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Highly Selective Oxidation and Depolymerization of a,y-Diol

Protected Lignin

Wu Lan, Jean Behaghel de Bueren, and Jeremy S. Luterbacher*

Abstract: Lignin oxidation offers a potential sustainable
pathway to oxygenated aromatic molecules. However, current
methods that use real lignin tend to have low selectivity and
a yield that is limited by lignin degradation during its
extraction. We developed stoichiometric and catalytic oxida-
tion methods using 2,3-dichloro-5,6-dicyano-1,4-benzoqui-
none (DDQ) as oxidant/catalyst to selectively deprotect the
acetal and oxidize the a-OH into a ketone. The oxidized lignin
was then depolymerized using a formic acid/sodium formate
system to produce aromatic monomers with a 36 mol % (in the
case of stoichiometric oxidation) and 31 mol % (in the case of
catalytic oxidation) yield (based on the original Klason lignin).
The selectivity to a single product reached 80 % (syringyl
propane dione, and 10-13 % to guaiacyl propane dione). These
high yields of monomers and unprecedented selectivity are
attributed to the preservation of the lignin structure by the
acetal.

Lignin is a heterogeneous aromatic biopolymer that is
present in most plant tissue. It is predominately formed
through radical coupling between coniferyl, sinapyl, and p-
hydroxyphenyl alcohol, which results in different interunit
linkages formed by C—C and C—O bonds.! The B-aryl ether
unit (also known as the 3-O-4 linkage) that features a benzylic
secondary hydroxyl at Ca position and a primary hydroxyl at
Cy position is the most abundant interunit linkage, and
a relatively delicate portion of the lignin polymer.” Most
delignification and lignin depolymerization processes in the
pulp and paper industry and biorefineries are based on the
cleavage of these f-O-4 bonds."!

Recently, several groups have explored a two-step lignin
depolymerization strategy pioneered by Stahl and co-work-
ers based on the selective oxidation of the a-OH into
a ketone, which reduces the bond dissociation enthalpy of the
associated B-aryl ether bond.”! This lower energy facilitates
the cleavage of the $-O-4 bonds in downstream processes.
Several studies have reported successful methods that selec-
tively oxidize the a-OH on 3-O-4 dimeric model compounds
and real lignin using different oxidation systems, including
O,/4-amino-2,2,6,6-tetramethylpiperidinyloxy (4-AcNH-
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TEMPO)/HCVHNO,,"! O,/2,3-dichloro-5,6-dicyano-1,4-ben-
zoquinone (DDQ)/tBuONO,! O,/DDQ/N-hydroxyphthali-
mide (NHIP)/NaNO,,” and [4-AcNH-TEMPO|BF..""! Vari-
ous reactions were investigated to cleave the Ca—Cf3 bond
and Cp—O4’ ether bond of the oxidized lignin or lignin models
to produce aromatic monomers, including those using NaOH/
H,0,¥ Zn/NH,CL® NiMo sulfide/H,,”! HCOOH/
NaOOCH," and [Ir(ppy),(dtbbpy)]PFy/visible light.®! How-
ever, all of these methods led to either low yields of
monomers (i.e. <6.0wt%)f or poor product selectivity
(limited to 26% for a single product)!” when they were
applied to extracted lignin. One of the most important factors
limiting the yield was that the lignin extraction conditions
either extracted a small amount of the original lignin, or
caused irreversible condensation of the -O-4 interunits to
form interunit C—C linkages, which then cannot be broken
selectively and limit attainable yields.'!! As we demonstrate
here, selectivity was likely also limited by modification of the
lignin structure during extraction.

Recently, we reported a lignin extraction method using
formaldehyde as a a,y-diol-protecting reagent to preserve the
[-O-4 interunit linkage and produce aromatic monomers at
near-theoretical yield (based on ether cleavage) in the
subsequent hydrogenolysis."? In further work, we demon-
strated that careful choice of the protecting group and
hydrogenolysis catalyst could lead to high product selectiv-
ity.'¥! Considering the high lignin extraction yield and our
ability to preserve the lignin structure, this acetal-protected
lignin represented an ideal lignin source for the two-step
oxidation and depolymerization required to produce oxy-
genated aromatic monomers. The challenge in using this
substrate was to develop an oxidation method that was
adapted to the modified chemical structure of protected lignin
compared to unprotected lignin. In this work, we developed
a method to both selectively deprotect the acetal and oxidize
the a-OH of the acetal-protected lignin in a single step
(Figure 1). The resulting oxidized lignin could then be
depolymerized using HCOOH/NaOOCH to produce phenyl
propane diones with high yield and selectivity.

To develop the initial deprotection and oxidation step, we
explored previously reported methods, including stoichio-
metric oxidation using DDQ in dichloromethane (DCM); and
catalytic oxidation systems, such as O,/TEMPO/HCI/HNO;,
O,/DDQ/tBuONO, and O,/DDQ/NHIP/NaNO, using pro-
pylidene acetal-protected veratrylglycerol-p-guaiacyl ether
(VG) as a model compound (Table 1). None of these methods
led to high yield (ranging from 18-33 mol %) of oxidized VG
(VG®™, 2a, Table 1). Presumably, the oxidation of acetal-
protected VG occurs in two distinct stages: first, the acetal is
deprotected, and second, the o-OH is oxidized. Interestingly,
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Figure 1. Oxidation of protected lignin followed by depolymerization to produce syringyl and

guaiacyl propane diones as the two major products.

DDQ has been reported as an effective catalyst for acetal
removal in wet organic solvents. With water, DDQ has been
reported to act similarly to a Lewis acid, increasing the proton
concentration and thus promoting acetal removal.™¥ Based
on these reports, we performed a stoichiometric oxidation
using DDQ in wet organic solvents (with 5% H,0).
Reactions in acetic acid (AcOH), DCM, and acetonitrile
(MeCN) gave promising yields of VG* ranging from 82 to
92 mol %, as shown in Table 1 and Table S1 in the Supporting
Information. In most cases, the presence of H,O was critical
to the high yield of VG*, even in the case of DCM, where
water was not miscible with the system (Table S1).

Given the high yields obtained with a stoichiometric
oxidation, we further investigated the catalytic oxidation
using DDQ combined with different co-catalysts in the same
solvent systems under O, (Table S2), the most successful of
which was HNO;. The yields of VG* were generally higher
when reactions were performed in DCM/H,O than those in
AcOH/H,O or MeCN/H,O (Table S2). Specifically, the O,/
DDQ/HNO; catalytic oxidation system in DCM/H,0O gen-
erated 82 to 94mol% VG™ depending on the loading of
DDQ (Table 1). tBuONO had been reported as a good co-
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catalyst to selectively oxidize the ben-
zylic alcohol in lignin model compounds
with DDQ," but, in our case, the yield
was not as good as that obtained using
HNO; (Table S2). The major function of
HNO; was its participation in the NO/
NO, redox cycle, in which the dihydro-
quinone (reduction product of DDQ)
could be oxidized back to DDQ to
complete the catalytic cycle.'”) Another
possible function was, as a Brgnsted acid, to enhance the
acetal cleavage and thereby promote the whole deprotection
and oxidation process. Once again, when using DCM, the
presence of H,O was necessary to reach a high yield of VG*
(Table S3), which is consistent with previous observation for
acetal removal.'¥ The presence of O,, DDQ, and HNO; was
necessary for efficient catalytic oxidation, and their respective
concentrations influenced the result (see Table S3 and our
proposed reaction mechanism for the whole process in
Scheme S2, further discussion on the effect of each reaction
component is also provided in Section S5 of the Supporting
Information). We also tested this catalytic oxidation system
using other dimeric $-O-4 model compounds with different
substitutions of methoxyl group on the aromatic ring and/or
different acetal protecting groups. Good to excellent yields
(81-95%) of the corresponding oxidized products were
achieved in all cases, thus demonstrating the full applicability
of this method to a,y-diol-protected lignin (Table 2).
Following the study on model compounds, we successfully
used both the stoichiometric and catalytic oxidation con-
ditions on the real propylidene acetal protected lignin (PA-
lignin; see Figure 2, Figure S3, and Section S4 in Supporting

Table 1: Selective oxidation of propylidene acetal-protected veratrylglycerol-3-guaiacyl.
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Methods reported for VG

Solvent Catalyst/[Oxidant] Co-catalyst Condition Conv. Yield
DCM 150 mol % DDQ — 25°C, 24 h 89% 25%
2-Methoxyethanol® 20 mol % DDQ 20 mol % tBuONO 80°C, 15h 48% 33%
MeCN/HZO'IO:'I[a] 10 mol % TEMPO 10 mol% HNO;, 10 mol % HCl 80°C, 20 h 29% 18%
MeCNE! 23 mol % DDQ 33 mol % NHPI, 60 mol% NaNO, 80°C, 3 h 54% 29%
Methods developed in this work
Solvent Catalyst/[Oxidant] Co-catalyst Condition Conv. Yield
Stoichiometric oxidation
AcOH/H,0 95:5 150 mol% DDQ - 60°C, 24 h 88% 82 %"
AcOH/H,0 95:5 200 mol % DDQ - 60°C, 24 h 93% 92 %
DCM/H,0 95:5 150 mol % DDQ — 80°C, 15 h 92% 88%
Catalytic oxidation®
DCM/H,0 95:5 10 mol % DDQ 20 mol % HNO; 80°C, 15h 84% 82%
DCM/H,0 95:5 15 mol % DDQ 20 mol% HNO;, 80°C, 15 h 93% 91%
DCM/H,0 95:5 20 mol % DDQ 20 mol% HNO; 80°C, 15h 95% 94 %

[a] Reactions performed under 2 bar of O,. [b] The yield included 2a and acetylated (at the y position) 2a with a ratio of 78:22. [c] The yield included 2a

and acetylated (at y position) 2a with a ratio of 76:24. A detailed product breakdown is available in Table S1 of the Supporting Information.
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Table 2: Catalytic oxidation of different lignin $-O-4 model compounds.
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In all cases, the product distributions were

Rs~_O-_Rs4 HO_ R4 similar, with 8-16% G-diketone; 76-82% S-dike-
Y
o} o 15 mol% DDQ o o]:j tone; and less than 10% of syringic acid, vanillic
Ry omorerNGs Rs acid, 4-hydroxybenzoic acid, and syringaldehyde
DOMEL 865 (Table S4). The selectivity of the diketones reached
Ri I Rs socc, fon i ) R 90-93% under the optimal oxidation conditions
R R L . ..
s G (Tabl; S4). The significantly h;gher select.mty to the
a" Ry=H. Ry=CHa. Ry=OCHs, Re=H, Rs=OCHs, Re=H two diketone products (>90%) and syringyl dike-
a": Ry=H, Ry=CH, Rs=0CHs, R4=H, Rs=0CHs, Rg=CHs tone (>80%) compared to previous studies using
b: Ry=OCHs, R;=CHs, R3=OCHs, Rs=H, Rs=OCHj, Re=CH,CHj . o o . 9.10] :
¢ Ry=OCHj, R;=CHa, Ry=OCHs, R4=OCHj3, Rs=OCHj3, Rs=CH,CHj wild wood (~40% and 25%, respectively)™ ™ is
Ho HO HO MeO likely due to the complete preservation of the -O-4
o & & structure by the protection method before oxida-
o o o tion. In comparison, other methods likely suffer
OMls Qe OMe  from a certain degree of structure modification
OMe MeO OMe MeO OMe during extraction. Additionally, the in situ gener-
OMe OMe OMe ated deprotected [-O-4 units were rapidly con-
2a 2b (0%, 81%) 2¢ (92%, 85%) verted to a-ketones, wh%ch l.imited conflens‘atior.l and
(82%, 81%) other structural modifications resulting in higher
2a" yield and product selectivity.

(98%, 95 %)

The mass balance of the original birch Klason

[a] Numbers represent conversion and yield, respectively.

Information for a detailed discussion). Next, both the
stoichiometrically and catalytically oxidized lignin were
depolymerized using the HCOOH/NaOOCH system as
previously reported,””’ which allowed us to determine the
effect of the oxidation on the final monomer yields. The
lignin®* samples that were oxidized with 0.5, 1.0, and 1.5
weight equivalents of DDQ, respectively, were depolymer-
ized and the yields were compared (Figure 3), which revealed
that aromatic monomer yields increased along with the
amount of DDQ, reaching 36 % from birch lignin and 52 %
from FSH poplar lignin (a genetically modified poplar with
high syringyl content).'” The increase in yield follows the
increase in oxidation measured by HSQC NMR, which can be
explained by protected and unoxidized -O-4 units under-
going condensation, respectively. Lignin condensation easily
occurs in acidic conditions by dehydration of the o-OH
followed by condensation of the resulting unsaturation with
a neighboring aromatic group.!'® When the a-OH is oxidized,
it can no longer dehydrate, which limits lignin condensation.
Our best yield was close to the yield obtained from hydro-
genolysis of the PA-protected lignin (42 % ), which is near the
maximum attainable yield based on complete ether cleavage
(45-50% ). This suggests that most of the p-O-4 units were
oxidized and depolymerized. The difference in yield could
likely be explained by the few groups of unoxidized units that
remained (Figure 2B). These groups could have undergone
condensation or have not depolymerized for the reasons
discussed above. In the case of catalytic oxidation, 0.2 and
0.06 weight equivalents of DDQ and HNO; were used in
oxidation process and the monomer yield was 31% after
depolymerization (Figure 3). This lower yield compared to
the stoichiometrically oxidized lignin can once again be
explained by incomplete oxidation and, in this case, incom-
plete deprotection of the -O-4 structure as shown in the
HSQC spectrum (Figure 2).
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lignin during the extraction, oxidation, and depoly-
merization processes was showed in Figure 4. First,
237 mg of PA-lignin were extracted from 1.0 g of
biomass (containing 20 wt % of Klason lignin, the difference
being the presence of the protecting group and some
impurities; Figure 4 A). After oxidation, 189 mg of lignin®™
were obtained by stoichiometric oxidation. The reduced
weight of lignin was largely due to removal of the protecting
group. The resulting lignin® was depolymerized to produce
72 mg of aromatic monomers, representing 38% of the
oxidized lignin®, and 36% of the original Klason lignin.
Using the catalytic oxidation, 193 mg lignin®* were obtained
and depolymerized and generated 63 mg of aromatic mono-
mers, representing 32 % of the oxidized lignin®™ and 31 % of
the original Klason lignin.

Previous work reported that 51 wt% of monomers was
achieved when using enzymatically extracted lignin as a feed-
ing source for oxidation and depolymerization. This is so far
the highest monomeric aromatics yield for lignin oxidative
depolymerization.”) However, this lignin was produced by
extensive ball milling and several enzymatic treatments, and,
as such, is not considered industrially scalable. When the same
method was applied on chemically isolated lignin, such as that
obtained after a mild acid-catalyzed extraction of lignin, the
monomer yield decreased to 41 wt %.1) However, this treat-
ment led to a very low lignin extraction yield (35 %; this has
not been reported, but the procedure was reproduced here).
Furthermore, the most easily extracted lignin fractions tend to
give higher monomer yields."? Considering this low extrac-
tion yield, the overall yield based on the original Klason lignin
was about 14%. We also used our oxidation and depolyme-
rization procedure on this lignin and achieved 38 % based on
the extracted lignin (13% overall) with similar product
selectivity (Table S4, entry4). A longer extraction time
increased the extracted lignin yield to over 50 % but lowered
the overall monomer yield and resulted in worse product
selectivity (Table S4, entry 5), likely due to increased degra-
dation.
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Figure 2. HSQC spectra of propylidene acetal protected lignin isolated
from birch and its oxidation products. A) Original propylidene acetal
protected lignin. B) Oxidation products of protected lignin resulting
from stoichiometric and C) catalytic oxidation. Reaction conditions for
(B): 150 wt% DDQ in acetic acid at 60°C for 24 h. Reaction conditions
for (C): 20 wt% DDQ/6 wt% HNO; in DCM with 0.5% H,0, 2 bar O,,
at 80°C for 24 h.

Recent studies have shown that efficiently isolating
native-like lignin is key to achieving a high overall monomer
yield in the following process.'"'® In an alkaline aerobic
oxidation study, a substrate treated with anhydrous ammonia
followed by alkaline extraction (70 wt% of the total lignin
was recovered in solids with a 30 wt% lignin content)
generated yields corresponding to 22 wt% of the original
Klason lignin with selectivity lower than 33% to a single
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A) Depolymerization of oxidized lignin
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Figure 3. Depolymerization of oxidized lignin in HCOOH/NaOOCH.
A) Reaction Scheme. B) Monomer yields and product distributions.
Reaction condition for the depolymerization were: 100 wt % NaOOCH,
HCOOH/H,0 10:1 v/v, 110°C for 48 h. Yield was reported on

a Klason lignin basis. The yield calculation is explained in more detail
in Section S3 of the Supporting Information. Detailed data is given in
Table S4.

product.® In another study, GVL lignin from corn stover was
oxidatively depolymerized over Au@Li-Al layered double
hydroxide and generated 40 wt% of aromatic monomers
based on the extracted oxidized lignin. The most abundant
product was syringaldehyde with only a 28% selectivity.
Furthermore, the extracted lignin yield was not reported, so
the overall monomers yield was unknown.!"” Overall, by using
both stoichiometric and catalytic oxidation followed by
depolymerization, we were able to obtain overall lignin
monomer Yyields by oxidative polymerization that were
significantly higher than those attained by these other
methods, with typically 2-3-fold increases in the selectivity
to a single product. These dramatic selectivity improvements
are likely due to our preservation of the native lignin structure
by using acetals followed by immediate oxidation after
deprotection, which minimized structural changes. Yield was
maximized by achieving almost complete extraction of this
stabilized lignin thanks to the use of a protecting group on the
1,3-diol moiety.

In summary, we developed a method to selectively
deprotect propylidene acetal-stabilized lignin while simulta-
neously oxidizing the a-OH. The oxidized lignin was then
depolymerized by HCOOH/NaOOCH to produce aromatic
monomers. We attribute the high overall aromatic monomer

Angew. Chem. Int. Ed. 2019, 58, 1-7
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Figure 4. A) Mass balance of the original birch Klason lignin following
the extraction, oxidation, and depolymerization processes. Arrow
widths are proportional to the amount of material produced. B) com-
parison of the overall monomer yields to that of using lignin extracted
using a mild acid catalyzed process. Reaction conditions are indicated
in the caption of Figure 2. [a] The extracted lignin contained the
additional protecting group. [b] The weight loss was mainly due to the
protecting group removal. [c] Products that are soluble in EtOAc but
not detectable in GC, which have been referred to as dimeric and
trimeric compounds.®'” The monomers were quantified by GC (see
Section S3 in the Supporting Information); the soluble products were
calculated as the mass of total products extracted by EtOAc minus the
mass of monomers; the polymeric material was considered to be the
remainder.

yields based on the original Klason lignin (36 mol % for the
stoichiometric oxidation strategy and 31 mol% for the
catalytic oxidation strategy), and the remarkable selectivity
(>90% to syringyl and guaiacyl propane dione) to the
preservation of the lignin structure during extraction, which
occurs even when the extraction conditions are harsh enough
for near-complete lignin recovery. The high yield of products
from the original lignin maximizes carbon recovery from the
plant. Carbon recovery has important implications for
biomass conversion due to the important energetic cost of
fixing atmospheric CO, by photosynthesis. At the same time,
high selectivity to 1-2 dione products could jumpstart the
development of valorization processes for oxygenated lignin-
derived aromatic molecules, which has so far focused on
reduced-lignin monomers.!'!!
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Highly Selective Oxidation and
Depolymerization of a,y-Diol Protected
Lignin

Angew. Chem. Int. Ed. 2019, 58, 1-7

Communications

Knock on wood: 2,3-Dichloro-5,6-
dicyano-1,4-benzoquinone is able to
selectively remove the acetal and oxidize
the a-OH of acetal-protected lignin. The
resultant oxidized lignin generated
syringyl and guaiacyl propane diketons in

Angewandte

intemationalEdition’y Chemie

= High overall monomer yield (31-36%)
= High selectivity (90% to diketones)

high monomer yield (31-36% on the
base of original Klason lignin) and with
high selectivity (90%) in formic acid/
sodium formate, thanks to nearly com-
plete extraction of lignin and preservation
of the 3-O-4 linkages.
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