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Modelling spatially dependent functional data via regression with differential
regularization

Eleonora Arnone1, Laura Azzimonti2, Fabio Nobile3, Laura M. Sangalli*1

Abstract

We propose a method for modelling spatially dependent functional data, based on regression with differential regu-
larization. The regularizing term enables to include problem-specific information about the spatio-temporal variation
of phenomenon under study, formalized in terms of a time-dependent partial differential equation. The method is
implemented using a discretization based on finite elements in space and finite differences in time. This non-tensor
product basis allows to efficiently handle data distributed over complex domains and where the shape of the domain
influences the phenomenon behavior. Moreover, the method can comply with specific conditions at the boundary of
the domain of interest. Simulation studies compare the proposed model to available techniques for spatio-temporal
data. The method is also illustrated via an application to the study of blood-flow velocity field in a carotid artery
affected by atherosclerosis, starting from echo-color doppler and magnetic resonance imaging data.
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1. Introduction

We consider the problem of modelling functional data with complex dependencies, such as spatially dependent
curve data or time dependent surface data. We are in particular interested to situations where problem specific informa-
tion about the phenomenon under study is available, and this information can be formalized in terms of time-dependent
Partial Differential Equation (PDE), that jointly models the spatio-temporal variation of the phenomenon.

The modelling of spatially-dependent functional data has recently attracted a strong interest; see, e.g., the reviews
in [23] and [26]. In particular, many authors consider generalizations of kriging to functional data: ordinary kriging
for functional data is for instance considered in [11, 15, 27], universal kriging in [8, 24, 25], kriging with external
drift in [18], and cokriging in [16]. Other authors propose smoothing methods; see, e.g., [1, 2, 6, 22]. In the latter
works, the authors use two roughness penalties that account separately for the regularity of the field in space and in
time, in a tensor product approach. Moreover, an extensive literature on spatio-temporal data is available; see, e.g.,
the textbooks [10, 12].

Here we extend spatial regression with differential regularization [4, 32, 33] to spatially dependent functional data.
Analogously to [4], the regularizing term involves a PDE that models the phenomenon under study. Differently from
[4] though, that only handles data in space, we here deal with spatio-temporal data, and consider a time-dependent
PDE that jointly models the spatio-temporal dependence in the data, on the base of problem-specific information
about the phenomenon under study. The use of a unique regularizing term, that at the same time regularizes the
field in space and time, also distinguishes the proposed model from the methods based on two regularizing terms
described in [1, 2, 6, 22]. Specifically, in our proposal, the regularization involves the misfit of a time-dependent PDE
∂ f
∂t + L f = u, where ∂ f

∂t is the time derivative of the spatio-temporal function f , and L is a differential operator in space.
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The problem specific information is as well formalized in terms of conditions that the estimated field must comply
with at the boundaries of the domain of interest, with a very flexible modeling of the behavior at the boundaries of
the spatio-temporal field. We consider various samplings designs, including geo-statistical and areal/interval data.
We prove that the corresponding estimation problems are well posed, i.e., that the estimators exist and are uniquely
defined; this analysis has not been carried out before for the techniques described in [1, 2, 6, 22]. Moreover we
show that the estimation problems can be discretized in space by means of the Finite Element method, similarly to
[6, 32, 33], and in time by means of the Finite Difference method. The non-tensor product basis here considered
allows to efficiently handle data distributed over irregularly shaped domains. This is crucial when the shape of the
domain influences the phenomenon under study, as in the applied problem that has stimulated this research.

1.1. Motivating applied problem
This research has been stimulated by the study of blood flow velocity field in a section of a carotid artery, starting

from Echo-Color Doppler (ECD) data. This problem has arisen within the research project MACAREN@MOX:
MAthematics for CARotid ENdarterectomy @ MOX. The project gathers medical doctors in cardiac surgery (from
Ca’ Granda Ospedale Maggiore Policlinico, in Milano, Italy), statisticians (from MOX Laboratory for Modeling and
Scientific Computing, Department of Mathematics, Politecnico di Milano, Italy), and numerical analysts (from MOX
and from the Mathematics Institute of Computational Science and Engineering, École Polytechnique Fédérale de
Lausanne, Switzerland), with the intent of investigating the pathogenesis of atherosclerosis in human carotids. In
particular, the project aims at exploring the role of blood fluid dynamics and vessel morphology on the possible onset
and development of atherosclerotic plaques.

Figure 1: ECD scan on the central acquisition beam at the carotid cross-section located 2 cm prior to the carotid bifurcation.

The study is based on ECD measurements of the blood flow velocity at a cross-section of the common carotid
artery, 2 cm prior to the carotid bifurcation, for patients affected by high-grade stenosis (>70%) at the carotid bifurca-
tion. ECD employs ultrasound waves to measure the velocity of blood particles, in a given acquisition beam. Thanks
to its low cost, short acquisition time, and non-invasivity (ECD does not require contrast media), ECD is the first and
most commonly used exam to diagnose carotid artery diseases, such as ischemic stroke, caused by the presence of
atherosclerotic plaques, and to investigate various other cardiovascular pathologies. In MACAREN@MOX project,
the ECD data are coupled with the reconstructions of the considered carotid cross-sections, obtained via segmentation
of magnetic resonance imaging (MRI) data.
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Figure 2: Left: ECD signal on the central beam of the carotid section (beam 3), with superimposed mean velocity. Right: cross-section of the
carotid artery, 2 cm prior to the carotid bifurcation, as reconstructed from MRI data, with indication of the location of the seven beams where the
ECD signal is acquired; different colors and numbers are used to indicate the different beams; the same colors and numbers are used in Figures 3
and 12.

Figure 1 displays one of the ECD images. Figure 2, right panel, shows the reconstruction of the carotid section,
from MRI data, and display the 7 beams over which the ECD signal is acquired. The scan in Figure 1 corresponds to
the central beam (beam 3), and the acquired signal over the time lapse of about two heart-beats is zoomed-in in the left
panel of Figure 2. The ECD scan provides the time-evolving histogram of the velocities of the blood particles sampled
within the acquisition beam, where the velocity is measured in the longitudinal direction of the vessel. Specifically,
the y-axis of this plot represents the velocity of the sampled blood particles, with the gray-scaled intensity of pixels
corresponding to the number of sampled blood particles having velocity within a certain velocity class. The solid
black line superimposed to this signal, in the left panel of Figure 2, corresponds to the mean velocity. Figure 3 reports
the mean velocities over the 7 acquisition beams, for one heart-beat; different colors and numbers are used to indicate
the recorded mean velocities over the different beams, according to the scheme in the upper right corner of the same
figure.

The first goal of the project thus consists in accurately estimating the time-dependent blood-flow velocity field over
the carotid cross-section, starting from these 7 spatially dependent functional data, for each of the patients involved in
the study. The described data setting though presents some peculiarities, hindering the applicability of both classical
and recent techniques for spatio-temporal data, as well as of the available methods for spatially dependent functional
data. First of all, the shape of the domain, the carotid cross section, influences the spatio-temporal blood flow velocity
field, and hence must be explicitly considered during the estimation process. Unfortunately, almost the totality of the
available techniques naturally works over rectangular or tensorized domain. Moreover, there are specific conditions
that the estimates must satisfy at the boundary of the spatial domain: the estimated blood flow velocity must in fact
be zero at the arterial wall, the boundary of the spatial domain, due to the friction between the wall and the blood
particles (the so-called no-slip conditions). Finally, due to the cross shaped pattern of the observations, highlighted in
the right panel of Figure 2, isotropic and spatially stationary methods return non-physiological estimates, as already
illustrated in [4], that focused on estimating the blood-flow field at a specific time instant, the systolic peak.

On the other hand, we can here profit of a detailed problem-specific information, that can be formalized in terms of
a time-dependent PDE, modelling the spatio-temporal behavior of the phenomenon under study. Using the proposed
approach, this problem-specific information, thus formalized, can be profitably included in the estimation process, to
define an anisotropic and spatially non-stationary estimator that yields physiological estimates. Section 8 illustrates
how this and the other issue mentioned above can be efficiently tackled by the proposed approach.

1.2. Structure of the work

The paper is organized as follows. Section 2 introduces the modelling of the spatio-temporal variation of the
phenomenon under study via a time dependent PDE. Section 3 describes the proposed spatio-temporal regression
with time-dependent PDE regularization, under the simplifying assumption that the functional data are available
continuously over time; this simplified sampling design is the one considered by kriging for functional data. The
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Figure 3: Mean velocity measured in the 7 beams on the artery cross-section. Different colors and numbers are used to denote the signals over the
7 beams, according to the schematic artery cross-section and beams displayed in the upper right corner of the figure.

well-posedness of the estimation problem is proven. Section 4 describes the discretization of the estimation problem
by means of the Finite Element method in space and the Finite Difference method in time. Section 6 extends the
models to various realistic sampling design, including geostatistical and areal/interval data; also in these cases, the
well-posedness of the estimation problem is shown. Section 7 reports some simulation studies that compare the
proposed method to spatio-temporal kriging, and to smoothing methods based on two regularizing terms. Section 8
shows the application to blood velocity field estimation. Finally, Section 9 outlines future research directions. All
technical details and proofs are deferred to the Appendix.

2. Modeling problem-specific information on the spatio-temporal field via a time dependent PDE

We want to estimate a spatio-temporal field f0(p, t) : Ω× [0,T ]→ R, in presence of problem-specific information
on f0. Specifically, we assume to have a prior knowledge on the phenomenon under study, that can be described in
terms of a time-dependent (so-called parabolic) PDE,

∂ f0
∂t

+ L f0 = u (1)

where ∂ f0
∂t is the time derivative of f0 and L is a linear second order differential operator defined as

L f = − div(K∇ f ) + b · ∇ f + c f (2)

with K ∈ R2×2 the symmetric and positive definite diffusion tensor, b ∈ R2 the transport vector, and c ≥ 0 the reaction
term. The diffusion, transport and reaction terms may vary over space, i.e., K = K(p), b = b(p) and c = c(p). The
modeling of the space-time variation of the field by the PDE specified in (1) and (2) is very flexible. For example, by
the diffusion term K(p) we can model non-stationary anisotropic diffusion effects; by the transport term b(p) we can
model non-stationary unidirectional effects; by the reaction term c(p) we can model non-stationary shrinking effects.
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In addition, the problem specific information is as well specified in terms of boundary conditions that f0 satisfies
on the boundary ∂Ω of the spatial domain Ω, and an initial condition s(p) at time t = 0. Various boundary conditions
may be considered, such as homogeneous or non-homogeneous Dirichlet, Neumann, Robin (or mixed) conditions,
thus enabling a very flexible modelling of the behavior of the spatio-temporal field at the boundaries of the domain
of interest. In particular, Dirichlet boundary conditions concern the value of the field f0 on ∂Ω; Neumann boundary
conditions involve the evaluation of the normal derivative of f0 on ∂Ω, thus controlling the flow across the bound-
ary; Robin boundary conditions specify a linear combination of the values of the field and the values of its normal
derivative on ∂Ω; finally, mixed conditions allow to divide the boundary of Ω, and impose a different types of bound-
ary conditions in different portions of ∂Ω. The possible boundary conditions can be summarized as Bc f0 = h on
∂Ω × (0,T ], with

Bc f0 =


f0 on ΓD × (0,T ]
K∇ f0 · ν on ΓN × (0,T ]
K∇ f0 · ν + χ f0 on ΓR × (0,T ]

h =


hD on ΓD × (0,T ]
hN on ΓN × (0,T ]
hR on ΓR × (0,T ]

(3)

where ν is the outward unit normal vector to ∂Ω, χ ∈ R is a positive constant, and ∂Ω = Γ̄D ∪ Γ̄N ∪ Γ̄R, with ΓD,ΓN ,ΓR

not overlapping. The condition is said homogeneous if h = 0.
The parabolic PDE is thus specified by

∂ f0
∂t

+ L f0 = u in Ω × (0,T )

f0(p, 0) = s(p) in Ω

Bc f0 = h on ∂Ω × (0,T ].

(4)

3. Model for continuous data with spatial dependence

Let Ω ⊂ R2 be a bounded and regular spatial domain with boundary ∂Ω ∈ C2, and let [tstart, tend] ⊂ R be a
temporal domain, where to lighten the notation, without loss of generality, we set tstart = 0 and tend = T . For
simplicity of exposition, we start by considering the setting where we have observations zi(t) at the spatial locations
pi = (xi, yi) ∈ Ω, for i = 1, . . . , n, and these data are available continuously over time, for t ∈ [0,T ]. This is the setting
considered by kriging for functional data (see, e.g., [11, 26]). Realistic sampling designs, where the data are not
available continuously over time, will be considered in Section 6. We assume that the data zi(t) are noisy observations
of the deterministic spatio-temporal field f0 : Ω × [0,T ]→ R, according to the model

zi(t) = f0(pi, t) + εi(t) i = 1, . . . , n,

where E(εi(t)) = 0, Var(εi(t)) = σ2, Cov(εi(t), ε j(t∗)) = 0 for i , j, and Cov(εi(t), εi(t∗)) = 0 for |t − t∗| > δ for some
δ > 0.

We want to take advantage of the problem-specific knowledge on the phenomenon under study, specified in terms
of a time-depentend PDE, as described in Section 2. To this end, we propose to estimate f0 by minimizing the
following penalized sum-of-square-error functional

JT ( f ) =

n∑
i=1

∫ T

0
( f (pi, t) − zi(t))2 + λ

∫ T

0

∫
Ω

(
∂ f
∂t

+ L f − u
)2

(5)

where λ > 0 is a smoothing parameter. The functional JT trades off a data fitting criterion, consisting in the sum of
L2[0,T ]-errors, and a model fidelity criterion, formalized as a regularizing term and involving the misfit from the PDE
that models the phenomenon under study.
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3.1. Functional space where the estimation functional is well-defined
Denote by Hk(Ω) the Sobolev space of functions ` : Ω → R that are in L2(Ω) and whose derivatives up to the

order k are in L2(Ω), equipped with the norm

‖`‖Hk(Ω) =

∑
|α|≤k

‖Dα`‖2L2


1
2

where α = (α1, α2) and Dα` = ∂|α|`
∂xα1∂yα2 denotes the derivative of order |α| = α1 + α2, with D0` = `. Denote by

L2(0,T ; Hk(Ω)) the space of functions defined over [0,T ], taking values in Hk(Ω), and such that
∫ T

0 ‖ f (t)‖2Hk(Ω) dt <
+∞.

Define the space

V =
{
f ∈ L2(0,T ; H2(Ω)) s.t.

∂ f
∂t
∈ L2(0,T ; L2(Ω)) + boundary and initial conditions

}
This space contains the functions such that

‖ f ‖2V :=
∫ T

0
‖ f (t)‖2H2(Ω) dt +

∫ T

0

∥∥∥∥∥∂ f
∂t

(t)
∥∥∥∥∥2

L2(Ω)
dt < +∞.

Both the error term and the regularization term in JT ( f ) are well defined for functions in V , since this space contains
functions continuous in space and square integrable in time, such that

∫ T
0

(
supp∈Ω̄ f (p, t)

)2
dt < ∞; this follows the

embedding H2(Ω) ⊂ C(Ω̄) if Ω ⊂ Rd with d ≤ 3. Hence, the functional JT ( f ) is well defined for f ∈ V.

3.2. Estimation problem
The estimation problem is formulated as follows.

Problem 1. Find f̂ ∈ V such that
f̂ = argmin

f∈V
JT ( f ).

The existence and uniqueness of the estimator is stated in the following theorem.

Proposition 1. Under suitable regularity assumptions (see Appendix Appendix A), the solution of Problem 1, with JT

given in (5), exists and is unique, and is obtained by solving a coupled system of two time-dependent PDEs:
∂ f̂
∂t + L f̂ = u + ĝ
f̂ (p, 0) = s(p)
Bc f̂ = h

in Ω × (0,T ]
in Ω

on ∂Ω × (0,T ]
(6)


−
∂ĝ
∂t + L∗ĝ = − 1

λ

∑n
i=1( f̂ − zi)δpi

ĝ(p,T ) = 0
Bc
∗ĝ = 0

in Ω × [0,T )
in Ω

on ∂Ω × [0,T )
(7)

where ĝ ∈ L2(0,T ; L2(Ω)) is the misfit of the penalized PDE, i.e., ĝ = ∂ f̂ /∂t + L f̂ − u, δpi is the Dirac mass located in
pi, L∗ is the adjoint operator of L, i.e.,

L∗ĝ = − div(K∇ĝ) − b · ∇ĝ + (c − div(b))ĝ, (8)

and Bc
∗ is the boundary condition operator of the adjoint problem, i.e.,

Bc
∗g =


g on ΓD

K∇g · ν + b · νg on ΓN

K∇g · ν + (b · ν + χ)g on ΓR.
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The proof of Proposition 1 is detailed in Appendix Appendix A, where the regularity assumptions are specified.
Notice that the coupled system is composed by two time-dependent PDEs: the first is a so-called forward parabolic
PDE, while the second is a so-called backward parabolic PDE characterized by the opposite sign for the time deriva-
tive, and an ending condition instead of the starting one. The adjoint PDE (7) is homogeneous both in the boundary
conditions and in the ending condition.

For sake of space, in the following we consider only homogeneous Dirichlet boundary conditions, that are those
relevant for the applied problem motivating this research. All other boundary conditions may be handled similarly to
what described in [3] for SR-PDE estimators over space only.

3.3. Weak formulation of the estimation problem

Let a(·, ·) be the bilinear form associated to the operator L, defined as

a( f̂ , ψ) =

∫
Ω

(
K∇ f̂ · ∇ψ + b · ∇ f̂ψ + c f̂ψ

)
. (9)

The coupled system of PDEs (6)-(7), with homogeneous Dirichlet boundary conditions, has the following equivalent
formulation 

∫
Ω

∂ f̂
∂t
ψ + a( f̂ , ψ) −

∫
Ω

ĝψ =

∫
Ω

uψ t ∈ (0,T )

f̂ (p, 0) = s(p)

−λ

∫
Ω

∂ĝ
∂t
ϕ + λa(ϕ, ĝ) +

n∑
i=1

f̂ (pi, ·)ϕ(pi) =

n∑
i=1

ziϕ(pi) t ∈ (0,T )

ĝ(p,T ) = 0

(10)

for all ψ, ϕ in V (where V is specified with homogeneous Dirichlet boundary conditions). This so-called weak
formulation is particularly convenient for the discretization of the estimation problem, as detailed in the following
section.

4. Discrete estimator

Problem 1 cannot be solved analytically. For this reason we approximate the PDE system (6)-(7) with the Finite
Difference method in time and the Finite Element method in space. These two methods are classical techniques used
in numerical analysis to approximate the solution of parabolic PDEs; see, e.g., [29]. In particular, the approximation
we consider is based on the equivalent weak formulation of the estimation problem given in (10).

4.1. Discretization in space via Finite Elements

For simplicity, we assume here that the spatial domain Ω is polygonal; if the original spatial domain is not polygo-
nal, we simply need to approximate it by a polygonal domain Ω that closely approximate the original spatial domain.
Let Th be a triangulation of Ω, where h represents the characteristic mesh size, that is the maximum length of the
triangle edges in the triangulation. Figure 4, left panel, shows the triangulation used for the application to the blood
flow velocity field estimation, introduced in Section 1 and detailed in Section 8. We consider the space Vr

h of globally
continuous and piecewise polynomial functions over the triangulation, that are polynomials of order r, for r ≥ 1, once
restricted to any triangle in the triangulation, i.e.

Vr
h =

{
v ∈ C0(Ω̄) : v|K ∈ Pr(K), ∀K ∈ Th

}
.

Let Nh = dim(Vr
h). To define a set of Nh basis ψ1, . . . , ψNh that span such space it is convenient to consider the so-called

nodes of the triangulation, denoted by ξ1, . . . , ξNh . For linear finite elements, the nodes coincide with the vertices of
the triangles in Th. For higher order finite elements, the nodes are a super-set of the triangle vertices; for instance,
for quadratic finite elements the nodes coincide with the triangle vertices and the middle points of the triangle edges.
Each basis ψ j is then associated to one node ξ j, for j = 1, . . . ,Nh, and it is a locally supported piecewise polynomial

7



Figure 4: Left: triangulation of the carotid cross-section displayed in the left panel of Figure 2. Right: a linear Finite Element basis function on a
triangulation.

function of order r that takes value 1 at the associated node and value 0 on all other nodes, i.e., ψ j(ξk) = δ jk, where
δ jk = 1 if j = k and δ jk = 0 if j , k. The right panel of Figure 4 shows an example of linear finite element basis.

When considering homogeneous Dirichlet b.c., the value of the function at the boundary of Ω is fixed to 0. In this
case, we can use the Finite Element space Vr

h,0 of dimension Nh,0, defined as

Vr
h,0 =

{
v ∈ C0(Ω̄) : v|∂Ω = 0 and v|K ∈ Pr(K)∀K ∈ Th

}
which only necessitates of the internal nodes of the triangulation and the associated basis functions, whilst all basis
associated to boundary nodes can be discarded.

We set ψ =
(
ψ1, . . . , ψNh,0

)>
, ψx =

(
∂ψ1/∂x, . . . , ∂ψNh,0/∂x

)>
and ψy = (∂ψ1/∂y, . . . , ∂ψNh,0/∂y)>, and we define the

n × Nh,0 matrix Ψ of evaluations of the Nh,0 finite elements basis at the n data locations, i.e.,

Ψ =


ψ>(p1)

...
ψ>(pn)

 . (11)

4.2. Discretization in time via Finite Differences

In order to discretize the problem in time we use the Finite Difference method. For the sake of simplicity we
consider NT uniformly spaced temporal instants in [0,T ], named τ0, . . . , τNT , such that τ0 = 0, τk = k · ∆t and
τNT = T . We discretize the time derivatives as

f̂h( · , τk) − f̂h( · , τk−1)
∆t

≈
∂ f̂h
∂t

( · , τk).

The discretization in time of the system is then obtained by means of an Implicit Euler scheme [30], as detailed in
Section 4.3.

4.3. Details of the discretization

Our discretization of the estimation problem is based on the weak formulation (10) of the system of PDEs (6)-(7).
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The discretization of (10) in space is obtained replacing the infinite dimensional space V (with the specified
homogeneous Dirichlet boundary conditions) by the finite dimensional space Vr

h,0:

∫
Ω

∂ f̂h
∂t
ψh + a( f̂h, ψh) −

∫
Ω

ĝhψh =

∫
Ω

uψh t ∈ (0,T )

f̂h(p, 0) = sh(p)

−λ

∫
Ω

∂ĝh

∂t
ϕh + λa(ϕh, ĝh) +

n∑
i=1

f̂h(pi, ·)ϕh(pi) =

n∑
i=1

ziϕh(pi) t ∈ (0,T )

ĝh(p,T ) = 0

(12)

for all ψh, ϕh ∈ Vr
h,0, where f̂h(·, t), ĝh(·, t) ∈ Vr

h,0, ∀t ∈ [0,T ] and sh is the interpolation of the initial condition s(p)
in Vr

h,0. Notice that (12) is only a space discretization. The application of the Implicit Euler scheme then lead to the
following discretization in space and time of the variational system (10):

∫
Ω

f̂ k
h − f̂ k−1

h

dt
ψh + a( f̂ k

h , ψh) −
∫

Ω

ĝk−1
h ψh =

∫
Ω

ukψh, k = 1, . . . ,NT

f̂ 0
h = sh

−λ

∫
Ω

ĝk
h − ĝk−1

h

dt
ϕh + λa(ϕh, ĝk−1

h )+
n∑

i=1

f̂ k
h (pi)ϕh(pi) =

n∑
i=1

zk
i ϕh(pi),

k = 1, . . . ,NT

ĝNT
h = 0.

(13)

To write this system in matrix formulation, define the following matrices in RNh,0×Nh,0 :

R(c) =
∫

Ω
cψψ>, R = R(1) =

∫
Ω
ψψ>

Rx(b) =
∫

Ω
b1ψψ

>
x , Ry(b) =

∫
Ω

b2ψψ
>
y ,

Rxx(K) =
∫

Ω
K11ψxψ

>
x , Ryy(K) =

∫
Ω

K22ψyψ
>
y ,

Rxy(K) =
∫

Ω
K12(ψxψ

>
y + ψyψ

>
x ),

where Ki j and b j are the elements of the diffusion tensor matrix K and of the transport vector b. We can thus write
the discretization in the finite element space of the bilinear form a(·, ·) defined in (9) as

A(K,b, c) = Rxx(K) + Rxy(K) + Ryy(K) + Rx(b) + Ry(b) + R(c). (14)

Denote by f̂ k
h (·) and ĝk

h(·) the finite elements approximations of f̂h(·, τk) and ĝh(·, τk) respectively, and set uk(·) = u(·, τk)
and zk

i = zi(τk) with k = 0, . . . ,NT . Let f̂k, ĝk, s be the vectors such that f̂ k
h = ψ> f̂k, ĝk

h = ψ>ĝk and sh = ψ>s. Moreover,

for k = 1, . . . ,NT , set zk =
(
zk

1, . . . , z
k
n

)>
, the vectors containing the values of zi at time τk, and set uk

j =
∫

Ω
ukψ j. We

can write the system (13) in matrix form as
(A + 1

dt R)f̂k − 1
dt Rf̂k−1 − Rĝk−1 = uk, k = 1, . . . ,NT

f̂0 = s
− λ

dt Rĝk + λ(A> + 1
dt R)ĝk−1 +Ψ>Ψf̂k = Ψ>zk, k = 1, . . . ,NT

ĝNT = 0.

(15)

The discrete surface estimators f̂ k
h are thus obtained solving the system above. Let f̂> = ((f̂1)>, . . . , (f̂NT )>), ĝ> =

((ĝ0)>, . . . , (ĝNT−1)>), z> = ((z1)>, . . . , (zNT )>) and ũ> = ((u1 + R
∆t s)>, (u2)>, . . . , (uNT )>). Introduce the the matrix

9



D ∈ RNT×NT associated with the derivation in time

D =
1
∆t


1 0
−1 1

. . .
. . .

−1 1


and define the tensor product matrices:

Ψ̃ = INT ⊗Ψ,
Ã = INT ⊗ A + D ⊗ R,
R̃ = INT ⊗ R,

where Id denotes the identity matrix of dimension d. With this notation, we finally obtain the following Proposition,
that specifies the form of the discrete estimator as solution of a linear system.

Proposition 2. The discrete solution f̂ of Problem 1 is computed solving the system[
Ψ̃>Ψ̃ λÃ>

Ã −R̃

] [
f̂
ĝ

]
=

[
Ψ̃>z

ũ

]
. (16)

5. Distributional properties of the estimator

The surface estimator f̂ k
h at time τk is a linear function of the observed data values. The fitted values at the time

instant τk are computed as ẑk = Ψf̂k. The vector z, containing the fitted values at all the time instants τ0, . . . , τNT , can
be thus represented as

ẑ = S̃z + r̃ (17)

where the smoothing matrix S̃ ∈ RnNT×nNT and the vector r̃ ∈ RnNT are obtained as

S̃ = Ψ̃
(
Ψ̃>Ψ̃ + λP̃

)−1
Ψ̃>, (18)

r̃ = Ψ̃
(
Ψ̃>Ψ̃ + λP̃

)−1
λP̃Ã−1u, (19)

with P̃ denoting the penalty matrix
P̃ = P(K,b, c) = Ã>

(
R̃
)−1

Ã. (20)

The smoothing matrix S̃ has the typical form obtained in a penalized regression problem.
Thanks to the linearity of the estimator ẑ in the observations we can easily derive its mean and variance-covariance

structure, and obtain classical inferential tools as pointwise confidence bands and prediction intervals at a fixed point
location and time instant. Let f0 =

(
f0(p1, τ

1), . . . , f0(pn, τ
1), . . . , f0(p1, τ

NT ), . . . , f0(pn, τ
NT )

)> be the column vector
of evaluations of the true function f0 at the n data locations and NT time instants used for the temporal discretization.
Recall that E[z] = f0. We can thus compute the expected value of the estimator ẑ as

E[ẑ] = S̃f0 + r̃

Suppose in addition that the time discretization is such that ∆t > δ, so that, for any couple of discretization instants
τk, τl, the noise process satisfies Cov[εi(τk)ε j(τl)] = 0 if i , j or k , l and Var[εi(τk)εi(τk)] = σ2. We can thus
compute the variance-covariance structure of ẑ as

Cov(ẑ) = σ2S̃S̃>.

In order to compute the estimate at a generic space-time location (p, t), we can define the function φ such that, for
t ∈ [τk−1, τk], φ(t) = t−τk

∆t ek−1 + τk−1−t
∆t ek, where ek is the k-th vector of the canonical basis of RNT . Let ψ̃ = φ> ⊗ ψ>.

10



The estimator of the field f0 at the generic spatio-temporal location (p, t) ∈ Ω × [0,T ] is then given by

f̂h(p, t) = ψ̃(p, t)
(
Ψ̃>Ψ̃ + λP̃

)−1 [
Ψ̃>z + λP̃Ã−1u

]
.

Its mean and variance are given by

E[ f̂h(p, t)] = ψ̃(p, t)
(
Ψ̃>Ψ̃ + λP̃

)−1 [
Ψ̃>f0 + λP̃Ã−1u

]
Var( f̂h(p, t)) = σ2ψ̃(p, t)

(
Ψ̃>Ψ̃ + λP̃

)−1
Ψ̃>Ψ̃

(
Ψ̃>Ψ̃ + λP̃

)−1
ψ̃(p, t)>.

The covariance of the field estimator at any two spatio-temporal locations (p1, t1) and (p2, t2) ∈ Ω × [0,T ] is given by

Cov( f̂h(p1, t1), f̂h(p2, t2)) =

σ2ψ̃(p1, t1)
(
Ψ̃>Ψ̃ + λP̃

)−1
Ψ̃>Ψ̃

(
Ψ̃>Ψ̃ + λP̃

)−1
ψ̃(p2, t2)>.

Both the mean and the covariance structure of the estimator are thus induced by the regularizing term. Since we are
dealing with a linear estimator, we can use tr(S̃) as a measure of the equivalent degrees of freedom of the estimator
(see, e.g., [7] and [17]). We can hence estimate σ2 as

σ̂2 =
1

nNT − tr(S̃)
(ẑ − z)> (ẑ − z) .

The smoothing parameter λ may be selected via Generalized Cross-Validation, minimizing the index

GCV =
1

nNT

(
1 − tr(S̃)/nNT

)2 (ẑ − z)> (ẑ − z) .

6. Different sampling designs

We now consider more realistic sampling designs, where we do not assume that the data are observed continuously
over time.

Sampling desing 1. Pointwise observations in space and interval observations in time
Let pi ∈ Ω, for i = 1, . . . , n, be n spatial locations, and let T j ⊂ [0,T ], for j = 1, . . . ,m, be m disjoint temporal
intervals. Assume the model:

zi j =
1
|T j|

∫
T j

f0(pi, t)dt + εi j i = 1, . . . , n, j = 1, . . . ,m,

where the errors εi j are independent, with zero mean, and variance proportional to 1
|T j |

. In this case, we estimate f0
minimizing the following functional

JT ( f ) =

n∑
i=1

m∑
j=1

1
|T j|

∫
T j

(
f (pi, t) − zi j

)
dt

2

+ λ

∫ T

0

∫
Ω

(
∂ f
∂t

+ L f − u
)2

with respect to f ∈ V .

Sampling desing 2. Areal observations in space and pointwise observations in time
Let Di ⊂ Ω, for i = 1, . . . , n, be n disjoint spatial subdomains, and let t j, for j = 1, . . . ,m, be m time instants, with
0 = t1 < · · · < tm ≤ T . Assume the model:

zi j =
1
|Di|

∫
Di

f0(p, t j)dp + εi j i = 1, . . . , n, j = 1, . . . ,m,
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where the errors εi j are independent, with zero mean, and variance proportional to 1
|Di |

. We estimate f0 minimizing the
functional

JT ( f ) =

n∑
i=1

m∑
j=1

1
|Di|

{∫
Di

(
f (p, t j) − zi j

)
dp

}2

+ λ

∫ T

0

∫
Ω

(
∂ f
∂t

+ L f − u
)2

. (21)

Sampling desing 3. Areal observations in space and interval observations in time
Let Di ⊂ Ω, for i = 1, . . . , n, be n disjoint spatial subdomains, and let let T j ⊂ [0,T ], for j = 1, . . . ,m, be m disjoint
temporal intervals. Assume the model:

zi j =
1

|Di|
∣∣∣T j

∣∣∣
∫

T j

∫
Di

f0(p, t)dpdt + εi j i = 1, . . . , n, j = 1, . . . ,m,

where the errors εi j are independent, with zero mean, and variance proportional to 1
|Di ||T j|

. We estimate f minimizing
the functional

JT ( f ) =

n∑
i=1

m∑
j=1

1
|Di|

∣∣∣T j

∣∣∣
∫

T j

∫
Di

(
f (p, t) − zi j

)
dpdt

2

+λ

∫ T

0

∫
Ω

(
∂ f
∂t

+ L f − u
)2

.

6.1. General formulation including different sampling designs
The three sampling designs detailed above can be unified under a general formulation. Indeed, for specific choices

of functions αi(p) and β j(t), the models and associated estimation problems corresponding to the sampling designs 1,
2 and 3, can be obtained as special cases of the model

zi j =
1∫

Ω

∫ T
0 αi(p)β j(t)dpdt

∫
Ω

∫ T

0
f0(p, t)αi(p)β j(t)dpdt + εi j (22)

for i = 1, . . . , n, and j = 1, . . . ,m, where the errors εi j are independent, with zero mean, and variance proportional to
1/

∫ T
0

∫
Ω
αiβ j, with associated estimation functional

JT ( f ) =

n∑
i=1

m∑
j=1

1∫
Ω

∫ T
0 αi(p)β j(t)dpdt

{∫
Ω

∫ T

0

(
f (p, t) − zi j

)
αi(p)β j(t)dpdt

}2

+λ

∫ T

0

∫
Ω

(
∂ f
∂t

+ L f − u
)2
. (23)

In particular, denote by IDi the characteristic function of Di and by δpi (p) the Dirac mass located in pi, and define
analogously IT j (t) and δt j (t). Using this notation, the model and estimation functional corresponding to sampling
design 1 are obtained from (22) and (23) setting αi(p) = δpi (p) and β j(t) = IT j (t); those corresponding to sampling
design 2 are obtained setting αi(p) = IDi (p) and β j(t) = δt j (t); finally, those corresponding to sampling design 3 are
obtained setting αi(p) = IDi (p) and β j(t) = IT j (t).

6.2. Estimation Problem
For the sampling designs described in the previous paragraph, the functional JT ( f ) is well defined. Indeed, point-

wise evaluations in space are allowed because the functional space V, defined in Section 3, contains functions contin-
uous in space, thanks to the embedding H2(Ω) ⊂ C(Ω̄) if Ω ⊂ Rd with d ≤ 3. In addition, V contains also functions
that are in C0(0,T ; H1(Ω)), therefore we can consider pointwise evaluations in time when we have areal data in space
(which are continuous linear functionals in H1(Ω)). Both the penalty term and the least square term are thus well de-
fined for functions in V . Other choices for α and β are of course possible. The proof of existence and uniqueness of the
estimator given in this work does not cover the case of data observed pointwise in both space and time simultaneously.
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The estimation problem under the general setting considered in Section 6.1 is formulated as Problem 1. The
existence and uniqueness of the corresponding estimator is stated in the following proposition.

Proposition 3. Under suitable regularity assumptions (see Appendix Appendix A) the solution of Problem 1, with JT

given in (23) and α, β as in Section 6.1, exists and is unique and is obtained by solving:
∂ f̂
∂t

+ L f̂ = u + ĝ, in Ω × (0,T ]

f̂ (p, 0) = s(p), in Ω

Bc f̂ = h, on ∂Ω × (0,T ]
−
∂ĝ
∂t

+ L∗ĝ = −
1
λ

n∑
i=1

m∑
i=1

αiβ j∫
Ω

∫ T
0 αiβ j

∫
Ω

∫ T

0
( f̂ − zi j)αiβ j, in Ω × [0,T )

ĝ(p,T ) = 0, in Ω

Bc
∗ĝ = 0, on ∂Ω × [0,T )

(24)

The proof of Proposition 3 is detailed in Appendix Appendix A. Note that we obtain a coupled system similar to
(6)-(7), with only a difference in the right hand side of the second equation, due to the different sampling design here
considered.

7. Simulation studies

In this section we present some simulation studies that compare the proposed Space-Time regression with time-
dependent PDE regularization (ST-tPDE) to four competing methods. The first competing method that we consider
is spatio-temporal kriging with a separable variogram, with parameters estimated from the empirical variogram. This
method is implemented using the functions krigeST and fit.StVariogram of the R package gstat [28]. The other
methods we consider are based on differential regularization with two roughness terms that account separately for
the regularity of the field in space and in time. All these methods use a tensor product approach. The first method,
denoted by the acronym TPS, adopts a thin plate spline basis in space and a cubic B-spline basis in time; the spatial
penalty is the thin plate spline energy and the temporal penalty is the L2 norm of the second derivative in time. The
second method, denoted by the acronym SOAP and proposed by [2, 22], uses soap film smoothing in space [37] and
cubic B-splines in time; the penalization is composed by the L2 norm of the laplacian in space and the L2 norm of
the second derivative in time. Both TPS and SOAP are implemented using the function gam of the R package mgcv
[36]. The last model we consider, denoted by the acronym ST-PDE and proposed in [6], employs Finite Elements in
space and cubic B-Splines in time; this method penalizes the L2 norm of the laplacian in space and the L2 norm of the
second derivative in time. Both the proposed ST-tPDE method and the ST-PDE method by [6] are implemented in R
and C++, based on the R package fdaPDE [20].

7.1. First simulation study: areal observations in space and pointwise observations in time of a smooth function

For the first simulation study we aim at comparing the performances of the proposed ST-tPDE to those of the
competing ST-PDE presented in [6], in a simulation setting that mimics the motivating applied problem stimulating
this research. In particular, we consider areal observations in space and pointwise in time, corresponding to the
sampling design 2. We cannot here compare to kriging, TPS or SOAP, because these methods are not currently
implemented for areal data. Specifically, we consider a quasi-circular domain Ω in Figure 4, corresponding to the
section of the carotid artery of one of the patients in MACAREN@MOX project, and we set the temporal domain to
[0, 1]. We consider a function f0 solution of the following heat equation:

∂ f0
∂t
− ∆ f0 = 0 in Ω × (0,T )

f0(p, 0) = s(p) in Ω

Bc f0 = 0 on ∂Ω × (0,T ]

(25)
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where the initial condition s(p) is the solution of: ∆s = 1 in Ω

Bcs = 0 on ∂Ω
. (26)

We sample from this f0, over the seven beams displayed in Figure 3, likewise for the ECD measurements of blood
flow velocity, and at 11 equally-spaced time instants in [0, 1], adding a Gaussian noise with mean zero and standard
deviation σ = 0.4 (corresponding to approximately 5% of the signal range).

The ST-PDE method in [6] is implemented using the penalty

λT

∫ T

0

∫
Ω

(
∂2 f
∂t2

)2

+ λS

∫ T

0

∫
Ω

(∆ f )2.

The proposed ST-tPDE is implemented with the penalty

λ

∫ T

0

∫
Ω

(
γ
∂ f
∂t
− ∆ f − u

)2

;

the initial condition on the field is estimated from the data, using the SR-PDE described in [4], with the penalization
of the laplacian. Both ST-PDE and ST-tPDE are thus considering the correct isotropic smoothing. Dirichlet homoge-
neous boundary conditions are enforced for both methods. For the spatial discretization, both methods employ linear
finite elements over the triangulation shown in the left panel of Figure 4. For the time discretization, ST-PDE uses
cubic B-splines with nodes at 11 time instants equally-spaced in [0, 1], while ST-tPDE uses finite differences at the
same time instants. The smoothing parameters λS , λT and for ST-PDE and λ, γ for ST-tPDE are chosen via GCV.

Figure 5 shows in the first column the true field at different time instants, in the second column the data sampled at
the same time instants, and in the third and fourth columns the corresponding estimates provided by ST-PDE and by
the proposed ST-tPDE. It is difficult to visually appreciate the differences between the estimates provided by the two
methods, which are only apparent at the last time instant. For this reason, to quantify these differences, we consider
50 repetitions of this simulation, corresponding to 50 different noise generations. Figure 6 shows the boxplots of the
Root Mean Square Errors (RMSE) of the space-time field estimates given by the two methods over the 50 replicates.
The RMSE is computed over a regular grid with 341 points in space and 41 points in time. The boxplots highlights
that the best estimates are provided by the proposed ST-tPDE.

7.2. Second simulation study: pointwise observations in space and time of a smooth function

In this second simulation we want to compare the proposed ST-tPDE to ST-PDE, TPS, SOAP and kriging. Since
TPS, SOAP and kriging are not currently implemented to handle areal data, we here consider pointwise evaluations
of f0 in both space and time. Proposition 3 does not cover this sampling design, and the existence and uniqueness
of the solution to the infinite dimension estimation problem 1 has not been proven for this case; nevertheless, the
corresponding discrete ST-tPDE estimator is well defined.

The true field f0 is chosen as the solution of the heat equation (25), with initial condition s, solution of (26). The
domain Ω is circular with radius r = 1; the temporal domain is [0, 1]. We sample from f0 at 120 space locations and at
11 equispaced time instants over [0, 1], adding a Gaussian noise with mean zero and standard deviation of σ = 0.0124
(corresponding to approximately 5% of the signal range).

We implement kriging with marginally spherical variograms, both in space and in time. Other standard choices
of variagrams models have as well been considered, with comparable results (hence, for sake of space, these are not
reported in this work). TPS and SOAP are implemented under the standard settings in the mgcv package. ST-PDE
and ST-tPDE are implemented as detailed in Section 7.1, with the only difference that the triangulation used for the
discretization in space has 120 interior nodes, corresponding to the data locations, both for ST-PDE and ST-tPDE. Note
that TPS, SOAP and ST-PDE use the same basis in time. For SOAP, ST-PDE and ST-tPDE homogeneous Dirichlet
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Figure 5: First simulation study. First column: true function, evaluated at different time instants. Second column: sampled data at the same time
instants. Third column: corresponding estimates provided by ST-PDE. Fourth column: corresponding estimates provided by ST-tPDE.
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Figure 6: First simulation study. Boxplots of the RMSE over 50 simulation replicates of the estimates of the spatio-temporal field obtained by
ST-PDE and ST-tPDE.
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Figure 7: Second simulation study. First column: true function evaluated at different time instants. Second column: sampled data. Third column to
last column: estimates provided by kriging, TPS, SOAP, ST-PDE and ST-tPDE.
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Figure 8: Second simulation study. Boxplots of the RMSE over 50 simulation replicates of the estimates of the spatio-temporal field obtained by
kriging, TPS, SOAP, ST-PDE and ST-tPDE.

boundary conditions are used. All the smoothing parameters of TPS, SOAP, ST-PDE and ST-tPDE are chosen via
GCV.

Figure 7 shows in the first column the true field evaluated at different time instants, in the second column the data
sampled at the same instants, and from the third to the last columns the corresponding estimates provided respectively
by kriging, TPS, SOAP, ST-PDE and the proposed ST-tPDE. From these plots we can see that kriging is not able to
reconstruct the right isolines, while the other methods are performing better. In particular the surface estimated by
ST-tPDE has almost circular isolines. Figure 8 shows the boxplots of the Root Mean Square Errors (RMSE) of the
space-time field estimates over 50 replicates of the noise generation. The RMSE is computed over a tensor product
grid with 248 points in space and 41 points in time. From the boxplots we can see that kriging is giving the worst
estimate in term of RMSE, while the best estimate is provided by ST-tPDE.

7.3. Third simulation study: pointwise observations in space and time of a random field
As in the previous simulation study, we consider pointwise observations in space and time, over the same spatio-

teporal domain considered in the second simulation study, but we generate here from a spatio-temporal random field,
with separable Matérn covariance structure, with smoothness parameter ν = 2 (dovremo anche dichiarare gli altri
parametri del Matérn), constraining the field to be zero at the boundary of spatial domain (or more precisely, at 100
points equally spaced on ∂Ω). The field is sampled at the 120 space locations and 11 equidistant time instants in the
interval [0, 1], adding a small Gaussian noise with mean zero and standard deviation equal to 0.035.

We implement kriging with the right covariance structure, separable Matérn in space and time, and using the right
smoothness parameter ν = 2. We implement the other methods as detailed for the second simulation study.

Figure 9 shows the true random field at some temporal instants, the corresponding data and the estimates provided
by the kriging, TPS, SOAP, ST-PDE and ST-tPDE. In order to compare the performances of the methods we compute
RMSE over 100 repetitions of this simulation, corresponding to different generation of both the random field and the
noise. The RMSE is computed over a regular grid with 248 points in space and 41 points in time. Figure 10 shows
the boxplots of the Root Mean Square Errors (RMSE) of the space-time field estimates given by the five methods.
A visual inspection of the boxplots highlights that kriging provides the worst estimates, characterized as well by the

17



True Field Data Kriging TPS SOAP ST-PDE ST-tPDE

tim
e

=
0

tim
e

=
0.

2
tim

e
=

0.
4

tim
e

=
0.

6
tim

e
=

0.
8

tim
e

=
1

Figure 9: Third simulation study. First column: true function evaluated at different time instants. Second column: sampled data. Third column to
last column: estimates provided by kriging, TPS, SOAP, ST-PDE and ST-tPDE.
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Figure 10: Third simulation study. Boxplots of the RMSE over 100 simulation replicates of the estimates of the spatio-temporal field obtained by
kriging, TPS, SOAP, ST-PDE and ST-tPDE.

largest variance. This was not expected, since this methods employs the same covariance structure used to generate the
signal, and even the correct smoothness parameter. SOAP, ST-PDE and ST-tPDE have comparable performances with
ST-PDE reaching in this case slightly smaller RMSE. This small advantage of ST-PDE over the proposed ST-tPDE is
expected as the true field f0, in this simulation study, has a separable covariance structure in space and time.

8. Application to blood flow velocity field estimation

We now want to apply the proposed ST-tPDE to the estimation of the dynamic blood velocity field on a cross-
section of the common carotid artery.

Figure 3 displays the data: the 7 signals represent the mean velocity of the blood cells measured in the 7 beams
on the cross-section of the carotid. These signals are obtained from separate ECD measurements, as the measurement
device can only scan one beam at a time. The signals have thus been aligned with respect to the starting time of the
systolic phase, which is an easily detectable landmark. In the upper right part of the figure a stylized artery cross-
section is represented and each beam is color-coded in accordance with the corresponding beam. We notice that the
ECD signals over the 7 beams have different shapes. Specifically, the ECD signals corresponding to the central beam,
beam 3, and to the beams in the upper part of the section, beams 2 and 3, have two peaks in the systolic phase, with
the highest velocities being reached during the second peak; the ECD signals over the beams in the lower and lateral
part of the artery section, beams 4 to 7, have only one main peak, that is earlier in time with respect to the main peak
over the beams 1 to 3. Over beams 4 to 7, higher velocities are reached over the beams in the lower part of the artery
section, beams 4 and 5, with respect to the lateral beams, beams 6 and 7.

As detailed in [4], that considered these data for a fixed time instant, the systolic peak, we have a detailed problem
specific information about blood fluid dynamics; see, e.g., [14]. This information can be conveniently translated into a
partial differential equation, along with the physiological boundary conditions. In particular, we can here consider the
parabolic PDE γ ∂ f

∂t + L f = 0, where the spatial operator L is the same used in [4] for the estimation of the blood flow
velocity at the systolic peak time. Specifically, L is given by the following diffusion, transport and reaction terms:

K(x, y) =

[
y2 + κ1x2 (κ1 − 1)xy
(κ1 − 1)xy x2 + κ1y2

]
+ κ2

(
R2 − x2 − y2

)
I2, (27)
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time = 0 time = 0.054 time = 0.100 time = 0.146

time = 0.192 time = 0.238 time = 0.284 time = 0.330

time = 0.376 time = 0.460 time = 0.575

Figure 11: Blood flow velocity field estimated by ST-tPDE, at different time instants. The figure in the bottom right corner indicates the orientation
of the carotid cross-section.

with R = 2.8, κ1 = 0.1, κ2 = 0.2, b(x, y) = (βx, βy)> with β = 0.5, and c = 0; moreover, u = 0; see [4] for the details of
the derivation. The relative strength between the space and time derivatives is controlled via the parameter γ, which is
set to 0.1. We can as well estimate the starting velocity profile h0, which corresponds to the velocity field at the end of
the diastolic phase, via the SR-PDE in [4], with the same specification of the spatial operator L. Likewise in [4], we
moreover impose homogeneous Dirichlet boundary conditions on the wall of the carotid cross-section, i.e., f |∂Ω = 0,
corresponding to the physiological no-slip conditions. The sampling design of these data coincide with the sampling
design 2, detailed in Section 6, i.e., areal data in space and poitwise data in time. The space-time velocity field is
thus estimated minimizing the functional JT ( f ) in (21), with the PDE described above. The estimation problem is
discretized in space using linear finite elements defined on the triangulation shown in the left panel of Figure 4. The
discretization in time is obtained by means of the finite difference method, with a time discretization grid of NT = 41
uniformly spaced points during the time of the heartbeat (0.92 seconds for the considered patient).

The estimated dynamic surface is represented in Figure 11 at fixed time instants. We can notice that during the
heartbeat the shape of the velocity field is subject to strong variations. During the first instants of the systolic phase
the velocity field has a strong asymmetry with higher values in the lower part of the artery cross-section (the plot in
the bottom right corner of Figure 11 gives the orientation of the carotid cross-section for this figure). In the following
instants the shape of the velocity field changes, assuming higher values in the upper right part of the cross-section.
These asymmetries and eccentricities of the blood flow are of strong interest to the medical doctors, to investigate how
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the heamodynamics may influence atherosclerosis’s pathogenesis. During the diastolic phase the estimated velocity
field is instead symmetric and flat.

Figure 12: Estimated blood-flow velocity at the beams’ centers.

We can compare the obtained estimates with the original data in Figure 3. Figure 12 displays the estimated velocity
in the central point of the beams. Notice that the estimated dynamic surface captures very well the main features of the
ECD signals. Moreover the estimate of the mean velocity on each beam borrows strength from the proximity of other
beams, taking into account the spatial structure of the phenomenon. Penalizing a parabolic PDE that summarizes the
problem-specific knowledge on the phenomenon thus allows to obtain a physiological estimate of the velocity field.

9. Directions of future research

Various extensions of the proposed model can be considered and will be the object of future research.
First of all, spatio-temporal varying covariates could be included in the model, using a semiparametric approach

analogous to the one considered in [33].
Secondly, using a generalized linear framework similar to [35], we could model variables of interest having any

distribution in the exponential family, such as Poisson counts, binomial or gamma distributed outcomes, scattered
over spatio-temporal domains. This model extension would significantly broaden the scope of the proposed model.

A very interesting possible development would consist in combining the the proposed method with a technique
for data-driven estimation of the hyperparameters in the regularized PDE. In the described application to blood-flow
velocity field estimation, these hyperparameters have been fixed on the base of prior knowledge on the phenomenon
under study, following the derivation given in [4]. On the other hand, the problem specific knowledge may be not
as detailed as to suggest specific values for such parameters. A promising approach in this respect is offered by
the parameter cascading technique proposed in [9, 31, 38]. This technique is explored in the framework of spatial
regression with differential regularization, in the simpler case of only spatial data and with a simpler PDE with only a
stationary diffusion operator L f = div(K∇ f ), in [5].

Another fascinating generalization would consist in handling spatio-temporal data distributed over general non-
planar domains. This could be done using non-planar finite elements, likewise in [19], or isogeometric analysis based
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on non-rational B-spline basis, likewise in [34]. The generalization to non-planar domains would enable advanced
applications in the life sciences, as well as in the geosciences and engineering. For instance, in the neurosciences,
this would permit the analysis of spatio-temporal neuroimaging data associated to neuronal activity over the cerebral
cortex, the highly convoluted thin sheet of neuronal tissue that hosts most of the neuronal activity. In cardiovascular
research, this would for instance allow the study of spatio-temporal varying haemodynamical stresses exerted by
blood-flow over the arterial wall. This study would be fundamental for advancing our knowledge on aneurysms’
pathogenesis. A first study in this direction, considering a fixed time instant, the systolic peak, has been carried out
in [13]. The use of non-rational B-spline basis, instead of finite elements, would instead be particularly suited to
engineering applications, being these bases are extensively used in computer aided design.
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Appendix A. Proof of the solution of the estimation problem

To prove the existence and the uniqueness of the solution of Problem 1, we consider the quantity g ∈ GT =

L2(0,T ; L2(Ω)), defined as g =
∂ f
∂t + L f − u, where L is the second order elliptic operator (2) and u is the known

forcing term. We moreover define the space VT,0 = {v ∈ V : Bcv = 0 and v(p, 0) = 0}, which represents the space of
functions in V with homogeneous boundary conditions and homogeneous initial value, and we introduce the operator
BT : L2(0,T ; L2(Ω))→ VT,0, such that BT ũ is the unique solution of the PDE (4) with forcing term ũ and homogeneous
boundary conditions, i.e., ∂t(BT ũ) + L(BT ũ) = ũ in Ω × (0,T ], BT ũ(p, 0) = 0 in Ω and Bc(BT ũ) = 0 on ∂Ω × (0,T ].
We make the following assumptions.

Assumption 1. ΓD , ∅, so that a Poincaré inequality holds, i.e.,

‖v‖L2(Ω) ≤ CP ‖∇v‖L2(Ω) . (A.1)

Assumption 2. The parameters of the PDE are such that ∀ũ ∈ L2(0,T ; L2(Ω)) there exists a unique solution f0 of
the PDE (4), which moreover satisfies f0 ∈ L2(0,T ; H2(Ω)) ∩ C0(0,T ; H1

ΓD
(Ω)), ∂ f0

∂t ∈ L2(0,T ; L2(Ω)) and ‖ f0‖V ≤
β ‖ũ‖L2(0,T ;L2(Ω)).

Under Assumptions 1 and 2, thanks to the well-posedness and the regularity of the PDE (4), the operator BT is an
isomorphism between L2(0,T ; L2(Ω)) and VT,0. Moreover, the following inequality holds∫ T

0
‖BT ũ(t)‖2H2(Ω) ≤ C

∫ T

0
‖ũ(t)‖2L2(Ω) . (A.2)

The solution of the PDE (4) can thus be written as f = fb + BT ũ, where fb is the solution of the PDE with
homogeneous forcing term, non-homogeneous initial value and non-homogeneous boundary conditions.

Existence and uniqueness of the estimator f̂ can hence be obtained thanks to a classical result of calculus of
variations. We recall here the result stated, e.g., in [21].

Theorem 1. Let G be an Hilbert space, A : G × G → R a continuous, coercive and symmetric bilinear form in G,
L : G → R a linear operator over G, and c a constant. If the functional J(g) has the form

J(g) = A(g, g) +Lg + c (A.3)

then ∃! ĝ ∈ G such that J(ĝ) = infG J(g).
Moreover ĝ satisfies the following Euler-Lagrange equation:

(J′(ĝ), ϕ) = 2A(ĝ, ϕ) +Lϕ = 0 ∀ϕ ∈ G. (A.4)
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Exploiting this theorem, we can prove Proposition 1 and 3.

Proof of Proposition 1. Recalling the definitions of g, GT , BT given at the beginning of this appendix, and the defini-
tion of fb given below equation (A.2), we can write any f ∈ V as an affine transformation of g, by f = fb + BT (u + g),
and we can re-express the functional (5) as the following functional JT,g over GT ,

JT,g(g) = JT ( fb + BT (u + g)) =

n∑
i=1

∫ T

0
(BT (u + g)(pi, t) + fb(pi, t) − zi(t))2

+ λ

∫ T

0
‖g(t)‖2L2(Ω) . (A.5)

Moreover, we can rewrite JT,g in the quadratic form (A.3) of Theorem 1, setting

A(g, ϕ) =

n∑
i=1

∫ T

0
BT g(pi, t)BTϕ(pi, t) + λ

∫ T

0

∫
Ω

gϕ

Lϕ =2
n∑

i=1

∫ T

0
BTϕ(pi, t)(BT u(pi, t) + fb(pi, t) − zi(t))

c =

n∑
i=1

∫ T

0
(BT u(pi, t) + fb(pi, t) − zi(t))2.

Given that BT , the pointwise evaluation of a function and the integration on an interval are linear operators, we have
thatA(g, ϕ) is a bilinear form onGT . Moreover, it is continuous inGT ; indeed, thanks to the embedding H2(Ω) ⊂ C(Ω̄)
if Ω ⊂ Rd with d ≤ 3 and thanks to (A.2) we have that∫ T

0
|BT g(pi, t)|2 ≤

∫ T

0
‖BT g(t)‖2C(Ω̄) ≤ C

∫ T

0
‖BT g(t)‖2H2(Ω) ≤ C̄

∫ T

0
‖g(t)‖2L2(Ω) .

We thus obtain thatA(g, ϕ) ≤ (C̄n + λ)
(∫ T

0 ‖g(t)‖2L2(Ω)

)1/2 (∫ T
0 ‖ϕ(t)‖2L2(Ω)

)1/2
.

Finally, the operatorA(g, ϕ) is coercive in GT , since

A(g, g) =

n∑
i=1

∫ T

0
|BT g(pi, t)|2 + λ

∫ T

0
‖g(t)‖2L2(Ω) ≥ λ

∫ T

0
‖g(t)‖2L2(Ω) .

As a result of the fact that the bilinear form A(·, ·) is continuous and coercive in the Hilbert space GT , that the
operator L : GT → R is linear, and that c is a constant, Theorem 1 states the existence and the uniqueness of
ĝ = argming∈GT

JT,g(g). From the bijectivity of BT : L2(0,T ; L2(Ω)) → VT,0 we then deduce the existence and
uniqueness of f̂ = fb + BT (ĝ + u) = argmin f∈V JT ( f ).

Thanks to Theorem 1 and the definition of the operator BT we can obtain the surface estimator f̂ as the solution
of the PDE 

∂ f̂
∂t + L f̂ = u + ĝ
f̂ (p, 0) = s(p)
Bc f̂ = h

in Ω × (0,T ]
in Ω

on ∂Ω × (0,T ]
(A.6)

where ĝ is obtained as the solution of the equation (A.4), that can be written as

1
2

(J′(ĝ), ϕ) =

n∑
i=1

∫ T

0
(BT g + BT u + fb − zi) BTϕ δpi + λ

∫ T

0

∫
Ω

gϕ = 0.
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This equation corresponds to the PDE
−
∂ĝ
∂t + L∗ĝ = − 1

λ

∑n
i=1( f̂ − zi)δpi

ĝ(p,T ) = 0
Bc
∗ĝ = 0

in Ω × [0,T )
in Ω

on ∂Ω × [0,T )
(A.7)

where δpi is the Dirac mass located in pi, L∗ is the adjoint operator of L, defined in (2) and Bc
∗ is the operator that

defines the boundary conditions of the adjoint problem. The surface estimator can thus be written as the solution of a
coupled system of the second order PDEs (A.6) and (A.7).

Proof of Proposition 3. The same strategy used to prove Proposition 1 can be followed to prove Proposition 3. The
only difference is the presence of αi and β j. Clearly, the pointwise evaluation of a function and the integration on an
interval are linear operators, thus the expressions of αi and β j given in Section 6.1 preserve the bilinearity ofA.

The other important point is the continuity of A. For the sampling design 1, i.e., pointwise observations in space
and interval observations in time, the continuity of A is ensured by the fact that BT is an isomorphism between
L2(0,T ; L2(Ω)) and VT,0 and by the embedding H2(Ω) ⊂ C(Ω̄). For the sampling design 2, i.e., areal observations in
space and pointwise observations in time, the continuity of A holds thanks to the fact that BT g ∈ C0(0,T ; H1(Ω)).
Finally, for the sampling design 3, i.e., areal observations in space and interval observations in time, the continuity of
A trivially holds.
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