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Abstract

In this work we introduce the Multi-Index Stochastic Collocation method (MISC) for computing statistics
of the solution of a PDE with random data. MISC is a combination technique based on mixed differences
of spatial approximations and quadratures over the space of random data. We propose an optimization
procedure to select the most effective mixed differences to include in the MISC estimator: such optimization
is a crucial step and allows us to build a method that, provided with sufficient solution regularity, is
potentially more effective than other multi-level collocation methods already available in literature. We
then provide a complexity analysis that assumes decay rates of product type for such mixed differences,
showing that in the optimal case the convergence rate of MISC is only dictated by the convergence of the
deterministic solver applied to a one dimensional problem. We show the effectiveness of MISC with some
computational tests, comparing it with other related methods available in the literature, such as the Multi-
Index and Multilevel Monte Carlo, Multilevel Stochastic Collocation, Quasi Optimal Stochastic Collocation
and Sparse Composite Collocation methods.

Keywords: Uncertainty Quantification, Random PDEs, Multivariate approximation, Sparse grids,
Stochastic Collocation methods, Multilevel methods, Combination technique.
2010 MSC: 41A10, 65C20, 65N30, 65N05

1. Introduction

Uncertainty Quantification (UQ) is an interdisciplinary, fast-growing research area that focuses on de-
vising mathematical techniques to tackle problems in engineering and natural sciences in which only a
probabilistic description of the parameters of the governing equations is available, due to measurement er-
rors, intrinsic non-measurability/non-predictability, or incomplete knowledge of the system of interest. In
this context, “parameters” is a term used in broad sense to refer to constitutive laws, forcing terms, domain
shapes, boundary and initial conditions, etc.

UQ methods can be divided into deterministic and randomized methods. While randomized techniques,
which include the Monte Carlo sampling method, are essentially based on random sampling and ensemble
averaging, deterministic methods proceed by building a surrogate of the system’s response function over the
parameter space, which is then processed to obtain the desired information. Typical goals include computing
statistical moments (expected value, variance, higher moments, correlations) of some quantity of interest of
the system at hand, typically functionals of the state variables (forward problem), or updating the statistical
description of the random parameters given some observations of the system at hand (inverse problem). In
any case, multiple resolutions of the governing equations are needed to explore the dependence of the state

∗Corresponding author
Email addresses: abdullateef.hajiali@kaust.edu.sa (Abdul–Lateef Haji–Ali ), fabio.nobile@epfl.ch (Fabio Nobile),

lorenzo.tamellini@unipv.it (Lorenzo Tamellini), raul.tempone@kaust.edu.sa (Raúl Tempone)
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variables on the random parameters. The computational method used should therefore be carefully designed
to minimize the computational effort.

In this work, we focus on the case of PDEs with random data, for which both deterministic and ran-
domized approaches have been extensively explored in recent years. As for the deterministic methods,
we mention here the methods based on polynomial expansions computed either by global Galerkin-type
projections [1, 2, 3, 4, 5] or collocation strategies based on sparse grids (see e.g. [6, 7, 8, 9]), low-rank
techniques [10, 11, 12, 13] and reduced basis methods (see e.g. [14, 15]). All these approaches have been
found to be particularly effective when applied to problems with a moderate number of random parameters
(low-dimensional probability space) and smooth response functions. Although significant effort has been
expended on increasing the efficiency of such deterministic methods with respect to the number of random
parameters (see, e.g., [16], the seminal work on infinite dimensional polynomial approximation of elliptic
PDEs with random coefficients), Monte Carlo-type approximations remain the primary choice for problems
with non-smooth response functions and/or those that depend on a high number of random parameters,
despite their slow convergence with respect to sample size.

A very promising methodology that builds on the classical Monte Carlo method and enhances its perfor-
mance is offered by the so-called Multilevel Monte Carlo (MLMC). It was first proposed in [17] for applica-
tions in parametric integration and extended to weak approximation of stochastic differential equations in
[18], which also provided a full complexity analysis. Let {h`}L`=0 be a (scalar) sequence of spatial/temporal
resolution levels that can be used for the numerical discretization of the PDE at hand and {F`}L`=0 be the
corresponding approximations of the quantity of interest, and suppose that the final goal of the UQ analysis
is to compute the expected value of F , E[F ]. While a classic Monte Carlo approach simply approximates
the expected value by using an ensemble average over a sample of independent replicas of the random
parameters, the MLMC method relies on the simple observation that, by linearity of expectation,

E[F ] ≈ E[FL] = E[F0] +

L∑
`=1

E[F` − F`−1], (1)

and computes by independent Monte Carlo samplers each expectation in the sum. Indeed, if the discretiza-
tion of the underlying differential model is converging with respect to the discretization level, `, the variance
of (F`−F`−1) will be smaller and smaller as ` increases, i.e., when the spatial/temporal resolution increases.
Dramatic computational saving can thus be obtained by approximating the quantities E[F` − F`−1] with a
smaller and smaller sample size, since most of the variability of F will be captured with coarse simulations
and only a few resolutions over the finest discretization levels will be performed. The MLMC estimator is
therefore given by

E[F ] ≈
L∑
`=0

1

M`

M∑̀
m=1

(F`(ωm,`)− F`−1(ωm,`)) , with F−1(·) = 0, (2)

where ωm,` are the i.i.d. replicas of the random parameters. The application of MLMC methods to UQ
problems involving PDEs with random data has been investigated from the mathematical point of view in
a number of recent publications, see e.g. [19, 20, 21, 22, 23]. Recent works [24, 25, 26, 27] have explored the
possibility of replacing the Monte Carlo sampler on each level by other quadrature formulas such as sparse
grids or quasi-Monte Carlo quadrature, obtaining the so-called Multilevel Stochastic Collocation (MLSC) or
Multilevel Quasi-Monte Carlo (MLQCM) methods. See also [28] for a related approach where the Multilevel
Monte Carlo method is combined with a control variate technique.

The starting point of this work is instead the so-called Multi-Index Monte Carlo method (MIMC), recently
introduced in [29], that differs from the Multilevel Monte Carlo method in that the telescoping idea presented
in equations (1)-(2) is applied to discretizations indexed by a multi-index rather than a scalar index, thus
allowing each discretization parameter to vary independently of the others. Analogously to what done in
[24, 25, 26] in the context of stochastic collocation, here we propose to replace the Monte Carlo quadrature
with a sparse grid quadrature at each telescopic level, obtaining in our case the Multi-Index Stochastic
Collocation method (MISC). In other words, MISC can be seen as a multi-index version of MLSC, or a
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stochastic collocation version of MIMC. From a slightly different perspective, MISC is also closely related to
the combination technique developed for the solution of (deterministic) PDEs in [30, 7, 31, 32, 33]; in this
work, the combination technique is used with respect to both the deterministic and stochastic variables.

One key difference between the present work and [24, 25, 26] is that the number of problem solves to be
performed at each discretization level is not determined by balancing the spatial and stochastic components
of the error (based, e.g., on convergence error estimates), but rather suitably extending the knapsack-
problem approach that we employed in [34, 35, 36] to derive the so-called Quasi-Optimal Sparse Grids
method (see also [37]). A somewhat analogous approach was proposed in [38], where the number of solves
per discretization level is prescribed a-priori based on a standard sparsification procedure (we will give more
details on the comparison between these different methods later on). In this work, we provide a complexity
analysis of MISC and illustrate its performance improvements, comparing it to other methods by means of
numerical examples.

The remainder of this paper is organized as follows. In Section 2, we introduce the problem to be
solved and the approximation schemes that will be used. The Multi-Index Stochastic Collocation method is
introduced in Section 3, and its complexity analysis is carried out in Section 4. Finally, Section 5 presents
some numerical tests, while Section 6 offers some conclusions and final remarks. The Appendix contains the
technical proof of the main theorem detailing MISC computational complexity. Throughout the rest of this
work we use the following notation:

• N denotes the set of integer numbers including zero;

• N+ denotes the set of positive integer numbers, i.e. excluding zero;

• R+ denotes the set of positive real numbers, R+ = {r ∈ R : r > 0};

• 1 denotes a vector whose components are always equal to one;

• eκ` denotes the `-th canonical vector in Rκ, i.e., (eκ` )i = 1 if ` = i and zero otherwise; however, for
the sake of clarity, we often omit the superscript κ when obvious from the context. For instance, if
v ∈ RN , we will write v − e1 instead of v − eN1 ;

• given v ∈ RN , |v| = ∑N
n=1 vn, max(v) = maxn=1,...N vn and min(v) = minn=1,...N vn;

• given v ∈ RN and f : R → R, f(v) denotes the vector obtained by applying f to each component of
v, f(v) = [f(v1), f(v2), · · · , f(vN )] ∈ RN ;

• given v,w ∈ RN , the inequality v > w holds true if and only if vn > wn ∀n = 1, . . . , N .

• given v ∈ RD and w ∈ RN , [v,w] = (v1, . . . , vD, w1, . . . , wN ) ∈ RD+N .

2. Problem setting

Let B ⊂ Rd, d = 1, 2, 3, be an open hyper-rectangular domain (referred to hereafter as the “physical
domain”) and let y = (y1, y2, . . . , yN ) be a N -dimensional random vector whose components are mutually
independent and uniformly distributed random variables with support Γn ⊂ R and probability density
function ρn(yn) = 1

|Γn| . Denoting Γ = Γ1 × Γ2 . . . × ΓN (referred to hereafter as the “stochastic domain”

or “parameter space”) and by σB(Γ) the Borel σ-algebra over Γ, ρ(y)dy =
∏N
n=1 ρn(yn)dyn is therefore a

probability measure on Γ, due to the independence of yn, and (Γ, σB(Γ), ρ(y)dy) is a complete probability
space. Consider the following generic PDE, together with the assumption stated next:

Problem 1. Find u : B× Γ→ R such that for ρ-almost every y ∈ Γ{
L(u;x,y) = f(x) x ∈ B,

u(x,y) = h(x) x ∈ ∂B.
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Assumption 1 (Well posedness). Problem 1 is well posed in some Hilbert space V for ρ-almost every y ∈ Γ.

The solution of Problem 1 can be seen as an N -variate Hilbert-space valued function u(y) : Γ → V .
The random variables, yn, can represent scalar values whose exact value is unknown, or they can stem
from a spectral decomposition of a random field, like a Karhunen–Loève or Fourier expansion, possibly
truncated after a finite number of terms, see, e.g., [6, 36]. It is also useful to introduce the Bochner space
L2
ρ(Γ;V ) =

{
u : Γ→ V strongly measurable s.t.

∫
Γ
‖u(y)‖2V ρ(y)dy <∞

}
. Finally, given some functional

of the solution u, Θ : V → R, we denote by F : Γ→ R the N -variate real-valued function assigning to each
realization y ∈ Γ the corresponding value of Θ[u] (quantity of interest), i.e., F (y) = Θ[u(·,y)], and we aim
at estimating its expected value,

E[F ] =

∫
Γ

F (y)ρ(y)dy.

Example 1. As a motivating example, consider the following elliptic problem: find u : B × Γ → R such
that for ρ-almost every y ∈ Γ {

−div(a(x,y)∇u(x,y)) = f(x) x ∈ B,

u(x,y) = h(x) x ∈ ∂B, (3)

holds, where div and ∇ denote differentiation with respect to the physical variables, x, only, and the function
a : B× Γ→ R is bounded away from 0 and ∞, i.e., there exist two constants, amin, amax, such that

0 < amin ≤ a(x,y) ≤ amax <∞, ∀x ∈ B and for ρ-almost every y ∈ Γ. (4)

This boundedness condition guarantees that Assumption 1 is satisfied, i.e. the equation is well posed for
ρ-almost every y ∈ Γ, thanks to a straightforward application of the Lax–Milgram lemma; moreover, the
equation is well posed in L2

ρ(Γ;V ), where V is the classical Sobolev space H1
0 (B), see, e.g., [6]. This is the

example we will focus on in Section 5, where we will test numerically the performance of the Multi-Index
Stochastic Collocation method that we will detail in Section 3.

Remark 1. The method that we present in the following sections can be also applied to more general
problems than Problem 1 in which the forcing terms, boundary conditions and possibly domain shape are
also modeled as uncertain; the extension to time-dependent problems with uncertain initial conditions is
also straightforward. Other probability measures can also be considered; the very relevant case in which the
random variables, yn, are normally distributed is an example.

Remark 2. As will be clearer in a moment, the methodology we propose uses tensorized solvers for deter-
ministic PDEs. Although for ease of exposition we have assumed that the spatial domain, B, is a hyper-
rectangle, it is important to remark that the methodology proposed in this work can also be applied to non
hyper-rectangular domains: this can be achieved by introducing a mapping from a reference hyper-rectangle
to the generic domain of interest (with techniques such as those proposed in the context of Isogeometric
Analysis [39] or Transfinite Interpolation [40]) or by a Domain Decomposition approach [41] if the domain
can be obtained as a union of hyper-rectangles.

2.1. Approximation along the deterministic and stochastic dimensions

In practice, we can only access the value of F via a numerical solver yielding a numerical approximation
of the solution u of Problem 1, which depends on a set of D discretization parameters, such as the mesh-size,
the time-step, the tolerances of the numerical solvers, and others, which we denote by hi, i = 1, . . . , D; we
remark that in general D, the number of parameters, might be different from d, the number of spatial
dimensions. For each of those parameters, we introduce a sequence of discretization levels, hi,α, α = 1, 2, . . .,
and for each multi-index α ∈ ND+ , we denote by uα(x,y) the approximation of u obtained from setting
hi = hi,αi , with the implicit assumption that uα(x,y) → u(x,y) as min1≤i≤D αi → ∞ for ρ-almost every
y ∈ Γ; similarly, we also write Fα(y) = Θ[uα(·,y)]. For instance, we could solve the problem stated in
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Example 1 by a finite differences scheme with grid-sizes hi,αi = h02−αi in direction i = 1, . . . , D, for some
h0 > 0.

The discretization of Fα over the random parameter space Γ will consist of a suitable linear combination
of tensor interpolants over Γ based on Lagrangian polynomials. Observe that this approach is sound only
if Fα is at least a continuous function over Γ (the smoother Fα is, the more effective the Lagrangian
approximation will be); for instance, for the problem stated in Example 1, it can be shown under moderate
assumptions on a(x,y) that F and Fα are y-analytic, see, e.g., [35, 16]; we will return to this point in
Section 5.

To derive a generic tensor Lagrangian interpolation of Fα, we first introduce the set C0(Γn) of real-valued
continuous functions over Γn, and the subspace of polynomials of degree at most q over Γn, Pq(Γn) ⊂ C0(Γn).
Next, we consider a sequence of univariate Lagrangian interpolant operators in each dimension Yn, i.e.,

{Um(βn)
n }βn∈N+

, where we refer to the value βn as the “interpolation level”. Each interpolant is built over

a set of m(βn) collocation points, H
m(βn)
n = {y1

n, y
2
n . . . y

m(βn)
n } ⊂ Γn, where m is a strictly increasing

function, with m(0) = 0 and m(1) = 1, that we call the “level-to-nodes function”; thus, the interpolant
yields a polynomial approximation,

Um(βn)
n : C0(Γn)→ Pm(βn)−1(Γn), Um(βn)

n [f ](yn) =

m(βn)∑
j=1

f(yjn)

m(βn)∏
k=1,k 6=j

yn − ykn
yjn − ykn

 ,

with the convention that U0
n[f ] = 0 ∀f ∈ C0(Γn).

The N -variate Lagrangian interpolant can then be built by a tensorization of univariate interpolants: de-
note by C0(Γ) the space of real-valued N -variate continuous functions over Γ and by Pq(Γ) =

⊗N
n=1 Pqn(Γn)

the subspace of polynomials of degree at most qn over Γn, with q = (q1, . . . , qN ) ∈ NN , and consider a
multi-index β ∈ NN+ assigning the interpolation level in each direction, yn; the multivariate interpolant can
then be written as

Um(β) : C0(Γ)→ Pm(β)−1(Γ), Um(β)[Fα](y) =
(
U
m(β1)
1 ⊗ · · · ⊗ U

m(βN )
N

)
[Fα](y).

The set of collocation points needed to build the tensor interpolant Um(β)[u](y) is the tensor grid Tm(β) =

×Nn=1H
m(βn)
n with cardinality #Tm(β) =

∏N
n=1m(βn). Observe that the Lagrangian interpolant immediately

induces an N -variate quadrature formula, Qm(β) : C0(Γ)→ R,

Qm(β)[Fα] = E
[
Um(β)[Fα](y)

]
=

#Tm(β)∑
j=1

Fα(ŷj)$j ,

where ŷj ∈ Tm(β) and the quadrature weights $j are the expected values of the Lagrangian polynomials
centered in ŷj , which can be computed exactly for most of the common interpolation knots and probability
measures of the random variables.

It is recommended that the collocation points H
m(βn)
n to be used in each direction are chosen according

to the underlying probability measure, ρ(yn)dyn, to ensure good approximation properties of the interpolant
and quadrature operators, Um(β) and Qm(β). Common choices are Gaussian quadrature points like Gauss–
Legendre for uniform measures or Gauss–Hermite for Gaussian measures, cf. e.g., [42], which are however

not nested, i.e., H
m(βn)
n 6⊂ H

m(βn+1)
n . This means that they are not optimal for successive refinements of

the interpolation/quadrature, and we will not consider them in this work. Instead, we will work with nested
collocation points, and specifically with Clenshaw–Curtis points [34, 43], that are a classical choice for the
uniform measure that we are considering here; other choices of nested points are available for uniform random
variables, e.g., the Leja points [34, 44], whose performance is somehow equivalent to that of Clenshaw–Curtis
for quadrature purposes, see [45, 46]. Clenshaw–Curtis points are defined as

yjn = cos

(
(j − 1)π

m(in)− 1

)
, 1 ≤ j ≤ m(in), (5)
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together with the following level-to-nodes relation, m(in), that ensures their nestedness:

m(0) = 0, m(1) = 1, m(in) = 2in−1 + 1. (6)

We conclude this section by introducing the following operator norm, which acts as a “Lebesgue constant”
from C0(Γ) to L2

ρ(Γ):

Mm(β) =

N∏
n=1

Mm(βn)
n , with Mm(βn)

n = sup
‖f‖L∞(Γn)=1

‖Um(βn)
n f‖L2

ρ(Γn). (7)

In particular, for the Clenshaw–Curtis points, it is possible to bound Mm(βn)
n as:

Mm(β) ≤Mm(β)
est =

N∏
n=1

Mm(βn)
n,est , Mq

n,est =


1 for q = 1

2

π
log(q − 1) + 1 for q ≥ 2.

(8)

See [34] and references therein.

Remark 3. Nested collocation points have been studied also for other probability measures than uniform
probability measures. In the very relevant case of a normal distribution, one possible choice is the Genz–
Keister points [47, 36]; we mention also the recent work [46] on generalized Leja points that can be used for
arbitrary measures on unbounded domains.

3. Multi-Index Stochastic Collocation

It is easy to see that an accurate approximation of E[F ] by a direct tensor technique as the one just
introduced, E[F ] ≈ Qm(β)[Fα], might require a prohibitively large computational effort even for moderate
values of D and N (what is referred to as the “curse of dimensionality”). In this work, we therefore
propose the Multi-Index Stochastic Collocation as an alternative. It is a generalization of the telescoping
sum presented in the introduction, see equations (1) and (2). Denoting Qm(β)[Fα] = Fα,β, the building
blocks of such a telescoping sum are the first-order difference operators for the deterministic and stochastic
discretization parameters, denoted respectively by ∆det

i with 1 ≤ i ≤ D and ∆stoc
j with 1 ≤ j ≤ N :

∆det
i [Fα,β] =

{
Fα,β − Fα−ei,β, if αi > 1,

Fα,β if αi = 1,
(9)

∆stoc
j [Fα,β] =

{
Fα,β − Fα,β−ej , if βj > 1,

Fα,β if βj = 1.
(10)

We then define the first-order tensor difference operators,

∆det[Fα,β] =

D⊗
i=1

∆det
i [Fα,β] = ∆det

1

[
∆det

2

[
· · ·∆det

D [Fα,β]
] ]

=
∑

j∈{0,1}D
(−1)|j|Fα−j,β, (11)

∆stoc[Fα,β] =

N⊗
j=1

∆stoc
j [Fα,β] =

∑
j∈{0,1}N

(−1)|j|Fα,β−j . (12)

Observe that computing ∆det[Fα,β] actually requires up to 2D solver calls, and analogously applying
∆stoc[Fα,β] requires interpolating Fα on up to 2N tensor grids; for instance, if D = N = 2 and α,β > 1,
we have

∆det[Fα,β] = ∆det
2

[
∆det

1 [Fα,β ]
]

= ∆det
2 [Fα,β − Fα−e1,β] = Fα,β − Fα−e1,β − Fα−e2,β + Fα−1,β,

∆stoc[Fα,β] = Fα,β − Fα,β−e1
− Fα,β−e2

+ Fα,β−1.
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Finally, letting ∆[Fα,β] = ∆stoc[∆det[Fα,β]], we define the Multi-Index Stochastic Collocation (MISC)
estimator of E[F ] as

MI [F ] =
∑

[α,β]∈I

∆[Fα,β] =
∑

[α,β]∈I

cα,βFα,β, (13)

where I ⊂ ND+N
+ and cα,β ∈ Z. Observe that many of the coefficients in (13), cα,β, may be zero: in

particular, cα,β is zero whenever [α,β] + j ∈ I ∀j ∈ {0, 1}N+D. Similarly to the analogous sparse grid
construction [34, 48, 7], we shall require that the multi-index set I be downward closed, i.e.,

∀ [α,β] ∈ I,
{
α− ei ∈ I for 1 ≤ i ≤ D and αi > 1,

β − ej ∈ I for 1 ≤ j ≤ N and βj > 1.

Remark 4. In theory, a MISC approach could also be developed to approximate the entire solution u(x,y)
and not just the expectation of functionals, considering differences between consecutive interpolant operators,
Um(β), on the stochastic domain rather than differences of the quadrature operators, Qm(β), as a building
block for the ∆stoc operators, as well as considering the discretized solution uα rather than just the quantity
of interest, Fα, in the construction of the ∆det operators.

3.1. A knapsack-like construction of the set I
The efficiency of the MISC method in equation (13) will heavily depend on the specific choice of the

index-set, I; in the following, we will first propose a general strategy to derive quasi-optimal sets and then
prove in Section 4 a convergence result for such sets under some reasonable assumptions.

To derive an efficient set, I, we recast the problem of its construction as an optimization problem, in
the same spirit of [29, 34, 35, 7]. We begin by introducing the concepts of “work contribution”, ∆Wα,β,
and “error contribution”, ∆Eα,β, for each hierarchical surplus operator, ∆[Fα,β]. The work contribution
measures the computational cost (measured, e.g., as a function of the total number of degrees of freedom, or
in terms of computational time) required to add ∆[Fα,β] to MI [F ], i.e., to solve the associated deterministic
problems and to compute the corresponding interpolants over the parameter space, cf. equations (11) and
(12); the error contribution measures instead how much the error |E[F ] −MI [F ]| would decrease once the
operator ∆[Fα,β] has been added to MI [F ]. In formulas, we define

∆Wα,β = Work
[
MI∪{[α,β]}[F ]

]
−Work[MI [F ]] = Work[∆[Fα,β]],

so that
Work[MI [F ]] =

∑
[α,β]∈I

∆Wα,β, (14)

Observe that this work definition is sharp only if we think of building the MISC estimator with an incremental
approach, i.e., we assume that adding the multi-index (α,β) to the index set I would not reduce the work
that has to be done to evaluate the MISC estimator on the index set. This implies that one cannot take
advantage of the fact that some of the coefficients in (13), cα,β, that are non-zero when considering the set I
could become zero if the MISC estimator is instead built considering the set I ∪ {[α,β]}, hence it would be
possible not to compute the corresponding approximations Fα,β. This approach is discussed in Section 5.3.

Similarly, we define

∆Eα,β =
∣∣∣E[MI∪{[α,β]}[F ]

]
− E[MI [F ]]

∣∣∣ = |E[∆[Fα,β]]| .

Thus, by construction, the error of the MISC estimator (13) can be bounded as the sum of the error
contributions not included in the estimator MI [F ],

Error[MI [F ]] = |E[F ]−MI [F ]| =

∣∣∣∣∣∣E
 ∑

[α,β]/∈I

∆[Fα,β]

∣∣∣∣∣∣
≤

∑
[α,β]/∈I

|E[∆[Fα,β]]| =
∑

[α,β]/∈I

∆Eα,β. (15)
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Consequently, a quasi-optimal set I can be computed by solving the following “binary knapsack problem”
[49]:

maximize
∑

[α,β]∈ND+N
+

∆Eα,βxα,β

such that
∑

[α,β]∈ND+N
+

∆Wα,βxα,β ≤Wmax, (16)

xα,β ∈ {0, 1},

and setting I = {[α,β] ∈ ND+N
+ : xα,β = 1}. Observe that such a set is only “quasi” optimal since

the error decomposition (15) is not an exact representation but rather an upper bound. The optimization
problem above is well known to be computationally intractable. Still, an approximate greedy solution (which
coincides with the exact solution under certain hypotheses that will be clearer in a moment) can be found
if one instead allows the variables xα,β to assume fractional values, i.e., it is possible to include fractions
of multi-indices in I. For this simplified problem, the resulting problem can be solved analytically by the
so-called Dantzig algorithm [49]:

1. compute the “profit” of each hierarchical surplus, i.e., the quantity

Pα,β =
∆Eα,β
∆Wα,β

;

2. sort the hierarchical surpluses by decreasing profit;

3. add the hierarchical surpluses to MI [F ] according to such order until the constraint on the maximum
work is fulfilled.

Note that by construction xα,β = 1 for all the multi-indices included in the selection except for the last one,
for which xα,β < 1 might hold; in other words, the last multi-index is the only one that might not be taken
entirely. However, if this is the case, we assume that we could slightly adjust the value Wmax, so that all
xα,β have integer values (see also [7]); observe that this integer solution is also the solution of the original
binary knapsack problem (16) with the new value of Wmax in the work constraint. Thus, if the quantities
∆Eα,β and ∆Wα,β were available, the quasi-optimal index set for the MISC estimator could be computed
as

I = I(ε) =

{
[α,β] ∈ ND+N

+ :
∆Eα,β
∆Wα,β

≥ ε
}
, (17)

for a suitable ε > 0.

Remark 5. The MISC setting could in principle include the Multilevel Stochastic Collocation method pro-
posed in [24] as a special case, by simply considering a discretization of the spatial domain on regular meshes,
and letting the diameter of each element (the mesh-size) be the only discretization parameter, i.e., D = 1.

However, the sparse grids to be used at each level are determined in [24] by computing the minimal number
of collocation points needed to balance the stochastic and spatial error. This is done by relying on sparse grid
error estimates; yet, since in general it is not possible to generate a sparse grid with a predefined number
of points, some rounding strategy to the sparse grid with the nearest cardinality must be devised, which may
affect the optimality of the multilevel strategy. In the present work, we overcome this issue by relying instead
on profit estimates to build a set of multi-indices that simultaneously prescribe the spatial discretization and
the associated tensor grid in the stochastic variables. Furthermore, only standard isotropic Smolyak sparse
grids are considered in the actual numerical experiments in [24] (although in principle anisotropic sparse
grids could be used as well, provided that good convergence estimates for such sparse grids are available),
while our implementation naturally uses anisotropic stochastic collocation methods at each spatial level.
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The MISC approach also includes as a special case the “Sparse Composite Collocation Method” developed
in [38], by considering again only one deterministic discretization parameter, i.e., D = 1, and then setting

I =

{
[α,β] ∈ N1+N

+ : α+

N∑
n=1

βn ≤ w
}
, (18)

with w ∈ N+. In other words, the approach in [38] is based neither on profit nor on error balancing.

4. Complexity analysis of the MISC method

In this section, we assume suitable models for the error and work contributions, ∆Eα,β and ∆Wα,β

(which are numerically verified in Section 5 for the problem in Example 1) and then state a convergence
theorem for the MISC method built using a particular index set, I∗, which can be regarded as an approxi-
mation of the quasi-optimal set introduced in the previous section. The proof is technical and we therefore
place it in the Appendix.

Assumption 2. The discretization parameters, hi, for the deterministic solver depend exponentially on the
discretization level αi, and the number of collocation points over the parameter space grows exponentially
with the level βi:

hi,αi = h02−αi and Cm,low2βi ≤ m(βi) ≤ Cm,up2βi .
Assumption 3. The error and work contributions, ∆Eα,β and ∆Wα,β, can be bounded as products of two
terms,

∆Eα,β ≤ ∆Edet
α ∆Estoc

β and ∆Wα,β ≤ ∆W det
α ∆W stoc

β ,

where ∆W det
α and ∆Edet

α denote the cost and the error contributions due to the deterministic difference
operator, ∆det[Fα,β], and similarly ∆W stoc

β and ∆Estoc
β denote the cost and the error contribution due to

the stochastic difference operator, ∆stoc[Fα,β], cf. equations (11)-(12).

Assumption 4. The following bounds hold true for the factors appearing in Assumption 3:

∆W det
α ≤ Cdet

work

D∏
i=1

(hi,αi)
−γ̃i , (19)

∆Edet
α ≤ Cdet

error

D∏
i=1

(hi,αi)
r̃i , (20)

∆W stoc
β ≤ C̃stoc

work

N∏
n=1

m(βn) ≤ Cstoc
work

N∏
n=1

2βn , (21)

∆Estoc
β ≤ Cstoc

error e
−
∑N
i=1 g̃im(βi), (22)

for some rates γ̃i, r̃i, g̃i > 0.

Theorem 1 (MISC computational complexity). Under Assumptions 2 to 4, the bounds for the factors
appearing in Assumption 3 can be equivalently rewritten as

∆Wα,β ≤ Cworke
∑D
i=1 γiαieδ|β|, (23a)

∆Eα,β ≤ Cerrore
−
∑D
i=1 riαie−

∑N
j=1 gj exp(δβj), (23b)

with γi = γ̃i log 2, ri = r̃i log 2, δ = log 2 and gi = g̃1Cm,low. Define the following set

I∗(L) =

{
[α,β] ∈ ND+N

+ :

D∑
i=1

(ri + γi)αi +

N∑
i=1

(δβi + gie
δβi) ≤ L

}
with L ∈ R+. (24)
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Then there exists a constant CW such that, for any Wmax satisfying

Wmax ≥ CW exp (χ) , (25)

and choosing L as

L = L(Wmax) =
1

χ

(
log

(
Wmax

CW

)
− (z− 1) log

(
1

χ
log

(
Wmax

CW

)))
, (26)

with Ξ =
(

γ1

γ1+r1
, . . . , γD

γD+rD

)
, χ = max(Ξ), ζ = mini=1,...,D

ri
γi

and z = #{i = 1, . . . D : ri
γi

= ζ}, the MISC

estimator MI∗(L(Wmax)) satisfies

Work
[
MI∗(L(Wmax))

]
≤Wmax, (27a)

lim
Wmax↑∞

Error
[
MI∗(L(Wmax))

]
W−ζmax (log (Wmax))

(ζ+1)(z−1)
= CE <∞. (27b)

Remark 6. The set I∗ proposed in Theorem 1 can be obtained by assuming that the bounds in equations
(23a) and (23b) are actually equalities and by using the definition of the quasi-optimal set (18):

I∗ =

{
[α,β] ∈ ND+N

+ :
∆Eα,β
∆Wα,β

≥ ε
}

=

{
[α,β] ∈ ND+N

+ :
e−
∑D
i=1 riαie−

∑N
j=1 gj exp(δβj)

e
∑D
i=1 γiαieδ|β|

≥ ε
}

=

{
[α,β] ∈ ND+N

+ :

D∑
i=1

(ri + γi)αi +

N∑
i=1

(δβi + gie
δβi) ≤ L

}
,

where the last equality holds with L = − log ε.

Remark 7. Refining along the spatial or the stochastic variables has different effects on the error of the

MISC estimator. Indeed, due to the double exponential e−
∑N
j=1 gj exp(δβj) in (23b), the stochastic contribution

to the error will quickly fade to zero, which in turn implies that most of the work will be used to reduce the
deterministic error. This is confirmed by the fact that the error convergence rate in Theorem 1 only depends
on γi and ri, i.e., the cost and error rates of the deterministic solver, respectively. This observation coincides
with that in [38, page 2299]: “since the stochastic error decreases exponentially, the convergence rate should
tend towards the algebraic rate of the spatial discretization [...]; see Proposition 3.8”. Compared with the
method proposed in [38], MISC takes greater advantage of this fact, since it is based on an optimization
procedure, cf. equation (17); this performance improvement is well documented by the comparison between
the two methods shown in the next section. Figure 1 shows the multi-indices included in I according to (24)
for increasing values of L, for a problem with N = D = 1, γi = 1, r = 2, and g = 1.5: as expected, the
shape of I becomes more and more curved as L grows, due to this lack of balance between the stochastic and
deterministic directions.

5. Example and numerical evidence

In this section, we test the effectiveness of the MISC approximation on some instances of the general
elliptic equation (3) in Example 1; more precisely, we consider a problem with one physical dimension (d = 1)
as well as a more challenging problem with three dimensions (d = 3); in both cases, we set B = [0, 1]d,
f(x) = 1 and h(x) = 0. As for the random diffusion coefficient, we set

a(x,y) = eγN (x,y), γN (x,y) =

N∑
n=1

λnψn(x)yn, (28)
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Figure 1: Index sets I(L) for D = N = 1, according to equation (24).

where yn are uniform random variables over Γn = [−1, 1], λn =
√

3 exp(−n) and take ψn to be a tensorization
of trigonometric functions. More precisely, we define the function

φn(x) =


sin
(n

2
πx
)

if n is even

cos

(
n− 1

2
πx

)
if n is odd

and set ψn(x) = φn(x) if d = 1. If d = 3, we take ψn(x) = φi(n)(x1)φj(n)(x2)φk(n)(x3) for some indices
i(n), j(n), k(n) detailed in Table 1. Observe that the boundedness of the supports of the random variables
yn guarantees the existence of the two bounding constants in equation (4), amin and amax, that in turn
assures the well posedness of the problem. Finally, the quantity of interest is defined as

F (y) =

∫
B

u(x,y)Q(x)dx, Q(x) =
1

(σ
√

2π)d
exp

(
−‖x− x0‖22

2σ2

)
(29)

with σ = 0.01 and locations x0 = π/3 ≈ 0.63 for d = 1 and x0 = [π/3, 1
√

3,
√

2/3] ≈ [0.63, 0.58, 0.47] for
d = 3.

n 1 2 3 4 5 6 7 8 9 10
i(n) 1 2 1 1 3 2 2 1 1 1
j(n) 1 1 2 1 1 2 1 3 2 1
k(n) 1 1 1 2 1 1 2 1 2 3

Table 1: Included functions for d = 3 in (28). Here ψn(x) = φi(n)(x1)φj(n)(x2)φk(n)(x3).

5.1. Verifying bounds on work and error contributions

In this subsection we discuss the validity of Assumptions 2 to 4, upon which the MISC convergence
theorem is based. To this end, we analyze separately the properties of the deterministic solver and of the
collocation method applied to the problem just introduced.
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Deterministic solver. The deterministic solver considered in this work consists of a tensorized finite dif-
ference solver, with the grid size along each direction, x1, . . . , xd, defined by hi,αi = h02−αi and no other
discretization parameters are considered: therefore, D = d, Assumption 2 is satisfied, and, due to the
Dirichlet boundary conditions prescribed for u, the overall number of degrees of freedom of the correspond-

ing finite difference solution is
∏D
i=1

(
1

hi,αi
− 1
)
≤∏D

i=1

(
1

hi,αi

)
. The associated linear system is solved with

the GMRES method: supposing that such a method converges with rate ϑ with respect to the number of
degrees of freedom, we then have that the cost of a call to the solver can be bounded as

Work[Fα] ≤ CGMRES

D∏
i=1

(hi,αi)
−ϑ.

Next, recall that computing ∆det[Fα] requires up to 2D solver calls, each on a different grid (cf. equation
(11)). Therefore, we have

∆W det
α = Work

[
∆det[Fα]

]
=

∑
j∈{0,1}D

Work[Fα−j ]

≤ CGMRES

∑
j∈{0,1}D

D∏
i=1

(
h02−(αi−ji)

)−ϑ
= CGMRES

(
D∏
i=1

(
h02−αi

)−ϑ) ∑
j∈{0,1}D

D∏
i=1

2−jiϑ

= CGMRES(1 + 2−ϑ)D
D∏
i=1

(hi,αi)
−ϑ,

i.e., bound (19) is verified with γ̃i = ϑ,∀i = 1, . . . , D and Cdet
work = CGMRES(1 + 2−ϑ)D (i.e., the sum of costs

of the solver calls is proportional to the cost of the call on the finest grid). In practice, we have measured
ϑ = 1 in our computations.

Concerning the error contribution ∆Edet
α , we observe numerically that bound (20) holds true in practice

with r̃i = 2, i = 1, . . . , D, due to the fact that a ∈ C∞(B) for ρ-almost every y ∈ Γ, f ∈ C∞(B) and
the function Q appearing in the quantity of interest (29) is also infinitely differentiable, confined in a small
region inside the domain and zero up to machine precision on the boundary. In more detail, assuming for
a moment that Assumption 3 is valid (we will numerically verify it later in this section), in Figure 2(a) we
show the value of ∆Eα,β = ∆Edet

α ∆Estoc
β for fixed β = 1 and variable α = jᾱ+1, j = 1, 2, . . ., as well as the

corresponding value of the bound (20) for ∆Edet
α . The line obtained by choosing ᾱ = [1, 0, 0] confirms that

the size of ∆Edet
α indeed decreases exponentially fast with respect to α1, and by fitting the computed values

of ∆Edet
α we obtain that the convergence rate is r̃j = 2, as previously mentioned; analogous conclusions can

be obtained for α2 and α3 by setting ᾱ = [0, 1, 0] (shown in Figure 2(a)) and ᾱ = [0, 0, 1] (not shown).
Most importantly, confirmation of the product structure of ∆Edet

α can be obtained by observing, e.g., the
decay of ∆Edet

α for ᾱ = [1, 1, 0] and ᾱ = [1, 1, 1].

Stochastic discretization. The interpolation over the parameter space is based on the tensorized Lagrangian
interpolation technique with Clenshaw–Curtis points explained in Section 2.1, cf. eqs. (5) and (6). In
particular, due to the nestedness of the Clenshaw–Curtis points, adding the operator ∆stoc[Fα,β] to the

MISC estimator will require ∆W stoc
β =

∏N
j=1

(
m(βj)−m(βj − 1)

)
new collocation points, which in view of

equation (6) can be bounded as

m(βj)−m(βj − 1) =


1 if βj = 1

2 if βj = 2

2βj−2, if βj > 2,

≤ 2βj−1, ∀j = 1, 2, . . . ,
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ᾱ = [1, 1, 0]
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Figure 2: Verifying the validity of the bound (23b) for the value of |∆Eα,β| for the test case with D = 3 and N = 5. The
dashed lines are based on the model in (23b) with r̃i = 2 for all i = 1, 2, 3 and gj as in Table 2 for j = 1, . . . , 5. The solid lines
are based on computed values.

provided that the set I is downward closed: Assumption 2 and bound (21) in Assumption 4 are thus verified.
Observe that the nestedness of the Clenshaw–Curtis knots is a key property here: indeed, if the nodes are
not nested ∆W stoc

β is not uniquely defined, i.e., it depends on the set I to which ∆stoc[Fα,β] is being added,
see, e.g., [34, Example 1 in Section 3].

Finally, to discuss the validity of bound (22) for ∆Estoc
β , we rely on the theory developed in our previous

works [35, 34]. We begin by introducing the Chebyshev polynomials of the first kind Ψq(t) on [−1, 1], which
are defined by the relation

Ψq(cosϑ) = cos(qϑ), 0 ≤ ϑ ≤ π, q ∈ N.

Then, for any multi-index q ∈ NN , we consider theN -variate Chebyshev polynomials Ψq(y) =
∏N
n=1 Ψqn(yn)

and introduce the spectral expansion of f : [−1, 1]N → R over {Ψq}q∈NN ,

f(y) =
∑
q∈NN

fqΨq(y), fq =

∫
Γ

f(y)Ψq(y)

N∏
n=1

1√
1− y2

n

dy,

Next, given any ξ1, ξ2, . . . , ξN > 1 we introduce the Bernstein polyellipse Eξ1,...,ξN =
∏N
n=1 En,ξn , where En,ξn

denotes the ellipses in the complex plane defined as

En,ξn =

{
zn ∈ C : Re (z) ≤ ξn + ξ−1

n

2
cosφ, Im (z) ≤ ξn − ξ−1

n

2
sinφ, φ ∈ [0, 2π)

}
,

and recall the following lemma (see [34, Lemma 2] for a proof).

Lemma 1. Let f : [−1, 1]N → R, and assume that there exist ξ1, ξ2, . . . , ξN > 1 such that f admits a complex
continuation f∗ : CN → R holomorphic in the Bernstein polyellipse Eξ1,...,ξN with supz∈Eξ1,...,ξN

|f∗(z)| ≤ B
and B = B(ξ1, ξ2, . . . , ξn) <∞. Then f admits a Chebyshev expansion that converges in C0([−1, 1]N ), and
whose coefficients fq are such that

|fq| ≤ CCheb(q)

N∏
n=1

e−g
∗
nqn , g∗n = log ξn (30)

with CCheb(q) = 2‖q‖0B, where ‖q‖0 denotes the number of non-zero elements of q.
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The following lemma then shows that the region of analyticity of F (y) indeed contains a Bernstein
ellipse, so that a decay of exponential type can be expected for its Chebyshev coefficients.

Lemma 2. The quantity of interest F (y) = Θ[u(·,y)] is analytic in a Bernstein polyellipse with parameters
ξn = τn +

√
τ2
n + 1, for any τn <

π
2Nλn

.

Proof. Equation (3) can be extended in the complex domain by replacing y with z ∈ CN , and is analytic
in the set Σ =

{
z ∈ CN : <e[a(x, z)] > 0

}
, see, e.g., [6]. By writing zn = bn + icn, we have

a(x, z) = exp

(∑
n

znλnψn(x)

)
= exp

(∑
n

bnλnψn(x)

)
exp

(∑
n

icnλnψn(x)

)

= exp

(∑
n

bnλnψn(x)

)[
cos

(∑
n

cnλnψn(x)

)
+ i sin

(∑
n

cnλnψn(x)

)]

so that the region Σ can be rewritten as

Σ =

{
z = b+ ic ∈ CN : cos

(∑
n

cnλnψn(x)

)
> 0,∀x ∈ B

}
.

Such a region includes the smaller region

Σ2 =

z = b+ ic ∈ CN :

∥∥∥∥∥∑
n

cnλnψn

∥∥∥∥∥
L∞(B)

<
π

2

 ,

which in turn includes

Σ3 =

{
z = b+ ic ∈ CN :

∑
n

λn|cn| <
π

2

}
,

where the last equality is due to the fact that, by construction, ‖ψn‖L∞(B) = 1, cf. equation (28). Next we
let τn = π

2Nλn
and define the following subregion of Σ3:

Σ4 =

{
z = b+ ic ∈ CN : |cn| < τn

}
⊂ Σ3.

Σ4 is actually a polystrip in the complex plain that it in turn contains the Bernstein ellipse with parameters
ξn such that

ξn − ξ−1
n

2
= τn ⇒ ξ2

n − 1− 2τnξn = 0⇒ ξn = τn +
√
τ2
n + 1

in which u(x,y) is analytic. Finally, the quantity of interest, F = Θ[u], is also analytic in the same Bersntein
polyellipse due to the linearity of the operator Θ.

Remark 8. Incidentally, we remark that the choice of τn considered in Lemma 2 degenerates for N →
∞. In this case, if we know that

∑∞
n=0(λn‖ψn‖L∞(B))

p < ∞ for some p < 1, then we could set τn =
π
2 (λn‖ψn‖L∞(B))

p−1, which does not depend on N .

Lemma 3.
∆Estoc

β ≤ CEe−
∑N
n=1 g

∗
nm(βn−1)Mm(β) (31)

holds, where CE = 4NB
∏N
n=1

1
1−e−g∗n , B as in Lemma 1, g∗n = log ξn with ξn as in Lemma 2, and Mm(β)

has been defined in equation (7).
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g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

2.4855 2.8174 4.5044 4.1938 4.7459 6.8444 7.1513 7.8622 8.6584 9.4545

Table 2: Values of rates g for the test cases considered.

Proof. Combining Lemmas 1 and 2, we obtain that the Chebyshev coefficients of F can be bounded as

|Fq| ≤ CCheb(q)

N∏
n=1

e−g
∗
nqn ,

with g∗n = log ξn = log(τn +
√
τ2
n + 1) and τn as in Lemma 2. Then, the result can be obtained following

the same argument of [34, Lemma 6].

To conclude, we first observe that Mm(β) grows logarithmically with respect to m(β), see eq. (8), so it
is asymptotically negligible in the estimate above, i.e. we can write

∆Estoc
β ≤ CE2

(ε)

N∏
n=1

e−g
∗
n(1−εE)m(βn−1)

for an arbitrary εE > 0 and with CE2(εE) > CE , and furthermore that the definition of m(i) in (6) implies

that m(i− 1) ≥ m(i)−1
2 . We can finally write

∆Estoc
β ≤ CE2(ε)

N∏
n=1

e−g
∗
n(1−εE)

m(βn)−1
2 = Cstoc

error

N∏
n=1

e−g̃nm(βn),

with Cstoc
error = C(ε)

∏N
n=1 e

g∗n
2 (1−ε) and g̃n =

g∗n
2 (1− εE). The latter bound actually shows that bound (22) in

Assumption 4 is valid for the test we are considering. Finally, we point out that in practice we work with
the expression (23b), whose rates gn are actually better estimated numerically, using the same procedure
used to obtain the deterministic rates r̃j = 2: we choose a sufficiently fine spatial resolution level α, consider

a variable β = jβ̄ + 1 and fit the (simplified) model ∆Estoc
β ≤ C

∏N
n=1 e

−gn2βn . The values obtained are
reported in Table 2, and they are found to be equal for the case d = 1 and d = 3 (see also [50, 35, 8]). To
make sure that the estimated value of gn does not depend on the spatial discretization, one could repeat the
procedure for a few different values of α and verify that the estimate is robust with respect to the spatial
discretization: we note, however, that a rough estimate of gn will also be sufficient, since the convergence
of the method is in practice dictated by the deterministic solver, as we have already discussed in Remark 7.

Figure 2(b) then shows the validity of the bound ∆Estoc
β ≤ C∏N

n=1 e
−gn2βn comparing for fixed α = 1 and

β = jβ̄ + 1 the value of ∆Edet
α ∆Estoc

β and the corresponding estimate.

Stochastic-deterministic product structure. We conclude this section by verifying Assumption 3, i.e., the fact
that the error contribution can be factorized as ∆Eα,β = ∆Edet

α ∆Estoc
β and that an analogous decomposition

holds for ∆Wα,β. While the latter is trivial, to verify the former we employ the same strategy used to verify
the models for ∆Edet

α and ∆Estoc
β , this time letting both α and β change for every point, i.e., α = jᾱ+ 1

and β = jβ0 +1. Figure 3 shows the comparison between the computed value of ∆Eα,β and their estimated
counterpart and confirms the validity of the product structure assumption.

5.2. Test setup

In our numerical tests, we compare MISC with the methods listed below. For each of them we show (for
both test cases considered) plots of the convergence of the error in the computation of E[F ] with respect to
the computational work, taking as a reference value the result obtained using a well-resolved MISC solution.
To avoid discrepancies in running time due to implementation details, the computational work is estimated
in terms of the total number of degrees of freedom, i.e., using (14) and (23a). The names used here for the
methods are also used in the legends of the figures showing the convergence plots.
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Figure 3: Comparison of |∆Eα,β| for β = jβ̄ + 1 and α = jᾱ+ 1 for the test case with D = 3 and N = 5. The dashed lines
are based on the model in (23b) with r̃i = 2 for all i = 1, 2, 3 and gj as in Table 2 for j = 1, . . . , 5. The solid lines are based
on computed values.

“a-priori” MISC refers to the MISC method with index set I defined by (17), where ∆Wα,β and ∆Eα,β
are taken to equal their upper bounds in (23a) and (23b), respectively. The resulting set is explicitly
written in (24). The convergence rate of this set is predicted by Theorem 1, cf. Remark 6. Note that
we do not need to determine the value of the constants Cwork and Cerror since they can be absorbed
in the parameter ε in (17).

“a-posteriori” MISC refers to the MISC method with index set I defined by (17), where ∆Wα,β is taken
to equal its upper bound in (23a), and ∆Eα,β is instead computed explicitly as |∆[Fα,β ]|. Notice that
this method is not practical since the cost of constructing set I would dominate the cost of the MISC
estimator by far. However, this method would produce the best possible convergence and serve as a
benchmark for both “a-priori” MISC and the bound (23b).

MLSC (only in the case d > 1) refers to the Multilevel Stochastic Collocation obtained by setting α1 =
. . . = αD (i.e. considering the mesh-size as the only discretization parameter), as already mentioned
in Remark 5; we recall this is not exactly the MLSC method that was implemented in [24], see again
Remark 5. Just as with MISC, we consider both the “a-priori” and “a-posteriori” version of MLSC,
where ∆Eα,β is taken to be equal to its upper (23b) in the former case and assessed by direct numerical
evaluation in the latter case.

SCC refers to the “Sparse Composite Collocation method” in Remark 5, see equation (18).

MIMC refers to the Multi-Index Monte Carlo method as detailed in [29], for which the complexity
O
(
W−0.5

max

)
can be estimated for the test case at hand and as long as d < 4.

SGSC refers to the quasi-optimal Sparse Grids Stochastic Collocation (SGSC) with fixed spatial discretiza-
tion as proposed in [35, 34]. To determine the needed spatial discretization for a given work and for a
fair comparison against MISC, we actually compute the convergence curves of SGSC for all relevant
levels of spatial discretizations and then show in the plots only the lower envelope of the corresponding
convergence curves, ignoring the possible spurious reductions of error that might happen due to non-
asymptotic, unpredictable cancellations, cf. Figure 4. In this way, we ensure that the error shown for
such “single-level methods” has been obtained with the smallest computational error possible. Again,
this is not a computationally practical method but is taken as a reference for what a sparse grids
Stochastic Collocation method with optimal balancing of the space and stochastic discretization errors
could achieve.
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Figure 4: Envelope of SGSC convergence curves for the test case with d = 3 and N = 10.

5.3. Implementation details

To implement MISC, we need two components:

1. Given a profit level parameter, ε, we build the quasi-optimal set I based on (17), (23a) and (23b).
One method to achieve this is to exploit the fact that this set is downward closed and use the following
recursive algorithm.

FUNCTION BuildSet(epsilon, multiIndex)

FOR i = 1 to (D+N)

IF Profit(multiIndex + e_i) > epsilon

THEN

ADD multiIndex+e_i to FinalSet

CALL BuildSet(epsilon, multiIndex+e_i)

END IF

END FOR

END FUNCTION

2. Given the set, I(L), we evaluate (13). Here we have two choices:

• Evaluate the individual terms ∆[Fα,β] for every α,β ∈ I. To do so, we use the operator defined
in (9) along each stochastic and spatial direction. By storing the values of these terms, we can
evaluate the MISC with different index sets (contained in I(L)), which might be required to
test the convergence of the MISC method. Moreover, this implementation is suitable for adaptive
methods that expand the index set based on some criteria and reevaluate the MISC estimator. On
the other hand, this implementation has a computational overhead since most computed values of
Fα,β will actually not contribute to the final value of the estimator. However, this computational
overhead is only a fraction of the minimum time required to evaluate the estimator.

• Use the combination form of (13) and only compute the terms that have cα,β 6= 0. This would
remove the overhead of computing terms that make zero contribution to the estimator. This
implementation is more efficient but less flexible as we cannot evaluate the estimator on sets
contained in I(L) or build the set adaptively.
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5.4. Test with D = 1

Here we consider three different numbers of stochastic variables, namely N = 1, 5, 10. Results are shown
in Figure 5. As expected, a-posteriori MISC shows the best convergence, with a-priori MISC being slightly
worse and the single level methods following. Finally, we verify the accuracy of the estimated asymptotic
convergence rate provided by Theorem 1: in this case, ζ = r1

γ1
= r̃1 log 2

γ̃1 log 2 = 2 and z = 1 holds. Hence, the

predicted convergence rate is W−ζ(logW )(ζ+1)(z−1) = W−2, which appears to be in good agreement with
the experimental convergence rate.

5.5. Test with D = 3

In this case, we obtain the convergence curves shown in Figure 6, where the Multilevel Stochastic
Collocation method has also been included. The hierarchy between the methods is in agreement with the
case d = 1, with the Multilevel Stochastic Collocation being comparable or slightly better than single level
methods, but worse than the MISC approaches as expected.

Concerning the accuracy of the theoretical estimate: since for this test r̃1 = r̃2 = r̃2 = 2 and
γ̃1 = γ̃2 = γ̃3 = 1, ζ = 2 still holds, while this time z = 3; hence, the predicted convergence rate is
W−ζ(logW )(ζ+1)(z−1) = W−2(logW )6. The plots suggest that the theoretical estimates might be slightly
too optimistic when N increases but it is important to recall that Theorem 1 gives only an asymptotic
result, and the plot could be negatively influenced by pre-asymptotic effects. Observe also that in this case
there are a few data points where a-posteriori MISC is not better than a-priori MISC; this observation can
be ascribed to the fact that a-posteriori MISC is optimal only with respect to the upper bound in (15). In
other words, a-posteriori MISC selects the contributions according to the absolute value of the contributions
but then the MISC estimator is computed by summing signed contributions. Hence, cancellations between
contributions with similar sizes and opposite signs will occur.

Finally, we remark that, in our calculations, MLSC and SGSC were not able to achieve very small errors,
unlike MISC. This is due to a limitation in the linear solver we are using that allows systems with only up
to 217 degrees of freedom (around 1GB of memory) to be solved. These “single-level” methods hit that limit
sooner than MISC since they entail solving a very large system that comes from isotropically discretizing
all three spatial dimensions.

6. Conclusions

In this work, we have proposed MISC, a combination technique method to solve UQ problems, optimizing
both the deterministic and stochastic resolution levels simultaneously to minimize the computational cost.
A distinctive feature of MISC is that its construction is based on the notion of profit of the mixed differences
composing it, rather than balancing the total error contributions arising from the deterministic and stochastic
components. We have detailed a complexity analysis and derived a convergence theorem showing that in
certain cases the convergence of the method is essentially dictated by the convergence properties of the
deterministic solver. We have then verified the effectiveness of the method proposed on a couple of numerical
test cases, comparing its performance with other methods available in the literature. The results obtained
are encouraging, as they suggest that the proposed methodology is more effective than the other methods
considered here. The theoretical results have been also found to be consistent with the numerical results to
a satisfactory extent.

As a final remark, we observe that the methodology presented here is not limited to the spatial or temporal
discretization parameters of the deterministic problem, but could also be applied to other discretization
parameters, such as smoothing parameters or artificial viscosities.

Acknowledgement. F. Nobile and L. Tamellini received support from the Center for ADvanced MOdeling
Science (CADMOS) and partial support by the Swiss National Science Foundation under the Project No.
140574 “Efficient numerical methods for flow and transport phenomena in heterogeneous random porous
media”. R. Tempone is a member of the KAUST Strategic Research Initiative, Center for Uncertainty
Quantification in Computational Sciences and Engineering.
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Figure 5: Results for test D = 1, case N = 1 (top), N = 5 (center) and N = 10 (bottom).
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Appendix A. Proof of Theorem 1

The following technical lemmas are needed in the convergence proof.

Lemma 4. For x ∈ (1,∞)D, define bxc = (bxic)Di=1. For any f : (1,∞)D → R and g : (1,∞)D → R+,

∑
{α∈ND+ : f(α)≤0}

g(α) =

∫
{x∈(1,∞)D : f(bxc)≤0}

g(bxc) dx

holds. Moreover, if g and f are increasing, then∑
{α∈ND+ : f(α)≤0}

g(α) ≤
∫
{x∈(1,∞)D : f(x−1)≤0}

g(x) dx,

and if g and f are decreasing, then ∑
{α∈ND+ : f(α)≤0}

g(α) ≤
∫
{x∈(1,∞)D : f(x)≤0}

g(x− 1) dx.

Proof. We have ∑
{α∈ND+ : f(α)≤0}

g(α) =
∑

{α∈ND+ : f(α)≤0}

g(α)

∫
x∈[0,1]D

dx

=
∑

{α∈ND+ : f(α)≤0}

∫
x∈[0,1]D

g(bα+ xc) dx

=

∫
{x∈(1,∞)D : f(bxc)≤0}

g(bxc) dx.

Combining these inequalities with x− 1 ≤ bxc ≤ x finishes the proof.

Lemma 5. Assume a ∈ RD+ , b ∈ RD+ and L > |a|. Then,∑
{x∈ND+ :

∑D
i=1 aie

bixi+bixi>L}

exp

(
−

D∑
i=1

aie
bixi

)
≤
(

D∏
i=1

exp(2ai)

a2
i

)
exp (−L) (L+ 1)2D+1.

Proof. Define the set

P =
{(
ebixi

)D
i=1

: x ∈ ND+
}
,
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and define byc = (byic)Di=1. Then∑
{x∈ND+ :

∑D
i=1 aie

bix+bixi>L}

exp

(
−

D∑
i=1

aie
bixi

)
=

∑
{y∈P : a·y+| log(y)|>L}

exp(−a · y)

≤
∑
{y∈P : a·(byc+1)+| log(byc+1)|>L}

exp(−abyc)

≤
∑
{y∈ND+ : a·y+| log(y+1)|>L−|a|}

exp(−a · y)

≤

∫
{y∈(1,∞)D : a·y+| log(y+1)|>L−|a|}

exp(−a · (y − 1)) dy.

Letting zi = aiyi + log(yi + 1) and p(zi) = yi ≤ zi
ai

, then∑
{x∈ND+ :

∑D
i=1 aie

bix+bixi>L}

exp

(
−

D∑
i=1

aie
bixi

)
= exp(|a|)

∫
{y∈(1,∞)D : a·y+| log(y+1)|>L−|a|}

exp(−a · y − | log(y + 1)|+ | log(y + 1)|) dy

= exp(|a|)

∫
{z∈⊗Di=1(ai+log(2),∞) : |z|>L−|a|}

exp(−|z|)
D∏
i=1

(
p(zi) + 1

ai + 1
p(zi)+1

)
dz

≤ exp(|a|)

∫
{z∈⊗Di=1(ai+log(2),∞) : |z|>L−|a|}

exp(−|z|)
D∏
i=1

(
zi + ai
a2
i

)
dz

≤
(

D∏
i=1

exp(ai)

a2
i

)∫
{z∈⊗Di=1(ai+log(2),∞) : |z|>L−|a|}

exp(−|z|+ | log(z + a)|) dz

=

(
D∏
i=1

exp(2ai)

a2
i

)∫
{x∈⊗Di=1(log(2),∞) : |x|>L}

exp(−|x|+ | log(x)|) dx

≤
(

D∏
i=1

exp(2ai)

a2
i

)∫
{z∈⊗Di=1(0,∞) : |z|>L}

exp(−|z|+ | log(z)|) dz.
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Now let us prove, by induction on D, that we have∫
{z∈RD+ : |z|>L}

exp(−|z|+ | log(z)|) dz ≤ exp(−L)(L+ 1)2D−1 .

For D = 1, the inequality is a trivial equality that can be obtained with integration by parts. Assume the
inequality is true for D and let us prove it for D + 1:∫

{z∈RD+1
+ : |z|>L}

exp(−|z|+ log(z)) dz =

∫ ∞
L

y exp(−y)

∫
{x∈RD+}

exp(−|x|+ log(x)) dx dy

+

∫ L

0

y exp(−y)

∫
{x∈RD+ : |x|>L−y}

exp(−|x|+ log(x)) dx dy

≤ exp(−L)(L+ 1)

+

∫ L

0

y exp(−y) exp(−L+ y)(L− y + 1)2D−1 dy

≤ exp(−L)
(
L+ 1 + L2(L+ 1)2D−1

)
≤ exp(−L) (L+ 1)

(
1 + L(L+ 1)2D−1

)
≤ exp(−L)(L+ 1)2(D+1)−1 .

Finally, substituting back, we get the result.

Definition 1. Given a ∈ RD+ and A > 0, let n(a, A) denote the number of occurrences of A in a,

n(a, A) = #{i = 1, . . . , d : ai = A}.

Lemma 6. Assume k ∈ N, a ∈ RD+ , L > |a|. Then, the following bounds hold true:∫
{x∈RD+ : |x|>L}

exp(−a · x) dx ≤ BD(a) exp(−min(a)L)Ln(a,min(a))−1

where BD(a) is a positive constant independent of L.

Proof. See [29, Lemma B.3] for a proof of the inequality and the value of BD(a).

Lemma 7. Assume k ∈ N, a ∈ RD+ , L > |a|. Then, the following bound holds:∫
{x∈RD+ : |x|≤L}

exp (a · x) (L− |x|)k dx ≤ AD(a, k) exp(max(a)L)Ln(a,max(a))−1,

where

AD(a, k) =
k!

(n(a,max(a))− 1)! max(a)k+1

 ∏
ai<max(a)

1

max(a)− ai

 .
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Proof. Without loss of generality, assume that ai ≥ ai+1 for all i = 1 . . . D, such that a1 = max(a). We
prove the result by induction on D. For D = 1, we have∫ L

0

exp (ax) (L− x)
k

dx =
k!

ak+1

(
exp(aL)−

k∑
i=0

aiLi

i!

)

≤ k! exp(aL)

ak+1
.

Next, assume that the result is valid for a given D > 1 and a ∈ RD+ where ai ≥ ai+1 for all i = 1 . . . D,

such that a1 = max(a). Let b ≤ a1 and define a new vector ã = (a, b) ∈ RD+1
+ . We have∫

{(x,y)∈RD+1
+ : y+|x|≤L}

exp (by + a · x) (L− y − |x|)k dy dx

=

∫ L

0

exp (by)

∫
{x∈RD+ : |x|≤L−y}

exp (a · x) (L− y − |x|)k dx dy

≤ AD(a, k)exp(a1L)

∫ L

0

exp ((b− a1)y)(L− y)n(a,a1)−1 dy.

We distinguish between two cases:

1. b < a1 then n(ã, a1) = n(a, a1) and∫ L

0

exp (−(a1 − b)y)(L− y)n(a,a1)−1 dy ≤ Ln(a,a1)−1

∫ ∞
0

exp (−(a1 − b)y) dy

≤ Ln(ã,a1)−1 1

a1 − b
,

and in this case

AD(a, k)
1

a1 − b
=

k!

(n(a, a1)− 1)!ak+1
1

( ∏
ai<a1

1

a1 − ai

)(
1

a1 − b

)
= AD+1(ã, k).

2. b = a1 then n(ã, a1) = n(a, a1) + 1 and∫ L

0

(L− y)n(a,a1)−1 dy =
Ln(a,a1)

n(a, a1)
=

Ln(ã,a1)−1

n(ã, a1)− 1
,

and again

1

n(ã, a1)− 1
AD(a, k) =

1

n(ã, a1)− 1
· k!

(n(a, a1)− 1)!ak+1
1

( ∏
ai<a1

1

a1 − ai

)
= AD+1(ã, k).
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Theorem 1 (MISC computational complexity). Under Assumptions 2 to 4, the bounds for the factors
appearing in Assumption 3 can be equivalently rewritten as

∆Wα,β ≤ Cworke
∑D
i=1 γiαieδ|β|, (23a)

∆Eα,β ≤ Cerrore
−
∑D
i=1 riαie−

∑N
j=1 gj exp(δβj), (23b)

with γi = γ̃i log 2, ri = r̃i log 2, δ = log 2 and gi = g̃1Cm,low. Define the following set

I∗(L) =

{
[α,β] ∈ ND+N

+ :

D∑
i=1

(ri + γi)αi +

N∑
i=1

(δβi + gie
δβi) ≤ L

}
with L ∈ R+. (24)

Then there exists a constant CW such that, for any Wmax satisfying

Wmax ≥ CW exp (χ) , (25)

and choosing L as

L = L(Wmax) =
1

χ

(
log

(
Wmax

CW

)
− (z− 1) log

(
1

χ
log

(
Wmax

CW

)))
, (26)

with Ξ =
(

γ1

γ1+r1
, . . . , γD

γD+rD

)
, χ = max(Ξ), ζ = mini=1,...,D

ri
γi

and z = #{i = 1, . . . D : ri
γi

= ζ}, the MISC

estimator MI∗(L(Wmax)) satisfies

Work
[
MI∗(L(Wmax))

]
≤Wmax, (27a)

lim
Wmax↑∞

Error
[
MI∗(L(Wmax))

]
W−ζmax (log (Wmax))

(ζ+1)(z−1)
= CE <∞. (27b)

Proof. The bounds (23a) and (23b) can be obtained by elementary algebraic operations combining Assump-
tions 2 and 4; for instance,

∆W det
α ≤ Cdet

work

D∏
i=1

h−γ̃ii = Cdet
work

D∏
i=1

(h02−αi)−γ̃i = Cdet
workh

−|γ̃|
0

D∏
i=1

2γ̃iαi = Cdet
workh

−|γ̃|
0

D∏
i=1

eγ̃iαi log 2,

∆W stoc
β ≤ Cstoc

work

N∏
n=1

2βn = Cstoc
work

N∏
n=1

eβn log 2,

from which (23a) follows by setting Cwork = Cdet
workh

−|γ̃|
0 Cstoc

work. The proof is then divided into two steps.

Step 1: Work Estimate. Observe that Ξi = γi
γi+ri

< 1 for all i = 1, . . . D and that z = n(Ξ, χ). Thanks to

equations (14) and (23a), and using Lemma 4, the total work satisfies

Work[I∗(L)] =
∑

(α,β)∈I∗(L)

∆Wα,β

≤Cwork

∑
{(α,β)∈ND+N

+ :
∑D
i=1(ri+γi)αi+

∑N
j=1 δβj+gje

δβj≤L}

exp

(
D∑
i=1

γiαi + δ|β|
)

≤Cwork

∫
{(α,β)∈(1,∞)D+N :

∑D
i=1(ri+γi)(αi−1)+

∑N
j=1 δ(βj−1)+gje

δ(βj−1)≤L}

exp

(
D∑
i=1

γiαi + δ|β|
)

dα dβ.
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Next, let βj = gje
δ(βj−1) and αi = (ri + γi)(αi − 1). We have

Work[I∗(L)] ≤Cwork

 N∏
j=1

2

gjδ

( D∏
i=1

exp(γi)

ri + γi

)
∫
{(α,β)∈RD+×(⊗Nj=1(gj ,∞)) : |α|+|β|+| logβ|≤L+| log g|}

exp (Ξ ·α) dα dβ.

Dropping the over-line notation and defining L̃ = L+ | log g|, we obtain

Work[I∗(L)] ≤ CW,1

∫
{(α,β)∈RD+×(⊗Nj=1(gj ,∞)) : |α|+|β|+| logβ|≤L̃}

exp (Ξ ·α) dα dβ

= CW,1

∫
{β∈⊗Nj=1(gj ,∞) : |β|+| logβ|≤L̃}

∫
{α∈RD+ : |α|≤L̃−|β|−| logβ|}

exp (Ξ ·α) dα dβ

≤ CW,1AD (Ξ, 0)

∫
{β∈⊗Nj=1(gj ,∞) : |β|+| logβ|≤L̃}

exp
(
χ
(
L̃− |β| − | logβ|

))(
L̃− |β| − | logβ|

)z−1

dβ

≤ CW,1AD (Ξ, 0) exp(χL̃)

∫
{β∈⊗Nj=1(gj ,∞) : |β|+| logβ|≤L̃}

exp (−χ (|β|+ | logβ|))
(
L̃− |β| − | logβ|

)z−1

dβ

≤ CW,1AD (Ξ, 0) exp(χL̃)
(
L̃− |g| − | log g|

)z−1
∫
{β∈⊗Nj=1(gj ,∞) : |β|+| logβ|≤L̃}

exp (−χ (|β|+ | logβ|)) dβ.

Since χ > 0, the previous integral is bounded for all L̃ and we have

Work[I∗(L)] ≤ CW exp(χL) (L− |g|)z−1 ≤ CW exp(χL)Lz−1,

where

CW = Cwork

 N∏
j=1

2gχi
gj log 2

( D∏
i=1

exp(γi)

ri + γi

)
AD (Ξ, 0)

∫
{β∈⊗Nj=1(gj ,∞)}

exp (−χ (|β|+ | logβ|)) dβ.

Substituting (26) yields

Work[I∗(L)] ≤Wmax

1−
(z− 1) log

(
log
(
Wmax
CW

)
χ

)
log
(
Wmax

CW

)


z−1

.

From here it is easy to see that if (25) is satisfied, then (27a) follows.
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Step 2: Error Estimate. Thanks to equations (15) and (23b), the total error satisfies

Error[I∗(L)] ≤
∑

(α,β)/∈I∗
∆Eα,β

≤Cerror

∑
{(α,β)∈ND+N

+ :
∑D
i=1(ri+γi)αi+

∑N
j=1 δβj+gje

δβj>L}

exp

− D∑
i=1

riαi −
N∑
j=1

gje
δβj



=Cerror

∑
{(α,β)∈ND+N

+ :
∑D
i=1(ri+γi)αi>L}

exp

− D∑
i=1

riαi −
N∑
j=1

gje
δβj



+ Cerror

∑
{α∈ND+ :

∑D
i=1(ri+γi)αi≤L}

exp

(
−

D∑
i=1

riαi

) ∑
{β∈NN+ :

∑N
j=1 δβj+gje

δβj>L−
∑D
i=1(ri+γi)αi}

exp

− N∑
j=1

gje
δβj

 .

Looking at the first term, let ηi = ri
γi+ri

< 1 and η = (ηi)
D
i=1 and note that z = # {i = 1 . . . D : ηi = min(η)}.

Then ∑
{(α,β)∈ND+N

+ :
∑D
i=1(ri+γi)αi>L}

exp

− D∑
i=1

riαi −
N∑
j=1

gje
δβj



=


∑
β∈NN+

exp

− N∑
j=1

gje
δβj




∑
{α∈ND+ :

∑D
i=1(ri+γi)αi>L}

exp

(
−

D∑
i=1

riαi

)

≤ CE,1

∫
{α∈(1,∞)D :

∑D
i=1(ri+γi)αi>L}

exp

(
−

D∑
i=1

ri (αi − 1)

)
dα

= CE,1

(
D∏
i=1

exp(ri)

ri + γi

)∫
{x∈⊗Di=1(ri+γi,∞) : |x|>L}

exp

(
−

D∑
i=1

ri
ri + γi

xi

)
dx

≤ CE,2 exp (−min(η)L)Lz−1,

where

CE,2 = BD(η)

(
D∏
i=1

exp(ri)

ri + γi

)∑
β∈NN+

exp

− N∑
j=1

gje
δβj

 .

For the second term, letting H = L−∑D
i=1(ri + γi)αi, we can bound the sum using Lemma 5:∑

{β∈NN+ :
∑N
j=1 δβj+gje

δβj>H}

exp

− N∑
j=1

gje
δβj

 ≤
 N∏
j=1

exp(2gj)

g2
j

 exp(−H)(H + 1)2N−1.
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Substituting back∑
{α∈ND+ :

∑D
i=1(ri+γi)αi≤L}

exp

(
−

D∑
i=1

riαi

) ∑
{β∈NN+ :

∑N
j=1 δβj+gje

δβj>L−
∑D
i=1(ri+γi)αi}

exp

− N∑
j=1

gje
δβj



≤

 N∏
j=1

exp(2gj)

g2
j

 exp(−L)

∑
{α∈ND+ :

∑D
i=1(ri+γi)αi≤L}

exp

(
D∑
i=1

γiαi

)(
L+ 1−

D∑
i=1

(ri + γi)αi

)2N−1

=

 N∏
j=1

exp(2gj)

g2
j

 exp(−L)

∫
{α∈(1,∞)D :

∑D
i=1(ri+γi)bαic≤L}

exp

(
D∑
i=1

γibαic
)(

L+ 1−
D∑
i=1

(ri + γi)bαic
)2N−1

dα

≤

 N∏
j=1

exp(2gj)

g2
j

 exp(−L)

∫
{α∈(1,∞)D :

∑D
i=1(ri+γi)(αi−1)≤L}

exp

(
D∑
i=1

γiαi

)(
L+ 1−

D∑
i=1

(ri + γi)(αi − 1)

)2N−1

dα

=

 N∏
j=1

exp(2gj)

g2
j

( D∏
i=1

exp(γi)

γi + ri

)
exp(−L)

∫
{α∈RD+ : |x|≤L}

exp (Ξ · x) (L+ 1− |x|)2N−1
dx

≤ CE,3exp((χ− 1)L)Lz−1,

where

CE,3 =

 N∏
j=1

exp(2gj)

g2
j

( D∏
i=1

exp(γi)

γi + ri

)
AD(Ξ, 2N − 1).

Finally, noting that
χ− 1 = −min(η),

we have the error estimate

Error[I∗(L))] ≤ Cerror (CE,2 + CE,3) exp(−min(η)L)Lz−1.

Then, substituting L from (26) and evaluating the limit gives (27b).
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[30] H.-J. Bungartz, M. Griebel, D. Röschke, C. Zenger, Pointwise convergence of the combination technique for the Laplace
equation, East-West J. Numer. Math. 2 (1994) 21–45.

[31] M. Griebel, M. Schneider, C. Zenger, A combination technique for the solution of sparse grid problems, in: P. de Groen,
R. Beauwens (Eds.), Iterative Methods in Linear Algebra, IMACS, Elsevier, North Holland, 1992, pp. 263–281.

[32] M. Hegland, J. Garcke, V. Challis, The combination technique and some generalisations, Linear Algebra and its Applica-
tions 420 (23) (2007) 249 – 275.

[33] M. Griebel, H. Harbrecht, On the convergence of the combination technique, in: J. Garcke, D. Pflger (Eds.), Sparse
Grids and Applications - Munich 2012, Vol. 97 of Lecture Notes in Computational Science and Engineering, Springer
International Publishing, 2014, pp. 55–74. doi:10.1007/978-3-319-04537-5_3.

[34] F. Nobile, L. Tamellini, R. Tempone, Convergence of quasi-optimal sparse grids approximation of Hilbert-valued functions:
application to random elliptic PDEs, MATHICSE report 12/2014, EPFL, submitted (2014).

[35] J. Beck, F. Nobile, L. Tamellini, R. Tempone, On the optimal polynomial approximation of stochastic PDEs by Galerkin
and collocation methods, Mathematical Models and Methods in Applied Sciences 22 (09).

[36] J. Beck, F. Nobile, L. Tamellini, R. Tempone, A Quasi-optimal Sparse Grids Procedure for Groundwater Flows, in:
Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012, Vol. 95 of Lecture Notes in
Computational Science and Engineering, Springer, 2014, pp. 1–16.

[37] M. Griebel, S. Knapek, Optimized general sparse grid approximation spaces for operator equations, Math. Comp. 78 (268)
(2009) 2223–2257.

[38] M. Bieri, A sparse composite collocation finite element method for elliptic SPDEs., SIAM Journal on Numerical Analysis
49 (6) (2011) 2277–2301.

[39] T. Hughes, J. Cottrell, Y. Bazilevs, Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement,
Computer Methods in Applied Mechanics and Engineering 194 (3941) (2005) 4135 – 4195.

[40] W. J. Gordon, C. A. Hall, Construction of curvilinear co-ordinate systems and applications to mesh generation, Interna-

29

http://dx.doi.org/10.1007/978-3-319-04537-5_3


tional Journal for Numerical Methods in Engineering 7 (4) (1973) 461–477.
[41] A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations, Numerical mathematics and

scientific computation, Clarendon Press, 1999.
[42] L. Trefethen, Approximation Theory and Approximation Practice, Society for Industrial and Applied Mathematics, 2013.
[43] L. N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev. 50 (1) (2008) 67–87.
[44] A. Chkifa, On the lebesgue constant of leja sequences for the complex unit disk and of their real projection, Journal of

Approximation Theory 166 (0) (2013) 176 – 200.
[45] F. Nobile, L. Tamellini, R. Tempone, Comparison of Clenshaw–Curtis and Leja quasi-optimal sparse grids for the approx-

imation of random PDEs, in: Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM ’14, Vol.
106 of Lecture Notes in Computational Science and Engineering, Springer, 2015, to appear. Also available as MATHICSE
report 41/2014.

[46] A. Narayan, J. D. Jakeman, Adaptive Leja Sparse Grid Constructions for Stochastic Collocation and High-Dimensional
Approximation, SIAM Journal on Scientific Computing 36 (6) (2014) A2952–A2983.

[47] A. Genz, B. D. Keister, Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian
weight, J. Comput. Appl. Math. 71 (2) (1996) 299–309.

[48] G. Wasilkowski, H. Wozniakowski, Explicit cost bounds of algorithms for multivariate tensor product problems, Journal
of Complexity 11 (1) (1995) 1 – 56.

[49] S. Martello, P. Toth, Knapsack problems: algorithms and computer implementations, Wiley-Interscience series in discrete
mathematics and optimization, J. Wiley & Sons, 1990.
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