
Design and Calibration of a Lightweight Physics-Based
Model for Fluid-Mediated Self-Assembly of Robotic

Modules

Bahar Haghighat, Hala Khodr, and Alcherio Martinoli

École Polytechnique Fédérale de Lausanne (EPFL), Distributed Intelligent Systems and
Algorithms Laboratory (DISAL), School of Architecture, Civil and Environmental Engineering,

Lausanne, Switzerland, firstname.lastname@epfl.ch

Abstract. In this paper, we consider a system consisting of multiple floating
robotic modules performing self-assembly. Faithfully modeling such a system
and its inter-module interactions typically involves capturing the hydrodynamic
forces acting on the modules using computationally expensive fluid dynamic
modeling tools. This poses restrictions on the usability of the resulting models.
Here, we present a new approach towards modeling such systems. First, we show
how the hardware and firmware of the robotic modules can be faithfully modeled
in a high-fidelity robotic simulator. Second, we develop a physics plugin to recre-
ate the hydrodynamic forces acting on the modules and propose a trajectory-based
method for calibrating the plugin model parameters. Our calibration method em-
ploys a Particle Swarm Optimization (PSO) algorithm, and consists of minimiz-
ing the difference between Mean Squared Displacement (MSD) data extracted
from real and simulated trajectories of multiple robotic modules.

1 Introduction

Self-assembly (SA) is defined as the reversible and spontaneous phenomenon of
an ordered spatial structure emerging from the aggregate behavior of simpler pre-
existing entities, through inherently local and random interactions in the system.
Self-assembling robotic systems have garnered significant interest for their robust
performances in forming structures of varied complexities and scales as well as
their minimal design of constituting modules [3], [6], [13]. Among these systems,
fluid-mediated self-assembling systems are of particular interest due to their use
of fluid flow for providing interactions among the modules. It can be shown that
using fluids is a very efficient way for moving particles at sub-millimeter scale
[7].
A key component in studying programmable stochastic self-assembling systems
is developing models that accurately describe the assembly process dynamics.
Such models would help in: (1) accurately predicting the performances (assembly
rate and yield) of the distributed system, and (2) evaluating and optimizing con-
trol strategies, whether distributed (e.g., ruleset controllers programmed on the
modules) or centralized (e.g., modulating environmental features such as mixing
forces deriving random interactions among modules), based on model predictions
[9, 11]. Yet, relatively little effort has been devoted to modeling fluid-mediated
self-assembling robotic systems. Models with high level of abstraction are usu-
ally non-spatial and assume well-mixed systems. In fact, the implications of these

2 Bahar Haghighat, Hala Khodr, and Alcherio Martinoli

Fig. 1: a) Image and (b) sketch of the experimental system. c) Visual tracking of Lily
robotic modules. The red arrows indicate the pump flow. The blue lines indicate a his-
tory of the robots trajectories. d) A Lily robotic module.

assumptions are difficult to gauge due to the lack of appropriate modeling tools
for such robotic platforms [1]. Furthermore, state-of-the-art high-fidelity robotic
simulators such as Webots, Gazebo, or V-REP do not support fluid dynamics na-
tively and need therefore to be either coupled with appropriate fluid dynamics
simulation tools or to be augmented with appropriate plugins in order to cap-
ture faithfully the dynamics of the overall system. While coupling these robotic
simulators with fluid dynamic simulation tools allows for capturing the hydrody-
namic forces accurately, such accuracy comes at the cost of having a typically
very computationally heavy model. Our goal here is thus developing a physics-
based model which is computationally lightweight. Such model could then be
extensively exploited for predicting and evaluating the system trajectories, in par-
ticular by creating large datasets of sample system trajectories which are faithful
to reality.

The paper is organized as follows: Section 2 describes the fluid-mediated self-
assembling robotic system used to collect the trajectories; Section 3 introduces
the physics-based model of the system accounting for simple hydrodynamic ef-
fects such as drag, buoyancy, and, to some extent, fluctuations due to stirring;
Section 4 describes our method to calibrate the parameters of such models based
on the comparison between the simulated and experimental trajectories of the
robotic modules using a PSO algorithm. Finally, Section 5 discusses the experi-
mental results of our calibrated physics-based model; while Section 6 concludes
the paper.

Title Suppressed Due to Excessive Length 3

2 Experimental System

The experimental setup consists of a circular water-filled tank equipped with pe-
ripheral pumps, an overhead camera, an overhead projector, a wireless node com-
municating with the robots, and a workstation (see Figure 1) [5]. The Lily robots
are not self-locomoted, they are instead stirred by the flow field produced by the
pumps. Each Lily robotic module is endowed with four Electro-Permanent Mag-
netic (EPM) latches, one at each side, used for cennecting and communicating
to neighboring Lily modules [4]. The tank is approximately 0.6 m in diameter
and 0.3 m in depth, and has seven inlets perpendicular to the wall which are en-
dowed with a small insert piece to deviate the flow by about 15 degrees, creating a
flow field with both radial and circular components. While the perpendicular flow
components instigate irregular trajectories and induce collisions in the middle of
the tank, they exhibit dead spots around the wall. The tangential components,
however, generate a circular field, giving rise to regular closed trajectories which
do not favor collisions but eliminate dead spots. To minimize any interference
with the surface flow, the outlets are all placed at the bottom of the tank. Each
pump’s flow rate can be continuously controlled up to 9 l/min, allowing for a
variety of flow fields and corresponding induced trajectories.
To monitor the evolution of the system, we use an overhead camera to track a
passive marker located at the top of each robot using SwisTrack [8]. The positions
of the markers are logged at a rate of approximately 30 Hz. Complementary to
the visual tracking data, is the data logged by the wireless node communicating
with the robots over radio. These data contain the evolution of the robots’ internal
states. The wireless node is also used to program the robots.

3 Modeling the Experimental System

In order to realistically recreate our self-assembling robotic system in simulation,
we use Webots [10], a physics-based robotics simulator which uses the Open
Dynamics Engine (ODE) for simulating rigid body dynamics. Additionally, in
order to simulate specific not natively supported physics such as complex fluid
dynamics, it is possible to employ custom-designed physics plugins. Building
our physics-based model within the Webots simulation framework comprised two
main aspects. First, faithful recreation of the Lily robotic module’s hardware and
firmware features, and second, faithful recreation of the hydrodynamic forces
acting on the robotic modules floating in the tank filled with water. The latest
version of Webots supports a basic fluid node which allows for a simple uniform
stream velocity, but is not capable of simulating the complex fluidic field in our
experimental arena.

3.1 Recreating the Robotic Module

We recreate the Lily robotic module within the simulated world of Webots in
several steps (see Figure 2). In the first step, we defined the physical entity of
the module. A CAD design of the external shell of the module was designed
in SolidWorks and directly exported to Webots in the VRML V2.0 format. This
defines the bounding object (i.e. bounding volume) associated with a Lily and
is the one referred to by the ODE engine for simulating the collisions among

4 Bahar Haghighat, Hala Khodr, and Alcherio Martinoli

(a) (b) (c)

Fig. 2: (a) A real Lily robotic module. (b) CAD design of the Lily robotic module ex-
ported from SolidWorks to Webots. (c) A sample world of simulated Lily robotic mod-
ules in Webots. The lines on the modules indicate the EPM connector axes.

modules. In the second step, a Lily robotic module PROTO was created. Within
Webots, a PROTO allows for capturing all the features of a certain object within
one PROTO container. The Lily PROTO was then augmented with the physical
features of the Lily robotic modules. In particular, its bounding object as exported
from SolidWorks, mass, and center of mass. A physical object in Webots has
its associated linear and angular damping coefficients which are used to slow
down an object. The rotational and linear speed of each object is reduced by the
specified percentage (between 0.0 and 1.0) every second allowing for coping with
simulation instability, all initially set to a default value of 0.5 each.
The Lily PROTO was then augmented with several functionality nodes, that is
four connector nodes located on the sides to replicate the EPM latching mecha-
nism, four emitter as well as four receiver nodes located on the sides with a range
of 0.5 mm replicating the EPM inductive channel function, one light sensor node
on the top, and an emitter node as well as a receiver node located on the top
with an infinite range to replicate the radio channel communication with the base
station. The next step was then importing the Lily robotic modules’ embedded
controller software into the Webots simulated world. The low-level functional-
ities such as EPM communication through sending current pulses needed to be
abstracted away and replaced by similar functions from Webots. However, the
adapted controller maintains the same structure as the original one programmed
on the real Lilies. The specific rulesets employed on the simulated and real mod-
ules are identical.

3.2 Recreating the Flow Field

In order to reproduce the complex flow field and the hydrodynamic forces acting
on the Lilies in the real world, we use an approach inspired by the one in [1]. Our
approach distinguishes from the one of [1] in two ways: (i) we capture trajectories
of multiple floating blobs rather than a single one, with the aim of capturing the
effects of interactions of the floating objects which disturb the flow field, (ii)
rather than brute force search, we employ a PSO algorithm to optimize the model
parameters.

Title Suppressed Due to Excessive Length 5

A spherical object has an isotropic drag coefficient, i.e. a constant value in all
directions, while submerged in a fluidic flow. We record the trajectory of float-
ing spherical blocks (diameter of 3 cm), roughly the same size of a Lily robotic
module, for three experiments with random starting positions and duration of 10
minutes each. For this, we use ping pong balls whose weight is tuned such that
the submersion level is similar to that of a Lily robotic module (25 mm below
water level). The captured velocity fields acquired from different experiments are
then augmented and discretized on a regular grid of 50 cells on each side, for
our water tank of 60 cm in diameter. For each cell of the grid, the average and
standard deviation of the observed velocity vectors are computed and assigned to
that cell as expressed in Eq. 4. The fluid velocity field can be computed consid-
ering the drag force. The value of the Reynolds number Re determines the flow
regime and the form of the drag force. The Reynolds number is a dimensionless
value that measures the ratio of inertial forces to viscous forces and describes the
degree of laminar or turbulent flow. The Reynolds number is calculated as below
for the parameters of our system:

Re =
ρV L

µ
' 6700 (1)

This value of Reynolds number indicates a quadratic drag force:

|Fdrag|=
1
2

ρAC|vblock−v f low|2 (2)

where ρ = 103 kg/m3 is the density of water, V ' 20 cm/s the experimentally-
measured mean velocity of a ball, L = 3 cm the characteristic dimension, and
µ = 8.90 . 10−4 Pa.s the dynamic viscosity of water. The submerged area of
the globe is, A = 7 cm2 and the drag coefficient constant in all directions C =
0.47. The velocity and acceleration of the ping pong balls are computed using the
captured trajectory data. Considering the mass of a ball m, the flow velocity is
then computed from Eq. 2 as below, considering Fdrag = madrag = madrag:

v f low = vblock +
ma√

1
2 ρACm

√
a2

x +a2
y

(3)

A customized physics plugin was then designed for Webots so that an appropriate
drag force is applied to a simulated Lily module based on the velocity of the mod-
ule and the flow velocity at its location at each time instant. In order to account
for rotational effects, the drag force is integrated over each face of the module.
Each face is divided into N = 10 sections, and the drag force is computed for
each section using Eq. 2 with C being the estimated Lily robotic module’s drag
coefficient CLily.
For each cell j in the grid of a total of 2500 cells, we record the average µ j and
the standard deviation σ j of the computed flow velocity vectors. We also test the
normality of the distribution in each cell using the KS test. Results, shown in
Figure 3, demonstrate that for the majority of the grid cells, the KS test failed to
reject the hypothesis that the samples do not belong to a normal distribution with
a confidence level of 95%. We can thus assume that the velocity at the location of
each grid cell can be drawn from a normal distribution. Therefore, when a block
falls in a given cell j, the physics plugin applies the corresponding flow velocity
as below, where Kv is a free model parameter to be optimized.

6 Bahar Haghighat, Hala Khodr, and Alcherio Martinoli

(a) (b)

Fig. 3: Visualization of the KS test results on the captured flow velocity field. The points
of higher temperature (yellow color) indicate the grid cells for which the hypothesis that
the data points within the corresponding cell have a Gaussian distribution N (0,σ2) is
rejected at a significance level of 5%.

v f low, j = KvN (µ j,σ j) (4)

We consider the drag force as below, where KF is a free optimization parameter.

|Fdrag|= KF
1
2

ρAC|vblock−v f low|2 (5)

The physics plugin also adds a stochastic force Fs ∼N (0,σ2
stoch) to the center

of mass of each block in order to take into account the stochasticity and non-
modeled effects as in [1]. The standard deviation σstoch defines our third opti-
mization parameter. Moreover, we have two additional free parameters in Webots
which are the linear and angular damping of the block: Dlinear,Dangular. In sum-
mary, we will have a total of five free optimization parameters to be calibrated:
the constants Kv,KF , σstoch, Dlinear, and Dangular.

4 Calibrating the Model

By definition, model calibration is the process of adjustment of the model param-
eters to obtain a model representation of the processes of interest that satisfies
pre-agreed criteria, typically expressed in the form of faithfulness metrics. We
use the trajectories of the blocks floating on the simulated and real flow fields and
refer to the MSD extracted from each data set. We then define our faithfulness
metric to be optimized as the error between the real and simulated MSD func-
tions. We run a PSO algorithm in order to optimize the free model parameters.

4.1 MSD Metric

Diffusion drives mixing in our system. In statistical mechanics, the MSD is a
measure of the deviation of the position of a particle with respect to a reference

Title Suppressed Due to Excessive Length 7

(a) (b)

Fig. 4: (a) Effect of changing pump power on MSD. All experiments were done at the
same water level, i.e. -7 cm. The pump power is fixed at 68.63%.

position over time. It is the most common measure of the spatial extent of random
motion, and can be thought of as measuring the portion of the space “explored” by
the random walker. In the realm of biophysics and environmental engineering, the
MSD is measured over time to determine if a particle is spreading solely due to
diffusion, or if an advective force is also contributing. For instance, MSD analysis
is a technique commonly used in colloidal studies and biophysics to determine the
dynamics of displacement of particles over time. The MSD is expressed as below.

< ∆r2(t)>=
n

∑
k=0

< [Rk(t)−Rk(t0)]
2 > (6)

Where R is the position vector, and n is the total number of particles. MSD is usu-
ally used to calculate the diffusion coefficient of a given system [2]. In order to
verify that the MSD captures the change in the system dynamics, experiments of
10 minute length per water level and pump power configuration were conducted
using 24 ping-pong balls. As indicated before, we use ping-pong balls for sim-
plicity as they are symmetric and have an isotropic drag coefficient. We used 3
water levels in the tank, measured from the upper border as -7, -8, and -9 cm,
respectively.
Figure 4 illustrates the MSD curves for different pump power and water level
settings. Each pump has a maximum flow of 9 l/min at 100% power. First, we
can notice that the MSD has an oscillating pattern and a convergence plateau. The
oscillations are related to a situation where the blocks are affected by the stirring
flow generated by the pumps and the frequency of the oscillations is related to
the speed of circulation. On the other hand, the plateau indicates a maximum
effective displacement explored by the blocks. As we can see in Figure 4(a), the
higher the pump power, the higher the frequency of the oscillations and the lower
is the plateau. This can be explained considering that when the pumps power is
increased, the force pushing the blocks towards the center is higher and therefore
the effective radius of the area explored by the blocks is smaller. Furthermore, by
keeping the same pump power, but reducing the water level, we can see a similar

8 Bahar Haghighat, Hala Khodr, and Alcherio Martinoli

Fig. 5: Mean and standard deviation of MSD of simulated trajectories in Webots. The
data is extracted from 100 runs.

effect. Lowering the water level will change the alignment between the pumps’
nozzles and the surface of the water, therefore increasing the fluidic force acting
on the blocks’ which in turn will decrease the effective exploration radius.

4.2 Parameter Optimization

As discussed earlier, the basic principles of the calibration is to match the simu-
lated and real MSD curves in an attempt to faithfully reproduce the dynamics of
the real system in simulation. There are five model parameters to be tuned in the
calibration process; Kv defining a scaling factor for the randomness in the veloc-
ity field as described in Eq. 4, KF defining a scaling factor in the drag force as
described in Eq. 5, σstoch defining the standard deviation of the stochastic force
field, and the two linear and angular damping coefficients used by Webots for any
body mass expressed as Dlinear and Dangular, respectively. As mentioned before,
we use a PSO algorithm to fine tune these parameters so that real and simulated
MSD curves are as aligned as possible. The optimization takes place only within
a specific range for each of these parameters in order to ensure the stability of the
simulation. The PSO parameters of inertia, personal best coefficient, and global
best coefficient are set to -0.1832, 0.5287, and 3.1913, respectively, according
to [12]. No particular attempt to optimize the PSO parameterization was carried
out. To verify the necessity to use a noise-resistant version of PSO, we have to
verify the amount of noise characterizing the chosen fitness function described
in Eq. 7. To do that, we carried out 100 runs of the same simulation setup with
random initialization of the five parameters, and we calculate the mean and stan-
dard deviation. The result is illustrated in Figure 5. We note that the standard
deviation is small enough to assume that a noise-resistant PSO will not be neces-
sary. The fitness function is therefore the difference between the resulting MSD
from simulation and the mean MSD measured on our real set-up. When comput-
ing the MSD value the trajectories of each of the floating blocks are aggregated,
rather than being considered separately, and the resulting MSD curves are aver-
aged. Mathematically, we can formulate as below, where Ns is the number of time
steps in one sample. Where Ns = 2400 in our case corresponds to 60 s emulated
wall-clock time with a simulation time step of 25 ms.

Title Suppressed Due to Excessive Length 9

(a) (b)

Fig. 6: Ping-pong balls experiment: (a) Learning of the fitness function throughout the
PSO algorithm iterations. (b) Comparison of simulated and real MSD data.

Fitness =
Ns

∑
i=1
|MSDwebots−MSDreal | (7)

5 Experiments and Results

In what follows, we will consider two cases: we will first apply the optimization
to the case of trajectories obtained from experiments with floating ping-pong balls
for a specific pair of water level and pump power. The optimized model is then
used as an starting point for the PSO optimization using Lily robotic modules. We
then apply the optimization to match the MSD curves in the case of trajectories
obtained from experiments with Lily robotic modules. In a first step, we consider
experimenting with ping-pong balls. We use 24 ping-pong balls, the water level
is equal to -8 cm from the edge of the tank, the pump power is set to 68.6 %. The
PSO results as well as the matching MSD are shown in Figure 6. The simulation
as well as the optimized model parameters are listed in Table 1.
As a validation step, we compare the normalized number of samples in both We-
bots and real experiment, and we can see a matching between the two as illus-
trated in Figure 7. The number of samples in each cell gives an idea about the
spatial distribution of the floating objects in the arena, i.e the cells with highest
number of samples will indicates the most visited cells. Consequently, a visual

Table 1: PSO algorithm parameters and optimized physics-based model parameters for
simulated and real experiments with ping-pong balls and Lily robotic modules.
Floating blocks # Dimensions # Iterations Swarm size Kv KF σstoch Dlinear Dangular
Ping-pong balls 5 30 47 1.24 2.266 195.25 0.3483 0.2476
Lilies 5 100 47 1.365 0.442 126.82 0.332 0.12

10 Bahar Haghighat, Hala Khodr, and Alcherio Martinoli

(a) (b)

Fig. 7: Comparison of (a) real, and (b) simulated number of samples. The data is ex-
tracted from 10 minutes of experiment. The points of higher temperature (yellow color)
indicate the grid cells for which the normalized presence of the floating blocks, i.e. the
ping-pong balls, were more frequent.

Fig. 8: Comparison of real (top row) and simulated (bottom row) mean velocity.

inspection of the matching between the left and right plots of Figure 7 will indi-
cate similar dynamics. This result is confirmed by comparing the mean velocities

Title Suppressed Due to Excessive Length 11

(a) (b)

Fig. 9: Lily modules experiment:(a) Learning of the fitness function throughout the PSO
algorithm iterations. (b) Comparison of simulated and real MSD data.

in x and y directions as depicted in Figure 8, where the data is extracted from 10
minutes of experiment.
In a second step, we consider experimenting with Lily robotic modules. The op-
timized model parameters obtained from experimenting with ping-pong balls are
used as the initialization values for the PSO algorithm run for Lily robotic mod-
ules. We use 15 Lilies, the water level is -8 cm and the pump power is set to 68.6
%. The PSO results as well as the resulting matching MSD are shown in Figure
9 and the used simulation parameters as well as the optimized model parame-
ters are listed in Table 1. It can be seen that the MSD curves from the simulated
and real Lily robotic modules have a close matching using the optimized model
parameters.

6 Conclusion

In this paper, we addressed the problem of designing and calibrating physics-
based models of stochastic self-assembly of water-floating robotic modules. In
particular, we considered the case of our fluid-mediated self-assembling robotic
system and used the Webots robotic simulator to capture a faithful yet computa-
tionally low-weight physics-based model of the system. The main motivation for
our approach is to develop accurate yet computationally light simulation mod-
els in order to allow for investigating different programmable behaviors on the
robotic modules without having to compromise on the simulation speed due to
computationally heavy simulation of fluid dynamics in the system. To this end,
we first recreated our robotic modules’ hardware and firmware in the simulated
world. We then developed a dedicated physics plugin to apply appropriate hy-
drodynamic force on the simulated robotic modules. In particular, we introduced
a novel method for automatically calibrating the model parameters employing a
PSO algorithm.

12 Bahar Haghighat, Hala Khodr, and Alcherio Martinoli

Acknowledgement

This work has been partially sponsored by the Swiss National Science Foundation
under the grant numbers 200021 137838/1 and 200020 157191/1.

References

1. Di Mario, E., Mermoud, G., Mastrangeli, M., Martinoli, A.: A trajectory-
based calibration method for stochastic motion models. In: IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems. pp. 4341–4347
(2011)

2. Frenkel, D., Smit, B.: Understanding molecular simulation: From algorithms
to applications (Academic, San Diego, 2002) pp. 63–107 (1997)

3. Ganesan, V., Chitre, M.: On stochastic self-assembly of underwater robots.
IEEE Robotics and Automation Letters 1(1), 251–258 (2016)

4. Haghighat, B., Droz, E., Martinoli, A.: Lily: A miniature floating robotic
platform for programmable stochastic self-assembly. In: IEEE International
Conference on Robotics and Automation. pp. 1941–1948 (2015)

5. Haghighat, B., Martinoli, A.: Characterization and validation of a novel
robotic system for fluid-mediated programmable stochastic self-assembly.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems.
pp. 2778–2783 (2016)

6. Haghighat, B., Mastrangeli, M., Mermoud, G., Schill, F., Martinoli, A.:
Fluid-mediated stochastic self-assembly at centimetric and sub-millimetric
scales: Design, modeling, and control. Micromachines 7(8), 138 (2016)

7. Jacot-Descombes, L.: Fluid-mediated Self-assembly of MEMS Micro-
capsules for Liquid Encapsulation and Release. Ph.D. thesis (2013)

8. Lochmatter, T., Roduit, P., Cianci, C., Correll, N., Jacot, J., Martinoli, A.:
Swistrack-a flexible open source tracking software for multi-agent systems.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems.
pp. 4004–4010 (2008)

9. Matthey, L., Berman, S., Kumar, V.: Stochastic strategies for a swarm robotic
assembly system. In: IEEE International Conference on Robotics and Au-
tomation. pp. 1953–1958 (2009)

10. Michel, O.: Webots: Professional mobile robot simulation. Advanced
Robotic Systems 1(1), 39–42 (2004)

11. Pavlic, T.P., Wilson, S., Kumar, G.P., Berman, S.: Control of stochastic
boundary coverage by multirobot systems. Journal of Dynamic Systems,
Measurement, and Control 137(3), 034504 (2015)

12. Pedersen, M.E.H.: Good parameters for particle swarm optimization. Hvass
Lab., Copenhagen, Denmark, Tech. Rep. HL1001 (2010)

13. Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E.,
Chirikjian, G.: Modular self-reconfigurable robot systems [grand challenges
of robotics]. IEEE Robotics & Automation Magazine 14(1), 43–52 (2007)

