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Discrete least-squares approximations over optimized downward closed

polynomial spaces in arbitrary dimension ∗

Albert Cohen† Giovanni Migliorati‡ Fabio Nobile§
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Abstract

We analyze the accuracy of the discrete least-squares approximation of a function u in multivariate
polynomial spaces PΛ := span{y 7→ yν : ν ∈ Λ} with Λ ⊂ Nd0 over the domain Γ := [−1, 1]d,
based on the sampling of this function at points y1, . . . , ym ∈ Γ. The samples are independently
drawn according to a given probability density ρ belonging to the class of multivariate beta densities,
which includes the uniform and Chebyshev densities as particular cases. Motivated by recent results
on high-dimensional parametric and stochastic PDEs, we restrict our attention to polynomial spaces
associated with downward closed sets Λ of prescribed cardinality n and we optimize the choice of the
space for the given sample. This implies in particular that the selected polynomial space depends on
the sample. We are interested in comparing the error of this least-squares approximation measured in
L2(Γ, ρ) with the best achievable polynomial approximation error when using downward closed sets of
cardinality n. We establish conditions between the dimension n and the size m of the sample, under
which these two errors are proven to be comparable. Our main finding is that the dimension d enters
only moderately in the resulting trade-off between m and n, in terms of a logarithmic factor ln(d),
and is even absent when the optimization is restricted to a relevant subclass of downward closed sets,
named anchored sets. In principle, this allows one to use these methods in arbitrarily high or even
infinite dimension. Our analysis builds upon [3] which considered fixed and non-optimized downward
closed multi-index sets. Potential applications of the proposed results are found in the development
and analysis of efficient numerical methods for computing the solution of high-dimensional parametric
or stochastic PDEs, but is not limited to this area.

Keywords: high dimensional approximation, convergence rate, discrete least squares, best n-term ap-
proximation, downward closed set, anchored set, multivariate polynomial approximation.

MSC: 41A10, 41A25, 41A50, 41A63, 65M70.

1 Introduction

In recent years it has become clear that many interesting engineering applications feature an intrinsic
dependence on a large number of parameters y1, . . . , yd, leading to a major concentration of efforts in
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the development and analysis of high-dimensional approximation methods. In many relevant situations,
the parameters yj are independent random variables distributed on intervals Ij according to probability
measures ρj . We are then typically interested in approximating a function

y = (y1, . . . , yd) 7→ u(y), (1)

depending on these parameters and measuring the error in L2(Γ, ρ), where Γ = I1 × · · · × Id and
ρ = ρ1⊗· · ·⊗ρd. Up to a renormalization, we may assume that Ij = [−1, 1] for all j, so that Γ = [−1, 1]d.
In certain cases, the number of parameters may even be countably infinite, in which case Γ = [−1, 1]N. Ex-
amples where such problems occur are recurrent in the numerical treatment of parametric and stochastic
PDEs, where a fast and accurate approximation of the parameter-to-solution map over high-dimensional
parameter sets is useful to tackle more complex optimization, control and inverse problems.

In this context, the potential of specific high-dimensional polynomial approximation methods has
been demonstrated in [6, 5, 17, 11, 3]. In these methods, the approximation is picked from a multivariate
polynomial space

PΛ := span{y 7→ yν : ν ∈ Λ}, (2)

where Λ is a given finite subset of Nd0. In the case of countably many variables, d =∞, we replace Nd0 by
the set of finitely supported sequences of nonnegative integers.

Such a set Λ is said to be downward closed if and only if

ν ∈ Λ and µ ≤ ν =⇒ µ ∈ Λ, (3)

where µ ≤ ν is meant component-wise. Polynomial spaces PΛ associated to downward closed index sets
Λ have been studied in various contexts, see [1, 9, 8, 12, 13].

There exist two main approaches to polynomial approximation of a given function u based on pointwise
evaluations. The first one relies on interpolation of the function u at a given set of points {y1, . . . , yn}
where n := #(Λ) = dim(PΛ), that is, find v ∈ PΛ such that v(yi) = u(yi) for i = 1, . . . , n. The second
one relies on projection, which aims at minimizing the L2(Γ, ρ) error between u and its approximation
in PΛ. Since the exact projection is not available, one typical approach consists in using the discrete
least-squares method, that is, solving the problem

min
v∈PΛ

m∑
i=1

|v(yi)− u(yi)|2, (4)

where now m > n. Discrete least-squares methods are often preferred to interpolation methods when
the observed point values are polluted by noise. Their convergence analysis has been studied in the the
general context of learning theory, see for example [7, 19, 10, 20, 21].

In recent years, an analysis of discrete least-squares methods has been proposed [3, 16, 11, 18], specif-
ically targeted to the above described case of multivariate polynomial spaces associated with downward
closed sets, in the case where the ρj are identical Jacobi-type measures. This analysis, which builds
upon the general results from [4], gives conditions ensuring that, in the absence of noise in the point-
wise evaluation of u, the accuracy of the discrete least-squares approximation is comparable to the best
approximation error achievable in PΛ, that is,

eΛ(u) := inf
v∈PΛ

‖u− v‖L2(Γ,ρ). (5)

These conditions are stated in terms of a relation between the size m of the sample and the dimension n
of PΛ. A similar analysis also covers the case of an additive noise in the evaluation of the samples which
results in additional terms in the error estimate, see e.g. [18].
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One remarkable result from the above analysis is that the conditions ensuring that the least-square
method has accuracy comparable to eΛ(u) only involve the dimension of PΛ. These conditions are
independent of the specific shape of the set Λ (as long as it is downward closed), and in particular
independent of the dimension d.

The possibility of using arbitrary sets Λ is critical in the context of parametric PDEs in view of the
recent results on high-dimensional polynomial approximation obtained in [6, 2, 5]. These results show
that for relevant class of parametric PDEs, the functions y 7→ u(y) describing either the full solution or
scalar quantities of interest can be approximated with convergence rates O(n−s) which are independent
of the parametric dimension d, when using polynomial spaces PΛn associated to specific sequences of
downward closed multi-index sets (Λn)n≥1 with #(Λn) = n. In summary, we have

en(u) := min
#(Λ)=n

eΛ(u) ≤ Cn−s, (6)

where the minimum is taken over all downward closed sets of given cardinality n.
For each value of n, the optimal set Λn is the one that achieves the minimum in (6) among all

downward closed Λ of cardinality n. This set is unknown to us when observing only the samples u(yi).
Therefore, a legitimate objective is to develop least-squares methods for which the accuracy is comparable
to the quantity en(u).

In this paper, we discuss least-square approximations on multivariate polynomial spaces for which
the choice of Λ is optimized based on the sample. In particular we prove that the performance of
such approximation is comparable to the quantity in (6), under a relation between m and n where the
dimension d enters as a logarithmic factor. We show that this logarithmic dependence on d can be
fully removed by considering a more restricted class of downward closed sets called anchored sets, for
which similar approximation rates as in (6) can be achieved. The resulting least-square methods are thus
immune to the curse of dimensionality.

The outline of the paper is the following: in Section 2 we introduce the notation and briefly review
some of the previous results achieved in the analysis of discrete least squares on fixed multivariate poly-
nomial spaces. In Section 3 we present the main results of the paper concerning discrete least-square
approximations on optimized polynomial spaces. Our analysis is based on establishing upper bounds on
the number of downward closed or anchored sets of a given cardinality, or on the cardinality of their
union.

The selection of the optimal polynomial space is based on minimizing the least-squares error among all
possible choices of downward closed or anchored sets of a given cardinality n. Let us stress that in the form
of an exhaustive search, this task becomes computationally intensive when n and d are simultaneously
large. Our results should therefore mainly be viewed as a benchmark in arbitrary dimension d for assessing
the performance of fast selection algorithms, such as greedy algorithms, that still need to be developed
and analyzed in this context.

2 Least-squares approximation by multivariate polynomials

In this section we introduce some useful notation, and recall from [3] the main results achieved for the
analysis of the stability and accuracy of discrete least-squares approximations in multivariate polynomial
spaces.

3



2.1 Notation

In any given dimension d ∈ N, we consider the domain Γ := [−1, 1]d, and for some given real numbers
θ1, θ2 > −1, the tensorized Jacobi measure

ρ(y) := ⊗dj=1β(yj) (7)

where

dβ = c(1− t)θ1(1 + t)θ2dt, c :=

(∫ 1

−1
(1− t)θ1(1 + t)θ2dt

)−1

. (8)

We may also consider the case Γ := [−1, 1]N for which d = +∞ and ρ is the Jacobi measure defined
over Γ in the usual manner. We denote by L2(Γ, ρ) the Hilbert space of real-valued square-integrable
functions with respect to ρ and denote by ‖ · ‖ the associated norm, i.e.

‖v‖ :=

(∫
Γ
|v(y)|2dρ(y)

)1/2

. (9)

Moreover, let F be defined as the set Nd0, where N0 := {0, 1, 2, . . . }, in the case d < +∞, or as the
countable set of all finitely supported sequences from NN

0 in the case d = +∞. Sometimes we refer to F
as the universe multi-index set. For any ν ∈ F we define

supp(ν) := {j ≥ 1 : νj 6= 0}, (10)

and for any multi-index set Λ ⊆ F we define

supp(Λ) := ∪ν∈Λ supp{ν}. (11)

We say that a variable yj is active in the space PΛ when j ∈ supp(Λ).
For the given real parameters θ1, θ2 > −1, we introduce the family (Jn)n≥0 of univariate orthonormal

Jacobi polynomials associated with the measure β, and their tensorized counterpart

Jν(y) =
∏
j≥1

Jνj (yj), y = (yj)j≥1, (12)

for any ν ∈ F . The (Jν)ν∈F are an L2(Γ, ρ)-orthonormal basis. Particular instances of these polynomials
are tensorized Legendre polynomials when θ1 = θ2 = 0 and tensorized Chebyshev polynomials of the first
kind when θ1 = θ2 = −1/2.

In the present paper we focus on finite multi-index sets Λ which are downward closed in the sense of
(3). We also say that a polynomial space PΛ is downward closed when it is associated with a downward
closed multi-index set Λ ⊂ F . Recall that PΛ has been defined as the span of the monomials y 7→ yν

for ν ∈ Λ. Therefore it admits (Jν)ν∈Λ as an L2(Γ, ρ)-orthonormal basis in the case of Λ downward
closed. Sometimes we enumerate the indices ν using the lexicographical ordering, and denote this basis
by (ψk)k=1,...,n, where

n := #(Λ) = dim(PΛ). (13)

Given a finite downward closed multi-index set Λ ⊂ F , we would like to approximate the target
function u : Γ → R in the L2 sense, using the noiseless evaluations (u(yi))i=1,...,m of u at the points
(yi)i=1,...,m, where the yi are i.i.d. random variables distributed according to ρ. We introduce the contin-
uous L2 projection of u on the polynomial space PΛ as

ΠΛu := argmin
v∈PΛ

‖u− v‖, (14)
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and the discrete least-squares approximation Πm
Λ u as

Πm
Λ u := argmin

v∈PΛ

‖u− v‖m, (15)

where we have used the notation

‖v‖m :=

(
1

m

m∑
i=1

v(yi)2

) 1
2

. (16)

We introduce the m × #(Λ) design matrix D and the vector b ∈ Rm whose entries are given by
Di,k = ψk(y

i) and bi = u(yi). We define the Gramian matrix G = m−1DTD. The discrete least-squares
projection in (15) is then given by

Πm
Λ u =

#(Λ)∑
k=1

akψk, (17)

where the vector a = (ak) ∈ R#(Λ) is the solution to the normal equations

Ga = m−1DTb. (18)

2.2 Previous results on the stability and accuracy of discrete least squares

We introduce the quantity

K(PΛ) := sup
y∈Γ

∑
ν∈Λ

|Jν(y)|2 . (19)

It is proven in [3] that discrete least squares in multivariate polynomial spaces are stable and accurate
provided a precise proportionality between m and K(PΛ) is satisfied. Similar results have been proven
in [18] for the case of noisy observations of the target function, with several noise models.

For any δ ∈]0, 1[ we introduce the positive quantity

ζ(δ) := δ + (1− δ) ln(1− δ). (20)

Given a threshold τ ∈ R+
0 , we introduce the truncation operator

Tτ (t) :=sign(t) min{τ, |t|}, for any t ∈ R,

and use it to define the truncated discrete least-squares projection operator u 7→ Tτ (Πm
Λ u). The main re-

sults from [3] concerning stability and accuracy of the discrete least-squares approximation with noiseless
evaluations can be summarized as follows.

Theorem 1. In any dimension d, for any r > 0, any δ ∈]0, 1[ and any downward closed multi-index set
Λ ⊂ Nd0, one has

Pr
({

(1− δ)‖v‖2 ≤ ‖v‖2m ≤ (1 + δ)‖v‖2, ∀v ∈ PΛ

})
≥ 1− 2n exp(−ζ(δ)m/K(PΛ)). (21)

If the following condition between m and K(PΛ) is satisfied

m

lnm
≥ (1 + r)

ζ(δ)
K(PΛ), (22)

then
Pr
({

(1− δ)‖v‖2 ≤ ‖v‖2m ≤ (1 + δ)‖v‖2, ∀v ∈ PΛ

})
≥ 1− 2m−r. (23)
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Moreover, for any u ∈ L∞(Γ) with ‖u‖L∞(Γ) ≤ τ , the following holds:

Pr

(
‖u−Πm

Λ u‖ ≤

(
1 +

√
1

1− δ

)
inf
v∈PΛ

‖u− v‖L∞(Γ)

)
≥ 1− 2m−r, (24)

E
(
‖u− Tτ (Πm

Λ u)‖2
)
≤
(

1 +
4ζ(δ)

(1 + r) lnm

)
‖u−ΠΛu‖2 + 8τ2m−r. (25)

The above theorem states that under condition (22) the discrete least-squares approximation is stable,
since one has

(1− δ)‖v‖2 ≤ ‖v‖2m ≤ (1 + δ)‖v‖2, ∀v ∈ PΛ ⇔ (1− δ)I ≤ G ≤ (1 + δ)I. (26)

Under the same condition, the discrete least-squares approximation is also accurate in probability, from
(24), and in expectation, from (25), since the approximation error behaves like the best approximation
error in L∞ or in L2.

The quantity K(PΛ) depends both on Λ and on the chosen Jacobi measure, and therefore on the
parameters θ1, θ2. The following result from [3] and [14] shows that, once these two parameters are
fixed, the quantity K(PΛ) only depends on #(Λ), independently of the particular shape of Λ and of the
dimension d.

Lemma 1. In any dimension d and for any finite downward closed set Λ ⊂ F , one has

#(Λ) ≤ K(PΛ) ≤

{
(#(Λ))ln 3/ ln 2, if θ1 = θ2 = −1/2,

(#(Λ))2 max{θ1,θ2}+2 if θ1, θ2 ∈ N0.
(27)

Combining the two results, one therefore obtains sufficient conditions for stability and optimal accu-
racy expressed only in terms of a relation between #(Λ) and m. For example, in the case of the uniform
measure that corresponds to θ1 = θ2 = 0, this relation is of the form

m

lnm
≥ c (#(Λ))2 , c := c(δ, r). (28)

3 Optimal selection of downward closed polynomial spaces

The results recalled in the previous section hold for a given downward closed set Λ ⊂ F . We now consider
the problem of optimizing the choice of Λ, or equivalently that of the space PΛ.

3.1 Optimized index sets

We define the family

Md
n := {Λ ⊂ F : Λ is downward closed and #(Λ) = n}, (29)

of all downward closed sets of cardinality n in d variables. Note that, in contrast to the family of all sets
of cardinality n, the family Md

n is finite.
The error of best n-term polynomial approximation by downward closed sets is then defined by

σn(u) := min
Λ∈Md

n

min
v∈PΛ

‖u− v‖. (30)

A best n-term downward closed set is a Λ ∈Md
n that achieves this minimum, that is, such that

Λopt := argmin
Λ∈Md

n

min
v∈PΛ

‖u− v‖. (31)
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In view of the Parseval identity, we find that Λopt is also given by

Λopt := argmin
Λ∈Md

n

∑
ν /∈Λ

|uν |2, uν =

∫
Γ
u(y)Jν(y)dρ(y). (32)

Note that such a set may not be unique due to possible ties in the values of the coefficients, in which
case we consider a unique choice by breaking the ties in some arbitrary but fixed way. We set

un = ΠΛoptu = argmin
v∈PΛopt

‖u− v‖. (33)

Of course, in the least-squares method, the discrete data do not allow us to identify Λopt. Instead, we
rely on

Λoptm := argmin
Λ∈Md

n

min
v∈PΛ

‖u− v‖m. (34)

and compute
wn = Πm

Λoptm
u = argmin

v∈P
Λ
opt
m

‖u− v‖m. (35)

Our objective is now to compare the accuracy of the polynomial least-squares approximation based on
Λoptm with the above optimal error σn(u). For this purpose, we shall use the random variable

Cdn := max
Λ∈Md

n

max
v∈PΛ

‖v‖2

‖v‖2m
. (36)

Note that the search of Λoptm remains a difficult task from the computational point of view, due to the
fact that #(Md

n) becomes very large even for moderate values of n and d. As we discuss further, this
cardinality also affects the conditions between m and n which guarantee the optimality of the least-squares
approximation based on Λoptm .

For this reason, it is useful to introduce an additional restriction on the potential index sets. We say
that Λ is anchored if and only if it is downward closed and satisfies in addition

ej ∈ Λ and j′ ≤ j =⇒ ej′ ∈ Λ, (37)

where ej and ej′ are the Kronecker sequences with 1 at position j and j′, respectively. We also say that
a polynomial space PΛ is anchored when Λ is anchored. Likewise, we define the family

An := {Λ ⊂ F : Λ is anchored and #(Λ) = n}. (38)

The property of anchored set introduces an order of priority between the variables: given any j ≥ 1,
the variable yj is active in Λ only if all the variables yk for k < j are also active. In particular, for any
set Λ ∈ An we have

supp(Λ) = {1, . . . , k}, (39)

for some k ≤ n− 1.
It is proven in [5] that, for relevant classes of parametric PDEs, the same algebraic convergence rates

O(n−s) can be obtained when imposing the anchored structure on the optimally selected sets (Λn)n≥0

with #(Λn) = n. As we shall see further, one specific advantage of anchored sets is to completely remove
the dependence in the dimension d in the convergence analysis of the least-squares method.

Using the same notation as before with obvious modifications, we introduce the following entities:

Λ̃opt := argmin
Λ∈An

min
v∈PΛ

‖u− v‖, ũn := ΠΛ̃optu = argmin
v∈PΛ̃opt

‖u− v‖, (40)
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Λ̃optm := argmin
Λ∈An

min
v∈PΛ

‖u− v‖m, w̃n := Πm
Λ̃optm

u = argmin
v∈P

Λ̃
opt
m

‖u− v‖m. (41)

and

C̃n := max
Λ∈An

max
v∈PΛ

‖v‖2

‖v‖2m
. (42)

We now would like to study the best n-term approximation in the aforementioned classes of multi-
index sets Md

n and An. The following lemma shows the role played by Cdn and C̃n in quantifying the
relation between the error achieved by the optimal discrete least-square projection and the error achieved
by the optimal L2 projection.

Lemma 2. It holds that, for any Λ ∈Md
n,

‖u− wn‖ ≤ ‖u− v‖+ 2
√
Cd2n−1‖u− v‖m, v ∈ PΛ, (43)

and for any Λ ∈ An,

‖u− w̃n‖ ≤ ‖u− ṽ‖+ 2

√
C̃2n−1‖u− ṽ‖m, ṽ ∈ PΛ. (44)

Proof. Let Λ ∈ Md
n and define Λ̂ := Λ ∪ Λoptm . We first observe that Λ̂ is also downward closed and

#(Λ̂) ≤ 2n − 1 because any downward closed set contains the null multi-index. Since wn ∈ PΛoptm
, we

have v − wn ∈ P
Λ̂

for any v ∈ PΛ. It follows that

‖v − wn‖ ≤
√
Cd2n−1‖v − wn‖m ≤

√
Cd2n−1(‖u− v‖m + ‖u− wn‖m) ≤ 2

√
Cd2n−1‖u− v‖m,

and therefore

‖u− wn‖ ≤ ‖u− v‖+ ‖v − wn‖ ≤ ‖u− v‖+ 2
√
Cd2n−1‖u− v‖m, (45)

which is (43). The proof of (44) is analogous.

Note that the estimates in the above lemma imply in particular that

‖u− wn‖ ≤ ‖u− un‖+ 2
√
Cd2n−1‖u− un‖m, (46)

and

‖u− w̃n‖ ≤ ‖u− ũn‖+ 2

√
C̃2n−1‖u− ũn‖m, (47)

with un and ũn defined by (33) and (40). Note that they also imply

‖u− wn‖ ≤
(

1 + 2
√
Cd2n−1

)
‖u− v‖L∞ , v ∈ PΛ, (48)

for any Λ ∈Md
n, and

‖u− w̃n‖ ≤
(

1 + 2

√
C̃2n−1

)
‖u− ṽ‖L∞ , ṽ ∈ PΛ, (49)

for any Λ ∈ An.

8



3.2 Probabilistic bounds

In view of Lemma 2, we are interested in bounding the random variables Cdn and C̃n. In this section we
give probabilistic bounds, which ensure that under certain conditions between m and n, these variable
do not exceed a fixed value, here set to 2, with high probability. In the whole section we choose δ = 1/2,
so that, with the notation (20), one has

ζ := ζ(δ) = ζ(1/2) = (1− ln 2)/2 ≈ 0.153. (50)

We define, for any ν ∈ F , the “rectangular” set Rν := {µ ∈ F , µ ≤ ν}; and for any n ≥ 1, the
hyperbolic cross set

Hdn :=

µ ∈ F :
d∏
j=1

(µj + 1) ≤ n

 . (51)

Note that
Hdn =

⋃
#(Rν)≤n

Rν . (52)

The cardinality of Hdn is bounded by

#(Hdn) ≤ n(1 + ln(n))d−1, (53)

see [11, Appendix A.2] for a proof and some remarks on the accuracy of this upper bound.
Let us observe that the union of all downward closed sets of cardinality at most n coincides with Hdn,

that is, ⋃
Λ∈Md

n

Λ = Hdn. (54)

Indeed, on the one hand, all rectangles Rν such that #(Rν) ≤ n belong to Md
n, so that inclusion holds

from right to left. On the other hand, inclusion from left to right follows by observing that for any
Λ ∈Md

n, one has Λ = ∪µ∈ΛRµ and Rµ ⊂ Hdn for all µ ∈ Λ.
This leads us to a first probabilistic bound for the random variable Cdn. Indeed, using (54) we obtain

that

Pr
(
Cdn > 2

)
= Pr

(
max

Λ∈Md
n

max
v∈PΛ

‖v‖2

‖v‖2m
> 2

)
≤ Pr

(
max
v∈PHdn

‖v‖2

‖v‖2m
> 2

)
.

Thus, using Theorem 1 with δ = 1/2 combined with the estimates in Lemma 1, we obtain that, in any
dimension d and for any r > 0, if m and n satisfy

m

lnm
≥

{
(1+r)
ζ (#(Hdn))ln 3/ ln 2, with Chebyshev polynomials,

(1+r)
ζ (#(Hdn))2 max{θ1,θ2}+2, with Jacobi polynomials and θ1, θ2 ∈ N0,

(55)

then
Pr(Cdn > 2) ≤ 2m−r. (56)

From (54) and (39) we also find that the union of all anchored sets of cardinality at most n satisfies
the following inclusion ⋃

Λ∈An

Λ ⊂ Hn−1
n . (57)
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By similar arguments, we obtain the following probabilistic bound for the random variable C̃n: in any
dimension d, for any r > 0, if m and n satisfy

m

lnm
≥

{
(1+r)
ζ (#(Hn−1

n ))ln 3/ ln 2, with Chebyshev polynomials,
(1+r)
ζ (#(Hn−1

n ))2 max{θ1,θ2}+2, with Jacobi polynomials and θ1, θ2 ∈ N0,
(58)

then
Pr(C̃n > 2) ≤ 2m−r. (59)

The above results describe the regimes of m and n such that Cdn and C̃n do not exceed 2 with high
probability. In the case of downward closed sets, this regime is quite restrictive due to the presence of
ln(n)d−1 in the cardinality of Hdn, which enforces the sample size m to be extremely large as d grows.
Likewise, m has to be extremely large compared to n in the case of anchored sets.

We next describe another strategy which yields similar probabilistic bounds under less restrictive
regimes. It is based on estimating the cardinality of Md

n and An and using union bounds. Recalling the
definition of K(PΛ) from (19), we introduce the following notation:

Kn = max
Λ∈Md

n

K(PΛ), (60)

K̃n = max
Λ∈An

K(PΛ). (61)

According to Lemma 1, one has the estimate

K̃n ≤ Kn ≤

{
nln 3/ ln 2, if θ1 = θ2 = −1/2,

n2 max{θ1,θ2}+2 if θ1, θ2 ∈ N0.
(62)

Our way of estimating #(Md
n) and #(An) is based on bitstream models for encoding any lower or

anchored set.
One first model to encode any given lower set Λ ⊂ F in d dimensions, consists in associating d bits

to each multi-index ν ∈ Λ, where the value of the jth bit is equal to one if ν + ej ∈ Λ, and equal to
zero if ν + ej /∈ Λ. By ordering these blocks of bits according to the lexicographic order of appearance
of ν in Λ, one obtains a bitstream which uniquely encodes Λ. Hence we can represent any lower set
containing n multi-indices by means of nd bits. The representation provided by this model is encoded
with redundancy, i.e. there exist many different ways to encode the same set. Using this model we have
the upper bound

#(Md
n) ≤ 2nd. (63)

Using a union bound and (21) we obtain

Pr
(
Cdn > 2

)
= Pr

(
max

Λ∈Md
n

max
v∈PΛ

‖v‖2

‖v‖2m
> 2

)
≤
∑

Λ∈Md
n

Pr

(
max
v∈PΛ

‖v‖2

‖v‖2m
> 2

)
≤ 2nd2n exp {−ζm/Kn}
= 2n exp {−ζm/Kn + nd ln(2)} . (64)
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Combining with (62), we obtain the following probabilistic bound for the random variable Cdn: in any
dimension d, for any r > 0, if m and n satisfy

m

lnm
≥


(

1 + r +
nd ln 2

lnm

)
nln 3/ ln 2

ζ
, with Chebyshev polynomials,(

1 + r +
nd ln 2

lnm

)
n2 max{θ1,θ2}+2

ζ
, with Jacobi polynomials and θ1, θ2 ∈ N0,

(65)

then
Pr
(
Cdn > 2

)
≤ 2nm−(r+1) ≤ 2m−r. (66)

The same encoding of course works for anchored sets, and thus by similar arguments we obtain

#(An) ≤ #(Mn−1
n ) ≤ 2n

2
, (67)

and

Pr
(
C̃n > 2

)
≤ 2n

2
2n exp

{
−ζm/K̃n

}
= 2n exp

{
−ζm/K̃n + n2 ln(2)

}
(68)

in the case of anchored sets. Likewise, we obtain the following probabilistic bound for the random variable
C̃n: in any dimension d, for any r > 0, if m and n satisfy

m

lnm
≥


(

1 + r +
n2 ln 2

lnm

)
nln 3/ ln 2

ζ
, with Chebyshev polynomials,(

1 + r +
n2 ln 2

lnm

)
n2 max{θ1,θ2}+2

ζ
, with Jacobi polynomials and θ1, θ2 ∈ N0,

(69)

then
Pr
(
C̃n > 2

)
≤ 2nm−(r+1) ≤ 2m−r. (70)

The regimes of m and n described by the above results, are in principle less restrictive than those
previously obtained using the cardinality of Hdn or Hn−1

n since factors of the form ln(n)d or ln(n)n have
been replaced by nd and n2 respectively.

We next discuss another bitstream model, which allow us to get a further improvement. Given any
downward closed multi-index set Λ with #(Λ) = n, we order the elements of Λ such that the set

Λk := {ν1, . . . , νk}, (71)

obtained by retaining only the first k elements of Λ, is downward closed for any k = 1, . . . , n. Of course
such an ordering always exists, since for any k = 1, . . . , n we can take

νk = νl + ej (72)

where l ∈ {1, . . . , k − 1} and j ∈ {1, . . . , d}. Hence

#(Md
n) ≤ d(2d) · · · (n− 1)d = dn−1(n− 1)!. (73)
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and using the inequality n! ≤ e
√
n(n/e)n which holds for any n ≥ 1, we obtain by a union bound, for

any n ≥ 2,

Pr
(
Cdn > 2

)
≤ dn−1(n− 1)! (2n) exp {−ζm/Kn}

≤ dn−1e
√
n− 1

(
n− 1

e

)n−1

(2n) exp {−ζm/Kn}

= 2n exp

{
−ζm/Kn + (n− 1/2) ln

(
d(n− 1)

e

)
− 1

2
ln

(
d

e

)
+ 1

}
.

≤ 2n exp {−ζm/Kn + n ln(dn)} .

Combining with (62), we obtain the following probabilistic bound for the random variable Cdn: in any
dimension d, for any r > 0, if m and n satisfy, for Chebyshev and Jacobi polynomials, respectively,

m

lnm
≥


(

1 + r +
n ln(dn)

lnm

)
nln 3/ ln 2

ζ
,(

1 + r +
n ln(dn)

lnm

)
n2 max{θ1,θ2}+2

ζ
,

(74)

then
Pr
(
Cdn > 2

)
≤ 2nm−(r+1) ≤ 2m−r. (75)

The alternate bitstream model can also be used to encode any anchored set. In this case, the range
of j in (72) is {1, . . . , k} which gives

#(An) ≤ ((n− 1)!)2 , (76)

leading by a similar computation, for any n ≥ 2, to

Pr
(
C̃n > 2

)
≤ 2n exp

{
−ζm/K̃n + 2n lnn

}
, (77)

which is a sharper bound that the one obtained by using the first bitstream.
Combining with (62), we obtain the following probabilistic bound for the random variable C̃n: in any

dimension d, for any r > 0, if m and n satisfy, for Chebyshev and Jacobi polynomials, respectively,

m

lnm
≥


(

1 + r +
2n lnn

lnm

)
nln 3/ ln 2

ζ
,(

1 + r +
2n lnn

lnm

)
n2 max{θ1,θ2}+2

ζ
,

(78)

then
Pr
(
C̃n > 2

)
≤ 2nm−(r+1) ≤ 2m−r. (79)

We may summarize the probabilistic bounds established in this section as follows: for any r > 0 and
any n ≥ 2, one has Cdn ≤ 2 with probability larger than 1−2m−r provided that (55) or (65) or (74) holds.
Likewise, one has C̃n ≤ 2 with probability larger than 1− 2m−r provided that (58) or (69) or (78) holds.

3.3 Accuracy of the optimized discrete least-squares approximation

We are now in position to state our main results concerning the accuracy of the discrete least-squares
approximation wn and w̃n over the optimized index set Λoptm and Λ̃optm . These results show that the
accuracy compares favorably with the best approximation error of the function u, measured either in L∞

or L2, using optimal choices of downward closed or anchored sets (which might differ from the sets Λoptm

and Λ̃optm ). We begin with a result expressed in probability.

12



Theorem 2. Consider a function u defined on Γ in arbitrary dimension d and let r > 0. Under condition
(55), or (65), or (74), with n replaced by 2n− 1, it holds that

Pr

(
‖u− wn‖ ≤ (1 + 2

√
2) min

Λ∈Md
n

min
v∈PΛ

‖u− v‖L∞(Γ)

)
≥ 1− 2m−r. (80)

Under condition (58), or (69), or (78), it holds that

Pr

(
‖u− w̃n‖ ≤ (1 + 2

√
2) min

Λ∈An
min
v∈PΛ

‖u− un‖L∞(Γ)

)
≥ 1− 2m−r. (81)

Proof. These estimates immediately follow from (48) and (49) combined with the probabilistic bounds
from the previous section.

We next give a result expressed in expectation for the truncated discrete least-square projection
Tτ (wn) and Tτ (w̃n).

Theorem 3. Consider a function u defined on Γ in arbitrary dimension d, such that |u(y)| ≤ τ for any
y ∈ Γ, and let r > 0. Under condition (55), or (65), or (74), it holds that

E(‖u− Tτ (wn)‖2) ≤ 8
√

2‖u− un‖2 + 8τ2m−r, (82)

Under condition (58), or (69), or (78), it holds that

E(‖u− Tτ (w̃n)‖2) ≤ 8
√

2‖u− un‖2 + 8τ2m−r, (83)

Proof. For (82), we distinguish between the two complementary events Ω1 := {Cdn ≤ 2} and Ω2 := {Cdn >
2} and write

E(‖u− Tτ (wn)‖2) = E(‖u− Tτ (wn)‖2 |Ω1) Pr(Ω1) + E(‖u− Tτ (wn)‖2 |Ω2) Pr(Ω2) =: E1 + E2. (84)

Since |u − Tτ (wn)| ≤ 2τ and Pr(Ω2) ≤ 2m−r, the second term E2 is bounded by 8τ2m−r. For the first
term E1, we combine (46) and the fact that |u− Tτ (wn)| ≤ |u− wn| to obtain the bound

E1 ≤ E
(

(‖u− un‖+ 2
√

2‖u− un‖m)2
)
≤ 4
√

2‖u− un‖2 + 4
√

2E(‖u− un‖2m) = 8
√

2‖u− un‖2. (85)

The proof of (83) is analogous.

Remark 1. The constants 1 + 2
√

2 and 8
√

2 in the above theorems can be reduced if one further restricts
the regime between m and n so that Cdn and C̃n are close to 1 with high probability.
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