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Abstract

The majority of problems in aircraft production and operation require decisions made in the presence
of uncertainty. For this reason aerodynamic designs obtained with traditional deterministic optimization
techniques seeking only optimality in a specific set of conditions may have very poor off-design performances
or may even be unreliable. In this work, we present a novel approach for robust and reliability-based design
optimization of aerodynamic shapes based on the combination of single and multi-objective Evolutionary
Algorithms and a Continuation Multi Level Monte Carlo methodology to compute objective functions and
constraints that involve statistical moments or statistical quantities such as quantiles, also called Value
at risk, (VaR) and Conditional Value at Risk (CVaR) without relying on derivatives and meta-models.
Detailed numerical studies are presented for the RAE-2822 transonic airfoil design affected by geometrical
and operational uncertainties.

Keywords: Multi Level Monte Carlo, Uncertainty Quantification, Aerodynamic Design, Robust Design
Optimization, Evolutionary Algorithms.

1. Introduction

In the early days of aviation, the limitations due to propeller propulsion avoided airplanes from flying
fast enough to encounter transonic/supersonic phenomena. During the Second World War fighters started
reaching transonic speeds and encountered major difficulties in recovering from dives during maneuvering,
controllability issues related to sharp pitching moment changes with the Mach number and Mach induced
changes in control effectiveness. Since the introduction of jet engines in civil aviation, practically all
commercial transport aircrafts now fly at transonic speeds. Transonic conditions occur during a flight when
there are subsonic and supersonic local flows in the same flow field surrounding an aircraft. Generally, this
happens in a range of speeds between the so called critical Mach number (around Mach 0.72), when some
parts of the airflow start becoming supersonic, and the speed when all of the airflow is supersonic (around
Mach 1.05 in conventional airfoils). At transonic speed, the supersonic regions of the flow are generally
followed by a shock wave, that slows down the flow to subsonic conditions. The fuel consumption due to
rapid increase of wave and viscous drag with the Mach number (shocks get stronger and pressure rise through
a shock wave thickens the boundary layer) typically limits the cruise speed of commercial aircrafts.

Notwithstanding it is possible to design a shock free airfoil, this situation usually takes place only for a
single combination of Mach number and lift coefficient. For this reason, much effort has been spent since the
1960s, following the pioneering work of Whitcomb on supercritical airfoil [1], to reduce the shock drag and
increase the controllability in a range of Mach number without fully suppressing the shocks. Supercritical
airfoils were designed to achieve higher drag rise Mach numbers by controlling the expansion of the flow to
supersonic speed and its subsequent recompression without affecting the lifting performances. Supercritical
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airfoils generally present a relatively large leading edge radius to expand the flow in the upper surface and
obtain more lift than conventional airfoils in the bow part (region near the leading edge). In addition, a
flatter upper surface, compared to conventional airfoils, maintains the supersonic flow at nearly a constant
pressure plateau or even slows it down slightly approaching the shock. Thanks to that, a relatively weak
shock is produced. In some cases also an augmented aft camber (region near the trailing edge) can be
employed to produce more lift than conventional airfoils.

Although theoretically superior with respect to conventional airfoils, promising supercritical sections led
to serious problems when actually incorporated into an aircraft wing. Practical experiences revealed that
some supercritical sections, with shock-free designs, are often very sensitive to Mach, lift and geometrical
uncertainties and hence may perform dramatically poorly at off-design conditions. Optimizing a transonic
airfoil shape using classical deterministic optimization methodologies seeking optimality only in a single
operating condition generally leads to the appearance of the so called drag creep, a situation in which the
drag increases at Mach numbers below the designed value. On the other hand, multi-point optimization
approaches, seeking optimality in multiple discrete operating points can alleviate the drag creep phenomenon
but are unable to adequately remedy the problem of localized optimization [2] (i.e. shapes that are optimal
in only few operating conditions, generally characterized by few bumps).

The ever-increasing demand for aircrafts with better performance, higher reliability and robustness at
lower cost requires optimization techniques seeking optimality under uncertain conditions that may arise
during design, manufacture and operation of the vehicle. Indeed, the geometrical and operational parameters,
that characterize aerodynamic systems, are naturally affected by aleatory uncertainties due to the intrinsic
variability of the manufacturing processes and the surrounding environment. Reducing the geometrical
uncertainties due to manufacturing tolerances can be prohibitively expensive while reducing the operational
uncertainties due to atmospheric turbulence in external aerodynamics is simply impossible.

Optimization under uncertainty (OUU) refers to a broad class of methodologies that address the
following two problems:

• Robust Design Optimization (RDO): focuses on the performances of a system under perturbations
of the design conditions. Prescribed probabilistic measures of robustness (involving mean, variance
or higher moments) as objective functions are used to ”robustify” the design. The optimal design
should, in this framework, be as insensitive as possible to uncertain conditions meaning that its
performance should not drop below a prescribed quality level. The final objective of RDO is to achieve
an improvement of the performance of the system over the entire range of uncertain conditions [3] by
reducing the performance variability (a graphical interpretation of RDO is provided in Figure 1(a)).

• Reliability-based Design Optimization (RBDO): focuses on safety-under-uncertainty aspects of the
system. The most conservative and classical approach for RBDO is the worst-case analysis (also known
as min-max strategy) that seeks a design with the best ”worst-case” performance [4]. More modern
and advanced methodologies seek the optimization of an objective functions subject to probabilistic
constraints that involve failure probabilities (such as quantiles and Conditional Value at Risk - CVaR)
or reliability indexes. The optimal design has, in this framework, a prescribed degree of confidence
and a minimum level of reliability under uncertain conditions (a graphical interpretation of RBDO is
provided in Figure 1(b)).

Despite the wide availability of modern parallel computer architectures and efficient CFD solvers, the key
difficulties in RDO/RBDO problems are:

• computing objective functions that involve robust measures based on mean, variances and higher
moments or reliability measures such as VaR and CVaR, when many sources of uncertainties are present
(efficient propagation of uncertainties).

• dealing with competing objectives in computing a robust Pareto-optimal front.

Many non-intrusive uncertainty propagation techniques and derivatives-free optimization method have
gained a lot of attention in recent years as they simply require multiple solutions of the original problem and
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Figure 1: Graphical interpretation of robust design optimization (RDO), left and reliability-based design optimization (RBDO),
right. The green (resp. the blue) design is more robust (resp. reliable) than the red one. In this graphical representation,
uncertainty is present on the design variable itself, i.e. the actual design is a random perturbation of the nominal one.

can use available industrial CFD solvers as a black box. Polynomial Chaos (PC) [5, 6, 7] and Stochastic
Collocation (SC) [8] methods have been successfully employed in different engineering fields to built response
surfaces of the system outputs with respect to the uncertain parameters to be used in the optimization loop,
while Kriging [9] has been mainly employed to build meta-models for the system response with respect to
the design variables. All these approaches have a strong potential for RDO but they are known to suffer
the so called ’curse of dimensionality’ (dramatically increase of computational cost with the number of
uncertain/design variables). In addition, these approaches based on global basis functions that span the
entire stochastic design domain may see their performance and accuracy jeopardized if the problem under
investigation presents strong discontinuities as in the case of transonic/supersonic flows.

Monte Carlo (MC) methods, on the contrary, have been proven to be robust and accurate for non
smooth problems. However, their very slow convergence rate, although dimension independent, makes
them chimerical for practical applications. The Multi Level Monte Carlo (MLMC) method, introduced by
Heinrich [10] and Giles [11] is based on the intuitive idea that one can draw MC samples simultaneously
and independently on several approximations of the problem under investigations on a hierarchy of nested
computational grids (levels). In a previous work we presented a robust and effective Continuation Multi
Level Monte Carlo (C-MLMC) methodology [12], following the ideas of Collier et al.[13], which is capable
of propagating operational and geometrical uncertainties in compressible inviscid flow problems and allows
an effective reduction of the overall computational efforts compared to MC and classical MLMC. In [14]
we introduced an extension of the standard MLMC approach to compute arbitrary order central statistical
moments.

In this work we present an effective procedure that leverages the self-tuning nature and robustness of
C-MLMC to compute robust/reliable loss function and constraints that involve statistical moments and
generalized quantiles (value at risk, VaR and conditional value at risk CVaR) combined with a Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES) to solve the optimization problem. The approach is
tested and applied in different settings relevant in airfoil design: single objective maximization of lift-drag
ratio with uncertainties in operating and geometric conditions (up to 10 uncertain parameters), minimization
of drag coefficient with uncertainties in the operating conditions and multi objective optimization of lift and
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drag coefficients with operating and geometric uncertainties.
The paper is organized as follows. Section 2 introduce the notations and the formulation of deterministic

airfoil optimization problems, Section 3 presents the problem of optimization under uncertainties and
robust and reliability-based loss functions and constraints relevant in airfoil design. Section 4 introduce the
Continuation-MLMC Evolutionary algorithm. Section 5 presents the application of the algorithm to single-
objective optimization under uncertainties and Section 6 the application of the algorithm to multi-objective
optimization problems. Section 7 concludes the paper and proposes future work.

2. Deterministic Shape Optimization

In a deterministic framework, a single objective (SO) airfoil shape optimization problem consists of
determining the set of geometric design parameters χ that minimize (or maximize) a prescribed deterministic
loss (or fitness in case of maximization) function D : Rq → R

SO-DO :


min
χ∈Rn

D [Qq
d(χ, p)]

s.t Ci [Qm
c (χ, p)] ≤ ki i = 1, . . . , s

χL ≤ χ ≤ χU
(1)

Here

• χ ∈ Rn is a vector of n design variables, χ = (χ1, . . . , χn), that define the shape of the airfoil, and may
be subject to constraints χL,i ≤ χi ≤ χU,i. We write such constraints in compact form as χL ≤ χ ≤ χU ,
which should be understood component-wise.

• p ∈ Rg is a vector of system parameters as, for example fixed geometric or operating parameters of the
aerodynamic system under investigation.

• Qq
d(χ, p) =

[
Q1
d(χ, p), . . . , Q

q
d(χ, p)

]
is the vector of q Quantities of Interest (QoI) that enter in the

expression of the objective function D. These could be for example the lift, drag or momentum
coefficient of an airfoil.

• Qm
c (χ, p) =

[
Q1
c(χ, p), . . . , Q

m
c (χ, p)

]
is the vector of m QoI that are subject to constraints, defined by

the functions Ci : Rm → R, i = 1, . . . , s as Ci(Qm
c ) ≤ ki.

Definition 1. We call feasible design set X, the set X = {χ ∈ Rn | Ci [Qm
c (χ, p)] ≤ ki, i = 1, . . . , s and

χL ≤ χ ≤ χU}
With this definition, the SO airfoil design problem can be written more compactly as minχ∈X D [Qq

d(χ, p)].

We now turn to a Multi Objective (MO) airfoil shape problem and define DΦ [Qq
d(χ, p)], DΦ : Rq → RΦ

a vector of loss functions:

DΦ [Qq
d(χ, p)] = [D1 [Qq

d(χ, p)] , . . . ,DΦ [Qq
d(χ, p)]] (2)

Using the same notation as in (1), we define the multi-objective design optimization problem (MO-DO)
as :

MO-DO :


P-min
χ∈Rn

DΦ [Qq
d(χ, p)]

s.t Ci [Qm
c (χ, p)] ≤ ki i = 1, . . . , s

χL ≤ χ ≤ χU

(3)

where Φ is the number of objective functions and P-min denotes all Pareto optimal values of DΦ on the
feasible set X ⊂ Rn.

Definition 2. A feasible point χ∗ ∈ X is Pareto optimal if and only if there does not exist another feasible
point χ ∈ X such that DΦ [Qq

d(χ, p)] ≤ DΦ [Qq
d(χ
∗, p)], and Di [Qq

d(χ, p)] < Di [Qq
d(χ
∗, p)] for at least one

i ∈ {1, . . . ,Φ}.
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The main difference between SO-DO and MO-DO is that in the latter usually there is no single solution,
but a set of points defining the so called ”Pareto front”.

In airfoil shape design, one is generally interested in minimizing the drag coefficient of the airfoil or
maximizing its lift-drag ratio. Constraints are generally imposed on the geometry of the airfoil, in order to
achieve a final optimized shape that fulfill specific structural and mission requirements, and/or on the lift and
moment coefficient. Examples of loss functions considered in this work are provided in the following Table 1.
There SP denotes deterministic single point optimization problems solved for a single flight Mach number
condition, while MP denotes multi point deterministic optimization problems. We denote with L/D(M∞,α∞),

C
(M∞,α∞)
D and C

(M∞,α∞)
L the lift-drag ratio, the drag coefficient and lift coefficient of the airfoil at prescribed

Mach number M∞ and angle of attack α∞. C
(M∞,C

∗
L)

D denotes instead the drag coefficient at prescribed
Mach number M∞ and cruise lift coefficient C∗L.

Loss Functions

SO (SP) D [L/D] = L/D(M∞,α∞)

SO (SP) D [CD] = C
(M∞,C

∗
L)

D

SO (MP) D [CwD] =
∑m
i=1 wi · C

(Mi
∞,C

∗
L)

d

MO D2 [CD, CL] = {C(M∞,α∞)
D , C

(M∞,α∞)
L }

Table 1: Examples of deterministic loss functions for airfoil shape optimization problems.

3. Shape Optimization Under Uncertainties

A general formulation of a single objective optimization problem under uncertainties (SO-OUU) reads as
follows:

SO-OUU :


min
χ∈Rn

R [Qq
r(χ̃(χ, ω), p(ω))]

s.t Ci [Qm
c (χ̃(χ, ω), p(ω))] ≤ ki i = 1, . . . , s

χL ≤ χ ≤ χU
(4)

Here

• χ ∈ Rn is a vector of n design variables, that define the shape of the airfoil. Its actual realization
χ̃(χ, ω) may be affected by uncertainties denoted as ω ∈ Ω, where Ω is the sample space.

• p ∈ Rg is the vector of system parameters and may also be affected by uncertainties ω ∈ Ω.

• Qq
r(χ̃(χ, ω), p(ω)) =

[
Q1
r(χ̃(χ, ω), p(ω)), . . . , Qqr(χ̃(χ, ω), p(ω))

]
is the vector of q QoI affected by uncer-

tainty that enter in the robust loss function.

• Qm
c (χ̃(χ, ω), p(ω)) =

[
Q1
c(χ̃(χ, ω), p(ω)), . . . , Qmc (χ̃(χ, ω), p(ω))

]
is the vector of m QoI affected by

uncertainty that are subject to s constraints.

• R is a robust loss function (or fitness in case of maximization) involving one or more QoI Qr (e.g.
weighted sum) that has to be optimized.

• Ci, i = 1, · · · , s, denotes a set of deterministic or probabilistic constraints applied on the set of QoI Qm
c .

The loss function R is a measure of robustness/reliability against the uncertainties in the design and
system parameters. Classical robust optimization approaches generally consider optimizing performance
under ’worst-case’ outcomes (min-max formulations). This approach is known to generally produce overly
conservative designs with suboptimal performance in the uncertainty range. In this work we consider instead
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different probabilistic loss functions and constraints that involve the weighted sums of central statistical
moments, Value at Risk (VaR) and Conditional Value at Risk (CVaR) of the quantities of interest that have
to be optimized.

In a multi objective optimization problem under uncertainties (MP-OUU), we define with RΦ [Qq
r(χ̃(χ, ω), p(ω))]

a vector of Φ robust loss functions:

RΦ [Qq
r(χ̃(χ, ω), p(ω))] = [R1 [Qq

r(χ̃(χ, ω), p(ω))] , . . . ,RΦ [Qq
r(χ̃(χ, ω), p(ω))]] (5)

We can now further generalize (4) and define the multi-objective robust optimization problem under
uncertainties (MO-OUU) as :

MO-OUU :


P-min
χ∈Rn

RΦ [Qq
r(χ̃(χ, ω), p(ω))]

s.t Ci [Qm
c (χ̃(χ, ω), p(ω))] ≤ ki i = 1, . . . , s

χL ≤ χ ≤ χU

(6)

where Φ is the number of objective functions and P-min denote all Pareto optimal values of RΦ over X.
Examples of probabilistic (robust and reliable) loss functions considered in this work are provided in the

following Table 2. There µ, σ and V aR90 respectively denote the mean, standard deviation and Value at
Risk (VaR, i.e. 90% quantile) of a specific QoI affected by operating and/or geometric uncertainties.

Probabilistic Loss Functions

Rµ,σ [CD] µCD
+ σCD

RV aR90 [CD] V aR90
CD

R2 [CD, CL] {µCD
+ σCD

, µCL
− σCL

}

Table 2: Examples of probabilistic loss functions for airfoil shape optimization problems under uncertainties.

3.1. Airfoil Parametrization

In this work we use as design parameters the set of PARSEC parameters or the position of control box
nodes for a Free Form Deformation (FFD) box.

3.1.1. PARSEC

The PARSEC approach is a constructive parametrization methodology proposed by Sobieczky [15] to
introduce engineering relevant and geometrically intuitive airfoil parameters in the design process. In a 2D
plane x-y, the suction and pressure sides of the airfoil shape are defined as the graph of functions ys(x) and
yp(x), respectively, with the following form:

ys(x) =

6∑
i=0

six
i−0.5, yp(x) =

6∑
i=0

pix
i−0.5, x ∈ [0, 1] (7)

The free parameters are the PARSEC parameters presented in Table 3 together with their relation
with the coefficients {si} and {pi}. The shape of the airfoil (7) is then determined by solving the set of 12
(nonlinear) equations for the coefficients si and pi, i = 1, . . . , 6 given the PARSEC parameters (see right
column of Table 3).

It is worth underlying that in our framework we set the trailing edge offset YTE and the trailing edge
thickness ∆YTE to zero. Hence the airfoil shapes are identified by 10 parameters as presented in figure 2(a).
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Parameter Symbol Definition

Pressure LE radius Rp p1

Suction LE radius Rs s1

Pressure Crest position Xp y′p(Xp) = 0
Suction Crest position Xs y′s(Xs) = 0
Pressure Crest hight Yp yp(Xp)
Suction Crest hight Ys ys(Xs)

Pressure Crest curvature Cp y′′p (Xp)
Suction Crest curvature Cs y′′s (Xs)

TE angle θs y′s(1) = −tan(θs +
θp
2 )

Boat-tail angle θp y′p(1) = −tan(θs − θp
2 )

TE offset YTE yp(1)
TE thickness ∆YTE ys(1)− yp(1)

Table 3: PARSEC parameters and definitions (LE= leading edge; TE= trailing edge).

3.1.2. Free-Form Deformation (FFD)

The FFD methodology has been first introduced as a computer graphics 3D morphing technique [16] and
afterwards proposed in the context of aerodynamic optimization [17]. The approach is based on the intuitive
idea of expressing the deformation from an initial nominal shape by the displacement of an embedding control
box. The competitive advantage of this approach is that, as the external box is deformed, the embedded
objects are deformed too with the same degree of flexibility. This is particularly appealing when the FFD
approach is applied on CFD grid boundaries. The airfoil/wing shape and the computational grid surrounding
it can be smoothly deformed in just one step.

Considering the local curvilinear coordinates x = (s, t, u) mapped into the control box (lattice coordinates),
the displacement δ(x) of any point inside the control box is defined as:

x+ δ(x) =

l∑
i=1

m∑
j=1

n∑
k=1

Bi−1
l−1(s)Bj−1

m−1(t)Bk−1
n−1(u) (P i,j,k +Di,j,k) (8)

where Bi−1
l−1(s) is the (i− 1)-th Bernstein polynomial of degree l − 1 [18]. P i,j,k and Di,j,k are the matrices

of original coordinates and displacements for the node points (i, j, k) of the control box lattice defined by
ncp = l ·m · n control points (see Figure 2(b)).

Starting from the local curvilinear coordinates of the points embedded by the control box and the blending
functions B, once the external box is deformed (update of Di,j,k), the location of all nodes inside it are
obtained from (8).

ys

yp xs

xp

Cs

Cp

Rs

Rp

y

xθs

θp

M∞

α∞

RAE-2822

(a) PARSEC parametrization for RAE2822 (b) FFD box for RAE2822

Figure 2: PARSEC and FFD parametrization for the RAE-2822 airfoil.
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4. Continuation Multilevel Monte Carlo Evolutionary Algorithm

In this work we employ Single and Multi Objective Covariance Matrix Adaptation Evolutionary Strategies
(CMA-ES) to solve the SO-OUU and MO-OUU problems presented above. We hereafter introduce the
general idea of CMA-ES and we then introduce the modifications required to treat optimization problems
under uncertainty by means of the Continuation Multi Level Monte Carlo (C-MLMC) technique. Finally, we
present the full C-MLMC CMA-ES algorithm.

4.1. Covariance Matrix Adaptation Evolutionary Strategies (CMA-ES)

CMA-ES are a class of stochastic derivative-free evolutionary algorithms for numerical optimization of
non-linear and non-convex black-box optimization problems introduced by Hansen [19].

Based on the principle of biological evolution, evolutionary algorithms, are characterized by the repeated
interplay of variation and selection operators. At each generation (iteration of the algorithm) new individuals
(candidate solutions) are generated by variation of the current parental individuals via recombination and
possibly mutation. The individuals with the best fitness (objective function value) are then selected and
become the parents in the next generation. Thanks to this repeated process, individuals with increasingly
better fitness are generated.

In classical ES a new population of λ ≥ 2 candidate solutions at generation i+ 1 is sampled according to
a multivariate normal distribution in Rn, n being the number of design variables, as

χ
(i+1)
k ∼ m(i) + σ(i)N (0, C(i)) ∼ N (m(i), (σ(i))2C(i)) for k = 1, . . . , λ (9)

where χ
(i+1)
k ∈ Rn denotes the k-th individual in generation i+ 1, m(i) ∈ Rn the mean of the population at

generation i, C(i) ∈ Rn×n is a scaled covariance matrix of the population at generation i and σ(i) ∈ R is a
scaling parameter (step-size).

The recombination operator is responsible for updating at each generation the mean of the population
(moving the mean of the distribution in the design space). Dependencies between the n variables in the
distribution are represented by the scaled covariance matrix.

The adaptation of the covariance matrix resembles the approximation of the inverse Hessian matrix in
Quasi-Newton methods. The key difference to those methods is that fewer assumptions on the nature of the
underlying objective function are made. Neither derivatives nor even the function values are required in the
CMA-ES approach. Only a ranking between candidate solutions is exploited to adapt the covariance.

More details are given in Section 4.3, in the context of Optimization Under Uncertainties.

4.2. C-MLMC

As introduced in Section 3, in an optimization problem under uncertainties, we are interested in computing
probabilistic loss functions R and constraints C of aerodynamic relevant QoI. Each of these QoI, say Q, is
associated to the solution u of an aerodynamic problem as Q = f(u). The latter is typically solved using a
numerical approximation with a discretization parameter M (number of spatial degrees of freedom); hence Q
is approximated by QM = f(uM ).

The key idea of Multi Level Monte Carlo (MLMC) [11] is to simultaneously draw Monte Carlo (MC)
samples on several approximations QMl

of Q build on a hierarchy of computational grids with discretization
parameters M0 < M1 < ... < ML = M (number of degrees of freedoms).

Considering N` independent and identically distributed (i.i.d.) realizations ωi,`, i = 1, · · · , N`, of the
system’s random input parameters on each level 0 ≤ ` ≤ L, the MLMC estimator for the mean µ = E[Q] of
Q is

µMLMC = EMC
(
Q0
N0,M0

)
+

L∑
`=1

(
EMC
(
Q`N`,M`

)
− EMC

(
Q`N`,M`−1

))
, (10)

where EMC denotes the sample average operator and Q`N`,M`
is the sample of N` i.i.d. replications of QM`

.

The same ωi,` are used in both Q`N`,M`
and Q`N`,M`−1

.

8



In [14] we presented an extension of the classical MLMC concept for the estimation of arbitrary order
central statistical moments µp = E [(Q− E[Q])p]. The MLMC estimator mMLMCp for arbitrary order p central
moment is of the form

mMLMCp = hp
(
Q0
N0,M0

)
+

L∑
`=1

(
hp
(
Q`N`,M`

)
− hp

(
Q`N`,M`−1

))
. (11)

where hp denotes an appropriate h-statistic of order p. One of the method’s key ingredients is the use of such
h-statistics [20] as unbiased central moment estimators with minimal variance for the level-wise contributions.

In [21, 22] we further extended the MLMC concept to accurately approximate the Cumulative distribution
function (CDF) of a random system output and robustness measures such as quantiles (also known as Value
at Risk, VaR) or coherent risk measures [23] such as the conditional value at risk (CVaR [24]).

Definition 3. Quantiles (VaR) are defined as cut-points dividing the range of a probability distribution.
The α-quantile qα is given by:

qα = V aRα ≡ inf{ϑ ∈ R : FQ(ϑ) ≥ α} α ∈ (0, 1). (12)

where FQ : R→ [0, 1] is the cumulative distribution function (CDF) of a random variable Q.

The Conditional Value at Risk (CVaR) is another well known risk indicator employed in many financial
and scientific applications, introduced by Rockafellar [25] as an extension of VaR.

Definition 4. CVaR is a risk measure defined as the mean of the so called generalized α-tail distribution:

CV aRα =

∫ ∞
−∞

z dFαQ(z), FαQ =

{
0, if z < V aRα(Q)
FQ(z)−α

1−α , if z ≥ V aRα(Q)
α ∈ (0, 1). (13)

The idea proposed in [21, 22] to approximate simultaneously the CDF, quantiles qα and CV aRα of a
certain output QoI Q is to first approximate the function HQ : Θ→ R defined as:

HQ(ϑ) = E (φ(ϑ,Q)) , with φ(ϑ,Q) = ϑ+
1

1− τ (Q− ϑ)+ and τ ∈ (0, 1). (14)

This can be done by evaluating HQ(θj) on a set of points θj ∈ Θ, j = 1, ·, n by a MLMC estimator and then
reconstruct an approximate function PMLMCH (ϑ) ≈ HQ(θ), θ ∈ Θ by eg. Spline interpolation. Once a MLMC
estimator PMLMCH (ϑ) of HQ(ϑ) is accessible, the CDF of Q can be approximated by computing the derivative of
PMLMCH :

FQ(ϑ) ≈ (1− τ)
d

dϑ
PMLMCH (ϑ) + τ, (15)

the τ -quantile (VaR) qτ (if it exists and is unique) is available via minimization of PMLMCH (ϑ):

qτ := arg min
ϑ∈R

HQ(ϑ) ≈ arg min
ϑ∈Θ

PMLMCH (ϑ) (16)

and CV aRτ can be computed as (see [25])

CV aRτ := min
ϑ∈R

HQ(ϑ) ≈ min
θ∈Θ

PMLMCH (ϑ). (17)

Details on how to tune the MLMC estimator to obtain simultaneously accurate evaluations of FQ, qτ , CV aRτ

are given in [21].
As underlined and extensively studied in [12], the Continuation-MLMC (C-MLMC) methodology is an

extension of the classical MLMC approach that estimates, through a Bayesian update procedure, the optimal
number of levels and simulations per level required to achieve a prescribed tolerance. The flexibility and
self-tuning nature of the C-MLMC allow us to compute in an effective and robust way statistical moments,
CDF, CVaR, VaR of different QoI in a completely automated way for all the candidate designs in the
optimization loop.
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4.3. Practical aspects: Evolution meets C-MLMC

In a classical CMA-ES methodology, the deterministic objective function D : Rn → R is computed by
solving the underlying deterministic problem with parameters prescribed by χk. By combining the CMA-ES
and our implementation of C-MLMC we are now able to optimally control the cost required to compute each
individual’s robust loss function, up to a prescribed tolerance, in the population of candidate solutions, and
guarantee a prescribed tolerance on the statistics of the QoIs that are required to compute the robust/reliable
loss functions R : Rn → R and constraints Ci : Rm → R.

4.3.1. Sorting

At each generation i, once we have performed a C-MLMC simulation for each design χ
(i)
k , we sort the

candidate solutions according to their robust/reliable loss function:

R
(
χ

(i)
π(l)

)
≤ R

(
χ

(i)
π(k)

)
l ≤ k (18)

where π(·) is the permutation of {1, . . . , λ} providing the ordering.

4.3.2. Selection and Recombination

In order to update the mean of the population for the next generation, we follow the procedure of Hansen
[26]. The new mean is simply the weighted average of the best ξ < λ candidates:

m(i+1) =

ξ∑
k=1

wkχ
(i)
π(k) = mi +

ξ∑
k=1

wk(χ
(i)
π(k) −mi),

ξ∑
k=1

wk = 1 (19)

where wk, k = 1, . . . , ξ ∈ R>0 are positive weights. In our implementation we choose wk = 1
ξ and ξ = 1

4λ to
avoid extremely fast convergence of the algorithm towards a local minimum. Several alternatives for the
weights and the best number of candidate solutions considered to update the mean are available depending
on the complexity and dimensionality of the problem [26].

4.3.3. Adaptation of the covariance

In order to introduce the concept of covariance adaptation, let us consider the population of λ candidates

at generation i+ 1 and the following unbiased estimator for the covariance matrix Ĉ
(i+1)
λ =

(
σ(i)
)2
C(i):

Ĉ
(i+1)
λ =

1

λ

λ∑
k=1

(
χ

(i+1)
k −m(i)

)(
χ

(i+1)
k −m(i)

)T
(20)

where T denotes the transpose.
Following the same weighted selection argument used for the mean in (19), we can define a covariance

estimator based only on the best ξ individuals as:

Ĉ
(i+1)
ξ =

ξ∑
k=1

wk

(
χ

(i+1)
π(k) −m(i)

)(
χ

(i+1)
π(k) −m(i)

)T
. (21)

The key difference between (20) and (21) is that the former estimates the covariance between the so called

sampled steps χ
(i+1)
k −m(i) in the population, while the latter just consider the best (successful) ξ selected

steps. Hence, sampling from C
(i+1)
ξ at the next generation will promote the reproduction of successful steps.

To achieve an effective adaptation of the covariance, information from previous generations should be
included. Indeed, after a sufficient number of generations, the scaled covariance matrix could be estimated as
an average over all generations of the estimates Ĉ(i+1)/(σ(i))2:

C(i+1) =
1

i+ 1

i∑
j=0

1

(σ(j))2
Ĉ

(j+1)
ξ (22)

10



where the variance σ(j) has been included in order to make the covariances of different generations comparable.
In (22), all generation steps have the same weight. To assign higher weight to the most recent generations an
exponential smoothing and an appropriate learning rate 0 < cξ ≤ 1 are introduced:

C(i+1) = (1− cξ)C(i) + cξ
1

(σ(i))2
C

(i+1)
ξ

= (1− cξ)C(i) + cξ

ξ∑
k=1

wky
(i+1)
π(k) y

(i+1)T
π(k)

(23)

and y
(i+1)
π(k) reads as follow:

y
(i+1)
π(k) =

χ
(i+1)
π(k) −m(i)

σ(i)
(24)

In our simulation we choose the learning rate for updating the covariance matrix as cξ = ξ
4 . The covariance

matrix update in (23) is called rank-ξ-update as the sum of outer products is of rank min(ξ, n) with probability
one [27].

4.3.4. Step size control

The last step required in order to make the C-MLMC CMA-ES algorithm effective is the control of the
step-size σ(i) (that appears in (24)), in other words the scale of the distribution. In addition to the previously
presented adaptation rule, Hansen proposed an approach to control the step size based on the concept of
cumulative step-size control, or cumulative step length adaptation (CSA). The interested reader may consult
[26] for further details. Practically, the step-size is updated as:

σ(i+1) = σ(i) exp

 cσ
dσ


∥∥∥p(i+1)

σ

∥∥∥
α(n)

− 1

 (25)

where α(n) = E ‖z‖ with z ∼ N (0, I), dσ ≈ 1 is a damping parameter used to scale the change in magnitude
of σ(i) and pσ ∈ Rn is called evolution path and denotes a sequence of successive steps over a number of
generations:

p(i+1)
σ = (1− cσ)p(i)

σ +

√
cσ(2− cσ)

λ

4

(
C(i)

)−1/2 m(i+1) −m(i)

σ(i)
. (26)

Finally, cσ is a backward time horizon of the evolution path that we choose to be equal to
√
n

4.4. C-MLMC CMA-ES Algorithm

In the following Algorithm 1 we denote with imax the maximum number of iterations (generations) of
the algorithm, ε a vector of size imax that defines how the tolerance of the C-MLMC algorithm should be
reduced during the optimization loop.

As stopping criteria we look at the improvement (in the loss function) of the best designs at each
generation of the algorithm. If the performances do not improve by a specified threshold for few generations,
we assume that we reached a possibly global optimum and terminate the simulation.

The same strategy and updates presented above can be effectively applied and extended to tackle multi
objective optimization problems. However, a multi-objective selection approach should be introduced at the
sorting and selection step of the algorithm. We follow the approach of Igel [28] and apply a non-dominated
sorting methodology based on the crowding-distance.
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Algorithm 1: C-MLMC CMA-ES for Robust Optimization.

CMA-ES(λ, σ0, m0, iMAX , ε)
Initialize(i = 0, Ci = I, mi = m0 σi = σ0)
while (Stop-criteria NOT reached) AND i < iMAX do

for k = 1, . . . , λ do
χk ∼ N (mi, σ

2
iCi)

εi = ε[i]
C-MLMC(Qq

r, Qm
c , εi, χk)

return R [Qq
r(χ̃k(χk, ω), p(ω))], Cj [Qm

c (χ̃k(χk, ω), p(ω))] j = 1, · · · , s
Sort: best ξ candidates out of λ according to R (18)
Mean m update based on ξ candidates using (19)
Step-size σ update: using (25)
Covariance C update using (23)
Generation: i = i+ 1

return ξ candidates

5. Application to Single-Objective Optimization Under Uncertainties

The above presented methodology is now applied to single objective optimization of the RAE-2822 airfoil
under operating and geometric uncertainties. We first introduce the MLMC grid hierarchy and deterministic
solver employed to compute the performances of the airfoil. Afterwards, we present the single objective
optimization problems under uncertainties (solved with different robust/reliable objective functions) and we
compare the results with the solution of the corresponding deterministic optimization problems.

MLMC Grid Hierarchy and Deterministic Solver. In this section we employ a 5-levels structured grid
hierarchy for the C-MLMC simulations. The features of the grid levels are presented in Table 4 along with
the average computational time required to compute one deterministic simulation using the MSES collection
of programs for the analysis of airfoils [29]. MSES solves the steady Euler equations with a finite volume
discretization over a streamline grid and is coupled, via the displacement thickness, with a two-equation
integral solver for the viscous regions of the boundary layer and trailing wakes.

LEVEL Airfoil nodes Cells CTime[s]
L0 47 1739 1.9
L1 71 2627 3.2
L2 107 3959 5.7
L3 161 5957 7.5
L4 243 8991 14.7

Table 4: MLMC 5-levels grid hierarchy for the RAE2822 problem.

5.1. Maximization of Lift-Drag Ratio

Deterministic Single Point Maximization of Lift-Drag ratio at fixed Mach and AoA: SO-DO1. An interesting
problem that arises during the preliminary stage of the design process is the maximization of the lift-drag
ratio L/D of the airfoil for a specific combination of angle of attack and Mach number. We can particularize
the SO-DO in (1) for a specific cruise Mach number condition M∞ and angle of attack α∞ (see Table 5
column ”reference”) and define the following single point deterministic shape optimization problem:

SO-DO1 : max
χ∈X

L/D(M∞,α∞)(x, p) (27)
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In the feasible design space X, we constrain the shape of the airfoil by requiring enough space for the
fuel/torque box (see Figure 3) and the final are to be at least 75% of the original section of the RAE-2822.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−0.3

−0.2

−0.1

0.0

0.1
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0.3

v1
v2

v3
v4

Figure 3: Geometrical trapezoid box constraint.

The coordinates of the box vertexes are: v1 = (0.13, 0.03), v2 = (0.4, 0.05), v3 = (0.4,−0.045), v4 =
(0.13,−0.03). This is a reasonable requirement to build an aircraft wing with an appropriate inner volume to
accommodate the fuel tank and a torque box. Additionally such requirement naturally rejects, from the
population of candidate individuals, all degenerate airfoil sections.

The design parameters χ are the PARSEC coefficients (see Section 3.1.1 for definition), which are
constrained to the ranges in Table 6, column ”Design range”.

Robust Single Objective Maximization of Lift-Drag ratio: SO-RDO1. Instead of solving the optimization
problem for a single combination of Mach number and angle of attack, as in SO-DO1 (see (27)), we
now consider the problem of robustly optimize the shape of the RAE-2822 airfoil affected by operating
uncertainties (system parameters: p(ω), Mach number and angle of attack in Table 5) and geometric
uncertainties (PARSEC parameters in Table 6) at the same time. The operating uncertainties considered in
this problem are representative of mild atmospheric gust that an aircraft may encounter during cruise. The
geometric uncertainties, on the other hand, are representative of manufacturing tolerances.

All uncertain parameters are modeled as truncated normal distributions that we denote by T N (µ, σ, a, b),
where µ is the location or mean, σ is the standard deviation, a is the minimum allowed value and b is the
maximum one (in percent with respect to the mean).

Quantity Reference (r) Uncertainty

α∞ 2.31 T N (r, 2%r,−2%r,+2%r)
Operating M∞ 0.730 T N (r, 2%r,−2%r,+2%r)
parameters Rec 6.5 · 106 −

p∞ [Pa] 101325 −
T∞ [K] 288.5 −

Table 5: Operating parameters and uncertainties for the RAE2822 problem.

The design parameters χ are the PARSEC parameters in Table 6. In the actual stage of the airfoil,
uncertainty is added to those parameters so that χ̃(χ, ω) = χ + δχ(ω) with δχ(ω) as in Table 6 column
”Uncertainty”.

Instead of using a deterministic loss function, as in SO-DO1, we consider here a robust loss function
defined as the difference of the mean and the standard deviation of the lift-drag ratio L/D of the airfoil.

SO-RDO1 : max
x∈X

R [L/D(χ̃(χ, ω), p(ω))] = µL/D(χ̃(χ, ω), p(ω))− σL/D(χ̃(χ, ω), p(ω)) (28)

In the feasible design space we constraint, as in the deterministic problem SO-DO1, the shape of the
airfoil by requiring enough space for the fuel/torque box (see Figure 3) and the final shape to be at lease 75%
of the original section of the RAE-2822. It is worth underline that the geometrical constraint is enforced
only on the nominal shape χ, not on the perturbed one χ̃.
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Quantity PARSEC(r) Uncertainty Design range

Rs 0.00839 T N (r, 1%r,−1%r,+1%r) [70%r, 130%r]
Geometric Rp 0.00853 T N (r, 1%r,−1%r,+1%r) [70%r, 130%r]
parameters xs 0.431 T N (r, 1%r,−2%r,+2%r) [50%r, 150%r]

xp 0.346 T N (r, 1%r,−2%r,+2%r) [50%r, 150%r]
ys 0.063 T N (r, 1%r,−2%r,+2%r) [70%r, 130%r]
yp −0.058 T N (r, 1%r,−2%r,+2%r) [70%r, 130%r]
Cs −0.432 T N (r, 1%r,−1%r,+1%r) [50%r, 150%r]
Cp 0.699 T N (r, 1%r,−1%r,+1%r) [50%r, 150%r]
θs −11.607 − −
θp −2.227 − −

Table 6: PARSEC parameters of the RAE2822 airfoil, geometric uncertainties applied on the shape, and design range for the
geometric parameters.

Figure 4: Performances of the SO-RDO1 and SO-DO1 airfoil compared with the original RAE-2822. The upper plots present the
uncertain Cp profile of the airfoils under operating and geometric uncertainties. The lower left plot presents the L/D variation
(mean ± two standard deviations). The diamond symbol represents the performance of the airfoil at design condition (airfoil
operating at M∞ = 0.730, α∞ = 2.31).

Comparison of Optimized Shapes. In Figure 4 and Table 7 we present the results of the robust (SO-RDO1)
and deterministic (SO-DO1) optimization of the L/D ratio. We can observe that the deterministically
optimized airfoil is able to achieve the best performance at design condition, however the L/D ratio is highly
sensitive to small variations of the geometry and operating conditions.

The robust airfoil SO-RDO1 is equipped with a relatively large leading edge and much wider pressure
side trailing edge angle. The quasi constant pressure plateau and the large aft chamber, compared to the
SO-DO1, are capable to reduce the L/D dispersion.
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RAE2822 SO-DO1 SO-RDO1

M = 0.729
α = 2.31 L/D = 63.2 L/D = 92.8 L/D = 74.5

Fixed Geom.
M = T N (r, 2%,−2%,+2%)
α = T N (r, 2%,−2%,+2%) L/D = 61.7 L/D = 77.9 L/D = 72.9

Uncertain Geom. ±8.6 (14%) ±8.2 (10.5%) ±2.6 (3.5%)

Table 7: Performances and variabilities (mean ± two standard deviations) of the SO-DO1 and SO-RDO1 airfoil compared with
the original RAE-2822 at design conditions and when they operate in an uncertain environment.

5.2. Minimization of Drag Coefficient

In a later stage of the design process, when structural considerations are introduced and the aircraft
mission is appropriately defined, we might have tighter geometrical constraints and we are required to match
a specific cruise lift condition.

Deterministic Single Point Minimization of Drag at fixed Mach and Lift: SO-DO2 (SP). We can particularize
SO-DO problem (1) for a specific cruise Mach number condition M∞ and lift coefficient C∗L and define the
following single point deterministic shape optimization problem:

SO-DO2 (SP) : min
χ∈X

C
(M∞,C

∗
L)

D (χ, p) (29)

It is worth underline that in order to enforce the C∗L constraint on each design candidate, we compute for
each of them a converged solution with an initial angle of attach α which we then gradually increase/decrease
in order to match the prescribed lift coefficient.

Also for this problem, the design parameters χ are the PARSEC coefficients (see Section 3.1.1 for
definition), constrained in the ranges indicated in Table 8. The constraints in X are now imposed on the
thickness of the airfoil in order to attain a shape capable of matching the required structural requirements. In
our simulations we set the thickness of the airfoil (PARSEC parameters ys and yp) to match exactly that of
the original RAE-2822 airfoil (see Figure 5 for comparison of optimal and initial reference RAE2822 airfoil).

Quantity PARSEC - RAE-2822(r) Design range

Rs 0.00839 [70%r, 130%r]
Geometric Rp 0.00853 [70%r, 130%r]
parameters xs 0.431 [50%r, 150%r]

xp 0.346 [50%r, 150%r]
ys 0.063 −
yp −0.058 −
Cs −0.432 [50%r, 150%r]
Cp 0.699 [50%r, 150%r]
θs −11.607 [50%r, 150%r]
θp −2.227 [50%r, 150%r]

Table 8: PARSEC parameters of the RAE2822 airfoil and feasible design space range for the geometric parameters.

As presented in [30], such optimization problems generally lead to airfoil shapes that are optimal only in a
narrow range of Mach numbers (leading to so called localized optimization). The optimal shape will generally
be shock-less and/or will present a bump in a specific location in order to fill the transitional separation
bubble to reduce the drag in the specific cruise condition. The performance of such shapes degrades quite
fast away form the design conditions as the bump location and the curvature of the airfoil are not able to
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avoid the shock and/or fill the separation bubble for other combinations of Mach number and lift coefficient.
Additionally if the geometry of the airfoil is affected by uncertainties due to manufacturing tolerances and/or
temporary factors such as icing or aeroelastic deformation of the wing, the shape can be ineffective even in
the prescribed design conditions.

Figure 5 presents the results of single point optimization of the RAE 2822 airfoil for different cruise Mach
number (M = 0.7, 0.725, 0.75, 0.775, 0.8) and fixed C∗L = 0.5. As it is clear form the figure, the performance
(drag) degrades quite fast away from design conditions.
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Figure 5: Single Point optimization of the RAE 2822 airfoil for different cruise Mach number and fixed C∗L = 0.5. The thickness
of the airfoils is constrained to be the same as the original RAE 2822 airfoil, while the other PARSEC geometrical parameters
are free.

Multi Point Minimization of Drag at fixed Lift: SO-DO2 (MP). An intuitive approach to improve off-design
performances of transonic airfoils, generally denoted as multi-point optimization, is based on a trade off
between different design conditions [31] [32].

Instead of optimizing an objective function for a single discrete flight condition as in SP-DO2 (29), we
consider a weighted linear combination of m flight conditions:

SO-DO2 (MP) : min
χ∈X

m∑
i=1

wi · C(Mi
∞,C

∗
L)

D (χ, p) (30)

The number of m flight conditions, the choice of M i
∞ and the weights wi are determined by the designer

in order to fulfill specific performance or mission requirements (no sound theoretical principles are available
for these choices). Empirical sophisticated ways of choosing multi point flight conditions and their weights
can be found in [33].

In this analysis we choose two, three and five equally weighted flight conditions between M∞ = 0.7 and
0.8 for the design denoted by MPU2 , MPU3 , MPU5 respectively in Figure 6. Additionally we also consider
three and five flight conditions weighted using the area underlying a symmetric beta distribution centered
in M∞ = 0.75 (B(2, 2, 0.1,M∞ − 0.05)) for the designs MP β3 , MP β5 (see Table 9). Figure 6 presents the
results of the multi point shape optimization of the RAE 2822 airfoil for different cruise Mach numbers
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(M = 0.7, 0.725, 0.75, 0.775, 0.8) and fixed C∗L = 0.5. A critical discussion is postponed to the next section
where these results are also compared to those obtained in the OUU case.

MP Design Flight conditions (M i
∞) Weights (wi)

MPU2 0.7, 0.8 0.5, 0.5
MPU3 0.7, 0.75, 0.8 1/3, 1/3, 1/3

MP β3 0.7, 0.75, 0.8 0.15625, 0.6875, 0.15625
MPU5 0.7, 0.725, 0.75, 0.775, 0.8 1/5, 1/5, 1/5, 1/5, 1/5

MP β5 0.7, 0.725, 0.75, 0.775, 0.8 0.04296875, 0.2734375, 0.3671875, 0.2734375, 0.04296875

Table 9: Flight conditions and weight for deterministic multi point optimization.
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Figure 6: Multi Point optimization of the RAE 2822 airfoil for different choices of cruise Mach number and weights (fixed
C∗L = 0.5). The diamonds on each CD-Mach curve indicate the design condition. The thickness of the airfoils is constrained to
be the same as the original RAE 2822 airfoil, while the other PARSEC geometrical parameters are free.

Robust and Reliable Single Objective Minimization of Drag at fixed Lift: SO-RDO2. Instead of solving
the optimization problem for a prescribed Mach number, as in SO-DO2 (29), or a weighted sum of flight
conditions, as in SO-DO2 (MP) (30), we now consider the problem of optimizing the shape of the RAE-2822
airfoil affected by uncertainties using different robust and reliable loss functions.

The operating uncertainty, namely the Mach number, is modeled as a beta distribution denoted by
B(a, b, s, loc), where a and b are the distribution parameters. As the beta distribution is defined on the [0, 1]
interval, the parameters s and loc are used to scale and shift the distribution’s support, respectively (see
Table 10).

The operating uncertainty considered in this problem is representative of atmospheric fluctuations during
a flight mission. The design parameters are the PARSEC parameters; their nominal values and design range
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Quantity Reference (r) Uncertainty

CL 0.5 −
Operating M∞ 0.75 B(2, 2, 0.1,M∞ − 0.05)
parameters Rec 6.5 · 106 −

p∞ [Pa] 101325 −
T∞ [K] 288.5 −

Table 10: Operating parameters and uncertainties for the RAE2822 problem.

are reported in Table 8. No geometrical uncertainties are considered in this case.
In order to compare the advantages and effectiveness of different probabilistic loss functions we consider

here the following robust optimization problem:

SO-RDO2 :

{
min
χ∈X

R [CD(χ, p(ω))]

s.t CL(χ, p(ω)) = C∗L
(31)

and consider the loss functions presented in Table 11.

Rµ [CD] µCD
(χ, p(ω))

Rµ,σ [CD] µCD
(χ, p(ω)) + σCD

(χ, p(ω))

Rµ,σ,γ [CD] µCD
(χ, p(ω)) + σCD

(χ, p(ω)) + (µCD
(χ, p(ω)) · γCD

(χ, p(ω))

RV aR90 [CD] V aR90
CD

(χ, p(ω))

RCV aR90 [CD] CV aR90
CD

(χ, p(ω))

Table 11: Probabilistic loss functions for problem SO-RDO2.

Comparison of Optimized Shapes. In Figure 7 we show the pressure coefficient and the deterministic optimized
shapes (SP and MP) and robust/reliable obtained shapes with different probabilistic loss functions (Table
11) under operating uncertainties presented in Table 10.

The first observation we can draw from Figure 7 is that MP designs are able to effectively reduce the
variability in the pressure coefficient compared to SP designs. Indeed, we can observe, in particular for MU

5

and Mβ
5 , quasi constant pressure plateau on the suction side of the airfoils, capable of reducing the intensity

of the shock wave. The geometries of MU
5 and Mβ

5 are characterized by relatively large leading edge radius,
low curvature suction side and an increased aft chamber. The pressure profile and the geometry of the airfoil
obtained by minimizing just the expectation of drag coefficient Rµ [CD] appear very similar to Mβ

5 . This

is indeed justified by the choice of weights in Mβ
5 that mimic an empirical mean over five flight conditions.

On the other hand the airfoils obtained by minimizing 90% CVaR of CD, RCV aR90 [CD], as well as those
obtained by minimizing the first three statistical moments Rµ,σ,γ [CD] seem to promote the development of
the shock in the front part of the airfoil in order to reduce the variability in the aft part of it.

In order to effectively analyze the performances of the deterministic and robust/reliable optimized shapes
in the uncertain environment, we present in Figure 8 the Cumulative Distribution Function (CDF) of the
drag coefficient CD computed using the MLMC methodology. We observe, as underlined above for the Cp,
that MP designs are able to reduce the variability in the drag coefficient compared to SP designs. The
airfoil obtained by minimizing the first three statistical moments Rµ,σ,γ [CD] presents an heavy tail on the
side of low drag and seems the most reliable candidate. The airfoil obtained with 90% VaR minimization,
RV aR90 [CD] is indeed the candidate that have the lowest 90%-quantile CD but presents an heavy tail on the
side of high drag. On the other hand, the airfoil obtained with 90% CVaR minimization, RCV aR90 [CD] is
able to effectively control the tail of the distribution at the price of a higher mean value of CD.
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6. Application to Multi-Objective Optimization Under Uncertainties

In this section, the above presented methodology is applied to multi objective optimization under
uncertainties of the RAE-2822 airfoil.

6.1. Optimization of Lift and Drag

Multi Objective Deterministic Optimization of Lift and Drag: MO-DO1. We now consider two competing
objectives to be optimized simultaneously, namely minimize the drag coefficient CD and maximize the lift
coefficient CL for a specific combination of Mach number and angle of attack:

MO-DO1 : P-min
χ∈X

{C(M∞,α∞)
D (x, p),−C(M∞,α∞)

L (χ, p)} (32)

We use as design variables χ the vertical position of 15 nodes Free Form Deformation (FFD) box (Figure
2 and definition in Section 3.1.2). The FFD box has the same length of the airfoil and the thickness of the
box is 25% of the airfoil chord. The design range for the nodes of the FFD box is 10% of the airfoil chord in
vertical direction, while is fixed in horizontal direction.

Multi Objective Robust Design Optimization of Lift and Drag with Operating Uncertainties: MO-RDO1. We
now consider two competing robust objectives to be optimized simultaneously, namely minimize the drag
coefficient CD and its dispersion and maximise the lift coefficient and reduce its dispersion. We consider,
first, only operating uncertainties as in Table 5 affecting the flow surrounding the airfoil and we use as design
variables χ the Free Form Deformation (FFD) box coefficients (Figure 2).

MO-RDO1 : P-min
χ∈X

{RD [CD(χ, p(ω))] ,RL [CL(χ, p(ω))]} (33)

with:

RD [CD(χ, p(ω))] = µCD
(χ, p(ω)) + σCD

(χ, p(ω))

RL [CL(χ, p(ω))] = −µCL
(χ, p(ω)) + σCL

(χ, p(ω))
(34)

We consider as uncertain operating parameters those defined for the single objective problem SO-RDO2
(see Table 5)

In Figure 9 we present the results of MO-DO1 and MO-RDO1. For the candidate designs in the
deterministic Pareto set (blue points, with lift coefficient higher and drag coefficient lower than the original
RAE2822) and the RAE-2822 airfoil (black point) we perform an uncertainty analysis and compute the
mean value (red square) and dispersion of the airfoils CD and CL (red ellipses correspond to two standard
deviations) when they are operated in the uncertain environment. The blue stars represent candidates in
the deterministic Pareto set that are very unstable when operating in the uncertain environment. Small
variations in the angle of attack and Mach number lead to separated flow on the suction side of such airfoils
(no ellipse is drown for those candidates). We perform the same uncertainty analysis also for the candidate
design obtained by solving the MO-RDO1 (yellow points in the robust pareto front indicate the value of
the robust loss function for CL and CD) and compute the mean value (green square) and dispersion (green
ellipses).

It is interesting to notice in Figure 9 a gathering of robust optimal candidates and their means around
CL ≈ 0.75 and CD ≈ 0.011. Such robust candidates have quite similar performances and dispersion around
the mean.

Multi Objective Robust Design Optimization of Lift and Drag with operating and geometric uncertainties:
MO-RDO2. Lastly we consider the multi objective problem of minimizing the drag coefficient CD and its
dispersion and maximizing the lift coefficient and reducing its dispersion under operating uncertainties
(system parameters p(ω), Mach number and angle of attack in Table 5) and geometric uncertainties (PARSEC
parameters in Table 6) at the same time. In this set of simulations the design parameters χ, are PARSEC
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parameters and in the actual shape of the airfoil, uncertainty is added to those parameters (χ̃ = χ+ δχ(ω)
as in Table 6 third column).

MO-RDO2 : P-min
χ∈X

{RD [CD(χ̃(χ, ω), p(ω))] ,RL [CL(χ̃(χ, ω), p(ω))]} (35)

with:

RD [CD(χ̃(χ, ω), p(ω))] = µCD
(χ̃(χ, ω), p(ω)) + σCD

(χ̃(χ, ω), p(ω))

RL [CL(χ̃(χ, ω), p(ω))] = −µCL
(χ̃(χ, ω), p(ω)) + σCL

(χ̃(χ, ω), p(ω))
(36)

We compare the results with MO-DO1 but in this set of simulations we use the PARSEC coefficients as
design parameters (see Table 6).

In Figure 10 we present the results of MO-RDO2 and MO-DO1. We perform, as for the previous case,
an uncertainty analysis for the deterministic and robust candidates that dominate the original RAE-2822
(with lift coefficient higher and drag coefficient lower) and compute the mean value (red squares for the
deterministic optimal and yellow squares for the robust optimal candidates) and dispersion of the airfoils CD
and CL (red ellipses for the deterministic and green for robust candidates that correspond to two standard
deviations) when they are operated in the uncertain environment. The blue stars represent candidates in
the deterministic Pareto set that are very unstable when operating in the uncertain environment. Small
variations in the geometry, angle of attack or Mach number lead to separated flow on the suction side of such
airfoils. We can clearly identify, even better than in the previous case with only operating uncertainties, a
much higher stability of the performances of the robust optimized airfoils when operated in an uncertain
environment and when affected by geometrical uncertainties.

7. Conclusions

In this work we have presented how the C-MLMC approach can be efficiently integrated in an optimization
evolutionary strategy algorithm to perform single and multi objective robust and reliability based design
optimization of transonic airfoils affected by a considerable number of operating and geometric uncertainties.
We showed how to efficiently compute loss functions and probabilistic constraints that include central
statistical moments and risk measures.

We demonstrated with single and multi objective optimization problems that such methodology can be
efficiently employed to design transonic airfoils that are less sensitive to uncertainties. We believe that the
technique has the potential to be extended to more complex problems where the stability and the reliability
of the aerodynamic system is of crucial importance.
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Figure 7: Pressure coefficient Cp (mean ± two standard deviations) and shape of the RAE 2822 (in black), the deterministic
optimized shapes (SP in red and MP in magenta) and robust/reliable shapes obtained with different probabilistic loss functions
(in green) under operating uncertainties.
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Figure 8: CDF of the drag coefficient CD of the RAE 2822 (in black), the deterministic optimized shapes (SP in red and MP in
magenta) and robust/reliable shape obtained with different probabilistic loss functions (in green) under operating uncertainties.
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Figure 9: Deterministic and Robust Pareto fronts obtained by solving respectively the MO-DO1 and the MO-RDO1. The
central plot is a blow-up view of the full Pareto. The red squares are the mean of CL and CD when the airfoils are operated in
the uncertain environment, while the red ellipses are the dispersion around such mean values (two standard deviations). The
green squares are the mean values of the robust optimal points and the green ellipses are their dispersion around such mean
values (two standard deviations). Finally the black point and grey ellipse correspond to the RAE-2822 airfoil.
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Figure 10: Deterministic and Robust Pareto fronts obtained by solving respectively the MO-DO1 (using PARSEC as design
parameters) and the MO-RDO2. The central plot is a blow-up view of the full Pareto. The red squares are the mean of CL and
CD when the airfoils are operated in the uncertain environment, while the red ellipses are the dispersion around such mean
values (two standard deviations). The green squares are the mean values of the robust optimal points and the green ellipses are
their dispersion around such mean values (two standard deviations).
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