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Quantifying uncertain system outputs via the multilevel Monte

Carlo method � Part I: Central moment estimation

M. Pisaronia,∗, S. Krumscheida, F. Nobilea

aCalcul Scienti�que et Quanti�cation de l'Incertitude (CSQI), Institute of Mathematics, École
Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

Abstract

In this work we introduce and analyze a novel multilevel Monte Carlo (MLMC) estimator for
the accurate approximation of central moments of system outputs a�ected by uncertainties.
Central moments play a central role in many disciplines to characterize a random system
output's distribution and are of primary importance in many prediction, optimization, and
decision making processes under uncertainties. We detail how to e�ectively tune the MLMC
algorithm for central moments of any order and present a complete practical algorithm that
is implemented in our accompanying Python library cmlmc-py1. In fact, we validate the
methodology on selected reference problems and apply it to an aerodynamic relevant test
case, namely the transonic RAE 2822 airfoil a�ected by operating and geometric uncertain-
ties.

Keywords: central moments, multilevel Monte Carlo, uncertainty quanti�cation, h-statistic

1. Introduction

Probabilistic models are widely used across many disciplines, including engineering and
�nancial applications. Inevitably any quantity of interest (QoI) Q, say, that is derived from
a probabilistic model's output is a random variable. Consequently, important tasks such as
predictions, decision making, or optimization based on the available system knowledge Q
need to be carried our subject to uncertainties. To reliably account for the e�ects of these
uncertainties, it is indispensable to characterize the distribution of Q or some statistics of
it. While the accompanying Part II of this work will be devoted to approximations to the
cumulative distribution function (CDF) and robustness indicators such as quantiles (also
known as value-at-risk) and the conditional value-at-risk, here we focus on the commonly
used approach of characterizing a random system output's distribution by a carefully chosen
selection of moments of Q. In fact, in addition to the mean, many important features of
distribution, such as location, dispersion, or asymmetry, can be assessed through moments of
the deviation from the mean. These statistical moments that are computed about the mean
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are called central moments. Speci�cally, the p-th central moment µp of a random variable Q
is de�ned as

µp = E
[
(Q− µ)p

]
, with µ = E[Q] ,

provided the right-hand side exists. Following the de�nition of µp, the �rst central moment
(i.e. p = 1) is equal to zero. The second central moment µ2 is the variance (often also denoted
as σ2) and, together with the mean µ = E[Q], is one of the most commonly used quantities
in applications to characterize a random variable.

The third central moment µ3 o�ers insight into the asymmetry of a random variable's
distribution about its mean. Speci�cally, the skewness γ = µ3/

√
µ3
2, which is the standard-

ized counterpart of the third central moment, is commonly used as a measure of probability
distribution's asymmetry. Indeed, the skewness (or equivalently the third central moment
µ3) of a symmetric distribution about the mean is zero. Negative values of the skewness
indicate that the probability distribution has a left tail that is longer compared to the right
one. Analogously, positive values indicate a longer right tail. A measure of a probability
distribution's asymmetry is very important in many engineering risk/reliability assessments
and �nancial applications related to stock prices and assets. In fact, Mandelbrot et al. [14]
observed that the majority of �nancial assets returns are non-normal. This is due to the
appearance of extreme events more likely than predicted by a normal distribution [4] and
due to the fact that crashes occur more often than booms [17]. For this reason, investment
decisions based only on the mean and variance cannot discriminate whether a given future
event will be more or less likely to appear on the left or right side of the mean [13, 15].
Applied to investment returns, negatively skewed distributions indicate greater chance of
extremely negative outcomes, while in positive skewed distributions extremely bad scenarios
are not as likely. Assuming a normal distribution, when in fact data sets are skewed, can lead
to the so called skewness risk [5]. Similar problems arise in many applications across science
and technology where decisions based on a reliability or risk measure need to be taken.

The fourth central moment µ4 and its standardized counterpart, which is known as
kurtosis Kurt = µ4/µ

2
2, provide some further important insights into a random variable's

distribution. In fact, the kurtosis can be used to measure whether the output random variable
are heavy-tailed (high level of kurtosis) or light-tailed (low level of kurtosis) compared to a
normal distribution, for whichKurt = 3. Heavy-tailed distributions are common in problems
where extreme events are likely to appear. Random variables with low levels of kurtosis tend
to have light tails and lack of extreme events. In other words high levels of kurtosis indicate
that most of the variability in the distribution is due to extreme deviations from the mean.

In this work we consider e�cient sampling-based estimators for central moments of a
quantity of interest Q output of a complex probabilistic model (such as a �uid �ow with ran-
dom in�ow conditions, a stochastic dynamical system, a random partial di�erential equation,
etc.). We address in particular probabilistic models that involve di�erential equations (such
as system of SDEs, SPDEs, or PDEs with random input parameters) for which typically the
random system output Q cannot be sampled exactly and only approximate sampling can be
accessed with a given accuracy (e.g. by solving the di�erential equation via some numerical
scheme). As a consequence of this inexact sampling, a bias is introduced that has to be
accounted for. In the context of estimating the mean E[Q] of Q, the multilevel Monte Carlo
(MLMC) method has established itself as a versatile and e�cient sampling-based method
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when only inexact sampling is possible [6, 9, 10, 19]. Speci�cally, let QM denote an approxi-
mation of the unknown random variable Q obtained via a numerical scheme with M degrees
of freedom, i.e. via a numerical scheme that reduces the original in�nite dimensional problem
to a M -dimensional one and has a computational cost proportional to some power of M .
The key idea of the MLMC method then is to consider not just approximations obtained
from said scheme with M degrees of freedom, but also approximations obtained with dif-
ferent numbers of degrees of freedoms. In fact, a hierarchy of L + 1 approximation levels
is considered, where each approximation level is de�ned by its size and the di�erent levels
are related by M0 < M1 < · · · < ML. Using N` independent and identically distributed
(i.i.d.) realizations ωi,`, i = 1, · · · , N`, of the system's random input parameter on each level
0 ≤ ` ≤ L, the MLMC estimator for the mean µ = E[Q] of Q is

EMC
(
Q0
N0,M0

)
+

L∑
`=1

(
EMC
(
Q`
N`,M`

)
− EMC

(
Q`
N`,M`−1

))
, (1)

where EMC denotes the sample average operator and Q`
N`,M`

:=
(
QM`

(ωi,`)
)
i=1,...,N`

is the

sample of N` i.i.d. replications of QM`
. Here, the same ωi,` are used in both QN`,M`

and
QN`,M`−1

, which yields a strong correlation and, hopefully, an estimator with smaller variance.
In this work we extend the MLMC concept to the estimation of arbitrary order central

moments µp. Speci�cally, we introduce and analyze a novel multilevel Monte Carlo method
that allows an e�cient sampling-based estimation from inexact/approximate samples. One
of the method's key ingredients is the use of h-statistics [8] as unbiased central moment
estimators with minimal variance for the level-wise contributions. That is, instead of the
level-wise contributions EMC

(
Q`
N`,M`

)
− EMC

(
Q`
N`,M`−1

)
that are used in the estimation of the

mean (c.f. (1)), here we use terms of the form hp
(
Q`
N`,M`

)
− hp

(
Q`
N`,M`−1

)
, where hp denotes

an appropriate h-statistic of order p. Consequently, the MLMC estimator mMLMCp for arbitrary
order p central moment considered here is of the form

mMLMCp = hp
(
Q0
N0,M0

)
+

L∑
`=1

(
hp
(
Q`
N`,M`

)
− hp

(
Q`
N`,M`−1

))
.

We note that a multilevel Monte Carlo estimator for the variance µ2 of a random variable
Q has already been introduced in [2]. There, the authors de�ne the multilevel Monte Carlo
estimator by telescoping on the unbiased sample variance estimator for the level-wise con-
tributions. Our approach based on h-statistics thus o�ers an alternative derivation of said
estimator, which allows for a more straightforward complexity analysis in fact. Moreover,
the approach introduced here is easily generalized to arbitrary order central moments, as
we will illustrate in the following. In fact, the results presented here for estimating µp for
p ≥ 3 appear to be novel. Finally, we mention that somewhat related work on multilevel
Monte Carlo techniques for arbitrary order central moment estimators can be found in [3].
However, there the authors construct the estimators for p ≥ 3 based on biased estimators
for the level-wise contributions. Consequently, the method introduced in the aforementioned
work requires to carefully control this additional bias. Moreover, the mean squared error
analysis is also a�ected by this bias, in the sense that the error is quanti�ed using worst-
case bounds based on triangle inequalities. Instead our work, as mentioned earlier already,
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uses h-statistics for level-wise contributions, which are unbiased estimators with minimal
variance. In fact, these unbiased estimators can be straightforwardly derived in closed-form,
allowing for a possibly sharper mean squared error bound. The cost of working with unbi-
ased estimators is that deriving these estimators in closed-form requires somewhat tedious
calculations. However, these calculations can be easily carried out automatically by sym-
bolic computer algebra systems, such as Maple and Mathematica, as we will describe in
the following. Lastly, we present a complete algorithm and detail how to tune the MLMC
method for central moments to achieve optimal complexity. In fact, we demonstrate the
e�ectiveness of the developed methodology, which has been implemented in our Python li-
brary cmlmc-py, by applying it to a number of selected examples. These examples include a
relevant problem in compressible aerodynamics, namely a transonic airfoil a�ected by both
operating and geometric uncertainties, which we analyze based on estimates of the �rst four
statistical central moments.

The rest of this work is organized as follows. In Sects. 2�3 we present and analyze the
sampling-based estimation of central moments. Speci�cally, in Sect. 2 we �rst consider the
classic Monte Carlo method, before introducing the novel multilevel Monte Carlo estimator
in Sect. 3. Following these theoretical considerations, we discuss various practical aspects
and implementation details for the multilevel Monte Carlo methods in Sect. 4. In Sect. 5
we apply the MLMC methodology to the above mentioned numerical examples. Finally, we
o�er a summary and a discussion of our results in Sect. 6.

2. Monte Carlo estimation of central moments

The p-th central moment µp ≡ µp(Q) of a random variable Q (also known as the p-th
moment about the mean) is given by

µp(Q) := E
[(
Q− E[Q]

)p]
,

for any p ∈ N provided it exists, although the value for p = 1 is trivial (µ1(Q) = 0). Any
central moment can, of course, be expressed in terms of non-centered (so-called raw moments
or moments about the origin) as a consequence of the binomial theorem and the linearity of
the expected value:

µp(Q) ≡ E
[(
Q− E[Q]

)p]
=

n∑
j=0

(
p

j

)
(−1)p−jE

[
Qj
]
E[Q]p−j .

However, approximating the p-th central moment µp(Q) by a combination of approximated
non-centered moments can be numerically unstable. This may be especially severe if the
central moments are small whereas the raw moments are not. To avoid these numerical
instabilities, here we present Monte Carlo sampling based estimators for central moments
directly. We begin by reviewing classic (single-level) Monte Carlo estimators in this Section,
before addressing the multilevel estimators in Sect. 3.

Starting point for the construction of e�cient sampling based estimators for central
moments are the so-called h-statistics [8]. That is, in the classic single-level setting we
consider an i.i.d. sample QN :=

(
Q(ωi)

)
i=1,...,N

, of size N , where each Q(ωi) has the same
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distribution as Q. The h-statistic hp ≡ hp(QN) then is an unbiased estimator of µp(Q), in the
sense that E

[
hp(QN)

]
= µp(Q). Moreover, the h-statistic has the favorable property that its

variance Var
[
hp(QN)

]
= E

[(
hp(QN)− µp(Q)

)2]
is minimal compared to all other unbiased

estimators [12]. Based on the sample QN of size N , the h-statistic hp(Q) is commonly

expressed in terms of power sums Sa ≡ Sa(QN) :=
∑N

i=1Q(ωi)
a. For example, the �rst three

h-statistics are

h2 =
NS2 − S2

1

(N − 1)N
,

h3 =
N2S3 − 3NS2S1 + 2S3

1

(N − 2)(N − 1)N
,

h4 =
(−4N2 + 8N − 12)S3S1 + (N3 − 2N2 + 3N)S4 + 6NS2S

2
1 + (9− 6N)S2

2 − 3S4
1

(N − 3)(N − 2)(N − 1)N
,

where we have used the shorthand notation hp ≡ hp(QN) and Sa ≡ Sa(QN) for brevity (see,
e.g., [8] for the construction of hp for arbitrary p).

In practice, sampling the random variable Q usually requires the solution of a complex
problem (e.g. �uid �ow with random initial/boundary conditions, random dynamical system,
etc.), which inevitably involves a discretization step. That is, it is often not possible to sample
Q exactly and instead we assume that one can only draw approximate i.i.d. random variables
QM(ωi), i = 1, . . . , N , from a random variable QM , which is a suitable approximation (in
a sense made precise below) of the unknown random variable Q. In this case the natural
Monte Carlo (MC) estimator for the p-th central moment µp(Q) by means of an i.i.d. sample
QN,M :=

(
QM(ωi)

)
i=1,...,N

of the approximate, computable random variable QM is simply

the h-statistic based on QN,M :
mMCp := hp(QN,M) .

That is, there are two levels of approximations: the �rst one due to approximate sampling
(µp(Q) ≈ µp(QM)) and the second one due to the Monte Carlo error (µp(QM) ≈ mMCp ).
Consequently, the mean squared error of this Monte Carlo estimator is

MSE
(
mMCp
)

:= E
[(
mMCp − µp(Q)

)2]
=
(
µp(QM)− µp(Q)

)2
+ Var

[
hp(QN,M)

]
, (2)

from which we identify the bias
∣∣µp(QM)− µp(Q)

∣∣ and the statistical error Var
(
hp(QN,M)

)
.

Under appropriate assumptions, the statistical error is of order O(N−1) as usual. In fact, for
the �rst three central moment estimators (h1 ≡ 0 not included), the MC estimator's variance
reads

Var
(
h2
)

=
µ4

N
− µ2

2(N − 3)

(N − 1)N
, (3a)

Var
(
h3
)

=
3µ3

2 (3N2 − 12N + 20)

(N − 2)(N − 1)N
− 3µ4µ2(2N − 5)

(N − 1)N
+
µ6

N
− µ2

3(N − 10)

(N − 1)N
, (3b)

Var
(
h4
)

=
72µ4

2 (N2 − 6N + 12)

(N − 3)(N − 2)(N − 1)N
+

16µ2
3µ2 (N2 − 4N + 13)

(N − 2)(N − 1)N

− 24µ4µ
2
2(4N − 11)

(N − 2)(N − 1)N
+

16µ6µ2

(N − 1)N
+
µ8

N
− 8µ3µ5

N
− µ2

4(N − 17)

(N − 1)N
,

(3c)
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where we have suppressed the arguments of hp ≡ hp(QN,M) and µp ≡ µp(QM) for brevity
again. It is noteworthy that these quantities can be computed (combinatorial problem)
straightforwardly for any p using the Mathematica package mathstatica [16], due to the
h-statistic's power sum representation.

If one assumes that the approximate random variable QM is such that the bias term∣∣µp(QM)− µp(Q)
∣∣ decays at a certain rate when increasing the discretization parameter M ,

then it is possible to balance the squared bias and statistical error contributions to the MSE
in (2). Such a bias assumption is plausible since the bias term is related to the numerical
method (assumed to be consistent) used to approximate the underlying complex system.
At the same time, generating realizations of QM typically becomes more expensive as M
increases. The following result thus quanti�es the computational cost to estimate the p-th
central moment by the MC method, when using optimal discretization parameter M and
optimal sample size N to achieve a prescribed accuracy. As a matter of fact, the theoretical
result below is the central moment analog of the standard result for expectations.

Proposition 2.1. Let p ∈ N, p ≥ 2, and assume that the 2p-th central moment of QM is
bounded, so that µ2p(QM) <∞ for M � 1. Furthermore, suppose that there exist constants
α and γ such that

(i) the bias decays with order α > 0, in the sense that
∣∣µp(QM) − µp(Q)

∣∣ ≤ cαM
−α for

some constant cα > 0,

(ii) the cost to compute each i.i.d. realization of QM is bounded by cost(QM) ≤ cγM
γ for

some constants cγ, γ > 0.

The MC estimator mMCp = hp(QN,M) with N = O(ε−2) andM = O(ε−1/α) satis�es MSE
(
mMCp
)

=
O(ε2) and the cost associated with computing this estimator is bounded by

cost
(
mMCp
)

= N · cost(QM) ≤ cε−2−γ/α ,

where c is independent of ε > 0.

Note that the constants appearing in the result above (i.e. c, cα, and cγ) depend on the
order p of the central moment. In fact, also the rates α and γ may depend on p in principle.
However, numerical evidence suggests that the rates may, in fact, not depend on p for a large
class of problems; cf. the numerical studies presented in Sect. 5.

2.1. Practical aspect: MSE and unbiased variance estimation

A robust implementation of the MC estimator mMCp should also provide an estimation of
the associated MSE. This is also the �rst step towards building an adaptive MC algorithm in
which the sample size N and/or the discretization parameter M are progressively increased
to achieve a MSE smaller than a prescribed tolerance.

The bias term
∣∣µp(QM) − µp(Q)

∣∣ relates only to the numerical discretization of the un-
derlying di�erential problem. Possible ways of estimating the bias include:

(i) the calculation on a sequence of re�ned discretizations with parametersM1 < M2 < . . .
and extrapolation of the error;
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V̂2
N

N
(
(N−1)2NS4−(N2−3)S2

2

)
+(6−4N)S4

1+4N(2N−3)S2S2
1−4(N−1)

2NS3S1

(N−3)(N−2)(N−1)2N2

V̂3
N

1
(N−5)(N−4)(N−3)(N−2)2(N−1)2N2

(
−12(3N2 − 15N + 20)S6

1

+ 36N(3N2 − 15N + 20)S2S4
1 − 24N2(2N2 − 9N + 11)S3S3

1

+ 3NS2
1

(
(7N4 − 36N3 + 79N2 − 90N + 40)S4 − 6N(4N2 − 21N + 29)S2

2

)
− 6NS1

(
(N3 − 3N2 + 6N − 8)(N − 1)2S5 + (−5N4 + 18N3 + 13N2 − 90N + 40)S2S3

)
+N

(
(N − 1)2N(N3 − 3N2 + 6N − 8)S6 + 3(3N4 − 24N3 + 71N2 − 90N + 40)S3

2

− 3(2N5 − 11N4 + 14N3 + 25N2 − 70N + 40)S4S2

− (N5 + 4N4 − 41N3 + 40N2 + 100N − 80)S2
3

))
Table 1: Closed-form expressions of the unbiased estimators V̂p/N for Var

[
hp(QN,M )

]
= Vp/N , p = 2, 3, as

polynomial functions of the power sums Sa ≡ Sa(QN,M ).

(ii) error estimations based on a-posteriori error estimators (see e.g. [21], [1]) available for
certain type of equations.

We will not detail further this aspect here, as the main goal of this work is on the estimation of
the statistical error. For this, a possibly unbiased estimator for the variance Var

[
hp(QN,M)

]
based on the same sample QN,M of size N is needed. We discuss hereafter the derivation
of one such estimator. As we have seen in (3), it holds that Var

[
hp(QN,M)

]
= O(1/N).

It is thus convenient to set Vp := N · Var
[
hp(QN,M)

]
and derive unbiased estimators V̂p of

Vp. However, the naive approach of simply replacing µk, for k = 2, . . . , 2p, in (3) by its
unbiased estimator hk will not result in an unbiased estimator for Vp, since the statistical
error Var

[
hp(QN,M)

]
depends non-linearly on the central moments. Instead, we do not

only substitute hk for µk but also introduce an additional multiplicative coe�cient for each
substitution. For example, inspecting equation (3a) suggests to make the ansatz V̂2 =
a1h4 + a2h

2
2 for p = 2. Similarly, (3b) implies the ansatz V̂3 = a1h

3
2 + a2h2h4 + a3h6 + a4h

2
3

for the case p = 3 and so on. For an ansatz of this form the expected value of V̂p, E[V̂p],
can be computed as a polynomial function of the central moments µk, k = 2, . . . , 2p, using
mathstatica. Consequently, we can derive unbiased estimators by equating the coe�cients
of such polynomial with the corresponding ones in the expression of E[Vp].For example, for
p = 2 we �nd

E[V̂2] =
µ4(a2 + a1N)

N
+
a2µ

2
2 (N2 − 2N + 3)

(N − 1)N
,

which, after comparing with equation (3a), yields a1 = N−1
N2−2N+3

and a2 = − N−3
N2−2N+3

. The

unbiased variance estimators V̂p/N of Var
[
hp(QN,M)

]
obtained by following this procedure

are summarized in Table 1, where the �nal expression has been given directly in terms of the
power sums Sa ≡ Sa(QN,M) instead of the h-statistics. For the sake of a clear presentation,
we present the unbiased estimator for the case p = 4 in AppendixA. It is noteworthy, that
although these formulas are rather lengthy, they are in closed-form, so that they are easily
implementable and are available in the accompanying Python library cmlmc-py.
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3. Multilevel Monte Carlo estimation of central moments.

Using the results presented in the previous Section and following the general construction
of MLMC estimators, we introduce the MLMC estimator for the p-th central moment as:

mMLMCp := hp
(
Q0
N0,M0

)
+

L∑
`=1

(
hp
(
Q`
N`,M`

)
− hp

(
Q`
N`,M`−1

))
≡

L∑
`=0

(
hp
(
Q`
N`,M`

)
− hp

(
Q`
N`,M`−1

))
,

(4)
with the convention that hp

(
Q0
N0,M−1

)
≡ 0. Here, the sample Q`

N`,M`
of i.i.d. realizations is

given by Q`
N`,M`

:=
(
QM`

(ωi,`)
)
i=1,...,N`

for any level `. The superscript ` of both samples

Q`
N`,M`

and Q`
N`,M`−1

is used to indicate the correlation across two consecutive levels, which
is the key ingredient for any multilevel Monte Carlo method. Speci�cally, the realizations
of the sample Q`

·,· and those of Qk
·,·, k 6= l, are independent, while the N` realizations of

Q`
N`,M`

and Q`
N`,M`−1

are correlated, in the sense that the approximate quantities of interest
computed on the �ner discretization (i.e. sample QN`,M`

) and those computed on the coarser
discretization (i.e. samples of QN`,M`−1

) correspond to the same realizations of the uncertain
inputs. Consequently, the MLMC estimator's mean squared error is

MSE
(
mMLMCp

)
=
(
µp(QML

)− µp(Q)
)2

+
L∑
`=0

Var
[
∆`hp

]
, (5)

where we have introduced the shorthand notation

∆`hp ≡ ∆`hp
(
Q`
N`,M`

,Q`
N`,M`−1

)
:= hp

(
Q`
N`,M`

)
− hp

(
Q`
N`,M`−1

)
.

The bias term |µp(QML
) − µp(Q)| in (5) corresponds to the bias of the classic Monte Carlo

method described in Sect. 2 on discretization level L, cf. equation (2). The analysis of the
variances Var[∆`hp] and their dependence on N` as well as on the central moments of Q`

N`,M`

and Q`
N`,M`−1

is more cumbersome than for the classic MC estimator. In particular we need

to quantify the correlation between Q`
N`,M`

and Q`
N`,M`−1

. To do so, it is convenient to
introduce both the sample sum and the sample di�erence of these samples:

X`,+
N`

:=
(
X`,+
i

)
i=1,...,N`

with X`,+
i := QM`

(ωi,`) +QM`−1
(ωi,`) ,

X`,−
N`

:=
(
X`,−
i

)
i=1,...,N`

with X`,−
i := QM`

(ωi,`)−QM`−1
(ωi,`) .

In other words, we have that X`,+
N`

= Q`
N`,M`

+ Q`
N`,M`−1

and X`,−
N`

= Q`
N`,M`

− Q`
N`,M`−1

.
Moreover, we introduce the bivariate power sums Sa,b analogously to the power sums Sa in
the previous Section, that is

Sa,b
(
(Xi)i=1,...,N , (Yi)i=1,...,N

)
:=

N∑
i=1

Xi
aYi

b ,

for any two samples (Xi)i=1,...,N and (Yi)i=1,...,N of the same size N . Then we can compute

the variance Var
(
∆`hp

)
for each level ` as follows:
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1. For each `, we express the term ∆`hp ≡ hp
(
Q`
N`,M`

)
−hp

(
Q`
N`,M`−1

)
in terms of bivariate

power series Sa,b in X`,+
N`

and X`,−
N`

, that is in terms of

S`a,b ≡ Sa,b

(
X`,+

N`
,X`,−

N`

)
.

This can, of course, be achieved by using the identities Q`
N`,M`

= 1
2

(
X`,+

N`
+ X`,−

N`

)
and

Q`
N`,M`−1

= 1
2

(
X`,+

N`
−X`,−

N`

)
and some algebra.

2. The obtained representation of ∆`hp in terms of these bivariate power sums in X`,+
N`

andX`,−
N`

is then amenable for further treatment by the mathstatica software. In fact,
the software provides an e�cient algorithm for treating the combinatorial problem of
computing the desired variances, due to the power series representation.

Following this procedure, the �rst step yields for example

∆`h2 =
N`S

`
1,1 − S`0,1S`1,0

(N` − 1)N`

,

∆`h3 = −−N`
2S`0,3 − 3N`

2S`2,1 + 3N`S
`
0,2S

`
0,1 + 3N`S

`
2,0S

`
0,1 + 6N`S

`
1,0S

`
1,1 − 2S`30,1 − 6S`21,0S

`
0,1

4(N` − 2)(N` − 1)N`

,

where we have again omitted the arguments for brevity. The same procedure can also be
used to derive close-form expressions for ∆`hp with p ≥ 4, which become rather lengthy
and are thus not presented here for the sake of a clear presentation. Based on these closed-
form expressions for ∆`hp, the required expression of the variance Var

[
∆`hp

]
on level ` then

follows accordingly as

Var
[
∆`h2

]
= −(N` − 2)µ2

1,1

(N` − 1)N`

+
µ0,2µ2,0

(N` − 1)N`

+
µ2,2

N`

, (6a)

Var
[
∆`h3

]
=

3
(
3N`

2 − 12N` + 20
)
µ3
0,2

16(N` − 2)(N` − 1)N`

+
9
(
N`

2 − 4N` + 8
)
µ2
1,1µ0,2

4(N` − 2)(N` − 1)N`

+
9
(
N`

2 − 4N` + 12
)
µ2
2,0µ0,2

16(N` − 2)(N` − 1)N`

+
9
(
N`

2 − 4N` + 6
)
µ2
1,1µ2,0

2(N` − 2)(N` − 1)N`

−+
9(N` − 2)µ2,0µ

2
0,2

8(N` − 1)N`

+
9µ4,0µ0,2

16(N` − 1)N`

− 9(N` − 2)µ2,2µ0,2

8(N` − 1)N`

− 3(2N` − 5)µ0,4µ0,2

16(N` − 1)N`

+
9µ2

1,2

4(N` − 1)N`

+
µ0,6

16N`

+
3µ2,4

8N`

+
9µ1,2µ3,0

4(N` − 1)N`

+
9µ4,2

16N`

− 3µ0,4µ2,0

8N`

− 3(N` − 4)µ1,1µ1,3

4(N` − 1)N`

− 9(N` − 2)µ1,1µ3,1

4(N` − 1)N`

− 3(N` − 4)µ0,3µ2,1

8(N` − 1)N`

− 9(N` − 3)µ2,0µ2,2

8(N` − 1)N`

− (N` − 10)µ2
0,3

16(N` − 1)N`

− 9(N` − 6)µ2
2,1

16(N` − 1)N`

,

(6b)
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where we present Var
[
∆`h4

]
in AppendixA for a clearer presentation. Here, µp,q ≡ µp,q

(
X`,+, X`,−)

denotes the bivariate central moment of order (p, q) of X`,+ and X`,−, where the bivariate
central moment is given by

µp,q(X, Y ) := E
[(
X − E(X)

)p(
Y − E(Y )

)q]
,

for any two random variables X and Y .
Inspection of the variance expressions for Var

(
∆`hp

)
in (6) reveals that Var

(
∆`hp

)
=

O(1/N`) for any �xed `. Setting V`,p := N`Var
(
∆`hp

)
, the mean squared error of the MLMC

estimator mMLMCp can then be written in the somewhat more familiar form

MSE
(
mMLMCp

)
=
(
µp(QML

)− µp(Q)
)2

+
L∑
`=0

V`,p
N`

,

which indicates the usual interplay of bias and statistical error. Due to the identities for the
variance expressions, the complexity result for the MLMC estimator for central moments
follows by the same arguments as the ones used in the standard MLMC result; see, e.g., [10].
In fact, the only di�erence to the standard MLMC complexity result is that the notion of
bias and variance have to be modi�ed. Then even the formulas for the optimal number of
levels and sample size on each level follow immediately; see Sect. 4 for further details.

Proposition 3.1. Let p ∈ N, p ≥ 2, and assume that the 2p-th central moment of QM`
is

bounded, so that µ2p(QM`
) < ∞, for ` ≥ 0. Furthermore, suppose that there exist constants

α, β, and γ such that 2α ≥ min(β, γ) and

(i) the bias decays with order α > 0, in the sense that
∣∣µp(QM`

) − µp(Q)
∣∣ ≤ cαM`

−α for
some constant cα > 0,

(ii) the variance V`,p ≡ Var
[
∆`hp

]
N` decays with order β > 0, in the sense that V`,p ≤

cβM`
−β for some constant cβ > 0,

(iii) the cost to compute each i.i.d. realization of QM`
is bounded by cost(QM`

) ≤ cγM`
γ for

some constants cγ, γ > 0.

For any 0 < ε < e−1, the MLMC estimator mMLMCp with maximum level L ∈ N0 such that∣∣µp(QML
)− µp(Q)

∣∣ ≤ ε√
2
and with sample size N` ∈ N on level ` given by

N` =

⌈
2

ε2

√
V`,p

cost(QM`
)

L∑
j=0

√
cost(QMj

)Vj,p

⌉
, 0 ≤ ` ≤ L ,

satis�es MSE
(
mMLMCp

)
≤ ε2 at a computational cost that is bounded by

cost
(
mMLMCp

)
≤ c


ε−2ln(ε−1)

2
, if β = γ ,

ε−(2+ γ−β
α ) , if β < γ ,

ε−2 , if β > γ ,

where c is independent of ε > 0.
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As remarked after Prop. 2.1 already, it is also the case for the MLMC estimator that the
appearing constants depend on the order p. It may also be the case that the rates depend
on p, although numerical experiments suggest that this is not the case for a large class of
problems; see Sect. 5. Finally, we mention that the proposition above can be stated in
terms of the cost(QM`

) instead of the cost(∆`hp) due to the availability of the closed-form
expressions for ∆`hp, whose evaluation cost is negligible compared to cost(QM`

).

3.1. Practical aspect: MSE and unbiased level-wise variance estimation

As for the classic Monte Carlo method described in Sect. 2, also a robust implementation
of the MLMC estimator should provide an estimation of the associated MSE. Moreover,
estimations of Var

[
∆`hp

]
are further needed to determine the optimal sample size N` on

each level to achieve a prescribed tolerance ε, and we detail hereafter a practical construction
of unbiased estimators for V`,p.

Concerning the bias term, the same considerations made for the classic MC estimator hold
here as well. However, since the MLMC estimator already uses a sequence of discretizations,
the situation is somewhat simpli�ed as a natural way to estimate the bias is |µp(QML

) −
µp(Q)| ≈ |∆Lhp(Q

L
NL,ML

, QL
NL,ML−1

)|.
Next, we discuss how to construct an unbiased estimator of the variance Var

[
∆`hp

]
on each level `, or equivalently of V`,p ≡ Var

[
∆`hp

]
N`, based on the samples Q`

N`,M`
and

Q`
N`,M`−1

. Similarly to the derivation of an unbiased variance estimator for the MC method
(cf. Sect. 2.1), an unbiased estimator of the level-wise variance V`,p is not straightforward
to construct. In fact, here the situation is even slightly more complicated due to the highly
nonlinear combination of the bivariate central moments µk,l, cf. the expressions in (6). How-
ever, also for the bivariate central moments µk,l there exist unbiased estimators, namely the
hk,l-statistic [16]. As a consequence, the procedure to construct unbiased variance estima-
tors described in Sect. 2.1 can be followed for the most parts with only minor modi�cations.
Speci�cally, to construct unbiased estimators of Var

[
∆`hp

]
≡ V`,p/N`, we proceed as follows:

1. We make an initial generic ansatz for the estimator V̂`,p of V`,p based upon replacing

the central moments µk,l in (6) by their multivariate hk,l-statistics, so that V̂`,p =∑
i aih

mi
pi,qi

hniri,si with the same powers mi and ni appearing in (6).

2. We compute the expectation E[V̂`,p] of the considered ansatz explicitly as a polynomial
function of the central moments µk,l. Again, this combinatorial manipulation can be
carried out e�ciently using the mathstatica software.

3. We assemble a linear system of equations for the unknown coe�cients (ai)i in the

considered ansatz by equating the coe�cients in (6) with those of E[V̂`,p]/N`, obtained
by ordering with respect to the central moments µk,l.

4. If the linear system is not uniquely solvable, then we augment the ansatz for the
estimator to account for the newly introduced central moment terms by computing
E[V̂`,p] and repeat steps 2�4.

Obviously, it is also possible to directly consider an ansatz that contains all unique com-
binations of µk1p1,q1µ

k2
p2,q2

, such that k1(p1 + q1) + k2(p2 + q2) = 2p. However, the procedure
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described above o�ers the advantage that it may result in a lower dimensional linear system,
which needs to be solved.

We detail here the procedure for p = 2. In view of (6a) we �rst make the initial ansatz
V̂`,2 = a1h

2
1,1 + a2h0,2h2,0 + a3h2,2. Next, we compute the expectation of this ansatz, which

can be written as

E[V̂`,2] =
2a2 +

(
(N` − 1)2 + 1

)
a3

(N` − 1)N`

µ2
1,1 +

a2(N` − 1)2 + a3
(N` − 1)N`

µ0,2µ2,0 +
a1N` + a2 + a3

N`

µ2,2 .

By equating the coe�cients of the right-hand side above and those in (6a) we then obtain
a linear system of equations for the coe�cients a1, a2, and a3. Finally, solving this linear
system yields a1 = N`−1

N`
2−2N`+3

, a2 = N`−1
N`

3−4N`2+7N`−6
, and a3 = −N`2+4N`−5

N`
3−4N`2+7N`−6

. Using these

coe�cients, we can eventually express the unbiased sample-based estimator of Var
[
∆`h2

]
=

V`,2/N` as a polynomial function of the bivariate power sums as

V̂`,2
N`

=
1(

N` − 3
)(
N` − 2

)(
N` − 1

)2
N`

2

(
N`

((
−N`

2 +N` + 2
)
S`21,1

+
(
N` − 1

)2(
N`S

`
2,2 − 2S`1,0S

`
1,2

)
+
(
N` − 1

)
S`0,2(S

`2
1,0 − S`2,0)

)
+ S`20,1

((
6− 4N`

)
S`21,0

+
(
N` − 1

)
N`S

`
2,0

)
− 2N`S

`
0,1

((
N` − 1

)2
S`2,1 +

(
5− 3N`

)
S`1,0S

`
1,1

))
,

(7)
where Sa,b ≡ Sa,b

(
X`,+

N`
,X`,−

N`

)
for brevity. The same procedure can also be applied to

obtain unbiased estimators for higher order (i.e. for any p ≥ 2) central moments, which
become rather lengthy though. However, we emphasize that the obtained unbiased variance
estimators are in closed-form, so that an e�cient implementation is possible. For example,
in AppendixB we present the unbiased estimator for the case p = 3, while we refer to our
implementation details available in the Python library cmlmc-py for the formula for p = 4.

We reiterate that the procedure introduced here yields unbiased sample-based variance es-
timators, which are needed for the practical error control and tuning of the MLMC approach
introduced in this work; see Section 4 for details. The fact that these variance estimators
are unbiased and not just asymptotically unbiased is particularly important on �ner levels
`, on which the sample size N` will be small. For example, for p = 2 the bias of the naive
variance estimator, which is obtained by simply replacing the bivariate central moments µk,l

by the corresponding hk,l-statistics, is
(N`

2−4N`+6)µ1,12+(3−2N`)µ0,2µ2,0−(N`2−4N`+3)µ2,2

(N`−1)2N`2
. Although

this additional bias as a function of the sample size N` is of order O(N`
−2), it may still

contribute to a non-negligible error of the MLMC estimator, in particular due to �ne levels
for which N` will be small. Finally, we also emphasize that, as a consequence of being based
on unbiased estimators, the MLMC method for central moments introduced in this work
does not come at the expense of introducing an additional systematic error (i.e. a bias) that
needs to be accounted for, unlike other works on central moment estimators, such as [3].

3.2. From mean squared errors to con�dence intervals

The discussion of both the MC method and the MLMC method above was solely based
on the mean squared error as an accuracy measure. However, for some applications it is often
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also desirable to associate con�dence intervals (or, equivalently, failure probabilities) to an
estimator. Speci�cally, let θ̂ be a generic estimator of the deterministic value θ with mean

squared error given by MSE(θ̂) = E
[
(θ̂ − θ)2

]
. For a con�dence pc ∈ (0, 1), the associated

con�dence interval can then be characterized by the value δ > 0, such that

P
(∣∣θ̂ − θ∣∣ < δ

)
≥ pc .

In the absence of any further knowledge of the probability distribution of |θ̂ − θ|, a su�-
cient condition for the length δ of the con�dence interval can be derived using Chebyshev's
inequality:

P
(∣∣θ̂ − θ∣∣ ≤ δ

)
≤ MSE(θ̂)

δ2
= 1− pc ⇒ δ =

√
MSE(θ̂)

1− pc
. (8)

That is, the con�dence interval can be directly linked to the estimator's mean squared error.
Consequently, the mean squared error based analysis considered in this work can straight-
forwardly be used to quantify con�dence regions (or failure probabilities) of estimators. It is
noteworthy however, that the con�dence region identi�ed in (8) may be rather conservative
due to the use of Chebyshev's inequality. We will revisit this fact in the forthcoming Part II
of this work, where we will introduce methodologies that allow for sharper approximations
of con�dence regions.

4. Implementation details and complete algorithm

In this Section, we address important practical aspects needed for the implementation
of the MLMC methodology presented in this work and eventually o�er pseudo-code of the
complete MLMC algorithm. In fact, here we present a uni�ed framework for the estimation
of both the expectation E[Q] and any order central moment µp(Q) of a random variable Q
subject to prescribed mean squared error tolerance. As the central moment µp is trivially
zero for p = 1, it will be convenient to denote by mMLMC1 the MLMC estimator for E[Q].
Speci�cally, equation (4) de�nes the MLMC central moment estimator for any non-trivial
order p > 1. For p = 1 we still use the de�nition in equation (4) but with a slight abuse of
notation by setting h1(QN,M) := 1

N

∑N
i=1QM(ωi) to denote the sample average operator, so

that equation (4) yields the usual MLMC estimator of the expected value for p = 1.
In the absence of theoretical estimates for the rates and constants that characterize the

bias and statistical error decays as well as the cost model for the problem under investigation
(cf. Prop. 3.1), these rates and constants need to be estimated as they are required to
optimally tune the MLMC method. That is, to be able to compute the optimal number
of levels and sample sizes, a common practice is to perform an initial screening procedure.
Such a screening procedure consists, for example, of the evaluation of a prede�ned number
of N realizations on few (coarse) levels {0, . . . , L}. Based on these simulations, it is possible
to �t these rates and constants (e.g. via a least squares procedure), which then determine
the models for the bias, statistical error, and cost per sample.

Once the rates and constants are determined, the pivotal step for achieving the theoretical
complexity of the MLMC method subject to a prescribed mean squared error tolerance, is
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the choice of both the number of levels L and the sample size N` required on each level
0 ≤ ` ≤ L. To determine these parameters a precise estimation of the mean squared error
(MSE),

MSE = B2 + SE ,

speci�cally of its two error contributions bias (B) and statistical error (SE), is required as
described in Sect. 3. In order to present a general procedure for the uni�ed MLMC approach
to both the expectation and central moments, we recall that

∆`hp = hp
(
Q`
N`,M`

)
− hp

(
Q`
N`,M`−1

)
, hp(QN,M) =

{
1
N

∑N
i=1QM(ωi) , if p = 1 ,

p-th h-statistic , if p > 1 .
(9)

In practice the bias contribution B is thus estimated by

B ≈ |∆Lhp| . (10)

On the other hand, the statistical error SE is approximated by

SE ≈
L∑
`=0

V`,p
N`

, (11)

where V`,p denotes the estimated variance Var
[
∆`hp

]
on level `. Speci�cally, we use V`,p =

V̂`,p on those levels ` for which simulations have been run during the screening procedure (i.e.

` ≤ L). Here, V̂`,p is the unbiased sample-based variance estimator introduced in Sect. 3.1.
On levels ` for which no sample exists yet (i.e. for ` > L), we extrapolate the �tted model
and use V`,p = cβM`

−β as an estimator. To achieve a prescribed mean squared error of ε2,
we thus require

B ≤
√

1− θε , (12a)

SE ≤ θε2 , (12b)

where we have additionally introduced a splitting parameter θ ∈ (0, 1) to o�er the possibility
of weighting the two MSE contributions di�erently. Speci�cally, the bias constraint (12a) is
satis�ed for L ∈ N such that

ML ≥
(√

1− θε
cα

)− 1
α

, (13)

in view of Prop. 3.1(i). Moreover, the theoretical complexity result in Prop. 3.1 also suggests
that the statistical error constraint (12b) is satis�ed with optimal complexity by selecting
the sample size N` ∈ N on level ` as

N` =

⌈
1

θε2

√
V`,p
C`

L∑
k=0

√
CkVk,p

⌉
, ` = 0, 1, . . . , L , (14)

where C` = cost(QM`
).

In Algorithm 1 we provide a detailed pseudo-code of the full MLMC algorithm, which
is based on the discussion above. There SOLVE` denotes a �black-box� solver that, for a
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Algorithm 1: MLMC Algorithm for the expectation and central moments of order p.

SCREENING(N , L, p, εr, θ)
for ` = 0 : L do

for i = 0 : N do
Generate random sample: ωi,`
QM`

(ωi,`) ← SOLVE` (ωi,`)
QM`−1

(ωi,`) ← SOLVE`−1 (ωi,`)

∆`hp = hp
(
Q`
N,M`

)
− hp

(
Q`
N,M`−1

)
, where hp(QN,M) as in (9)

estimate ε = εr · mMLMCp [Q]

estimate {C`}L`=0, {V`,p}
L
`=0

compute P = {cα, cβ, cγ, α, β, γ} using LS �t
extrapolate {C`}`>L, {V`,p}`>L
compute L using (13) and N` using (14)
return L, {N`}L`=0

MLMC(L, {N`}L`=0, p)
for ` = 0 : L do

for i = 0 : N` do
Generate random sample: ωi,`
QM`

(ωi,`) ← SOLVE` (ωi,`)
QM`−1

(ωi,`) ← SOLVE`−1 (ωi,`)

compute V`,p
compute ∆Lhp as in (9),
return mMLMCp [Q], MSE = B2 + SE ,

given realization ωi of the random parameters, returns the approximation QM`
(ωi) on the

discretization level `. For the sake of completeness, the pseudo-code also contains a possible
screening procedure. Eventually, Algorithm 1 returns the MLMC estimator mMLMCp [Q] of the
QoI for a prescribed mean squared error tolerance. We emphasize that the implementation
presented here takes as an input a relative MSE tolerance εr, which is related to the commonly
used absolute MSE tolerance ε via

ε = εr

{
E[Q] , if p = 1 ,

µp(Q) , if p > 1 .

The uni�ed MLMC framework described in this Section, and much more, is available via our
Python library cmlmc-py.

5. Numerical Experiments

In this section we apply the introduced multilevel Monte Carlo technique to various
examples. In fact, we have used Algorithm 1 with θ = 1/2 in all simulations that follow. We
begin by scrutinizing the methodology for rather simple toy problems for which exact (or
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central moment µp(Q)

E(Q) p = 2 p = 3 p = 4

1.045058356 2.16660855 5.6966642 31.191899

Table 2: Reference values for the expected value E[Q] and various central moments µp(Q) for the QoI Q
derived form the geometric Brownian motion SDE.

highly accurate) solutions are easily available; see Sects. 5.1 and 5.2. Then we move on to
study a more challenging problem in Sect. 5.3, namely the one of a transonic airfoil under
operational and/or geometric uncertainties.

5.1. Stochastic di�erential equation model: a �nancial option

Let us begin with a simple example involving a stochastic di�erential equation (SDE).
Speci�cally, we consider the case that the SDE models (example borrowed from [10, Sect. 5])
a �nancial call option with the asset being a geometric Brownian motion, viz.

dS = rS dt+ σS dW , S(0) = S0 . (15)

Here, r, σ, and S0 are given positive numbers. For this asset we are interested in quantifying
the uncertainties in the �discounted payo��, so that we set the quantity of interest Q as

Q := e−rT max
(
S(T )−K, 0

)
,

where K > 0 denotes the agreed strike price and T > 0 the pre-de�ned expiration date.
Due to the fact that the solution to (15) at time T , i.e. S(T ), is a log-normally distributed
random variable with mean S0e

rT and variance S0
2e2rT

(
eσ

2T − 1
)
, it is straightforward to

compute highly accurate approximations to statistics of Q. In fact, Table 2 lists approxi-
mated reference values for the expected value and for the �rst three central moments of Q
corresponding to the parameter values r = 1

20
, σ = 1

5
, T = 1, K = 10, and S0 = 10. These

reference values were obtained using a high precision numerical quadrature.
For the numerical experiments based on the multilevel Monte Carlo method that will

follow, we discretize the SDE (15) via the Milstein method.

Sn+1
` = Sn` + δ`rS

n
` + σSn`

√
δ`ξn +

σ2

2
δ`S

n
`

(
|ξn|2 − 1

)
, S0

` = S0 ,

so that Sn+1
` ≈ S(nδ`), where δ` = 2−`T and (ξn)n≥0 denotes a sequence of i.i.d. standard

normally distributed random variables. That is, we employ a discretization with a nested
grid hierarchy with M` = T/δ` = 2` DOFs, which corresponds to the number of time steps
needed to integrate the SDE from time t = 0 to the �nal time T .

In order to validate the MLMC methodology discussed in this work, we provide in Table 3
a sample based estimation of the MSE of the MLMC estimators, using 100 independent
repetitions of the algorithm. Speci�cally, the table o�ers a comparison between the required
relative root MSE tolerance and the sample based root mean squared error achieved by
Algorithm 1 for both the expected value and the �rst three central moments for various
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Tol mMLMC1 mMLMC2 mMLMC3 mMLMC4

εr = 0.1 0.0647 0.0857 0.0785 0.0991
εr = 0.05 0.0435 0.0429 0.0415 0.0495
εr = 0.025 0.0237 0.0217 0.0231 0.0223
εr = 0.01 0.0087 0.0099 0.0091 0.0083

Table 3: Sample estimate of relative root MSE based on 100 repetitions of the MLMC algorithm for com-
puting mMLMCp for di�erent relative tolerance requirements.

tolerances. The results in Table 3 demonstrate that the MLMC implementation described in
the previous Section does indeed provide estimators that satisfy the tolerance requirement.
Additionally, in the top row of Figure 1 we show the actual computed values of these 100
repetitions of the MLMC algorithm (red circles) compared with the reference solution (green
stars). To quantify the range of the MLMC estimators, we also indicate the 90% con�dence
intervals based on a Chebyshev bound (blue bars; see Eq. (8)) in these plots.

The bottom row in Figure 1 presents the corresponding MLMC hierarchies (both number
of levels and sample size per level) required to achieve prescribed relative tolerance require-
ments when estimating the expectation and various central moments of the QoI Q. It is
interesting to observe that the computational cost required to compute central moments is
proportional to that for the expectation up to a multiplicative constant. The latter can be
further observed in Figure 2, where we plot the computed bias and variance of the estimators,
respectively, for various tolerance demands. It can be inferred that the decay rate for the
estimator's bias and variances is the same, while the constants are increasing with increasing
p.

5.2. Elliptic PDE in two spatial dimensions

We consider a random Poisson equation in two spatial dimensions,

−∆u = f , in D = (0, 1)2 , (16)

with homogeneous Dirichlet boundary conditions. Here, the forcing term f is given by

f(x) = −Kξ(x12 + x2
2 − x1 − x2) ,

with ξ being a non-negative random variable and K > 0 a positive constant. For this
forcing term the solution to the PDE can be computed explicitly and reads u(x1, x2) =
Kξx1x2(1 − x1)(1 − x2)/2. As quantity of interest we consider the spatial average of the
solution, that is

Q :=

∫
D

u dx =
K

72
ξ .

This explicit representation of Q in terms of the random input ξ to the PDE model (16)
allows us to easily compute the exact mean as well as central moments of Q, which we will
use to verify the numerical experiments that follow. Speci�cally, here we use ξ ∼ Beta(2, 6)
and K = 432. Table 4 then lists approximations to the corresponding mean and the �rst
three central moments of Q. For the numerical experiments based on multilevel Monte Carlo
method we discretize the PDE (16) using a second order �nite di�erence scheme on a regular
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Figure 1: Computed values of 100 repetitions of the MLMC algorithm compared with the reference solution
(�rst row) and MLMC hierarchies (number of levels and sample size per level) required to achieve prescribed
relative tolerance requirements when estimating the expectation and various central moments of the QoI Q
(second row) for the SDE problem.
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Figure 2: Decay rates for the bias and variances of MLMC estimator with increasing p for the SDE problem.

grid. That is, we employ a nested grid hierarchy with M` = (5 · 2` − 2)2 DOFs, which
correspond to the values of the solution u at grid points that are not on the boundary ∂D.
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central moment µp(Q)

E(Q) p = 2 p = 3 p = 4

1.5 0.75 0.45 1.748863636

Table 4: Reference values for the expected value E[Q] and the �rst three central moments µp(Q) for the QoI
Q derived form the random Poisson problem.

As for the previous example, in Table 5 we present the (sample based) root mean squared
errors obtained by repeating the MLMC algorithm for the expectation and central moments
100 times and for various tolerances. Also for this example we �nd that the MLMC imple-

Tol mMLMC1 mMLMC2 mMLMC3 mMLMC4

εr = 0.1 0.0674 0.0616 0.0587 0.0777
εr = 0.05 0.0350 0.0401 0.0351 0.0259
εr = 0.025 0.0182 0.0183 0.0156 0.0206
εr = 0.01 0.0069 0.0078 0.0062 0.0084

Table 5: Sample estimate of relative root MSE of 100 repetitions of the MLMC estimators mMLMCp for di�erent
relative tolerance requirements.

mentation does indeed satisfy the required tolerance goals.
In the top row of Figure 3 the actual computed values for 100 repetitions of the MLMC

algorithm (red circles) are compared with the reference values (green stars). Also for this
example we observe an accurate estimation within the imposed tolerance goal and within
the con�dence region (blue bars, 90% con�dence; see Eq. (8)). In the second row of Figure
3 we report the hierarchies required to achieve the prescribed tolerances. As it is possible to
observe the number of levels and samples per level (and hence the cost) increase consistently
with the central moment we are computing. Such can be also inferred by looking at the
decays of the bias and variance of the MLMC estimators for moments presented in Figure 4.
These plots moreover con�rm the observation from the previous example, namely that the
decay rates for the estimator's bias and variance are the same for di�erent values of p, and
only the constants vary.

5.3. Transonic Airfoil: 2d

We consider hereafter a transonic supercritical RAE-2822 airfoil [11, 20], which has be-
come a standard test-case for transonic �ows, subject to both operating and geometric
uncertainties.

The �uid �owing around an airfoil generates a local force on each point of the body. The
normal and tangential components of such force are the pressure and the shear stress. By
integrating the force and stress distribution around the surface of the airfoil we obtain a
total force F and a moment M about a reference point (so called center of pressure). The
parallel and perpendicular component of F with respect to the free-stream directionM∞ are
the lift L and drag D forces respectively. Figure 5(a) shows a sketch of this concept. For
an airfoil shape with surface S we de�ne the following lift, drag, and moment dimensionless
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Figure 3: Computed values of 100 repetitions of the MLMC algorithm compared with the reference solution
(�rst row) and MLMC hierarchies (number of levels and sample size per level) required to achieve prescribed
relative tolerance requirements when estimating the expectation and various central moments of the QoI Q
(second row) for the Elliptic PDE problem.
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Figure 4: Decay rates for the bias and variances of MLMC estimator with increasing p for the Elliptic PDE
problem.

coe�cients:

CL =
L

q∞S
, CD =

D

q∞S
, and CM =

M

q∞SLref
, (17)
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respectively. Here, q∞ = 1
2
M2
∞γgp∞ denotes the dynamic pressure and γg = 1.4 is the ratio

of speci�c heats of the gas. As we are considering 2D normalized airfoils we set the reference
length Lref = 1 and the reference surface S = 1.

F

M

L

D

α∞

M∞

(a) Aerodynamic forces and moments acting on

the airfoil.

ys

yp xs

xp

Cs

Cp

Rs

Rp
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xθs

θp

M∞

α∞

RAE2822

(b) Geometry of the RAE-2822 transonic airfoil

and PARSEC parameters that de�ne the geome-

try of the airfoil.

Figure 5: Description of the airfoil set-up considered in this work.

The nominal geometry of the RAE-2822 airfoil is de�ned by a set of PARSEC parameters
(see [18] for details). The advantage of the PARSEC approach over other parametrizations
(i.e. Bezier, NURBS, FFD) is that we can easily perturb the geometrical parameters on the
suction and pressure side of the airfoil (see Figure 5(b)) which are most relevant for the study
that follows. Among other things, Table 6 summarizes the geometric de�nition of the airfoil
as well as the set of operating parameters for three di�erent �ow conditions considered here.
Speci�cally, CASE-6 denotes the mild transonic case (corresponding to experimental case 6
from AGARD [20]), CASE-S is a subsonic case with M∞ = 0.6, and CASE-R is a higher
Reynolds number case.

Name Nominal value Uncertainty

Operating

CASE-6 CASE-S CASE-R

Rec 6.5e6 6.5e6 10e6 −
M∞ 0.729 0.6 0.729 B(4, 2, 0.05,M∞ − 0.037)
α∞ 2.31◦ 2.31◦ 2.31◦ B(4, 2, 0.2, 2.16)

Geometric

Rp 8.60311920e− 03 U(98%, 102%)
Rs 8.36101985e− 03 U(98%, 102%)
xp 3.44224863e− 01 U(98%, 102%)
xs 4.31244633e− 01 U(98%, 102%)
yp −5.88259641e− 02 U(98%, 102%)
ys 6.30175650e− 02 U(98%, 102%)
Cp 7.03608884e− 01 U(98%, 102%)
Cs −4.30110180e− 01 U(98%, 102%)
θp −2.06545825e+ 00 U(98%, 102%)
θs −1.15335351e+ 01 U(98%, 102%)

Table 6: Operational and geometrical parameters as well as a description of the uncertainties for the RAE-
2822 airfoil.

In what follows, we consider the RAE-2822 airfoil in three di�erent operating regimes
with increasing number of uncertain parameters. Speci�cally, we use the letter G to denote
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Figure 6: Exemplary probability density functions of two uncertain operating input parameters for the
random RAE-2822.

stochastic simulations where we consider only geometric uncertainties (i.e. 10 random input
parameters), O to denote the regime with only operating uncertainties (i.e. two random input
parameters, namely the angle of attack α∞ and the Mach number M∞, see Figure 6) and
OG to denote the setting with geometric plus operating uncertainties (i.e. 12 uncertain input
parameters). All uncertainties and reference nominal operating and geometric parameters
are presented in Table 6. The operating uncertainties are modeled as beta distributions
denoted by B(a, b, s, loc), where a and b are the distribution parameters. As the beta distri-
bution is de�ned on the [0, 1] interval, the parameters s and loc are used to scale and shift
the distribution's support, respectively. On the other hand the geometric uncertainties are
modeled as uniform distributions, denoted by U(xlow, xup) with xlow < xup denoting range
of the support. In Table 6 xlow and xup are given as percentages of the nominal value. The
types and ranges of uncertainties for this model problem are representative of a �ight con-
dition with natural atmospheric gusts that a�ect both the angle of attack and the Mach
number. Additionally, the geometrical uncertainties are reasonably accounting for manufac-
turing tolerances and shape deformation of a airfoil due to di�erent loadings on an aircraft
wing (aeroelastic twist).

For the numerical study that follows we use the MSES collection of programs for the
analysis of airfoils (see [7] for detail) as deterministic 'black-box' solver. The MSES collection
solves the steady Euler equations with a �nite volume discretization over a streamline grid
and is coupled, via the displacement thickness, with a two-equation integral solver for the
viscous regions of the boundary layer and trailing wakes. The performance of this 'black-box'
solver, when using a 5-levels structured MLMC grid hierarchy, is summarized in Table 7.
Speci�cally, there the features of the grid levels, along with the average computational time
CTime required to compute one deterministic simulation (on one CPU) are shown.

Based on the problem description of the uncertain airfoil problem considered here, in the
following study we apply the developed MLMC estimator for central moments to various
aerodynamic performance parameters. In order to present the estimated expectations and
central moments estimators for the three di�erent cases (CASE-6, CASE-S, and CASE-
R) with increasing number of uncertain parameters (G, O, and OG) in a compact and
informative way, we introduce in Figure 7 a set of bars that are designed to provide the
relevant information. Speci�cally, there, the mean, the standard deviation, the skewness, and
the kurtosis of di�erent QoIs related to the airfoil, such as lift coe�cient CL, drag coe�cient
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Level Airfoil nodes Cells CTime[s]
L0 47 1739 1.9
L1 71 2627 3.2
L2 107 3959 5.7
L3 161 5957 7.5
L4 243 8991 14.7
L5 365 13505 17.9

Table 7: MLMC 5-levels grid hierarchy for the RAE2822 problem.

CD, moment coe�cient CM , and lift-drag ratio L/D, are presented. Moreover, we compare
the deterministic value (obtained with nominal geometric and operating parameters) of a
QoI (dashed black lines) with a classical mean plus/minus two standard deviation interval
(black bars). The red bars identify the skewness corrected mean plus/minus two standard
deviation, where the skewness correct mean is given by µ + γ. Moreover, the triangles
de�ne the kurtosis: yellow inward triangles identify the platykurtic distributions while red
outward triangles denote leptokurtic ones. A distribution is called platykurtic, if the kurtosis
Kurt < 3, which means that the distribution has thinner tails than a Gaussian distribution.
Similarly, a distribution is called leptokurtic if Kurt > 3, which implies fatter tails.
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Figure 7: Estimated expectations and central moments for the lift-drag ratio L/D, drag coe�cient CD,
lift coe�cient CL and moment coe�cient CM of the RAE-2822 airfoil in di�erent operating conditions and
considering di�erent uncertainties scenarios.

It is interesting to observe in Figure 7 the e�ects of uncertainties on the performance

23



parameters in the three di�erent �ow conditions. The two transonic cases CASE-6 and
CASE-R are the most sensitive to uncertainties due to the appearance of shock waves in
di�erent regions on the airfoil upper side (see also Figure 8). In such cases we additionally
notice that the drag coe�cient CD becomes leptokurtic in the presence of both operating
and geometric uncertainties, indicating that the distribution is heavy-tailed. We believe
that this is due to the appearance of separation bubbles in the front part of the airfoil and
stronger shock waves, but further investigations are necessary to con�rm this hypothesis.
The variability in the forward part of the airfoil can be observed also in the green Cp plot in
Figure 8. Further investigation are needed to con�rm this hypothesis.

Additionally, in Figure 8 we compare the pressure coe�cients Cp of the RAE 2822 air-
foil in the di�erent conditions and uncertainty scenarios introduced above as well as the
reconstructed lift-drag ratio L/D distributions computed from the statistical moments using
the Gram�Charlier series of type A PDF approximation [22]. The latter is a formal se-
ries expansions in terms of a known distribution, most commonly with respect to a Normal
distribution. Using this approach, an unknown density f can be approximated by

f̂(x) :=
1√

2πµ2

exp

(
−(x− µ)2

2µ2

)(
1 +

µ3

3!µ2
3/2
H3

(
x− µ√
µ2

)
+
µ4 − 3µ2

2

4!µ2
2

H4

(
x− µ√
µ2

))
,

where H3(x) = x3− 3x and H4(x) = x4− 6x2 + 3 are Hermite polynomials. Although f̂ may
formally not be a proper density as it is not guaranteed to be positive, it nonetheless o�ers
an easy to compute density approximation, based on the MLMC estimators for µ, µ2, µ3,
and µ4. By looking at the Cp pro�les and the reconstructed PDF approximations we can
further observe the sensitivity of the airfoil on operating and geometric parameters in the
three di�erent �ow cases as previously noticed in Figure 7. It is worth underlining that the
PDF presented here are simply reconstructed from the �rst four central moments computed
with the MLMC method. The background histograms are obtained from a MC simulation
with 1000 samples on the �nest level. A more e�cient and accurate procedure to compute
directly the PDF of QoIs will be presented in the forthcoming Part II of this work.

Finally, in Figure 9 we present the computational complexity in CPU hours required to
achieve a certain tolerance requirement. Speci�cally, the complexities of the MLMC method
and the classic MC approach are compared for approximating the expectation and central
moments for the L/D QoI in CASE-6 with both operating and geometric uncertainties. The
dashed lines indicate the computational complexity predicted by the theory. We immediately
observe a signi�cant speedup of the MLMCmethod compared to the MC method. Practically
speaking, by employing a cluster node with 28 CPUs we are able to compute the �rst four
central moments of the airfoil problem and guarantee a relative tolerance of 1% (i.e. εr = 0.01)
in 3.6 [h] with our MLMC implementation, while we would need to invest 14.8 [days] with
the classic MC method.

6. Conclusion

In this work we have introduced an extension to the multilevel Monte Carlo (MLMC)
method that allows to e�ciently compute central statistical moments of a random system
output's quantity of interest. The key feature of our procedure is the use of h-statistics as
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Figure 8: Pressure coe�cients Cp of the RAE 2822 airfoil in the di�erent conditions and uncertainty scenarios
and the reconstructed lift-drag ratio L/D distributions.

unbiased central moment estimators with minimal variance for the level-wise contributions.
Using an extensive set of numerical benchmark examples, we have demonstrated that the
proposed MLMC estimator based on h-statistics satisfy the mean squared error tolerance
requirement and requires a computational cost proportional to that for the MLMC estimation
of an expectation (up to a multiplicative constant). Additionally we observed that the decay
rate for the estimator's bias and variances is the same for arbitrary order central moment
µp, while the constants are increasing with increasing p.

For the numerical experiments related to the airfoil problem, we observed that central
moments can also provide relevant information regarding random variable distribution in
view of decision making processes and optimization under uncertainty approaches. In fact,
we tested a distribution reconstruction approach bases on series expansion form the statis-
tical moment (Gram�Charlier approximation) and observed that the approximation of the
distribution is not always satisfactory. The reconstruction is not guaranteed to be a proper
probability distribution and seems sometimes to lead to large inaccuracies in capturing asym-
metric behaviors and heavy tails. In order to overcome these issues, the forthcoming Part
II of this work will address another extension of the general MLMC approach to accurately
approximate distributions and risk measures.
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AppendixA. Unbiased variance estimator for p = 4 for MC method

Below we report the closed-form expressions of the unbiased estimators V̂4/N for Var
[
h4(QN,M)

]
=

V4/N , Sa ≡ Sa(QN,M):
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AppendixB. Unbiased variance estimator on level ` for p = 3

For the sake of completeness, we present here the closed-form expression for the unbiased
estimator of Var

(
∆`hp

)
≡ V`,p/N` for p = 3.
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For the sake of notation, we do not present the formula for the case p = 4 here, instead
we refer the interested reader to our implementation available in the accompanying Python
library cmlmc-py.
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