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Abstract

In this work we apply the Continuation Multi-Level Monte Carlo (C-MLMC) algorithm proposed by [Collier et
al, BIT 2014] to efficiently propagate operational and geometrical uncertainties in compressible aerodynamics
numerical simulations. The key idea of MLMC is that one can draw MC samples simultaneously and
independently on several approximations of the problem under investigations on a hierarchy of nested
computational grids (levels). The expectation of an output quantity is computed as a sample average using
the coarsest solutions and corrected by averages of the differences of the solutions of two consecutive grids
in the hierarchy. By this way, most of the computational effort is transported from the finest level (as
in a standard Monte Carlo approach) to the coarsest one. In the continuation algorithm (C-MLMC) the
parameters that control the number of levels and realizations per level are computed on the fly to further
reduce the overall computational cost. The C-MLMC is applied to the quasi 1D convergent-divergent Laval
nozzle and the 2D transonic RAE-2822 airfoil.

Keywords: Multi Level Monte Carlo, Uncertainty Quantification, Aerodynamics, Compressible Flows.

1. Introduction

Mathematical models and computational tools are used daily in aerodynamics applications, however, the
parameters entering the mathematical model, as well as the description of the geometry are often affected by
uncertainties that have to be taken properly into account to achieve and guarantee the highest safety standards.
For this reason Uncertainty Quantification (UQ) has raised significant interest in recent years in different
engineering fields. Aleatory uncertainties (also known as variability or irreducible uncertainties) describe the
natural inherent variations associated with the physical system or the surrounding environment and cannot
be reduced. On the other hand, epistemic uncertainties (also known as reducible or model uncertainties),
originate from some level of ignorance or lack of knowledge and can be reduced with an increase in knowledge
or information[1] (e.g. additional experimental data, additional understanding of complex physical processes).
In this work we focus on the propagation of aleatory uncertainties due to intrinsic variability of manufacturing
processes and the surrounding environment in compressible aerodynamics simulations. From now on when
we use the term uncertainty we will imply aleatory uncertainty.

The application of UQ to aerodynamics has grown tremendously in the last decades fueled by new
technological challenges, the need of reduction of product development costs, increased interest in risk-based
design methods and the increasing availability of computational resources[2]. However one of the main
challenges remains the efficiency in propagating uncertainties from the sources to the quantities of interest,
especially when many sources of uncertainties are present and when each deterministic simulation require
the solution of a complex system with many degrees of freedom.
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In this work we adapt a probabilistic approach to describe the input uncertainties related to the environment
surrounding an aerodynamic system (hereafter called operating uncertainties) and those related to the
geometry of the system itself (hereafter called geometric uncertainties), and aim at efficiently approximate
statistics of some output quantities (e.g. lift/pressure coefficient of an airfoil). We can discriminate, among
those methodologies, between intrusive and non-intrusive approaches. The former involve the formulation
and solution of a stochastic version of the original deterministic model[3] and hence, as the name suggests,
the rewriting of the simulation code making them impractical for large industrial CFD codes. Considering
the complexity of compressible flow solvers, non-intrusive uncertainty propagation techniques are preferred
as they simply require multiple solutions of the original model and can use the CFD flow solver as black box.

Non-intrusive approaches based on global basis functions that span the entire random domain have been
successfully applied to propagate input uncertainties in aerodynamics simulation, see e.g. [4] for regression
type methods or [5, 6] for stochastic collocation (interpolation) techniques. Although extremely efficient
for smooth response functions and moderate number of uncertainty parameters, they typically suffer the
so called curse of dimensionality, i.e. the exponential increase of the cost with the number of uncertain
variables. Moreover, they are not particularly efficient for problems whose solutions exhibit sharp gradients
discontinuities due to the development of shock waves and contact discontinuities as in hyperbolic systems
of conservation laws (Euler and Navier-Stokes equations). Piecewise discontinuous adaptive polynomial
approximations such as the adaptive multi-element method [7] or multi-wavelet expansions [8] can increase
the accuracy in presence of discontinuities in the probability space. Alternatively Padé–Legendre rational
approximation have been proposed in [9]. Nevertheless all these remedies become very challenging and
cumbersome in presence of a moderate number of uncertainty parameters.

On the other hand traditional Monte Carlo (MC) type sampling methods have a dimension independent
convergence rate which is not affected by the presence of possible discontinuities in the parameter space.
However they converge very slowly and are impractical in complex applications that require accurate solutions.
The Multi Level Monte Carlo (MLMC) method has been introduced by Heinrich [10, 11] in the context of
parametric integration and thereupon extended by Giles [12] to approximate stochastic differential equations
(SDEs) in financial mathematics as a way to improve the efficiency of MC simulations. Applications to PDE
models with random parameters can be found in [13, 14, 15, 16, 17, 18].

The robustness and accuracy of the classical MLMC implementation strongly rely on (problem dependent)
convergence rates of the output quantity of interest over the hierarchy of meshes and the corresponding rate
of cost increase to dictate the number of levels and the number of realizations per level. An over estimation
of these rates would result in a smaller number of samples than the ones needed to achieve a prescribed
tolerance while an under estimation would imply a larger number of samples at the price of an higher cost.
For many engineering problems such parameters are generally estimated through a computational expensive
screening procedure performed before the actual uncertainty analysis. In this work we present a robust and
efficient Continuation Multi Level Monte Carlo (C-MLMC) approach, following [17], which is capable of
propagating the operational and geometrical uncertainties in compressible inviscid flow problems. The key
parameters that control the number of levels and the number of realizations per level are computed on the fly
using an online least squares fitting and a continuation procedure to further reduce the overall computational
cost required to set up and perform an uncertainty analysis and increase the reliability and robustness of
classical MLMC approaches in particular for problems that exhibit sharp discontinuities.

The paper is organized as follows. Section 2 recalls the MC and MLMC methods and presents the
classical MLMC implementation used to compute accurate statistics of scalar quantities and scalar fields
for problems affected by uncertainties. Section 3 provides a description of the C-MLMC implementation.
Section 4 presents the quasi-1D convergent-divergent Laval nozzle and the transonic RAE2822 test case
and the results obtained with the C-MLMC in propagating the operational and geometrical uncertainties
compared to a standard MC and MLMC methods. To our knowledge, very few non-intrusive methodologies
for compressible aerodynamics flow problems capable of propagating more than 10 uncertain parameters
have been investigated so far.
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2. Monte Carlo and MLMC methods for compressible aerodynamics

In this section we review the standard Monte Carlo (MC) and Multi Level Monte Carlo (MLMC) methods
to compute expectations of scalar quantities of interest related to the solution of a compressible aerodynamics
problem. We consider a compressible inviscid fluid dynamics problem described by the Euler equations, where
some parameters (e.g. angle of attack, Mach number, profile of an airfoil or inlet geometry of a nozzle) are
partially unknown and described as random variables with a given probability law. We denote by u = u(ω)
its solution, where ω denotes a random elementary event. Our goal is to compute the expected value E[Q] of
a quantity of interest (QoI) Q = f(u). Examples of QoI are the lift coefficient CL of an airfoil or the outlet
pressure of a nozzle. In section 2.4 we will also consider scalar fields as e.g. the pressure coefficient profile of
an airfoil or the Mach number profile along a nozzle.

2.1. Monte Carlo Method
If the solution u of the problem under investigation is computed using a numerical approximation, as for

instance a Finite Element (FE) or a Finite Volume (FV) approximation, with a discretization parameter M
corresponding to the number of spatial degrees of freedom, Q will be approximated by QM = f(uM ) and the
Monte Carlo estimator for E[Q] is:

EMC[QM ] :=
1

N

N∑
i=1

QM (ω(i)), (1)

where QM (ω(i)), i = 1, ..., N are N independent and identically distributed (iid) replica of QM . The accuracy
in estimating E[Q] by EMC[QM ] can be quantified by considering the mean square error (MSE) of the estimator
(the mean being taken over all possible samples {ω(i)}Ni=1 ):

e(EMC[QM ])2 := E[(EMC[QM ]− E[Q])2] = (E[QM −Q])
2︸ ︷︷ ︸

(B-EMC)

+
Var[QM ]

N︸ ︷︷ ︸
(SE-EMC)

. (2)

where Var[Q] = E[Q2]− E[Q]2 denotes the variance of the random variable Q. The second term on the right
hand side of (2), the statistical error (SE-EMC), represents the variance of the estimator and decays inversely
with the number of samples. The first term, hereafter called discretization error or bias (B-EMC), is the square
error in mean between QM and Q and depends only on the space discretization parameter M . Concerning
the space discretization, we make the reasonable assumptions that the discretization error decreases as M
increases and the cost for computing QM increases as M increases. More precisely:

A1. the cost to compute one realization QM (ω(i)) is:

Cost(QM (ω(i))) ≤ cγMγ , (3)

for some constants cγ , γ > 0

A2. E[QM ] converges to E[Q] with order α > 0 w.r.t. M , i.e. :

|E[QM −Q]| ≤ cαM−α (4)

for some cα, α > 0.

A3. Var(QM ) is approximately constant w.r.t. M

These assumptions are sound for the application at hand. For instance, if we consider the time dependent
case and a uniform structured mesh in 2D with mesh size h (number of spatial dofs M ≈ h−2), and
∆t ≈ h for an explicit solver to respect a CFL condition, we expect the cost of a simulation to be
Cost(QM ) .M · (number of time steps) .M3/2. Similarly, for a steady state solution obtained by pseudo
time stepping, we expect the number of iterations needed to reach convergence to be proportional to some
power of M leading to a Cost(QM ) .Mγ with γ > 1. Concerning assumption A2, for smooth solutions and
a second order discretization, we expect |E[QM −Q]| . h2 .M−1 1.

1We say a . b if there exist c > 0 s.t. a ≤ cb, similarly for &. If a . b and a & b, then we write a ≈ b.
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A sufficient condition to achieve a root mean square error (RMSE) of order ε for the MC estimator (1) is

that both terms in the right hand side (rhs) of (2) are less than ε2

2 , and hence by choosing:

N ≈ ε−2, M ≈ ε−1/α, (5)

the total cost of achieving a RMSE of ε is:

C(EMC[QM ]) =

N∑
i=1

Cost(QM (ω(i))) . ε−2−γ/α = ε−2ε−γ/α (6)

The two factors in (6) can be interpreted as follows: ε−2 is the cost to achieve a prescribed MC error tolerance
for a unitary cost per sample and ε−γ/α is the cost of each deterministic solve on a discretization level that
achieves the prescribed tolerance.

2.2. Multi Level Monte Carlo Method

The key idea of MLMC is to simultaneously draw MC samples on several approximations QMl
of Q built

on a hierarchy of nested computational grids, called levels, with discretization parameters M0 < M1 < ... <
ML = M . The linearity of the expectation operator suggests that the expectation of the QoI on the finest
level can be written as a telescopic sum of the expectation of the QoI on the coarsest level plus a sum of
correction terms adding the difference in expectation between evaluations on consecutive levels:

E[QML
] = E[QM0 ] +

L∑
l=1

E[QMl
−QMl−1

] =

L∑
l=0

E[Yl] (7)

with Yl = QMl
−QMl−1

and Y0 = QM0
.

The MLMC estimator for E[Q] is then:

EMLMC[QM ] :=

L∑
l=0

1

Nl

Nl∑
i=1

Yl(ω
(i,l)) =

L∑
l=0

EMC[QMl
−QMl−1

], (8)

It is important to underline that the correction terms Yl = QMl
−QMl−1

are computed using the same
sample on both levels whereas corrections on different levels are sampled independently. The MSE of the
MLMC estimator EMLMC[QM ] is given by:

e(EMLMC[QM ])2 := E[(EMLMC[QM ]− E[Q])2] = (E[QM −Q])
2︸ ︷︷ ︸

(B-EMLMC)

+

L∑
l=0

Var[Yl]

Nl︸ ︷︷ ︸
(SE-EMLMC)

. (9)

As for the MC case the MLMC error presents two contributions: the discretization error or bias (B-EMLMC)
that is the same as in the MC case and the statical error (SE-EMLMC) (variance of the estimator).

Again, we make the following reasonable assumptions on the space discretization scheme (A1 and A2

are the same as in MC, whereas A3 is replaced by Ã3)

Ã1. The cost to compute one sample QMl
at level l is:

Cost(QMl
(ω(i))) ≤ cγMγ

l , (10)

Ã2. E[QMl
] converges to E[Q] with rate α w.r.t. Ml, i.e.:

|E[QMl
−Q]| ≤ cαM−αl (11)

for some cα, α > 0
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Ã3. Var[Yl] decays with rate β w.r.t. Ml i.e.:

Var[Yl] ≤ cβM−βl , (12)

for some cβ , β > 0 and α ≥ min(β, γ).

It can be shown [12, 18] that under these assumptions, for any ε > 0, there exist L = L(ε), ML = M and

{Nl}Ll=0 such that

e(EMLMC[QM ])2 < ε2 (13)

and the cost to achieve a RMSE of ε is:

C(EMLMC[QM ]) =

L∑
l=0

NlCl .


ε−2 β > γ,
ε−2(log ε)2 β = γ,
ε−2−(γ−β)/α β < γ.

(14)

This result clearly shows the importance of the parameter β, that defines the convergence of the variance
of the consecutive differences, in reducing the overall computational cost of the MLMC with respect to
standard MC approach. Comparing (6) and (14) we immediately see that for β > γ the computation
effort will be primarily on the coarsest levels (the overall complexity is dominated by the MC sampling
on the coarse level and does not ”see” the cost of fine discretization), whereas for β < γ the primary cost
will be on the finest levels and for β = γ it will be spread across all levels. Observe that, even in the
worst case β < γ, the complexity of the MLMC method C(EMLMC[QM ]) . ε−2−(γ−β)/α improves that of
MC method C(EMC[QM ]) . ε−2−γ/α. Moreover, it is quite common in applications involving PDEs with
random coefficients to have β = 2α. In such case, the cost of a MLMC simulation for β < γ reduces to
C(EMLMC[QM ]) . ε−γ/α, i.e. it compares to the cost of a single deterministic simulation on the finest grid and
does not ”see” the cost of the MC sampling.

The result (14) is not only a theoretical bound on the best complexity achievable with a MLMC method,
but does also provide recipes to select the maximum level L and the number of samples per level {Nl}Ll=0 to
achieve a given tolerance ε. We review hereafter our such recipe from [17].

Instead of looking at the MSE, we can alternatively require that the MLMC estimator EMLMC[QM ] achieves
the desired tolerance ε with high probability, with a confidence 1− φ:

P
[∣∣EMLMC[QM ]− E[Q]]

∣∣ > ε
]
≤ φ, φ� 1. (15)

This will give, hopefully, a more robust estimator. Exploiting the asymptotic normality of the estimator
EMLMC[QM ] (see [17]) we have asymptotically as ε→ 0 and with probability 1− φ that:∣∣EMLMC[QM ]− E[QM ]

∣∣ ≤ Cφ√Var[EMLMC[QM ]] (16)

where Cφ = Φ−1(1− φ
2 ) and Φ is the cumulative distribution function (CDF) of a standard normal random

variable. Therefore, with probability 1− φ, the total error can be bounded by:

TErr :=
∣∣EMLMC[QM ]− E[Q]

∣∣ ≤ |E[Q−QM ]|+
∣∣EMLMC[QM ]− E[QM ]

∣∣
≤ |E[Q]− E[QM ]|+ Cφ

√
Var[EMLMC[QM ]]

(17)

Following [17] we introduce a splitting parameter θ ∈ (0, 1) and require in our simulations that:

Bias : B := |E[Q]− E[QM ]| ≤ (1− θ)ε, (18a)

Statistical Error : SE := Var[EMLMC[QM ]] =

L∑
l=0

Var[Yl]
Nl

≤
(
θε

Cφ

)2

(18b)
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so that (15) is satisfied (at least asymptotically). From (11), the bias constraint (18a) is satisfied for:

L : ML ≥
(

(1− θ)ε
cα

)− 1
α

(19)

On the other hand, following the optimization argument in [12] (see also [17]) and the Lindeberg Central
Limit Theorem in the limit ε→ 0, the statistical error constraint (18b) is satisfied by choosing:

Nl =


(Cφ
θε

)2
√

Var[Yl]
Cl

L∑
k=0

√
CkVar[Yk]

 (20)

Given a hierarchy of discretizations with M0 < M1 < . . . , from the practical point of view the standard
MLMC algorithm is generally composed of four steps:

1. Theoretical or computational estimation of the problem dependent rates and constants (P = {cα, α, cβ , β, cγ , γ})
2. Estimation of Var[Yl] .
3. Estimation of the optimal number of levels L from (19) and samples per level Nl from (20)

4. Run the hierarchy {0, . . . , L} with {Nl}Ll=0

The splitting parameter is usually taken as θ = 1
2 .

Theoretical estimates for the parameters α and β exist for certain classes of PDEs with random parameters
[14, 16, 13, 15] and depend on the smoothness of the data of the problem as well as the smoothing proprieties
of the differential operator. Conversely the parameter γ depends on the number of spatial dimensions of
the deterministic problem and the efficiency of the deterministic solver. It is worth underlining that the
total cost of the MLMC algorithm for computationally expensive problems, such as those considered in this
work, strongly depends also on the problem dependent constants cα, cβ , cγ as they enter in the choice of the

optimal parameters L, {Nl}Ll=0, and these have to be estimated numerically.
The common practice is to compute the rates and the constants by performing an initial screening over

the first few levels {0, . . . , L} with a predefined number of samples and fit the rates and constants via a least
squares procedure. Here the bias E[Q−QMl

], l = 1, . . . , can be estimated e.g. by EMC[QMl
−QMl−1

] and the
variance of the differences Var[Yl] by the sample variance formula on QMl

−QMl−1
.

Once the set of parameters P is determined from this screening phase, the number of levels L and the
number of samples per level Nl can be computed from (19) and (20) and the MLMC algorithm on the whole
hierarchy 0, . . . , L can be run and should provide an error smaller than ε with probability at least 1− φ.

The main disadvantage of this procedure is that for computationally expensive problems, this screening
phase, usually not accounted for in the literature in the total cost analysis of MLMC algorithm, can be
quite time consuming. In particular, if L is chosen too large the screening phase might turn out to be more
expensive than the overall MLMC simulation on the optimal hierarchy {0, . . . , L}. On the other hand, if L is
chosen too small, the extrapolation of the convergence rates α and β on finer levels might be quite unreliable.

The standard MLMC algorithm is summarized in Algorithm 1.
The notation PROBLEMl denotes a general ’black-box’ solver that computes the QoI of the problem

under investigation given a set of input values at the grid discretization level l. We denote with O(ω(i,l)) and
G(ω(i,l)) respectively, the sets of operating and geometrical random input parameters that are provided to
the black-box solver. These two sets of input parameters require a different treatment when we consider CFD
problems solved using finite volumes (FV) methods. The operating O(ω(i,l)) uncertainties are simply input
values for boundary condition, while the geometrical ones G(ω(i,l)) require a grid deformation procedure
to adapt the deformation of the boundary affected by uncertainty. The description of the treatment of
these input random parameters for the quasi-1D Laval nozzle case and the 2D RAE2822 airfoil problem
is postponed in the relative results sections. The Algorithm 1 returns the MLMC estimation EMLMC[QM ] of
the expected value of the QoI as well as an estimation of the associated error. In practice, to estimate the
error, the bias contribution B, in absence of an exact solution E[Q] of the problem under consideration, is
approximated by:

B ≈
∣∣EMC[QL −QL−1]

∣∣ (21)
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Algorithm 1: Standard Multi Level Monte Carlo.

SCREENING(N , L)
for l = 0 : L do

for i = 0 : N do
Generate random samples: O(ω(i,l)) , G(ω(i,l))

Q
(i)
Ml

← PROBLEMl (O(ω(i,l)) , G(ω(i,l)))

Q
(i)
Ml−1

← PROBLEMl−1 (O(ω(i,l)) , G(ω(i,l)))

Y
(i)
l = QMl

−QMl−1

estimate {Cl} , {|E[Yl]|}, {Var[Yl]}
compute Γ = {cα, cβ , cγ , α, β, γ} using least squares fit
compute L using (19) and Nl using (20)

return L, {Nl}Ll=0

MLMC(L, {Nl}Ll=0)
for l = 0 : L do

for i = 0 : Nl do
Generate random samples: O(ω(i,l)) , G(ω(i,l))

Q
(i)
Ml

← PROBLEMl (O(ω(i,l)) , G(ω(i,l)))

Q
(i)
Ml−1

← PROBLEMl−1 (O(ω(i,l)) , G(ω(i,l)))

Y
(i)
l = QMl

−QMl−1

compute EMC[Yl]

estimate {|E[Yl]|}, {Var[Yl]} and B

compute TErr = B + Cφ
√∑L

l=0
Var[Yl]
Nl

return EMLMC[QM ] =
∑L
l=0 E

MC[Yl], TErr

On the other hand, the statistical error SE (variance of the MLMC estimator Var[EMLMC[QM ]]) is estimated
as:

SE := Var[EMLMC[QM ]] =

L∑
l=0

Var[Yl]
Nl

. (22)

with Var[Yl] approximated using the level sample variance hereafter denoted as VMC[Yl]:

Var[Yl] ≈ VMC[Yl] =
1

Nl − 1

Nl∑
n=1

(
Yl(ω

(n,l))− EMC[Yl]
)2

(23)

3. Continuation Multi Level Monte Carlo Method

To overcome the limitations of the standard MLMC algorithm highlighted in the previous section
concerning the screening phase and estimation of the parameters, we consider here the Continuation Multi
Level Monte Carlo (CMLMC) algorithm proposed in [17]. The key idea of CMLMC is to solve for the QoI
with a sequence of decreasing tolerances ε0 > ε1 > ε2 > · · · > εMεMεM and progressively improve the estimation
of the problem dependent parameters P that, as presented before, directly control the number of levels and
samples per level. The sequence of decreasing tolerances is constructed as:

εi =

{
(riE−i1 r−1

2 )εMεMεM i < iE
(riE−i2 r−1

2 )εMεMεM i > iE
(24)

7



where r1, r2 > 1 are parameters that control the computational load and the tolerance decrease from the
initial tolerance ε0 to the desired final one εMεMεM . The first few iterations i < iE are needed to obtain increasingly
accurate estimates of the problem dependent parameters P while the iterations i > iE prevent redundant
computations due to fluctuations in the estimates of P by solving the problem for a slightly smaller tolerance
than the desired one εMεMεM . In (24) iE is chosen as

iE =

⌊−log(εMεMεM ) + log(r2) + log(ε0ε0ε0)

log(r1)

⌋
(25)

and corresponds to the iteration at which the problem is solved with tollerance εiE = r−1
2 εMεMεM .

At the i-th iteration of the CMLMC algorithm with tolerance εi, assuming to have reliable estimates of
Var[Yl], l = 0, . . . LMAX and of the bias model parameters cα, α, we consider the optimal number of levels
to be:

(Li, θi) = arg min
L∈[Li−1,...,LMAX ],θ∈(0,1)

s.t. cαM
−α
L =(1−θ)εi

C(εi, θ, L) (26)

with

C(εi, θ, L) =

( Cφ
θεi

)2
(

L∑
l=0

√
ClVar[Yl]

)2

(27)

being the cost of the algorithm with optimal choice of {Nl}Ll=0 as in (20). Notice that the constraint
cαM

−α
L = (1− θ)εi in (26) represents the bias constrain and allows to determine θ as a function of L (and

εi):

θ(εi, L) = 1− cαM
−α
L

εi
(28)

Indeed, since cαM
−α
L can take only discrete values, for each L that satisfies the bias constraint B ≤ εi, it is

worth taking the largest possible θ = 1− B
εi

so as to relax as much as possible the statistical error constraint

Var[EMLMC[QM ]] ≤
(
θεi
Cφ

)2

(29)

and reduce the overall computational cost.
Problem (26) is a discrete optimization problem and can be easily solved by an exhaustive search. The

pivotal feature of the CMLMC with respect to standard MLMC algorithm is that the parameters P are
computed on-the-fly at each iteration of the algorithm. The estimation of the parameters that describe
the cost (cγ , γ) and the bias (cα, α) is relatively straightforward since these quantities are not particularly
affected by the number of samples per level. In practice these parameters are computed by averaging the time
needed to obtain a single realization over the number of samples and the difference between two consecutive
levels (21) and then extrapolated using a least squares fit.

On the contrary, the estimation of the variances Var[Yl] of the estimator at each level can be quite
inaccurate with a small number of samples. In a standard MLMC the variance of the estimator Var[EMLMC[QM ]]
is computed using the level sample variance VMC[Yl] (23). At the deepest levels usually we do not have enough
samples to accurately compute VMC[Yl] (asymptotically accurate only as Nl →∞ ) and estimate the rates
(cβ , β) needed to compute the number of samples at the new levels.

Collier et al. [17] presented an intuitive methodology based on Bayesian updates to use samples generated
on all levels to locally improve the estimation of Var[Yl]. Given the bias model E[Yl] := µ̂l = cαM

−α
l

and variance model Var[Yl] := λ̂−1
l = cβM

−β
l with cα, α, cβ , β estimated from the previous iteration of

the CMLMC algorithm, the idea is to describe Yl as a Gaussian random variable N (µl, λ
−1
l ) and perform

a Bayesian update of µl and λ−1
l based on the collected values Yl(ω

(n,l)) and a Normal-Gamma prior

distribution with maximum at µ̂l and λ̂l. The posterior is also a Normal-Gamma, with maximum at

µMAP
l =

NlE
MC[Yl] + k0µ̂l
k0 +Nl

and λMAP
l =

Ξ1,l − 1
2

Ξ2,l
(30)
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with:

Ξ1,l =
1

2
+ k1λ̂l +

Nl
2
, (31a)

Ξ2,l = k1 +
Nl − 1

2
VMC[Yl] +

k0Nl(E
MC[Yl]− µ̂l)2

2(k0 +Nl)
. (31b)

The parameters k0 and k1 represent our belief on µ̂l and λ̂−1
l (variances in the Normal-Gamma prior).

The resulting update formula for Var[Yl] ≈ λ−1
l is then:

VC[Yl] :=
Ξ2,l

Ξ1,l − 1
2

l > 0 (32)

In particular we notice in (32) that:

Nl →∞ =⇒ VC[Yl]→
1

Nl − 1

Nl∑
n=1

(
Yl(ω

(n,l))− EMC[Yl]
)2

Nl = 0 =⇒ VC[Yl] =
1

λ̂l
= cβM

−β
l

(33)

Hence, for a large sample size on level l we recover the sample variance estimator whereas in the absence
of draws on level l we just rely on our prior model λ̂−1

l = cβM
−β
l . Following the above arguments we

approximate the variance of the MLMC estimator as:

Var[EMLMC[QM ]] =

L∑
l=0

Var[Yl]
Nl

≈
L∑
l=0

VC[Yl]

Nl
(34)

The resulting algorithm is described in Algorithm 2.

3.1. Monte Carlo and Multi Level Monte Carlo Estimators for Scalar Fields

In addition to computing the expectation of a scalar QoI Q(ω) (e.g. lift or drag coefficient of an airfoil),
it is sometimes essential to compute QoI Q(x, ω) that are scalar fields defined on a certain domain D (e.g.
pressure coefficient around an airfoil). In this case a functional Central Limit Theorem is not available yet in
literature, so that the approach described in (18a) - (18b) of prescribing a given tolerance ε with confidence
1 − φ, is of difficult implementation. We prefer, therefore, enforcing simply the MSE to be smaller than
ε2, where in the definition of the MSE, we measure the spatial error in the L2 norm (mean-square sense).
Similarly to scalar quantities, the MSE splits naturally into

e(EMLMC[QM ])2 :=E[‖EMLMC[QM ]− E[Q]‖2L2(D)]

= ‖E[QM −Q]‖2L2(D)︸ ︷︷ ︸
(B-EMLMC)

+

L∑
l=0

1

Nl
‖Var[Yl]‖L1(D)︸ ︷︷ ︸
(SE-EMLMC)

. (35)

Therefore we require that:

Bias : B := ‖E[QM −Q]‖L2(D) ≤ (1− θ)ε, (36a)

Statistical Error : SE := Var[EMLMC[QM ]] =

L∑
l=0

‖Var[Yl]‖L1(D)

Nl
≤ θ(2− θ)ε2 (36b)
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Algorithm 2: Continuation Multi Level Monte Carlo.

CMLMC(N0, L0, LMAX , k0,k1, r1, r2, εM , ε0)
for l = 0 : L0 do

for i = 0 : N0 do
Generate random samples: O(ω(i,l)) , G(ω(i,l))

Q
(i)
Ml

← PROBLEMl (O(ω(i,l)) , G(ω(i,l)))

Q
(i)
Ml−1

← PROBLEMl−1 (O(ω(i,l)) , G(ω(i,l)))

Y
(i)
l = QMl

−QMl−1

compute {Cl} , {|EMC[Yl]|}, {VMC[Yl]}
compute Γ = {cα, cβ , cγ , α, β, γ} by least squares fit

compute VC[Yl] :=
Ξ2,l(k0,k1,cα,α,E

MC[Yl],V
MC[Yl])

Ξ1,l(k1,cβ ,β)− 1
2

compute iE(εM , ε0, r1, r2) using (25)
while i < iE or TErr > εM do

compute εi(i, iE , r1, r2, εM ) using (24)

compute Li(LMAX , εi, cα, α, {VC[Yl]} , {Cl}) using (26) and θi = 1− cαM
−α
L

εi

for l = 0 : Li do
compute Nl(εi, V

C[Yl], γ, cγ , θi) using (20)
for i = 0 : Nl do

Generate random samples: O(ω(i,l)) , G(ω(i,l))

Q
(i)
Ml

← PROBLEMl (O(ω(i,l)) , G(ω(i,l)))

Q
(i)
Ml−1

← PROBLEMl−1 (O(ω(i,l)) , G(ω(i,l)))

Y
(i)
l = QMl

−QMl−1

update {Cl}Lil=0 , {|EMC[Yl]|}Lil=0, {VMC[Yl]}Lil=0

update EMLMC[QM ] =
∑L
l=0 E

MC[Yl]

compute (cα, α)← {|EMC[Yl]|}Lil=0 using least squares fit

compute (cγ , γ)← {Cl}Lil=0 using least squares fit

compute (cβ , β)← {VMC[Yl]}Lil=0 using least squares fit
update Γ = {cα, cβ , cγ , α, β, γ}
update VC[Yl] :=

Ξ2,l(k0,k1,cα,α,E
MC[Yl],V

MC[Yl])

Ξ1,l(k1,cβ ,β)− 1
2

,

compute B using (21)
compute Var[EMLMC[QM ]] using (34)
compute TErr = B + Cφ

√
Var[EMLMC[QM ]]

i = i+1

return EMLMC[QM ]

so that the MSE ≤ ε2.
By doing so we can compute the optimal number of samples per level as:

Nl =


(

1

θ(2− θ)ε2

)√‖Var[Yl]‖L1(D)

Cl

L∑
k=0

√
Ck‖Var[Yl]‖L1(D)

 (37)
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and the cost of the algorithm with optimal choice of {Nl}Ll=0 becomes:

C(εi, θ, L) =

(
1

θ(2− θ)ε2

)( L∑
l=0

√
Cl‖Var[Yl]‖L1(D)

)2

. (38)

At this stage, the same Algorithm as before can be used with (37) replacing (20), (38) replacing (27) and
more generally provided that the error estimations for the bias and statistical errors include appropriate
spatial norms as described in this section.

4. Model Problems

We consider compressible inviscid flows modeled by the Euler equations in conservative form as:

∂
−→
W

∂t
+∇ · −→F =

−→
R in Ω (39)

where
−→
W is the vector of state variables,

−→
F is the convective flux and

−→
R is the source term.

The Euler equations are discretized on an unstructured grid using dual grid (cell-vertex scheme) based
finite volume method (Fig.1). The semi-discretized form of the Euler equations can be written as:∫

Ωi

∂
−→
W

∂t
dΩ +

∑
j∈N (i)

F̃ij∆Sij −
−→
R |Ωi| = 0 (40)

b

b

b b

bbb

b
Ωi

i

j

nij

Figure 1: Primal mesh (black) and control volumes in the dual mesh (blue)

where F̃ij represents the projected numerical approximation of the convective flux evaluated at the
midpoint of the edges, ∆Sij the area of the face associated with the edge ij, Ωi is the volume of the
control volume and N (i) the neighboring nodes to node i. The discretized equations are advanced in time
using explicit multistage scheme (Runge-Kutta). Local time-stepping and geometric multigrid are used for
convergence acceleration to the steady-state solution.

11



4.1. Model Problem A: Flow in quasi-1D Laval nozzle

In the case of quasi-1D compressible flow:

−→
W =

 ρAρuA
ρeA

 , −→
F =

 ρuA

(ρu2 + p)A

ρhuA

 , −→
R =

 0

pdAdx
0

 (41)

In (41), A denotes the area of the nozzle, ρ, u and p the density, the velocity and the pressure of the fluid
respectively. h = e+ p

ρ is the total enthalpy, e is the total energy and p = ρ(γ − 1)e (calorically perfect gas,

γ is the ratio of specific heats).
Since we are considering a quasi-1D problem, each grid node in the computational grid is associated with

a certain area.

A1

A2

Ai+1/2

i

xtConverging Section Diverging Section

Chamber Ambient

Throat

p1  T1 p2 

Figure 2: Geometry and discretization of the convergent-divergent nozzle

The area distribution over the x-axis corresponds to the Laval nozzle (Fig. 2) and it is calculated using
the relations:

A(x) = 1 +
1

2
(A1 − 1)

{
1 + cos

(
πx

xt

)}
0 ≤ x ≤ xt (convergent section)

A(x) = 1 +
1

2
(A2 − 1)

{
1− cos

[
π(x− xt)

1− xt

]}
xt ≤ x ≤ 1 (divergent section)

(42)

In this specific case PROBLEMl denotes ’black-box’ 1D Euler equations solver. We employ a central
scheme with scalar artificial dissipation that computes the convective fluxes at a face of the control volume
from the arithmetic average of the conservative variables on both sides of the face; to avoid overshoots at
shocks, artificial dissipation, similar to the viscous fluxes, has to be added for stability [19]. We choose this
simple but efficient approach, compared to other discretization methods, for its robustness also on coarse
grids. For each sample, PROBLEMl takes O(ωi,l) and G(ωi,l) as input and returns the QoI computed on
level l and level l − 1.

We specifically consider the case of a nozzle with a normal shock in the divergent section (Laval nozzle
flow). The flow accelerates out of the chamber through the converging section and reaches its maximum
subsonic speed at the throat (Xt). After the throat the flow becomes supersonic, the Mach number increases
and the pressure decrease as the area increases downstream. A normal shock forms in the duct, at Xs, and
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Parameters Reference Uncertainty

A1[m2] 1.5 T N (1.5, 0.03, 1.35, 1.65)
Geometric A2[m2] 2.0 T N (2.0, 0.04, 1.80, 2.20)

Xt[m] 1/3 −
P1[Pa] 1.8e5 T N (1.8e5, 3600, 1.62e5, 1.98e5)

Operating T1[K] 288 T N (288, 5.76, 259.2, 316.8)
p2[Pa] 1.0e5 T N (1.0e5, 2000, 0.9e5, 1.1e5)

Cp[J/(kgK)] 1005 −
γ 1.4 −

Table 1: Geometric and Operating reference parameters and uncertainties for the Laval nozzle problem.

produces a near-instantaneous deceleration of the flow to subsonic speed. The subsonic flow then decelerates
through the remainder of the diverging section, the Mach number decreases and pressure increases as the
area increases, and exhausts as a subsonic jet.

Table 1 summarizes the physical and geometrical reference parameters and the uncertainties considered
for the nozzle problem. The uncertainty on the different parameters is modeled as a truncated Gaussian
random variable where we use the notation y ∼ T N (µ, σ2, a, b) to denote a r.v. with density function

p(y) =


0 y < a

1
z

1√
2πσ

e−
(y−µ)2

2σ2 a ≤ y ≤ b and z =
∫ b
a

1√
2πσ

e−
(y−µ)2

2σ2 dy

0 y > b.

(43)

Fig. 3 shows the Mach and pressure profile inside the Laval nozzle for the physical and geometrical
deterministic reference conditions and the location of the shock (Xs) in the divergent section.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

M

Xs = 0.8481

0

20000

40000

60000

80000

100000

120000

140000

160000

p
[P

a]

Figure 3: Deterministic solution of the Laval nozzle with a normal shock in the diverging section (Xs = 0.8481).

In the following subsections we present the results and the performances of the C-MLMC compared to
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MC method in computing a scalar QoI (the shock location in the divergent section of the nozzle Xs) and a
scalar field QoI (the Mach profile in the nozzle M(x)). The parameters that define the computational load
and the tolerance decrease from the initial to the final tolerance (see (24)) and the parameters that represent
the confidence in the bias and variance models (see (30)) are presented in the following Table 2.

Parameters QoI Xs QoI M(x)

r1 1.5 1.5
r2 1.15 1.15
ε0 0.5 0.5
εM 0.001 0.01
iE 15 9
k0 0.1 0.1
k1 0.1 0.1

Table 2: Settings for the C-MLMC algorithm for the computation of the scalar QoI Xs and the scalar field QoI M(x) in the
Laval nozzle test case.

4.1.1. Scalar QoI: Shock location

We first consider as a scalar QoI for our model problem the position of the shock in the divergent section
of the nozzle. The shock position Xs is computed as the mid-point between the location of the maximum
positive and negative variation in the Mach number between two consecutive grid points (Figure 4):

Xs =
1

2

(
XdM+ +XdM−

)
(44)

XdM+
= arg max

xi

(M(xi)−M(xi+1)) i = 0, . . . n− 1

XdM− = arg min
xi

(M(xi)−M(xi−1)) i = 1, . . . n
(45)

The hierarchy used for this problem is made up of 7 nested grid levels generated by doubling the number
of nodes starting from the first level composed of 35 nodes:

Nl = N0 ∗ 2l with N0 = 35 (46)

In Fig.5 we present few iterations of the C-MLMC algorithm for the approximation of the expectation
of the shock location in the nozzle with operating uncertainties (P1, T1 and p2). The first column shows
the estimated bias B (Eq. (21)) of the estimator and the corresponding least squares (LS) fit model. In
the second column we show the sample variance of Yl (in red), its LS fit model (dashed blue line) and the
Bayesian updated variance model VC[Yl] (green line); the fitted asymptotic rate β ≈ 2 is consistent with a
first order discretization scheme. The third and fourth columns display the cost and the number of samples
per level prescribed at each iteration of the C-MLMC algorithm with decreasing tolerance. At the final
iteration we also compute the decay rate of the number of samples Nl with the level l, Nl ≈ CΥl

Υ and check
that it corresponds to:

Υ ≈ 1

2
(γ + β) (47)

The first remarkable feature that we can observe in Fig.5 is the robustness of the algorithm in predicting
the variance of Yl also with a small number of samples at the finest levels. As already mentioned in the
previous section, estimating Var[Yl] using the sample variance can be quite inaccurate with a small number
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Figure 4: Mach number inside the nozzle (black line), XdM+
(blue circle, maximum of the blue line (M(xi)−M(xi+1)), XdM−

(red circle, minimum of the red line (M(xi)−M(xi−1)) and approximate shock position Xs (green square) for different levels.
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Figure 5: C-MLMC iterations (0, 10, 13 and the final 14) for the estimation of E[Xs] (3 operating uncertainties, final relative
tolerance εr = 0.001). The columns represent, from left to right, the bias, variance of Yl, cost and number of samples per level.

of samples. As a result of that, an over estimation of β and cβ , would result in a smaller number of samples
per level than the ones needed to achieve a prescribed tolerance while an under estimation of them would
imply a larger number of samples and hence a higher cost. The customary screening phase that precedes
a standard MLMC can be the perilous step in the entire UQ analysis and can jeopardize the theoretical
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achievable speedup of MLMC with respect to MC or underpredict the final error thus failing to achieve
prescribed tolerance requirements.

In Fig.6 we compare the decay rates of the Var[Yl] (estimated by Eq.(32)) for the C-MLMC with the
decay rate of Var[Ql] which would influence the performance of simple MC algorithm for three different sets
of uncertain parameters. In the first column we consider only the geometrical uncertainties, in the second one
only the operating ones and in the last column all of them. The second line presents the number of samples
Nl prescribed at each iteration of the C-MLMC and the final hierarchy obtained with the final prescribed
relative tolerance on the QoI (εr = 0.001).
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Figure 6: Decay of Var[Yl] for the C-MLMC (computed with Eq.(32) red solid line and LS fit blue dashed line) and Var[Ql] for
MC (black dashed line) for three different sets of uncertain parameters (final relative tolerance εr = 0.001); lower row: Nl for
different iterations of the C-MLMC .

4.1.2. Scalar field QoI: Mach profile inside the nozzle

As suggested in section 3.1, the C-MLMC can be naturally extended to compute expectation of QoI
that are scalar fields Q(x, ω). Here we consider the expected Mach number profile inside the Laval nozzle
under operating and geometric uncertainties presented in Table 1. In Figure 7 we show few iterations of the
C-MLMC algorithm for the computation of the Mach profile inside the nozzle for a final relative tolerance
εr = 0.01. Although the numerical scheme is the same as in the previous test case, here we are looking
at the whole profile of Mach number, which is a discontinuous function due to the presence of the shock
leading to a different optimization of the MLMC and different performances. This explains the reduced
asymptotic rate β ≈ 1.13 observed, as well as the slower decay on Nl with l. Figure 8 presents the decay rates
of ‖Var[Yl]‖L1(D) (estimated by Eq.(32)) for the C-MLMC and ‖Var[Ql]‖L1(D) for MC for three different
sets of uncertain parameters and their respective hierarchies.

In Figure 9 we can see the results obtained for the mean of the Mach number profile for the three different
sets of uncertain parameters. It is important to underline that the standard deviation (grey area) has been
computed during a post-process step using the samples obtained during the optimization of the hierarchy for
the mean value of the Mach profile.

Finally in Figure 10 we compare the cost required to achieve a prescribed tolerance with MC and with our
implementation of C-MLMC. For the scalar QoI Xs, as theoretically predicted in Eq. (14), we observe that,
for the MLMC method, the total cost required to achieve a RMSE of ε in the case of β > γ (rate of decay of
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Figure 7: C-MLMC iterations (0, 11, 12 and the final 13) for the estimation of E[M(x)] (3 operational uncertainties and 2
geometrical, final relative tolerance εr = 0.01). The columns represent, from left to right, the bias, variance of Yl, cost and
number of samples per level.
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Figure 8: Decay of ‖Var[Yl]‖L1(D) for the C-MLMC (computed with Eq.(32) red solid line and LS fit blue dashed line) and

‖Var[Ql]‖L1(D) for MC (black dashed line) for three different sets of uncertain parameters (final relative tolerance εr = 0.001);
lower row: Nl for different iterations of the C-MLMC.

Var[Yl] is greater than the growth rate of the cost to compute one sample at level l) is proportional to ε2; on
the other hand, for the MC method, as presented in Eq. (6), the total cost is proportional to ε−2−γ/α. For
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Figure 9: Mean Mach profile inside the nozzle (red solid line), cloud of uncertainty corresponding to one standard deviation
(grey area) and deterministic solution (black solid line) for three different sets of uncertain parameters.

the scalar field QoI M(x), we are in the case of β < γ and the total cost required to achieve a RMSE of ε
for the MLMC method is proportional to ε2−(γ−β)/α. The results in Fig. 10 match nicely this theoretical
estimates.
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dashed line represents the cost for a deterministic simulation at the finest level.
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4.2. Model Problem B: Flow around RAE 2822 airfoil

In case of a 2D compressible flow:

−→
W =


ρ

ρu1

ρu2

ρe

 , −→
Fi =


ρui

ρuiu1 + pδi1

ρuiu2 + pδi2

ρuih

 , −→
R =


0

0

0

0

 , i = 1, 2 (48)

ρ, −→u = (u1, u2) ∈ R2 and p are the density, the velocity and the pressure of the flow respectively. δij is the
Kronecker delta, h = e+ p

ρ is the total enthalpy and e is the total energy. The convective flux is computed

using a second-order JST [19] scheme for its satisfactory capability in capturing shock waves, a fairly rapid
convergence to steady state and robustness also on coarse grids. For this specific case as ’black-box’ 2D Euler
equations solver (PROBLEMl) we choose the Stanford University Unstructured (SU2) [20, 21] computational
environment because of its flexibility and capability of being interfaced with the C-MLMC algorithm libraries
we implemented in PythonTM. For each sample, PROBLEMl takes O(ωi,l) and G(ωi,l) as input and returns
the QoI computed on level l and level l − 1. In case of geometrical uncertainties that affect the shape of the
airfoil, for each random geometrical definition G(ωi,l) we deform the existing grid levels by solving a linear
elasticity problem on the volume grid to accommodate the new boundary definition. The geometry that we
consider here is the well known RAE 2822, a supercritical airfoil which has become a standard test-case for
transonic flows [22].

ys

yp xs

xp

Cs

Cp

Rs

Rp

y

xθs

θp

M∞

α∞

RAE2822

Figure 11: Geometry of the RAE 2822 transonic airfoil and PARSEC parameters.

The nominal geometric parameters correspond to the PARSEC [23] coefficients of the RAE 2822 airfoil.
Table 3 summarizes the operating and geometric parameters and relative uncertainties considered in the
following simulations. Fig. 11 illustrates the nominal geometry of the RAE 2822 and the meaning of the
parameters in Table 3.

The hieirarchy used for this problem is made up of 6 grid levels generated by doubling the number of nodes
around the airfoil (first level composed of 67 nodes around the airfoil). Figure 12 shows the computational
grids, the Mach contour and the pressure coefficient around the airfoil computed on the first four levels in
the MLMC hierarchy.

In the following subsections we present the results and the performances of the C-MLMC compared to
MC method in computing a scalar QoI (lift coefficient CL) and a scalar field QoI (pressure coefficient Cp
around the airfoil). The parameters that defines the computational load and the tolerance decrease from
the initial to the final tolerance (see (24)) and the parameters that represent the confidence in the bias and
variance models (see (30)) are presented in Table 4.

4.2.1. Scalar QoI: Lift Coefficient CL
We consider here as scalar QoI the lift coefficient CL of the RAE 2822 affected by operating and geometric

uncertainties.
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Parameters Reference Uncertainty

α∞ 2.31 T N (r, 2%r,−10%r,+10%r)
Operating M∞ 0.729 T N (r, 2%r,−10%r,+10%r)

p∞ [Pa] 101325 −
T∞ [K] 288.5 −
Rs 0.00839 T N (r, 2%r,−10%r,+10%r)

Geometric Rp 0.00853 T N (r, 2%r,−10%r,+10%r)
xs 0.431 T N (r, 2%r,−10%r,+10%r)
xp 0.346 T N (r, 2%r,−10%r,+10%r)
ys 0.063 T N (r, 2%r,−10%r,+10%r)
yp −0.058 T N (r, 2%r,−10%r,+10%r)
Cs −0.432 T N (r, 2%r,−10%r,+10%r)
Cp 0.699 T N (r, 2%r,−10%r,+10%r)
θs −11.607 T N (r, 2%r,−10%r,+10%r)
θp −2.227 T N (r, 2%r,−10%r,+10%r)

Table 3: Geometric and Operating reference parameters and uncertainties for the RAE2822 airfoil problem.

Parameters QoI CL QoI Cp

r1 1.25 1.2
r2 1.025 1.01
ε0 0.1 0.2
εM 0.003 0.05
iE 15 7
k0 0.1 0.1
k1 0.1 0.1

Table 4: Settings for the C-MLMC algorithm for the computation of the scalar QoI CL and the scalar field QoI Cp.

We present in Fig.13 few iterations of the C-MLMC algorithm for the approximation of the expectation
of the lift coefficient CL for the RAE2822 airfoil with two operating uncertainties (α∞ and M∞) and six
geometric uncertainties (Rs, Rp, xs, xp, ys, yp). The first column shows the estimated bias B (Eq. (21))
of the estimator and the corresponding LS fit model, the second column the sample variance of Yl with its
Bayesian updated model VC[Yl]. The third and fourth columns display the cost and the number of samples
per level prescribed at each iteration of the C-MLMC algorithm with decreasing tolerance. As for the nozzle
case we observe in Fig.13 the robustness of the algorithm in predicting the variance of Yl also with just five
samples at the finest level. It is worth underline that estimating Var[Yl] through a preliminary screening
phase based on samples collected only on the first three levels could lead to a huge over estimation of β and
cβ (as it is possible to observe in the first row of Fig.13) and hence a smaller number of samples per level
than the ones needed to achieve a prescribed tolerance would be prescribed.

In Fig.14 we compare the decay rates of the Var[Yl] (estimated by Eq.(32)) for the C-MLMC with the
decay rate of Var[Ql] (which would influence the performance of simple MC algorithm) for three different
sets of uncertain parameters. In the first column we consider only six geometrical uncertainties, in the second
one only two operating ones and in the last column all of them. The second line presents the number of
samples Nl prescribed at each iteration of the C-MLMC and the final hierarchy obtained with the final
prescribed relative tolerance on the QoI (εr = 0.003).
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Figure 12: Grids, Mach contour and Cp profile around the RAE2822 airfoil for the first four levels in the MLMC hierarchy.
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Figure 13: C-MLMC iterations (0, 11, 14 and the final 15) for the estimation of E[CL] (2 operational uncertainties and 6
geometrical, final relative tolerance εr = 0.003). The columns represent, from left to right, the bias, variance of Yl, cost and
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4.2.2. Scalar field QoI: Pressure Coefficient around the airfoil

We now consider as scalar field QoI the pressure coefficient Cp(x) around the RAE2822 airfoil affected by
operating and geometric uncertainties. In the following figures (15, 16, 17, 18, 19) we present the results
obtained in different test cases with increasing number of uncertain parameters. As for the case of the nozzle,
we recognize a wide region of uncertainty in correspondence of the shock location on the suction side of the
airfoil. We can observe an higher sensitivity of the pressure coefficient on the suction side due to operating
uncertainties, while the pressure side of the airfoil looks more affected by geometric uncertainties. Compared
to the computation of the scalar QoI CL, we witness a slower asymptotic decay rate of β, as well as a slower
decay on Nl with l (Figure 20).
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Figure 15: Mean Cp profile around the RAE2822 airfoil (red solid line) affected by 2 operating uncertainties, cloud of uncertainty
corresponding to one standard deviation (grey area) and deterministic solution (black solid line).

Finally in Figure 21 we compare the performances of the C-MLMC and MC method. The total cost
required by MLMC method to achieve a RMSE of ε is proportional to ε2 for the scalar QoI (lift coefficient
CL) and a scalar field QoI (pressure coefficient Cp around the airfoil) as β > γ while for MC the total cost is
proportional to ε−2−γ/α.

Lastly in Figure 22 we compare the cost required by our implementation of C-MLMC and MC method
to achieve a RMSE of ε for an increasing number of uncertain parameters. We do not observe, as theory
suggests, an increase in the cost with the number of uncertain parameters. It is interesting to underline
that the simulations performed with operating (resp. operating + geometric) uncertainties require less
computational time that the simulations with only geometrical uncertainties. The features and the physics of
the problem suggest that the QoI depends smoothly with respect to the set of operating parameters while
the geometrical ones have a sharper effect leading to an additional cost.
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Figure 16: Mean Cp profile around the RAE2822 airfoil (red solid line) affected by 6 geometric uncertainties, cloud of uncertainty
corresponding to one standard deviation (gray area) and deterministic solution (black solid line).

0.0 0.2 0.4 0.6 0.8 1.0
x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

C
p

Rs, Rp, xs, xp, ys, yp, Cs, Cp, θs, θp

10 Geometric Uncertainties

Figure 17: Mean Cp profile around the RAE2822 airfoil (red solid line) affected by 10 geometric uncertainties, cloud of
uncertainty corresponding to one standard deviation (gray area) and deterministic solution (black solid line).
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Figure 18: Mean Cp profile around the RAE2822 airfoil (red solid line) affected by 6 geometric and 2 operating uncertainties,
cloud of uncertainty corresponding to one standard deviation (grey area) and deterministic solution (black solid line).
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Figure 19: Mean Cp profile around the RAE2822 airfoil (red solid line) affected by 10 geometric and 2 operating uncertainties,
cloud of uncertainty corresponding to one standard deviation (grey area) and deterministic solution (black solid line).
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Figure 20: Decay of ‖Var[Yl]‖L1(D) for the C-MLMC (computed with Eq.(32) red solid line and LS fit blue dashed line) and

MC (black dashed line) for three different sets of uncertain parameters (final relative tolerance εr = 0.05); lower row: Nl for
different iterations of the C-MLMC .
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Figure 21: Cost required to achieve prescribed tolerance requirements for C-MLMC (blue line) an MC (black line). The red
dashed line represents the cost for a deterministic simulation at the finest level.
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5. Conclusion

A robust and efficient Continuation Multi Level Monte Carlo (C-MLMC) approach and implementation
are developed for the treatment of operational and geometrical uncertainties in compressible aerodynamics
problems. The key features of the continuation procedure is that the problem and hierarchy dependent
parameters that control the number of levels and samples per level are computed on the fly using a Bayesian
update procedure. By doing so it is possible to reduce the overall cost required to set up and perform an
uncertainty analysis (no need for a screening procedure to compute the bias and variance decay rates). The
self-tuning nature of C-MLMC increases the flexibility of classical MLMC implementation and allows its
application for different set of uncertainties, in combination with different computational grids and CFD
solvers. In addition to that it has been shown in this work that the learning of the statistical error decay
guarantees the robustness of the algorithm also for problems that presents sharp gradient discontinuities that
naturally arise in compressible flow problems. The extension of the C-MLMC algorithm to compute higher
order moments or the full cumulative distribution of a scalar QoI will be reported in a forthcoming work.
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