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Abstract. This paper discusses the design of load-bearing systems for buildings with regard to 

their current lack of open-ended reusability. The reason for dismantling load-bearing systems 

today tends to be less related to material degradation than to a loss of functional fit with an 

evolving building program. It can therefore be expected that load-bearing components are reused 

in other systems, which extends their service life and avoids the manufacture of other 

components. Common design strategies to ensure the actual reusability of components consist 

in guaranteeing that the assembly is durable, versatile, modular, reversible, and adaptable. This 

paper (a) reviews these features, (b) illustrates by means of case studies that, without minimum 

threshold, they do not guarantee the repurpose of components into different, unforeseen systems, 

and (c) describes opportunities and challenges related to the design of more open-ended sets of 

load-bearing elements, i.e. sets whose element types allow for a substantially large number of 

diverse assemblies, in terms of floor plans, spans, loads, support layouts, connection types, 

architectural language, and integration with other building systems.    
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1. Introduction 

The design of load-bearing systems – i.e. systems of slabs, walls, beams, and columns – rarely aims at 

producing reusable parts. They are commonly assumed to be the building systems with the longest 

service life. In some designers’ mind, they are even meant to last forever. However, the demolition of 

load-bearing systems happens at a non-negligible rate, especially in areas subject to high land-value 

pressures. As living needs and working cultures constantly evolve, buildings, sooner or later, are 

declared unfit for rational use. First attempts replace or refurbish the fit-out. Next attempts operate on 

the envelope. Eventually, load-bearing systems are declared obsolete because support layouts, load-

carrying capacities, or ceiling heights do not meet new functional requirements. Scheduled to last for 

several decades, load-bearing systems may consequently be dismantled way before their expected end 

of life [1]. Still, if properly designed, their components could remain safe and useful for a substantially 

longer service life.  
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The disposal of load-bearing components is a disaster for embodied carbon and solid waste 

generation [2][3][4][5], mainly because of their proportionally high volume, high mass, and energy-

intensive manufacturing processes. Reusing load-bearing components over multiple building life cycles 

is therefore a promising path to respond to the environmental challenges faced by the construction sector 

[6].  

Unlike recycling, component reuse aims at avoiding material reprocessing while making the best use 

of existing component features, e.g. dimensions, strength, stiffness, connectivity, fire/water/shock 

resistance. The reuse of load-bearing components may involve their relocation, their repurpose, and/or 

the modification of their utilization rate, i.e. their actual performance value over their maximum 

allowable performance value.  

Although load-bearing systems are rarely designed to be reused, pre- and post-industrial construction 

history includes several buildings that are constructed with reclaimed load-bearing material 

[7][8][9][10][11][12]. These success stories are generally reliant upon fortunate stock availability, i.e. 

fortuitous timing, location, and matching features. In order to achieve circular economy at scale, 

however, a proper and systematic design of load-bearing elements for reuse is required [13][14]. There 

are numerous challenges related to the reuse of structural components [15][16], this paper focuses on 

conceptual design considerations.  

Section 2 of this paper is a review of the qualities that should be attributed to reusable building 

components.  Section 3 is a critique of the effectiveness of reuse through the study of two 50-year-old 

buildings that were originally designed for reassembly. Section 4 introduces open-endedness as a 

necessary requirement for effective reusability of load-bearing assemblies. Related opportunities and 

challenges are discussed in the same section. The last section concludes that research is needed to obtain 

benchmarks on open-ended reusability and to develop new construction technology allowing the 

effective, unforeseen reuse of load-bearing components. 

2. State-of-the-art strategies to ensure reuse 

Special attention is required when designing products in order to ensure their reusability once the system 

to which they belong reaches its end of life. Various authors have provided lists of requirements [1][17]. 

The following subsections recompile five necessary features for reusable assemblies: durability, 

versatility, modularity, reversibility, and adaptability. They concern all scales: the system, the 

components, and the connections between parts. 

2.1. Durability 

Durable assemblies ensure the maintenance of functional and technical characteristics of materials 

throughout (and beyond) their service life. Design considerations include the protection of the 

components against damage, before, during, and after service. Also, it is expected for instance that 

mechanical properties remain sufficiently good (i.e. useful) despite long-term creep or other material 

degradation due to cyclic or rare loading. 

2.2. Versatility 

Versatile assemblies are capable of supporting other functions and services without being transformed. 

For instance, it means that functional zones are independent of the support layout [18]; that a column-

and-beam building system is a good fit for both office or residential purpose; that a load-bearing system 

does not present thermal bridges when insulation is added to the envelope; or that foundation blocks can 

withstand new loads. Versatility constitutes one dimension of the ‘Open Building’ concept [19][20]. 

Recent applications are mentioned in [21][22][23][24].  

2.3. Modularity 

Modular assemblies are made of elements of similar type that can be placed interchangeably at different 

locations. Modularity facilitates the integration of components in the system. In this respect, it is 



 
 
 
 
 
 

connected to standardization. A modular system might not be reversible (e.g. cemented wall of regular 

bricks) and a reversible system might not be modular (e.g. dry wall of irregular stones).  

2.4. Reversibility 

Reversible assemblies can be undone into any previous state, with no or negligible damage. Guidelines 

for design for disassembly [25][26] or design for deconstruction [27] can be found in [1][28][29]. 

Reversibility places the focus on connections, e.g. mechanical fasteners, interlocking arrangements, or 

simple face-to-face contact. Although bolted steel or timber systems are most commonly used, reversible 

connections also exist for reinforced concrete systems [30][31][32]. 

2.5. Adaptability 

Adaptable assemblies allow some of their parts to be removed, added or rearranged in order to meet new 

spatial, functional, or technical requirements. Transformability, extensibility, reducibility and variability 

can be seen as special cases of adaptability. Transformability is achieved if the assembly can have 

completely new spatial, functional, and technical features after rearrangement. Extensibility and 

reducibility are specific to assemblies in or from which some parts can be added or removed, 

respectively. Variability is specific to assemblies whose parts (members or connections) have variable 

states, e.g. columns with adjustable height, or slidable slab-to-column connections [33]. A system that 

is adaptable might not be reversible – e.g. non-reversible connections used for adding an overhanging 

balcony to a building –, and one that is reversible might not be adaptable – e.g. the removal of a block 

from a dry stone arch would jeopardize the structural integrity of the system.  

3. Case studies 

The following case studies show that the five abovementioned requirements can be satisfied without 

ensuring reusability. The two buildings considered are designed by Swiss architect Jakob Zweifel (1921-

2010). Their load-bearing system was designed for reassembly, which originated more from the need 

for versatility than from environmental concerns. Fifty years later, they constitute first-hand examples 

to study shifts of functional and technical requirements that happen over long periods. Originally 

designed for reuse, they are effectively able of disassembly and reassembly, but they are not fully able 

of repurpose. 

3.1. Case Study: Agro Research Centre, St-Aubin, Switzerland, 1965-69 

The Agro Research Centre in St-Aubin (Canton of Fribourg, Switzerland) is a campus of several 

buildings using the same reversible reinforced-concrete system [34][35], figure 1. The heterogeneous 

program called for a highly diverse set of spatial features: administrative offices, various laboratories, 

greenhouses, experimental livestock sheds, a mill, a farm, and a slaughterhouse. In addition, high 

functional adaptability over time, i.e. an ability to grow and redistribute functional zones, was required 

in order to adjust to evolving research needs. The developed campus combines high rationalization with 

prefabrication. It consists in a carpet-like layout of one-story-high buildings with continuous skylights. 

The skylights are created in between prefabricated reinforced-concrete (PRC) u-shaped shells. 

Extrusions of the shells are interlocked within PRC transverse beams, which are supported by PRC 

columns of various heights. Columns are driven into PRC foundation blocks. A quick description shows 

that the system shares minimum features of reusability: 

 durability – although the initial construction was lacking proper protection against rain and 

snow cycles, the assembly was made durable after subsequent waterproofing; 

 versatility – the highly diverse program fitted for almost 50 years; 

 modularity – all u-shape shells have the same width, all beam lengths are multiple of the width 

of u-shape shells, and columns could be placed under any beam. 

 reversibility – thanks to the low height of the building, only pure compression contact is needed 

between the u-shape shells, beams, and columns; ensuring full reversibility of the system; the 

contact between two concrete elements is performed by a small, replaceable rubber pad; 



 
 
 
 
 
 

 adaptability – over the service life of the campus, extensions using the same construction system 

have been created, and entire buildings have been moved; in addition, beams and u-shape shells 

of different lengths can be combined to achieve various spans, which means that each building 

can be freely extended in both directions. 

 

Figure 1. Agricultural Research Centre, St-Aubin, Switzerland (adapted from [34] and [35]). 

The building is unoccupied since the departure of the last tenant at the end of 2016. Besides on-site 

refurbishment and complete demolition, the reuse of the building components in new locations and for 

new purposes is one of the options on the table for the current owners of the complex. Students at EPFL 



 
 
 
 
 
 

(Fröhlich Studio) have spent a semester exploring potential reuse contexts. Still, the brutalist nature of 

the system hardly matches new building energy standards; the overdetermined nature of the system does 

not allow reconstruction over multiple stories; and the architectural language of the u-shaped shells is 

stranger to current practice. Hence, the actual reuse potential of the system remains very limited. 

3.2. Case Study: EPFL Campus, Ecublens, Switzerland, 1970-1982 

The next case study is the first development of the campus of the Ecole Polytechnique Fédérale de 

Lausanne in Ecublens (Canton of Vaud, Switzerland) [35]. The initial design took into account possible 

changes in the type of teaching, research, and population.  It resulted in an integrated, differentiated 

structure of interconnected 2- to 3-story-high buildings. A raised circulation floor separates car and 

pedestrian traffics. A roof structure covers all external circulations on the top floor. 

 

Figure 2. EPFL Campus, Ecublens, Switzerland (adapted from [35]). 

Again, the roof structure satisfies all reusability criteria up to a certain degree: 

 durability – the structural system is well-protected from degradation; 

 versatility – the large span between columns does not constrain the covered area partitioning; 



 
 
 
 
 
 

 modularity – the same square grid runs throughout the roof structure; 

 reversibility – steel assemblies are bolted, hence fully dismountable; 

 adaptability – the span between columns supporting the steel grid can be varied. 

Despite these significant qualities, the end-of-life reuse of the load-bearing system is far from being 

secured, mainly due to its (outdated) visual expression and to its inability to withstand significantly new 

load distributions or changes in ceiling heights. 

4. Open-ended reusability: designing for the unknown 

Both case studies present all traits listed in section 2. However, the extent to which they implement those 

traits is too small for effective reusability after fifty years. In other words, the design of the components 

is so specific to the initial system that they can hardly generate other assemblies. They cannot meet new, 

initially unforeseen spatial, functional, and technical requirements.  

The same remarks can be established for almost all load-bearing systems currently in use in 

buildings. For instance, standard reversible steel, timber, or reinforced concrete construction systems, 

unless being combined with large stocks of diverse elements, do not allow for rearrangements with other 

ceiling heights or support spans. 

Because next life cycle requirements are unknown at the time of design, components, connections, 

and assemblies should instead be such that they allow large sets of diverse rearrangements – i.e. 

durability, versatility, modularity, reversibility, and adaptability must be open-ended.   

Concretely, open-ended rearrangements of load-bearing components would mean, by and large, that:  

 the span between two supports is not constrained by the length of beams or slab elements, which 

for instance could be achieved through sliding connections or densely distributed connection 

points; 

 the load-bearing capacity of an arrangement of beams, slabs, or columns ranges beyond what is 

provided by the components alone; in other words, the strength and stiffness of the arrangement 

can be tailored irrespectively of span and elements type; 

 floor outlines, ceiling heights, support layouts, vertical service duct locations, and the envelope 

can be shaped up to large extents irrespectively of constraints set by load-bearing elements; 

 same connection details can transfer multiple types of forces indifferently; 

 the load-bearing system allows as much integration as possible with other building systems; 

 the architectural language of a building can be altered with little to no impact on its load-bearing 

elements. 

On the one hand, achieving open-ended reusability implies that each component is more likely to be 

reused soon. Interesting savings in storage, labour, and remanufacturing costs can therefore be expected. 

On the other hand, open-ended reusability must be balanced with material efficiency and resilience in 

order to control structural oversizing and unavoidable damage. 

In theory, complete open-ended reusability is not achievable because the set of all possible spatial, 

functional, and technical requirements is infinite and continually evolving. We can assume that how 

people will live and work in the next century or so is unknown at the time of design. However, to increase 

the open-ended reusability of load-bearing systems in practice remains an environmental necessity. This 

need calls for new research and development directions.  

First, what constitutes open-ended reuse must be further characterized, to a point where two solutions 

can be compared with sufficiently high precision and confidence. Building on real case studies, best 

solutions of open-ended reusability could be identified and used as benchmarks. Building on large, 

simulated data sets, statistical relationships between stocks of components and available (re-

)arrangements could lead to new design principles for ensured reusability. 

Second, new construction techniques allowing for open-ended rearrangements must be developed, 

while controlling environmental impacts, economic costs, and social values. Taken as a new 

performance criterion, open-ended reusability is an opportunity for innovation and a trigger for shifting 

conventional design paradigms towards more design for the unknown. 

 



 
 
 
 
 
 

5. Conclusion 

As load-bearing systems are mostly abandoned because of functional obsolescence, it is crucial that 

rearrangements of their components allow for new spatial, functional, and technical requirements. 

Through a redefinition of associated terms and two case studies, this paper has shown that current best 

practices to design reusable load-bearing components – i.e. ensuring durability, versatility, modularity, 

reversibility, and adaptability of the assembly – are not satisfying. We suggest that the design of reusable 

load-bearing components become considerably more open-ended than what is currently accepted. 

Calling for research on stock characterization and calling for new construction techniques, the explicit 

design for open-ended reusability could give confidence that unforeseen reusability will actually happen 

right after loss of usability, which would reduce storage and production needs, i.e. some of the critical 

environmental impacts of the construction industry. 
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