ 

1 

〈 S〉 + 

var (c) 

〈 c〉 2 
〈 S〉→∞ −−−−→ 

√ 

var (c) 

〈 c〉 2 ≡ CV (c) . (15) 

or a given distribution of the habitat variable p ( c ) with finite

ean and variance, var( c )/ 〈 c 〉 2 is a constant, and so the relative

uctuations of S don’t go to zero in the limit of large 〈 S 〉 as the

uctuations caused by the community dynamics do within each

atch ( Section 2.1 ). Instead, relative fluctuations tend to the rela-

ive fluctuations of the habitat variable c . 

.2. Non-neutral models 

In Section 2.3 , we found that the distribution of species num-

ers in the non-neutral models M1 and M2 satisfies the scaling

orm given in Eq. (8) . Note that the distribution in Eq. (8) satisfies

ur assumption that the mean number of species within a patch
ith habitat variable c scales linearly with c , i.e. 〈 S| A, c〉 = cA 

z , be-

ause: 

 S j | A, c〉 = c j A 

jz q j , (16)

ith q j ≡
∫ ∞ 

0 dx x j−1 F(x ) (to satisfy 〈 S| A, c〉 = cA 

z , F is rescaled

uch that q 1 = 1 ). The relative fluctuations of S within a patch of

rea A and habitat variable c , caused by the stochastic community

ynamics within the patch, are thus given by: 

V (S| A, c) ≡
√ 

var (S| A, c) 

〈 S| A, c〉 = 

√ 

q 2 

q 2 
1 

− 1 ≡ CV cd (S) , (17)

hich is a constant independent of A and c and the subscript

d stands for ‘community dynamics’. The relative fluctuations of S

cross all patches are given by: 

V (S| A ) ≡
√ 

var (S| A ) 

〈 S| A 〉 = 

√ 

q 2 

q 2 
1 

〈 c 2 | A 〉 
〈 c| A 〉 2 − 1 

= 

√ 

[ CV cd (S) 2 + 1 ] [ CV (c| A ) 2 + 1 ] − 1 , (18) 

hich is an expression that accounts for both the community dy-

amics contribution to the relative fluctuations of S (which is iden-

ical for any choice of A and c ) and the contribution due to inter-

atches habitat heterogeneity. 

. Discussion 

When the SAR is used to predict biodiversity and biodiversity

esponses to habitat loss or fragmentation, it is implicitly assumed

hat the average value of S in patches of area A , 〈 S | A 〉 , described by

he SAR is representative of what could be actually measured em-

irically, and that all ecosystem features of interest are stationary.

ur work characterizes the fluctuations of S theoretically and high-

ights the contribution of fluctuations due to the stochastic nature

f the community dynamics within patches and the contribution

f habitat heterogeneity across the patches over which the SAR is

easured. 

Neglecting habitat heterogeneity between different patches, 

hen relative fluctuations of 〈 S 〉 due to the stochastic community

ynamics decay with increasing mean S (or, equivalently, increas-

ng patch size A ), they eventually become negligible in a large-

nough patch ( Fig. 1 ). Nevertheless, fluctuations might still be im-

ortant for small patches. When relative fluctuations do not decay

or decay very slowly), patches of any size maintain the same rela-

ive level of stochasticity. If this level is non-negligible, the predic-

ions of the SAR will not be representative of the behavior of in-

ividual patches, for which S may fall far apart from the predicted
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average. Our results are based on an extensive survey of models of

community dynamics reflecting different assum ptions on the eco-

logical dynamics within a habitat patch and external perturbations

that affect it. The scaling behavior of the relative fluctuations of

S in the different models is summarized in Table 1 . Our analysis,

while encompassing only some of the many possible models of

community dynamics, shows that different models can lead to very

different predictions for the fluctuations of the number of species

S due to the community dynamics within a patch. We show that

such fluctuations do not have a universal behavior but rather de-

pend on the main ecological processes reflected in various model

assumptions. Specifically: 

• In a neutral framework where fluctuations are only driven by

the stochasticity of diversification and of extinction events, bio-

diversity is asymptotically deterministic, i.e. its relative fluctu-

ations decay with increasing patch size. Fluctuations are non-

negligible only for small areas, where single measurements of

S may deviate significantly from the deterministic prediction

S = cA 

z . It is possible to define a threshold area above which

the expected deviation of S from 〈 S | A 〉 is smaller than a fixed

threshold εt . More precisely, if 〈 S| A 〉 = cA 

z is the deterministic

prediction, then: 

CV (S| A ) = 

1 √ 〈 S| A 〉 = 

1 √ 

cA 

z 
≤ εt ⇐⇒ A ≥

(
1 

εt 

√ 

c 

)2 /z 

. 

We produced computational evidence that this result is also

valid in the presence of competition for space or resources, a

case in which the analytic results valid for the non-interacting

case still prove applicable; 
• The introduction of mass as a trait determining the resource

consumption of individuals ( Brown et al., 2004; Zaoli et al.,

2017 ) can cause large fluctuations in the number of species

due to the occasional introduction by speciation/immigration

of new species with large resource consumption rate. The

over-exploitation of the patch resources following such events

triggers mass extinctions. The related stationary distribution

p ( S | A ) displays relative fluctuations which remain constant as

the patch area A increases ( β = 2 , i.e. constant CV( S )). Note

that non-neutral resource consumption does not necessarily

cause this behavior of the fluctuations. In fact, as found in

Zaoli et al. (2017) , if the introduction of new species in the

community (by immigration or speciation) is strictly con-

strained by supply limitation, i.e. the total community con-

sumption rate can never exceed the supply rate, fluctuations

behave similarly to the neutral case and the distribution of S

does not satisfy Eq. (8) . 
• Peaks in resource consumption caused by the arrival of new

species are one possible cause of fluctuations for non-neutral

community dynamics models within a patch. We explored the

effect of fixed-frequency, external perturbations on the dynam-

ics of biodiversity in neutral community dynamics models and

found that such effect depends on the specific properties of the

perturbations. Perturbations whose magnitude does not scale

with the number of species lead to relative fluctuations of

S that vanish in the limit of large patch size. Instead, when

the magnitude of perturbations increases with the number of

species, larger communities need progressively longer times to

recover and the stationary unperturbed state is progressively

less informative about the state of the community at any given

time. Depending on the ratio between the frequency of pertur-

bations and the recovery rate, on the perturbations intensity

and on the patch size, the community can still be considered

stationary at short timescales and far from perturbation events,

and the conclusions found for the unperturbed neutral dynam-

ics apply. 
• Habitat heterogeneity within a single patch, e.g. as introduced

by Rybicki and Hanski (2013) , causes small variability in the

number of coexisting species which decays relatively fast with

the patch area. The contribution of intra-patch habitat hetero-

geneity to the fluctuations of S is thus negligible with respect to

the fluctuations caused by the stochasticity of community dy-

namics or inter-patches heterogeneity. 

We hope that our investigation of the magnitude of relative

uctuations in various community dynamics models will encour-

ge further empirical measurements of the magnitude of rela-

ive, temporal fluctuations of S in patches subject to emigration,

mmigration and disturbance processes. Our investigation of rel-

tive fluctuations of S in a suite of community dynamics mod-

ls provides a set of null expectations for what might be mea-

ured empirically. Ideally, empirical measurements would be done

n patches of different areas with similar environmental conditions

e.g., similar climate), in order to minimize the contribution to SAR

uctuations due to habitat heterogeneity among different patches.

o measure temporal fluctuations in each of these patches, long-

erm times series of species numbers are required ( Dornelas et al.,

014; Vellend et al., 2013 ). These long-term time series would

lso prove useful to spot trends highlighting non-stationarity, a

ituation for which further theoretical work is required. For ex-

mple, Vellend et al. (2013) and Dornelas et al. (2014) provide

eta-analyses of various time-series with durations up to several

ecades. While overall there is no dominating trend, a number of

ingle time series show an increasing or decreasing trend, signal-

ng non-stationarity ( Dornelas et al., 2014 ). Moreover, through re-

eated observations in time, recovery dynamics after a perturba-

ion may be assessed, say, after a fire or the arrival of an invasive

pecies. Identifying the time required to return to stationarity af-

er perturbation and comparing it to the expected time between

onsecutive perturbation events would allow assessing whether S

hould be expected to spend most of its time around its stationary

nperturbed average, or else in transient states possibly far from it.

he study of the dynamics following a perturbation would also in-

icate whether its effects scale with patch size, which would allow

iscriminating between the scenarios of model N-SI-P1 and N-SI-

2. One could, for example, observe whether the arrival of an inva-

ive species causes more extinctions in a more diverse community

han in a less diverse one. 

Accounting for habitat heterogeneity among different patches,

e find that the relative fluctuations of S tend to a constant in

he limit of large 〈 S | A 〉 , irrespective of whether the relative fluctu-

tions of S due to the community dynamics within single patches

end to zero or are constant at all scales. If the relative fluctua-

ions of S due to the community dynamics within single patches

end to zero in the limit of large 〈 S | A 〉 , the relative fluctuations of

 across different patches tend to the coefficient of variation of the

abitat variable c . If the relative fluctuations of S due to the com-

unity dynamics within single patches are constant at all scales,

nstead, the relative fluctuations of S across different patches are

lso constant at all scales, and their constant value combines both

he community dynamics and the habitat heterogeneity contribu-

ions. Therefore, because habitat heterogeneity inevitably charac-

erizes collections of islands or disjoint patches in the natural en-

ironment, we find that the relative fluctuations of S are always

onstant, and do not scale with 〈 S | A 〉 or A . Equivalently, the stan-

ard deviation of S scales linearly with 〈 S | A 〉 , and in a log-log plot

f single measurements of S versus A this would correspond to

 constant scatter of S values around the SAR 〈 S| A 〉 = cA 

z for any

alue of A . The constant value of CV( S ) determines the amplitude

f such a scatter, and according to such value the fluctuations of

he SAR may or may not need to be addressed when using the

AR in practice. 
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ppendix A. Speciation rate dependence on A 

Losos and Schluter (20 0 0) found that the per-species speciation

ate is smaller in small island than in large ones, and that in is-

ands larger than a certain threshold the speciation rate increases

ith island area. A per-species speciation rate increasing with area

mplies a total speciation rate increasing with area even faster. Eq.

5) , satisfied by the neutral models and by models M1 and M2,

uantifies the effect of a dependence of the speciation rate on A on

he SAR slope. From Eq. (5) it follows that if the speciation rate is

efined piecewise (constant for islands below a threshold area and

ncreasing with area above threshold) the SAR will also have two

ifferent slopes before and after the threshold area, as observed by

osos and Schluter (20 0 0) . In our model M2, a speciation rate de-

reasing with A allowed us to find a realistic value of z ( z � 1/4). A

peciation rate increasing with area, as the one suggested for larger

slands, would produce a SAR with z > 1/2. This might be in agree-

ent with the data shown in Fig. 3 of Losos and Schluter (20 0 0) ,

here large islands display a SAR slope z = 0 . 76 . 

ppendix B. Persistence time distributions 

The persistence time distributions of the analyzed community

ynamics models, as shown in Figs. B.12 , B.13 , B.14 (a) and (b) and
ig. B.12. Persistence time distributions for the N-SI model. Colors refer to different value

p ( τ | A ) is a function of τ / A z , where z is the SAR exponent (see text). 
.15 (a) and (b), satisfy the following relation: 

p(τ | A ) = 

1 

A 

θ
G 

(
τ

A 

θ

)
(B.1)

ith θ = z for models MSV, N-SI and M1 and θ = z + ξ for model

2, where z is the exponent of the SAR. The function G ( x ) is such

hat G ( x ) ∼ c when x < 1, with c > 0 a constant and lim x →∞ 

G (x ) =
 . This result is in agreement with Eq. (5) , in fact, when A is

arge: 

 τ | A 〉 = 

∫ ∞ 

1 

τ p(τ | A ) dτ = 

1 

A 

θ

∫ ∞ 

1 

τG 

(
τ

A 

θ

)
dτ = A 

θ

∫ ∞ 

1 /A θ
xG (x ) dx 

≈ A 

θ

[
c 

∫ 1 

1 /A θ
xdx + 

∫ ∞ 

1 

xG (x ) dx 

]

= A 

θ
[ 

c 

2 

A 

−2 θ + c ′ 
] 

∝ A 

θ (B.2) 

here x = τ/A 

z , c ′ > 0 is a constant and we used the properties of

 ( x ) to evaluate the integrals. Therefore, substituting in Eq. (5) of

he main text and recalling that for M2 one has λ(A ) = λ0 A 

−ξ , we

nd 〈 S | A 〉∝ A 

z . 

In the MSV model, a more precise characterization of p ( τ | A ) is

ossible. In fact, as found in Bertuzzo et al. (2011) , the distribution

f persistence times p ( τ | A ) is a power-law with exponential cutoff

hen τ > A , where A is the number of time-steps in a ‘generation’,

.e. the time interval when on average every individual dies and

ets replaces. For τ < A, p ( τ ) is roughly constant ( Fig. B.13 ). There-

ore, we can write: 

p(τ | A ) = C 
{

1 for τ ≤ A (
τ
A 

)−α
e −λ(τ/A −1) for τ > A 

(B.3)

here C = 

[ 
A + A 

αe λ
(

λ
A 

)α−1 
�(1 − α, λ) 

] −1 

is the normalization

onstant. The value of α depends on the topology of the lattice

dimension and connectivity, see Bertuzzo et al. (2011) ). For the 2D

attice considered here, a maximum likelihood fit of the tail of the

istribution to a power-law with exponential cutoff gives α ∼ 3/2.

he fitted curves are the dashed lines in Fig. B.13 . 
s of A . (a) p ( τ | A ) for the N-SI model with λ = 10 −3 and A = 10 i with i = 2 , 3 , 4 . (b) 

https://doi.org/10.13039/501100001711
https://doi.org/10.13039/501100007601
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Fig. B.13. Persistence-time distribution for the MSV model. (a) p ( τ | A ) for the MSV model with λ = 10 −3 and A = L 2 with L = 50 , 100 , 200 . The dotted lines are maximum 

likelihood fits of the tail of the distribution ( τ > A ) to a power-function with exponential cutoff ( Eq. (B.3) ). (b) Ap ( τ | A ) is a function of τ / A (see text). 

Fig. B.14. Persistence time distributions for model M1. (a) p ( τ | A ), colors from blue to orange correspond to areas A = 10 i with i = 2 , 2 . 5 , 3 , 3 . 5 , 4 . (b) Ap ( τ | A ) is a function 

of τ / A z , where z is the SAR exponent (see text). (c) Plot of 〈 S | A 〉 , vs λ〈 τ | A 〉 , showing that Eq. (5) of the main text is verified. The continuous line has slope one. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. B.15. Persistence time distribution for model M2. (a) p ( τ | A ), colors from blue to orange correspond to areas A = 10 i with i = 2 , 2 . 5 , 3 , 3 . 5 , 4 . (b) Ap ( τ | A ) is a function of 

τ/A z+ β , where z is the SAR exponent and β the exponent of the dependence of the diversification rate on A (see text). (c) Plot of 〈 S | A 〉 , vs λ〈 τ | A 〉 , showing that Eq. (5) of 

the main text is verified. The continuous line has slope one. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 



S. Zaoli, A. Giometto and J. Giezendanner et al. / Journal of Theoretical Biology 462 (2019) 391–407 405 

A

 

a  

n  

s

w  

a  

c  

p  

i  

v  

∞  

i  

t  

b  

N

1  

w  

t  

b

 

w  

t

〈

T  

r

 

A

c

 

d  

r  

i  

e  

o  

t  

p  

t

 

s  

o  

a  

s  

i  

b  

o  

S  

n  

s  

f

A  

t  

w  

b  

S

t  

t  

s  

b  

i  

d  

n  

e  

d

C

 

b  

W

S

W

〈

O  

s  

t

T  

c  

α  

p  

i  

w  

e

 

m

〈

T

v

w  

t  

F  

a  

fl  

α  

n  

p  

(

ppendix C. p ( S | A ) in non-neutral models 

Let p ( S | A ) be the probability that in a patch of area A , at station-

rity, S species coexist. From the numerical implementations of our

on-neutral models of community dynamics, we found that p ( S | A )

atisfies: 

p(S| A ) = 

C 
S 

˜ F 

(
S 

cA 

z 

)
(C.1) 

here ˜ F is a function such that ˜ F (x ) → 0 when x → 0, ∞ , C is

 normalization constant and for the purpose of this section we

onsider c to be constant (and thus we ignore the conditional de-

endency of p ( S | A ) on c in this section). To compute the normal-

zation constant and the moments, we will treat S as a continuous

ariable, approximating sums over S = 1 , 2 , . with integrals over [0,

 ). When A � 1, this is a good approximation thanks to the behav-

or of the function F(x ) in x ∼ 0. In fact, in the region S ∼ 1, where

he integral and the sum would differ, contributions are negligi-

le if F(x ) goes to 0 fast enough, which is verified in our models.

ormalization imposes the following constraint: 

 = 

∫ ∞ 

0 

p(S| A ) dS = C 
∫ ∞ 

0 

1 

S 
˜ F 

(
S 

cA 

z 

)
dS = C 

∫ ∞ 

0 

1 

x 
˜ F (x ) dx, (C.2)

here we performed the change of variables x = S/ (cA 

z ) . Correctly,

he normalization constant does not depend on A , and it is given

y C = 1 / 
∫ ∞ 

0 x −1 ˜ F (x ) dx . Finally, 

p(S| A ) = 

1 

S 
F 

(
S 

cA 

z 

)
(C.3)

here we defined F(x ) := 

˜ F (x ) / C. The moments of p ( S | A ) are ob-

ained as 

 S i | A 〉 = 

∫ ∞ 

0 

S i p(S| A ) dS 

= 

∫ ∞ 

0 

S i −1 F 

(
S 

cA 

z 

)
d S ∝ A 

zi 

∫ ∞ 

0 

x i −1 F(x ) d x ∝ A 

zi . (C.4) 

his implies that the SAR is a power-law, 〈 S | A 〉∝ A 

z , and that the

atio of consecutive moments satisfies 

〈 S i +1 | A 〉 
〈 S i | A 〉 ∝ A 

z ∝ 〈 S| A 〉 . (C.5)

ppendix D. Deterministic community dynamics model of a 

ommunity subject to periodic perturbations 

In this section, we study a deterministic model describing the

ynamics of the number of species S in a community subject to pe-

iodical perturbations causing the extinction of species. The model

s intended to mimic the stochastic community dynamics mod-

ls N-SI-P1 and N-SI-P2 in a simplified way which allows us to

btain analytic results explaining qualitatively the behavior of the

wo stochastic community dynamics models. As we will see, this is

ossible only if the perturbations dominate over intrinsic stochas-

icity in determining the statistics of S . 

Let νp be the frequency of perturbations and fS α the number of

pecies going extinct due to a perturbation, where S is the number

f species present at the moment when the perturbation occurs

nd α ∈ [0, 1]. The values α = 0 , 1 correspond, respectively, to the

ituations in models N-SI-P1 and N-SI-P2. We assume, for simplic-

ty, that S grows linearly with rate s between two perturbations,

ut analogous computations can be performed also for other types

f growth. The stationary value of S in the unperturbed N-SI model,
¯
 st = cA 

z , is taken as a hard boundary to the growth of S . Here, we

eglect habitat heterogeneity across different patches and thus we

et c = 1 . Supposing that the upper boundary S̄ st was reached be-

ore a perturbation, the time T needed to return to it satisfies: 

 

z − f A 

αz + sT = A 

z , (D.1)
herefore T = f A 

αz /s . We must therefore distinguish two cases: i)

hen T ≤ 1/ ν , the upper boundary is reached between two pertur-

ations, and the number of species in the community remains at

 = S̄ st for an interval 1 /ν − T (see Fig. D.16 (a)); ii) when T > 1/ ν
he upper boundary is never reached, and the community even-

ually stabilizes on a cycle in which the increase in the number of

pecies in time 1/ ν is equal to the loss of species due to the pertur-

ation (see Fig. D.16 (b)). Defining η = ν f A 

αz /s, the two cases are

dentified by η ≤ 1 and η > 1. Note that, when α = 0 , η does not

epend on A . Therefore, all other parameter being fixed, commu-

ities in patches of different size A all belong to the same case:

ither they all reach the upper boundary of S , or none of them

oes. 

ase η ≤ 1 

After an initial phase in which there is net growth, the upper

oundary is reached and S ( t ) becomes periodic with period 1/ ν .

ithin a period, the evolution of S is described by 

(t) = 

{
A 

z − f A 

αz + st t ≤ T 
A 

z t > T . 
(D.2) 

e can compute the average of S over a period as follows: 

 S| A 〉 = ν

∫ 1 /ν

0 

S(t) dt = ν

[∫ T 

0 

(A 

z − f A 

αz + st) dt + 

∫ 1 /ν

T 

A 

z dt 

]

= A 

z 

(
1 − η f 

2 

A 

−(1 −α) z 

)
. (D.3) 

ne immediately sees that, for η  1, the SAR is a power-law with

lope z . For non-negligible η values, the slope of the SAR is ob-

ained as 

d log 〈 S| A 〉 
d log A 

= z 

( 

1 − 2 α − 1 

2 s 
f 2 νA 2 α−1 − 1 

) 

. (D.4) 

herefore, when α > 1/2 the slope changes from z to 0 as A in-

reases (all other parameters being equal, valid until η ≤ 1). When

< 1/2, instead, the slope is z in the large A limit. This result ex-

lains why model N-SI-P1 has a power-law SAR similar to the one

n the absence of perturbations, while the N-SI-P2 model has a SAR

ith gradually decreasing slope. The plateau reached at larger ar-

as for model N-SI-P2 is explained by the case η > 1. 

To compute the exponent β , we first compute the second mo-

ent of S : 

 S 2 | A 〉 = ν

∫ 1 /ν

0 

S(t) 2 dt =ν

[∫ T 

0 

(A 

z − f A 

αz + st) 2 dt + 

∫ 1 /ν

T 

A 

2 z dt 

]

= A 

2 z − f ηA 

(α+1) z + 

f 2 η

3 

A 

2 αz . (D.5) 

herefore, we have 

ar (S| A ) = 〈 S 2 | A 〉 − 〈 S| A 〉 2 = A 

2 αz f 
2 η

3 

(
1 − 3 

4 

η
)

= A 

3 αz f 
3 ν

3 s 

(
1 − 3 

4 

η
)
, (D.6) 

hich, when η  1, gives β = 3 α. For α = 1 , this explains correctly

he results of model N-SI-P2 for intermediate values of the area.

or α = 1 / 3 the fluctuations given by the perturbations are char-

cterized by β = 1 , therefore they have the same scaling as the

uctuations due to the intrinsic stochasticity of the dynamics. For

< 1/3, therefore, the predictions of the deterministic model are

ot valid, because the intrinsic stochasticity will dominate on the

erturbations, giving β = 1 , as observed for the N-SI-P1 model

 α = 0 ). 
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Fig. D.16. Dynamics of the deterministic model of a community subject to perturbations described in Section 2.4 . (a) Case η ≤ 1, the number of species in the community 

reaches the upper boundary; (b) case η > 1, the number of species in the community never reaches the upper boundary. 
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Case η > 1 

When η > 1, the dynamics of S becomes periodical before reach-

ing the upper boundary S = A 

z . To show this, let us consider the

case α = 1 for simplicity and call S i the number of species after

the i -th perturbation. The dynamics is therefore expressed by: 

S i +1 = min { (1 − f )(S i + s/ν) , (1 − f ) A 

z } . (D.7)

This process has two fixed points, ˜ S 1 = (1 − f ) s / (ν f ) and 

˜ S 2 =
(1 − f ) A 

z . The fixed point ˜ S 1 , corresponding to the situation in

which the growth in an interval of length 1/ ν is equaled by the

loss of species due to a perturbation, is attractive, i.e. | ̃  S 1 − S i +1 | <
| ̃  S 1 − S i | . Therefore, when 

˜ S 1 < 

˜ S 2 (which is, when η > 1), the pro-

cess will tend to this fixed point ∀ S 0 < A 

z . This situation corre-

sponds to a periodic dynamics described by 

S(t) = 

(1 − f ) s 

ν f 
+ st t ≤ 1 /ν (D.8)

which does not depend on A . The average over a period therefore

is also independent of A : 

〈 S| A 〉 = 〈 S〉 = ν

∫ 1 /ν

0 

S(t) = 

s (2 − f ) 

2 ν f 
, (D.9)

which explains the plateau observed in the SAR of model N-SI-P2

in Fig. 10 . Being S ( t ) independent of A , all moments are indepen-

dent of A and therefore also the coefficient of variation CV( S ) is

constant. 
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