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Abstract

The present work concerns the approximation of the solution map S
associated to the parametric Helmholtz boundary value problem, i.e., the
map which associates to each (real) wavenumber belonging to a given in-
terval of interest the corresponding solution of the Helmholtz equation.
We introduce a least squares rational Padé-type approximation technique
applicable to any meromorphic Hilbert space-valued univariate map, and
we prove the uniform convergence of the Padé approximation error on any
compact subset of the interval of interest that excludes any pole. This
general result is then applied to the Helmholtz solution map S, which is
proven to be meromorphic in C, with a pole of order one in every (single or
multiple) eigenvalue of the Laplace operator with the considered boundary
conditions. Numerical tests are provided that confirm the theoretical upper
bound on the Padé approximation error for the Helmholtz solution map.

Introduction

Due to the oscillatory behavior of the solutions, the finite element approxima-
tion of time-harmonic wave problems in mid- and high-frequency regimes is chal-
lenging: accurate approximations are possible only on very fine meshes or with

∗The third author has been funded by the Vienna Science and Technology Fund (WWTF)
through the project MA14-006.
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high polynomial approximation degrees. Moreover, for increasing wave numbers,
there is an increasing discrepancy between the best approximation error and the
Galerkin discretization error (pollution effect) [2]. For this reason, the direct
numerical evaluation of the frequency response functions for a whole range of
frequencies is often out of reach.

Model order reduction methods aim at reducing the computational cost by
approximating the frequency response function starting from evaluations only
at few frequencies. For a survey of model order reduction methods for para-
metric systems we refer to [4], and for reduced order models for non-coercive
and time-harmonic problems we refer to [29, 28, 8, 22] and references therein.
Some of the model reduction methods for frequency domain wave problems are
based on componentwise Padé or Padé-type approximations, on Petrov-Galerkin
schemes, or on projections onto Krylov subspaces; see [15, 16] and the refer-
ences therein, where the authors review interpolatory model order reduction
methods, and compare them when applied to structural dynamic, acoustic and
vibro-acustic problems. In this work, we focus on the design and the analysis
of a numerical method based on the rational (Padé-type) approximation of the
solution map to time-harmonic wave problems over a given range of angular
frequencies.

Padé-type approximations have been firstly introduced for univariate complex-
valued functions. Suppose that a complex function f : C → C holomorphic
in a point z0 ∈ C (we take for simplicity z0 = 0) is expressed in power se-
ries as f(z) =

∑∞
j=0 fjz

j locally around 0. The Padé approximant of f , de-

noted as f[M/N ], is the ratio between two polynomials f[M/N ](z) = p(z)
q(z) , with

p(z) =
∑M

m=0 pmzm ∈ PM (C) and q(z) =
∑N

n=0 qnz
n ∈ PN (C), such that its

Taylor series agrees with the power series of f for as many terms as possible.
More precisely, p ∈ PM (C) and q ∈ PN (C) can be found such that

∞
∑

j=0

fjz
j =

p(z)

q(z)
+O(zM+N+1). (1)

Equation (1) is non-linear. In order to compute the coefficients of p(z) and
q(z), one can multiply both sides of the equation by q(z), and then identify the
coefficients of the monomials of the same order. This procedure leads to the
solution of a linear system in the unknowns p0, . . . , pM , q0, . . . , qN . The
trivial solution p(z), q(z) ≡ 0 is usually avoided by imposing q0 = 1. For more
details on the classical Padé construction we refer to [3, Chapter 1].

The convergence theory of the Padé approximant for meromorphic maps has
been deeply studied. Suppose that f(z) is meromorphic in the circle B(0, R), and
define ν as the sum of the multiplicities of all the isolated poles of f(z) inside
B(0, R). Denote with G ⊂ B(0, R) the set of isolated poles of f(z). When the
degree of the denominator N of the Padé approximant is fixed and exactly equal
to ν, and the degree of the numerator M is let to infinity, the Montessus de
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Ballore Theorem ([25], [3, Chapter 6]) states the uniform convergence of the ap-
proximation error

∣

∣f(z)− f[M/N ](z)
∣

∣ on compact subsets of B(0, R) \G. Weaker
convergence results can be proved either when N (fixed) is larger or equal to
ν, or when N is equal to the degree of the numerator M , and they both go to
infinity (see e.g. [3, Chapter 6], [11, 30]).

The classical Padé approximation technique described above is also known as
single-point Padé approximation. Indeed, the construction of the rational Padé
approximant is based on the power series of the function f(z) around one single
point. A natural generalization is the multi-point Padé approximant (see [3,
Chapter 7], [9, 26]), which exploits the power series expansions of f(z) at several
points z0, . . . , zn, which may possibly coincide.

Several generalizations of the Padé approximation to the case of a multivari-
ate function f : Cd → C, d ≥ 2, have been proposed and analyzed in literature.
We mention, for instance, [19, 14, 12, 13]. In this work, we follow the approach
proposed in [14]. There, the authors present a least squares (LS) Padé approxima-
tion technique, which generalizes the classical approach. The Padé approximant,
in fact, does not rely on the exact solution of the linear system in the unknowns
p0, . . . , pM , q0, . . . , qN ; it is rather defined as the (in general not unique) solu-
tion of a related minimization problem. The condition q0 = 1 on the coefficients
of the denominator q0, . . . , qN is replaced by the condition

∑N
n=0 |qi| = 1. A

convergence result for the LS Padé approximation error similar to the Montessus
de Ballore Theorem is stated in [14].

The novelty of our paper consists in the definition of a LS Padé approximant
for univariate Hilbert space-valued meromorphic maps T : C → V , V being a
Hilbert space. The Padé approximant of T , denoted as T[M/N ], is the rational

V -valued map T[M/N ](z) = P(z)
Q(z) , where P(z) =

∑M
i=0 pi(z)z

i, with coefficients

pi(z) ∈ V for all i, and Q ∈ PN (C) is a C-valued polynomial of degree N . The
main result is Theorem 5.1, where the convergence of the Padé approximant is
proved. Suppose T (z) to be meromorphic in the circle B(0, R), and define ν as the
sum of the multiplicities of the isolated poles of T contained in the circle B(0, R).
Moreover, denote with G ⊂ B(0, R) the set of the isolated poles of T . Letting
the degree of the Padé denominator N be fixed and exactly equal to ν, we prove
exponential convergence of the approximation error

∥

∥T (z)− T[M/N ](z)
∥

∥

V
, as M

goes to infinity, on compact subsets of B(0, R) \ G. In Section 6, we apply the
LS Padé construction and the convergence estimate to the meromorphic solution
map S associated with the parametric Helmholtz problem, namely the map that
associates with each (real) wavenumber inside an interval of interest K ⊂ R+

the solution of the corresponding Helmholtz problem.
The outline of the paper is the following. In Section 1, we introduce the

parametric Helmholtz problem with homogeneous either Dirichlet or Neumann
boundary conditions; the problem is set in the Hilbert space V = H1

0 (D) or
V = H1(D), respectively. The wavenumber varies inside an interval of interest
K ⊂ R+, and we define the solution map S : K → V . The solution map is
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then extended to the entire complex plane S : C → V , and well-posedness and
stability bounds of the corresponding (damped) Helmholtz problem are proved
in Section 2. In Section 3, we study the regularity of the solution map S, which
is proved to be meromorphic, with a pole of order one in each (single or multiple)
eigenvalue of the Laplace problem with the considered boundary condition. The
construction of the LS Padé approximant for any meromorphic Hilbert space-
valued map T is described in Section 4, and a convergence result of the approx-
imation error is stated in Section 5. In Section 6, we apply the results obtained
in Sections 4 and 5 to the solution map S. Numerical results for the Helmholtz
problem in a 2D spatial domain are shown in Section 7, and conclusions are
drawn in Section 8.

1 Problem setting

Let D be an open bounded Lipschitz domain in Rd (d = 1, 2, 3). We consider the
Helmholtz problem with parametric wavenumber k2 ∈ K := [k2min, k

2
max] ⊂ R+:

−∆u− k2u = f in D, (2)

endowed with homogeneous either Dirichlet or Neumann boundary conditions.
Let us denote with V either the Hilbert space H1

0 (D) or H1(D), in case problem
(2) is endowed with Dirichlet or Neumann homogeneous boundary conditions on
∂D, respectively. Moreover we assume the functions in V to be complex-valued.

Given a real positive weight w > 0, with the physical dimension of (length)−1,
we denote by ‖·‖V,w the (weighted) H1(D)-norm:

‖v‖2V,w = ‖∇v‖2L2(D) + w2 ‖v‖2L2(D) . (3)

Note that the (weighted) H1(D)-norm is equivalent to the standard H1(D)-norm,
indeed:

√

min{1, w2} ‖u‖H1(D) 6 ≤ ‖u‖V,w ≤
√

max{1, w2} ‖u‖H1(D) . (4)

Moreover, we notice that standard analysis for the Helmholtz problem for a
fixed wavenumber k is done in the weighted H1(D)-norm ‖·‖V,w with w = k
(see, e.g. [24]).

The weak formulation of the parametric problem (2) is: given f ∈ L2(D),
find u(k2, ·) ∈ V such that

∫

D
∇u(k2,x)·∇v(x) dx−k2

∫

D
u(k2,x)v(x) dx =

∫

D
f(x)v(x) dx ∀v ∈ V, (5)

with k2 ∈ K. We introduce the solution map

S : K → V,
k2 7→ u(k2, ·). (6)
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The solution map S is well-defined provided that k2 /∈ Λ, Λ := {λi} being the set
of (real, non negative) eigenvalues of the Laplace operator with the considered
boundary conditions.

2 The Helmholtz problem with complex-valued wavenum-

ber

We extend the solution map defined in (6) to the complex plane:

S : C → V
z 7→ u(z, ·), (7)

where u(z, ·) solves
∫

D
∇u(z,x) · ∇v(x) dx− z

∫

D
u(z,x)v(x) dx =

∫

D
f(x)v(x) dx ∀v ∈ V. (8)

Whenever Im (z) 6= 0, problem (8) contains the damping term

i Im (z)

∫

D
u(z,x)v(x) dx.

The next theorem states the well-posedness of (8) for all z ∈ C\Λ. The reason
why we consider also wavenumbers z with negative real part will be clarified in
Section 6 (see Remark 6.1).

Theorem 2.1 Let z ∈ C\Λ. Then problem (8) admits a unique solution. More-
over, if

min
j:λj∈Λ

|λj − z| > α > 0, (9)

then the unique solution u(z,x) satisfies the a priori bound

‖u(z, ·)‖V,w ≤
√

|z − λmin|+ |Re (z)|+ w2

α
‖f‖L2(D) , (10)

where
λmin := min{λ ∈ Λ} (11)

is the smallest eigenvalue of the Laplace operator with the considered boundary
conditions.

Proof. We start by proving that problem (8) admits a unique solution.
We consider first the case z ∈ C \ R+. We prove that the bilinear form

Bz(u, v) :=

∫

D

∇u(z,x) · ∇v(x) dx− z

∫

D

u(z,x)v(x) dx

which appears in problem (8) is coercive and continuous.
We distinguish two cases.
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(a) Let z ∈ C− := R− + iR. In this case, we have

|Bz(u, u)| ≥ |Re (Bz(u, u))| ≥ min

{

1,−Re (z)

w2

}

‖u‖2V,w .

The coercivity of the bilinear form Bz(·, ·) is then proved with constant min
{

1,−Re(z)
w2

}

.

The continuity of Bz(·, ·) holds with continuity constant max
{

1, |z|
w2

}

, so that,

thanks to the Lax-Milgram Lemma, we conclude the existence and uniqueness of
the solution of problem (8) for every z ∈ C−.

(b) Let z ∈ C+ and Im (z) 6= 0, with C+ := R++iR. In this case, we prove the coercivity
of Bz(·, ·) following [23, Chapter 2]. Since for every ν ∈ C,

√
2 |ν| ≥ |Re (ν)|+ |Im (ν)|,

we have √
2 |Bz(u, u)| ≥ |Re (Bz(u, u))|+ |Im (Bz(u, u))|.

Moreover, for every 0 < ε < 1, |µ| ≥ εµ with µ ∈ R. Hence,

√
2 |Bz(u, u)| ≥ εRe (Bz(u, u)) + |Im (Bz(u, u))|

= ε
(

‖∇u(z, ·)‖2L2(D) − Re (z) ‖u(z, ·)‖2L2(D)

)

+ |Im (z)| ‖u(z, ·)‖2L2(D)

= ε ‖∇u(z, ·)‖2L2(D) + (−εRe (z) + |Im (z)|) ‖u(z, ·)‖2L2(D)

≥ min

{

ε,
|Im (z)| − εRe (z)

w2

}

‖u(z, ·)‖2V,w .

Provided that 0 < ε < min
{

1, |Im(z)|
Re(z)

}

, the coercivity of the bilinear form Bz(·, ·) is

then proved with coercivity constant 1√
2
min

{

ε, |Im(z)|−εRe(z)
w2

}

. As in the previous

case, the continuity of Bz(·, ·) holds with constant max
{

1, |z|
w2

}

, and the existence

and uniqueness of the solution of problem (8) follows by the Lax-Milgram Lemma.

For the case z ∈ R+ \ Λ, problem (8) admits a unique solution by the Fredholm
alternative.

It remains to show the a-priori bound (10).
Let {ϕl} be the L2(D)-orthogonal set of eigenfunctions of the Laplacian (with

the considered boundary conditions) corresponding to the eigenvalues {λl}. Observe
that the set {ϕl} is orthogonal also with respect to the (weighted) H1(D)-norm, and
‖∇ϕl‖2L2(D) = λl ‖ϕl‖2L2(D).

Replacing the eigenfunction expansions u(z,x) =
∑

l

ul(z)ϕl(x) and f(x) =
∑

l

flϕl(x)

into the Helmholtz problem, we derive

uj(z) =
fj

λj − z
. (12)
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We express the norm of u as follows:

‖u(z, ·)‖2V,w = ‖∇u(z, ·)‖2L2(D) + w2 ‖u(z, ·)‖2L2(D)

=

∫

D

∣

∣

∣

∣

∣

∑

l

ul(z)∇ϕl(x)

∣

∣

∣

∣

∣

2

dx+ w2

∫

D

∣

∣

∣

∣

∣

∑

l

ul(z)ϕl(x)

∣

∣

∣

∣

∣

2

dx

=
∑

l

|ul(z)|2 ‖∇ϕl‖2L2(D) + w2
∑

l

|ul(z)|2 ‖ϕl‖2L2(D)

=
∑

l

(λl + w2) |ul(z)|2 ‖ϕl‖2L2(D) .

Using (12) we obtain

‖u(z, ·)‖2V,w =
∑

l

λl + w2

|λl − z|2
|fl|2 ‖ϕl‖2L2(D) .

The coefficient
λl + w2

|λl − z|2
can be bounded uniformly with respect to l. In order to do

this, define the function g : R+ → R as g(x) :=
x+ w2

|x− z|2
for x 6= z, and observe that

g(x) =
x− Re (z) + Re (z) + w2

|x− z|2
≤ |x− Re (z)|+ |Re (z)|+ w2

|x− z|2
≤ |x− z|+ |Re (z)|+ w2

|x− z|2
.

Provided that x 6= z, let y := |x− z| and h(y) :=
y + |Re (z)|+ w2

y2
, so that g(x) ≤ h(y).

Since h′(y) = −y + 2 |Re (z)|+ 2w2

y3
< 0, the function h is decreasing and its maximum

is achieved when y is the smallest possible. Let λ⋆
z := argminλ∈Λ {|λ− z|} be the closest

eigenvalue to z. Then, for any λl ∈ Λ,

g(λl) ≤ h(|λ⋆
z − z|) = |λ⋆

z − z|+ |Re (z)|+ w2

|λ⋆
z − z|2

.

As in formula (11), we denote with λmin the smallest eigenvalue of the Laplace operator
with the considered boundary conditions. Then,

|λ⋆
z − z|+ |Re (z)|+ w2 ≤ |λmin − z|+ |Re (z)|+ w2.

Using assumption (9) we deduce that

λl + w2

|λl − z|2
= g(λl) ≤

|λmin − z|+ |Re (z)|+ w2

α2
.

Finally, we conclude:

‖u(z, ·)‖2V,w ≤ |λmin − z|+ |Re (z)|+ w2

α2

∑

l

|fl|2 ‖ϕl‖2L2(D)

=
|λmin − z|+ |Re (z)|+ w2

α2
‖f‖2L2(D) .

✷
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Remark 2.1 For a Helmholtz problem with fixed wavenumber z with Re (z) > 0,
it is reasonable to take the weighted H1(D)-norm (3) with w2 = Re (z). With
this choice, the estimate (10) becomes:

‖u(z, ·)‖V,w ≤
√

|z − λmin|+ 2Re (z)

α
‖f‖L2(D) .

z
4 5 6 7 8 9 10 11 12 13 14 15

100

101

102

103

104

105

bound
‖u(z, ·)‖

V,
√

Re(z0)

Figure 1: Numerical testing of the bound (10). The Helmholtz problem (8)
with homogeneous Dirichlet boundary conditions on ∂D, D = [0, π] × [0, π], is
considered. The interval of interest K = [k2min, k

2
max] = [4, 15] is partitioned into

150 intervals all with the same length. At each point z of the grid, the norm
‖u(z, ·)‖V,w of the Helmholtz solution, with w2 = Re (z0) and z0 = 10 + i

2 , is
computed (solid line) and compared with the right-hand side of the bound (10)
(dashed line).

Figure 1 refers to the Helmholtz problem (8) coupled with homogeneous
Dirichlet boundary conditions on ∂D, where D = [0, π] × [0, π]. Let ν2 = 12 ∈
R+ \ Λ and d = (cos(π/6), sin(π/6)) ∈ R2. The loading term f(x) is such that
the unique solution u(x) of the considered Helmholtz problem with wavenum-
ber ν2 is the product between the plane wave travelling along the direction d,
v(x) = e−iνd·x, and the bubble φ(x) = 16

π4x1x2(x1 − π)(x2 − π).
We choose the interval of interest K = [k2min, k

2
max] = [4, 15], which contains four

eigenvalues of the Laplace problem with the considered boundary conditions:
λ = 5 (double), 8 (single), 10 (double), 13 (double). We partition the interval
of interest K in 150 intervals with all the same length. At each point z of the
mesh we firstly compute the solution of the Helmholtz problem u(z, ·) ∈ H1

0 (D)
via the P3 continuous Finite Element (FE) method. The weighted H1(D)-norm
‖u(z, ·)‖

V,
√

Re(z0)
is calculated, with weight equal to the square root of the real
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part of z0 = 10+ i
2 . We observe that the upper bound (10) (dashed line) behaves

as the norm of the solution (solid line).

3 Regularity of the solution map

In Section 2, we have introduced the solution map S (see (7)) which associates
to each z ∈ C \ Λ the solution u(z, ·) of the damped Helmholtz problem (8). In
the following, we prove the regularity properties of this mapping.

Proposition 3.1 The solution map S : C \ Λ → V defined in (7), with V
endowed with the norm ‖·‖V,w, is continuous.

Proof. We have to verify that, for every z ∈ C \ Λ,

lim
h→0

‖S(z + h)− S(z)‖V,w = 0, with h ∈ C \ {0}, (13)

where S(z + h) := u(z + h, ·) is the unique solution of
∫

D

∇u(z + h,x) · ∇v(x) dx− (z + h)

∫

D

u(z + h,x)v(x) dx =

∫

D

f(x)v(x) dx. (14)

Recall that S(z) := u(z, ·) is the unique solution of (8).
∫

D

∇u(z,x) · ∇v(x) dx− z

∫

D

u(z,x)v(x) dx =

∫

D

f(x)v(x) dx. (15)

Taking the difference of the weak formulations (14) and (8), we find

0 =

∫

D

∇ (u(z + h,x)− u(z,x)) · ∇v(x) dx− (z + h)

∫

D

u(z + h,x)v(x) dx

+ z

∫

D

u(z,x)v(x) dx

=

∫

D

∇ (u(z + h,x)− u(z,x)) · ∇v(x) dx− (z + h)

∫

D

(u(z + h,x)− u(z,x)) v(x) dx

− h

∫

D

u(z,x)v(x) dx.

The function wh(x) := u(z + h,x)− u(z,x) solves
∫

D

∇wh(x) · ∇v(x) dx− (z + h)

∫

D

w(x)v(x) dx = h

∫

D

u(z,x)v(x) dx. (16)

Theorem 2.1 states that Problem (16) is well-posed and its unique solution satisfies the
upper bound (10):

‖wh(z + h, ·)‖V,w ≤
√

|z + h− λmin|+ |Re (z + h)|+ w2
∣

∣λ⋆
z+h − z

∣

∣

|h| ‖u(z, ·)‖L2(D)

where λ⋆
z+h := argminλ∈Λ {|λ− (z + h)|} and λ⋆

z+h
h→0−−−→ λ⋆

z. Hence,

lim
h→0

‖u(z + h, ·)− u(z, ·)‖V,w = lim
h→0

‖wh(z + h, ·)‖V,w = 0,

9



so that (13) is verified. ✷

Proceeding as in [10, 27], we prove now that the solution map S admits
complex derivative.

Proposition 3.2 For any z ∈ C \ Λ, the solution map S admits a complex

derivative
dS
dz

, which is the unique solution of

∫

D
∇dS

dz
· ∇v dx− z

∫

D

dS
dz

v dx =

∫

D
S(z)v dx, ∀v ∈ V. (17)

Proof. The complex derivative
dS
dz

is defined as

dS
dz

(z) := lim
h→0

S(z + h)− S(z)
h

= lim
h→0

u(z + h, ·)− u(z, ·)
h

, h ∈ C \ {0}.

Define the difference quotient

wh(z, ·) :=
u(z + h, ·)− u(z, ·)

h
. (18)

As in the proof of Proposition 3.1, we take the difference between the weak formula-
tions (14) and (8) solved by u(z + h) and u(z), respectively:

0 =

∫

D

∇(u(z + h,x)− u(z,x)) · ∇v(x) dx− z

∫

D

(u(z + h,x)− u(z,x))v(x) dx

− (z + h)

∫

D

u(z + h,x)v(x) dx+ z

∫

D

u(z + h,x)v(x) dx

= h

∫

D

∇wh(z,x) · ∇v(x) dx− zh

∫

D

wh(z,x)v(x) dx− h

∫

D

u(z + h,x)v(x) dx.

Then, wh(z, ·) is the unique solution of
∫

D

∇wh(z,x)·∇v(x) dx−z

∫

D

wh(z,x)v(x) dx =

∫

D

u(z+h,x)v(x) dx, ∀v ∈ V. (19)

Taking the limit as h → 0 in (19) and using the continuity of S (see Proposition 3.1), we
derive problem (17), which is well-posed provided that z /∈ Λ. Hence, for any z ∈ C \Λ,

the complex derivative
dS
dz

(z) exists and is the unique solution of (17). ✷

Proposition 3.2 states that the solution map S is holomorphic in C except
in the set of isolated points Λ = {λj}, i.e., S ∈ H (C \ Λ;V ), where H (U ;V )
is the space of holomorphic mappings from U ⊂ C with values in V . Since the
multiplicity µj of every eigenvalue λj is finite for every j (see e.g. [20], Chapter
6), to each eigenvalue λj there correspond µj eigenfunctions {ϕi}i=1,...,µj . The
eigenfunction expansion of the solution map S is then

S(z) = u(z,x) =

∞
∑

j=1

µj
∑

i=1

uj,i(z)ϕj,i(x)
(12)
=

∞
∑

j=1

µj
∑

i=1

fj,i
λj − z

ϕj,i(x).

We deduce that every eigenvalue λj is a pole with multiplicity one, and that the
solution map S is meromorphic, according to the following definition (see e.g.
[18, page 7], [6, page 356]).
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Definition 3.1 A function T : U ⊂ C → V is called meromorphic if there exists
a discrete subset W of U such that T ∈ H (U \W ;V ) and, for each τ ∈ W , there
exists k ∈ N such that (z−τ)kT (z) admits holomorphic extension in τ . We write
T ∈ M (U ;V ).

4 Construction of the Padé approximant

In this section, we construct a Padé approximant of a holomorphic mapping
T : C → V . We follow the procedure illustrated in [14], with the difference
that we are interested in the case where the mapping T is univariate, instead of
multivariate, but with values in a Hilbert space, instead of in C. We denote the
Padé approximation of T as T[M/N ] : C → V . It is defined as the ratio of two
polynomials of degree M and N respectively:

T[M/N ](z) :=
P[M/N ](z)

Q[M/N ](z)
. (20)

The denominator Q[M/N ] ∈ PN (C), where PN (C) denotes the space of polynomi-
als of degree at most N , is a function of z only. The numerator P[M/N ] : C → V
is a function of both the complex variable z and the space variable x ∈ D. More
precisely, P[M/N ](z) =

∑M
i=0 pi(z)z

i, with coefficients pi(z) ∈ V . In the following
we denote by PM (C;V ) the space of polynomials of degree at most M in z ∈ C

with coefficients in V .
We start the construction of (20) by introducing the following notation. Let

T : C → V be a mapping which is holomorphic around z0 ∈ C. Then T (z) can
be expressed as the Taylor series

T (z) =
∞
∑

α=0

(

T (z)
)

z0,α
(z − z0)

α,

with z in a neighborhood of z0, where
(

T (z)
)

z0,α
∈ V is the α-th order Fréchet

derivative of T in z0 divided by α ! (see e.g. [1, Chapter 1]). Recall the Cauchy
formula:

(

T (z)
)

z0,α
=

1

2πi

∫

γ

T (z)

(z − z0)α+1
dz, (21)

where γ is a circle centered at z0 and contained in the region of holomorphy of

T . Moreover, given E ∈ N, denote with
(

T (z)
)E

z0
the Taylor polynomial of T of

degree E,

(

T (z)
)E

z0
=

E
∑

α=0

(

T (z)
)

z0,α
(z − z0)

α. (22)

To lighten the notation, in the following we will take z0 = 0, and we will denote

the Taylor coefficients
(

T (z)
)

z0,α
simply as

(

T (z)
)

α
, and

(

T (z)
)E

z0
, the Taylor

polynomial of degree E, simply as
(

T (z)
)E

. It is understood that all results

11



generalize straightforwardly to the case 0 6= z0 ∈ C. The construction of the Padé
approximation (20) relies on the minimization problem involving the following
functional.

Definition 4.1 Let V be a Hilbert space, T : C → V a mapping which is holo-
morphic around the origin, and ρ ∈ R+. Given P ∈ PM (C;V ), Q ∈ PN (C) and
E ∈ N, we define

jE(P,Q) :=

(

E
∑

α=0

∥

∥

(

Q(z)T (z)− P (z)
)

α

∥

∥

2

V,w
ρ2α

)1/2

. (23)

The functional (23) can be defined equivalently using the following charac-
terization.

Lemma 4.1 Set γ := ∂B(0, ρ), where B(0, ρ) is the open disk centered at the
origin and with radius ρ > 0. Then it holds

jE(P,Q) =

(

1

2πi

∫

γ

∥

∥

∥

(

Q(z)T (z)− P (z)
)E
∥

∥

∥

2

V,w

1

z
dz

)1/2

=

(∫ 1

0

∥

∥

∥

(

Q(ρe2πiθ)T (ρe2πiθ)− P (ρe2πiθ)
)E
∥

∥

∥

2

V,w
dθ

)1/2

,

(24)

where the notation with the index E is defined in (22) and in the text thereafter.

Proof. The second indentity in (24) simply follows from the change of variable
z = ρe2πiθ.

Denoting with 〈·, ·〉V,w the weighted scalar product in V which induces the norm
‖·‖V,w, we have

∫ 1

0

∥

∥

∥

(

Q(ρe2πiθ)T (ρe2πiθ)− P (ρe2πiθ)
)E
∥

∥

∥

2

V,w
dθ

=

∫ 1

0

〈

(

Q(ρe2πiθ)T (ρe2πiθ)− P (ρe2πiθ)
)E

,
(

Q(ρe2πiθ)T (ρe2πiθ)− P (ρe2πiθ)
)E
〉

V,w
dθ

(22)
=

∫ 1

0

〈

E
∑

α=0

(

Q(ρe2πiθ)T (ρe2πiθ)− P (ρe2πiθ)
)

α
ραe2πiθα,

E
∑

β=0

(

Q(ρe2πiθ)T (ρe2πiθ)− P (ρe2πiθ)
)

β
ρβe2πiθβ

〉

V,w

dθ

=

E
∑

α=0

E
∑

β=0

〈

(

Q(ρe2πiθ)T (ρe2πiθ)− P (ρe2πiθ)
)

α
,
(

Q(ρe2πiθ)T (ρe2πiθ)− P (ρe2πiθ)
)

β

〉

V,w

·
∫ 1

0

ραe2πiθαρβe2πiθβdθ.

Since
∫ 1

0

ραe2πiθαρβe2πiθβdθ =

{

ρ2α, if α = β
0, if α 6= β,

12



taking into account the definition (23), we obtain the first identity in (24). ✷

We can now define the Padé approximant of T .

Definition 4.2 Let M,N ∈ N, E ≥ M +N , and ρ ∈ R+. Let T : C → V be as

in Definition 4.1. A Padé approximant of T is a quotient
P

Q
with P ∈ PM (C;V ),

Q ∈ PN (C),
∑N

α=0

∣

∣

(

Q
)

α

∣

∣

2
= 1 such that

jE(P,Q) ≤ jE(R,S) ∀R ∈ PM (C;V ) , ∀S ∈ PN (C)with
N
∑

α=0

∣

∣

(

S
)

α

∣

∣

2
= 1.

(25)

A solution of this problem will be denoted as T[M/N ] =
P[M/N ]

Q[M/N ]
.

Comments on the choice of ρ will be given at end of Section 5.

Proposition 4.1 (Existence of the Padé approximant) The minimization
problem (25) admits at least one solution.

Proof. Note that

jE(P,Q)2 =

M
∑

α=0

∥

∥

(

Q(z)T (z)− P (z)
)

α

∥

∥

2

V,w
ρ2α +

E
∑

α=M+1

∥

∥

(

Q(z)T (z)− P (z)
)

α

∥

∥

2

V,w
ρ2α

=
M
∑

α=0

∥

∥

(

Q(z)T (z)− P (z)
)

α

∥

∥

2

V,w
ρ2α +

E
∑

α=M+1

∥

∥

(

Q(z)T (z)
)

α

∥

∥

2

V,w
ρ2α.

Taking P = P̄ (Q), where P̄ (Q) satisfies
(

P̄ (z)
)

α
=
(

Q(z)T (z)
)

α
for 0 ≤ α ≤ M ,

problem (25) can be formulated as a minimization problem in Q only (see [17, Remark

2.3]): find Q ∈ PN (C) s.t.
∑N

α=0

∣

∣

(

Q
)

α

∣

∣

2
= 1 and

jE(P̄ (Q), Q) ≤ jE(P̄ (S), S) ∀S ∈ PN (C)with
N
∑

α=0

∣

∣

(

S
)

α

∣

∣

2
= 1. (26)

Since jE(P̄ , ·) is continuous and the unit sphere in CN+1 is compact, the minimization
problem (26) admits at least one solution. ✷

Note that Definition 4.1 and Definition 4.2 generalize without difficulty to
the case T : C → V holomorphic in the open disk B(z0, ρ), z0 ∈ C, expanded
around z0.

5 Padé Approximation properties

The main result of this section is Theorem 5.1, which adapts the result of [14] to
the case of T : C → V .

We make the following assumptions on T .
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• T is meromorphic in the closed disk B(0, R), with R > 0.

• T (z) =
h(z)

g(z)
an irreducible fraction, with h : C → V holomorphic in

B(0, R) and g ∈ PN (C) such that g(0) 6= 0 and g is N -maximal, i.e.,
for every polynomial f , the condition gf ∈ PN (C) implies f ∈ C. We

assume g to be such that
N
∑

α=0

∣

∣

(

g
)

α

∣

∣

2
= 1.

Lemma 5.1 Let (PM , QN ) ∈ (PM (C;V ) ,PN (C)) be a solution of problem (25),
and let E ≥ M+N be such that E−M is independent of M . Define the mapping
HM : C → V as

HM (z) :=
(

QN (z)T (z)− PM (z)
)

g(z), (27)

which is holomorphic in the closed disk B(0, R). Then, for any z such that
|z| < ρ < R, it holds

∥

∥HM (z)
∥

∥

V,w
≤ CH sup

z∈∂B(0,R)
‖T (z)‖V,w

( ρ

R

)M+1
, (28)

where the constant CH > 0 depends on N , |z|, ρ and R. Moreover, for any
z ∈ B(0, R), it holds

lim
M→∞

∥

∥HM (z)
∥

∥

V,w
= 0 (29)

uniformly on all compact subsets of B(0, R).

Proof. The proof of Lemma 5.1 follows the same steps as the proof of Lemma 3.2
in [14]. We first prove the upper bound (28), and then we derive the limit (29).

Proof of the upper bound (28).
Let us fix z ∈ B(0, ρ) with ρ < R. Since HM ∈ H (B(0, R);V ), it coincides with its

Taylor series

HM (z) =

∞
∑

α=0

(

HM (z)
)

α
zα =

E
∑

α=0

(

HM (z)
)

α
zα +

∑

α>E

(

HM (z)
)

α
zα.

In the rest of this proof, we omit the argument z (or R, e2πiθ) of the functions whenever
this does not generate confusion.

In order to prove (28), we bound the norm ‖·‖V,w of the coefficients
(

HM (z)
)

α
. We

distinguish the two cases 0 ≤ α ≤ E and α > E.

Case α > E Observe that gPM ∈ PM+N (C;V ). Since E ≥ M + N , then
(

HM
)

α
=

(

g QNT
)

α
=
(

QNh
)

α
and, using the Cauchy formula,

(

HM
)

α
=

1

2πi

∫

∂B(0,R)

QN (z)h(z)

zα+1
dz.
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Hence,

∥

∥

(

HM
)

α

∥

∥

V,w
=

∥

∥

∥

∥

∥

1

2πi

∫

∂B(0,R)

QN (z)h(z)

zα+1
dz

∥

∥

∥

∥

∥

V,w

=

∥

∥

∥

∥

∫ 1

0

QN (Re2πiθ)h(Re2πiθ)

(Re2πiθ)α
dθ

∥

∥

∥

∥

V,w

≤ sup
z∈∂B(0,R)

∥

∥QN (z)h(z)
∥

∥

V,w

1

Rα
. (30)

Case 0 ≤ α ≤ E Due to the definition (27) of HM ,
(

HM
)

α
=
((

QNT − PM
)E

g
)

α
.

Thanks to the Cauchy formula,
(

HM
)

α
=

1

2πi

∫

∂B(0,ρ)

(

QNT − PM
)E

g

zα+1
dz. Hence,

∥

∥

(

HM
)

α

∥

∥

V,w
=

∥

∥

∥

∥

∥

1

2πi

∫

∂B(0,ρ)

(

QNT − PM
)E

g

zα+1
dz

∥

∥

∥

∥

∥

V,w

=

∥

∥

∥

∥

∥

∫ 1

0

(

QNT − PM
)E

g

(ρ e2πiθ)α
dθ

∥

∥

∥

∥

∥

V,w

≤
∫ 1

0

∥

∥

∥

∥

∥

(

QNT − PM
)E

g

(ρ e2πiθ)α

∥

∥

∥

∥

∥

V,w

dθ =

∫ 1

0

|g|
ρα

∥

∥

∥

(

QNT − PM
)E
∥

∥

∥

V,w
dθ

≤
(

∫ 1

0

( |g|
ρα

)2

dθ

)1/2
(∫ 1

0

∥

∥

∥

(

QNT − PM
)E
∥

∥

∥

2

V,w
dθ

)1/2

(24)
=

(

∫ 1

0

( |g|
ρα

)2

dθ

)1/2

jE(P
M , QN )

≤ sup
z∈∂B(0,ρ)

|g(z)| 1

ρα
jE(P

M , QN ), (31)

with jE(P
M , QN ) as in Definition 4.1. By assumption, (PM , QN ) is a solution

of (25), so that jE(P
M , QN ) ≤ jE(hM , g), where hM =

M
∑

α=0

(

h
)

α
zα ∈ PM (C;V )

and g ∈ PN (C) with
N
∑

α=0

∣

∣

(

g
)

α

∣

∣

2
= 1. Using definition (23), we find

jE(hM , g) =

(

E
∑

α=0

∥

∥

(

gT − hM

)

α

∥

∥

2

V,w
ρ2α

)1/2

=

(

E
∑

α=0

∥

∥

(

h− hM

)

α

∥

∥

2

V,w
ρ2α

)1/2

=

(

E
∑

α=M+1

∥

∥

(

h
)

α

∥

∥

2

V,w
ρ2α

)1/2

(24)
=





1

2πi

∫

∂B(0,ρ)

∥

∥

∥

∥

∥

E
∑

α=M+1

(

h
)

α
zα

∥

∥

∥

∥

∥

2

V,w

dz





1/2

=





∫ 1

0

∥

∥

∥

∥

∥

E
∑

α=M+1

(

h
)

α
(ρ e2πiθ)α

∥

∥

∥

∥

∥

2

V,w

dθ





1/2

. (32)
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We bound the term
∥

∥

∥

∑E
α=M+1

(

h
)

α
(ρ e2πiθ)α

∥

∥

∥

V,w
as follows:

∥

∥

∥

∥

∥

E
∑

α=M+1

(

h
)

α
(ρ e2πiθ)α

∥

∥

∥

∥

∥

V,w

=

∥

∥

∥

∥

∥

E
∑

α=M+1

1

2πi

∫

∂B(0,R)

h(ξ)

ξα+1
(ρ e2πiθ)αdξ

∥

∥

∥

∥

∥

V,w

=

∥

∥

∥

∥

∥

E
∑

α=M+1

∫ 1

0

h(Re2πiω)

(Re2πiω)α
(ρ e2πiθ)αdω

∥

∥

∥

∥

∥

V,w

≤
E
∑

α=M+1

( ρ

R

)α
∫ 1

0

∥

∥h(Re2πiω)
∥

∥

V,w
dω

=
1−

(

ρ
R

)E−M

1− ρ
R

( ρ

R

)M+1

sup
z∈∂B(0,R)

‖h(z)‖V,w . (33)

Using the estimate (33) inside (32), we have

jE(hM , g) ≤ 1−
(

ρ
R

)E−M

1− ρ
R

( ρ

R

)M+1

sup
z∈∂B(0,R)

‖h(z)‖V,w .

Hence, thanks to (31), we conclude

∥

∥

(

HM
)

α

∥

∥

V,w
≤ 1−

(

ρ
R

)E−M

1− ρ
R

sup
z∈∂B(0,R)

‖h(z)‖V,w sup
z∈∂B(0,ρ)

|g(z)| 1

ρα

( ρ

R

)M+1

.

(34)

Putting together the bounds (30) and (34) we have obtained for
∥

∥

(

HM (z)
)

α

∥

∥

V,w
in

the cases 0 ≤ α ≤ E and α > E, respectively, we get

∥

∥HM (z)
∥

∥

V,w
≤ c1 sup

z∈∂B(0,R)

‖h(z)‖V,w sup
z∈∂B(0,ρ)

|g(z)|
( ρ

R

)M+1 E
∑

α=0

( |z|
ρ

)α

+ sup
z∈∂B(0,R)

∥

∥QN (z)h(z)
∥

∥

V,w

∑

α>E

( |z|
R

)α

, (35)

with c1 =
1−( ρ

R )
E−M

1− ρ
R

. Observe that

E
∑

α=0

( |z|
ρ

)α

=
1−

(

|z|
ρ

)E+1

1− |z|
ρ

,

and, using |z| < ρ,

∑

α>E

( |z|
R

)α

=
∞
∑

α=0

( |z|
R

)α

−
E
∑

α=0

( |z|
R

)α

=
1

1− |z|
R

( |z|
R

)E+1

≤ 1

1− |z|
R

( ρ

R

)E+1

.

Therefore, the bound (35) gives

∥

∥HM (z)
∥

∥

V,w
≤ c1

1−
(

|z|
ρ

)E+1

1− |z|
ρ

sup
z∈∂B(0,R)

‖h(z)‖V,w sup
z∈∂B(0,ρ)

|g(z)|
( ρ

R

)M+1

+
1

1− |z|
R

sup
z∈∂B(0,R)

∥

∥QN (z)h(z)
∥

∥

V,w

( ρ

R

)E+1

. (36)
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We bound now the three quantities supz∈∂B(0,ρ) |g(z)|, supz∈∂B(0,R) ‖h(z)‖V,w and
supz∈∂B(0,R)

∥

∥QN (z)h(z)
∥

∥

V,w
. Since

|g(z)| =
∣

∣

∣

∣

∣

N
∑

α=0

(

g
)

α
zα

∣

∣

∣

∣

∣

≤
(

N
∑

α=0

∣

∣

(

g
)

α

∣

∣

2

)1/2( N
∑

α=0

|z|2α
)1/2

=

(

N
∑

α=0

|z|2α
)1/2

,

then

sup
z∈∂B(0,ρ)

|g(z)| ≤ sup
z∈∂B(0,ρ)

(

N
∑

α=0

|z|2α
)1/2

=

(

N
∑

α=0

ρ2α

)1/2

=

(

1− ρ2(N+1)

1− ρ2

)1/2

:= c′1.

(37)
In the same way,

sup
z∈∂B(0,R)

|g(z)| ≤
(

1−R2(N+1)

1−R2

)1/2

:= c′′1 . (38)

In order to bound supz∈∂B(0,R) ‖h(z)‖V,w we recall that T (z) =
h(z)

g(z)
and thus

sup
z∈∂B(0,R)

‖h(z)‖V,w ≤ sup
z∈∂B(0,R)

|g(z)| sup
z∈∂B(0,R)

‖T (z)‖V,w ≤ c′′1 sup
z∈∂B(0,R)

‖T (z)‖V,w .

(39)
Proceeding as in (37), we obtain that

sup
z∈∂B(0,R)

∣

∣QN (z)
∣

∣ ≤
(

1−R2(N+1)

1−R2

)1/2

:= c2. (40)

Finally,

sup
z∈∂B(0,R)

∥

∥QN (z)h(z)
∥

∥

V,w
≤ sup

z∈∂B(0,R)

∣

∣QN (z)
∣

∣ sup
z∈∂B(0,R)

‖h(z)‖V ≤ c2 c
′′
1 sup
z∈∂B(0,R)

‖T (z)‖V,w .

(41)
Thus, using (39), (37) and (41) inside (36), we conclude

∥

∥HM (z)
∥

∥

V,w
≤






C1

1−
(

|z|
ρ

)E+1

1− |z|
ρ

+ C2
1

1− |z|
R

( ρ

R

)E−M






sup

z∈∂B(0,R)

‖T (z)‖V,w
( ρ

R

)M+1

,

(42)
with C1 = c1 c

′
1 c

′′
1 and C2 = c2 c

′′
1 . The upper bound (28) follows from (42).

Proof of the limit (29).
Let A ⊂ B(0, R) be compact, and let ρA be the Hausdorff distance between {0} and

A, i.e., ρA := dist(0, A) = maxz∈A |z|. In the case ρA < ρ, the limit (29) follows by (35)
observing that

E
∑

α=0

( |z|
ρ

)α

≤
E
∑

α=0

(

ρA
ρ

)α

=
1−

(

ρA

ρ

)E+1

1− ρA

ρ

,

and
∑

α>E

( |z|
R

)α

≤
∑

α>E

(ρA
R

)α

=
1

1− ρA

R

(ρA
R

)E+1

. (43)
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On the other hand, if ρA > ρ, the limit (29) follows by (35) when using (43) and
observing that

( ρ

R

)M+1 E
∑

α=0

( |z|
ρ

)α

≤
( ρ

R

)M+1 E
∑

α=0

(

ρA
ρ

)α

=
(ρA
R

)M+1 E
∑

α=0

(

ρ

ρA

)M+1−α

=
(ρA
R

)M+1 M+1
∑

n=M+1−E

(

ρ

ρA

)n

=
(ρA
R

)M+1
[ −1

∑

n=M+1−E

(

ρ

ρA

)n

+

M+1
∑

n=0

(

ρ

ρA

)n
]

=
(ρA
R

)M+1
[

E−M−1
∑

n=1

(

ρA
ρ

)n

+

M+1
∑

n=0

(

ρ

ρA

)n
]

≤
(ρA
R

)M+1
[

E−M−1
∑

n=1

(

ρA
ρ

)n

+
1

1− ρ
ρA

]

M→∞−−−−→ 0

since E −M is independent of M by assumption, and ρA

R < 1. Finally, the case ρ = ρA
follows easily:

( ρ

R

)M+1 E
∑

α=0

( |z|
ρ

)α

≤
( ρ

R

)M+1 E
∑

α=0

(

ρA
ρ

)α

= (E + 1)
( ρ

R

)M+1 M→∞−−−−→ 0

since, by assumption, E −M is independent of M , so that E = M +N + δ, with δ > 0.
✷

In the next theorem, we prove the convergence of a Padé approximant uni-
formly on all compact subsets of B(0, R) \ G, where G is the set of all the N
roots of the polynomial g(z).

Theorem 5.1 Let G := {z ∈ C : g(z) = 0} be the set containing the roots of
g(z), and assume that G ⊂ B(0, R), and h(z) 6= 0 ∀z ∈ G. Let T[M/N ] be as in
Definition 4.2. Then,

lim
M→∞

∥

∥T[M/N ](z)− T (z)
∥

∥

V,w
= 0 (44)

uniformly on all compact subsets of B(0, R) \G.
In particular, for any compact subset A ⊂ B(0, ρ) \ G there exists M⋆ such

that, for all M ≥ M⋆ it holds

∥

∥T[M/N ](z)− T (z)
∥

∥

V,w
≤ C sup

z∈∂B(0,R)
‖T (z)‖V,w

( ρ

R

)M+1
(45)

where the constant C > 0 depends on ρA = dist(0, A) (ρA < ρ by assumption),
ρ, R, N and gA, with gA = minz∈A |g(z)|, but is independent of M (if ρA → ρ,
C = O(M)).

18



Proof. The proof of Theorem 5.1 is the generalization of the proof of Theorem 3.1
in [14].

Let (PM , QN ) ∈ (PM (C;V ) ,PN (C)) be as in Lemma 5.1. Observe that both PM

and QN depend on M . To emphasize this dependence, along this proof we denote QN

as QN
M . The proof is based on two steps. We first prove that the sequence of Padé

denominators
{

QN
M

}

M
converges to the polynomial g uniformly on all compact subsets

of C. Then we prove the error bound (45).

Convergence of the Padé denominator The sequence {QN
M}M is bounded in the

finite dimensional space PN (C) endowed with the norm ‖P‖ =
(

∑N
α=0 |Pα|2

)1/2

,

since, by construction,
∥

∥QN
M

∥

∥ = 1 for all M . Consider now an arbitrary subse-

quence {QN
Mj

}Mj
which converges to a polynomial Q ∈ PN (C), i.e.,

∥

∥

∥QN
Mj

−Q
∥

∥

∥

Mj→∞−−−−−→
0. The convergence in the norm ‖·‖ implies the uniform convergence on all com-
pact subsets of C. Indeed, for any compact subset A ⊂ C, it holds

max
z∈A

∣

∣

∣(QN
Mj

−Q)(z)
∣

∣

∣ = max
z∈A

∣

∣

∣

∣

∣

N
∑

α=0

(

QN
Mj

−Q
)

α
zα

∣

∣

∣

∣

∣

≤ max
z∈A

N
∑

α=0

∣

∣

∣

(

QN
Mj

−Q
)

α

∣

∣

∣ |z|α

≤ max
z∈A





(

N
∑

α=0

∣

∣

∣

(

QN
Mj

−Q
)

α

∣

∣

∣

2
)1/2( N

∑

α=0

|z|2α
)1/2



 =
∥

∥

∥QN
Mj

−Q
∥

∥

∥max
z∈A

(

N
∑

α=0

|z|2α
)1/2

.

Therefore,
∥

∥

∥QN
Mj

−Q
∥

∥

∥

Mj→∞−−−−−→ 0 implies maxz∈A

∣

∣

∣(QN
Mj

−Q)(z)
∣

∣

∣

Mj→∞−−−−−→ 0.

We prove that Q = g. Fix z0 ∈ G. Using definition (27), we have

HMj (z0) := QN
Mj

(z0)T (z0)g(z0)− PMj (z0)g(z0) = QN
Mj

(z0)h(z0).

Thanks to Lemma 5.1, limMj→∞
∥

∥HMj (z0)
∥

∥

V,w
= 0. Hence,

0 = lim
Mj→∞

∥

∥HMj (z0)
∥

∥

V,w
= lim

Mj→∞

∥

∥

∥QN
Mj

(z0)h(z0)
∥

∥

∥

V,w

= lim
Mj→∞

∣

∣

∣
QN

Mj
(z0)

∣

∣

∣
‖h(z0)‖V,w = |Q(z0)| ‖h(z0)‖V,w .

Since, by assumption, h(z0) 6= 0, then Q(z0) = 0. This is true for any z0 ∈ G;
therefore Q ∈ PN (C) has the same N roots as g, and thus Q = g.

We have proved that any convergent subsequence of {QN
M}M converges to g in the

‖·‖ norm and thus uniformly in all compact subsets of C. It follows that {QN
M}M

itself converges to g in the ‖·‖ norm and thus uniformly in all compact subsets of C.

Error bound Let A ⊂ B(0, ρ) \G be compact, and define

gA := min
z∈A

|g(z)| . (46)

Since the sequence {QN
M}M converges to g uniformly on all compact subsets of C,

there exists MgA such that, for all M ≥ MgA , supz∈A

∣

∣(QN
M − g)(z)

∣

∣ ≤ gA
2 . Then,

for any z ∈ A, it holds

|g(z)| ≤
∣

∣g(z)−QN
M (z)

∣

∣+
∣

∣QN
M (z)

∣

∣ ≤ gA
2

+
∣

∣QN
M (z)

∣

∣ ,
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which implies
∣

∣QN
M (z)

∣

∣ ≥ |g(z)| − gA
2

≥ gA
2
. (47)

For any fixed z ∈ A, it holds
∥

∥T (z)− T[M/N ](z)
∥

∥

V,w

=

∥

∥

∥

∥

(

QN
M (z)T (z)− PM (z)

) 1

QN
M (z)

∥

∥

∥

∥

V,w

=
1

∣

∣QN
M (z)

∣

∣

∥

∥QN
M (z)T (z)− PM (z)

∥

∥

V,w

=
1

∣

∣QN
M (z)

∣

∣

1

|g(z)|
∥

∥

(

QN
M (z)T (z)− PM (z)

)

g(z)
∥

∥

V,w
=

1
∣

∣QN
M (z)

∣

∣

1

|g(z)|
∥

∥HM (z)
∥

∥

V,w

≤ 2

(gA)2
∥

∥HM (z)
∥

∥

V,w

(42)

≤ 2

(gA)2






C1

1−
(

|z|
ρ

)E+1

1− |z|
ρ

( ρ

R

)M+1

+ C2
1

1− |z|
R

( |z|
R

)E+1






sup

z∈∂B(0,R)

‖T (z)‖V,w .

Let ρA = dist(0, A), so that |z| < ρA. Since, by assumption, ρA < ρ < R, we
obtain
∥

∥T (z)− T[M/N ](z)
∥

∥

V,w

≤ 2

(gA)2






C1

1−
(

ρA

ρ

)E+1

1− ρA

ρ

( ρ

R

)M+1

+ C2
1

1− ρA

R

(ρA
R

)E+1






sup

z∈∂B(0,R)

‖T (z)‖V,w

≤ 2

(gA)2






C1

1−
(

ρA

ρ

)E+1

1− ρA

ρ

+ C2
1

1− ρA

R

(ρA
R

)E−M






sup

z∈∂B(0,R)

‖T (z)‖V,w
( ρ

R

)M+1

Hence, inequality (45) follows with C = 2
(gA)2

[

C1
1−( ρA

ρ )
E+1

1− ρA
ρ

+ C2
1

1− ρA
R

(

ρA

R

)E−M
]

.

✷

Note that, given a compact subset A ⊂ B(0, ρ)\G, the rate of convergence of

a Padé approximation is
( ρ
R

)M+1
, with ρA < ρ < R. Therefore, it is convenient

to take ρ as small as possible, provided that A ⊂ B(0, ρ) \ G is satisfied; see
Figure 2.

6 Padé approximation of the Helmholtz equation with

parametric wavenumber

In this section, we detail the results obtained in Section 5 for the Helmholtz so-
lution map S defined in (7). In Section 3 we have shown that S is meromorphic
and the set Λ of eigenvalues of the Laplace problem with the considered bound-
ary conditions coincide with the set of poles of S. Specifically, each (single or
multiple) eigenvalue λ ∈ Λ is a pole of order one of S.
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Figure 2: Five poles of a meromorphic mapping T are represented (small circles).
The disk B(0, R) (solid line) contains exactly three poles of T . We consider a
Padé approximant T[M/N ] with N = 3. We are interested in approximating the
map T inside the compact subset A. Hence, we take ρ = ρA+ε, with 0 < ε ≪ 1,
and we construct the disk B(0, ρ) (dashed line). The rate of approximation of

the Padé approximant is
( ρ
R

)M+1
; see Theorem 5.1.

Let K = [k2min, k
2
max] ⊂ R+ be the frequency interval of interest, and z0 ∈

C \ Λ. To fix the ideas, we take z0 =
k2min+k2max

2 + δi, with δ ∈ R arbitrary.
Set ρ = ρK + ε, with 0 < ε ≪ 1 and ρK the Hausdorff distance between {z0}
and K, i.e., ρK = dist(z0,K) = maxz∈K |z0 − z|. Moreover, let N ∈ N be fixed,

M ≥ N and E ≥ M +N , with M,E ∈ N. Denote with S[M/N ] :=
P[M/N ]

Q[M/N ]
a Padé

approximant of the solution map S centered in z0, where P[M/N ] ∈ PM (C;V )
and Q[M/N ] ∈ PN (C).

Let R ∈ R+ be such that B(z0, R) contains exactly N poles of S, λℓ+1, . . . , λℓ+N ,
and such that

min
λ∈Λ\G

(

inf
z∈B(z0,R)

|z − λ|
)

> ε,

where G = {λℓ+1, . . . , λℓ+N}. We depict in Figure 3 a particular situation as an
example (N = 4 left and N = 5 right).

Since S is meromorphic in B(z0, R), we can write S as the ratio between
a holomorphic map h : B(z0, R) → V and a polynomial g of degree N , with
h(z) 6= 0 for every z such that g(z) = 0. Notice that g(z) = 0 if and only if
z ∈ G.

In Theorem 5.1, we have proved that, as M increases, the normalized sequence
{Q[M/N ]}M converges uniformly on all compact sets of C to a polynomial Q(z) =
∑N

α=0

(

Q
)

α
(z − z0)

α ∈ PN (C), with
∑N

α=0

∣

∣

(

Q
)

α

∣

∣

2
= 1. Moreover, from the

proof of Theorem 5.1, we have that Q = g. It follows that the N roots of Q
coincide with the set G.

Note that, in general, K ∩Λ ( G, i.e., not all the eigenvalues we are approx-
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Figure 3: Let K = [k2min, k
2
max] = [4, 15] be the interval of interest, and

z0 =
k2min+k2max

2 + i
2 be the center of the Padé approximation. The disk B(z0, ρ)

(dashed line) contains K. Given N = 4 (N = 5, respectively), the radius
R in the picture on the left (on the right, respectively) is chosen such that
B(z0, R) contains exactly four eigenvalues, i.e., λ2, λ3, λ4, λ5 (five eigenvalues,
i.e., λ1, λ2, λ3, λ4, λ5, respectively), and the distance to the first neglected one
is > ε.

imating belong to the interval of interest.
Theorem 5.1 gives an upper bound on the weighted H1(D)-norm ‖·‖V,w of

S(z) − S[M/N ](z) for any z ∈ B(z0, R). In this section, we choose the weight

w =
√

Re (z0) and deduce the following corollary.

Corollary 6.1 Given α > 0 small enough, introduce the open subset Kα ⊂ K

Kα :=
⋃

λ∈Λ∩K

(λ− α, λ+ α). (48)

Moreover, let N ∈ N be fixed, and let R ∈ R+ be such that the disk B(z0, R)
contains exactly N poles of S. Then there exists M⋆ ∈ N such that, for any
M ≥ M⋆ and for any z ∈ K \Kα, it holds

∥

∥S(z)− S(z)[M/N ]

∥

∥

V,
√

Re(z0)
≤ C

1

α

( ρ

R

)M+1
, (49)

where ρK < ρ < R, and the constant C > 0 depends on ρK , ρ, R, N , gK,α =
minz∈K\Kα

|g(z)|, z0, λmin = min{λ ∈ Λ}, and ‖f‖L2(D).

Proof. Theorem 5.1 applied to the solution map S states that there exists M⋆ such
that, for all M ≥ M⋆ and any z ∈ K \Kα, it holds

∥

∥S[M/N ](z)− S(z)
∥

∥

V,
√

Re(z0)
≤ C ′ sup

z∈∂B(z0,R)

‖S(z)‖
V,
√

Re(z0)

( ρ

R

)M+1

, (50)
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where R > ρ > ρK , and C ′ depends on ρK , ρ, R, N , and gK,α. Given λmin = min{λ ∈
Λ}, Theorem 2.1 states that

sup
z∈∂B(z0,R)

‖S(z)‖
V,
√

Re(z0)
≤ sup

z∈∂B(z0,R)

(

√

|z − λmin|+ 2Re (z0)

α
‖f‖L2(D)

)

=
1

α

(

sup
z∈∂B(z0,R)

|z − λmin|+ 2Re (z0)

)1/2

‖f‖L2(D)

≤ 1

α

(

sup
z∈∂B(z0,R)

(|z − z0|+ |z0 − λmin|) + 2Re (z0)

)1/2

‖f‖L2(D)

=

√

R+ |z0 − λmin|+ 2Re (z0)

α
‖f‖L2(D)

so that we conclude (49) with C = C ′√R+ |z0 − λmin|+ 2Re (z0) ‖f‖L2(D). ✷

Remark 6.1 Note that, for R large enough, the disk B(z0, R) may contain com-
plex numbers z with Re (z) < 0. Since the result of Theorem 2.1 is valid also for
wavenumbers with negative real part, the bound (49) holds true with no additional
restrictions.

7 Numerical results

We present here some numerical results aimed at verifying the error estimates
of the Padé approximation for the solution map S proved in Theorem 6.1. As
the focus of the present paper is on the approximation properties, we omit the
algorithmical details of the Padé approximation construction.

Consider the two-dimensional domain D = (0, π) × (0, π). Let ν2 ∈ R+ \ Λ
and d = (d1, d2) ∈ R2 be fixed. We set u(x) = v(x)w(x), where v(x) = e−iνd·x,
the plane wave travelling travelling along the direction d with wavenumber ν2,
and w(x) = 16

π4x1x2(x1 − π)(x2 − π), a bubble function vanishing on ∂D (see
Figure 4). We define f(x) = −∆u(x)− ν2u(x), i.e.,

f(x) = f(x1, x2) =
16

π4
e−iνd·x

[

2iνd1
(

2x1x
2
2 − 2πx1x2 − πx22 + π2x2

)

+ 2iνd2
(

2x21x2 − πx21 − 2πx1x2 + π2x1
)

−
(

2x22 − 2πx1x2 + 2x21 − 2πx1
) ]

. (51)

In the following tests, we consider the Helmholtz problem (8) in D with ho-
mogeneous Dirichlet boundary conditions on ∂D, and loading term (51) with
d = (cos(π/6), sin(π/6)) and ν2 = 12.

In the first test, we choose as frequency interval of interest K = [k2min, k
2
max] =

[7, 11], which contains two eigenvalues of the Laplace problem with the considered
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Figure 4: Real part (left) and imaginary part (right) of u(x) = 16
π4x1x2(x1 −

π)(x2 − π)e−iνd·x with ν = 7 and d = (cos(π/6), sin(π/6)).

boundary conditions: λ = 8 (multiplicity one), and λ = 10 (multiplicity two),
i.e., two simple poles of the solution map S.

Given N equal to the number of eigenvalues in K, i.e., N = 2, we construct
a Padé approximation S[M/N ](z) =: uP (z, ·) centered in z0 = 10 + 0.5i. We
partition the interval of interest K in 100 subintervals of the same length. At each
point z of the mesh, the numerical solution uh(z, ·) ∈ H1

0 (D) of the Helmholtz
problem is computed via the P3 continuous finite element method (FEM), and
its weighted H1(D)-norm ‖uh(z, ·)‖V,√Re(z0)

is calculated. In Figure 5 the norm

‖uh(z, ·)‖V,√Re(z0)
(dashed line) is compared with the norm ‖uP,h(z, ·)‖V,√Re(z0)

(solid line), uP,h(z, ·) being a Padé approximation with denominator of degree
N = 2 and numerator of degree M = 2 (Figure 5 (a)), M = 4 (Figure 5 (b)) and
M = 6 (Figure 5 (c)). As M increases, the Padé approximation becomes more
accurate.

For the second test, we consider the interval of interest K = [k2min, k
2
max] =

[14, 19], which contains two eigenvalues of the Laplace problem with the consid-
ered boundary conditions: λ = 17 (multiplicity two), and λ = 18 (multiplicity
one). Again with N = 2, we construct the Padé approximation uP,h(z, ·) centered
in z0 = 16.5 + 0.5i. In Figure 6, we plot the error ‖uh(z, ·)− uP,h(z, ·)‖V,√Re(z0)

as a function of the degree of the Padé numerator M , where uh(z, ·) is the so-
lution of the Helmholtz problem computed via the P3 continuous FEM, and
z = 17.5 (z = 14) in Figure 6, left (right, respectively). The error (solid

line) is compared with the predicted convergence rate
( ρ
R

)M+1
(dashed line)

proved in Corollary 6.1. Here, ρ = |z − z0| and R > 0 is such that the disk
B(z0, R) contains exactly N = 2 poles of the solution map S. Specifically, ρ =
|16.5 + 0.5i− 17.5| and R = |16.5 + 0.5i− 20| = |16.5 + 0.5i− 13| in Figure 6,
left, and ρ = |16.5 + 0.5i− 14| and R = |16.5 + 0.5i− 20| = |16.5 + 0.5i− 13| in
Figure 6, right. Note that λ = 13 and λ = 20 are the closest eigenvalues of the
considered Laplace problem outside the interval of interest. The predicted slope
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Figure 5: Comparison between ‖uh(z, ·)‖V,√Re(z0)
(dashed line) and

‖uP,h(z, ·)‖V,√Re(z0)
(solid line), where uh(z, ·) is the numerical solution to

the considered Helmholtz problem computed via the P3 continuous FEM, and
uP,h(z, ·) is a Padé approximant of u centered in z0 = 10 + 0.5i, evaluated in
z ∈ K = [7, 11], and of degrees N = 2 (denominator), and M = 2 (a), M = 4
(b) and M = 6 (c).

of convergence
( ρ
R

)M+1
is then numerically confirmed.

The same quantities are represented in Figure 7, where the interval of interest
is K = [12.5, 17.5], the center of the Padé approximation is z0 = 15 + i, ρ =
|15 + i− 17.5| and R = |15 + i− 18| in Figure 7, left, ρ = |15 + i− 14| and
R = |15 + i− 18| in Figure 7, right.

Remark 7.1 Let z ∈ K \Kα be a fixed wavenumber. According to the theoretical
results in Section 4, the Padé approximant S[M/N ] in z is defined through the min-
imization of the functional jE (formula (23)) with the choice ρ = |z0 − z|, z0 be-
ing the center of the Padé approximation. Corollary 6.1 states then that the slope
of convergence of the Padé approximation error

∥

∥S(z)− S[M/N ](z)
∥

∥

V,
√

Re(z0)
is

(

|z0−z|
R

)M+1
. On the other hand, the numerical experiments we have run show
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Figure 6: Comparison between the computed error ‖uh(z, ·)− uP,h(z, ·)‖V,√Re(z0)

(solid line) and the predicted slope of convergence
( ρ
R

)M+1
(dashed line)

proved in Corollary 6.1. Here K = [14, 19], and z0 = 16.5 + 0.5i. More-
over, ρ = |16.5 + 0.5i− 17.5| (ρ = |16.5 + 0.5i− 14|, respectively) and R =
|16.5 + 0.5i− 20| = |16.5 + 0.5i− 13| in the left (right, respectively) picture.

that, even with the choice ρ = ρK in the construction of the functional jE, the

same slope
(

|z0−z|
R

)M+1
of the Padé error is observed.

In the last test, we take again K = [14, 19] and compare the error ‖uh(z, ·)− uP,h(z, ·)‖V,√Re(z0)
,

where uP,h(z, ·) is the Padé approximant centered in z0 = 16.5 + 0.5i with de-
nominator degrees N = 1, 2, 4. As N increases, similar accuracy is reached with
a smaller degree of the Padé numerator M ; see Figure 8.

8 Conclusions

In the present paper, we have considered Hilbert space-valued rational Padé
approximations of the Helmholtz solution map S which associates with a given
wavenumber the corresponding Helmholtz solution. We have focused on Padé
expansions in the least squares sense around a single complex frequency (single-
point Padé expansion) close to a (real) frequency interval of interest.

For meromorphic Hilbert space-valued univariate maps, a uniform conver-
gence result, on any compact subset of the interval of interest that excludes any
pole, has been proved for the Padé approximation error. Error estimates have
been derived in a funcional space norm. Numerical results for a two-dimensional
problem confirm the theoretical upper bound on the Padé approximation error
for the Helmholtz solution map.

The description of the algorithmic aspects of the least squares Padé expan-
sion will be carried out in a forthcoming paper, where we will also apply it to the
stochastic Helmholtz problem, i.e., the Helmholtz problem where the wavenum-
ber is modeled as a random variable. We are currently investigating the extension
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Figure 7: Comparison between the computed error ‖uh(z, ·)− uP,h(z, ·)‖V,√Re(z0)

(solid line) and the predicted slope of convergence
( ρ
R

)M+1
(dashed line) proved

in Corollary 6.1. Here K = [12.5, 17.5], and z0 = 15 + i. Moreover, ρ =
|15 + i− 17.5| (ρ = |15 + i− 14|, respectively) and R = |15 + i− 18| in left
(right, respectively) picture.

of the methodology and of its convergence analysis to the case of multi-point Padé
expansions, where moments are identified at multiple frequencies.

The proposed least squares Padé approximant delivers an approximation of
the solution map S(z) in the linear space spanned by {S(z0), dSdz (z0), . . . , d

ES
dzE

(z0)}.
As such, the error estimate derived in this paper provides an upper bound of the
Kolmogorov n-width for the solution map of the Helmholtz problem and can
therefore be useful also to analyze the convergence of a reduced basis method
(see e.g. [7, 5, 21]).
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