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Abstract

Transparent conductive oxides (TCOs) are essential in technologies coupling light with elec-

tricity. Due to its good optoelectronic properties and its production scalability, tin-doped

indium oxide (In2O3:Sn) is the preferred TCO in industrial applications. Nonetheless indium

is scarce in the Earth’s crust and its availability might be compromised over the next decades.

To address this issue, this doctoral project aims to (i) improve the optoelectronic properties

of indium-free TCOs seeking to match those of In2O3:Sn, and to (ii) refine the optoelectronic

properties of In2O3-based films to decrease the indium consumption in applications. To

accomplish this, we investigated the links between the defects, the microstructure and the

optoelectronic properties of amorphous zinc tin oxide (a-ZTO) and zirconium-doped indium

oxide (In2O3:Zr).

First, we studied the evolution in the optoelectronic properties and microstructure of a-ZTO

when annealed up to 500 ◦C in oxidizing, neutral, and reducing atmospheres. We show that

annealing under atmospheric pressure at temperatures > 300 ◦C decreases detrimental sub-

gap absorptance while increasing electron mobility (µe ). Thermal treatments in reducing

atmospheres increase free-carrier density (Ne ) and detrimental subgap absorptance. None

of the thermal treatments resulted in important changes in the amorphous microstructure.

Combining these results and density functional theory (DFT) calculations, oxygen deficiencies

(VO ) were identified as the source of detrimental subgap absorption.VO can act as donors

but also as electron-scattering and absorption centres. Based on these results, a-ZTO with

µe of up to 35 cm2V−1s−1, is demonstrated by high-temperature defect passivation. Profiting

from its the microstructural stability, a-ZTO was used as a recombination junction in a tandem

solar cell that requires a high-temperature step in its processing.

This high-temperature passivation scheme might be problematic for temperature-sensitive

technologies. Therefore, we demonstrated an alternative low-temperature passivation method,

which relies on co-sputtering a-ZTO with SiO2 . Using a-ZTO and SnO2 —two tin-based oxides

with different compositions and microstructures—and the results of DFT calculations, we

demonstrate that SiO2 contribution is twofold—(i) The oxygen from SiO2 passivates theVO in

SnO2 and a-ZTO. (ii) The formation energy of the ionizedVO (VO ) is lowered by the silicon

atoms, enabling defects that do not contribute to the subgap absorptance. This passivation

scheme improves the optical properties without affecting the electrical conductivity (σ), over-

coming the optoelectronic trade-off in tin-based TCOs. Finally, we study an indium-based

high µe TCO: zirconium-doped In2O3. Films of In2O3:Zr with thicknesses ranging from 15
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nm to 100 nm were sputtered in the amorphous state and annealed in different atmospheres.

Annealing in air yields fully crystalline films with high transparency and a high µe limited by

phonon and ionized impurity scattering. 15-nm-thick films exhibit an average absorptance of

< 0.5% (between 390 nm and 2000 nm) and a µe of 50 cm2V−1s−1 increasing to 105 cm2V−1s−1

for 100-nm-thick films. Alternatively, annealing in a neutral or reducing atmosphere results in

higher σ for films thinner than 50 nm as a high Ne is maintained. The reduction in thickness

while keeping high lateral σ makes In2O3:Zr an alternative to reduce indium in applications

such as flexible displays, solar cells and light-emitting diodes. As a proof of concept we applied

40-nm-thick In2O3:Zr layer as the front TCO in silicon heterojunction solar cells. The reduction

in thickness and the introduction of a secondary anti-reflective coating result in cells with a

higher photogenerated current than cells with standard electrodes, while decreasing the use

of indium in the device.

Keywords: Transparent conductive oxide, dopants, electron mobility, defects, free-carrier

density, electron transport, free-carrier absorption, bandgap, sub-bandgap defect, ionized

impurity, phonon scattering.
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Résumé

Les oxydes conducteurs transparents (TCO) sont essentiels dans les technologies couplant

lumière et électricité. En raison de ses bonnes propriétés optoélectroniques et de sa facilité

d’extensibilité, l’oxyde d’indium dopé à l’étain (In2O3 :Sn) est le TCO le plus utilisé dans les

applications industrielles. Néanmoins, l’indium est un élément rare dans la croûte terrestre et

sa disponibilité pourrait être compromise au cours des prochaines décennies. Pour répondre

à ce problème, ce projet de doctorat vise à (i) améliorer les propriétés optoélectroniques

des TCO sans indium, afin d’égaler les propriétés du In2O3 :Sn et (ii) affiner les propriétés

optoélectroniques des films à base d’In2O3, afin de réduire la consommation d’In dans les

TCO et leurs applications. Pour ce faire, nous avons étudié les liens entre les défauts, la

microstructure et les propriétés optoélectroniques de l’oxyde amorphe de zinc-étain (a-ZTO)

et de l’oxyde de indium dopé au zirconium. Tout d’abord, nous avons étudié l’évolution des

propriétés optoélectroniques et de la microstructure de l’a-ZTO lorsqu’il est recuit jusqu’à

500 ◦C en atmosphères oxydantes, neutres et riches en hydrogène. Nous montrons qu’un

recuit à pression atmosphérique à des températures de plus de 300 ◦C diminue l’absorption

intra-bande nuisible aux propriétés optiques tout en augmentant la mobilité des électrons (µe

). Les traitements thermiques en atmosphère réductrice augmentent la densité des porteurs

libres (Ne ) et l’absorptivité intra-bande. Aucun des traitements thermiques n’a entraîné

d’importante modification de la microstructure amorphe. En combinant ces résultats et les

calculs de la théorie fonctionnelle de densité (DFT), les vacances d’oxygène (VO ) ont été

identifiées comme étant la source d’absorption intra-bande préjudiciable. UneVO peut agir

comme donneur mais aussi comme centre de diffusion d’électrons. Sur la base de ces résultats,

a-ZTO présentant des µe allant jusqu’à 35 cm2V−1s−1 , est démontré par une passivation

de défaut à haute température. Profitant de la stabilité à haute température de l’a-ZTO, ce

matériau a été utilisé en tant que jonction de recombinaison dans une cellule solaire tandem

qui nécessite une étape à haute température durant sa fabrication.

Cette méthode de passivation à haute température pourrait être problématique pour les

technologies sensibles à de telles températures. C’est pourquoi nous avons également fait la

démonstration d’une méthode alternative de passivation à basse température, qui repose sur

la co-pulvérisation de a-ZTO avec du dioxyde de silicium (SiO2 ). En utilisant deux oxydes à

base de Sn, de composition et de microstructures différentes : a-ZTO et SnO2 , et les résultats

des calculs DFT, nous démontrons que la contribution de SiO2 est double. (i) L’oxygène du

ix



Résumé

SiO2 passive les VO le SnO2 et a-ZTO. (ii) L’énergie de formation du VO ionisé (VO ) est

abaissée par les atomes de silicium, ce qui permet l’existence de défauts ne contribuant pas à

l’absorptivité intra-bande. Ce schéma de passivation améliore les propriétés optiques sans

affecter la conductivité électrique, surmontant ainsi le compromis optoélectronique des TCOs

à base d’Sn.

Enfin, nous étudions un TCO à base d’In haute µe :In2O3 dopé au Zr. Des films d’In2O3 :Zr

d’une épaisseur de 15 nm à 100 nm ont été pulvérisés à l’état amorphe et recuits dans diffé-

rentes atmosphères. Le recuit à l’air permet d’obtenir des films entièrement cristallins à haute

transparence et à haute µe limitée par la diffusion de phonons et d’impuretés ionisées. Les

films de 15 nm d’épaisseur présentent une absorbance moyenne inférieure à 0,5% (entre 390

nm - 2000 nm) et un µe de 50 cm2V−1s−1 , passant à 105 cm2V−1s−1 pour les films de 100 nm

d’épaisseur. Alternativement, le recuit dans une atmosphère neutre ou réductrice entraîne

une conductivité plus élevée pour des films d’une épaisseur inférieure à 50 nm, car une Ne

élevé est maintenu. La démonstration de la réduction de l’épaisseur tout en conservant une

conductivité latérale élevée dans une couche de In2O3 :Zr constitue une alternative pour

réduire l’In dans des applications telles que les écrans flexibles, les cellules solaires et les

diodes électroluminescentes. Pour démontrer le concept, nous avons appliqué une couche

de 40 nm de In2O3 :Zr comme TCO frontal dans des cellules solaires à hétérojonction de

silicium. La réduction de l’épaisseur permet d’obtenir des cellules solaires avec un courant

photogénéré plus élevé que les cellules avec des électrodes d’épaisseur standard, tout en

diminuant l’utilisation d’indium.
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1 Introduction

The aim of this chapter is to construct a general scientific foundation, that will be useful

to comprehend the full body of this thesis. It begins by explaining the general concepts of

semiconductor materials that are directly applicable to transparent conductive oxides (TCOs).

In addition it introduces the optical, electrical and structural characteristics of two important

families of TCOs: tin-based and indium-based materials. Finally, this chapter describes the

use of TCOs in photovoltaic solar cells, and explains how these devices could profit from

improvements in TCO thin films.

1.1 What are transparent conductive oxides?

Given their universal usage, metals are the archetype of conducting materials. While silver is

the metal with highest electric conductivity of 6.6 × 105 S cm−1 at 273 K [Neil Ashcroft, 1976],

the room temperature conductivity of metals is typically on the order of 105 S cm−1. The main

reason for this high conductivity is metals’ high free-carrier density (Ne ), which is on the

order of 1022 cm−3. Their high free-carrier density explains the optical reflection properties

of metals, as it will be described in detail in the next section. By contrast, transparent solids

are not regarded as electrical conductors. For example, 3-mm-thick aluminium oxide (Al2O3)

layer has a total transmittance higher than 80% in the wavelengths spanning from 200 nm to

6000 nm due to its wide bandgap of ≈ 7 eV, but it has an electric conductivity as low as 10−14 S

cm−1 [Fox, 2010]. Hence there is a difference of 20 orders of magnitude between the typical

conductivity of a metal and that of Al2O3, seemingly an irreconcilable difference. Nonetheless,

TCOs find the middle ground. Having an optical bandgap (Eopt ≈ 3 eV), TCOs are transparent

in the visible and near-infrared part of spectrum. In addition TCOs are easily (n-type) doped,

by intrinsic and/or extrinsic dopants, such as oxygen deficiencies or substitutional atoms.

Doping the TCOs can trigger a Ne up to 1021 cm−3 , which results in relatively high electric

conductivities (e.g. 104 S cm−1 for tin-doped indium oxide [Tuna et al., 2010] ). The doping

places the Fermi energy (EF ) of TCOs deep in the conduction band, making them degenerate

semiconductor materials.

But doping compromises the optical properties, since the optical and electrical properties

1



Chapter 1. Introduction

are intertwined. Increasing doping usually results in rising parasitic absorptance: a known

trade-off between the optical and electrical properties of TCOs. This dissertation explores

alternative routes to overcome this trade-off. The main objective is to improve the optical

and electrical properties simultaneously and explore disordered indium-free TCOs which

will be later compared to high-µe indium-based oxides. Our strategy is to understand the

mechanisms limiting the optoelectronic properties in zinc-tin oxide as a case example of

indium-free TCOs, and to overcome them by (i) controlling the deposition conditions, (ii)

post-deposition treatments or (iii) co-depositing TCOs with other materials to decrease the

influence of the limiting defects.

1.2 Fundamental properties of transparent conductive oxides

TCOs are degenerate semiconductors (mainly n-type), their electrical conductivity (σ, ex-

pressed in units of S cm−1) is dominated by the flow of electrons and is described by

σ= eµe Ne (1.1)

where e is the charge of the electron, µe is the electron mobility (units of cm2V−1s−1 ), and

Ne is the free-carrier concentration (units of cm−3 ). Free carriers are electrons that behave

like a free electron gas propagating inside the conduction band. The resistivity (ρ) can be

calculated as the inverse of σ. Furthermore, the sheet resistance of the films (Rsheet in units of

Ω/sq), is the resistivity averaged over the thickness of the film. For uniformly doped samples

of constant thickness d , Rsheet can be calculated by

Rsheet =
ρ

d
= 1

σd
(1.2)

where ρ is the resistivity.

Hence, the Rsheet is controlled by Ne , µe and the thickness d . While Ne is linked to the doping

of the films, µe is associated with electron transport in the TCO. µe describes how easily an

electron propagates in the lattice of a material when an electric field is applied (or induced by

other phenomena). From a microscopic perspective µe is linked to the average time between

scattering events of the charge carriers (〈τ〉), and to the effective mass of the electrons in the

TCO (m∗), following

µe = e〈τ〉
m∗ (1.3)

2



1.2. Fundamental properties of transparent conductive oxides

where e is the electron charge. Increasing µe is one of the main interests in TCO design,

since µe has a direct effect on σ, and increasing µe results in a decrease of the free-carrier

absorptance in a first approximation. µe is limited by microscopic scattering mechanisms

governing electron transport, and by the value of the effective mass. In a crystal, the effective

mass is obtained by comparing the group velocity of electrons in the crystalline lattice [Neil

Ashcroft, 1976], with the motion of free carriers in space when a force is applied. For an

isotropic parabolic dispersion relation (E ∝ k2) the effective mass is defined as

m∗ = ~2

∂2E(k)/∂k2 (1.4)

where E(k) is the dispersion relation dependent on the wavenumber k. Equation 1.4 is a sim-

plification for a two-dimensional crystal, since in fact the effective mass is a three-dimensional

tensor. Nonetheless Equation 1.4 is useful to understand the effect of the conduction band in

m∗ and µe . An alternative strategy to increase µe is to increase 〈τ〉, which can be boosted by

reducing the point-defect density or by improving the film’s microstructure as will be described

bellow.

1.2.1 Electron transport in TCOs and mobility limiting mechanisms

Charge transport in TCOs is governed by free electrons in the conduction band. Given the

degenerate character of semiconductors, the bottom of the conduction band is formed by

the overlap of occupied spherical ns-orbitals of the metal cations (n is the main quantum

number, n = 5, 6) [Kamiya and Hosono, 2010]. The spherical symmetry of the s orbitals results

in a relative insensitivity of the electron transport to disorder (Figure 1.1) [Hosono, 2013, Orita

et al., 2001, Hosono et al., 1996b]. As a consequence the electron mobility in amorphous TCOs

(a-TCOs) is in the same order of magnitude as in their crystalline counterpart. In addition, the

large spread of the metallic s orbitals also results in a low effective mass of electrons (m∗ =

0.25 me - 0.35 me , where me is the rest mass of the electron) [Kamiya et al., 2009b].

In addition to the m∗, Equation 1.3 shows that electron transport depends on 〈τ〉. This section

will discuss the main mechanisms decreasing 〈τ〉, hence limiting µe . In addition, given that

two or more types of scattering events could curb 〈τ〉 simultaneously, the last subsection

explains an empirical rule, which is useful to approximate the overall effect of the multiple

scattering mechanisms. The dominant scattering mechanisms in TCOs vary according to their

microstructure—single crystal, polycrystalline or amorphous.
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(a)

(b)

(c)

(d)

Figure 1.1 – Conduction-band formation (s-p orbital hybridization, where the s-orbitals are
represented by the blue spheres and the p-orbitals by the red "dumbell" shape) for (a) a
crystalline silicon, (b) an amorphous silicon, (c) a crystalline oxide and (d) an amorphous
oxide. The amorphization reduces the conduction path for silicon since amorphous materials
lack an efficient orbital overlap. In contrast, the overlap of the s-orbitals seems to be insensitive
to amorphization. The Figure was taken and modified from reference [Kamiya et al., 2009b].

1.2.2 Defects in crystalline and amorphous materials

A crystal is a highly ordered, periodic array of atoms, which can be described by a crystal

lattice [Neil Ashcroft, 1976]. The position of each atom is described by

R = n1a1 +n2a2 +n3a3 (1.5)

Where ai are the primitive vectors and ni are integers (positive, negative and zero). Thus,

in a crystal, the periodicity of the atomic structure results in short- and long-range order.

Drastic deviations from an ideal crystal are known as defects, which can be point-like, line and

surface defects. A whole variety of defects can be found in crystalline structures: vacancies,

interstitials, dislocations, grain boundaries, stacking faults, voids, precipitates, etc. Defects in

semiconductors alter the macroscopic properties of the material from its defect-free behaviour,

e.g. its electrical conductivity or optical absorptance.

In contrast, amorphous semiconductors lack the long-range order present on crystalline

materials. Nonetheless, their spatial atomic arrangement is not completely random, since

atoms are constrained by local chemical properties such as bond-length, bond-angle and

coordination. These local properties ultimately define the short-range order of the amorphous

network. Ultimately, the short-range order is determined by the (i) number, (ii) the type

and (iii) the spatial arrangement of immediate neighbours of a reference atom [Brodsky,
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(a) (b)

(c) (d)

Figure 1.2 – Schematic representation of an (a) ideal crystal, a (b) crystal with a vacancy, (c)
fully coordinated amorphous network and (d) an amorphous network with a deficiency. In
crystalline or amorphous materials, a vacancy (or deficiency in the amorphous material),
results in dangling bonds, i.e. undercoordinated atoms.

1979]. The average density of atoms at a given distance from a reference position results

in a radial distribution function (RDF) that describes the short-range order. In amorphous

semiconductors, "point-like" defects1 could create an imbalance in the atomic network,

disrupting the RDF and the coordination around a particular atomic species. In amorphous

TCOs, the RDF serves as a structure-property, which can be correlated with the optoelectronic

properties [Medvedeva et al., 2017, Proffit et al., 2012, Zhu et al., 2013, Zhu et al., 2014, Kamiya

et al., 2009c].

Given the lack of grain boundaries in amorphous TCOs, the main scattering mechanisms are

"point-like" defects: ionized and neutral impurities.

Ionized impurities

The Scattering of free carrier by ionized impurities is commonly described by the Brooks-

Herring-Dingle (BHD) model [Dingle, 1955]. This model considers the effect of a screened

Coulomb potential on the relaxation time between two different scattering events. This model

1Point-defects are, by definition, attributed to 0-dimensional deviations of a perfect lattice. Since here our aim
is to describe defects in amorphous semiconductors, we use the term "point-like".
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results in an expression for mobility limited by ionized impurities, µi i

µi i = 3π~3(4πε0κ)2

2Z 2e3m∗2 × Ne

Ni i
× 1

F (ξ)

F (ξ) = ln(ξ+1)− ξ

ξ+1

ξ= 4π3(
3

π
)1/3 ε0κ~3N 1/3

e

e2m∗

(1.6)

where F (ξ) is the screening function, κ is the relative permittivity, ε0 is the vacuum permittivity,

Ni i is the concentration of ionized impurities, Z the charge of the impurity, m∗ is the effective

mass and ~ is the reduced Planck constant. Assuming that there are two free-electrons per

defect-site, an m∗ between 0.25me and 0.35me , a κ of 4 and defects of charge +2, the change

in µi i as a function of Ne can be plotted for defect densities from 5 × 1018 cm−3 to 1021 cm−3

as shown in Figure 1.3.

Figure 1.3 – Fitting of the electron mobility limited by ionized impurities (µi i ) as a function of
free-carrier density for effective masses ranging from 0.25 me to 0.35 me . For this calculation,
we assumed that one ionized defect per dopant, a κ of 4 and defects of charge +2. The green
star in is the maximum µe for In2O3:Zr (chapter 5).

In Figure 3.9, the experimental µe obtained of In2O3:Zr is shown as a function of Ne (see

chapter 5). The experimental µe is higher than the fitting, possible due to a shift in the defect
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1.2. Fundamental properties of transparent conductive oxides

harge from +2 to +1 (due to hydrogen- or Zr-doping), or by the parabolic conduction-band

approximation of the BHD model. Ionized impurity scattering is one of the most important

mechanisms limiting the electron transport at high Ne .

Additionally, Pisarkiewicz [Pisarkiewicz et al., 1989] refined the BHD model by calculating the

effect of non-parabolic conduction bands on the electron transport. The non-parabolicity

influences the m∗, and the resulting µe of the refined model is

µi i ,np = 3π~3(4πε0κ)2

2Z 2e3m∗2 × Ne

Ni i
× 1

F (ξ0,ξ1)

F (ξ0,ξ1) =
(
1+ 4ξ1

ξ0

(
1− ξ1

8

))
l n(ξ0 +1)− ξ0

ξ0 +1
−2ξ1

(
1− 5ξ1

16

)

where

ξ0 =π2(
3

π
)1/3 ε0κ~2N 1/3

e

e2m∗

ξ1 = 1− m∗
0

m∗

(1.7)

using m∗ as the effective mass dependent on the Fermi level, (i.e. it is doping dependent) and

m∗
0 is the effective mass at the bottom of the conduction band. Note that for m∗ = m∗

0 , the

Equations 1.7 and 1.6 are equivalent.

Neutral impurities

Scattering from neutral impurities is described by [Erginsoy, 1950]

µn = e3m∗

A4πκε0~3Nn
(1.8)

where A is the cross section of the scattering process and Nn is the neutral defect density.

Usually for TCOs the concentration and the scattering cross section of the neutral impurities

are much smaller than those of ionized impurities, hence the effect of neutral impurities is

often neglected [Zhang and Ma, 1996,Preissler et al., 2013,Macco et al., 2015]. As demonstrated

by Frank and Kostling, in heavily doped In2O3:Sn, µe does not scale with Ne as expected from

ionized impurity scattering, hence in this case the contribution of scattering from neutral
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impurities should be taken into account [Frank and Kostlin, 1982].

Phonon scattering

The motion of the atoms out of their equilibrium positions gives rise to a periodic dispersion

relation with two possible solutions [Ibach and Luth, 2009, Neil Ashcroft, 1976] (or branches):

optical and acoustical phonons. The optical phonons induce an oscillating dipole which

propagates into the periodic lattice and interacts with the free carriers. The acoustic phonons

describe the propagation of sound waves in a material. Preissler et al. [Preissler et al., 2013]

used fitting of the different scattering mechanisms in a large set of In2O3 samples (with Ne

from 7 × 1016 cm−3 to 1021 cm−3 ), to suggest that scattering of polar phonons is important at

low Ne , while acoustic phonons are not relevant regardless of the free-carrier density. Given

the Ne values in a TCO, the electron-phonon interaction can be described as similar to that of

a metal [Zhang and Ma, 1996, Dugdale, 1977]. Hence the electron mobility can be described

by µe ∝ T −p , where p = 1 if the measuring temperature is higher than the Debye temperature,

and 2 < p < 4 if the measuring temperature is lower than the Debye temperature. For our case,

the Debye temperature of tin oxide and indium oxide are respectively 313 K [Collins et al.,

1979] and 700 K [Preissler et al., 2013]. Hence, we describe the scattering from phonons using

the expression

1

µPh(T )
= 1

µ0

(
T0

T

)2

(1.9)

where T is the temperature, and µ0 is the electron mobility at T0. A more refined description

of the phonon-electron interactions (polar optical phonons, acoustic deformation potential,

and piezoelectric potential) is summarized in reference [Ginley and Perkins, 2011].

In the case of a polycrystalline material, the scattering from grain boundaries should be

considered as well.

Scattering by grain boundaries

Several thin film TCOs are polycrystalline, i.e. they are formed by crystalline domains separated

by grain boundaries. Seto [Seto, 1975] developed a model to describe scattering from grain

boundaries in polycrystalline silicon, which can be applied as a first approximation to TCOs

(Figure 1.4).

This model views grain boundaries as electron traps, which reduce the total number of free

carriers and creates a potential energy barrier (EB ) between grains. Seto’s model also assumes

that (i) the films are composed of equal grains of size L, (ii) the donors are totally ionized

and uniformly distributed with a concentration of Ne (cm−3 ), (iii) the thickness of the grain

boundary is negligible compared with L, and (iv) the traps contain a defect density of NGB (in

8
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Crystallite

Grain boundary

L

L

EC

EV

EF

EB

NGB

tunneling

thermionic emission

W

Figure 1.4 – (Left) Schematic representation of Seto’s grain boundary model. (Right) Schematic
band-diagram corresponding to Seto’s model. The trap density in the grain boundaries (NGB )
creates a potential barrier of height EB .

cm−2). By solving Poisson’s equation in one dimension, Seto found two possible values for

EB , one for in-grain free-carrier density larger than the trap density in the grain boundaries

(LNe > NGB ) and one for in-grain free-carrier density smaller than the trap density in the grain

boundaries (LNe < NGB ). This is,

EB = e2N 2
GB

8εε0Ne
for LNe > NGB for non-depleted grains

EB = e2L2Ne

8εε0
for LNe < NGB for depleted grains

(1.10)

In the context of this work, it is likely that LNe > NGB , given that the TCOs are highly-doped

and in turn Ne is high compared with the defect density in the grains. This results in an EB

that depends directly on 1/Ne , hence the boundary is lower for more highly doped films.

An electron can traverse the potential barrier by thermionic emission or by tunnelling. Elec-

trons with high-enough energy are likely to contribute to the current via thermionic emis-

sion. Conversely, electrons with energy < EB , are likely to tunnel through. Considering only

thermionic emission, the electron mobility as a function of the energy barrier is given by

µther mi oni c =
eW√

2πm∗kB T
exp

(−EB

kB T

)
(1.11)

where kB is Boltzmann’s constant, and T is the temperature. Conversely, µe of electrons
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tunnelling through an energy barrier EB is expressed by

µtun = el

~(3π2Ne )1/3
exp

(−4πW
p

2m∗EB

~

)
(1.12)

where l is the mean free path of the electron and W is the thickness of the grain boundary.

Steinhauser developed a model for the effective electron mobility in zinc oxide (ZnO) films

[Steinhauser, 2009]. Considering µi ntr ag r ai n , µther mi oni c and µtun , the effective electron

mobility is described by

1

µe f f
= L−W

L

(
1

µi ntr ag r ai n

)
+ W

L

(
1

µther mi oni c +µtun

)
(1.13)

For non-depleted grains, the potential barrier decreases for increasing Ne , (Equation 1.10),

hence for highly doped TCOs, intragrain scattering is likely to dominate electron transport. In

addition, from Equation 1.13, the effective electron mobility for TCOs with grains of size much

larger than the grain boundary thickness (L >>W ) is also likely to be dominated by scattering

from intragrain events. In the next sections, the main scattering mechanisms controlling

µi ntr ag r ai n will be described.

Matthiessen’s rule

The different scattering mechanisms limitµe of an electron, decreasing the overall conductivity

in the TCOs. Suppose two types of scattering mechanisms (A and B) and a total collision rate

(S). If we assume that A and B are independent, i.e. A has no influence on B, the total collision

rate can be described as S = S A +SB .

If we assume the relaxation-time approximation2, the contribution from A and B in τ and in

2The relaxation-time approximation asserts that (i) a scattering event "erases" the conditions of the scattered
particles prior to the event and (ii) collisions maintain the thermodynamic equilibrium at whatever experimental
temperature. For more details, see reference [Neil Ashcroft, 1976]

10



1.2. Fundamental properties of transparent conductive oxides

µe , can be expressed using Matthiessen’s rule3 [Neil Ashcroft, 1976]

1

〈τtot al 〉
= 1

〈τ〉A
+ 1

〈τ〉B

Using Equation 1.3

1

µtot al
= 1

µA
+ 1

µB

(1.14)

where µA is the electron mobility in the material if the only scattering mechanism present is A,

and equivalently for µB . Thus, in polycrystalline materials, Equation 1.14 can be expressed as

1

µtot al
= 1

µi ntr ag r ai n
+ 1

µGB
(1.15)

where µi ntr ag r ai n is the electron mobility limited by scattering mechanisms in the bulk of the

films4, while µGB is the mobility limited just by the interaction between electrons and grain

boundaries. Quantitatively, a simple evaluation of Equation 1.14 shows that given µA and µB ,

the smaller value is dominant. For example take µA = 10 cm2V−1s−1 and µB = 100 cm2V−1s−1 :

the resulting µtot al from these two hypothetical scattering mechanisms is 9.1 cm2V−1s−1 .

An empirical rule to describe µe inside the grain of the materials is given by [Masetti et al.,

1983]

µi ntr ag r ai n ≈µM aset t i =µmi n + µmax −µmi n

1+ (Ne /Nr e f 1)α1
− µ1

1+ (Nr e f 2/Ne )α2
(1.16)

where µmi n is the mobility at high Ne , µmax is the mobility at low Ne , µmi n −µ1 is the cluster

mobility (extremely high free-carrier density), and α1, α2, Nr e f 1 and Nr e f 2 are empirical

coefficients. Ellmer and Mientus [Ellmer and Mientus, 2008] studied a large dataset of µe -Ne

values of doped and undoped ZnO and fitted Masetti’s model, and BHD model and Seto’s

model for electron mobility.

3It is also assumed that both scattering mechanisms are independent on the wavevector κ
4by using "bulk" we refer to the scattering mechanisms present inside the single-crystallite grain
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Figure 1.5 – µe as function of Ne for single crystal and polycrystalline ZnO, ZnO:Al and
ZnO:Al,Ga deposited vapour chemical deposition, sputtering and pulsed lased deposition.
The films were deposited onto glass and sapphire substrates. The thick black line corresponds
to the fitting of Masetti’s equation, while the other lines correspond to a combination of the
BHD model and Seto’s model. Figure taken from reference [Ellmer and Mientus, 2008].

While µe is dominated by ionized impurities at Ne > 3 × 1020, grain-boundary scattering

limits the electron transport for lower Ne values. By fitting Seto’s model. they found that the

trap density in the grain boundaries (NGB ) can range between in 5 × 1012 cm−2 and 3 × 1013

cm−2. Interestingly, the NGB is highly dependent type of deposition system, e.g. deposition

source- direct current or radio-frequency- or the orientation of the substrate with respect to

the target [Ellmer and Mientus, 2008]. Fitting Masetti’s equation it was found that for ZnO,

µmax and µmi n −µ1 present values of 210 cm2V−1s−1 , 5 cm2V−1s−1 respectively.

1.2.3 Dopants in transparent conductive oxides

Intrinsic dopants

Defects are ubiquitous and unavoidable in semiconducting materials. In oxide materials, an

oxygen vacancy (VO ) is the absence of an oxygen atom in the atomic network. In TCOs oxygen

vacancies play a dual role: They can act as a source of free electrons i.e. as dopants, shifting

the Fermi level deep in the conduction band and they can act as point defects that limit µe and

might produce subgap states, which are detrimental for the optical properties [Bazzani et al.,

2011, Calnan and Tiwari, 2010, Klein, 2013, Koida et al., 2012, Robertson et al., 2006]. In2O3, tin

oxide (SnO2 ) and ZnO can have free-carrier densities on the order of 1020 cm−3 without the

need of extrinsic dopants due toVO [Chopra et al., 1983]. If the defect level formed byVO is

shallow, the electrons occupy the conduction band minima. This defect chemistry is usually
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described in the Kroger-Vink notation5 [Kröger and Vink, 1958] as

1

2
O2(g )+VO +2e ⇒Ox

0 (1.17)

whereVO is a vacancy with a double negative charge at the original position of the oxygen

atom, Ox
0 is an oxygen atom in the corresponding lattice position with no effective charge

and 2e are two negatively charged electrons. Intrinsic defects that are not due toVO also

co-exist withVO in TCOs. For example, charge-neutralVO (orVOx ) is found in SnO2 at Fermi

energies near mid-bandgap. Nevertheless, these defects are less likely to contribute as donors

in degenerate TCOs due to their formation energies [Rucavado et al., 2018, Kılıç and Zunger,

2002]. Given that cation interstitials have low concentrations in TCOs —for example, Lany’s

calculations suggest 107 cm−3 and 1014 cm−3 for In2O3and ZnO respectively [Lany and Zunger,

2007]—and given that they have a formation energy much higher than that ofVO , it is less

likely that Ini or Zni will form a stable defect in In2O3and ZnO as compared withVO [Lany

and Zunger, 2007].

Extrinsic dopants

Besides increasing theVO density, substitutional atoms are effective dopants in TCOs [Chopra

and Das, 1983]. Substitutional dopants can lead to enormous Ne values of up to 1021 cm3.

The dopants must have high solubility [Hall and Racette, 1964] in the undoped TCO to avoid

dopant-clustering and compensation of defects [Agoston et al., 2010]. A common doping

strategy is to use atoms from the group to the right of the cations in the periodic table, i.e. use

an atom with one valence electron more than the metal cation of the oxide. For example, Sn4+

is used as a substitute for In3+ in In2O3, Al3+ is used as a substitute for Zn2+ in ZnO, and Sb3+

is used as a substitute for Sn4+ in SnO2. In addition, oxygen substitution might also lead to

TCO doping, e.g. F1− substitutes O2− in SnO2 to form SnO2 :F.

Nevertheless, dopants are not constrained to this rule of the thumb. For example, doping of

SnO2 with fluorine, lanthanum or molybdenum also leads to high Ne values on the order of

1020 cm−3 to 1021 cm−3 [Stjerna et al., 1994, Niedermeier et al., 2017, Dixon et al., 2016, Peng

et al., 2016, Arai et al., 2017] and it is possible to achieve conductivities of 104 S cm−1 [Agashe

et al., 1988]. Titanium, zirconium, molybdenum, tungsten and cerium have all beer reported as

effective alternatives to Sn to dope In2O3 [Kobayashi et al., 2015,Delahoy and Guo, 2005,Koida

and Kondo, 2006, Koida et al., 2018, Warmsingh et al., 2004].

Atomic hydrogen may be trapped in the film during deposition, and should be considered as a

possible dopant [King et al., 2009, Limpijumnong et al., 2009, Bekisli et al., 2011, Hlaing Oo

5Convention used to describe the electric charge and the lattice position of point defects in a crystal structure.
For exampleVO corresponds to a vacancy with double positive charge in the lattice site of oxygen. In case of
interstitials, the subscript has an "i".
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et al., 2010, Hanyu et al., 2013, Tang et al., 2015]. Computational and experimental evidence

suggested that hydrogen, rather thanVO , is the main source of free carriers in In2O3, SnO2

, and ZnO [Limpijumnong et al., 2009, Singh et al., 2008, Van De Walle, 2000, King et al.,

2009, Jiang et al., 2016, Hofmann et al., 2002, Mizokawa and Nakamura, 1974].

1.2.4 Effect of dopants on the optical properties of TCOs

The Drude model and free-carrier absorption

The Drude model applies the kinetic theory of gases to the electrons in metals. This seems

an unlikely model since both physical systems are strikingly different, but to overcome these

differences, the model makes certain assumptions:

1. Between collisions, the electron-electron and electron-ion interactions are neglected.

Hence, in the absence of an electric or magnetic field, the electrons follow a straight line.

If an electromagnetic field is applied, the electron follows Newton’s laws of motion.

2. Collisions are considered to be instantaneous, and change the momentum of an elec-

tron.

3. The probability for an electron to experience a collision is 1/τ, where τ is known as the

relaxation time6.

4. Collisions are means for electrons to achieve thermodynamic equilibrium with the

surrounding medium.

Therefore, if an external electric field is applied to a TCO, free electrons react following New-

tons’s laws of motion bounded to the atomic network of the solid. This is extremely useful,

since we can use an optical experiment (the reaction to an electric field) to examine an electri-

cal parameter (intragrain electron transport).

The reaction of electrons to an external electric field, can be described in terms of their

complex dielectric function ε(ω). ε(ω) describes the physics of electrons in the TCO when

excited by light with energy lower than the bandgap (~ω << Eg ). This is achieved using a

combination of Lorenz oscillators and the Drude model [Fujiwara and Kondo, 2005].

ε(ω) = (n − i k)1/2 = ε∞
(

1+
ω2

p

ω2 + iωΓ

)
(1.18)

where n is the refractive index, k is the extinction coefficient (the absorption coefficient is

6τ is also known as the collision time or the mean free time.
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1.2. Fundamental properties of transparent conductive oxides

calculated using α= 4πk/λ) , ε∞ is the dielectric function at high frequency, Γ= e/(µopt m∗)

or the inverse of the averaged relaxation time (τ−1) and ωp is the plasma frequency

ωp =
(

e2Nopt

ε0ε∞m∗

)1/2

(1.19)

where m∗ is the effective mass, Nopt is the optical free-carrier density and ε0 is the vacuum

permittivity (8.85 × 10−12 F m−1).

Effective mass, optical mobility and optical free-carrier density

In Equations 1.18 and 1.19, the optical mobility (µopt ) and optical free-carrier density (Nopt )

and the effective mass (m∗) are required. These values can be extracted from fitting Fourier

transform infrared (FTIR) reflectance measurements with the Drude model (See Section 2.3.2).

If an electron absorbs the energy of an incoming photon (in the infrared regime), it is possible

to approximate the mean free path of electrons using [Knoops et al., 2015]

lm f p =
(

2Ep m∗µ2

e2

)1/2

(1.20)

where Ep is the energy of the photon, µ is the electron mobility and e is the charge of the

electron. For an µ of 100 cm2V−1s−1 , m∗ of 0.3me and photon energies between 0.06 eV and

1.2 eV (typical energy range in FTIR), the mean free paths obtained are 20.6 nm and 4.5 nm,

respectively. The lm f p range is small compared to the grain sizes of a TCO with µe of 100

cm2V−1s−1 , e.g. typically 300 nm. Hence, it is possible to approximate µopt to as µi ntr ag r ai n .

Moreover, most of the TCOs explored in Chapters 3 and 4 are amorphous, and due to the

absence of grain boundaries it is also possible to approximate µopt as µe . Finally, assuming

that Nopt = Ne , it is possible to obtain the m∗ if the plasma frequency is measured optically.

Plasma frequency and free-carrier absorption

The plasma frequency (Equation 1.19) describes the collective oscillation of free electrons in a

conductive medium. The interaction of light with the electrons in the conduction band can be

explained in terms of ωp and its corresponding energy (Ep = ~ωp ). If an incoming photon has

energies considerably higher than the plasma energy (but still lower than the fundamental

absorption of the TCO), the light does not interact with the electrons and is transmitted. If

light has the same energy as the plasma wavelength, i.e. ω=ωp , the photon is fully absorbed

as the electron gas couples strongly with light. The photon’s energy thermalizes due to the
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damped oscillation. On the other hand, if the photon has lower energy than the plasma energy,

the electrons can oscillate easily at the same frequency as the light. As the energy decreases as

compared with Ep , the free carriers oscillate in anti-phase to the exciting electric field, light

cannot be transmitted in the solid, and the photons are reflected. The free-carrier absorption

can be derived from Equation 1.18 by dividing the equation into the real and the complex part:

εr = ε∞
(

1−
ω2

p

ω2 +Γ2

)

εc = ε∞
(
ω2

pΓ/ω

ω2 +Γ2

) (1.21)

Typically, TCOs have τ ≈ 10−14 s at room temperature, hence it is safe to make the approx-

imation ωτ >> 1 at frequencies near the visible part of spectra. This leads to εr ≈ ε∞ and

εc << εr . Hence it is possible to find the solution to Equation 1.18 with n =p
ε∞ and k = εc /2n.

Replacing this into α= 4πk/λ, we obtain an expression for free-carrier absorption

αFC A = λ2e3Nopt d

4π2ε0c3nm∗2µ
(1.22)

where c is the speed of light, λ is the wavelength (λω= c) and d is the thickness of the film.

Hence αFC A is proportional to Ne /µ, which are the parameters controlling the conductivity in

TCOs. Since metals have Ne ≈ 1022 cm−3 , the plasma energy lies in the ultraviolet part of the

spectrum, light is reflected in the visible and this reflectance increases with wavelength at a

rate of λ2. TCOs have Ne between 1019 cm−3 and 1021 cm−3 and the plasma wavelength lies

in the near infrared part of spectrum. For this reason TCOs are commonly used as windows

which reflect infrared radiation. For example, heavy doping of In2O3:Sn can result in large-area

films with average Rsheet of 2Ω/sq and total transmittance near 80% in the visible part of the

spectrum and 80% reflectance in the infrared [Oyama et al., 1992, Granqvist, 2007].

1.2.5 Interband transitions, Burstein-Moss shift and optical bandgap in TCOs

In TCOs, the interactions between oxygen and metal orbitals create quantitatively similar

electronic structures in the most common types of TCOs (SnO2 , In2O3and ZnO, see Figure 1.6).

While the valence band (EV ) of TCOs is formed by the bonding and non-bonding O 2p states,

the conduction band (EC ) is formed by the anti-bonding metal s - oxygen p interactions. The

energy difference between EC and EV generates the fundamental bandgap (Eg ), which in hand

determines the fundamental absorption o TCOs. An interband electronic transition occurs
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1.2. Fundamental properties of transparent conductive oxides

when electrons are excited from the maximum of the valence band (VBM) to the minimum

of the conduction (MCB). For this process to be mediated by light, the photon’s energy must

be higher than that of the bandgap (~ω> Eg = EC −EV ). If the CBM and the VBM share the

same κ value, the transition is known as direct (Figure 1.6). Otherwise the transition is indirect

and is usually mediated by a phonon [Pankove, 2012]. Calculated bandgaps for crystalline

SnO2 [Kılıç and Zunger, 2002], In2O3 [Mryasov and Freeman, 2001] and ZnO [Özgür et al.,

2005] are found to be direct, nonetheless deviations from pristine crystalline structures could

allow transitions otherwise forbidden [Fuchs and Bechstedt, 2008].

EV

EC EF

En
er

gy

k k

En
er

gy
Eg Eopt

ΔEBM

Fundamental bandgap Op�cal bandgap

CBM

VBM

Figure 1.6 – Representation of (a) the fundamental bandgap in an intrinsic direct semicon-
ductor (Eg ) and (b) the optical bandgap (Eopt ) in a degenerate semiconductor. In degenerate
semiconductors, the Fermi energy (EF ) is inside the conduction band, hence there is a shift of
the optical bandgap to higher energy. This energy difference is known as the Burstein-Moss
shift (∆EB M ).

Additionally, in degenerate semiconductors the Fermi energy (EF ) is inside the conduction

band. Hence the lowest available energy state has higher energy than CBM. Therefore allowed

optical transitions occur from VBM to the minimum empty state in the conduction band

(represented in Figure 1.6(b)). Thus optical transitions in degenerate semiconductors have an

energy of

Eopt = Eg +∆EB M (1.23)

where ∆EB M is known as the Burstein-Moss shift [Burstein, 1954, Moss, 1954]. Since TCOs are

mainly degenerate semiconductors, an absorption process occurs if the energy of photons is

≥ Eopt . Therefore in this context, Eopt is known as the optical bandgap.
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Parametrization of optical properties in amorphous transparent conductive oxides.

In crystalline semiconductors, the optical absorption is closely linked to the wave-vector (k)

of a crystal. In amorphous semiconductors (and amorphous TCOs), the absence of long-

range order makes impossible the application of Bloch’s theorem and the crystal momentum

(~k), therefore a formalism alternative to the Drude Model is required to describe optical

transitions. Even in the absence of a k-space, the density of states (DOS) is a meaningful

concept in amorphous materials. In fact, optical absorption experiments have shown that

in amorphous semiconductors, the density of states can be separated in a VB and a CB just

as in crystalline materials [Pankove, 2012, Adachi, 2012]. In general, the DOS of amorphous

semiconductors deviates from the crystalline counterpart in having (i) tail states attributed

to the disorder of the atomic arrangement and (ii) localized deep subgap states which are

usually attributed to dangling bonds. These results in an absorption coefficient as illustrated

qualitatively in Figure 1.7. Regions A and B arise from fully coordinated amorphous network,

while region C results from optical transitions involving the deep localized states.

Photon energy

lo
g(
α

)

A

B

C

Figure 1.7 – Illustration of the optical absorption of an amorphous semiconductor. The
absorption is divided in three regions: Region A corresponds to the strong absorption edge,
region B corresponds to the absorption involving transitions between band tails (known as
Urbach region) and region C describes transitions within deep subgap states

The strong absorption (region A) is usually attributed to band-to-band transitions, and α can

be described by the relation

Eα∼ (E −Eopt )n (1.24)
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1.2. Fundamental properties of transparent conductive oxides

where n is a constant between 2 and 3 [Adachi, 2012]. At lower energies, transitions between

band-tails result in an α which depends exponentially of the energy. This region is known

as the Urbach region (region B) [Pankove, 2012]. The absorption coefficient in this spectral

region is described by

α∼ exp(E/EU ) (1.25)

where EU is known as the Urbach energy, and it is the width of the exponential tail. The

absorption from Region C corresponds to transitions within deep subgap states, usually

attributed to dangling bonds. The absorption represented in region C is also described by an

exponential equation

α∼ exp(E/Et ) (1.26)

with Et is always larger than EU [Adachi, 2012]. Therefore, Et is a measurement of the density

of dangling bonds in the amorphous semiconductor [Sha et al., 2010].

Parametrization of optical properties of amorphous semiconductors was refined by Jellison

and Modine [Jellison and Modine, 1996]. They combined the Tauc joint density of states and

the Lorentz oscillator model to obtain the complex part of the dielectric function, εcT L . The

real part of the dielectric function is obtained by the Kramers-Kronig relations. The resulting

εc is described by

εcT L (E) = AE0C (E −Eg )2

(E 2 −E 2
0 )2 +C 2E 2

1

E
for E > Eg

εcT L = 0 for E ≤ Eg

(1.27)

while the real part of the dielectric function is obtained by solving the equation

εrT L (E) = εr (∞)+ 2

π
P

∫ ∞

Eg

ξεcT L (ξ)

ξ2 −E 2 dξ (1.28)

where P is the Cauchy principal part of the integral. The solution of this integral can be found

in reference [Jellison and Modine, 1996]. This parametrization has been used to described

the origin of subgap states in a-IGZO, CdO, crystalline and amorphous In2O3and ZnO among

others TCOs [Kamiya et al., 2009a, Liu et al., 2016, Koida et al., 2012, Sorar et al., 2011, Fujiwara
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and Kondo, 2005].

1.2.6 Summary of TCO properties

The most common TCOs are based on four different oxides: In2O3, SnO2 , ZnO and cadmium

oxide (CdO). Their physical properties, mineral nomenclature and dopants are summarized

in Table 1.1.

20



1.2. Fundamental properties of transparent conductive oxides

Table 1.1 – Physical properties of In2O3, ZnO, SnO2 and CdO. The table is adapted from
references [Batzill and Diebold, 2005], [Ellmer, 2001], and extended with data from references
[Madelung, 2012, Aldred and Pratt, 1963, Patnaik, 2003, Jefferson et al., 2008, Schleife et al.,
2011]

Property In O 2 3 ZnO SnO 2 CdO 

Mineral name -- Zincite Cassiterite Monteponite 

Abundance of the metal

in the Earth's crust (ppm)

0.1 132 40 0.2

Crystal structure cubic, bixbyite hexagonal, wurtzite tetragonal, ru�le cubic, rocksalt

Space group 1I2 3 3P6 mc 2P4 mnm Fm3m

La�ce constants (nm) a = 1.012 a = 0.321

b = 0.5207

a = 0.474

b = 0.314

a = 0.469

7.12 5.67 6.5 8.15Density (g cm  )-3

6.7 14Thermal expansion 

coefficient (RT) (10   °C   )-6

  c: 2.92

  c: 4.75

  c: 3.7

  c: 4.0

Mel�ng temperature (°C) 2190 2240 >1900 1426

Mel�ng temperature 

of metal (°C)

157 420 232 321

Vapour pressure of 

metal at 500 °C (mbar)
13.3 0.011.3 x 10  -6 6.6 x 10  

-9

Heat forma�on (eV) 9.7 3.6 6.0 2.67

Bandgap (eV) 3.75 (direct) 3.4 (direct) 3.6 (direct) 2.18 (direct)

9 21.9Sta�c dielectric constant   c: 8.75

  c: 7.8

  c: 9.6

  c: 13.5

Experimental electron 

effec�ve mass (m*/m )

0.3 0.2

0

  c: 0.23

  c: 0.26

0.28

-1

Common extrinsic 

dopants
Sn, Ti, Zr, F, Cl, Sb

Ge, Zn, Pb, Si, Mo 

W, Ce

B, Al, Ga, In, Si

Ge, Ge, Sn, Y, Sc, Ti,

Zr, Hf, F, Cl

Sb, F, Cl, La, Nb

Ta

Sn, In, Al, F

Single crystal electron 

mobility (cm V s ) for a 

free-carrier density of (cm )

-1 -12

-3

220 for  (10  )

60 for (1.1 x 10  )

17

19

205 for (10  )

40 for (10  )

16

20

103 for  (2.7 x 10  )

15 for (8.0 x 10  )

17

18

180 for  (10  )

110 for (1.8 x 10  )

19

19
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Chapter 1. Introduction

Amorphous TCOs and amorphous oxide semiconductors (AOS) can be processed at relatively

low temperatures (T < 350 ◦C ), yet they have optoelectronic properties similar to their crys-

talline counterparts. In Table 1.2 we listed the process temperature, the electrical and optical

properties of representative amorphous TCOs. A comprehensive study of amorphous TCOs,

AOS and their application in thin film transistors can be found in reference [Wager et al., 2008]

Table 1.2 – Optoelectronic properties and process temperature of representative amorphous
TCOs. The data from the TCOs was obtained in references [Orita et al., 2001, Hosono et al.,
1996a, Yasukawa et al., 1995, Fortunato et al., 2006, Yaglioglu et al., 2006, Kumar et al., 2005,
Utsumi et al., 2003, Minami et al., 1994]

Amorphous TCO σ (Scm  ) -1Op�cal proper�es (cm  V  s  )2 -1 -1μ

InGaO (ZnO)  (m<4) 3 m

N (10  cm  )e
-319

E  = 2.8 eV - 3 eVg 1 - 10 12 - 20 170 - 400

2 CdO PbO x. E  = 1.6 eVg 10 9 180

AgSbO 3

In O  - ZnO 10 % 2 3

In O  - ZnO 15 % - 48 % 2 3

In O  - ZnO 10 % 2 3

ZnSnO 3

E  = 2.3 eVg

TT = 85 % (visible)

--
E  = 2.66 eV - 3.05 eV g

In O  - SnO2 3 2 70 % - 80 %

TT = 80 %  (visible)

0.03

20 - 35

20

12 - 35

435

1 - 10

7

60

52

60 - 70

40

10 - 20

0.1

2000

1665

2500

2800

250

Process T (°C)

RT - 300 °C

RT - 300 °C

200 °C

350 °C

500 °C

RT

250 °C

RT

(a) (b)

Figure 1.8 – Schematic of (a) the SnO2 rutile structure and (b) the In2O3bixbyite structure. The
O atoms are in red, the Sn atoms are in green and the In atoms are blue.

Given that this work is focused on the Sn- and In-based host-TCOs, we will show the crystal

structure, band structure and typical density of states of these two materials. Figure 1.8(a) and

(b) shows the crystal structures of SnO2 and In2O3 respectively. SnO2 crystallizes with a rutile

structure with lattice parameters a = b = 0.474 nm and c = 0.314 nm [Baur and Khan, 1971]. The

local structure around tin atoms corresponds to a octahedral coordination by 6 oxygen atoms.

In2O3 crystallizes in the bixbyite structure with a lattice parameter of 1.012 nm [Marezio,

1966]. This structure is composed of 80 atoms in a conventional cell (16 units of In2O3) and 40

atoms in the primitive cell. It has two non-equivalent sites for indium cations, known as b-site

and d-site. Locally, the oxygen anions are octahedral coordinated around indium atom, i.e.
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1.2. Fundamental properties of transparent conductive oxides

every indium is surrounded by six oxygen atoms and two structural vacancies [Buchholz et al.,

2014a].

The electronic density of states and band structures for the host InOx and SnOx TCOs are

presented in Figure 1.9. The band structure of In2O3 was obtained using first principles-

based density functional theory (DFT) calculations [Mi et al., 1999]. The density of states was

calculated using a first-principles electronic-structure calculation using a discrete variational

χα method [Tanaka et al., 1997]. The density of states of SnO2 was calculated using a self-

consistent-field scattered-wave molecular-orbital cluster approach, and its band structure

was calculated using an augmented-spherical-wave supercell approach [Mishra et al., 1995].
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(c) (d)
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Figure 1.9 – Calculated total and partial density of states of (a) SnO2 and (b) In2O3(reproduced
from [Mishra et al., 1995] and [Tanaka et al., 1997]) and band structure of (c) SnO2 and (d)
In2O3(taken from [Mishra et al., 1995] and [Mi et al., 1999] respectively)
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TCOs are widely used in industrial-scale applications, such as light-emitting diodes, thin-film

transistors, infrared-reflecting coatings, electro-chromic or smart windows, gas sensors, flat-

panel displays and electrodes in solar cells. Each of these applications has specific demands

from the electrical and optical properties. In the context of this work, the application of TCOs

in photovoltaic devices is crucial. Optimizing the optoelectronic properties of TCOs could

result in higher conversion efficiencies in solar cells.

Given its chemical and thermal stability, F-doped SnO2 has been widely used as a front

electrode is several thin-film solar cells, and is currently playing a key role in the development

of hybrid perovskite solar cells [Werner et al., 2018]. Furthermore, SnO2 has been demonstrated

as electron-selective contact in this same type of cells [Correa Baena et al., 2015]. A recent

report by Albercht et al. [Albrecht et al., 2016] fabricated a silicon/perovskite tandem solar cell

with three TCOs. At the back of the silicon wafer, aluminium-doped ZnO (ZnO:Al) was applied

as an optical spacer and interfacial layer between the silver contact and the silicon. At the

front of the silicon heterojunction cell, In2O3:Sn was deposited and SnO2 was deposited via

atomic layer deposition. The combination of SnO2 and In2O3:Sn forms a recombination layer

between the silicon and the perovskite cell. Furthermore, after the deposition of the perovskite

solar cell, In2O3:Sn was deposited as the electrode facing the light (Figure 1.10). Tuning the

optoelectronic properties of each of these TCOs is essential to achieve an optimal efficiency.

n-doped Si wafer

Top perovskite cell

ZnO:Al
Ag

In O :Sn2 3

   SnO2

In O :Sn2 3

i/p a-Si

i/n a-Si

Spiro-OMeTAD
MoOx

Figure 1.10 – Schematic representation of a monolithic tandem solar cell using ZnO:Al,
In2O3:Sn and SnO2 in the design. Adapted from [Albrecht et al., 2016].

In the top In2O3:Sn facing the light, low broadband optical absorptance and low Rsheet are

required to maximize the light entering the tandem solar cell and to collect the charge. The

recombination junction and the back ZnO:Al layer have more relaxed electrical constraints

since lateral electron transport is not needed. Nonetheless the optimal optical coupling is
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1.2. Fundamental properties of transparent conductive oxides

required to avoid reflectance losses.

In the next section, the TCO requirements for silicon heterojunction solar cells are discussed

in detail in terms of optical and electrical properties.

1.2.7 Transparent conductive oxide design for silicon heterojunction photovoltaics

Silicon heterojunction (SHJ) solar cells use a combination of intrinsic and doped hydrogenated

amorphous silicon (a-Si:H(i) and a-Si:H(p+/n−)) for passivation and charge selection. This

a-Si(i/p+ or i/n−) stack is not sufficiently conductive to transport the charge laterally to the

silver fingers. Hence SHJ solar cells require a layer with electric conductivity for lateral charge

transport with Eopt wide enough to allow the entrance of light to the active layers of the solar

cell.

c-Si (n)

i/p a-Si 

i/n a-Si 

TCO

TCO

Ag

Ag
c-Si (n)

i/p a-Si
TCO

Ag
(a) (b)

jmp

d

Figure 1.11 – (a) Sketch of a silicon heterojunction (SHJ) solar cell with an n-type crystalline
silicon wafer. (b) Diagram of current collection in the front TCO.

Even though these requirements are fulfilled to a large extent by existing TCOs, optimizing

these films is crucial to increase the efficiency of the solar cells. The transparency of the films

allows incoming photons to enter the active layers of the solar cell, thus a highly transparent

electrode can increase the photogenerated current. A highly conductive TCO can reduce the

series resistance of the full solar cell, which ultimately leads to a high conversion efficiency.

Nonetheless, given the entanglement between optical and electrical properties, it is very

difficult to improve the one without affecting the other.

Electrical requirements for TCOs in SHJ solar cells

At the front (light-facing side for standard technology) of the SHJ solar cell, the TCO film acts as

an electrical contact that transports charge laterally to the silver fingers. To ensure a negligible

contribution of the sheet resistance of the TCO to the total series resistance losses, Rsheet of

the front TCO should be < 100 Ω/sq [De Wolf et al., 2012, Battaglia et al., 2016]. At the back

of the cell, TCOs usually act as an interfacial layer to improve the contact resistance between

the doped a-Si and the silver, while acting as an optical spacer between the semiconductor
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and the silver. Nonetheless the electrical requirements for the back TCO are more relaxed

than for the front TCO [Holman et al., 2013, Bivour et al., 2014]. In the TCOs, Joule heating is

responsible for a relative power loss of

∆P

P
= jmp (d/2)2Rsheet

3Vmp
(1.29)

where ∆P
P is the relative power loss, jmp and Vmp are the current density and voltage at

the maximum power point, d is the distance between silver fingers, and Rsheet is the sheet

resistance. This calculation is an approximation, valid only for vertical current collection from

the wafer to the TCO (Figure 1.11(b)). The relative power loss (Figure 1.12) for a SHJ solar cell

with jmp = 38 mA cm2 and Vmp = 620 mV decreases with Rsheet and with d.
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Figure 1.12 – Calculated relative power loss of a SHJ solar cell resulting from Joule heat in
the TCO. The power loss is shown as function of the distance between silver fingers for TCOs
with different Rsheet . The dashed lines mark the power loss for the typical finger geometry, a
reduction from 4% to 2% power loss is expected from a decrease in Rsheet from 100Ω/sq to 50
Ω/sq . Note that this is an approximation that works as an upper boundary to the power loss
in the TCO.

Thus, for a cell with d of 2 mm, and maintaining jmp and Vmp , the relative power loss decreases

from 4.1% to 2.0% when reducing the Rsheet of the TCO from 100Ω/sq to 50Ω/sq. From Figure

1.12 the power loss decreases with d, but decreasing d in the cells results in increased shading

from the silver fingers, which decreases the photogenerated current in the cell.

Optical requirements for TCOs in SHJ solar cells

Besides serving as a lateral transport medium, the front TCO layer in SHJ solar cells acts

simultaneously as a window layer and as an anti-reflective coating. Optimally, we want the
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1.2. Fundamental properties of transparent conductive oxides

TCO to be as transparent as possible in all spectral regimes and to decrease the reflectance

of light out of the device, i.e. serve as antireflective coating. Reflection losses in a solar cell

can result in a large fraction of the incident radiation being sent back to the incident medium

without participating in carrier generation. Reflectance is determined by the difference

between the refractive indices of the TCO and silicon. For normal incidence of light between

two media with different refractive indices n0 and n1, reflectance is given by

R =
(

n0 −n1

n0 +n1

)(
n0 −n1

n0 +n1

)∗
(1.30)

where the asterisk denotes the complex conjugate. In the case of incident light that is not

normal, the polarization vector must be considered, but Equation 1.30 is a good approximation.

For a TCO with refractive index nTCO and thickness t , deposited over a substrate with refractive

index ns , destructive interference takes place if the condition

nT CO × t = (2m′+1)

4
λ0 (1.31)

where λ0 is the wavelength of incoming light and m′ is an integer. Hence for a TCO with a

refractive index of 2, the reflectance for λ0 = 600 nm is minimum for a TCO of thickness of ≈
75 nm.

Considering just the absorption, TCO films can be tuned optically by changing Ne . An increase

in Ne results in lower absorption in the ultraviolet part of spectrum due to a wider Eopt as

predicted by the Burstein-Moss shift [Pankove, 2012]. However, as seen in Equation 1.22

increasing Ne also leads to higher absorption in the near-infrared part of spectrum due to

free-carrier absorption as predicted by the Drude model. In addition, higher Ne also results

in poor refractive index matching and additional reflectance of light [Holman et al., 2012]. A

more quantitative description of the optical design rules for the front TCO can be found in

reference [Holman et al., 2012].

The strategy: increasing electron mobility

The electrical and optical requirements for TCOs can be summarized as follows: a low Rsheet

is needed to transport charge laterally (typical values of 50Ω/sq to 100Ω/sq [Battaglia et al.,

2016]). In addition, given the absorption of silicon in the infrared, a more convenient trade-off

for transparency is achieved by lowering Ne [Holman et al., 2012]. And, since the electric

27



Chapter 1. Introduction

conductivity is defined as

σ= eµe Ne (1.32)

the most convenient way to increase conductivity of TCOs for SHJ solar cells is by increasing

µe rather than Ne . Increasing µe results simultaneously in an increase in σ (therefore lowering

Rsheet ), and simultaneously a decrease in αFC A , which decreases the parasitic absorptance

and increases the photogenerated current in the solar cells.

1.3 This Thesis

This dissertation explores structure-property relations of tin-based and indium-based trans-

parent conductive oxides with focus on a-ZTO and In2O3:Zr. It investigates electron transport

and the optoelectronic properties of these materials and explains them in terms of the mi-

crostructure, atomic composition, and defects in the films. The main objective is to improve

the optical and electrical properties simultaneously and explore multicompound disordered

ZTO which will be later compared to high-µe indium-based oxides. Our strategy is to un-

derstand the mechanisms limiting the optoelectronic properties in disordered amorphous

TCOs, and to overcome those limitations by (i) controlling the deposition conditions, (ii)

post-deposition treatments or (iii) co-depositing TCOs with other materials to decrease the

influence of the limiting defects.

1.3.1 Thesis outline

Chapter 1: Introduction. This chapter constructs a solid scientific foundation of transparent

conductive oxides, reviewing concepts of semiconductor materials and presenting an overview

of the properties of indium-based and tin-based TCOs. It also describes the importance of

this research from a fundamental and a technical point of view with regards to solar cells.

Chapter 2: Thin-film fabrication and characterization techniques. This chapter describes

the fundamental and technical aspects of the experimental techniques used for this thesis

work.

Chapter 3: Defects and high-temperature passivation of amorphous zinc tin oxide. This

chapter describes the defects governing the optoelectronic properties in amorphous zinc

tin oxide. In addition we propose a high-temperature defect-passivation mechanism which

results simultaneously in an increased of electron mobility and decreases optical absorptance.

Chapter 4: Alternative low-temperature passivation of tin-based oxides. This chapter de-

scribes an alternative passivation process for tin-based oxides through co-sputtering with

28



1.3. This Thesis

SiO2 . A thorough explanation of the effects of silicon in tin-based TCOs is proposed, which

complements the experimental results. In addition, the role of silicon and SiO2 in the pas-

sivation of subgap defects is proposed based on material simulations and is supported by

experimental results.

Chapter 5: Zirconium-doped indium oxide: transport mechanisms and applications in sil-

icon heterojunction solar cells. This chapter describes the properties of high-mobility TCO

materials based on indium oxide doped with zirconium. In addition, an explanation is given

for the mechanisms limiting the electron transport in terms of the microstructure and the

film’s thickness. Finally the full potential of the material is exposed by comparing an optimized

TCO film with the standard electrode in silicon heterojunction solar cells.

Chapter 6: Figure of merit TCO In previous chapters we have compared the optical and

electrical properties of TCOs almost independently, using electron mobility to determine the

optimal deposition conditions. In this chapter we introduce the figure of merit, which takes

into account the electrical properties, and the optical properties weighted with the spectrum

of the Sun in the wavelength range from 320 nm to 1200 nm. Using this figure of merit we

compare the TCOs presented in this dissertation.

Chapter 7: Conclusions and perspectives Finally, in this chapter we summarize the main

conclusions of the whole thesis, and we propose several research routes that could expand

and complement the results from this dissertation.

Annex A. Co-sputtering of indium-based and indium-free TCOs for silicon heterojunction

solar cells.

1.3.2 Contribution to the field

This thesis contributes to the field of TCOs based on SnO2 and In2O3. Using our experimen-

tal results, correlated with density functional theory calculations, the following points are

clarified:

• We identifiedVO to be the cause of the sub-bandgap states in amorphous zinc tin oxide

of specific composition Zn0.05Sn0.30O0.65 (here labelled as a-ZTO). Conversely, we found

thatVO are intrinsic donors in a-ZTO which increase the optical absorption and limit

electron transport in the TCO.

• We demonstrate that passivation ofVO in a-ZTO can be performed by thermal treat-

ments at temperatures between 400 ◦C and 500 ◦C in oxygen-rich atmospheres. We

found that defect passivation decreases subgap absorption and increases electron mo-

bility.
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• We determined that the introduction of hydrogen into a-ZTO increases the free-carrier

density but broadens the subgap absorptance. We propose that hydrogen atoms can

influence the point-defects by: (i) introducing new defects in the bandgap of a-ZTO,

(ii) shifting the existing defects deeper in the bandgap, and (iii) reducing the oxygen

content in the films, therefore increasing the density ofVO .

• Using fluctuation electron microscopy and nanobeam electron diffraction, we demon-

strate that thermal treatments up to temperatures of 500 ◦C do not significantly change

the medium- or short-range order in a-ZTO.

• We demonstrate a new technique to passivateVO in a-ZTO, which relies on co-sputtering

of a-ZTO and SiO2 . This method, performed completely at temperatures ≤ 200 ◦C ,

reduces subgap absorption in the TCO without significantly affecting the electrical

properties.

• We show that, similar to a-ZTO, co-sputtering of SiO2 and SnO2 is equally effective at re-

ducing the subgap absorption. Since SnO2 and the co-sputtered films are polycrystalline,

this demonstrates that the passivation route is useful in tin-based oxides regardless of

their microstructure.

• Correlating our experimental results with density functional theory calculations, we

propose that the effect of SiO2 in tin-based TCOs is twofold: (i) oxygen from SiO2

reduces theVO , and (ii) a silicon atom near an undercoordinated tin atom promote the

formation of doubly ionizedVO , which is a donor with energy close to the conduction

band minimum.

• Annealing as-deposited In2O3:Zr films in oxygen-rich atmospheres results in an amorphous-

to-crystalline transition. Conversely, we demonstrate that thermal treatments in re-

ducing or neutral atmospheres results in nanometric-size crystallites embedded in an

amorphous matrix.

• We demonstrate that ionized impurities and optical phonons limit electron transport

in crystalline In2O3:Zr. In addition we show that depending on the film thickness, the

dominant defects are either ionized impurities, or a combination of ionized point defects

and optical phonons.

• We show that ionized impurity scattering originates from surface defects in In2O3:Zr

films of thickness ≤ 50 nm.

• We demonstrate that, compared to thermal treatments in air, annealing in neutral or

reducing atmospheres results in higher conductivity for films of thickness < 50 nm, as a

high free-carrier concentration is maintained.

In summary, this thesis improves the understanding of the defects limiting the electron

transport in a-ZTO and In2O3:Zr, and their effects on the optoelectronic properties. In addition
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we propose several routes to improve the optoelectronic properties in these TCOs either by

defect tuning or structural transitions.

My doctoral work resulted in two peer-reviewed articles as main author ( [Rucavado et al.,

2017, Rucavado et al., 2018]) and one article in preparation and several peer-reviewed articles

as co-author ( [Werner et al., 2016, Nogay et al., 2017, Morales-Masis et al., 2018, Ingenito et al.,

2018, Essig et al., 2018]).
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2 Thin-film fabrication and characteri-
zation techniques

This chapter describes the basics of magnetron sputtering, the technique used in this work to

deposit transparent conductive oxide (TCO) films. It also describes the characterization tech-

niques used to study the electrical, optical and structural properties, as well as the composition

of TCOs.

2.1 Radio frequency magnetron sputtering

Sputtering is a physical vapour deposition (PVD) technique. Formally, sputtering is the transfer

of momentum from an incident energetic projectile to a solid target resulting in the ejection of

surface atoms or molecules. The particles ejected from a target are deposited onto a previously

chosen substrate. The basic steps for reactive radio frequency (RF) magnetron sputtering

deposition are:

• The pressure in the process chamber is decreased using vacuum pumps. Note that

the gaseous species in the process chamber might influence the final properties of the

sputtered materials.

• A constant flow of an inert process gas is introduced into the chamber. In this work,

argon (Ar) was used. In addition to argon, we introduced a constant flow of O2, which

tunes the intrinsic doping of the TCOs.

• An RF signal is applied using the target as the cathode. A plasma is formed of ionized

argon atoms between the cathode and anode.

• The ionized argon atoms are accelerated towards the target by the potential difference

between the plasma and the surface of the target (known as the plasma sheath).

• The collisions from the argon ions transfer kinetic energy to the target. This results in

complex ion/solid interactions occurring simultaneously, among them the ejection of

particles from the target (atoms and clusters of atoms) and the ejection of secondary

electrons.
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• The magnetic field from the magnetron confines the secondary electrons near the target,

which increases the sputtering rate by increasing the number of collisions between the

secondary electrons and the working gas. This confinement causes an erosion track

(known as a "race track") in the sputtering targets.

• Due to the low pressure in the sputtering chamber, the particles ejected from the tar-

get can cross the length of the deposition system. Some of the particles arrive at the

substrate and are deposited.

In this work, two sputtering systems were used: an Evatec Clusterline sputtering system for

the films studied in Chapter 3 and a Leybold Univex sputtering system for the TCOs studied in

Chapters 4 and 5. Both sputtering systems use Ar and O2 as working gases and have planar

target configurations. In addition, both deposition systems allow for the use of two targets

simultaneously, which is ideal for co-sputtering and combinatorial material studies. The

feasibility for co-sputtering was exploited to obtain the results of Chapter 4.

target

substrate

magnetron

exhaust
gas inlet RF source

heater
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S

S
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S
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Figure 2.1 – Schematic representation of a radio frequency magnetron sputtering system with
two targets.

2.1.1 Thin-film growth and co-sputtering

Ultimately, the structure of sputtered films is directly dependent on the formation of nucle-

ation centres at the substrate’s surface. The coalescence of these centres determines the final

structure of the films. The film growth is determined by the flux of sputtered particles, the en-

ergy distribution of the ions, the adatom mobility, the adsorption probability, and the density

of surface sites. Ultimately, these properties are controlled by the parameters during sputter-

ing. In this regard, the Thornton model [Thornton, 1974] links the deposition parameters of a

film with its structural properties. This model shows the link betwenn the microstructure of

different metals (Mo, Cr, Ti, Fe, and Al-alloys) and the pressure during deposition, the deposi-
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tion power and the ratio between the deposition temperature and the melting temperature.

This model is applied to a full range of materials, e.g. in sputtered ZnO2 [Kluth et al., 2003].

For this work, the pressure in the deposition chamber prior to sputtering was < 10−6 mbar

(base pressure). The working gas was a mixture of Ar and O2. The flow ratio between these two

gases is detailed in each chapter. The possibility to add O2 to the working atmosphere is an

advantage for the deposition of oxides, since the oxygen vacancies (VO ) can be tuned with the

oxygen partial pressure. Depositions were done at either room temperature or temperature of

60 ◦C and 100 ◦C . The depositions discussed in Chapter 4 were performed using two targets

simultaneously, a technique known as co-sputtering. By controlling the AC power in each

target independently, i.e. the ion acceleration towards the target, it is possible to control the

compositional ratio of the resulting films and design materials with target properties. Figure

2.1 shows a representation of a co-sputtering system with two different targets.

2.2 Electrical properties

2.2.1 Hall effect in the van der Pauw configuration

In 1879, while working on his doctoral thesis, Edwin Hall was trying to determine whether the

force experienced by a current-carrying wire in a magnetic field was exerted in the whole wire

or just upon the moving electrons on the wire. His experiment was based on the argument “if

the electricity in a fixed conductor is itself attracted by a magnet, the current should be drawn

to the side of the wire and therefore the resistance experienced should increase.” Even though

he did not measure this change in resistance, his efforts made it possible to measure a voltage

transverse to the direction of the current, known today as the Hall voltage.
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Figure 2.2 – Schematic depiction of the Hall effect experiment.

The Hall effect experiment is depicted in Figure 2.2. A current (i y ) is applied laterally to a

conducting film of area d 2 and thickness t . A magnetic field (Bz ) is applied perpendicular to

the film’s surface (in teh z-direction). The magnetic field drives the electrons in the direction

of x. However as soon the electrons encounter the border of the film they accumulate, charge

builds up and creates the electric field Ex . This results in a charge difference between the
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edges of the film. The resulting Lorentz force is

F = eEx +ev ×Bz (2.1)

where v is the velocity of the electrons and e is the electron charge. In quasi-equilibrium, the

forces are balanced, hence the force equation leads to

Ex = vBz (2.2)

which leads to a potential difference of

VH = Ey d = vBz d (2.3)

where d is the length of the side of the film and VH is the potential difference between the

sides of the film, known as the Hall voltage.

As we know from the Drude theory for free electrons, the drift velocity of an electron is

described by v = i y /tdeNH al l , where NH al l is the Hall free-carrier density hence the Hall

voltage results in

VH = i y Bz

NH al l te
(2.4)

Combining this result with the expression of mobility-dependent resistivity ρ = 1
eµH all NH al l

we

obtain two expressions for the Hall mobility (µe ) and free-carrier density (Ne )

NH al l =
i y Bz

VH et

µe = 1

ρNH al l e

(2.5)

Since the thickness of the film is known, the only unknown parameter is the resistivity ρ. In

this work, the Hall effect properties were measured with a HMS-5000 from Ecopia. This system
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measures the ρ using the van der Pauw configuration in which the contacts are placed in the

corners of a square sample with vertices ABCD. Currents are applied between the non-adjacent

corners of the sample while the voltage is measured in the other corners. The resistance can

be calculated by solving numerically the Van der Pauw equation

exp

( −πR1

Rsheet

)
+exp

( −πR2

Rsheet

)
= 1

where

R1 = 1

2

(
VDC

I AB
+ VC D

IB A

)
, and R2 = 1

2

(
VAD

IBC
+ VD A

IC B

) (2.6)

where Rsheet is the sheet resistance. The voltages (VDC , VC D , VAD and VD A) and currents (I AB ,

IB A , IBC and IC B ) are measured with the Hall setup and Equation 2.6 is solved numerically

to obtain Rsheet . Using Equation 1.2, the resistivity (ρ) is obtained and can be used to solve

Equation 2.5, therefore obtaining µe and Ne .

Figure 2.3 – Sample holder of the Hall effect experiment.

It is not intuitive that NH al l and µH al l are equivalent to Ne and µe . In fact these properties

differ from each other by a factor r such that [Orton and Powell, 1980]

Ne = r NH al l

µe = µH al l

r

(2.7)

where the coefficient r , known as the scattering factor, is a statistical parameter of the relax-

ation time of electrons dependent on the intensity of the magnetic field [Blood and Orton,

1978]. In the context of this thesis, we make the approximation of r = 1, since this value is

normally used in degenerate semiconductors [Preissler et al., 2013].

To perform the Hall measurement, the HMS-5000 applies a field B with magnitude of 0.56 T.

The outputs of the measurement are Ne ,µe and the conductivity of the material. For the typical

measurement, the sample should have a homogeneous thickness and be isotropic. The film

and substrate should be positioned in the sample holder (Figure 2.3) and the contacts should

be placed at the edges of the sample . The HMS-5000 is also able to perform temperature-

dependent Hall effect measurements. For this, the measurement is performed in a dedicated
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sample holder. Usually, the sample holder is cooled to the temperature of liquid nitrogen

temperature (-195 ◦C ), and is then slowly heated to 75 ◦C . While heating, µe and Ne are

measured at user-defined temperatures.

2.3 Optical properties

2.3.1 Ultraviolet-visible-near infrared spectrophotometry

An ultraviolet-visible-near infrared spectrophotometer with an integrating sphere was used

to study the optical properties of the TCO films and the transparent glass substrate. This

technique measures the intensity of light as a function of wavelength after transmitted and

reflected from a TCO film, and it normalizes the results using between 100% and 0% transmit-

tance and reflectance1.

total transmi�ance

I  (λ)0 I  (λ)T

total reflectance

I  (λ)RI  (λ)0

1 2 3
4
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6

Figure 2.4 – Schematic diagram of the spectrophotometer. The numbers indicate (1) The light
source which is either a tungsten-halogen lamp or a deuterium lamp. (2) The monochromator
which separates light into its spectral components, i.e. filters light in terms of wavelength.
For the measurements in this work, the monochromator filtered every 10 nm. (3) A slit, (4)
The transmittance and (5) reflectance apertures in the integrating sphere. (6) Semiconductor-
based light detectors, which are either silicon-based or indium-gallium-arsenide (InGaAs)
based.

The spectrophotometer is composed of two light sources, a tungsten-halogen lamp which

radiates light in the visible and near-infrared part of spectrum and a deuterium lamp which

radiates in the ultraviolet (UV) part of spectrum. Furthermore the spectrophotometer has a

1The 100% and 0% were spectra measured before each deposition. The 100% was measured by collecting all
light with the integrating sphere, i.e. no sample, while the 0% was acquired by preventing light to arrive to the
detector.
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monochromator, a slit, an integrating sphere made of sintered teflon (or SpectralonT M ), and a

light detector (silicon-based for ultraviolet and visible and InGaAs-based for infrared).

The total transmittance (TT) and total reflectance (TR) are collected as a function of wave-

length. For the TT, the sample is placed in aperture (4), while for TR in aperture (5). For TCOs,

the absorptance (A) as function of wavelength is calculated as A(λ) = 1−T T (λ)−T R(λ), which

is a good approximation for highly transparent materials.

free-carrier 
absorptionsub-bandgap 

absorption

fundamental 
absorption

Figure 2.5 – Absorptance spectra as function of wavelength for a series of amorphous zinc
tin oxide (a-ZTO) films modified with SiO2 . For higher SiO2 content, the films result in less
absorptance in the visible and near-infrared regions of spectrum.

As light is transmitted (or reflected) in the sample, the light-solid interactions are wavelength-

dependent. For TCOs, absorption in the UV reveals information about the optical bandgap of

the material, while in the visible part of spectra the absorption unveils possible defects causing

sub-bandgap absorption. Furthermore, the free-carrier absorption (αFC A) is manifested as an

increasing absorption in the near-infrared (Figure 2.5).

2.3.2 Fourier transform infrared spectrometer

The reflectance in the infrared part of the spectrum (from 1 µm to 25 µm) was measured with

a Bruker Vertex 80 Fourier transform infrared spectrometer using a specular reflectance acces-

sory. Given that the plasma wavelength (ωp ) of TCOs is in the infrared range, the interaction

between TCOs and light in the infrared is dominated by reflectance (see Chapter 1). From the

reflectance the optical properties and the effective mass were calculated by parametrizing

using the Tauc-Lorentz model and the Drude Model for electric conductivity.
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2.4 Structural and chemical properties

2.4.1 Transmission electron microscopy and energy dispersive X-ray spectroscopy

The TCO microstructure was investigated using transmission electron microscopy (TEM)2 .

The samples analysed by TEM were prepared by (i) extracting a lamella using the conventional

focused-ion-beam lift-out technique in a Zeiss NVision 40 obtaining a cross section of the

TCO film or by (ii) sputtering directly into a copper/carbon grid or a silicon nitride grid.

The samples analysed in Chapters 3 and 4 were investigated using an FEI TITAN Themis

(STEM EDX), while the films from Chapter 5 were studied using an FEI Tecnai Osiris operated

at 200 kV. Energy dispersive X-rays (EDX) analysis was conducted using four silicon drift

detectors [Schlossmacher et al., 2010].

2.4.2 Electron diffraction

Electron diffraction results from the inelastic scattering of electrons with the atomic lattice

of the material. This technique is used widely in solid-state physics to determine the crystal

structure (or the lack of) or the crystallographic orientation relationships between grains

[Williams and Carter, 1996]. The structural results discussed in Chapter 3 were obtained with

energy-filtered electron diffraction patterns, acquired in nanobeam conditions by scanning

an electron probe in a raster over the thin sample with a FEI Titan S microscope operated at

300 kV. Information about the short-range order i.e. the first two coordination shells of a-ZTO,

was obtained from radial profiles of diffraction patterns. Also in Chapter 3, information about

the medium-range order of a-ZTO is discussed, i.e. from the third coordination shell to about

3 nm. This was assessed using fluctuation electron microscopy [Voyles and Muller, 2002] in

the microscope by computing the normalized variance of 1200 diffraction radial profiles per

sample and per probe size (1.5 nm for a convergence semi-angle of 0.5 mrad, 2 nm using 0.3

mrad, and 3 nm for 0.2 mrad). The fluctuation electron microscopy was performed in a probe

Cs-corrected FEI TITAN microscope operated at 300 kV. The results of the nanobeam electron

diffraction reported in Chapter 4, and of the selected area diffraction shown in Chapter 5 were

obtained using an FEI Osiris microscope.

2.4.3 Thermal desorption spectroscopy

Thermal desorption spectroscopy (TDS) was performed using an ESCO (EMD-WA1000S)

system equipped with a quadrupole mass spectrometer 3 (Figure 2.6). For the measurements,

the base pressure of the chamber was set to 10−9 mbar and samples of 1×1 cm2 were heated

with a halogen lamp at a constant rate of 20 °C min−1 up to 700 ◦C . All of the films were

2The TEM experiments were performed either in the Ernst Ruska-Centre for Microscopy and Spectroscopy with
Electrons in Jülich, Germany, or in the Interdisciplinary Centre for Electron microscopy, Lausanne, Switzerland.

3TDS experiments were performed in the Compound Semiconductor Thin-Film Group at the National Institute
of Advanced Industrial Science and Technology (AIST) in Tsukuba, Japan.
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deposited on substrates of undoped crystalline silicon. The background sample was measured

for a (100-oriented) undoped c-Si wafer with an area of 1×1 cm2.

ion 
source Detector

dc and ac 
voltage

Figure 2.6 – Scheme of the quadrupole mass detector (QMD) used for thermal desorption
spectroscopy (TDS).

The QMD is composed of four rods subjected to DC and AC voltages that filter the desorbed

species based on their mass-to-charge ratio (M/z) and select them before detection. The TDS

system has a detection limit of ∼ 1013 molecules.

2.4.4 Rutherford backscattering and elastic recoil detection analysis

The atomic composition of the films was obtained using Rutherford backscattering spectrom-

etry (RBS) and elastic recoil detection analysis (ERDA)4. RBS was performed using 2 and 5

MeV He ions and a silicon PIN diode detector under 168 ◦ [Nastasi et al., 2014]. Hydrogen

depth profiles were measured by ERDA with a 2 MeV He ion beam applying the absorber foil

technique [Nastasi et al., 2014]. For ERDA, a mica substrate with a known hydrogen content

was used as reference.

4 Both techniques analyse the elastic collision between heavy ions and the films under study to obtain the
chemical composition of the sample. The RBS measurements were performed either at EAG-laboratories, at the
United States of America, or at the Laboratory of Ion Beam Physics at the Swiss Federal Institute of Technology
Zurich (ETH).
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3 Defects and high-temperature defect-
passivation of amorphous zinc tin
oxide

The results from Chapter 3 are based in the publications:

Rucavado, E., Jeangros, Q., Urban, D.F., Holovský, J., Remes, Z., Duchamp, M., Landucci, F.,

Dunin-Borokowski, R.E. Körner, W., Elsässer, C., Hessler-Wyser, A., Morales-Masis, M., Ballif, C.

(2017). Enhancing the optoelectronic properties of amorphous zinc tin oxide by subgap defect

passivation: A theoretical and experimental demonstration. Physical Review B, 245204:1-10

Werner, J., Walter, A., Rucavado, E.,Moon, S.-J., Sacchetto, D., Rienaecker, M., Peibst, R.,

Brendel, R., Niquille, X., De Wolf, S., Löper, P., Morales-Masis, M., Nicolay, S., Niesen, B., and

Ballif, C. (2016). Zinc tin oxide as high-temperature stable recombination layer for mesoscopic

perovskite/silicon monolithic tandem solar cells. Applied Physics Letters, 109(23):233902.

My original input and work in the manuscripts include: plan and execution of the sputtering and post-

deposition thermal treatments of the a-ZTO films. All the electrical characterization, optical properties

and thermal desorption spectroscopy measurements, as well corresponding data analysis. Interpretation

of results and correlation with the computational calculations were discussed and planned with Dr.

Morales-Masis and Dr. Urban for the PRB manuscript. Same experimental work (sputtering of a-ZTO

and characterization of the films) were done for the APL article by myself as well. The data analysis and

solar cell results were jointly discussed with Dr. Werner and co-authors.

I want to acknowledge Dr. Quentin Jeangros and Federica Landucci for the electron microscopy ex-

periments and analysis, Dr. Daniel Urban and his collaborators for the density functional theory

calculations, its interpretation and their correlation with the experimental results. I would also like to

thank Dr. Takashi Koida for his support during the desorption spectroscopy and the following discussion,

and Dr. Jérémie Werner for the development and characterization of the perovskite/silicon tandem solar

cell

The text from reference [Rucavado et al., 2017] and reference [Werner et al., 2016] are reproduced and modified
with permission from the publisher.
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The link between sub-bandgap states and optoelectronic properties is investigated for amor-

phous zinc tin oxide (a-ZTO) thin films deposited by RF sputtering. a-ZTO samples were

annealed up to 500 ◦C in oxidizing, neutral, and reducing atmospheres before characteriz-

ing their structural and optoelectronic properties by photothermal deflection spectroscopy,

near-infrared-visible UV spectrophotometry, Hall effect, Rutherford backscattering, hydrogen

forward scattering and transmission electron microscopy. By combining the experimental

results with density functional theory calculations, oxygen deficiencies and resulting metal

atoms clusters are identified as the source of sub-bandgap states, some of which act as electron

donors but also as free-electron scattering centres. Hydrogen-atoms either create additional

subgap states, or shift existing states, associated with oxygen deficiencies, deeper into the

bandgap. Based on this detailed understanding of the different point defects present in a-ZTO,

their impact on optoelectronic properties, and how they can be suppressed by post-deposition

annealing treatments, an amorphous indium-free transparent conductive oxide,with a high

thermal stability and an electron mobility up to 35 cm2V−1s−1 , is demonstrated by defect

passivation. Finally, given the high temperature stability of the microstructure and optoelec-

tronic properties of a-ZTO thin films, the material was used as a recombination junction in a

mesoscopic perovskite/silicon monolithic tandem solar which requires a high-temperature

step during its processing.

3.1 Motivation and state of the art

As discussed in the introduction, in TCOs, point defects play an important role in the optoelec-

tronic properties. A fine tuning of these defects is hence required to adjust the optoelectronic

properties of TCOs depending on the desired application. In that regard, several research

groups have used density functional theory (DFT) calculations to assess the structural ori-

gin of electronic states inside the bandgap. Körner et al. [Körner et al., 2012, Körner et al.,

2014, Körner and Elsässer, 2014] developed a generic theory to explain the structural origin of

sub-bandgap states in TCOs. It was demonstrated that uncoordinated oxygen generates deep

states near the valence band, while oxygen deficiencies (orVO following the Kröger-Vink no-

tation [Kroger and Vink, 1958]) and resulting metal atom clusters create shallow donor states

near the conduction band edge. Experimentally, Jayaraj et al. demonstrated the interplay

between oxygen concentration and localized sub-bandgap donors in pulsed-laser-deposited

amorphous zinc tin oxide (Zn:Sn = 1:1 and 2:1) [Jayaraj et al., 2008]. Both low and high oxy-

gen concentrations were found to result in low free-carrier concentration, as “free” electrons

were numerous but trapped in localized states or low in number due to the small amount

of donor states, respectively. Alternatively, Kamiya et al. [Kamiya et al., 2008a, Nomura et al.,

2008] combined optical absorption measurements and DFT calculations to suggest thatVO in

amorphous InGaZnO2 may induce deep levels that could function as electron traps, instead

of shallow donor states. In addition, they found that annealing in oxygen-rich atmospheres

improved the electrical properties of the TCO by increasing the free-carrier concentration, an

effect that was attributed to a reduction of localized sub-bandgap electron traps.
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3.1. Motivation and state of the art

As mentioned in Section 1.2.3 , other studies have demonstrated that residual hydrogen, which

may be trapped in the film during sputtering, and should be taken into account when between

sources of subgap states in TCOs [King et al., 2009, Limpijumnong et al., 2009, Bekisli et al.,

2011, Hlaing Oo et al., 2010, Hanyu et al., 2013, Tang et al., 2015]. Van de Walle and co-workers

used DFT with the local density approximation and generalized gradient approximation

(LDA and GGA, respectively) to suggest that hydrogen, rather thanVO , is the main source

of free-carriers by acting as a shallow donor in In2O3, SnO2 , and ZnO [Limpijumnong et al.,

2009, Singh et al., 2008, Van De Walle, 2000], in agreement with other reported experimental

data [King et al., 2009, Jiang et al., 2016, Hofmann et al., 2002, Mizokawa and Nakamura, 1974].

Among the numerous TCO chemical compositions reported in literature [Ellmer, 2012,Morales-

Masis et al., 2017b], amorphous zinc tin oxide has the following advantages: it is indium-free

and hence low cost, and at a Zn/(Zn+Sn) composition of 0.1 has a stable microstructure at high

temperature [Ko et al., 2007,Mereu et al., 2015,Zhu et al., 2014], presenting a total transmittance

higher than 70% and an absorptance lower than 5% in the visible and near infrared [Minami,

1999, Frenzel et al., 2015, Morales-Masis et al., 2014], which makes it more transparent than

commercially used indium tin oxide. Due to its amorphous microstructure, low surface

roughness [Mereu et al., 2015], and low free-carrier density (i.e., restricted conductivity), it has

been mainly applied in thin-film transistors as an active channel [Han and Lee, 2015, Lee et al.,

2017, Sundholm et al., 2012]. Bikowski et al. [Bikowski et al., 2016] used combinatorial reactive

sputtering to explain the optical absorption of SnO in terms of the Zn and O contents. It was

found that the Zn-atoms modify the band-structure via isovalent alloying to SnO (structural

disorder) and by local modification of the valence state of Sn. Zhu et al. [Zhu et al., 2014]

examined amorphous zinc tin oxide thin films (of composition Zn/(Zn+Sn) = 0.1 and 0.3) by

synchrotron x-ray scattering and x-ray absorption spectroscopy and found that the presence

of zinc atoms induces strain in the atomic network, which enhances the thermal stability of

amorphous zinc tin oxide and delays its crystallization.

Yet questions remain about the actual crystallography of the films after annealing at tem-

peratures above 400 ◦C , the effect of hydrogen during annealing, as well as the source of

free-carriers in amorphous zinc tin oxide [Koida et al., 2012, Körner et al., 2014, Körner et al.,

2015, Singh et al., 2008, King and Veal, 2011, Sallis et al., 2014]. It was recently demonstrated

that amorphous zinc tin oxide with the specific composition of Zn0.05Sn0.30O0.65 (refered as

a-ZTO for simplicity), could be successfully employed as a transparent electrode in flexible

OLEDs [Morales-Masis et al., 2016, Dauzou et al., 2016]. To further improve the optical and

electrical properties of a-ZTO, the nature of the sub-bandgap states is investigated here in

detail, as well as their effect on the optoelectronic properties. Based on electrical, optical,

microstructural, chemical characterization, and DFT calculations, the role of point defects is

assessed.
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3.2 Methods

A-ZTO was deposited on aluminoborosilicate glass using an Evatec Clusterline physical vapor

sputtering system. This deposition chamber is equipped with planar circular targets with

diameter of 10 cm. The composition of the zinc tin oxide target is 12% ZnO and 88% SnO2

, i.e. 6 at% of Zn, 28 at% of Sn and 66 at% of O. The distance between the centre of the

target and the substrate is of approximately 5 cm. The films were deposited using a power

density of 1.01 W cm−2, which resulted in a deposition rate of 2.7 nm min−1. The substrate

temperature was 60 ◦C while the deposition atmosphere was a combination of argon (Ar)

and oxygen (O2). Prior to deposition the base pressure was 2.5 × 10−7 mbar. Sputtering

was done using a constant flow of 10 sccm of Ar and 2 sccm of Ar/O2(the O2 source is a

mixture of 95% Ar and 5% O2), resulting in a working pressure of 5.5 × 10−4 mbar, out of which

the O2 partial pressure was 6.7 × 10−6 mbar. More details on the development of the zinc

tin oxide target with this particular composition are described in reference [Morales-Masis

et al., 2016]. The films had a thickness of 150 nm and were systematically annealed from 150
◦C to 500 ◦C in air, N2, and H2 atmospheres separately. Annealing experiments in air were

performed at atmospheric pressure, while N2 and H2 treatments were done at a pressure

of 0.5 mbar using a constant gas flow. The thermal treatments were performed by heating

the material for 30 minutes from room temperature to the annealing temperature to avoid

high thermal stress on the substrate. The a-ZTO samples were then kept for 30 min at the

chosen temperature, before being cooled down passively to room temperature. The electron

mobility (µe ) and free-carrier concentration (Ne ) of as-deposited and annealed films were

obtained by Hall effect measurements in the Van der Pauw configuration using a HMS-5000

equipment. Temperature-dependent Hall effect measurements were performed from –190 ◦C

to 45 ◦C using the same tool. The optical total transmittance (TT) and total reflectance (TR) of

a-ZTO were determined using UV-vis near-infrared (NIR) spectrophotometry (Lambda-950

equipment from Perkin Elmer). The optical absorptance (A) was calculated from A = 100-

TT-TR. Photothermal deflection spectroscopy (PDS) was used to measure the absorptance

of a-ZTO layers deposited on fused silica. In this technique, the films are submerged in a

temperature-sensitive liquid (Fluorinert FC-72) and illuminated by monochromatic light.

Temperature gradients in the liquid, caused by light absorption in the film, induce a deflection

of a probe laser. The direct relation between the laser deflection and the absorption of the films

allows PDS to have higher sensitivity than spectrophotometry measurements. In addition,

PDS measurements were performed on films deposited on fused silica substrates to decrease

the absorpion contribution from the substrate. The details of PDS are described extensively in

reference [Boccara et al., 1980]. This technique was performed using an in-house equipment

based on a 150-W xenon lamp. The absorption coefficient was measured in the energy range

of 0.7 – 4.96 eV.

The microstructure and crystallography of as-deposited and annealed a-ZTO was investigated

using transmission electron microscopy (TEM). TEM 50-nm-thick cross-sectional samples

were prepared using the conventional focused ion beam lift-out technique in a Zeiss Nvision
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40. Given its spatial resolution in the 100 nm-range, standard selected-area electron diffraction

(SAED) may fail to identify nanometric crystallites in an amorphous matrix. To surmount this

issue, energy-filtered electron diffraction patterns were acquired in nanobeam conditions by

scanning a 1-2 nm electron probe in a raster over the thin sample in an FEI Titan S microscope

operated at 300 kV. This technique allows to acquire structural information of small material

volumes. Information about short-range order (i.e., the first two coordination shells) in a-ZTO

was obtained from radial profiles of diffraction patterns.

The presence of medium-range order (from the third coordination shell to about 3 nm) in

a-ZTO as-deposited or annealed at 500 ◦C in air, was assessed using fluctuation electron

microscopy [Voyles and Muller, 2002] by computing the normalized variance of 1200 diffraction

radial profiles per sample and per probe size (1.5 nm for a convergence semiangle of 0.5 mrad,

2 nm using 0.3 mrad, and 3 nm for 0.2 mrad). The samples were thinned down using a Zeiss

Nvision 40 until a thickness of 35 nm (as-deposited) and 45 nm (annealed at 500 °C). These

thicknesses were reached using a final gallium beam voltage of 5 kV. To ensure that gallium

irradiation during sample preparation did not result in surface amorphization, 40 nm of

a-ZTO was deposited onto 30 nm Si3N4 thin films and observed in top view conditions for

comparison. The nanobeam diffraction patterns were filtered in energy using a slit width of 10

eV. Following the methodology presented in reference [Voyles and Muller, 2002], a Mathematica

code [Wolfram-Research-Inc, 2016] was developed to i) find the centre of each individual

nanobeam electron diffraction pattern using a semi-automatic procedure (by maximizing the

maximum intensity of the rotationally averaged diffraction intensities) to then ii) measure the

corresponding rotationally averaged diffraction intensity, before iii) computing the normalized

variance for groups of 100 nanobeam diffraction patterns. The mean signal of the 12 variance

curves is then reported with one standard deviation to the mean error bars.

Rutherford backscattering (RBS) was done in a 6-MV HVEC Tandem accelerator using 2-MeV

helium ions. Substrate signal and background arising from pileup events were subtracted.

Hydrogen forward scattering (HFS) was performed by EAG Laboratories. These measurements

were recorded using a detector 30◦ from the forward trajectory of an incident He2+ ion beam.

The incident beam strikes the surface with an angle of 75◦ from the normal of the sample.

Hydrogen concentrations were determined by comparing the number of hydrogen counts

obtained from reference samples after normalizing the data by the stopping powers of the

different materials.

3.2.1 Computational Methods.

The experimental investigations described in this chapter are supported by atomistic first-

principles simulations based on density functional theory. The calculations are crucial to the

understanding of our experimental results in terms of the atomic network and the electronic

structure. These were calculated by Dr. Daniel Urban, Dr. Wolfgang Körner, and Prof. Dr

Christian Elsässer from The Fraunhofer Institute for Mechanics of Materials IWM. A more
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detailed description about the simulations performed by this group can be found in refer-

ences [Körner et al., 2012, Körner et al., 2014, Rucavado et al., 2017].

Generation of atomistic supercell models for a-ZTO

Amorphous structures were generated by performing classical molecular dynamics (MD) with

the GULP code [Gale, 1997] and empirical Buckingham-type interatomic potentials. The

heat-and-quench cycle was started at 5000 K and cooled down in steps of 10 K per 0.5 ps with

time steps of 1 fs at constant temperature. Then the supercells were structurally optimized in

volume, cell shape, and atomic positions by means of DFT calculations. The relaxations of

interatomic forces and residual stresses were carried out with the Broyden-Fletcher-Goldfarb-

Shanno algorithm using the projected augmented-wave (PAW) method [Blöchl, 1994] as

implemented in the VASP code [Kresse and Furthmüller, 1996, Elsasser et al., 1990]. The LDA

was used for the exchange-correlation functional and PAW pseudopotentials were used to

describe Zn (3d,4s,4p), Sn (4d,5s,5p), and O (2s,2p) as valence electrons. For this study, we

constructed a set of 38 amorphous structures.In the ZTO:VO group of structures, the removal

of the oxygen atom is done after the MD amorphization. In contrast, the structures of the

“oxygen-poor” system are relaxed to an energy minimum already with the reduced oxygen

concentration.

Electronic-structure calculations

The electronic-structure calculations on the basis of the SIC-LDA were performed using

the computational mixed-basis pseudopotential (MBPP) method [Elsasser et al., 1990, Ho

et al., 1992, Meyer et al., 1995, Lechermann et al., 2004]. For Zn, Sn, and O, optimally smooth

norm-conserving pseudopotentials were constructed and a mixed basis of plane waves and

nonoverlapping localized orbitals were used. Due to the localized orbitals, a plane-wave cut-off

energy of 20 Ry (1 Ry = 13.606 eV) is sufficient to obtain well-converged results. For the k-point

sampling of the Brillouin-zone integrals, a Monkhorst-Pack mesh of 3×3×3 and a Gaussian

broadening of 0.2 eV were used. The DOS of the supercells were evaluated with the same mesh

and a Gaussian broadening of 0.1 eV. The artificial self-interaction of the LDA is corrected by an

incorporation of the SIC in the pseudopotentials [Vogel et al., 1996, Körner and Elsässer, 2010].

The SIC procedure uses weight factors w = (w(s),w(p),w(d)) accounting for the occupations

of the individual s, p, and d valence orbitals. The Zn 3d and Sn 4d semicore orbitals were

corrected by 100%, i.e., wZ n = wSn = (0,0,1). The localized O–2s semicore orbitals are also

corrected by 100%, while for the spatially more extended O-2p valence-band orbitals 90% was

considered, which implies the weight factors wO = (1,0.9,0).The latter choice is a compromise

between the optimal values of w(p)O = 0.8 for ZnO and w(p)O = 0.93 for SnO2 , which have

In Chapter 3 and Chapter 4 use two different computational approaches. Each Chapter has a short description
of the computational methods used. The calculations in this Chapter were performed by Dr. Daniel Urban, in
collaboration with The Fraunhofer Institute for Mechanics of Materials.
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been found to reproduce the bandgaps of the binary crystalline compounds [Körner et al.,

2014]. The main reason for the necessary adjustment of w(p)
O is the change from the fourfold

(tetrahedral) coordination of ions in wurtzite ZnO to the sixfold (octahedral) coordination

of ions in rutile SnO2 . The choice of w(p)
O = 0.9 for the SIC of oxygen in the calculations

of all ternary Zn-Sn-O compounds leads to an electronic bandgap of 3.8 eV for crystalline

ZnSnO3, which is in very good agreement with experimental values [Körner et al., 2012]. For

the adjustment of the atomic SIC to the crystal field in the solids, a scaling factor α = 0.8 is

applied.

3.3 Electrical properties: Hall mobility and free-carrier density

The as-deposited 150-nm-thick a-ZTO films have average µe of 21 cm2V−1s−1 and Ne of 7

× 1019 cm−3 (from a total of 20 samples). Two different behaviours are then observed upon

annealing depending on temperature (Figure 3.1). At low temperature (low-T, i.e. 150 ◦C ,

200 ◦C and 300 ◦C ), both Ne and µe increase with annealing temperature regardless of the

treatment atmosphere. At higher temperatures (i.e. at 400 ◦C and 500 ◦C ), Ne and µe are

found to depend strongly on the annealing atmosphere. Thermal treatments in air result in

an increase in µe from 20 cm2V−1s−1 up to 35 cm2V−1s−1 , while Ne slightly decreases from

7.0 × 1019 cm−3 6.0 × 1019 cm−3 . Similar changes in conductivity with annealing in air have

been reported for amorphous zinc tin oxide with different atomic compositions as a-ZTO [Ko

et al., 2007, Zhu et al., 2014, Mullings et al., 2014]. On the other hand, samples annealed in

N2 in the high-temperature range show a different behaviour, Ne increases up to 1.3 × 1020

cm−3 , while µe stabilizes at 26 cm2V−1s−1 . Films treated in H2 at high temperatures exhibit

the highest increase in Ne (up to 1.6 × 1020 cm−3 when annealing at 500 ◦C ). On the other

hand, µe decreases after an initial increase at low temperature and a final value 24 cm2V−1s−1

is measured at 500 ◦C , which is slightly higher than the value obtained after deposition (of 21

cm2V−1s−1 ).
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Annealing temperatures 

Figure 3.1 – Hall mobility (µe ) and free-carrier density (Ne ) of as- deposited and annealed
a-ZTO (a-Zn0.05Sn0.30O0.65) thin films as a function of annealing temperature. The dashed line
divides the two different regimes observed at low and high temperatures.

3.4 Effect of thermal treatments on the optical properties of a-ZTO

Figure 3.2 shows the total transmittance TT and absorptance A of samples either as-deposited,

annealed at 150 ◦C or 500 ◦C in different atmospheres. As-deposited a-ZTO exhibits a TT

higher than 80% and an A as low as 2% in the visible and infrared. Samples annealed at 150
◦C change only slightly compared to the as-deposited a-ZTO, regardless of the annealing

atmosphere (Figure 3.2a). The slight increase in absorptance in the near IR region for samples

annealed in air is assumed a consequence of free-carrier absorption (FCA), caused by the

modest increase in Ne after such treatment. On the other hand, clear differences are observed

after annealing at 500 ◦C (Figure 3.2b). The films annealed at 500 ◦C in H2 absorb more in the

near-infrared as a consequence of FCA which can be described by the Drude model [Chopra

et al., 1983]. Alternatively, samples annealed in air show considerably lower FCA since Ne

is lower in these films. In the visible part of the spectrum, as-deposited films present a

slightly increased absorption approaching the bandgap edge (around 500 nm). This could be

detrimental to the use of a-ZTO in optoelectronic devices with high spectral sensitivity in the

visible range. Only the samples treated in air at 500 ◦C do not exhibit this absorption centre in

the visible.
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3.4. Effect of thermal treatments on the optical properties of a-ZTO

Figure 3.2 – Total transmittance and absorptance of a-ZTO as-deposited and annealed at 150
◦C (a) and at 500 ◦C (b) in air, N2 and H2 .

(a) (b)

(d)(c)

Energy (eV) Energy (eV)

Figure 3.3 – Photothermal deflection spectroscopy of as-deposited a- ZTO(black line) and
samples annealed in (a) air, (b) nitrogen, and (c) hydrogen at 150 ◦C (dashed coloured lines)
and 500 ◦C (solid coloured lines). A comparison between the films as-deposited and annealed
at 500 ◦C is shown in (d) (blue for air, red for nitrogen, and green for hydrogen).

A more detailed analysis of these absorption centres was performed by PDS measurements
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Chapter 3. Defects and high-temperature defect-passivation of amorphous zinc tin oxide

(Figure 3.3). Figure 3.3(a) compares the absorption coefficient of as-deposited a-ZTO (black

solid line), annealed in air at 150 ◦C (dashed blue) and at 500 ◦C (solid blue line). Films

as-deposited and annealed at 150 ◦C show a broad sub-bandgap absorption at 2 eV, while

samples treated in air at 500 ◦C exhibit a strong decrease in absorptance at this photon

energy, confirming the observations of Figure 3.2. Alternatively, the absorption coefficients

of the samples annealed in N2 and H2 (Figures 3.3(b) and 3.3(c)) change only slightly with

temperature in this energy range. Figure 3.3(d) shows a comparison of films as-deposited and

annealed at 500 ◦C in all three atmospheres. Using the absorption coefficient measured on

the film annealed in air at 500 ◦C and the Tauc equation [Tauc, 1968], an optical bandgap of

3.7 eV was calculated. For this, it was assumed an allowed direct transition [Elangovan and

Ramamurthi, 2005, Banyamin et al., 2014, Warner et al., 2015]. The bandgap of 3.7 eV (Figure

3.4) is in agreement with other reports in literature [Minami, 1999, Mullings et al., 2014]. It

was not possible to measure the bandgap of the as-deposited films since the sub-bandgap

absorption interfered with the Tauc plot.
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Figure 3.4 – Tauc plot of a-ZTO annealed at 500 ◦C in air. The sub-bandgap absorption of the
as-deposited a-ZTO and films annealed in other atmospheres, impede the bandgap estimation
using this approach. For a-ZTO annealed at 500 ◦C optical bandgap of 3.7 eV was determined
assuming direct allowed transitions
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3.5. Film Composition and Microstructure

3.5 Film Composition and Microstructure

3.5.1 Rutherford backscattering and electron recoil detection analysis

With respect to chemical composition, RBS measurements show that as-deposited and an-

nealed films retain the atomic metallic molar fraction Zn0.05Sn0.30Ox , while the O content

varies with the annealing atmosphere (Table 3.1). After annealing at T > 500 ◦C in air, the

atomic concentration of oxygen increases by 1%, while thermal treatments in H2 result in a

decrease of 1% of the atomic ratio from the as-deposited material.

Table 3.1 – Composition from RBS of as-deposited a-ZTO and a-ZTO annealed at 500◦C in
different atmospheres

Amorphous-ZTO Results from RBS

As deposited Zn0.049Sn0.299O0.652

Annealed in air Zn0.047Sn0.289O0.664

Annealed in N2 Zn0.049Sn0.304O0.652

Annealed in H2 Zn0.051Sn0.308O0.641

This confirms the increase (decrease) of oxygen atoms in the amorphous network after an-

nealing in O2(H2 )- rich atmospheres, respectively. ERDA measurements indicate that the

as-deposited a-ZTO films contain around 0.7 at% of hydrogen2 . These results suggest that

high temperature annealing in air reduces the content of hydrogen to less than 0.5 at% (under

the detection limit of the ERDA technique), while annealing in H2 at 500 ◦C results in an

increase of hydrogen content up to 1.2 at%. The increased amount of H, together with the

increase in Ne observed in Figure 3.1, suggests the role of hydrogen as a dopant [King et al.,

2009, Hlaing Oo et al., 2010, Nomura et al., 2013, Janotti and Van de Walle, 2007]. In addition,

H may also act as a reducing agent for oxygen [Morales-Masis et al., 2014], hence further

increasing theVO density and in turn sub-bandgap absorption, as observed in Figure 3.3.

3.5.2 Nanobeam diffraction and fluctuation electron microscopy

The changes observed in optoelectronic properties discussed previously do not appear to

be linked to a change in microstructure of the samples. The nanobeam diffraction patterns

acquired before and after annealing at 500 ◦C (Figures 3.5(c) and (d)) show diffuse rings

broken into speckles due to the small number of atoms in the probe [Voyles and Muller, 2002].

This demonstrates the absence of nanometric crystallites in the samples before and after

annealing at 500 ◦C in air. The presence of nanometric-sized crystallites would appear in

The TEM analysis and fluctuation electron microscopy (FEM) was done by Dr. Quentin Jeangros in
Forschungszentrum Jülich. Dr. Jeangros design in addition the Mathematica code for the analysis of the FEM data

2ERDA measurements have an uncertainty of ±0.3
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the nanobeam diffraction patterns as reflections symmetric with respect to the centre of the

pattern. Moreover, both short- and medium-range order do not appear to evolve significantly,

as both the radial profiles shown in Figures3.5(e) and 3.5(f) appear insensitive to annealing

under these conditions.
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Figure 3.5 – TEM analysis of the samples after deposition and after annealing at 500 ◦C in
air. (a, b) TEM images of focused ion beam–prepared cross sections after deposition and
annealing at 500 ◦C , respectively. (c, d) Selection of nanobeam electron diffraction patterns of
the samples shown in (a) and (b), respectively. The last inset of each series shows the mean of
100 nanobeam diffraction patterns. (e, f) Rotationally averaged diffracted intensities of 1200
nanobeam diffraction patterns of the samples shown in (a) and (b), respectively, highlighting
the absence of both crystallinity and significant restructuring upon annealing. ( [Voyles and
Muller, 2002] for further details.)

Figure 3.6 – (a) Variance of the diffracted intensities of the samples after deposition (prepared
either by FIB or by directly depositing a-ZTO onto Si3N4 thin supports) and after annealing
at 500 ◦C in air. This data set was acquired using a probe size of 1.3 nm and a convergence
semi-angle of 0.5 mrad. (b) Variable resolution variance data of the FIB-prepared sample
annealed at 500 ◦C acquired using various probe sizes, ranging from 1.3 to 3 nm.
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The results of the fluctuation electron microscopy, shown in Figure 3.6, demonstrate the

absence of well-defined peaks in the variance and hence the absence of significant medium

range order after deposition and after annealing at 500 ◦C in air, at least within the detection

limit of the technique. The FIB sample preparation does not appear to modify significantly

the variance measurements, as a similar signal is obtained when depositing a-ZTO directly

onto Si3N4.

The normalized variances of radial profiles of hundreds of nanobeam diffraction patterns

appear insensitive to annealing at 500 ◦C in air. These results support the conjecture that the

generation, modification, and annihilation of point defects during the different annealing

procedures are responsible for the observed changes in the optical and electrical properties of

the a-ZTO films.

3.5.3 Thermal Desorption Spectroscopy on a-ZTO

As seen in the Section3.5, the amorphous microstructure of a-ZTO withstands thermal treat-

ments up to 500 ◦C without detectable variations. We therefore also studied the evolution of

the film composition with temperature using thermal desorption spectroscopy (TDS; known

also as temperature programmed desorption or TPD). In Figure 3.7 we show desorption spec-

tra of the as-deposited and films annealed at 500 ◦C in the different atmospheres. The TDS

spectra shows the effusion of species with mass to charge ratio (M/z) of 64, 18, 32, 2 and 120,

which correspond to desorption of Zn1+, H2O1+ , O1+
2 , H1+

2 and Sn1+.
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Figure 3.7 – Thermal desorption of as-deposited a-ZTO and the films annealed at 500 ◦C
in air, H2 and N2 atmospheres. The silicon substrate is shown for all films. We measured
mass/charge (M/z) signal 64, 18, 32, 2 and 120, which correspond to effusion of Zn1+, H2O1+,
O1+

2 , H1+
2 and Sn1+. The inset in Figure 3.7(c) shows the rate between the 32 and 64 signals.

The desorption and the signal rate is in logarithmic scale.

The M/z = 32 signal potentially includes the desorption of Zn2+ and O1+
2 , while M/z = 64

accounts solely for the desorption of Zn1+ [Koida et al., 2017]. From Figures3.7(a) and (c), we

see a correlation between 32 and 64 signals since the effusion profile is similar for all cases.

This is confirmed by the constant ratio between signals, as shown in the inset of Figure 3.7(b),

and indicates that for temperatures > 450 ◦C the signal from 32 comes from Zn1+ rather than

O1+
2 . At temperatures < 450 ◦C , the source of the M/z = 32 signal is ionized molecular oxygen.

We can divide the desorption profiles in four sections, marked for simplicity only on Figure
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3.6. Electron scattering mechanisms

3.7(b). In Section I, from 45 ◦C to 175 ◦C , the effusion of adsorbed H and H-bonded H2O

molecules result in high signal from M/z = 18 and an increasing slope in signal from M/z =

2 [Kohl, 1989, Koida et al., 2010, Yamazoe et al., 1979]. The H2O desorption at this range is

considerably higher in the as-deposited films than in the annealed samples, which shows

that thermal treatments at 500 ◦C result in films with less surface water and OH-groups, even

if the films were exposed to environmental pressure after the thermal treatment. Section II,

from 175 ◦C to 390 ◦C , the broad effusion of hydrogen from the as-deposited films (Figure

3.7(d) with its maximum at 322 ◦C ) is remarkably higher than the annealed films. Nonetheless

annealing a-ZTO in H2 atmosphere, results in films with higher H-content than films thermal

treated in N2 or air, which partially confirms the results found in ERDA, i.e. there is a higher

atomic-H content in the films annealed in H2 than in the films annealed in N2 or in air. Results

from TDS and ERDA seem to conflict regarding the H-content in the as-deposited films, but

in TDS we measure not only the bulk content of the films but also the surface H-atoms, and

could potentially include fractions of water and OH-groups. A desorption peak of Zn2+ in

as-deposited a-ZTO is present at T ≈ 280 ◦C (Figure 3.7(a)), which it is not detectable in the

annealed films. This difference in Zn content was detected by RBS (≈ 1% Zn between annealed

and as-deposited samples, See Table 3.1). This indicates that Zn atoms desorb from a-ZTO at

temperatures lower than 500 ◦C . The desorption of Zn atoms from a-ZTO is studied in detail

in reference [Landucci, 2019].

In region III, from 390 ◦C to 500 ◦C , there is a sharp decrease in the water effusion, simultane-

ously with an increase of signal O1+
2 and Zn1+. This is linked to the onset of the decomposition

of the material [Koida et al., 2017]. It is important to note that during TDS measurements the

low pressure of the chamber (10−9 mbar) promotes the decomposition of the films at lower

temperatures relative to atmospheric pressure [Lupis, 1983]. Finally the effusion signals from

Sn1+ and Zn1+ ions at region IV (temperatures > 500 ◦C ) mark the full decomposition of the

films, as seen in Figure 3.7(c) and (d).

3.6 Electron scattering mechanisms

The dominating scattering mechanisms in TCOs are optical phonons, ionized impurities and

grain boundary scattering. For a-ZTO, the absence of a crystalline structure (and of grain

boundaries) simplifies the study of scattering. To pinpoint the scattering mechanisms for each

of the films, temperature-dependent Hall effect measurements were performed from -190
◦C to 50 ◦C . Resulting Ne and µe of the as-deposited and annealed films are independent of

temperature (Figure 3.8(a) and (b)).
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Figure 3.8 – Electron mobility (a) and free-carrier density (b) obtained by Hall effect measure-
ments from -190 ◦C to 50 ◦C for as-deposited a-ZTO and films annealed at 150 ◦C and 500 ◦C
in air, H2 and N2 atmospheres

Hence, for a-ZTO, only ionized defects limit the electron transport. Scattering of free-carriers

by ionized impurities is commonly described by the Brooks-Herring-Dingle (BHD) model

[Dingle, 1955]. This model considers the effect of a screened Coulomb potential on the

relaxation time between two different scattering events that a charge carrier encounters,

resulting in an equation for the mobility limited by ionized impurities, µi i ,

µi i = 3π~3(4πε0κ)2

2Z 2e3m∗2 × Ne

Ni i
× 1

F (ξ)

F (ξ) = ln(ξ+1)− ξ

ξ+1

ξ= 4π3(
3

π
)1/3 ε0κ~3N 1

e /3

e2m∗

(3.1)

where F(ξ) is the screening function, κ is the relative permittivity, ε0 is the vacuum permittivity,

Ni i the concentration of ionized impurities, Z the charge of the impurity, m∗ the effective

mass, e the electron charge and ~ the reduced Planck constant. To apply this model to the

experimental data, µe vs Ne was plotted in Figure 3.9, including the data shown Figure 3.1 and

the result from the BHD model.
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Figure 3.9 – Hall mobility plotted as function of free-carrier density for films annealed in
air, H2 , and N2 atmospheres. Lines are simulations using the Brooks Herring Dingle model,
considering ionized defects of charge Z = +2 and of defect density Ni i changing from 2×1019

cm−3 to 2×1020 cm−3 . Effective masses of 0.26 me and 0.3 me were used in the model, as
calculated from Fourier transform infrared reflectance and Drude model fitting

The m∗ values for the BHD-model were obtained from Fourier transform infrared spectroscopy

reflectance measurements and Drude model fitting using the software WVASE®. Effective

masses of 0.30 me and 0.26 me were obtained for the films as-deposited and annealed at 500
◦C in air, respectively. Assuming that the majority of impurities in a-ZTO films have a charge Z

of +2, the BHD model indicates that µe - Ne data of the samples as-deposited and annealed at

temperatures lower or equal to 300 ◦C in H2 and N2 atmosphere are described by the model,

assuming a Ni i value of ≈ 5×1019 cm−3 to 1×1020 cm−3 [Kamp et al., 2005]. The group of data

with higher mobility, i.e., between 30 cm2V−1s−1 and 40 cm2V−1s−1 (annealed in air at 500
◦C ), are described by a much lower Ni i , ranging from 2 × 1019 cm−3 to 4 × 1019 cm−3 . Even

though the experimental data does not follow the trend set by the model when using constant

Ni i values, these results suggest that annealing in air at temperatures above 300 ◦C reduces

the density of ionized impurity defects, leading to the observed improvement in µe (Figure

3.1) and to the clear reduction of sub-bandgap defects observed in the PDS measurements

(Figure 3.3).

3.7 Calculations and correlation with experimental results

For this study, we constructed a set of 38 amorphous structures, see Table 3.2. Initially,

two subsets of samples were generated. To ensure valid statistical results, eight samples
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with composition Zn4Sn27O58 were used to reflect the experimentally as-deposited a-ZTO

films. These samples were labelled “stoichiometric,” since their composition corresponds

to an admixture of 4 ZnO units and 27 SnO2 units.The second subset of eight samples with

the composition Zn4Sn27O57 is oxygen deficient and can be considered as systems with an

annealed VO . From the stoichiometric set, we derived three further sets of samples by

adding/removing some atoms and subsequently repeating the DFT procedure. (i) By removing

an oxygen atom, we generated a local oxygen deficiency resembling anVO of a crystal. (ii)

Hydrogen-rich supercells were generated by adding a hydrogen atom (ZTO + H). (iii) Hydrogen

atoms were added close to the oxygen deficiency sites of (i) to study the combined effect ofVO
and H on the DOS (VO +H). In the a-ZTO:VO group of structures, the removal of the oxygen

atom is done after an amorphization step. In contrast, the structures of the “oxygen-poor”

system are relaxed to an energy minimum already with the reduced oxygen concentration.

Table 3.2 – Compilation of the 38 supercell models generated by atomistic simulations, listing
the number of samples (nsamp ), the supercell composition, the total number of atoms per
supercell, and the atomic percentage of elements (px ).

Str uctur e nsamp Supercell Nat pZ n[at%] pSn[at%] pO[at%] pH [at%]

a-ZTO "stoichiometric" 8 Zn4Sn27O58 89 4.50 30.3 65.2 0

ZTO "oxygen poor" 8 Zn4Sn27O57 88 4.55 30.7 64.8 0

ZTO:VO 7 Zn4Sn27O57 88 4.55 30.7 64.8 0

ZTO:VO + H 8 Zn4Sn27O57H 89 4.50 30.3 64.0 1.12

ZTO+H 7 Zn4Sn27O58H 90 4.44 30.0 64.4 1.11

We considered a-ZTO:VO samples, i.e. samples which contain a local atomic environment

similar to an oxygen vacancy in a crystal (local oxygen deficiency). These structures are

generated by removing an oxygen atom from the stoichiometric samples (followed by the

DFT structural optimization). The DOS of these samples are shown in Figure 3.10(a). Distinct

localized defect levels appear in the upper half of the bandgap for the majority of samples.

In recent studies on IGZO, In2O3:Sn, and IZO, metal-metal clustering (two metal atoms without

a separating oxygen) was identified to be the common origin of the deep levels in the upper

part of the bandgap [Körner et al., 2013]. The same interpretation was recently shown to

hold for amorphous SnO2 and SnO by [Wahila et al., 2016]. The energetic positions of the

metal-metal defect levels depend on the whole neighbourhood (e.g., the number and distance

of oxygen atoms that attract electrons from the metal atoms). In order to study the effect of

hydrogen in amorphous samples and on the deep levels, individual hydrogen atoms were

inserted into the amorphous samples in the vicinity of the atoms. In most cases, the defect

level is shifted deeper into the bandgap by approximately - 0.2 eV to - 0.4 eV. For two samples

the addition of hydrogen resulted in the elimination of the level after structural optimization.

An interesting result was found for sample s06 of a-ZTO:VO . Here, the localVO alone did not

result in a deep level. However, when a H atom was added in close vicinity of the respective

atomic environment, a deep level appeared with a strong contribution of the H atom, which is
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Figure 3.10 – Calculated densities of states of (top panel) the a-ZTO:VO samples containing a
local oxygen deficiency and (bottom panel) the a-ZTO:VO +H samples with an additional H
atom in the vicinity of the defect. The curves are aligned with respect to the main peak in the
VB. Deep levels within the gap are mainly carried by one or two metal atoms (indicated in the
top panel), while levels close to the VB stem from undercoordinated oxygen atoms (Ouc ). The
defect state of the a-ZTO:VO +H sample s06 is related to a Sn-H bonding and neighbouring O
atoms.

found to form a Sn-H bond with the previously undercoordinated Sn atom Figure 3.11(d). The

effect of hydrogen on the annealed stoichiometric samples was also investigated. Here, no

deep levels were generated.

3.7.1 Correlation with optoelectronic properties

For annealing temperatures < 300 ◦C , the increase in Ne occurs together with an increase in

µe and is independent of the annealing atmosphere, as seen in Figure 3.1. In this temperature

range, the amorphous network does not appear to interact significantly with the chemical

species coming from the annealing atmosphere and the changes are induced mostly by the

temperature alone. Similar effects have been described in literature and their origin is still

under debate. For example, µe and Ne increase in zinc tin oxide (for layers with composition

Sn/(Sn+Zn) of 0.11 and 0.45) has been explained by a structural relaxation around Sn atoms,

which may formVO donors instead of VX
O [Zhu et al., 2014]. Moreover, structural relaxations

could result in the activation of H dopants [Janotti and Van de Walle, 2007] or charged metal

ions [Kim et al., 2006] that act as dopants in a-ZTO. Furthermore, low temperature annealing

could cause the reduction of non dominating scattering defects such as neutral impurities [Ito

et al., 2006] or electron traps [Hanyu et al., 2013], which contribute to increase µe . Overall,

even if the electric properties of a-ZTO improved, it should be mentioned that these thermally
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(a) (b)

(c) (d)

Figure 3.11 – Supercells containing a local oxygen deficiency and a metal-metal defect: (a)
a-ZTO:VO sample s03, (b) a-ZTO:VO sample s02, (c) a-ZTO:VO +H sample s03, and (d) a-
ZTO:VO +H sample s06. Sn, Zn, O, and H atoms are depicted as grey, blue, red, and yellow
spheres, respectively. The Sn, Zn, and O atoms contributing most to the defect levels are
highlighted by dark grey, dark blue, and dark red, respectively.

induced structural relaxation processes are not easily detectable, as confirmed by the TEM

nanobeam diffraction experiments, which assess that both short- and medium-range order

do not appear to change significantly with temperature (Figure 3.5). In addition, the effect

of the thermally induced local structural changes on the defect states, e.g. originating from

undercoordinated oxygen, modestly increases with increasing temperature. As an example,

only a modest reduction of defect states can be observed for samples annealed under nitrogen

atmosphere at 500 ◦C (Figure 3.3). In contrast, a clear reduction in the density of sub-bandgap

defects is observed when annealing in air at temperatures >300 ◦C (Figures 3.1 3.3, and 3.2).

The electron mobility also increases significantly when annealing in air at these temperatures

(up to 35 cm2V−1s−1 , Figure 3.1). The RBS data (cf. Table3.1) and the changes in optoelectronic

properties when annealing in oxygen-rich atmospheres (Figures 3.1, 3.2 and 3.3) indicate that

this effect mainly originates from the introduction of oxygen in the films. A reduction of the

number of sub-bandgap defects with increased oxygen content, as observed when annealing

in air, is in agreement with the atomistic calculations. The source of sub-bandgap states in the

upper half of the bandgap are local oxygen deficiencies, which lead to undercoordinated Sn

or Zn atoms (Figure 3.11). These oxygen-deficient states are known to act as donors [Klein,

2013, Koida et al., 2012, King and Veal, 2011, Narushima et al., 2002]. At T > 300 ◦C , O2from

the atmosphere absorbs, dissociates, and eventually passivates these metallic dangling bonds,

hence reducing the number of sub-bandgap defects and as a result Ne . Indeed, the decrease

in Ne with an increased oxygen concentration in the film can be explained by 1
2O2(g )+VO
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cells

+2e− -> Ox
O .

In other words, the formation of Ox
O (or passivation ofVO ) comes at the expense of charge

carriers. While these defects act as dopants, they are also scattering centres, limiting the mo-

bility. By reducing the number of such charged defects by annealing in air at high temperature,

µe increases by 70% with respect to its original value, as shown in Figure 3.1. Alternatively,

several effects can explain the higher absorption of a-ZTO films annealed at high temperature

in H2 (Figure 3.3), as well as the drastic increase in Ne (see Figure 3.1). First, the energy shift of

sub-bandgap states (- 0.2 to - 0.4 eV) deeper in the bandgap (Figure 3.10) when introducing

hydrogen near oxygen deficiencies corresponds to the measured broadening of the absorption

energy range seen in Figure 3.3. Second, the addition of hydrogen, might introduce new defect

levels within the bandgap. These defects may act as donors. And third, hydrogen may also

create more oxygen deficiencies by removing oxygen from the sample close to the surface,

which also increases sub-bandgap absorption as theVO density increases. While hydrogen

allows an improved conductivity up to 577 S cm−1 by increasing Ne , it also results in more

absorbing films. On the other hand, a remarkable µe of 35 cm2V−1s−1 for a full amorphous

indium-free electrode has been obtained by high-temperature annealing in oxygen-rich atmo-

spheres. This results in the passivation of defects, specifically, undercoordinated Sn and Zn

bonds, by introducing atomic oxygen to the amorphous network. This allows the formation

of Sn-O-Sn (or Zn-O-Zn, Zn-O-Sn) bonds, reducing the density of sub-bandgap defects (and

hence the number of scattering centres), and with it reaching excellent optical properties with

a conductivity of 445 S cm−1.

3.8 A-ZTO as recombination junction for perovskite/Silicon mono-

lithic tandem solar cells

Combining a high-bandgap perovskite absorber with a crystalline silicon solar cell results in

the reduction of losses due to thermalization of photons of energy higher than the silicon

bandgap. Therefore perovskite/crystalline silicon tandem solar cells have the potential to reach

efficiencies higher than those of silicon single-junction record devices. Monolithic tandem

cells require a recombination junction with appropriate band structure to guarantee charge

transfer between the bottom silicon cell and the top perovskite cell, optical transparency (from

600 nm to 1200 nm) and chemical stability. However, for some mesoscopic perovskite solar

cells, a required high-temperature process could limit their implementation in tandem devices

due to the thermal load in the recombination junction.

This section describes the application of a-ZTO in perovskite/Silicon tandem solar cells. It should be noted that
the work for the publications [Werner et al., 2016] and [Rucavado et al., 2017] were done in parallel, nonetheless,
reference [Werner et al., 2016] was published first. The results shown in this section are based on the work per-
formed by Dr. Jérémie Werner, as he is responsible of the fabrication and characterization of the perovskite/silicon
tandem solar cell. More detailed description of the cell process can be found in reference [Werner et al., 2016].
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Figure 3.12 – Monolithic tandem cell structure with mesoscopic perovskite top cell and homo-
junction silicon bottom cell. The SEM images shows a cross-section of a typical perovskite
top cell. TiO2 is the electron transport layer which must be treated at 500 ◦C for proper
functioning.

Bottom silicon solar cell fabrication started with electrical junction formation in n-type silicon

wafers. For this, silicon oxide layers were thermally grown on both wafer surfaces. The active

device area was then defined by removing the oxide on the front side of the Si wafers, followed

by boron implantation, thus forming a hole-collecting contact. On the rear side, the surface-

passivating silicon oxide layer was laser-patterned and phosphorus implanted for local contact

and back surface field formation. We remark that the used wafers featured mirror-polished

front sides (and a lapped back side), to avoid shunting of the solution processed top cell. To

ensure the absence of a native SiO2 layer, we performed a HF dip before the TCO (In2O3:Sn

or a-ZTO) was directly sputtered onto the boron-implanted silicon surface, followed by the

perovskite top cell deposition. The perovskite cell was composed of a sputtered compact TiO2

layer, a spin-coated TiO2 scaffold layer which needs an annealed step at 500 ◦C , a CH3NH3PbI3

perovskite layer, and a spiro-OMeTAD/MoOx /IO:H/In2O3:Sn top electrode. More details of

the solar cell fabrication are found in reference [Werner et al., 2016].

In Figure 3.12 we see a simple schematics of the monolithic tandem solar cell and an mi-

croscopy image of the perovskite cell. As bottom cell, an homojunction silicon solar cell with

locally passivated rear contact was used.

Amorphous-ZTO as recombination junction

Since In2O3:Sn (known as indium tin oxide or ITO) is one of the most commonly used TCOs

in photovoltaics, it was naturally the initial choice for the intermediate recombination layer.

However, strong degradation could be observed on finished monolithic tandem cells with

poor current-voltage characteristics, similar to the example shown in Figure 3.13(a). Electrical
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characterization of the In2O3:Sn layers on glass before and after annealing at 500 ◦C showed a

strong reduction of conductivity, which is attributed to an excess of oxygen in the films from

the air or from the capping TiO2. Consequently, the electrical properties of In2O3:Sn before the

thermal treatment (µe of 36.8 cm2V−1s−1 of and Ne of 3.7 × 1020 cm−3 ) decreased drastically,

making the films non-measurable with our Hall-effect setup after the complete annealing

sequence. We believe that the strongly increased resistance in this recombination layer is

responsible for the non-functional tandem devices.
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Figure 3.13 – J-V curves of monolithic tandem cells with ITO or a-ZTO recombination layer.
Dashed lines are for forward scans (Jsc to Voc) and solid lines are for reverse scan (Voc to Jsc)

As seen in Sections 3.3 and 3.4, the optoelectronic properties of a-ZTO improve with tempera-

ture treatments at 500 ◦C in air, this ensures good transverse charge transport as recombination

junction . We applied a-ZTO as intermediate recombination layer and investigated the effect of

thickness variation from 20 nm to 160 nm. The resulting current-voltage (J-V) characteristics

is seen in Figure 3.13, showing rectifying diode-like curves, in contrast to the series resistance

limited In2O3:Sn-based tandem cells. The J-V curves with thinner a-ZTO layers were slightly

s-shaped around the open-circuit voltage (Voc) (89 nm of a-ZTO as recombination junction),

suggesting deficient electron transport in the film. However, this problem disappeared with

thicker layers, as shown in Figure 3.13.

In this study, the best monolithic tandem cell with an aperture area of 1.43 cm2 showed a Voc

of 1643 mV and an initial efficiency of 16.3%, as obtained from J-V characteristics. During

maximum power point tracking, a steady efficiency of 16% was reached. In addition, a smaller

cell of 0.25 cm2 reached a conversion efficiency of 17.4% (16.4% in steady-state).
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3.9 Conclusion

Using a combination of experimental techniques and atomistic calculations, the relation

between sub-bandgap states and optoelectronic properties was clarified for sputtered a-

ZTO thin films. The effects of annealing temperature and atmosphere on the optoelectronic

properties of the films were investigated. Annealing at low temperatures (T < 300 ◦C ) induced a

increase inµe and Ne (from 20 cm2V−1s−1 and ≈ 6.5×1019 cm−3 to 25 cm2V−1s−1 and ≈ 1×1020

cm−3 ), independently of the annealing atmosphere. These changes occur presumably due

to structural relaxations of the atomic network, or the activation of hydrogen dopants with

temperature. At higher temperatures (300 ◦C < T < 500 ◦C ), the optoelectronic properties

of the films were strongly modified, with the final effect on µe and Ne depending on the

annealing atmosphere. Indeed, air treatments resulted in films with low absorptance (as

low as 0.3% at a wavelength of 1000 nm), an increase in µe (up to 35 cm2V−1s−1 ) and low

free-carrier concentration. Hydrogen-annealed films have high free-carrier density but lower

mobility and high absorptance. As the films remained amorphous, these results are explained

by the generation or passivation of point defects and by an increase of the film’s density after

thermal annealing as suggested by TDS measurements. Indeed, DFT simulations identified

local oxygen deficiencies and resulting metal atom clusters as the source of energy levels

in the upper half of the bandgap. These states act as the source of free-carriers but also as

scattering centres, hence limiting the mobility and deteriorating the optical properties. These

defects are present in the film after deposition and can be modulated at high temperatures

(higher than 300 ◦C ) by the annealing atmosphere. The strong increase in both free-carrier

concentration and absorption within the bandgap when annealing in H2 is linked to both the

formation of additional metal-hydrogen states within the bandgap and the shift of the existing

oxygen deficiency levels deeper into the bandgap. On the other hand, the introduction of

oxygen into the amorphous network during annealing in air at 500 ◦C passivates the oxygen

deficiencies and results in the films with the best optoelectronic properties (µe of 35 cm2V−1s−1

when compared to 21 cm2V−1s−1 after deposition). Overall, these results indicate that a fine

control of the oxygen and hydrogen contents is essential to optimize the optoelectronic

properties of a-ZTO. Several strategies may be envisaged to further improve the properties

of these films, e.g., by depositing other oxides together with a-ZTO to passivate these oxygen

deficiencies in a controlled manner. Considering that the a-ZTO films presented here are

free of macroscopic defects, the tradeoff between optoelectronic properties suggests that a

carrier transport optimum, i.e. a maximum µe , has been reached for zinc tin oxide with this

specific composition. Finally, given the high-temperature structural stability of a-ZTO, we

have demonstrated the applicability of the film as a recombination layer by optoelectronic

characterization and integration to fully functional devices. By using a-ZTO as recombination

layer allowed us to fabricate mesoscopic perovskite/silicon homojunction monolithic tandem

solar cells with >16% efficiency.
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4 Alternative low-temperature passiva-
tion route for Sn-based oxides

Chapter 4 is based on the publication:

Rucavado, E., Graužinytė, M., Flores-Livas, J. A., Jeangros, Q., Landucci, F., Lee, Y., Koida,

T., Goedecker, S., Hessler-Wyser, A., Ballif, C., and Morales-Masis, M. (2018). New route

for “cold-passivation” of defects in tin-based oxides. The Journal of Physical Chemistry C,

122(31):17612–17620.

My original input and work in the manuscripts include: plan and execution of the sputtering and

post-deposition thermal treatments of the a-ZTO, SiZTO, SnO2 and SiSnO2 films. All the electrical

characterization, optical properties and thermal desorption spectroscopy measurements, as well corre-

sponding data analysis. Interpretation of results and correlation with the computational calculations

were discussed and planned with Dr. Morales-Masis, Dr. Jeangros, Dr. Flores-Livas, Dr. Graužnytė for the

JPCC manuscript.

I want to acknowledge Dr. Quentin Jeangros for the electron microscopy experiments and analysis, Dr.

José A. Flores-Livas and Dr. Graužinytė for the density functional theory calculations and interpretation.

Also I want to thank Dr. Takashi Koida for his support during the desorption spectroscopy, Dr. Pierre

Mettraux for the XPS measurements and the following discussion and Dr. Max Döbeli for the RBS experi-

ments and discussion.

In Sn-based oxides oxygen deficiencies and undercoordinated Sn atoms result in an extended

density of states below the conduction band edge. Although shallow states provide free-

carriers necessary for electrical conductivity, deeper states inside the bandgap are detrimental

to transparency. In amorphous zinc tin oxide (a-ZTO), the overall optoelectronic properties

can be improved by defect passivation via annealing at high temperatures. Yet, the high

thermal budget associated with such treatment is incompatible with many applications (e.g.

silicon heterojunction solar cells). Here, we demonstrate an alternative, low-temperature

Results from reference [Rucavado et al., 2018] are reproduced and modified with permission from the publisher.
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passivation method, which relies on co-sputtering deposition of Sn-based TCOs with silicon

dioxide (SiO2 ). Using a-ZTO and amorphous/polycrystalline tin dioxide (SnO2 ) as representa-

tive cases, we demonstrate through optoelectronic characterization and density functional

theory simulations that the effect of SiO2 is twofold. First, oxygen from SiO2 passivates the

oxygen deficiencies that form deep defects in SnO2 and a-ZTO. Second, the ionization energy

of the remaining deep defect centers is lowered by the presence of silicon atoms. Remark-

ably, we find that these ionized states do not contribute to sub-bandgap absorptance. This

simple passivation scheme significantly improves the optical properties without affecting the

electrical conductivity, hence overcoming the known transparency-conductivity trade-off in

Sn-based TCOs.

4.1 Motivation and state of the art

As discussed in Chapter 3, in a-ZTO oxygen defficiencies (VO) can be passivated by post-

deposition treatments in air at temperatures > 400 ◦C , annealing in these conditions is

thermally costly and/or not convenient for devices with low thermal budgets, such as solar cells

based on thin hydrogenated amorphous silicon layers or hybrid organic-inorganic perovskite

materials [De Wolf et al., 2012, Morales-Masis et al., 2017a, Werner et al., 2018].

Alternatively, previous investigations have shown that the co-deposition of silicon diox-

ide (SiO2) with different TCOs, mainly with zinc oxide, may decrease the density of VO
defects [Dabirian et al., 2016, Kizu et al., 2016, Mitoma et al., 2014, Kang et al., 2012], but

also lower the refractive index [Dabirian et al., 2016, Minami et al., 1986], decrease the resistiv-

ity [Minami et al., 1986, Faure et al., 2012, Rashidi et al., 2013] and amorphize the TCO [Faure

et al., 2012, Clatot et al., 2011, Sorar et al., 2011]. For the case of Si in Sn-based TCOs, Kang

and co-workers [Kang et al., 2012] used first-principle calculations to suggest that silicon

atoms alter the coordination number of Sn in amorphous Zn2SnO4. This leads to an increase

in the formation energy of oxygen deficiencies. Yet, this passivation mechanism leads to a

strong decrease in electrical conductivity as these deficiencies are the source of free-carriers.

Furthermore, it was recently proposed that Si modifies the bandgap of zinc tin oxide, resulting

in improved thin-film transistor performance [Choi et al., 2016]. However, the role of Si in

the sub-bandgap structure of zinc tin oxide was not fully clarified at the atomistic level in this

study.

In contrast to previous reports, here we combine experimental and computational techniques

to explain the effect of Si on the optoelectronic properties of SnO2-based materials. We

demonstrate that adding SiO2 during deposition of Sn-based TCOs (using a-ZTO and SnO2,

as case examples) results in a decrease in the sub-gap absorption while keeping electrical

properties unchanged. By combining these experimental results with density functional

theory (DFT) calculations, we find that, while the oxygen from SiO2 passivates deep sub-

bandgap defects, the addition of Si decreases the ionization energy of oxygen deficiencies and

shifts the corresponding sub-bandgap defect states close to the conduction band minimum
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(CBM). Thanks to this effect, the defect no longer contributes to the formation of detrimental

sub-bandgap absorption centers and provides free-carriers.

4.2 Methods

4.2.1 Experimental details

150 nm-thin films of a-ZTO, SnO2 , SiZTO and SiSnO2 were deposited onto aluminoborosilicate

glass. While the TCO films described in Chapter 3 were sputtered using a Clusterline deposition

system, the films described in this Chapter were deposited using a Leybold Univex sputtering

system. Modifications of the deposition parameters were required to obtain a-ZTO films with

the same optoelectronic properties and microstructure as the ones described in Chapter 3.

While the deposition power and the sputtering targets were unchanged, i.e. 80 W for a 10

cm-diameter target (power density of 1.01 W cm2 in both deposition systems), the substrate

temperature was changed from 60 ◦C to 100 ◦C . In addition, the base pressure prior to

deposition was ≈ 6 × 10−7 mbar and the working pressure for a-ZTO was ≈ 8.5 × 10−4 mbar.

During the deposition of a-ZTO, a constant flow of Ar and Ar/O2 were set to 10 sccm and

3.5 sccm respectively. Since the source of O2 is a combination of Ar and O2 (95% of Ar and

5% of O2), the oxygen flow ratio (r(O2)) is calculated by the ratio of the oxygen flow and the

total flow, i.e. r(O2) = 100 #t i mes O2/(Ar+O2). During deposition the Ar/O2flow was changed

between 1.0 sccm and 3.5 sccm, which resulted in r(O2) between 0.45% and 1.3%. Using

these deposition conditions, a-ZTO films presented an amorphous microstructure, µe of ≈ 20

cm2V−1s−1 , Ne of ≈ 7 × 1019 cm−3 and optical properties similar to those seen in Figure 3.2 in

Chapter 3.

SiZTO and SiSnO2 were deposited from separate targets of SnO2 , zinc tin oxide (target compo-

sition of 6 at% Zn and 28 at% Sn and 66 at% of O) and SiO2 . Co-depositions were performed

using two targets simultaneously, i.e. zinc tin oxide and SiO2 targets to deposit SiZTO or SnO2

and SiO2 targets to deposit SiSnO2 . The power applied to the zinc tin oxide and SnO2 targets

was fixed to 80 W and the power on the SiO2 target was varied between 0 W and 20 W (all

targets are 10 cm-diameter, hence the power density in the SiO2 target was varied between

0 W cm−2 and 0.25 W cm−2). Substrate temperatures of 100 ◦C was used for the deposition

of SiZTO, while for the deposition of SnO2 and SiSnO2 the substrate was not intentionally

heated, as these conditions yielded high-quality films. For the co-sputtering, a constant flow

of 10 sccm of Ar was used, while the Ar/O2 flow was varied from 1.0 sccm to 3.5 sccm to

optimize the optoelectronic properties. This resulted in r(O2) that variates from 0.45% to 1.3%

and resulting in working pressures between 4 × 10−4 mbar and 10 × 10−4 mbar. Following

depositions, the films were subjected to a thermal treatment at 200 ◦C for 30 minutes in air

using a hot plate. The free-carrier density and Hall mobility of the films were obtained with a

Hall effect HMS-5000 system in the Van der Pauw configuration. Their optical properties were

measured using a Perkin-Elmer Lambda 900 spectrophotometer equipped with an integrating

sphere. The absorptance of the films was calculated using the total transmittance and the

69



Chapter 4. Alternative low-temperature passivation route for Sn-based oxides

total reflectance (A = 100 - TT - TR). To assess the microstructure and composition of the films,

transmission electron microscopy (TEM) was performed in a FEI Tecnai Osiris operated at

200 kV and equipped with four silicon-drift energy-dispersive X-ray spectroscopy (EDX) detec-

tors. Samples were characterized either in plane-view or in cross-section. In the former case,

films were sputtered directly onto copper grids coated with a thin carbon film. In the latter

case, a thin lamella was extracted using the conventional focused ion beam lift-out method

in a Zeiss NVision 40. Rutherford backscattering spectrometry was used to assess the atomic

concentration of the different atomic species in SiZTO and a-ZTO. During RBS measurements,

high-energy He2+ ions are directed onto the samples and the energy distribution and yield

of the backscattered He2+ ions is measured. Thermal desorption spectroscopy (TDS) was

performed using an ESCO spectrometer equipped with a quadrupole mass spectrometer and a

halogen lamp at a base pressure of 10−9 mbar. By comparing the total effusion and desorption

rates from TDS, it was possible to compare total oxygen, tin and zinc desorption for a-ZTO

and SiZTO, while heating the samples at a constant rate of 20 ◦C /minute up to 700 ◦C . X-Ray

photoelectron Spectroscopy (XPS) measurements were carried out using a PHI VersaProbe II

scanning XPS microprobe. The analysis was performed using a monochromatic Al Kα X-ray

source of 24.8 W power with a beam size of 100µm. The spherical capacitor analyser was

set at a 45◦ take-off angle with respect to the sample surface. The pass energy was 46.95 eV,

yielding a full width at half maximum of 0.91 eV for the Ag 3d 5/2 peak. The background

subtraction, data fitting, and calculation of binding energy and FWHM was performed using

the Mathematica software.

4.2.2 Computational methods

Similarly to Chapter 3, the experimental investigations described in this Chapter are supported

by atomistic first-principle calculations based on density functional theory (DFT). These

calculations are essential to understand the effect of Si in in the electronic structure of Sn-

based TCOs. The DFT calculations were performed by Dr. Graužinytė and Dr. Flores-Livas,

supervised by Prof. Goedecker in the University of Basel.

All density functional theory calculations were performed using the PBE0 hybrid functional

as implemented in the VASP electronic structure code [Kresse and Furthmüller, 1996, Paier

et al., 2006, Adamo and Barone, 1999]. Si 3s and 3p (4), O 2s and 2p (6) and Sn 5s, 5p and

4d (14) electrons were included in the valence. All defects were introduced into a 2×2×3 (72

atom) supercell of rutile SnO2 phase. The atomic positions were relaxed using a 2×2×2 MP

kpoint mesh until the forces were below 0.02 eV/Å. Final densities of states were obtained

using a 3×3×3 Γ-centered kpoint mesh. The volume of the supercell was fixed to that of the

(expanded) perfect crystal calculated via fitting the Birch-Murnaghan [Birch, 1947] equation of

state. A 3×3×4 (216 atoms) supercell was tested to verify convergence with respect to supercell

size and good qualitative agreement was found.
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4.3 Trade-off in optoelectronic properties of a-ZTO

Before optimizing a-ZTO by co-sputtering with SiO2, the properties of a-ZTO films were

studied as a function of r(O2) during deposition. As seen in Figure 4.1, a-ZTO films sputtered

with a low r(O2) during deposition (0.65%) present low conductivity, mainly caused by low µe

of ≈ 5 cm2V−1s−1 , and high optical absorption from 400 nm to 900 nm. Initially, increasing the

r(O2) improves the film transparency and its conductivity reaches a maximum of 456 S cm−1

with µe and Ne of 25 cm2V−1s−1 and 1.12 × 1020 cm−3 respectively (Figure 4.1(a)). Increasing

the r(O2), above 1.15% reduces the optical absorptance but at the expense of conductivity,

which drops by 62% due to a decrease in both µe and Ne . A trade-off often observed in TCOs

is reached: improving the optical properties worsens the electrical ones and vice-versa. As

observed in Figure 4.1, optimizing the oxygen flow during deposition does not yield a film that

combines electrical conductivity above 400 S cm−1 and a low absorptance in the visible and

near infra-red part of the spectra. Hence, alternative approaches are required to control the

amount of oxygen in the films and to ensure both high conductivity and transparency.
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Figure 4.1 – (a) Hall mobility (µe ) and free-carrier density (Ne ) as a function of the oxygen flow
ratio (r(O2)). (b) Absorptance of a-ZTO films as a function of wavelength for depositions with
different r(O2) during deposition. The inset in (b) shows the change in the overall electrical
conductivity. All films were annealed at 200 ◦C for 30 minutes in air prior to the measurements.

4.4 Co-deposition of SiO2 and Sn-based TCOs

To introduce oxygen into Sn-based TCOs in a precise manner, while avoiding high temperature

steps [Rucavado et al., 2017], a-ZTO or SnO2 were co-sputtered with SiO2 . In the following

subsections we describe in detail the optimization and characterization of a-ZTO with SiO2

(referred to as SiZTO). The a-ZTO film with highest conductivity (a composition reported in

references [Rucavado et al., 2017, Morales-Masis et al., 2016]) will be used as a reference to

assess the effectiveness of co-sputtering deposition with SiO2 . In addition, we will discuss the

optimization and following characterization of SnO2 and SiSnO2 .
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Figure 4.2 – (a) Plot of the simplified figure of merit (FOM) as a function of deposition parame-
ters. The simplified FOM was calculated as the ratio of conductivity and average absorptance
in the range 400 nm - 800 nm for SiZTO films deposited with different SiO2 and O2 content;
(b) Hall mobility and free-carrier density of SiZTO as a function of power applied on the SiO2

target, these films had a constant r(O2) of 1.00%.

4.4.1 Reducing sub-bandgap absorption in a-ZTO thin films

We determined the optimal deposition conditions (regarding SiO2 content and r(O2)), by

comparing a simplified figure of merit (simplified-FOM) of films sputtered under different

conditions. The simplified-FOM was calculated as: simplified-FOM = σ
A400-800

, where σ is

the electrical conductivity and A400-800 is the average absorptance from 400 nm to 800 nm.

Therefore, a high simplified-FOM is indicative of films with high electrical conductivity and/or

low absorptance in the visible spectral range. The SiZTO films with the highest simplified-FOM

were deposited using 10 W (with a power density of 0.13 W cm−2) in the SiO2 target and an

r(O2), of 1.00% (marked with dashed lines in Figure 4.2(a)). The evolution of the electrical

properties of SiZTO with SiO2 content is shown in Figure 4.2(b) (all films deposited with a r(O2)

of 1.00%). The electron mobility increases from 22.2 cm2V−1s−1 up to a maximum of 26.8

cm2V−1s−1 when the power applied to the SiO2 target is increased from 0 to 10 W. For these

powers, Ne remains constant at 1×1020 cm−3. Further increasing the SiO2 content makes the

films less absorbing, but it also results in a decrease of free-carrier density and mobility. The

addition of SiO2 to a-ZTO has an effect in the electrical properties very similar to the increase of

oxygen during deposition. As seen in Figure 4.1, the increase in O2 during deposition initially

increases the electrical conductivity, but after a certain threshold is achieved, the conductivity

decreases drastically. For SiZTO this threshold is when the power in the SiO2 target is 10 W,

since at 15 W both µe and Ne decrease simultaneously.

To highlight the effect of adding SiO2 in the optoelectronic properties of a-ZTO, the conduc-

tivity and absorptance of the optimized SiZTO and the a-ZTO reference are compared in

In Chapter 6, a different definition of FOM is used. Here we used a simplified-FOM to compare only Sn-based
TCOs, only for their sheet resistance and transparency. In Chapter 6 we compare the TCOs based in their sheet
resistance and the absorptance weighted with the solar irradiance spectrum
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As-deposited

Figure 4.3 – (a) Broadband absorptance of annealed and as-deposited a-ZTO and SiZTO as a
function of wavelength. The frame in (a) indicates the close-up region presented in (b). In
addition, the inset in (b) shows the conductivity of the as-deposited and annealed films. While
both films show virtually equal conductivities, SiZTO presents a lower absorptance below the
bandgap and in the near infra-red part of spectrum when compared to the reference a-ZTO.
The SiZTO and ZTO film corresponds to the depositions performed with r(O2) of 1.00% and
1.15% respectively.

Figure 4.3. In Figure 4.3(a) we see the optical absorptance of as-deposited and annealed a-ZTO

and SiZTO. Annealing both films result in a slight decrease of absorptance in the near infrared

part of the spectra, but the thermal treatment has virtually no effect on the sugbap optical

region. On the other hand the addition of SiO2 to a-ZTO decreases the optical absorptance in

the near infrared and the sub-bandgap part of the spectra. To stress the effect of SiO2 in the

sub-bandgap absorptance of a-ZTO and on the electrical conductivity, Figure 4.3(b) compares

the annealed and un-annealed materials. It is worth noting that only a slight difference in

conductivity between a-ZTO and SiZTO is observed (208 S cm−1 and 192 S cm−1 in the as-

deposited films and 454 S cm−1 vs. 429 S cm−1 after a mild annealing at 200 ◦C ), with the

clear advantage of SiZTO presenting less absorptance than a-ZTO. Indeed, at a wavelength

of 500 nm, a-ZTO has a 5.5% absorptance, while SiZTO has an absorptance of only 2.5%. At

wavelengths above 1000 nm, SiZTO exhibits an absorptance below 5%.

At this point, it is worth noting that the decrease in optical absorptance is very similar to

the one shown for a-ZTO in Chapter 3. Nonetheless the absorptance decrease was obtained

by annealing at temperatures > 400 ◦C , while in this Chapter the improved absorptance

results from the addition of SiO2. Annealing at 200 ◦C resulted in an increase in the electrical

conductivity.

4.4.2 SiZTO microstructure and composition

The asymmetric speckles in the nanobeam diffraction patterns of SiZTO films (optimized ma-

terial i.e. using 10 W in the SiO2 target and r(O2) of 1% indicate an amorphous microstructure

73



Chapter 4. Alternative low-temperature passivation route for Sn-based oxides

(Figure 4.4a), analogous to that of a-ZTO [Rucavado et al., 2017]. A scanning transmission

electron microscopy (STEM) high-angle annular dark-field (HAADF) image and an energy

dispersive X-ray spectroscopy analysis (EDX) of the cross-section of SiZTO film (deposited

on sapphire) are shown in Figure 4.4b-c respectively. The HAADF image of the cross-section

of the sample indicates a dense (voidless) and homogeneous microstructure, while the EDX

line profiles (Figure 4.4c) demonstrate that the distribution of elements is uniform within the

amorphous film. A slight Si accumulation is measured at the top of the film since the SiO2

target shutter was closed slightly after the one of the a-ZTO.

The composition of the optimized SiZTO film determined by Rutherford backscattering (RBS)

is Si0.02Zn0.04Sn0.27O0.67, indicating an absolute increase in oxygen concentration of 2 at%

when compared to the reference a-ZTO (Zn0.05Sn0.30O0.65). EDX and RBS yield a similar atomic

composition.

Figure 4.4 – (a) Nanobeam electron diffraction patterns taken along the growth direction of
SiZTO thin films. The asymmetric speckles indicate an amorphous structure, unchanged with
SiO2 addition [Rucavado et al., 2017] and along the growth axis; (b) STEM HAADF image of
the cross-section of the film (left panel) corresponding Si K edge EDX map (right panel); (c)
at% line profiles (left to right) of the Si K, O K, Sn L and Zn K edges quantified using the FEI
Velox software (assuming a sample thickness of 100 nm and a density of 6.5 g cm−3 for the
absorption correction).

Thermal desorption spectroscopy

Thermal desorption spectroscopy measurements were performed on the optimized SiZTO and

a-ZTO films. The measurements show the effusion of species with mass to charge ratios (M/z)

of 32 and 64. The M/z = 32 signal potentially includes the desorption of Zn+ and O+
2 , while

M/z = 64 accounts solely for the desorption of Zn+ [Koida et al., 2017]. At temperatures < 400
◦C there is no significant effusion of M/z = 64 (Zn+) species (Figure 4.5b), while for the case of

M/z = 32 (Zn+ or O+
2 ) a high effusion signal is observed in SiZTO (red curve, Figure 4.5a). The
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very low effusion of M/z = 64 (Zn+) for SiZTO at T < 400 ◦C indicates that the origin of the M/z

= 32 signal is solely O+
2 desorbing from the SiZTO film. The high oxygen signal from SiZTO,

when compared to that of a-ZTO, supports the role of SiO2 as a source of additional oxygen

in a-ZTO. At temperatures above 400 ◦C , the M/z = 64 (Zn+) signal (Figure 4.5b) increases

drastically (by three orders of magnitude) for a-ZTO, while it only increases by one order of

magnitude in SiZTO. For a-ZTO, there is a clear correlation between both signals (M/z = 32 and

64), confirmed by the constant ratio between the signals. This indicates that Zn2+ desorbs with

O2+ in a-ZTO at temperatures above 450 ◦C . In contrast, Zn desorption is shifted to higher

temperatures in SiZTO and occurs at a lower rate than in a-ZTO. Interestingly, these results

indicate that the addition of SiO2 to the a-ZTO also result in a material with higher resistance

to thermal decomposition. The Zn effusion peak at T > 450 ◦C has been observed in ZnO and

ZnO:Al films previously [Koida et al., 2017], which has been attributed to film decomposition.
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Figure 4.5 – Thermal desorption spectroscopy (TDS) of SiZTO and a-ZTO for (a) M/z = 32 and,
(b) M/z = 64. The signal of the silicon substrate is included for reference.

Note that the low chamber pressure during TDS experiments promotes the decomposition

of the films at lower temperatures (when compared to atmospheric pressure) [Lupis, 1983].

Desorption of Sn+ shows the same trend as Zn+, but at a slightly higher temperature since the

bonding energy of Sn-O bonds is higher than that of Zn-O bonds [Gardner, 1940].

X-Ray photoelectron spectroscopy

X-ray photoelectron spectroscopy (XPS) was performed in the a-ZTO and SiZTO films (before

and after annealing) to evaluate possible changes in the oxidation state of the elements present

with addition of SiO2 and/or with annealing. To obtain the spectra from the surface and the

bulk of the films, the films were etched with Ar-ions before each measurement in steps of

12 nm. Every 12 nm a XP-spectra was obtained from the surface to the interface with the

substrate.

A background subtraction was performed using a Top-Hat transform1 . A pseudo-Voigt fitting

1The Top-Hat transform is a digital image algorith that substracts small elements from a specific image
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was done on the background-subtracted data to calculate the binding energies and the FWHM

for peaks corresponding to Sn 3d, O 1s and Zn 2p. In Figure 4.6, the signals corresponding to the

∼ 100 nm inside the sample are shown. Only slights differences between the measured samples

were found. The absence of the Si 2p signal (Figure 4.6) suggests that the Si concentration

was too low to be detected with this setup and acquisition parameters [Shard, 2014, Watts

and Wolstenholme, 2003]. Nonetheless, the presence of silicon was confirmed by RBS and

EDX separately. The contradiction between techniques (RBS and EDX suggesting ∼ 3 at%

Si and XPS showing no silicon) is not possible to explain using the existing data. To answer

this, further investigations in XPS are required, e.g. repeat the XPS experiments or use higher

concentrations of Si in ZTO.
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4.4.3 Addition of SiO2 to SnO2

To test the universality of adding SiO2 in Sn-based films to improve the optoelectronic prop-

erties of Sn-based TCOs, SiO2 was co-sputtered this time with pure SnO2 . To optimize the

deposition properties, co-sputtered of SiO2 and SnO2 was performed using similar conditions

to the ones obtained with SiZTO, i.e. 80 W and 10 W in the SnO2 and SiO2 targets respectively.

Variating the oxygen during deposition resulted in a very similar result as with a-ZTO, less

optical absorptance without any detrimental effect on µe nor Ne .

(a) (b)

-5

r(O ) (%)2 r(O ) (%)2

Figure 4.7 – (a) Electron mobility and (b) free-carrier density for SnO2 and SiSnO2 as a function
of oxygen flow ratio - r(O2) during deposition. All films were annealed at 200 ◦C for 30 minutes
prior to Hall measurement. An optimal optoelectronic properties are achieved in SiSnO2 for
an r(O2) of 1.30%.

µe and Ne dependence of oxygen flow is shown in Figure 4.7. For all films, free-carrier density

and mobility increase after annealing at 200 ◦C under atmospheric pressure. This could be

attributed to structural relaxations and slightly denser films. For simplicity, only annealed

samples will be discussed. As seen in Figure 4.7, a trade-off with the addition of oxygen is

seen: for all films mobility increases with O2 content during deposition, but free-carrier

density decreases drastically after a given threshold in O2 partial pressure. The threshold

changes when Si-atoms are present in the material. For SnO2 , the optimal r(O2) is 1.45%,

while for SiSnO2 is 1.30%. To compare with the effect of SiO2 in a-ZTO (Figure 4.3), the optical

absorptance of SnO2 and siSnO2 are shown from 250 nm to 1750 nm and from 400 nm to 850

nm (Figure 4.8(a) and (b) respectively). For both materials, the optimized films show a drastic

change with the addition of SiO2 in the visible and near infrared part of the spectra, while

preserving similar electric conductivities.
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(a) (b)

As-deposited

Figure 4.8 – (a) Broadband absorptance of annealed and as-deposited a-SiSnO2 and SnO2 as
a function of wavelength. The r(O2) for SiSnO2 and SnO2 are 1.30% and 1.45% respectively,
which correspond to the optimized films. The frame in (a) shows a close-up of the absorptance
in (b). In addition, the inset in (b) shows the conductivity of as-deposited and annealed SnO2

and SiSnO2. Just as for SiZTO, both films show similar conductivities, SiSnO2 shows lower
absorptance below the bandgap and in the near infra-red part of spectra when compared to
the reference SnO2

4.4.4 SiSnO2 microstructure and composition

A detailed overview of the microstructure of SiSnO2 , described by transmission electron

microscopy, is shown in Figure 4.9. The section of the SiSnO2 film in contact with the sub-

strate is amorphous, however, as the material thickens, it crystallizes into rutile c-SnO2 struc-

ture. Nanocrystallites are formed halfway through the 150-nm-thick film. A composition of

Sn0.38O0.62 is obtained by EDX before the addition of SiO2. For SiZTO, EDX indicates that Si is

homogeneously distributed at an average value of 3 at% within the films, while the oxygen con-

tent increases slightly to 63 at%. Furthermore, Si atoms do not accumulate at grain boundaries

or inside the bulk (amorphous or crystalline) of SiSnO2 (see Si map in Figure 4.4(e)). No Si-rich

clusters are observed, particularly towards the top of the film, where the film is composed of

small crystallites (Figure 4.4(d)).
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Figure 4.9 – (a) Nanobeam electron diffraction taken along the growth direction of SiSnO2 ,
showing an increased crystallinity towards the end of the film (arrowheads); (b) STEM HAADF
image of the cross-section of the film and Si EDX map; (c) at% line profiles (left to right) of the
Si K, O K and Sn L edges quantified using the FEI Velox software (assuming a sample thickness
of 100 nm and a density of 6.5 g cm−3 for the absorption correction

As seen in Figure 4.9, the conductivity of the as-deposited and annealed SnO2 drops slightly

when adding 3 at% of Si, while the absorptance in the visible and near infra-red decreases

simultaneously (from 6% to 3% at 500 nm). Hall effect measurements indicate a free-carrier

density of 1.75×1020 cm−3 for SnO2 and 1.26×1020 cm−3 for SiSnO2 , and mobilities of 28.2

cm2 V−1 s−1 and 25.5 cm2 V−1 s−1 for SnO2 and SiSnO2 , respectively. Notably, the SnO2

film contains both amorphous and polycrystalline regions (Figure 4.10(a)), demonstrating

that the addition of SiO2 passivates sub-bandgap defects in amorphous and mixed-phase

amorphous/polycrystalline thin films. In addition, the presence of Si-atoms in SnO2 retards

the onset of crystallization of the films: grains start to appear closer to the top surface in SiSnO2

when compared to SnO2 . A similar effect has been previously reported for Zn-modification of

SnO2 [Zhu et al., 2014]. An extensive study of the amorphous-to-crystalline transition of SnO2

and a-ZTO using XRD is found in reference [Landucci, 2019]. Finally, the presence/lack of Zn

does not appear to modify the passivation mechanism.
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Figure 4.10 – (a) STEM bright field image and (b) selected-area diffraction pattern of SnO2. The
microstructure of SnO2 is amorphous near the glass substrate, and as the thickness increases
it crystallizes to a polycrystalline structure.

4.4.5 A general process for Sn-based films

Experimentally, we have demonstrated that the addition of ≈ 2% of SiO2 to Sn-based oxides

results in a decrease of the optical absorptance in the sub-bandgap region. The decrease in

absorptance is similar to the effect of thermal annealing in oxidizing atmospheres at 500 ◦C

seen in a-ZTO (3.2 in Chapter 3). Also, similar changes in the optical properties were seen if

the r(O2) was increased during deposition (Figure 4.1), but this resulted in a poor electrical

properties. In contrast, the addition of SiO2 to SnO2 and a-ZTO resulted in a reduction of

absorptance without important changes in either µe nor Ne . In addition, the effect of SiO2 in

SnO2 and a-ZTO is the same regardless of the microsctructure. From this, we conclude that

the addition of SiO2 is a different passivation mechanism to the introduction of oxygen atoms

in the films. The following sections aim to understand and explain the effect of Si in Sn-based

oxides.

4.5 Si-modification to SnO2

The effect of point defects in the optoelectronic properties of Sn-based materials is described

qualitatively using Figure4.1. TCO deposition with low r(O2) results films with highVO density,

with deficient optical and electrical properties. As the number ofVO decreases, there is an

improvement in the optoelectronic properties. This effect is described in detail quantitatively

for a-ZTO in Chapter 3. As shown in previous sections, it is possible to improve the properties

of Sn-based TCOs by adding a small quantity of Si-atoms in the atomic network. The gain

in optical properties occurs irrespective of whether the microstructure is fully amorphous

(SiZTO) or an amorphous/polycrystalline mixture (SiSnO2 ). Moreover, both Si and O are found

by EDX to be homogeneously distributed within the thin films and show no segregation (e.g.
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Si does not accumulate at the grain boundaries of the polycrystalline SnO2 structure as shown

in Figure 4.4d-f). These observations indicate that the addition of SiO2 is modifying the nature

of point defects present within the films, defects that are present in both amorphous and

crystalline structures. To understand in detail the nature of these defects and their passivation

mechanism by Si addition, density functional theory calculations were performed. For these

calculations, the rutile crystal structure of SnO2 was used as a starting point, since: i) the same

effect was observed for amorphous and polycrystalline structures, ii) a-ZTO crystallizes into

rutile SnO2 and has first coordination shells very close to this atomic structure [Zhu et al.,

2014], iii) Zn does not appear to modify the Si-passivation mechanism and iv) in a crystalline

structure the effects induced by point defects can be isolated and only a limited number of

defect sites needs to be considered compared to an amorphous environment, thus preventing

the convolution of different effects (i.e. induced by the aperiodic structure and/or locally

missing atoms) that may blur the contribution of individual point defects in an amorphous

material.

The stoichiometric phase of crystalline SnO2 has a defect-free bandgap of 3.6 eV with no para-

sitic absorption in the visible range [Summitt et al., 1964]. One possible cause for the optical

absorption feature shown in Figure 4.8(b) is deep defect states arising from charge neutral

oxygen vacancies (VOx ). These defects have been predicted by theoretical models [Körner

et al., 2014, Körner et al., 2012]. A similar role of oxygen deficiency related defects in sub-

bandgap absorptance was demonstrated for the a-ZTO films, as shown in Chapter 3. The link

betweenVO -related defects and the absorptance features at 600 nm observed in Figure 4.3 is

further supported by the observation that increasing r(O2) during deposition suppresses the

absorption (Figure 4.1). The central role of oxygen deficiencies in sub-bandgap absorption and

its reduction in the presence of silicon suggests an indirect or direct passivation mechanism of

the vacancies upon SiO2 addition. In this section, one such possible mechanism is discussed

by considering a direct interaction between Si and oxygen vacancies. First, the contribution

of oxygen vacancies to the parasitic absorption in SnO2 is described in detail and then the

impact of Si addition is elucidated.

4.5.1 Oxygen vacancies

The structure of the SnO2 crystal containing an oxygen vacancy is shown in Figure 4.11a.

Local relaxations of the three-neighbouring tin atoms following the creation of an oxygen

vacancy result in two symmetry inequivalent Sn-sites labelled site (A) and site (B) in the inset

of Figure 4.11a. An isolatedVO is seen to be stable in two charge states in the crystalline SnO2

film (see Figure 4.11b): an ionized q = +2 charge state when the Fermi level is below 2.77 eV

and in a charge neutral q = 0 state when the Fermi level is approaching the conduction band.

In agreement with previous studies [Kılıç and Zunger, 2002, Guo and Hu, 2012, Graužinytė

et al., 2017], we observe electronic defect states in the mid-gap region for a charge neutral

vacancy (VOx ) (Figure 4.12a), which would contribute to parasitic absorption. In contrast,

a doubly ionized vacancy (VO ) (Figure 4.12b) results in electronic states at the edge of the
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(a)

Figure 4.11 – (a) SnO2 surrounding an oxygen vacancy defect. Sn atoms are shown as purple
spheres, oxygen - red, Si - blue, the vacancy is indicated in green. Right panel: A and B number
the two substitutional Si sites neighbouring the vacancy. Left panel: the distance between
a substitutional SiSn far from VO is indicated; (b) Formation energies (O-rich) of isolated
defects and defect-clusters as a function of the Fermi level. ε(2/0) transitions are indicated by
light grey lines. ∆marks the distance between ε(2/0) transition and the CBM. This distance,
important in determining the ratio between different charge states, is shifted towards the CBM
in the presence of Si.

conduction band minimum (CBM) of stoichiometric SnO2 , which would not detrimentally

affect the optical properties of the TCO. This transition of electronic defect states from deep to

shallow is a result of local atomic relaxations that follow the ionization of the vacancy. Similar

metastable shallow donor state formation via ionization has also been reported for other TCOs,

namely ZnO and In2O3 [Lany and Zunger, 2007, Lany and Zunger, 2005].

Whether an oxygen vacancy contributes to parasitic absorption or not is, therefore, determined

by the position of the Fermi level, εF . The Fermi energy at which two different charge states of

a given defect have the same formation energy (i.e. form in equal concentrations) is known as

the thermodynamic transition level. The calculated thermodynamic transition levels, ε(2/0),

are indicated by grey lines in Figure 4.11. In the case of an isolated oxygen vacancy the ε(2/0)

transition was found to occur at a Fermi level of 2.77 eV above the valence band. However, in

an n-type TCO material εF is expected to lie at or above the conduction band minimum. The

energy between the CBM and the thermodynamic transition level is (∆) therefore, the quantity

that determines the ratio between the concentrations, Cq , in which the different charge states,

q , will form

C0

C2
= exp

(
2∆

kB T

)
(4.1)
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Figure 4.12 – Electronic densities of states for oxygen vacancy related defects in SnO2. Results
for the charge neutral (q = 0) and for doubly ionized (q = 2) supercells are shown. Coloured
lines correspond to defect geometries described in detail in the main text. Defect induced
states are highlighted by dashed circles.

In the case of an isolatedVO a value of 0.855 eV for ∆was obtained. As a consequence, in an

n-type SnO2 the majority of oxygen vacancies are expected to be charge neutral and likely to

lead to parasitic absorption. On the other hand, the presence of silicon in the atomic structure

of SnO2 shifts the C0/C2 ratio as we shall see in the next section.

4.5.2 Addition of silicon

The EDX measurements reveal a uniform distribution of Si atoms in the SnO2 and a-ZTO

atomic networks, hence Si clustering was not considered in the modelling process of the mate-

rials. The rutile structure of SnO2 offers two obvious substitutional sites for Si incorporation:

the oxygen, SiO, or the tin, SiSn, site. We found that silicon preferentially substitutes Sn with

a formation energy of 2.04 eV and remains electrically inactive for Fermi levels across the

bandgap, as demonstrated in Figure 4.11b. O-site substitution, on the other hand, results in a

formation energy over 10 eV higher than that of a Sn-site (not-shown in Figure 4.11), which

suggests this defect-type is unlikely to occur.

We then consider the formation of SiSn-VO defect clusters, where the Si atom takes one of

the two symmetry inequivalent Sn sites neighbouring the oxygen vacancy, marked by A and

B on the right panel of Figure 4.11a. The calculated binding energies of the ionized SiSn-VO
clusters were found to be 0.757 eV on site A and 0.927 eV on site B. The positive binding energy

suggests that substitutional Si prefers to incorporate nearby undercoordinated Sn atoms.
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As seen in Figure 4.12, in all cases, the electronic defect states associated with aVO formation

are not strongly affected by the presence of a neighbouring Si atom. However, Figure 4.11b

reveals that when the SiSn-VO pair is formed the thermodynamic transition energies ε(2/0) are

shifted closer to the conduction band and values of ∆ equal to 0.635 eV (site B) and 0.655 eV

(site A) are obtained. The exponential dependence on the value of ∆ suggests that a 25% shift

observed in the presence of Si, could significantly affect the ratio between the different charge

states of oxygen vacancies present in the TCO. The presence of silicon is, accordingly, seen to

promote the formation of ionized oxygen vacancies, i.e. charge states that do not contribute

to the parasitic absorption.

Finally, we validate our results by placing the SiSn and theVO defects inside the same cell, but

as far away from each other as the cell size allows. This defect geometry is shown in the left

panel of Figure 4.11a. In the limit of an infinite cell, one should recover the exact sum of the

behaviours of the two defects in isolation. Instead, Figure 4.11b reveals a small shift of 20 meV

in the thermodynamic transition level ε(2/0), when compared to isolatedVO . Changes of

similar magnitude are seen in the electronic defect states shown in Figure 4.12. These shifts

reflect the size of the error that results from the choice of the supercell and demonstrate the

validity of the SiSn-VO cluster calculations.

4.6 Conclusions

In this chapter we show that combining SiO2 and Sn-based oxides (namely a-ZTO or SnO2 ) by

co-sputtering from separate targets results in a material with similar electrical properties as

the Sn-based materials (µe ≈ 25 cm2V−1s−1 and Ne ≈ 1020 cm−3 ) but less optical absorption

in the visible and infra-red part of spectrum. The introduction of over 2.6 wt% of SiO2 in

the Sn-based oxides results in a reduction of average optical absorptance from 4.2% to 2.3%

in SiZTO and from 4.0% to 3.2% in SiSnO2 (in the spectral range from 400 nm to 850 nm).

The reduction of optical absorptance in not restrictive to the visible part of spectra, overall

broadband absorption (from 400 nm to 2000 nm) is also reduced from 5.6% to 2.9% in SiZTO

and from 6.2% to 3.3% in SiSnO2 . This method prove to be equally effective in amorphous

and mixed phase amorphous/polycrystalline microstructures. While for a-ZTO there is no

effect on its amorphous microstructure, co-sputtering of SiO2 postpones the amorphization

of SnO2 , since crystalline domains appear earlier in SnO2 than in SiSnO2 , which suggest that

SiO2 amorphizes the TCOs. In addition, this "cold passivation" technique has low thermal

budget (temperatures < 200◦C ), which enables its usage in temperature-sensitive substrates

and devices.

We used density functional theory calculations of SnO2 with rutile structure, to provide a

quantitative explanation for the mechanisms governing the defect passivation of the materials

with SiO2 . We found that the effect of SiO2 is two-fold, on one hand the oxygen atoms from

SiO2 passivates the oxygen ubiquitous oxygen deficiencies in Sn-based oxides. On the other

hand, DFT calculations suggest that Si-atoms promote the formation of ionized defects which
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do not contribute to the detrimental sub-bandgap absorption.

Finally, this low-temperature technique could in principle be scalable to industrial volumes;

and should serve as an inspiration to design and discover oxides that could potentially play a

similar role in other TCOs as SiO2 does in SnO2 and a-ZTO.
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5 Zr-doped In2O3: Transport limiting
mechanisms and application in sili-
con heterojunction solar cells.

My original input and work for the results presented in this chapter include: the plan and execution of

the sputtering and post-deposition thermal treatments of In2O3:Zr, all the electrical characterization,

the optical characterization with the spectrophotometer and the coordination of the RBS and TEM

experiments.

I want to acknowledge Federica Landucci for the electron microscopy analysis, Dr. Max Döbeli for

the RBS and ERDA experiments and discussion, Raphäel Monnard and Dr. Mathieu Boccard for the

solar cell development and discussion, Dr. Jakub Holovský for the photothermal deflection spectroscopy

measurements and Dr. Jeremie Werner for the useful discussion.

To benchmark our indium-free TCOs, here we study an indium-based material in both the

amorphous and the crystalline phase. Due to its high conductivity and broadband transmit-

tance, Zr-doped In2O3(In2O3:Zr) is chosen for this study. Films with thickness from 15 nm

to 100 nm were sputtered in the amorphous state and annealed in different atmospheres to

investigate the links between defects, microstructure and optoelectronic properties. Annealing

in air yields fully crystalline films with low free-carrier concentration, high transparency and

a high electron mobility limited by scattering from optical phonons and ionized impurities.

15-nm-thick films exhibit an average absorptance of < 0.5% in the wavelength range 390 to

2000 nm and an electron mobility of 50 cm2V−1s−1 , increasing to 105 cm2V−1s−1 for 100 nm

films. Alternatively, thermal treatments in a neutral or reducing atmospheres result in a higher

conductivity for films thinner than 50 nm as a high free-carrier concentration is maintained.

The possibility of thinning down the In2O3:Zr to a few tens of nm while keeping high lateral

conductivity makes this material a promising candidate for a wide range of applications,

including flexible touch-screens, solar cells and light emitting diodes. Finally, as a proof of

concept we used 40-nm-thick In2O3:Zr as a transparent front electrode in silicon heterojunc-

tion (SHJ) solar cells. To minimize optical losses, a MgF2 secondary antireflective coating was

applied on top of the 40-nm-thick In2O3:Zr. The thickness reduction and the MgF2 results

in solar cells with higher photo-generated current than the cells with 80-nm-thick In2O3:Sn

(standard electrode in SHJ solar cells). This results in increasing the short circuit current and
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decreasing the usage of indium oxide in the solar cells.

5.1 Motivation and state of the art

As discussed in Chapter 1, tin-doped indium oxide (In2O3:Sn known commonly as ITO) is the

mainstream material in industry [Ginley and Perkins, 2011]. Nonetheless its optoelectronic

properties have limitations: a high Ne (typically from 1020 cm−3 to 1021 cm−3 ) is necessary

to achieve a high conductivity but this results in relatively low electron mobility (typically

µe < 40 cm2V−1s−1 ) [Yamada et al., 2000], which leads to high free-carrier absorption. In

contrast, hydrogenated indium oxide (In2O3:H) has excellent optoelectronic properties due

to its high mobility (µe ≈ 100 cm2V−1s−1 ), and has relatively low free-carrier density (≈
1020 cm−3 ) leading to a low free-carrier absorption [Koida and Kondo, 2007b, Koida et al.,

2010]. During deposition of In2O3:H, the introduction of water leads to the formation of an

amorphous microstructure [Wardenga et al., 2015]. A post-deposition thermal annealing at

temperatures from 150 ◦C to 200 ◦C crystallize the film and improves its µe and its optical

properties. Deposition without intentional introduction of water, results in films that are

already crystalline but with low electron mobility (≈ 10 cm2V−1s−1 ) , which does not increase

drastically after the subsequent thermal treatment (≈ 30 cm2V−1s−1 ) [Jost et al., 2016]. Ex-

perimental and computational studies have described extensively the doping, transport and

crystallization mechanisms of In2O3:H. Experimental results [Koida and Kondo, 2007b, Koida

et al., 2010, Mizuno et al., 1997] suggest that hydrogen plays a key role in reducing the number

of defects in the films, since during crystallization H-atoms seem to passivate doubly charged

oxygen vacancies (VO ) by substituting them with singly charged H-atoms (HO ). This effect si-

multaneously provides passivation of doubly-charged defects while generating one free-carrier

per defect-site, which contributes to the high conductivity of the material. This passivation,

combined with the reduction of structural disorder by crystallizing the films, increases µe . By

carefully analysing Hall effect results and optical mobility calculations, the authors found that,

for 70-nm-thick In2O3:H, the dominant scattering mechanisms in their films were ionized

impurities and phonon scattering [Koida and Kondo, 2007b, Koida et al., 2010, Mizuno et al.,

1997]. In this regard, previous experimental evidences [Macco et al., 2016] and scattering

calculations [Preissler et al., 2013] have shown that, for In2O3:H, polar optical phonons are

dominant over acoustic phonons. In addition, first-principle studies using density functional

theory (DFT) have shown the formation energy of H-related defects [Limpijumnong et al.,

2009] and it was found that substitutional and interstitial hydrogen atoms (HO andHi ) act as

shallow donors in In2O3:H. A complementary study performed by Macco et al. [Macco et al.,

2016] supports these results for 75-nm-thick In2O3:H deposited by atomic layer deposition,

and, in addition, describes that nanometric-sized crystallites trigger crystallization of the films.

In addition, using a combination of X-ray absorption fine structure and molecular dynamics

simulations, Medvedeva et al. studied the amorphous-to-crystalline transition of In2O3and its

effect on µe [Medvedeva et al., 2017, Buchholz et al., 2014a]. Simulated InOx polyhedra were

modified in terms of bond-angle, bond length and atom deficiency to describe amorphous
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and crystalline microstructures. Amorphous structures with decreased bond-length form

polyhedral chains that enable higher mobility compared with other amorphous structures.

The chains are formed prior to the In2O3crystallization. In the onset of crystallization µe

decreases due to a combination of amorphous and crystalline microstructures which pro-

duces incoherent inter-face boundaries that act as scattering centres. Fully crystallized films

exhibit a higher mobility due to spatially spread polyhedral chains, a large In-O-In angle,

which facilitates higher symmetry of the oxygen p-orbitals and enables an efficient overlap

between the indium s-orbitals.

Experimentally, after the demonstrated high-µe of In2O3:H, a plethora of In-based TCOs

have been investigated featuring other extrinsic dopants deposited introducing water during

deposition, a source of molecular hydrogen [Jost et al., 2016, Boccard et al., 2016b] or by

carefully controlling the deposition base pressure [Boccard et al., 2016a]. As an example of

these materials, W-doped, Ce-doped and Mo-doped In2O3 [Warmsingh et al., 2004, Koida

et al., 2018, Kobayashi et al., 2015, Newhouse et al., 2005, Meng et al., 2001] have high electron

mobilities and free-carrier densities (Ne of 1.9×1020 cm−3 , 1.1×1020 cm−3 , and 1.9×1020 cm−3

and µe of 104 cm2V−1s−1 , 110 cm2V−1s−1 and 95 cm2V−1s−1 for W-doped, Ce-doped and

Mo-doped In2O3 respectively). Another metal-doped In2O3 with promising optoelectronic

properties is Zr-doped indium oxide (In2O3:Zr). Koida et al. demonstrated that epitaxial grown

films of 250 nm of In2O3:Zr show µe of 110 cm2V−1s−1 and Ne of 1020 cm−3 for 250-nm-thick

films [Koida and Kondo, 2006]. Additionally, the same group demonstrated the feasibility

to sputter 270-nm-thick In2O3:Zr films with a µe > 80 cm2V−1s−1 and a Ne of 3×1020 cm−3

at a substrate temperature of 450 ◦C [Koida and Kondo, 2007b]. For these films, Zr-doping

increases the electrical conductivity, since in concentrations ≤ 2 at%, the Zr-atoms act as

efficient substitutional dopants for In (ZrIn ), while reducing the detrimental effect of VO
[Koida and Kondo, 2006, Koida and Kondo, 2007a, Kanai, 1984]. In addition Zr4+ and In3+ have

similar ionic radii (72 p.m. and 80 p.m. respectively [Shannon, 1976]), indicating that Zr is not

expected to affect the lattice constant and will not induce lattice strain.

Recently, we demonstrated the fabrication of In2O3:Zr with µe > 100 cm2V−1s−1 and Ne >

2.5×1020 cm−3 and an average absorptance of 3.6% (between 390 nm and 2000 nm) for 100-

nm-thick films [Morales-Masis et al., 2018]. These properties clearly place In2O3:Zr as an

ideal choice for broadband transparent electrodes, showing a high lateral conductivity of

4200 S cm−1, a bandgap of 3.9 eV and a low free-carrier absorption. In this Chapter, we

further investigate the properties of this material at thicknesses from 100 nm down to 15

nm, annealed the films in reducing and neutral atmospheres, and present an analysis of the

scattering mechanisms and their relation to the microstructure and thickness of the films.

Finally, we implement 40-nm-thick In2O3:Zr films as front electrode in SHJ solar cells. As

compared with In2O3:Sn front electrodes, cells using In2O3:Zr thin films present an enhanced

current density (Jsc ), which results in high-efficiency devices, which place the material as a

promising candidate to replace In2O3:Sn and reduce the usage of indium by reducing the

electrode thickenss.
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5.2 Methods

In2O3:Zr films were sputtered at room temperature onto alumino-borosilicate glass using a

Leybold Univex system from a target with a 98/2 wt% composition ratio of In2O3/ZrO2. The

RF power density was fixed to 0.95 W cm−2 (i.e. 75 W in a target with a diameter of 10 cm) and

the deposition atmosphere was a mixture of Ar and O2. To modify the oxygen content in the

films, the O2 the oxygen flow ratio (r(O2) = O2/(Ar+O2)) was varied between 0.0% and 0.61%,

while the working pressure changed from 2.05 × 10−3 mbar to 2.32 × 10−3 mbar. The initial

base pressure was ∼ 10−6 mbar. After deposition, the films were annealed at 200 ◦C for 30

minutes under atmospheric pressure or under a pressure of 0.5 mbar of H2 or N2 . The film’s

thickness was measured using an Ambios XP-2 contact profilometer. The electron mobility

(µe ) and free-carrier density (Ne ) of the films were measured using a HMS-3000 Hall effect

system in the Van der Pauw configuration. Total reflectance (TR) and total transmittance (TT)

were measured with a PerkinElmer Lambda 900 spectrophotometer. The absorptance (A) of

the films was calculated using: A = 100 - TT – TR, which is a good approximation for highly

transparent regions. Effective masses (m∗) were estimated using the Drude model by fitting

the reflectance of Fourier transform infrared spectroscopy measurements, performed in a

Bruker Vertex 80-system. Photothermal deflection spectroscopy (PDS) was performed by an

in-house developed system based on a 150W Xenon lamp. Fluorinert FC-72 was used as a

temperature sensitive liquid. The absorption coefficient and refractive index were evaluated

as described in [Morales-Masis et al., 2015]. The microstructure of the films was analysed

by transmission electron microscopy (TEM) using an FEI Tecnai Osiris operated at 200 kV.

For that purpose, films were deposited on SiN grids. Scanning TEM (STEM) images and

selected-area diffraction patterns (SAED) were acquired in a top view configuration. Energy

dispersive X-rays spectroscopy (EDX) was conducted in the same microscope using 4 silicon

drift detectors [Schlossmacher et al., 2010]. The composition of the films was obtained using

Rutherford backscattering spectrometry (RBS) using 2 and 5 MeV He ions and a silicon PIN

diode detector under 168◦ [Nastasi et al., 2014]. Hydrogen depth profiles were measured by

elastic recoil detection analysis (ERDA) with a 2 MeV He ion beam applying the absorber foil

technique [Nastasi et al., 2014].

SHJ solar cells were fabricated on a 240 µm-thick, 4-in-diameter, 3-Ωcm, float-zone wafer,

which was textured in a KOH-based solution, cleaned and dipped in 5% HF for one minute

prior to loading for layer depositions. Plasma-enhanced chemical vapour deposition (PECVD)

was used to deposit the intrinsic (i) and doped (p and n) amorphous silicon (a-Si:H) layers on

each side. For front (back) emitter cells, the p-type (n-type) layer was deposited on the front

(light-incoming) side of the wafer. The front TCO was then sputtered using a shadow mask

to define a 2 cm × 2 cm cell areas, and on the rear side, In2O3:Sn and Ag were subsequently

sputtered. Screen printing was used for the front Ag grid, and the device was finally cured at

210 ◦C for 20 minutes.
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5.3 Optoelectronic properties: effect of oxygen content and ther-

mal annealing

For 100-nm-thick In2O3:Zr, the evolution of Ne and µe as a function of r(O2), is shown in Figure

5.1 (a) and (b). Figure 5.1(c) shows the optical absorptance for these films as a function of

wavelength. µe of the as-deposited films increases with r(O2), while Ne is maximum at an r(O2),

of 0.16%. Films deposited without O2 during deposition present a high absorption in all the

measured wavelengths, additionally these films show sub-bandgap absorption (from 380 nm

to 630 nm) in the as-deposited state which decrease after the thermal treatment. Increasing

the oxygen content during deposition results in an overall decrease in absorptance of the films.

When annealed in air, all films show an increase in µe and a decrease in Ne , accompanied by

a decrease in optical absorptance at a wavelength ranging from the conduction band edge

to the near infrared. After thermal annealing, µe shows a maximum at r(O2) of 0.33%, which

decreases for higher r(O2). Given the outstanding µe of the film deposited with an r(O2) of

0.33% (105 cm2V−1s−1 ), this film considered as the optimized In2O3:Zr.

5.3.1 Optical bandgap

To measure accurately the optical bandgap of In2O3:Zr, photothermal deflection spectroscopy

(PDS) with an UV source to achieve high sensitivity in the visible range is desired. Due to its

high sensitivity in the ultraviolet and visible spectral regions, PDS was employed to measure

the absorption coefficient (α) of the films and to extract the optical bandgap (Figures 5.2 (a)

and (b) respectively). On one hand, higher r(O2) leads to a decrease in α in all the measured

energy range, which confirms the observations made in Figure 5.1(c). In addition, thermal

treatment in air results in considerable reduction in α for samples deposited with r(O2) in the

range 0.16% to 0.62% . The film deposited with r(O2) of 0.08% does not show a reduction in the

optical absorptance in the bandgap range, possibly due to a high density of undercoordinated

metallic defects (similar to the ones described in Chapter 3 and reference [Rucavado et al.,

2017]), which possibly did not decreased drastically after thermal annealing. Assuming direct

optical transitions, i.e., n = 2 in the Tauc relation α∝ (hν−Eg )1/n , an optical bandgap ranging

from 3.6 eV to 3.7 eV are found for as-deposited samples, which increased to 3.9 eV to 4.0

eV for the annealed samples (see Figure 5.2(b)). These correspond to values reported in the

literature for polycrystalline In2O3:Zr films [Kim et al., 2001]. The origin of this shift is the

crystallization of the film, and it will be further explained in section5.4. As observed in Figure

5.2(b), for both, as-deposited and annealed samples, a slight blue shift with decreasing r(O2) is

measured, which could be mainly attributed to the Burnstein–Moss shift [Pankove, 2012].

Photothermal deflection spectroscopy was not performed for films sputtered with r(O2) = 0.0. Nonetheless,
films with r(O2) = 0.08% were measured, and can be used to compare with less absorbing In2O3:Zr films.
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(b)

(a)

(c)r(O  )2

0.00%

0.55%

0.33%

0.62%

Figure 5.1 – Ne (a), µe (b), and absorptance (c) of as-deposited (empty triangles and dashed
lines in c) and annealed (full squares and solid lines) of 100-nm-thick In2O3:Zr films sputtered
with different r(O2). A maximum for mobility of 105 cm2V−1s−1 is obtained when sputtering
with r(O2) of 0.33%, while a maximum Ne is achieved for r(O2) of 0.16%. A convenient trade-off
between optical and electrical properties is obtained for films with mobility of 105 cm2V−1s−1

, since the average optical absorptance is 3.6%, while for the film sputtered with higher Ne

show an average absorptance 6.2%. The film deposited with r(O2), of 0.62% has a low average
absorptance of 1.0% but its Ne and µe are reduced. Lines in figures (a) and (b) provide a guide
to the eye.
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(a) (b)

Eg

r(O ) (%)2

0.08

0.16
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0.62

Figure 5.2 – (a) Absorption coefficient (α) of In2O3:Zr films deposited with r(O2) from 0.08%
mbar to 0.62%. As-deposited films are in dashed lines while annealed films are in solid lines.
(b) Tauc plot of the films shown in (a). The Tauc plot shows that an optical bandgap of 3.6 eV to
3.7 eV are found for as-deposited samples, which increases to 3.9 eV to 4.0 eV after annealing.

5.4 Microstructure of In2O3:Zr

To study the microstructure of the optimized films, scanning TEM (STEM) bright-field (BF)

micrographs, selected-area electron diffraction patterns and energy-dispersive X-ray (EDX)

spectra were acquired. The as-deposited film presents a microstructure that is predominantly

amorphous, as confirmed by the diffuse rings in the diffraction pattern in Figure 5.3(a). Small

(nanometric) randomly distributed nanocrystals (white and black spots marked by red arrows)

are embedded in the amorphous matrix. The crystallites have an average size of 2 nm and their

density is ≈ 5 µm−2. Similar microstructures have been reported elsewhere [Koida et al., 2010].

The films undergo an amorphous to crystalline transition during thermal annealing at 200 ◦C

in air (Figure 5.3(c) and (d)). The annealed films show crystalline domains of an average size

of 320 nm, with body-centered cubic structure (bixbyite-like structure [Buchholz et al., 2014a])

(Figure 5.3(c) and (d)). Additionally, EDX results show that zirconium, oxygen and indium-

atoms are distributed homogeneously within the films, and that the atomic composition is 59

at%, 2 at% and 39 at% of oxygen, zirconium and indium respectively (Figure 5.4).

RBS data of the optimized as-deposited In2O3:Zr films1 indicates a composition of Zr0.01In0.40O0.59,

which changes after thermal treatment to Zr0.01In0.38O0.61. From electron recoil detection

analysis (ERDA)2 , we estimate the H-content in our films by comparing with measurements

of a mica reference (9.5 at% of atomic-H). Hence, for a constant H-concentration, the signal

should decrease monotonically as the mica standard. Thermal annealing of In2O3:Zr leads to

an average atomic-H content changing from 2.3 ± 0.3 at% to 1.8 ± 0.3 at%. Note that given the

uncertainty of ERDA measurements, the results show a tendency of H-content in the films. In

1 The optimized films were deposited with r(O2) of 0.33% and µe of 105 cm2V−1s−1 .
2ERDA and RBS measurements were performed in the optimized In2O3:Zr films, i.e. sputtered with r(O2) =

0.33% before and after annealing.
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Figure 5.3 – Selected-area TEM diffraction patterns of (a) as-deposited and (c) annealed 100-
nm-thick In2O3:Zr films and corresponding STEM bright-field images in (b) and (d). In (b),
small (nanometric) crystallites, marked with red arrows, are visible in the amorphous matrix.
The SAED and STEM imaging was performed on the optimized In2O3:Zr films (r(O2) of 0.33%).
The images and diffraction patterns confirm an amorphous-to-crystalline transition after
thermal annealing at 200 ◦C .

addition, the ERDA results suggest that an accumulation of H-atoms is present in the surface

of the annealed film compared with the as-deposited In2O3:Zr (Figures 5.5(c) and (d)).

The presence of H-atoms in the films is expected as these are ubiquitous in deposition systems

at a base pressure of 10−6 mbar. To compare with other high-µe TCOs, ERDA measurements

show that In2O3:H has an H-content of 2.7± 0.3 at% is found in the as-deposited films. Anneal-

ing In2O3:H in the same conditions as In2O3:Zr, resulted in an unchanged average H-content

in the films nonetheless, just as for In2O3:Zr, H-atoms are found accumulated in the film’s

surface after thermal treatments (Figure 5.5(a) and (b)). Other studies also report an un-

changed H-content after thermal treatments in In2O3;H grown under with similar conditions

and annealed correspondingly [Koida et al., 2010, Macco et al., 2015].

The µe increase after annealing (41.4 cm2V−1s−1 to 105 cm2V−1s−1 ) is intrinsically linked to

the crystallization of the film, as shown experimentally in In2O3:H by [Koida et al., 2007,Macco

et al., 2014] and explained by [Medvedeva et al., 2017]. Crystallization provokes an increase

the In-O and the In-In bond distance. This is caused by a high rate of shared O-atoms by

In-cations and results in increased symmetry of the O-p orbitals, which enables an effective

overlap between the In-s orbitals. In addition, the crystalline phase is composed of InOx

polyhedral chains that allow efficient electron transport [Medvedeva et al., 2017]. Finally,
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Thickness: 50 nm

Figure 5.4 – STEM bright field micrograph of annealed 50-nm-thick In2O3:Zr, the crystallites
have an average size of ∼ 400 nm. The EDX maps show an homogeneous composition of Zr, In
and O. The EDX quantification resulted in averages of 2 at%, 39 at% and 59 at% of Zr, In and O.

the crystalline transition is also accountable for the bandgap shift after thermal annealing

(Figure 5.1(c)) [Wardenga et al., 2015, Koida et al., 2010]. The amorphous microstructure of

In2O3 allows optical direct transitions that are forbidden in its crystalline counterpart, hence

the optical bandgap in the amorphous films is reduced as compared with the crystalline

films [Walsh et al., 2008, Koida et al., 2018, Fuchs and Bechstedt, 2008].

(c) (d)

As-deposited In O :H2 3

As-deposited In O :Zr2 3 Annealed In O :Zr2 3

Annealed In O :H2 3

Figure 5.5 – ERDA measurements showing atomic-H depth profiles of the 9.5 at% mica stan-
dard (red), as-deposited (a) and annealed (b) In2O3:H, and as-deposited (c) and annealed (d)
In2O3:Zr thin films.
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The 2% absolute increase in O-content measured by RBS after crystallization suggests a

passivation ofVO , which has two possible consequences. Ne decreases as seen in 5.1(a), which

results in a further increase in µe due to a decrease in scattering centres. Furthermore, the

increase in µe and decrease in Ne result in a reduction of free-carrier absorption as observed

in 5.1(c) for all films after crystallization. The interplay between three possible dopants could

explain Ne of In2O3:Zr: atomic hydrogen (Hi andHO ), Zr-dopants, andVO . On one hand,

Zr4+ could substitute In3+ and generate single-charged defects (ZrIn ), which contributes to

one conduction electron per site [Koida and Kondo, 2006]. Hydrogen atoms are considered

to be beneficial for In-based TCOs when acting as substitutional of oxygen atoms (HO ),

decreasing theVO density and donating one electron per defect [Koida et al., 2010]. ERDA

indicates that annealing reduced the H-content from 2.3 at% to 1.8 at%, in parallel the thermal

treatment reduced Ne from 3.5×1020 cm−3 to 2.5×1020 cm−3 . The reduction of Ne could

be linked to the H-concentration in two ways: (i) Structural rearrangements could promote

H-atoms to replace VO (to form HO ), decreasing the overall free-carrier density [Koida

et al., 2010], and (ii) at 200 ◦C hydrogen effusion reduces theHi , which could decrease the

doping [Koida et al., 2018, Limpijumnong et al., 2009]. In addition, just as in In2O3:H, H-atoms

could passivate the surfaces in the grains of In2O3:Zr therefore decreasing the scattering from

grain boundaries in In2O3:Zr [Wardenga et al., 2015, Macco et al., 2015].

5.5 Transparency of In2O3:Zr films of thickness < 100 nm

The optoelectronic properties of the films when reducing the thickness from 100 nm down to

15 nm was furthermore studied using the optimized conditions r(O2) of 0.33%). In Figure 5.6(a)

and (b), µe and Ne are shown as a function of thickness for as-deposited (empty symbols) and

annealed films (full symbols).

Annealing the samples results in a similar behaviour as observed in Figure 5.1, an increase in

µe and a decrease in Ne . Reducing the thickness from 100 to 15 nm results in a decrease in

both, Ne and µe , leading to a conductivity drop from 4200 S cm−1 to 400 S cm−1. The optical

absorptance is also reduced when decreasing the thickness (Figure 5.6(c)). For wavelengths

between 390 nm and 2000 nm, the 100-nm-thick films annealed in air present an average

absorptance of 3.6%. The absorptance decreases to 1.3%, 0.7% and 0.4% for the 50 nm, 25

nm and 15-nm-thick In2O3:Zr respectively. This is expected since I (d) = I0E xp(−α× d),

where I0 is the intensity of the incident light, d is the thickness and α is the absorption

coefficient [Pankove, 2012]. For the 15 nm film, the absorptance is virtually equal to that of the

glass for wavelengths above 460 nm, nonetheless the film has a µe of 50 cm2V−1s−1 and a Ne

of 5.0×1019 cm−3 . To highlight the films transparency, we plotted the absorptance of the bare

glass substrate for comparison.

Top view STEM BF micrographs of the annealed In2O3:Zr films are shown in Figure 5.7 for

each thickness. The 15-nm-thick films show a strained polycrystalline microstructure, as

highlighted by the presence of bend contours [Williams and Carter, 1996], which gives rise to

contrast in the images and makes a reliable grain size assessment more difficult. Increasing
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(a)

(b)

(c)

Figure 5.6 – Optoelectronic properties of as-deposited (empty symbols and dashed lines) and
annealed (full symbols and solid lines) In2O3:Zr films deposited with r(O2) = 0.33% for different
thicknesses. The free-carrier density (a) and mobility (b) show an increase with thickness
after annealing (lines in a and b are for eye guidance only). The optical absorptance decreases
drastically for thinner films. The absorptance of the glass substrate is shown in black dotted
lines in (c). As the thickness of the In2O3:Zr is reduced to 15 nm, the absorptance approaches
that of the glass substrates, still with a conductivity of 400 S cm−1.

the thickness of the films up to 25 nm and 50 nm results in the formation of large crystalline

grains with average sizes of 500 nm and 420 nm, respectively. The grains are large along the

specimen plane when compared with the film’s thickness. Doubling the thickness up to 100

nm results in smaller grain sizes, with an average size of 320 nm. Grain sizes were calculated

using the average grain intercept method, in which lines (of length L) are drawn across the

top view micrographs and the number of intercepts are summed up (N), the grain size is

calculated by dividing L by N.

A crystallization model proposed by Macco et al. for In2O3:H films pepared by atomic layer

deposition suggests that the as-deposited films are mostly amorphous, but have a low density

of embedded crystallites. Upon annealing, the In2O3:H crystallites grow until a full conversion

to a crystalline phase [Macco et al., 2016]. A similar scenario could explain the crystallization of

In2O3:Zr films, since, as highlighted in Figure 5.3(b), small crystallites are dispersed across the

volume of the amorphous film. The final grain size is directly linked to the two-dimensional
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Figure 5.7 – STEM BF top view of films of (a) 15 nm, (c) 25 nm, (e) 50 nm and (g) 100 nm
thickness and their corresponding electron diffraction patterns respectively in (b), (d), (f) and
(h). All films were annealed in atmospheric pressure at 200 ◦C . 15-nm-thick films show a
strained crystalline microstructure (grain boundaries are marked with the red arrows). Average
crystallite sizes of 500 nm, 420 nm and 320 nm are found for 25 nm, 50 nm and 100-nm-thick
films, respectively. The electron diffraction for (f) was performed in one single crystalline
domain.

density of these crystalline seeds (density projected on the specimen plane, in nm−2). As-

suming that the volumetric density (in nm−3) of these crystal seeds is the same in each film,

thinner films feature overall less seeds (as they are thinner). And so, these crystals may extend

further until impinging a neighbouring seed in thinner films, leading to a larger grain size. The

results from Figure 5.6 and Figure 5.7 indicate that while a clear change in the optoelectronic

properties is observed with decreasing thickness, all annealed films show the formation of

large crystalline grains with bixbyite structure. In addition the diffraction patterns shown in

Figure 5.7 (b), (d), (f) and (h) where indexed. The SAED in Figure 5.7(f) corresponds to a single

grain oriented to [111]. The rest of the SAED are not oriented and include more than one

crystalline domain, but all reflections can be indexed by the In2O3 bixbyite atomic structure.

Surprisingly, from Figure 5.6 and Figure 5.7 we see that for films thicker than 25 nm, there is a

negative correlation between the grain size and µe of the films, i.e. larger crystalline domains

result in lower µe .

To understand what influences the transport of the carriers in In2O3:Zr we have furthermore

performed temperature-dependent Hall effect measurements and estimated the optical mo-

bility and effective mass by FTIR and Drude model fitting.
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5.6 Mobility limiting mechanisms as a function of thickness for crys-

talline In2O3:Zr

Grain boundary scattering, optical phonons and ionized impurities are the most common

mechanisms limiting the electron transport in crystalline TCOs. The contribution of each

mechanism to the total mobility can be expressed by applying Matthiessen’s rule:

1

µT
= 1

µGB
+ 1

µPh
+ 1

µi i
(5.1)

where µT is the total mobility, µGB the mobility limited by grain boundaries, µPh the mobility

limited by optical phonons and µi i the mobility limited by ionized impurities. To estimate the

effect of grain boundaries in crystallized In2O3:Zr, we compared µe , with the optical mobility

obtained from a fitting of the Drude model on FTIR reflectance measurements [Fujiwara and

Kondo, 2005]. If an electron absorbs all the energy of an incoming photon, its mean free path

can be calculated using [Knoops et al., 2015]

le = ve ×τ=
√

2E I R m∗µ2

e2 (5.2)

Where νe is the kinetic energy transferred by the photon, τ is the time between two scattering

events, EI R is the energy of the photon, m∗ is the effective mass of the electron and e its charge.

For EI R in the regime (0.05 eV – 0.7 eV), and assuming an effective mass of 0.3 me [Koida et al.,

2010], le is < 15 nm, i.e. excited by the IR photons, the electrons do not cross a grain boundary

and they are confined inside one crystalline domain. Fittings of the optical conductivity,

suggest that the intra-grain mobility is not higher than µe since the values obtained for the

optical mobility are similar to those measured by Hall effect (75 cm2V−1s−1 < µopt < 105

cm2V−1s−1 for the 100-nm-thick film). This suggests that grain boundaries are not a dominant

mechanism limiting electron transport. This was previously suggested by the relation between

grain size and µe (Figure 5.6 and Figure 5.7) and literature reports of other high-µe In-based

oxides [Koida et al., 2010, Wardenga et al., 2015, Macco et al., 2015, Preissler et al., 2013].

In addition, the fitting indicates that the effective mass is low (< 0.3 me ). To pinpoint the

dominating scattering mechanism for each thickness, temperature dependent Hall effect

measurements were performed from -200 ◦C to 70 ◦C . As shown in Figure 5.8, Ne of the films

does not change significantly with temperature in this range, which indicates that all films

are degenerately doped. Nonetheless, µe decreases differently with temperature for each film

thickness. The strongest change is seen for the 100-nm-thick films whereas 15 nm films shows

almost unchanged mobility for all temperatures.
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Figure 5.8 – Ne (a) and µe (b) as a function of temperature for In2O3:Zr films with a thicknesses
from 100 nm to 15 nm. While Ne does not change in this temperature range, µe of the films
changes with temperature. Thicker films exhibit larger temperature dependence, possibly due
to a higher influence of optical phonon scattering compared to thinner films.

To deconvolve the different contributions to the mobility based on their temperature depen-

dence, we used a simple model [Dugdale, 1977, Zhang and Ma, 1996] with one temperature

independent component (µi i , which includes bulk ionized impurities and scattering from

surfaces) and a temperature dependent component (µPh), which approximates the scattering

from polar optical phonons. The expression for Matthiessen’s rule then becomes:

1

µ(d ,T )
= 1

µ0

(
T0

T

)2

+ 1

µi i (d)
(5.3)

where 1
µ0

(
T0
T

)2
is the mobility limited by phonon scattering, i.e. µPh , µ0 is the mobility at tem-

perature T0 and T is the temperature. By fitting the temperature dependence of the mobility

for each thickness, µPh and µi i were calculated using Equation 5.3. At room temperature, we

calculated the inverse of µPh and µi i as a function of thickness. Figure 5.9 shows the inverse of

µPh , and µi i for each thickness. The limiting scattering mechanism is the one showing larger

inverse-µe . The influence of ionized impurity scattering is dominant for thinner films, while

for the 100-nm-thick films ionized impurities and phonon scattering have a comparable effect

on µe . The influence of ionized impurities for thinner films likely results from surface defects.

The abrupt rupture of the crystal structure at the surface creates a local deviation of the Fermi

level position relative to the band-edges [Sze, 1981]. The causes for the band-bending are

intrinsic and extrinsic. Intrinsic band bending is two fold [Butler et al., 2014]; on one side,

the penetration of the electron wave-function into vacuum results in lower electron density

of states in the surface region. Conversely, the difference in the coordination number in the
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surface atoms also contributes to band-bending.
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Figure 5.9 – Room temperature inverse mobility (left axis) as a function of thickness. The
contribution from phonon scattering (green) and ionized impurities (red) was calculated by
fitting equation 5 at room temperature. The right axis shows the Hall mobility (black squares)
as a function of film thickness.

Additionally, external adsorbed impurities give rise to band bending as well. In this regard,

bixbyite-type lattices show a high mobility of atomic oxygen [Agoston et al., 2010] and a higher

number of interstitial and substitutional sites for oxygen than other n-type structures [Harvey

et al., 2006]. The mobile O-atoms lead to the passivation ofVO and to the formation of other

oxygen related ionized impurities such as oxygen interstitial and substitutional oxygen (Oi''

andOIn' ' ) [Ágoston et al., 2009] near the surface of the films. These defect species affect the

overall electrical properties of thinner films (thickness < 100 nm), since the passivation ofVO
by excess-O is reflected in a decrease of Ne (Figure 5.6(a)). Conversely, the ionic nature of

adsorbedOi'' andOIn' ' further limits µe for thin-films, since they increase the scattering events

of the free electrons.

To gain further insights into scattering at the surface, we used a phenomenological model

proposed by Look et al. to describe the thickness dependence of µe [Look et al., 2013]. This

model proposes that the boundary-scattering-limited mean free path is proportional to the

thickness of the film and to the Fermi-velocity. In contrast the scattering from the bulk is

proportional to the quality factor of the surfaces, d∗. The thickness-dependent mobility then

is given by

µ(d) = µ(∞)

1+ d∗
d+δd

(5.4)
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Where µ(∞) is mobility of electrons in the bulk of the material (absent of surface defects), d is

the thickness of the films, δ d is the thickness of the depletion layer, d∗ is a fitting parameter

which describes the quality of the interface, defined as µ(d∗−δd) =µ(∞)/2 . Fitting Equation

5.4 to the mobility values from Figure 5.6(b), we found that In2O3:Zr sputtered on glass has a δd

of 7.6 nm, µ(∞) of 126 cm2V−1s−1 , and d∗ of 31 nm. The δd is an estimation of the thickness of

a superficial, low-µe section the film, affected by the surface defects. For the 15-nm-thick film,

δd represents half of its thickness, which influences the electron transport in the films, limit

µe to 50 cm2V−1s−1 . As the film thickens (25 nm and 50-nm-thick films), the influence of δd is

reduced since the high-µe region becomes more important in the overall electron transport of

the film. Finally, for 100-nm-thick films, 7.6 nm represents a less important proportion of the

conduction path, therefore less defects per volume are expected, which results in the overall

higher µe .

5.7 Influence of annealing atmosphere on the optoelectronic prop-

erties of In2O3:Zr

In view of the role of oxygen in the properties of In2O3:Zr upon thermal treatment, we an-

nealed In2O3:Zr films of thickness from 15 nm to 100 nm at 200 ◦C in 0.5 mbar of H2 or N2

. Surprisingly, films annealed H2 and N2 did not crystallize fully, they show an amorphous

microstructure with a relatively high crystallite-seed density (STEM in Figure 5.10). Given that

O-atoms promote the structural re-arrangement required for the crystallization of In2O3, we

propose that this phase change is promoted by O2, [Pasquarelli et al., 2014, Adurodija et al.,

2006, Medvedeva et al., 2017, Buchholz et al., 2014a]. Another (less likely) possibility is the in-

creased pressure during air annealing triggers crystallization, nonetheless more investigations

are required to further explain this effect. Figures 5.10(c) and (d) suggest that the size of the

crystallite-seed depends also on the treatment atmosphere, since on average crystallites of

films annealed in in H2 are smaller than those treated in N2 . Previous reports have shown that

the crystallization temperature is dependent on the indium/oxygen ratio of the materials, of

the deposition temperature, and ultimately in the route of oxygen incorporation [Pasquarelli

et al., 2014, Adurodija et al., 2006]. These factors could potentially influence the microstrucure

and the final size of the crystallite seeds.
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Figure 5.10 – STEM HAADF images of 50-nm-thick In2O3:Zr (a) as-deposited, (b) annealed
in air, (c) annealed in H2 and (d) N2 atmospheres. The as-deposited films are amorphous
with embedded nanometric-sized crystallites. The corresponding diffraction patterns confirm
that the (e) as-deposited sample is mostly amorphous, (f) the sample annealed in air is
crystalline and samples annealed in H2 (c) and (g) and N2 (d) and (h) have an amorphous
microstructures with embedded crystallites of considerably higher grain size than those seen
in the as-deposited film.

Figure 5.11 shows the electrical properties of the as-deposited and annealed films. The µe of

films annealed in H2 or N2 is lower those annealed in air. Nonetheless, µe is improved com-

pared to as-deposited films, possibly caused by local structural changes following the thermal

treatments [Medvedeva et al., 2017, Buchholz et al., 2014a]. Differences in optoelectronic

properties of films annealed in H2 and N2 atmospheres have their origin in point defects, as

they were annealed at the same temperature and show similar microstructure. Annealing in

H2 and N2 leads to a higher Ne as compared to films annealed in air. Annealing in a neutral

atmosphere such as N2 prevents the passivation ofVO by oxygen from the air. Thermal treat-

ments in H2 atmosphere generate more Ne compared to an annealing in N2 , since H atoms

act as donors in In-based materials [Koida and Kondo, 2007b,Koida et al., 2010,Limpijumnong

et al., 2009, Van De Walle, 2000]. Additionally H-atoms may also create additional VO by

removing oxygen atoms from the surface of In2O3:Zr, as reported for other TCOs [Yamada

et al., 2000, Rucavado et al., 2017, Kamiya et al., 2008b, King and Veal, 2011, Bielz et al., 2010].

Conversely, as compared with the as-deposited films, thermal treatments in N2 and H2 did not

change µe importantly in films of 15 nm and 25 nm, which are the most sensitive to surface

defects, suggesting that there is no overallVO passivation, and no introduction ofOi'' andOIn' '

.
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As deposited
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N  annealing

H  annealing2

2

Figure 5.11 – Electrical properties of optimized In2O3:Zr as-deposited (empty symbols) and
films annealed in H2 and N2 atmospheres (blue, green and red full symbols respectively).
Films were deposited with r(O2) of 0.33% and for different thickness. (a) Ne and (b) µe are
dependent of the annealing atmosphere. In (c) the conductivity for each film is shown as
function of thickness, in addition we plotted lines for constant Rsheet

5.8 In2O3:Zr films of thickness < 80 nm as front contact in silicon

heterojunction solar cells

Given the optoelectronic properties of In2O3:Zr, the material is a promising candidate to

replace the standard In2O3:Sn electrodes used in SHJ solar cells. On one side, 100-nm-thick

In2O3:Zr films are more transparent than 100-nm-thick In2O3:Sn in the visible and near

infrared, due to the wider bandgap and less free-carrier absorptance of In2O3:Zr ( [Morales-

Masis et al., 2018]). Moreover, decreasing the thickness of In2O3:Zr results in higher intensity

of light transmitted through the TCO, due to the exponentially relation mentioned in Section

104



5.8. In2O3:Zr films of thickness < 80 nm as front contact in silicon heterojunction solar
cells

5.5. The sheet resistance of 50-nm-thick In2O3:Zr is similar to the standardly used electrodes

(80-nm-thick In2O3:Sn with Rsheet between 90Ωsq and 100Ωsq ). In SHJ solar cells, the TCO

electrodes also serves as an antireflective coating (ARC) [De Wolf et al., 2012]. With a refractive

index of ≈ 2 at wavelengths of 600 nm, 80-nm-thick TCO reduce the reflection of light from

the cells. If the TCO thickness is < 80 nm, a second ARC must be used to minimize this optical

loss mechanism. With a refractive index of 1.4 at wavelength of 600 nm, 100 nm of MgF2 is

an optimal secondary ARC to complement the antireflective properties of 40 nm of In2O3:Zr.

To show that In2O3:Zr films with reduced thickness have great potential to replace In2O3:Sn

electrodes, thus reducing the indium consumption, we sputtered 80 nm of In2O3:Zr, 40 nm

of In2O3:Zr and 40 nm of In2O3:Zr and the standard In2O3:Sn electrode in SHJ solar cells. In

addition, 100 nm of MgF2 were evaporated in the 40 nm thick In2O3:Zr film. Following the TCO

deposition and MgF2 evaporation, Ag-fingers were screen printed and the cells parameters

IV characteristics were measured under standard test conditions (AM 1.5G spectrum, 100 W

cm−2 and 25 ◦C ). Resulting solar cell parameters are shown in Table 5.13 .

Table 5.1 – Performance of SHJ solar cells using 80 nm and 40-nm-thick In2O3:Zr as front
electrode. The 40-nm-thick In2O3:Zr also has a MgF2 film as second antireflective coating
(ARC). The standard In2O3:Sn was used as reference electrode. In addition the Rsheet and the
weighted absorptance (Awei g hted ) of the films are shown.

80 nm In2O3:Zr 40 nm In2O3:Zr (no MgF2) 40 nm In2O3:Zr (with MgF2) In2O3:Sn

Efficiency (%) 22.2 21.1 22.3 22.3
Fill factor (%) 77.1 76.7 76.7 77.7
Jsc (mA cm−2) 40.3 38.5 40.6 40.1
Voc (mV) 715.6 714.7 714.5 714.6
Rsheet (Ω/sq) 25 95 95 93
Awei g hted (%) 1.6 0.6 0.6 4.3

Compared4 to standard In2O3:Sn, the 80 nm In2O3:Zr shows higher Jsc and Voc (+0.2 mA cm−2

and +1.0 mV respectively). The higher Jsc is a consequence of less parasitic absorptance in

In2O3:Zr than in In2O3:Sn. The higher Voc might be caused by a reduced sputtering damage

during in the In2O3:Zr deposition [Morales-Masis et al., 2018]. On the other hand, the fill

factor is lower in the cell using In2O3:Zr than in one with In2O3:Sn. Given that In2O3:Zr is more

conductive than In2O3:Sn, and that In2O3:Zr and In2O3:Sn have similar contact resistance

with Ag [Morales-Masis et al., 2018], possibly In2O3:Sn has lower contact resistance with the

p-doped amorphous silicon than In2O3:Zr.

Thinning down the In2O3:Zr electrodes from 80 nm to 40 nm in the cells results in lower Jsc

(-1.8 mA cm−2) since for this TCO thickness, reflectance losses are not minimized. Depositing

100 nm of MgF2 resulted in a Jsc gain of +0.5 mA cm−2 as compared with the cell with In2O3:Sn,

and +0.3 mA cm−2 with the cell using 80 nm of In2O3:Zr due to an optimized anti-reflective

3A more fair comparison between TCOs would also require the addition of MgF2 as a second ARC with In2O3:Sn.
This experiment was not performed due to time constrains.

4The Rsheet and Awei g hted shown in Table 5.1 were measured in films deposited on glass, with thickness of
100 nm and 50 nm instead.
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condition.

(a) (b)

Figure 5.12 – (a) Light IV characteristics of SHJ solar cells with 80 nm and 40-nm-thick In2O3:Zr
(with and without MgF2 as second antireflective coating. (b) External quantum efficiency
(EQE) of the cells shown in (a) and the corresponding optical absorptance of the front TCOs.
The absorptance of the 40-nm-thick In2O3:Zr does not change with MgF2 and is not shown
here. As reference, In2O3:Sn electrode was also used in the cells and in the absorptance
measurement.

External quantum efficiencies (EQE) of the solar cells and absorptance of the TCOs are shown

in Figure 5.12(b). From 320 nm to 450 nm, lower EQE is measured for cells using 80-nm-thick

TCOs as compared with the 40-nm-thick In2O3:Zr. This is caused by the higher parasitic

absorptance of the 80-nm-thick TCOs as compared with the thinner films. This also explains

partially the lower Jsc in the device using In2O3:Sn as front contact. In the wavelength range

from 450 nm to 1050 nm, the 40 nm film without MgF2 shows lower EQE, since for this film

thickness the reflectance is not minimized, hence the 38.5 mA cm−2 seen in the IV-curve. The

double-ARC material electrode has at the same time low optical absorptance and optimized

antireflective parameters that leads to a photocurrent of 40.6 mA cm−2, 0.5 mA cm−2 higher

than the reference cell.

Several strategies could be implemented to further increase the efficiency of the In2O3:Zr-

containing devices, on one hand the fill factor of cells can be incremented by either designing

a TCO with a graded Ne (high Ne at the interface with the amorphous-Si contact), or by a better

tuning of the a-Si contact. A thorough explanation of the In2O3:Zr/a-Si interface can be found

in reference [Morales-Masis et al., 2018]. On the other hand, the high-σ of the TCO allows

more space between the Ag-fingers, hence decreasing shadowing and increasing the Jsc .

Finally the high contact resistance between In2O3:Zr and p-type amorphous silicon could be

avoided if the front of the cell is at the n-type contact, e.g. using a back emitter design. As a

proof of concept, we sputtered 80 nm, 40 nm and 20 nm of In2O3:Zr in back-emitter cells and

compare them with cells using the standard In2O3:Sn electrode.
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5.9 Conclusion

In this chapter, we studied the optoelectronic properties of In2O3:Zr films with various thick-

ness and described their electron transport and sources of conductivity in terms of thickness,

donors and possible defects decreasing the mobility. To do this, we sputtered In2O3:Zr films

with thickness changing from 100 nm to 15 nm and performed thermal treatments at at-

mospheric pressure and under N2 and H2 pressures. We found that annealing the films at

atmospheric pressure results in a high quality crystalline microstructure while the oxygen

present in the air passivatesVO . These results in 100-nm-thick films with µe of 105 cm2V−1s−1

and Ne of 2.5×1020 cm−3. For films annealed in air, the carrier transport is limited by (i) optical

phonons and (ii) ionized impurity scattering. The latter becomes dominant for films with a

thickness < 100 nm since these films are more sensitive to ionized surface defects. Thermal

treatments in H2 seem to be optimal to achieve high conductivity with thin films (< 50 nm),

by maintaining high free-carrier concentration. Conductivities as high as 1980 S cm−1 are

achieved for 25-nm-thick films with optical absorptance close to the one on the glass substrate.

Furthermore, we demonstrated In2O3:Zr is an excellent candidate to replace In2O3:Sn as front

electrodes in silicon heterojunction solar cells. Devices using 80-nm-thick In2O3:Zr have

increased short-circuit current as compared with cells with In2O3:Sn electrodes of the same

thickness. Finally, even higher Jsc gain was achieved by reducing the thickness of In2O3:Zr to 40

nm and implementing a secondary MgF2 antireflective coating. A more complete experiment

would include the usage of a second ARC with In2O3:Sn, nonetheless this results is promising

alternative to reduce the amount of indium used in the front contact of silicon heterojunction

solar cells.
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6 Weighted Average Figure of Merit and
TCO comparison

In this dissertation, the optical and electrical properties of TCOs were compared almost

separately. In this Chapter we will introduce the average weighted figure of merit (FOM) and

it will be used to compare the overall optoelectronic properties weighted under the solar

spectrum. Finally we will make a general comparison of the TCOs designed in the previous

chapters and we will compare them to the standard used material for silicon heterojunction

solar cells, In2O3:Sn.

6.1 Solar spectrum and TCOs

As discussed earlier, the electrical conductivity of TCOs is fully controlled by µe and Ne . These

two factors are intertwined and the simultaneous increase of both of them is challenging. In

addition the increase of Ne alone has two important consequences in the optical properties:

on one hand increasing Ne leads to an increase in free-carrier absorptance (αFC A), which

decreases the infrared transmitted light.
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Figure 6.1 – (Left axis) Spectral irradiance from the Sun at AM 1.5 G compared with the (right
axis) absorptance of In2O3:Sn. Increasing Ne results in higher absorptance in the infrared part
of spectra and blue-shift of the fundamental absorption due to higher values of Eopt .

Conversely, increasing Ne also leads to a widening of the Eopt due to the Burstein-Moss

shift. Here a conundrum is found between the detrimental effect of αFC A , and the beneficial

Burstein-Moss shift. To fairly compare the optical and electrical properties between TCOs

while including a specific source of radiation, we introduce the weighted averaged figure of

merit (FOM).

6.2 Weighted averaged figure of merit (FOM)

Up to now, we have used µe to optimize the TCOs, given that in general the high-µe results in

low free carrier absorptance (αFC A), and is also linked to lower absorptance in the visible part

of the spectra due to defect passivation (as seen in Chapter 3) At this point we introduce an

optimization approach which comprises the optical and electrical properties in a TCO. For a

film with electrical conductivity of σ and thickness d , the FOM is defined as

FOM = σ×d

Awei g hted
= 1

Rsheet × Awei g hted
(6.1)

The FOM has units ofΩ−1. Nonetheless, for simplicity and to compare with results shown in reference [Morales-
Masis et al., 2017a], the resulting FOM is multiplied by 1Ω×100%.

In Chapter 4 we used the simplified Figure of Merit (simplified-FOM), which does not take into account averaging
the solar spectrum. The simplified-FOM is more useful for light emitting devices, accounting for the solar spectrum
results useful for light absorbing devices. To ensure a fair comparison of TCOs, in Chapter 6 the FOM was calculated
for all materials using Equation 6.1.

Finally, using the Figure of Merit to compare TCOs is useful because the influence of the solar spectrum is taken
into account. Nonetheless the FOM is not guarantee of applicability directly in the optoelectronic devices
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where

Awei g hted =
∫

Il i g ht (λ)× A(λ)dλ∫
Il i g ht (λ)dλ

(6.2)

Where Awei g hted is the weighted absorptance, A(λ) is the wavelength-dependent absorptance

of TCOs and Il i g ht (λ) is the 1 Sun air mass solar spectrum (AM 1.5G), shown in Figure 6.1.

The solar spectrum is used due to its importance in solar cells. Awei g hted is averaged from 320

nm to 1200 nm, due to the application of this wavelength-range in silicon-based solar cells.

Nonetheless, the integration limits can be tuned, and the spectral irradiance can be replaced

by the irradiance of a light-emitting device, or by the spectral sensitivity of the eye [Morales-

Masis et al., 2017a]. Hence, high FOM values are indication of high electrical conductivity

and/or low absorptance in for the desired spectral range. Note that the calculated FOM is

obtained using experimental measurements, since Awei g hted was calculated by integrating

1-TT-TR from spectrophotometry and Rsheet was measured using Hall effect measurement.

Finally, it is worth mentioning that other figures of merit can be used in TCOs. An alternative

FOM could be envisaged by considering other optical interactions, e.g. interaction with other

surfaces or light trapping in the thin film. In this way the an FOM could be used to compare

antireflective properties of the TCOs.

6.3 FOM for In2O3:Zr

We calculated the FOM for oxygen series of the annealed films shown in Figure 5.1 from

Chapter 5.

Table 6.1 – Figure of merit (FOM), weighted absorptance (Awei g hted ) and sheet resistance
(Rsheet ) of annealed In2O3:Zr deposited with different r(O2).

r(O2) (%) FOM(%) AW ei g hted Rsheet (Ωsq )

0.00 0.1 13.5 91.5

0.16 1.5 3.3 20.3

0.33 2.6 1.6 23.7

0.62 2.6 0.6 60.0

The resulting FOM, Rsheet and AW ei g hted , shown in Table 6.1, suggest that the optimal films in

terms of σ and Awei g hted are the deposited with r(O2) of 0.16% and 0.33%, as they have higher

FOM than the rest of the films. The high optical absorptance of the as-deposited films (not

annealed) always results in low FOM values (not shown here). Therefore, considering the solar

irradiance, optimum electrical properties are obtained for annealed films deposited with r(O2)

of 0.33%. At this r(O2), the annealed film presents a µe of 105 cm2V−1s−1 , a Ne of 2.5 × 1020
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cm−3 , an average absorptance of 3.6% from 320 nm to 1200 nm and a Awei g hted of 1.61%.

Increasing r(O2) to 0.62% results in a similar FOM value (due to the reduced absorptance),

but decreased µe and Ne . The results from the FOM suggest that there is an optimum r(O2)

content for solar cells which can benefit with a highly conductive TCO, (r(O2) = 0.33%), and an

ideal film for application which can profit more from transparency (r(O2) = 0.62%).

For 100 nm In2O3:Zr films, a FOM value of 2.6% is achieved for the films deposited with r(O2)

of 0.33% and 0.62%. This is significantly larger than the reported FOM of In2O3:Sn and In2O3:H

(0.3% and 1.8% respectively, as described in reference [Morales-Masis et al., 2017a]). On the

other hand tungsten-doped and cerium-doped hydrogenated indium oxides (In2O3:W,H and

In2O3:Ce,H) have reported FOM values of approximately 3.3%, placing In2O3:Zr just below

in performance. The FOM difference is caused by µe of In2O3:W,H and In2O3:Ce,H, (higher

than that of In2O3:Zr). This is possibly linked to a better passivation of surfaces and grain

boundaries by H-atoms, since hydrogen gas or intentionally introduced water were used

during deposition. In addition it is important to notice that In2O3:W,H and In2O3:Ce,H were

deposited using ion plating, which could result in higher quality films [Morales-Masis et al.,

2017a, Kobayashi et al., 2012]
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Air
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In O :Zr as-deposited2 3
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Figure 6.2 – Weighted average absorptance (Awei g hted ) versus the logarithm of the sheet
resistance (log(Rsheet )) of In2O3:Zr films with thickness of 15 nm, 25 nm, 50 nm and 100 nm
as-deposited and annealed in air, N2 and H2 atmospheres. The size of the markers is scaled
linearly with the thickness of the samples. The FOM was calculated using Equation 6.1. The
integration limits are from 390 nm to 1200 nm. In addition, the FOM for standard In2O3:Sn
films are shown with green stripes. The solid lines mark constant FOM values of 2.0%, 1.0%,
0.2% and 0.1%

In Figure 6.2 the average absorptance is shown for films of thickness of 100 nm, 50 nm, 25 nm

and 15 nm annealed in air, N2 and H2 as a function of the Rsheet . The lines in Figure 6.2 mark

constant FOM values. The edge of each marker point indicates the annealing atmosphere,

while its size is scaled with the film’s thickness. The closer the markers are to origin of the

graph, the higher the FOM.

The trade-off between Awei g hted and Rsheet values, indicate that the best film in terms of

conductivity and absorptance is the 100-nm-thick film annealed in air, since the FOM value

is 2.61%. In addition, all annealed 50-nm-thick films have a FOM > 1%, similar to that of

Sn-doped In2O3, marked in the graph with stripes. Finally, if the device requirements have

relaxed electrical constrains, i.e. can benefit more from a more transparent TCO rather than a

highly conductive film, thermal annealing in H2 of 25-nm-thick In2O3:Zr is convenient, since

the FOM is close to 1%, higher that the as-deposited films and films annealed in air or N2 .

This film has a conductivity of 1980 S cm−1, mainly because of the high Ne as compared with

the other films and its thickness allows an average weighted absorptance of only 0.57%.

113



Chapter 6. Weighted Average Figure of Merit and TCO comparison

6.4 FOM of SnO2 -based TCOs

In Figure 6.3 the Awei g hted is shown as function of Rsheet for Sn-based TCOs discussed in

Chapters 3 and Chapter 4. The as-deposited ZTO film has a FOM of 0.08% which increases

after thermal treatments. Annealing a-ZTO in H2 at 200 ◦C and 500 ◦C , decreases sheet

resistance to 142Ω/sq and to 107Ω/sq respectively, which results in FOM of 0.16% and 0.2%.

Conversely, thermal treatments under atmospheric pressure result in important FOM shift

to 0.16% and 0.20% for at 200 ◦C and 500 ◦C respectively. The relatively absorptance fo films

annealed at 500 ◦C results in FOM of 0.2%. In contrast, films annealed in air at 200 ◦C show a

good trade off between absorptance and Rsheet . ZTO films annealed under N2 atmosphere at

500 ◦C show a FOM of 0.25%, highest among Sn-based films reported here. This is due to a

decrease in Rsheet from 300Ω/sq to 124Ω/sq, accompanied with an important decrease in

Awei g hted .

Annealing 
at 200 °C

As-deposited ZTO

Air annealing ZTO

N  annealing ZTO2

H  annealing ZTO2

Annealing at 500 °C

SiO  -modifica�on

SnO 

ZTO

2

2

Figure 6.3 – Weighted average absorptance (Awei g hted ) versus sheet resistance (Rsheet ) of
ZTO and SnO2 films with thickness of 150 nm as-deposited and annealed in air, N2 and H2

atmospheres. In addition the as-deposited and annealed SiZTO and SiSnO2 films are also
shown. The FOM was calculated using Equation 6.1. The integration limits are from 390 nm to
1200 nm.

The co-sputtering SnO2 -based films with SiO2 results in remarkable improvements, specially

concerning Awei g hted . At this point it is worth mentioning that these films were annealed at
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maximum temperatures of 200 ◦C , which decrease the thermal budget. While ZTO annealed

at 200 ◦C in air shows an FOM of 0.16% and Awei g hted of 4.4%, the introduction of SiO2 results

in FOM of 0.20% and Awei g hted of 3.2%. The modification SnO2 with SiO2 showed a similar

trend since the Awei g hted shifted from 4.4% to 3.2%. Nonetheless the FOM decreased after the

addition of SiO2 , mainly due to slight increase in Rsheet from 152Ω/sq to 164Ω/sq.

6.5 Comparison between TCOs

In Figure 6.4 the FOM of a selectrion of TCOs designed in this thesis are compared in terms of

Awei g hted and Rsheet . In addition, the FOM of two optimized In2O3:Sn is shown to compare

with In2O3:Zr and SnO2 films. Resulting FOM for the two In2O3:Sn films are widely different

from each other, since one is optimized for application as front electrode in SHJ solar cells

while the other is optimized for application as back electrode in the same cell technology.

In O :Zr2 3

SnO -based2

In O :Sn2 3

Amorphous

SiO -modified2

air

500 °C 

H2

500 °C
N2

SnO2

Figure 6.4 – Averaged weighted absorptance as function of sheet resistance (in logarithmic
scale) for SnO2 -based oxides (red), In2O3:Zr (green) and In2O3:Sn (blue). The amorphous films
(or a mixture amorphous/crystalline) have a thick border in the markers, while crystallized
films have no border. Films modified with SiO2 are half red and half black. The lines show
constant FOM values.

A separation in electrical and optical properties is seen for both families of materials. On
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one hand, 150-nm-thick SnO2 -based TCOs are restricted to FOM values between 0.06% (for

as-deposited SnO2 ) and 0.25% (for ZTO annealed in N2 atmosphere). On the other hand,

In2O3:Zr thin films, having thickness from 15 nm to 100 nm have a FOM spanning from 0.1%

to 2.6% showing a Rsheet as low as 23Ω/sq. The thinner In2O3:Zr films present a lower FOM,

mainly due to higher a Rsheet . Nonetheless they exhibit a low absorptance of ≈ 0.5% and

conductivity of 450 Scm−1.

Two In2O3:Sn samples have a FOM of 0.7%, and 1.24%, Awei g hted between 1.3% and 2.6% and

Rsheet between 40Ω/sq and 100Ω/sq. The large differences in the In2O3:Sn values highlight

the significant influence of the oxygen partial pressure during deposition. The In2O3:Sn film

with a Awei g hted of 1.3 is intended as a back transparent electrode in SHJ solar cells, while

the film with a Rsheet of 40 Ω/sq is designed to work as front transparent electrode in SHJ

solar cells, hence the striking differences. As mentioned in Chapter 1, In2O3:Sn is the standard

material used for SHJ solar cells. But as seen in Figure 6.4, the electric and optical properties

of In2O3:Zr are drastically better than those of In2O3:Sn. All 50-nm-thick In2O3:Zr (regardless

of the annealing atmosphere) are more transparent and equally conductive as 100 nm of

In2O3:Sn.

Finally, from Figure 6.4 it is clear that the optical and electrical properties of the studied

In2O3-based TCOs are better than those of SnO2 -based films. For example, the Awei g hted of

150 nm-tick a-ZTO annealed in air at 500 ◦C is very similar to that of as-deposited 50-nm-thick

In2O3:Zr, but the low optical absorptance of the In-based film results in twice the FOM for

In2O3:Zr. Why do these materials have so different optoelectronic properties? To answer this

question we must analyse the differences in optoelectronic properties and correlate them with

the effective mass, the structure, point defects and previous results from literature.

Effective mass m∗

An evaluation of the electron transport of these TCOs in terms of the effective mass is difficult,

since the measured m∗ values vary widely in literature, and calculations also provide different

results. Fitting FTIR reflectance measurements with the Drude model, we obtained an m∗

from 0.26me - 0.3me for a-ZTO. Obtaining the m∗ of a-In2O3:Zr thin films was not possible,

possibly due to the reduced thickness of the films. On the other hand, Hautier et al. made a

systematic review of the effective masses in oxides, and virtually no difference is found in the

m∗ tensor of In2O3 and SnO2 [Hautier et al., 2014]. On the other hand, Medvedeva calculates

a slightly higher effective mass in SnO2 than in In2O3 [Facchetti and Marks, 2010], which

could partially explain the higher µe in In2O3-based TCOs. Nonetheless strong conclusions

are difficult to extract just with the effective mass-difference between these TCOs. In addition,

the hybrid nature of the conduction band, results an m∗ insensitive to strong local distortions

of the lattice [Medvedeva, 2007, Medvedeva et al., 2017]. Hence, the m∗ is not expected to

change importantly in a amorphous/crystalline transition.

Crystalline TCOs

Previous literature has reported of the growth of epitaxial single crystal (sc-) non-intentionally-
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doped In2O3and SnO2
1 ( [Bierwagen and Speck, 2010, White et al., 2009] respectively). High-

quality sc-SnO2 shows an µe close to 100 cm2V−1s−1 and a Ne of 2.7 × 1017 cm−3 at room

temperature. Temperature dependent Hall effect measurements show that µe increases with

decreasing temperature, achieving a maximum of ≈ 300 cm2V−1s−1 at -173 ◦C . In contrast, sc-

In2O3shows a µe of 200 cm2V−1s−1 with a Ne of × 1017 cm−3 at room temperature. Decreasing

the temperature to -173 ◦C resulted in an µe of ≈ 1000 cm2V−1s−1 . This shows that optical

phonons limit the transport in both sc-TCOs. Nonetheless, the higher temperature sensitivity

of sc-In2O3compared to sc-SnO2 suggests ionized impurity scattering mechanism plays an

important role limiting the electron transport in sc-SnO2 . Therefore, even comparing single

crystals the transport properties of In2O3-based TCOs are better than Sn-based oxides, possibly

because of the higher overlap of s-orbitals in In2O3than in SnO2 [Orita et al., 2001].

The microstructure of SnO2 and In2O3 are strikingly different when deposited in similar

conditions, e.g. temperature, sputtering power, working pressure. As seen in Chapter 5,

In2O3:Zr films crystallize fully after thermal annealing at 200 ◦C . The high-quality crystallites

with sizes from 300 nm to 500 nm indicate low density of defects within the grains, resulting in

a high in-grain µe . The high-µe measured (Chapter 5) also indicate that grain boundaries are

not limiting the electron transport in these films. In contrast, a-ZTO and SnO2 films studied in

Chapters 3 and 4 showed either a fully amorphous microstructure of a mixture of crystalline

and amorphous phases2 . The crystallites of size < 100 nm embedded in the amorphous phase

could be sources of carrier scattering, given the introduction of grain boundaries.

Amorphous TCOs

Comparing amorphous In2O3- and SnO2 -based films, it is possible to study the differences

caused by point defects, independent of the crystal structure. In this work, the highest µe

obtained for an amorphous SnO2 -based film was ≈ 35 cm2V−1s−1 (a-ZTO annealed « in air

500 ◦C ), in contrast 50-nm-thick In2O3:Zr annealed at 200 ◦C in N2 presents an amorphous

microstructure and an µe of ≈ 75 cm2V−1s−1 . Surprisingly, the local structures around the

metal cations of a-SnO2 and a-In2O3 are fairly similar. Previous reports used X-ray absorption,

to determine the metal-metal and metal-oxygen bond distances. The In-O and In-In bond-

distances are 2.18 Å and 3.34 Å respectively [Buchholz et al., 2014b], while the Sn-O and Sn-Sn

bond distances correspond to 2.05 Å and 3.26 Å [Zhu et al., 2014]. Therefore if we assume

that these results are a good approximation to our amorphous materials, the atoms in a-SnO2

-based films are more closely packed. Moreover In3+ and Sn4+ are both coordinated by 6

oxygen anions in their respective amorphous oxides. An important difference is that Sn in

SnO2 is easily reduced [Batzill and Diebold, 2005]. This could trigger the formation ofVO ,

therefore lower relaxations times (τ) in SnO2 -based films are expected compared to In2O3-

based materials. Conversely, the a-ZTO and a-In2O3:Zr discussed here, have a Ne of ≈ 6 × 1019

cm−3 and ≈ 2 × 1020 cm−3 respectively. The source of Ne in a-ZTO are mostlyVO which, as

1Note that single sc-In2O3and sc-SnO2 were grown at process temperatures of ∼650 ◦C and ∼1200 ◦C (
[Bierwagen and Speck, 2010, White et al., 2009] respectively).

2Annealing a-ZTO at 600 ◦C crystallized the films to a rutile structure, but the electrical resistivity of the films
was too high to measure with the available techniques. More information in reference [Landucci, 2019].
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seen in Chapter 3, result in sub-bandgap states detrimental for µe and for Awei g hted
3.

Conversely, the dopants in In2O3:Zr areZrIn , H-atoms andVO . TheVO also form sub-badgap

defects, as seen in Chapter 5, but these defects can be passivated by mild thermal treatments

at 200 ◦C . In addition, the ionic radius of Zr4+ is similar to that of In3+ [Shannon, 1976], hence

theZrIn do not induce strain in In2O3, thus maintaining a relaxed atomic network.

Given these results, we conclude that the electron transport of SnO2 -based films are inferior

to In2O3-based TCOs due to: (i) SnO2 -based films have higher density of ionized defects (or

more sensitivity to ionized defects) than In2O3-based films, (ii) SnO2 -based thin films have

less favourable grain structure (small grains i.e. more boundaries) compared with In2O3-based

films (iii) the rutile structure of SnO2 is not ideal to promote electron transport (iv) Dopants

in In2O3are less detrimental to the electron transport than in SnO2 , and (v) in SnO2 the Sn

cations are easily reduced, creating more defects therefore decreasing µe .

6.6 Conclusion

Air-annealed 100-nm-thick In2O3:Zr presents a FOM of 2.61, this film results in the best

optoelectronic properties of all the films evaluated in this dissertation. In addition, the

optoelectronic properties of In2O3-based materials are better than SnO2 -based films. This

is visible in the optical and electrical evaluation from the FOM. To match the optoelectronic

properties of In-based films, a change in paradigm is required to improve the optoelectronic

properties of tin-based TCOs. The aforementioned weaknesses in SnO2 -based TCOs could be

surmounted with a different crystal structure. For example, La-doped BaSnO3 is a TCO with a

perovskite microstructure that enables a near ideal Sn-O-Sn bond angle, which results in m∗

of ≈ 0.19me at the bottom of the conduction band [Niedermeier et al., 2017]. This enables µe

values > 200 cm2V−1s−1 with a Ne up to 4 × 1020 cm−3 [Kim et al., 2012, Krishnaswamy et al.,

2017].

3In the a-ZTO films annealed at 500 ◦C in air, hydrogen forward scattering suggested that low H-concentrations
(lower than the detection limit of the technique, i.e. 0.5%), therefore doping of a-ZTO via H-atoms is not considered
in this case.
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This chapter synthesizes the conclusions from this dissertation and, based on these observa-

tion proposes research directions that could be meaningful for future projects in TCO physics,

material development and device applications.

Overall this thesis sheds light on the defect-structure-property relationships on amorphous

zinc tin oxide and zirconium-doped indium oxide. Furthermore, we propose techniques

to mitigate the influence of defects on the optoelectronic properties of TCOs, using strate-

gies compatible with the production of high-efficiency solar cells. Finally we use a figure of

merit to categorize and compare the optical and electrical properties of the studied materials

conjointly.

7.1 General Conclusions

7.1.1 Chapter 3

Amorphous zinc tin oxide (a-ZTO) has optical properties comparable to those of tin-doped

indium oxide (In2O3:Sn), but its electrical properties lag behind those of indum-based TCOs.

Using advanced electron microscopy techniques, we determined that there are no changes

in the short- and medium-range order of the films with thermal treatments up to 500 ◦C for

films deposited at 60 ◦C . Thus the voidless amorphous microstructure was preserved even

after high-temperature treatments. Exploiting the structural stability of a-ZTO, we performed

thermal treatments (up to 500 ◦C ) in oxidizing, neutral and reducing atmospheres. Two tem-

perature regimes were identified to modify the optoelectronic properties of a-ZTO. Annealing

at temperatures < 300 ◦C resulted in improved electrical properties independent of the anneal-

ing atmosphere. In this temperature range, the optical properties did not change significantly.

The effect of thermal treatments at high temperatures (300 ◦C to 500 ◦C ) resulted in varia-

tions of the optoelectronic properties of the films that depend of the annealing atmosphere.

Treatments in an oxygen-rich environment resulted in decreased subgap absorption and a

drastic increase in µe of the films. In contrast, thermal treatments in reducing atmospheres

resulted in increased Ne and subgap absorptance, resulting in 150-nm-thick films with Rsheet
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values near 100Ω/sq. Thermal treatments in N2 at high temperatures resulted in a convenient

compromise between optical and electrical properties. By combining Density functional

theory (DFT) simulations and experiental results, we identifiedVO as the dominating defect

in a-ZTO.VO act simultaneously as an intrinsic dopant and as a subgap state, limiting µe

of the films. Thermal treatments in O2-rich atmospheres resulted in the passivation ofVO
, which triggered µe increase from ≈ 20 cm2V−1s−1 to ≈ 35 cm2V−1s−1 and the decrease in

subgap absorptance. Conversely, thermal treatments in H2 atmospheres could result in (i) the

generation of moreVO , (ii) shifting theVO subgap states deeper into the bandgap and (iii)

the introduction of new defect levels associated with a Sn-H interaction. The combination of

these three effects could potentially explain the increase of subgap absorptance after thermal

treatments in H2 . Finally, considering that the a-ZTO films annealed at 500 ◦C in air are free

of macroscopic defects and have µe ≈ 30 cm2V−1s−1 , we suggest that this material has the

optimal optoelectronic ftrade-off for amorphous indium-free TCOs.

7.1.2 Chapter 4

The high-temperature passivation scheme proposed in Chapter 3 might be problematic for

temperature-sensitive technologies. Therefore, in Chapter 4 we investigated an alternative pas-

sivation route which relies on techniques compatible with low-thermal-budget technologies.

For this we relied on co-sputtering of a-ZTO or tin oxide (SnO2 ) together with silicon oxide

(SiO2). Tuning the content of SiO2 in Sn-based TCOs resulted in a positive gain in the opto-

electronic trade-off. The optical properties of SnO2 -based films were substantially improved,

due to a reduction of subgap absorptance in the visible and near-infrared part of spectrum.

Conversely, the electrical properties of a-ZTO remain unchanged after co-deposition with SiO2

and a mild thermal treatment at 200 ◦C . Furthermore, the addition of SiO2 to Sn-based TCOs

did not affect the microstructure drastically. The addition of Si to a-ZTO did not affect the

amorphous structure, while the addition of Si to SnO2 preserved a mixture of amorphous and

crystalline phases. To explain the effect of SiO2 on the optoelectronic properties of Sn-based

TCOs, DFT calculations were performed on SnO2 modified with silicon atoms. It was found

that DFT calculations using the rutile structure of SnO2 provide a feasible explanation for

the change in the optoelectronic properties after the addition of SiO2 to a-ZTO and SnO2 .

The calculations suggest thatVO in SnO2 is stable with two charge states, q = 0 (VOx ) and q

= 2 (VO ). WhileVOx creates a subgap defect deep in the middle of the bandgap,VO results

in shallow donors that do not contribute significantly to the detrimental subgap absorption.

The calculations also suggest that the addition of Si atoms promotes the formation of VO
defects overVOx . Therefore, we demonstrate a low-temperature passivation route, practical

for amorphous and crystalline Sn-based TCOs alike, which could be scalable to industrial

applications in low-thermal-budget technologies. This passivation route should serve as an

inspiration to design and discover oxides that could potentially play a similar role in other

TCOs as SiO2 does in SnO2 and a-ZTO.
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7.1.3 Chapter 5

Optimized zirconium-doped indium oxide (In2O3:Zr) shows outstanding optical and electrical

properties. 100-nm-thick In2O3:Zr shows µe > 100 cm2V−1s−1 , Ne > 2 × 1020 cm−3 and low

optical absorptance in the visible and near-infrared spectrum. In Chapter 5 we investigated the

electron transport, sources of conductivity, microstructure, dopants and defects limiting elec-

tron transport in In2O3:Zr. To do this, we fully characterized In2O3:Zr films with thicknesses

from 100 nm to 15 nm annealed at atmospheric pressure, under N2 and H2 atmospheres.

We found that the as-deposited films have an amorphous microstructure with embedded

nanometric-size crystallites. When annealed in air, the crystallites trigger the full crystalliza-

tion of the films to a bixbyite phase, common in In-based TCOs. In addition we found that

thermal treatments under H2 and N2 atmospheres do not result in the full crystallization of

the films, but rather in a mixed phase of relatively high crystallite density embedded in an

amorphous matrix. The results for 100-nm-thick In2O3:Zr films show that a combination

of ionized impurities and phonon scattering limits electron transport. Reducing the film’s

thickness to 15 nm resulted in electron transport limited by ionized impurities, possibly due

to surface defects. Annealing in H2 proved to be optimal for films of thickness < 50 nm, since

the films maintained high Ne while the overall total transmittance is decreased due to the

reduced thickness. Conductivities as high as 1980 S cm−1 are achieved for 25-nm-thick films,

with optical absorptance close to that of the glass substrate.

Finally, we used 80-nm-thick In2O3:Zr as front electrodes in silicon heterojunction solar cells.

The resulting electrical parameters show increased short-circuit current compared to cells

with In2O3:Sn electrodes of the same thickness. Even higher Jsc gain was achieved by reducing

the thickness of the In2O3:Zr to 40 nm and implementing a magnesium fluoride secondary

anti-reflective coating. These results demonstrate that In2O3:Zr is an excellent candidate to

replace In2O3:Sn as front electrodes, while reducing the amount of indium used in the front

contacts in the solar cells.

7.1.4 Chapter 6

In Chapter 6 we introduced an alternative parameter to measure the optical and electrical

properties of the TCOs studied in this dissertation. The average weighted figure of merit

(FOM) considers simultaneously the sheet resistance of the films and the optical absorptance

weighted with the irradiance of the Sun at AM 1.5 G. The FOM of the TCOs studied in this

thesis were calculated and compared. Our TCOs showed FOM values which ranged from

0.08% to 2.6%, as-deposited a-ZTO the film with lowest FOM and 100-nm-thick crystalline

In2O3:Zr the film with highest FOM. Within the thickness range studied, all the In-based films

showed better optoelectronic properties than those based Sn-based TCOs.

The superior properties of the amorphous In2O3 (a-In2O3) compared to the a-ZTO are related

to a lower Ne in the a-ZTO, i.e. a more-efficient dopant should be explored for a-ZTO and SnO2

. The observed subgap states in a-ZTO also indicate a high defect density, linked mainly to
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undercoordinated tin cations. This is also a source of scattering, limiting µe in a-ZTO. These

subgap defects are absent in a-In2O3, and based on the reported literature In-atoms have full

coordination with oxygen leaving few undercoordinated atoms. The superior properties of the

crystalline In2O3-based films are related mainly to their highly crystalline structure, formed by

large single grains growing along the thickness of the films.

7.2 Perspectives

In this section I will describe some further ideas thought but not possible to pursue during the

thesis work. The author hopes that this section will serve as inspiration to future researchers

who will continue with TCO design for optoelectronic devices.

7.2.1 Alternative dopants for SnO2 -based oxides

Tin-based oxides have been used widely in applications and their optoelectronic properties

have been studied in depth. In Chapters 3 and 4, an in-depth study of the optoelectronic

properties of SnO2 and a-ZTO was performed, nonetheless, we did not explore extrinsic

dopants. Recently a computational screening of the periodic table suggested three possible

candidates to dope SnO2 via oxygen substitution [Graužinytė et al., 2017]. IO , BrO and ClO ,

are expected to work as substitutional dopants in SnO2 without introducing defects inside

the bandgap. Preliminary work using an iodine-rich spin-coated substrate shows promising

results for doping a-ZTO with iodine [Landucci, 2019]. Nonetheless the demonstration of an

efficient non-absorbing dopant is still pending. Several new approaches could be envisaged

to introduce these dopants into a TCO via sputtering, e.g. co-sputtering of SnO2 and a dopant-

rich material, or reactive sputtering using a dopant-containing gas.

7.2.2 Sputtered indium-free transparent conductive oxides with perovskite struc-
ture

Recent reports show that La-doped barium stannate (BaSnO3:La) single crystals have a

bandgap of ≈ 3.0 eV, µe of 320 cm2V−1s−1 and Ne of 8 × 1019 cm−3 [Lee et al., 2012]. BaSnO3:La

presents a cubic perovskite structure which enables Sn-O-Sn angle close to 180◦ thus permit-

ting a highly dispersed conduction band [Kim et al., 2012] which enables m∗ < 0.3 me at the

bottom of the conduction band [Niedermeier et al., 2017]. BaSnO3:La with µe > 30 cm2V−1s−1

deposited by sputtering has not been demonstrated, given that structural defects limit µe to

20 cm2V−1s−1 [Ganguly et al., 2015]. Films of BaSnO3 with a perovskite structure have been

deposited at temperatures > 700◦C over SrTiO3 single crystal substrates by molecular beam

epitaxy or pulsed laser deposition [Prakash et al., 2017, Niedermeier et al., 2017]. Sputter-

ing deposition can be exploited to grow these perovskite oxides, by using high deposition

temperatures and low power density to induce the perovskite phase formation. Alternatively,

In Chapter 3 we described a TCO composed of SnO2 and ZnO, but Zn is not a dopant SnO2 .
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co-sputtering could be used to explore other oxide compositions, or alloying with BaSnO3 for

either doping or to discover novel structures with high conductivity and transparency but with

lower crystallization temperatures compared to BaSnO3.

7.2.3 Effect of ZrO2 on In2O3:Zr

In Chapter 5, we mentioned that ZrIn acts as a substitutional dopant in In2O3:Zr [Koida

and Kondo, 2006, Koida and Kondo, 2007a, Kanai, 1984]. But there are still open questions

regarding the role of Zr atoms and ZrO2 in In2O3:Zr films. Co-sputtering using an In2O3

target and a Zr-containing material (either In2O3:Zr, ZrO2 or metallic Zr) could clarify whether

the Zr acts solely as a dopant or whether it has a different role in the material. ZrO2 could

increase the dielectric permittivity of the material [Gessert et al., 2011], which could result in

relevant positive consequences. Increasing of the dielectric permittivity could shift the plasma

frequency to lower energies, thus decreasing αFC A and increasing the film’s transparency. In

addition, a higher dielectric permittivity could modify the scattering from ionized impurities,

since the associated coulomb potential of the charged defect points could be strongly screened

by a higher dielectric constant.

7.2.4 In2O3:Zr in silicon heterojunction solar cells

In2O3:Zr has higher electrical conductivity and lower absorptance than In2O3:Sn. This was

exploited in silicon heterojunction solar cells by decreasing the thickness of the front TCO

electrodes which led to increased short-circuit currents (Chapter 5). Nonetheless other strate-

gies could be envisaged to improve the electrical output of the solar cells. If the front TCO

thickness is kept at the 80-nm-thick standard, maintaining the Rsheet of ≈ 25Ω/sq, the front

metallization of solar cells could be redesigned to reduce shadowing from the silver fingers in

the cells. This could potentially boost the short-circuit current thus improving the conversion

efficiency. In addition, the relatively low fill factors in cells using In2O3:Zr as the front elec-

trode could be avoided using a different cell architecture. For example, rear-emitter silicon

heterojunction solar cells have potentially more relaxed electrical restrictions for the front

TCO [Bivour et al., 2014]. Therefore, several approaches could be envisaged in this using

In2O3:Zr as the front electrode, e.g. depositing a TCO of thickness ≈ 50 nm and a secondary

anti-reflective coating; or by depositing an 80-nm-thick In2O3:Zr with higher oxygen content,

leading to a more transparent front electrode.
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A Co-sputtering In-based and Sn-based
TCOs as electrodes in silicon hetero-
junction solar cells

This dissertation shows results from TCO films based on a-ZTO, and In2O3:Zr separately. In this

appendix I summarize additional experiments realized to test the effect of co-depositing a-ZTO

and In2O3:Zr. We characterized the co-sputtered films and we used this film as front electrode

in silicon heterojunction solar cells. Our motivation is to find an alternative technique to the

one proposed in Chapter 5 to decrease the indium content in silicon heterojunction solar cells.

A.1 Film fabrication

The In-reduced TCO film was fabricated by sputtering a-ZTO, In2O3:Zr and SiO2 simultane-

ously. The targets of a-ZTO and In2O3:Zr were submitted to an RF-power of 80 W (power

density of 1.02 W cm−2) while the SiO2 target was subject to a RF-power of 10 W (0.13 W

cm−2). The flow of argon was kept constant at 10.0 sccm, while the Ar/O2 flow was changed

between 0.7 sccm and 2.0 sccm (The oxygen source is a mixture of 95% Ar and 5% O2). These

O2 and Ar flow resulted in oxygen flow ratios (r(O2) = O2/(Ar + O2)) from 0.28% to 0.61% during

deposition.

The results presented here were obtained with the help of a semester student: Nicholas Paul Morgan. His
contributions are gratefully acknowledged.
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heterojunction solar cells

a-ZTO In O :Zr2 3

SiO 2

Figure A.1 – Scheme of a-ZTO, In2O3:Zr and SiO2 co-sputtering. The power in the In2O3:Zr and
a-ZTO targets was of 80 W and 10 W in the SiO2 target. The O2 partial pressure in the deposition
chamber was tuned to optimize the films. The rotating sample enabled an homogeneous
composition.

The temperature during deposition was of 100 ◦C and the base pressure was 10−6 mbar.

Thirty minutes deposition resulted in 150-nm-thick films. The µe and Ne of the films were

determined after deposition and after annealing at 200 ◦C for 30 minutes.

A.2 Optoelectronic properties

The µe and Ne of the as-deposited films is shown in Figure A.2(a) (full symbols). The µe

increases with oxygen content, reaching a maximum of 40.8 cm2V−1s−1 for films sputtered

with r(O2) of 0.61%. On the other hand, Ne decreases with O2 content during deposition.

Overall, annealing at 200 ◦C material resulted an increase in Ne and a decrease in µe as

compared with the as-deposited samples (empty symbols in A.2(a)). The thermal treatment

resulted in an increase of conductivity for films sputtered with r(O2) of 0.45% and 0.53%,

(Figure A.2(b)). The conductivity of samples sputtered with r(O2) of 0.28% and 0.61% were to

low to be measured with the Hall effect system after annealing. The TCO sputtered with r(O2)

of 0.53% presents a conductivity of 875 Scm−1.
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Figure A.2 – (a) Ne and µe of co-sputtered In2O3:Zr, a-ZTO and SiO2 as function of r(O2) during
deposition. The electrical properties of chosen annealed films is shown in empty symbols. (b)
Electric conductivity of films in (a), as-deposited and after annealing (full and empty symbols
respectively).

The optical absorptance of the indium-reduced film sputtered with r(O2) of 0.53% is compared

with the absorptance of the a-ZTO, In2O3:Sn and In2O3:Zr. In the visible part of the spectra,

the films absorb differently. In this spectral range a-ZTO shows higher absorption than the

rest of the TCOs while In2O3:Sn and the co-sputtered (called ZITO from here on) film absorb

less. In addition In2O3:Zr shows less absorption than the rest of the films in all the measured

spectral range. In the near-infrared part of spectra, In2O3:Sn absorbs considerably more than

In2O3:Zr and ZITO, mainly due to free-carrier absorption.

ZITO

Figure A.3 – Optical absorptance of In2O3:Zr, In2O3:Sn, a-ZTO and the co-sputtered TCO
(ZITO) deposited with an r(O2) of 0.53%. The a-ZTO film and the co-sputtered film have a
thickness of 150 nm, while In2O3:Zr and In2O3:Sn have a thickness of 100 nm.
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A.3 Microstructure and composition

To study the film’s microstructure, selected area electron diffraction patterns were acquired on

the as-deposited and annealed ZITO. The smooth rings in the diffraction patterns indicate

that the as-deposited and annealed films are amorphous. The metal composition of the

films was determined by energy dispersive X-ray spectroscopy, the annealed films have metal

composition Zn:Sn:In of 9:44:47. Silicon and zirconium were not detected due to the low

concentration, possibly lower than the detection limit of the technique.

5 cm-1 5 cm-1

as-deposited annealed

Figure A.4 – Electron diffraction patterns of as-deposited and annealed co-sputtered films

A.4 Application in silicon heterojunction solar cells

Silicon heterojunction (SHJ) solar cells were fabricated on a textured float-zone wafer. Plasma-

enhanced chemical vapour deposition (PECVD) was used to deposit the intrinsic (i) and doped

(p and n) amorphous silicon (a-Si:H) layers on each side. For front (back) emitter cells, the

p-type (n-type) layer was deposited on the front (light-incoming) side of the wafer. The front

TCO was then sputtered using a shadow mask to define a 2 cm × 2 cm cell areas. The front

electrode was either In2O3:Sn, a-ZTO or the co-sputtering from targets of In2O3:Zr, a-ZTO and

SiO2 . On the rear side, In2O3:Sn and Ag were subsequently sputtered. Screen printing was

used for the front Ag grid, and the device was finally cured at 210 ◦C for 20 minutes.

For the front TCO we sputtered the reference In2O3:Sn, a-ZTO and the co-sputtered IO:Zr/a-

ZTO/SiO2 with two different oxygen concentrations. The IV characteristics and the EQE are

shown in Figure A.5(a) and (b) respectively.
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(a) (b)

ZITO 1

ZITO 2

Figure A.5 – (a) IV-characteristics and (b) EQE as a function of wavelenght for the cells using
the reference In2O3:Sn, a-ZTO and ZITO with two different oxygen contents, ZITO1 and ZITO2,
with r(O2) of 0.53% and 0.45% respectively.

Table A.1 – Performance parameters of SHJ solar cells (average values of 5 2 cm2 × 2 cm2

measured cells) using the co-sputtered TCO as front electrode. The results are compared
with a reference cell with In2O3:Sn and a-ZTO front electrodes. The best-cell parameters are
between parenthesis.

Front electrode ZITO (r(O2) = 0.53%) ZITO (r(O2) = 0.45%) a-ZTO In2O3:Sn

Efficiency (%) 20.3 (20.7) 20.3 (21.0) 14.2 (14.6) 21.1 (21.9)
Fill factor (%) 71.4 (73.0) 71.7(74.2) 49.9 (51.5) 74.7 (76.9)
Jsc (mA cm−2) 39.3 (39.3) 39.0 (39.0) 39.1 (38.9) 38.9 (39.1)
Voc (mV) 721.5 (720.5) 724.4 (725.7) 726.6 (726.9) 726.9 (728.1)

A.5 Conclusions

The addition of In2O3 to a-ZTO improves its optoelectronic properties. The µe and Ne of

the co-sputtered films at r(O2) = 0.53% are ≈ 35 cm2V−1s−1 and 1.6 × 1020 cm−3 respectively.

In contrast, the optimized a-ZTO grown and annealed at the same conditions results in µe

of 25 cm2V−1s−1 and Ne of 1020 cm−3 . The optical properties also improved with the In2O3

addition as the absorptance decreased in the visible part of spectra. As compared with the

standard In2O3:Sn front TCOs, the co-sputtered electrodes show a reduction of ≈ 50% in the

indium content. Comparing the results from the IV measurement, the average efficiency

decrease 0.8% with the usage of the co-sputtered TCO. The Jsc from all the measured cells

remains fairly similar, nonetheless degraded passivation affected the VOC while probably the

lower conductivity affected the fill factor, therefore resulting in lower efficiency as compared

with In2O3:Sn. However, further optimization of the co-sputtering and material optimization

could solve these issues.
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Avrutin, V., Cho, S.-J., and Morkoç, H. (2005). A comprehensive review of ZnO materials and

devices. Citation: Journal of Applied Physics, 98:41301.

[Paier et al., 2006] Paier, J., Marsman, M., Hummer, K., Kresse, G., Gerber, I. C., and Ángyán,

J. G. (2006). Screened hybrid density functionals applied to solids. The Journal of Chemical

Physics, 124(15):154709.

[Pankove, 2012] Pankove, J. I. (2012). Optical processes in semiconductors. Courier Corpora-

tion.

[Pasquarelli et al., 2014] Pasquarelli, R. M., Van Hest, M. F. A. M., Parilla, P. A., Perkins, J. D.,

O’Hayre, R., and Ginley, D. S. (2014). Processing-phase diagrams: A new tool for solution-

deposited thin-film development applied to the In5O(OPri)13-In 2O3 system. Journal of

Materials Chemistry C, 2(13):2360–2367.

145



Bibliography

[Patnaik, 2003] Patnaik, P. (2003). Handbook of inorganic chemicals, volume 1. McGraw-Hill,

Burlington, NJ, 1 edition.

[Peng et al., 2016] Peng, H., Bikowski, A., Zakutayev, A., and Lany, S. (2016). Pathway to oxide

photovoltaics via band-structure engineering of SnO. APL Materials, 4(10):106103.

[Pisarkiewicz et al., 1989] Pisarkiewicz, T., Zakrzewska, K., and Leja, E. (1989). Scattering

of charge carriers in transparent and conducting thin oxide films with a non-parabolic

conduction band. Thin Solid Films, 174(PART 1):217–223.

[Prakash et al., 2017] Prakash, A., Xu, P., Faghaninia, A., Shukla, S., Iii, J. W. A., Lo, C. S., and

Jalan, B. (2017). Wide bandgap BaSnO3 films with room temperature conductivity exceeding

104 S cm&minus;1. Nature Communications, 8(May):1–9.

[Preissler et al., 2013] Preissler, N., Bierwagen, O., Ramu, A. T., and Speck, J. S. (2013). Elec-

trical transport, electrothermal transport, and effective electron mass in single-crystalline

In2O3 films. Physical Review B - Condensed Matter and Materials Physics, 88(8):1–10.

[Proffit et al., 2012] Proffit, D. E., Ma, Q., Buchholz, D. B., Chang, R. P. H., Bedzyk, M. J., and

Mason, T. O. (2012). Structural and Physical Property Studies of Amorphous Zn-In-Sn-O

Thin Films. Journal of the American Ceramic Society, 95(11):3657–3664.

[Rashidi et al., 2013] Rashidi, N., Kuznetsov, V. L., Dilworth, J. R., Pepper, M., Dobson, P. J., and

Edwards, P. P. (2013). Highly conducting and optically transparent Si-doped ZnO thin films

prepared by spray pyrolysis. Journal of Materials Chemistry C, 1(42):6960.

[Robertson et al., 2006] Robertson, J., Xiong, K., and Clark, S. J. (2006). Band gaps and defect

levels in functional oxides. Thin Solid Films, 496(1):1–7.

[Rucavado et al., 2018] Rucavado, E., Graužinytė, M., Flores-Livas, J. A., Jeangros, Q., Lan-
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