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Abstract

Two Lie algebroids are presented that are linked to the construction of the linearizing output

of an affine in the input nonlinear system. The algorithmic construction of the linearizing output

proceeds inductively, and each stage has two structures, namely a codimension one foliation

defined through an integrable 1-form ω , and a transversal vectorfield g to the foliation. Each

integral manifold of the vectorfield g defines an equivalence class of points. Due to transversality,

a leaf of the foliation is chosen to represent these equivalence classes. A Lie groupoid is defined

with its base given as the particular chosen leaf and with the product induced by the pseudogroup

of diffeomorphisms that preserve equivalence classes generated by the integral manifolds of g.

Two Lie algebroids associated with this groupoid are then defined. The theory is illustrated

with an example using polynomial automorphisms as particular cases of diffeomorphisms and

shows the relation with the Jacobian conjecture.

Keywords : Feedback linearization, Derivations, Lie Algebroids and Groupoids, Jacobian

Conjecture
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1 Introduction

Affine in the input nonlinear systems ([5], [13]) are considered with a single control u and with

state x ∈ Rn defined by

ẋ = f(x) + g(x)u

This system is feedback linearizable to a linear system ż = Az + Bv through diffeomorphism

z = Φ(x) and change of coordinates v = α(x) + β(x)u under the condition of accessibility, i.e.

rank(g, adfg, . . . , adnf ) and involutivity of the distribution C = span{(g, adfg, . . . , adn−2
f g} ([5],

[13]). A classical way of computationally solving this problem is to use the flow-box theorem [15]

which amounts to inductively straighten out the vectorfields. A similar method is used in the proof

of the Frobenius theorem in [2] Theorem 9 on pp. 89-92, and in [1], Theorem 7 on p. 24. Another

approach is to integrate the integrable 1-form in the null-space of the distribution C and relates to

the dual approach of [3], [14], [4]. Equivalence in the classical setting between the two approaches

can be found on p. 71 of [1].

An inductive process using a somewhat intermediate approach between the two appeared

in [10] where an anti-symmetrical product was defined.

The point of the following developments is to throw light on the meaning of the anti-

symmetrical product defined in [10] by proving that it is a Lie algebroid. This is achieved through

a tedious albeit direct proof of the Jacobi identity and the definition of a suitable anchor map. In

[10], this Lie algebroid was related to a Lie groupoid without mentioning this formalism.

In [17] another anchor map was defined without explicitly mentioning the Lie algebroid

formalism. Clarification of the relations between the two algebroids (by providing an isomorphism

of algeboroids) and between the algebroids and the groupoid will be given.

An interesting application of the theory is provided when the diffeomorphism of the defi-
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nition of feeback linearization is replaced by a polynomial automorphism (see [16] for a detailed

coverage of this topic in relation with the Jacobian conjecture). The intermediate 1-forms appear-

ing in the definition of the algebroid when suitably defined leads to an algorithm for finding the

polynomial inverse map of the polynomial automorphism z = Φ(x). If all the 1-forms appearing

throughout the intermediate steps (where the anchor map is used) could be shown to have have

constant determinant, this would lead to the proof of the Jacobian Conjecture.

Section 2 introduced the definition of a Lie groupoid of the literature, fixes notations,

and gives explicitly the axioms for the class of Lie groupoids that will be used with feedback

linearization. We also recall the definition of a Lie algebroid and define the two aforementioned Lie

algebroids. The proof of the Jacobian identity is then given for the first algebroid together with

an inductive construction of the linearizing output using Algebroid I and Algebroid II. Section 4

applies the theory to the case of polynomial automorphisms and relates both algorithms to the

Jacboian Conjecture. Complete proofs omitted due to the page limit can be found in [11].

2 Lie Groupoid and Lie Algebroid

2.1 Lie Groupoid

A lie groupoid [7], [8] consists of six elements subject to five axioms.

Definition 1 Lie Groupoid. A Lie groupoid [7], [8] consists of the six elements:

I. A set Ω called the groupoid (set of arrows)

II. a set O called the base (set of objects)

III. a source map σ, from Ω to O
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IV. a target map τ , from Ω to O

V. an object inclusion map ι, from O to Ω

VI. a partial multiplication map (Φ1,Φ2)→ Φ1⊥Φ2, from Ω ∗ Ω to Ω, where

Ω ∗ Ω = {(Φ1,Φ2) ∈ Ω× Ω | σ(Φ1) = τ(Φ2)}

The target map and the source map are surjective submersions. The inclusion map is smooth. The

partial multiplication ⊥ is smooth. Additionally, these six elements are subject to the axioms:

(i) σ(Φ1⊥Φ2) = σ(Φ2) and τ(Φ1⊥Φ2) = τ(Φ1) for all (Φ1,Φ2) ∈ Ω ∗ Ω;

(ii) Φ1⊥(Φ2⊥Φ3) = (Φ1⊥Φ2)⊥Φ3 for all Φ1,Φ2,Φ3 ∈ Ω such that σ(Φ1) = τ(Φ2) and σ(Φ2) =

τ(Φ3);

(iii) σ(ι(Ō)) = τ(ι(Ō)) = Ō for all Ō ∈ O;

(iv) Φ2⊥ι(σ(Φ2)) = Φ2 and ι(τ(Φ2))⊥Φ2 = Φ2 for all Φ2 ∈ Ω;

(v) each Φ2 ∈ Ω has an inverse Φ−1
2 such that

σ(Φ−1
2 ) = τ(Φ2), τ(Φ−1

2 ) = σ(Φ2)

Φ−1
2 ⊥Φ2 = ι(σ(Φ2)), Φ2⊥Φ−1

2 = ι(τ(Φ2)).

The element ι(Ō) ∈ Ω corresponding to Ō ∈ O may be called the unity or identity corresponding to

Ō.

2.2 The Lie Groupoid for Feedback Linearization

A vectorfield g is given together with a noncancelling integrable 1-form ω, that is, ωg 6= 0 for all

x ∈ Rn and dω ∧ ω = 0, where d stands for the exterior derivative. This means that ω admits

locally integral manifolds constituting a codimension 1 foliation (see for example [6]).
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Definition 2 An integral manifold of ω passing through a point A of the surrounding manifold will

be written as OA.

Because the distribution defined by the vectorfield g is trivially involutive and nonvanishing,

it admits integral manifolds:

Definition 3 The integral manifold of the vectorfield g passing through a point A of the surrounding

manifold is designated by GA.

Lemma 4 shows that the set of all diffeomorphisms preserve the foliation defined by ω, since

ω is assumed integrable. The groupoid under study will be a subset of these diffemorphisms that

preserve equivalence classes defined by integral manifolds G of g.

Definition 4 Equivalence classes along integral manifolds of g Two points A1 and A2

belong to the same equivalence class whenever

A1 ∈ GA2 ,

or, what means the same thing, whenever

A2 ∈ GA1 .

Definition 5 Elements ΩI . Elements of ΩI are diffeomorphisms ΦA,B such that:

• they map the point A to the point B, i.e. ΦA,B(A) = B;

• they preserve integral manifolds of g:

∀C ∈ GA ∩D(ΦA,B)⇒ ΦA,B(C) ∈ ΦA,B(GA) ∩R(ΦA,B).
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Definition 6 Elements ΩII . Let ψj : Rn−1 → R, j = A,B be two functions satisfying both

ψj(j) = 0, j = A,B and dψj = µjω, j = A,B with two functions µj : Rn → R. Choosing

n − 1 functions φA,i, i = 1, . . . , n − 1 such that (i) φA,i(A) = 0, i = 1, . . . , n − 1 and (ii) the

1-forms dφA,i, i = 1, . . . , n− 1 together with ω, evaluated at A, constitute a basis of T ∗ARn and (iii)

dφA,ig = 0, i = 1, . . . , n − 1. Similarly, choose another set of functions φB,i, i = 1, . . . , n − 1, so

that (i) φB,i(A) = 0, i = 1, . . . , n − 1 and (ii) dφB,i, i = 1, . . . , n − 1 together with ω, evaluated

at B, constitute a basis of T ∗BRn and (iii) dφB,ig = 0, i = 1, . . . , n − 1. Then ΩII is the set of all

diffeomorphisms ΦA,B : Rn → Rn that can be expressed as

ΦA,B := Φ−1
B ◦ ΦA (1)

with

ΦA :=



φA,1

φA,2

...

φA,n−1

ψA


ΦB :=



φB,1

φB,2

...

φB,n−1

ψB


(2)

Lemma 1 The set ΩII is a subset of ΩI .

proof: Because the corresponding constituting 1-forms dψA, dφA,1, dφA,2, . . ., dφA,n−1

(resp. dψB, dφB,1, dφB,2, . . ., dφB,n−1) form a basis of T ∗ARn (resp. T ∗BRn), when evaluated at A

(resp. B), the maps ΦA and ΦB in (2) are local diffeomorphisms, so that the reciprocal map Φ−1
B

exists showing that (1) is a well defined diffeomorphism. Additionally, D(ΦA,B) = R(ΦA,B) = Rn.

Let x designate the coordinates of the surrounding manifold Rn. Define z-coordinates as zn :=

φ1(x), z2 := φA,2(x), . . ., zn−1 := φA,n−1(x), zn := ψA(x). Then set OA := {x|ψA(x) = 0} so

that OA is both a local integral manifold of ω and a set that contains A. In the z coordinates,
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its expression is OA = {z|zn = 0}. Similarly, define z′1 := φB,1(x), z′2 := φB,2(x), . . ., z′n−1 :=

φB,n−1(x), z′n := ψB(x) so that setting OB := {x|ψB(x) = 0} defines both a local integral manifold

of ω and a set containing B. Expressed in the z′ coordinates, OB = {z′|z′n = 0}. Now, the

choices (2) defining (1) show that the composition operator appearing in (1) forces zn = z′n so that

ΦA,B(OA) = OB which confirms that ΦA,B ∈ ΩI according to Definition 5. ♠

Definition 7 Base manifold O. The base manifold O is a globally defined integral manifold of

ω.

Definition 8 Function ψ. We will suppose that O is defined by a single function ψ : Rn → R

through

O = {x|ψ(x) = 0}. (3)

Definition 9 Source map σ. The source map σ maps the domain D(ΦA,B) of a diffemorphism

ΦA,B ∈ Ω to the base manifold O by following integral manifolds G of g, that is,

σ(A1) := GA1 ∩ O, ∀A1 ∈ D(ΦA,B).

Remark 1 Notice that Definition 9 is well defined because we assume ωg 6= 0 globally. The

groupoid can be understood as a class of pseudo-group. Pseudo-groups are used when dealing with

accessible sets [?] and with Riemannian foliations [?].

Definition 10 Target map τ . The target map τ : Rn → R maps the range R(ΦA,B) of an

element ΦA,B to the base manifold O by following integral manifolds G of g, that is,

σ(B1) := GB1 ∩ O, ∀B1 ∈ R(ΦA,B).

Lemma 2 Under the hypothesis of the existence of a function ψ according to Definition 8 and of

the existence of a base of 1-forms of T ∗Rn, both the source map σ (Definition 9) and the target
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map τ (Definition 10) are globally defined and can be described using coordinates by choosing n− 1

functions γ1, γ2, . . ., γn−1 such that dγig = 0, i = 1, . . . , n− 1 and such that dγi, i = 1, . . . , n− 1

are independent 1-forms.

proof: Set z1 = γ1(x), z2 = γ2(x), . . ., zn−1 = γn−1(x), zn = ψ(x), so that the base manifold

O is described by the set O = {z|zn = 0}. This is a well defined coordinate choice because, by

hypothesis, dψg 6= 0 holds globally so that it is possible to find such functions satisfying dγig = 0,

i = 1, . . . , n− 1 and such that dγi, i = 1, . . . , n− 1 are independent of each other and independent

of dψ. Additionally, a point A in the surrounding manifold is described using z-coordinates as

zA,i, i = 1, . . . , n. By construction of the coordinates, the integral manifold GA of the vectorfield g,

passing through A, is

GA = {z|zi = zi,A, i = 1, . . . , n− 1, zn ∈ R}

and the intersection GA ∩ O is equal to the point of coordinates z1 = z1,A, z2 = z2,A, . . ., zn−1 =

zn−1,A, zn = 0. Since this operation holds for all x ∈ Rn it holds equally well for σ (Def. 9) and τ

(Def. 10) because on one hand D(ΦA,B) ⊆ Rn, ∀ΦA,B ∈ Ω, and on the other hand R(ΦA,B) ⊆ Rn,

∀ΦA,B ∈ Ω. ♠

Definition 11 Φ map.

Define the Φ map as

Φ =



γ1(x1, . . . , xn)

...

γn−1(x1, . . . , xn)

ψ(x1, . . . , xn)


(4)

so that according to Lemma 2 both the source map and target map can be defined as σ = Φ and

τ = Φ.

8



Definition 12 Inclusion map ι. The inclusion map ι(B̄) associates a diffeomorphism ΦB,B :

Rn → Rn to the the point B̄ ∈ O, with B being the inclusion of B̄ in the surrounding manifold Rn,

such that ΦB,B is an identity on a local submanifold OB̄ of ω (of same dimension) that contains

B̄.

Definition 13 Product ⊥ Given two elements ΦA1,B1 and ΦB2,C2 of ΩI for which B1 ∈ GB2,

define their product as

ΦA1,B1⊥ΦB2,C2 := ΦB2,C2 ◦ ΦA1,B1 . (5)

Proposition 1 Axioms (i) to (v) of a Lie groupoid appearing in Definition 1 are satisfied for

elements of ΩI given in Definition 5 and for the product (5).

proof: Axiom (i) is satisfied by definition of ΦA1,C1 because it shares the same α map,

i.e. αA1 for ΦA1,C1 is the same as αA1 for ΦA1,B1 . Axiom (ii) is trivially satisfied because of the

associativity of compositions of maps. The object inclusion map ι is the identity map

ι : B → Rn ∩ {x | ψ(x) = 0}

so that Axiom (iii), which is α(ι(Ō)) = β(ι(Ō)), is also satisfied. However, Axiom (iv) is slightly

more involved. Let us suppose that ξ = ΦA1,B1 so that ξ maps OA1 to OB1 . Then σ(Φ) is the map

between OA1 to O that assigns to every point of A ∈ OA1 the point GA ∩O in O. Therefore, if one

mutiplies by Φ, that is Φ⊥ι(σ(Φ)), then one gets back Φ because of the correspondence along the

integral manifolds of g between the image of OA1 as an open set in O and OA1 itself. ♠

2.3 Lie Algebroid

Definition 14 Lie Algebroid. Let O be a manifold. A Lie algebroid on O is a vector bundle

(A, π,O) together with a vector bundle map π : A → TO over O, called the anchor of A, and
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a bracket on sections ΓA of the bundle given as [., .] : ΓA × ΓA → ΓA which is R-bilinear and

alternating

[m1,m2] = −[m2,m1] m1,m2 ∈ ΓA

and satisfies Jacobi’s identity, i.e. ∀m1,m2,m3 ∈ ΓA,

[m1, [m2,m3]] + [m2, [m3,m1]] + [m3, [m1,m2]] = 0

The anchor and the bracket satisfy the properties:

(I) π([m1,m2]) = [π(m1), π(m2)] m1,m2 ∈ ΓA

(II) [m1, αm2] = α[m1,m2] +
(
Lπ(m1)α

)
m2 m1,m2 ∈ ΓA,α ∈ C(O).

where C(O) designates functions on O.

2.4 Effect of diffeomorphisms on vectorfields and 1-forms

Consider an arbitrary diffeomorphism Φ : Rn → Rn. Using coordinates, Φ defines a new set of

coordinates z using the initial coordinates x as z := Φ(x). This has consequences on vectorfields

belonging to TRn and 1-forms belonging to T ∗Rn.

Definition 15 Push-forward. Let m ∈ TRn be a vectorfield. Define the push-forward of m by

the diffeomorphism Φ by

Φ∗(m) :=
∂Φ

∂x
m ◦ Φ−1(z) (6)

Definition 16 Pull-back. Let ω ∈ T ∗Rn be a 1-form. Using the vector notation that associates

to the 1-form
∑n

i=1 ωi(x)dxi the vector ω =

(
ω1 ω2 . . . ωn

)
, define the pull-back of ω by Φ by

Φ∗(ω) := ω

(
∂Φ

∂x

)−1

◦ Φ−1(z)
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Lemma 3 If m is a tangent vector to a curve C = {x|x = ξ(α), α ∈ R} with ξ : R→ Rn a smooth

defining funtion, then Φ∗(m) is the tangent vector of the image Φ(C) := {z|z = Φ(ξ(α)), α ∈ R} of

the curve C under the diffeomorphism Φ.

Lemma 4 If ω is an integrable 1-form associated with the integral manifold locally defined by a

function ψ : Rn → R as {x|ψ(x) = 0}, then the pull-back Φ∗ω remains an integrable 1-form.

Moreover, ψ ◦ Φ−1 defines locally an integral manifold of Φ∗ω. This manifold is locally described

as the set {z|ψ ◦ Φ−1(z) = 0}.

proof: These two results are classical, see for example [9]. ♠

2.5 Lie Algebroid I for Feedback Linearization

The bracket is defined as

〈m̄1, m̄2〉 ' 〈m1,m2〉

:= [m1,m2] +
ωm2

ωg
[g,m1]− ωm1

ωg
[g,m2] (7)

where m1 (resp. m2) is any representative of the equivalence class of m̄1 (resp. m̄2). This definition

of the anti-symetrical product appeared in [10] without either the Lie algebroid interpretation or

mentioning the equivalence classes on which it operates. The closest definition that the author

could find is the Nickerson bracket, i.e. formula (44) on p. 520 in [12]. The explicit appearance of

the integrable 1-form ω does however not appear in that formula.

Lemma 5 The bracket in (7) is independent of the equivalence classes m1 and m2 chosen.
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proof:

〈m̄1, m̄2〉 ' 〈m1 + αg,m2 + βg〉

= [m1 + αg,m2 + βg] +
ω(m2 + βg)

ωg
[g,m1 + αg]

−ω(m1 + αg)

ωg
[g,m2]

= [m1,m2] + β[m1, g] + α[g,m2]

+ (m1(β)−m2(α) + αg(β)− βg(α)) g

+
ωm2

ωg
[g,m1] +

ωm2

ωg
g(α)g + β[g,m1] + βg(α)g

−ωm1

ωg
[g,m2]− ωm1

ωg
g(β)g − α[g,m2]− αg(β)g

= 〈m1,m2〉+

(
m1(β)−m2(α) +

ωm2

ωg
g(α)− ωm1

ωg
g(β)

)
g

' 〈m̄1, m̄2〉 (8)

♠

2.6 Lie Algebroid on (O, TR2/G)

The base manifold O is an integral manifold of the integrable 1-form ω ∈ T ∗Rn and the typical

fibre bundle is TRnx/span g(x), a section of which is a map m : O → TR2/G.

2.6.1 The Anchor

Definition 17 Let O designate an integral manifold of the integrable 1-form ω. The following

anchor an π : TRn → TO is defined as

an π(m) := πω,g ∗m

where πω,g is the projection operator πω,g : Rn → O along integral curves of G, i.e. πω,g(m1) =

πω,g(m2) whenever m1 ∈ Gm2 (i.e. m2 ∈ Gm1). It is such that πω,g ∗(g) = 0.
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2.7 Properties I and II of the anchor an π

Lemma 6 With anchor an π, Property I holds:

〈m̄1, αm̄2〉 = α〈m̄1, m̄2〉+ an π(m̄1)(α)m̄2 ∀α ∈ C(O)

proof: The function α ∈ C(O) can be expressed with coordinates z1, . . . , zn−1 that locally

defines the embedded submanifold O. Hence we can also understand α as defined in Rn by consid-

ering α as a function of z1, . . . , zn with zn = 0 defining O. Denote the change of coordinates from

x in Rn to z by z = Φ(x). This then means that Φ∗g = ∂
∂zn

by construction of πω,g, ∗ = Pr Φ∗g

where Pr meaning the projection by not considering the last coordinate. Since α does not depend

on zn by construction, it holds that Lgα = 0, so that

〈m1, αm2〉

= [m1, αm2] +
ωαm2

ωg
[g,m1]− ωm1

ωg
[g, αm2]

= α[m1,m2] +m1(α)m2

+α
ωm2

ωg
[g,m1]− αωm1

ωg
[g,m1]− ωm1

ωg
g(α)m2

= α〈m1,m2〉+m1(α)m2

Now since g(α) = 0, it follows that m1(α) = πg,ω∗m1(α) = an π(m1)(α) proving the required

identity. ♠

Lemma 7 With anchor an π, Property II holds:

an π(〈m̄1, m̄2〉) = [an π(m̄1), an π(m̄2)] (9)

proof: The lemma and its proof are given in [10], Lemma 1 at the bottom of p. 554. ♠
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2.8 Lie Algebroid on the bundle (Rn,Rn/G)

The base manifold O is an integral manifold of the integrable 1-form ω ∈ TRn∗ and the typical

fibre bundle is TRnx/span g(x), for which a section is a map m : Rn → TRn/G.

2.8.1 The Anchor

Definition 18 Then anchor an ω,g : TRn/G → TRn is defined for any any 1-form ω such that

ωg 6= 0. For a given section m̄ ∈ ΓTRn/G, the anchor is defined as

an ω,g(m̄) := m− ωm

ωg
g (10)

where m is any representative in ΓTRn of the equivalence class m̄ ∈ TRn/G.

Lemma 8 The elements in Definition 18 are well defined

2.8.2 Properties I and II of the anchor an ω,g

Lemma 9 Property I holds:

〈m̄1, αm̄2〉 = α〈m̄1, m̄2〉+ an ω,g(m̄1)(α)m̄2 ∀α ∈ C(Rn)
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proof:

〈m̄1, ᾱm2〉

= [m1, αm2] +
ω(αm2)

ωg
[g,m1]− ωm1

ωα
[g, αm2] (11)

= α[m1,m2] +m1(α)m2

+α

(
ωm2

ωg
[g,m1]− ωm1

ωg
[g,m2]

)
−ωm1

ωg
g(α)m2 (12)

= α〈m̄1, m̄2〉+

(
m1 −

ωm1

ωg
m1

)
(α)m2

= α〈m̄1, m̄2〉+ an ω,g(m1)(α)m2

The transition from (11) to (12) uses the same identity applied twice, [m1, αm2] = α[m1,m2] +

m1(α)m2 and [g, αm2] = α[g,m2] + g(α)m2. The remaining steps are appropriate groupings of

terms. ♠

Lemma 10 Property II holds:

an ω,g(〈m̄1, m̄2〉) = [an ω,g(m̄1), an ω,g(m̄2)]

proof: Define α1 := ωm1
ωg and α2 = ωm2

ωg so that

an ω,g (〈m̄1, m̄2〉)

= an ω,g

(
[m1,m2] +

ωm2

ωg
[g,m1]− ωm1

ωg
m2

)
= [m1,m2] + α2[g,m1]− α1[g,m2]

− 1

ωg
ω ([m1,m2] + α2[g,m1]− α1[g,m2]) g

It also holds, for arbitrary vector fields f1, f2 ∈ ΓTRn, that

ω([f1, f2]) = f1(ωf2)− f2(ωf1)
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so that

ω([m1,m2] + α2[g,m1]− α1[g,m2])

= m1(ωm2)−m2(ωm1) + α2g(ωm1)− α2m1(ωg)

−α1g(ωm2) + α1m2(ωg). (13)

Next, since m1

(
α
β

)
= βm1(α)−αm1(β)

β2 for α, β ∈ C(Rn), one has

m1(ωm2)− α2m1(ωg) = m1(ωm2)− ωm2

ωg
m1(ωg)

= ωg
(ωg)m1(ωm2)− (ωm2)m1(ωg)

(ωg)2

= (ωg)m1(α2) (14)

Similarly,

m2(ωm1)− α1m2(ωg) = (ωg)m2(α1) (15)

Another expansion gives

α2g(ωm1)− α1g(ωm2) = α2g(ωm1)− α2α1g(ωg)

−α1g(ωm2) + α2α1g(ωg)

= α2(g(ωm1)− α1g(ωg))− α1(g(ωm2)− α2g(ωg))

= α2(ωg)g(α1)− α1(ωg)g(α2) (16)
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so that substituting (14), (15) and (16) into (13) modifies the left-hand side of the identity to be

proved in the following way:

an ω,g (〈m̄1, m̄2〉) = [m1,m2] + α2[g,m1]− α1[g,m2]

− 1

ωg
((ωg)m1(α2)− (ωg)m2(α1)

+α2(ωg)g(α1)− α1(ωg)g(α2))g

= [m1,m2] + α2[g,m1]− α1[g,m2]

− (m1(α2)−m2(α1) + α2g(α1)− α1g(α2)) g (17)

Now consider the right-hand side of the identity, namely

[an ω,g(m̄1), an ω,g(m̄2)] = [m1 − α1g,m2 − α2g]

= [m1,m2]− [m1, α2g]− [α1g,m2]− [α1g,m2] + [α1g, α2g]

= [m1,m2]− α2[m1, g]−m1(α2)g − α1[g,m2] +m2(α1)g

+α1α2[g, g] + α1g(α2)g − α2g(α1)g

= [m1,m2] + α2[g,m1]− α1[g,m2]

+(−m1(α2) +m2(α1) + α1g(α2)− α2g(α1))g (18)

Comparing (17) with (18) shows that

an ω,g (〈m̄1, m̄2〉) = [an ω,g(m̄1), an ω,g(m̄2)]

which proves the assertion. ♠

2.8.3 Proof of the Jacobi identity

Lemma 11 The following identity

∑
cyclic i,j,k

〈mi, 〈mj ,mk〉〉 = 0
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holds.

proof: For notation convenience, the following quantities are defined:

α1 :=
ωm1

ωg
α2 :=

ωm2

ωg
α3 :=

ωm3

ωg
.

Considering the first term of the Jacobi identity and the identity (7)

〈〈m1,m2〉,m3〉 =

[an ω,g(〈m1,m2〉), an ω,g(m3)]

+ ((anω,g(〈m1,m2〉))α3) g

−
(

an ω,g(m3)
ω〈m1,m2〉

ωg

)
g. (19)

By using (7) for 〈m1,m2〉, we get

ω〈m1,m2〉 = ω([an ω,g(m1), an ω,g(m2)]

+(an ω,g(m1)α2 − an ω,g(m2)α1)g)

= ω[anω,g(m1), an ω,g(m2)] + (an ω,g(m1)α2

−an ω,g(m2)α1)ωg

= 0 + (an ω,g(m1)α2 − an ω,g(m2)α1)ωg. (20)

Substituting (20) in (19) gives with i = 1, j = 2, k = 3

〈〈mi,mj〉,mk〉

= [[an ω,g(mi), an ω,g(mj)]an ω,g(mk)]

+ ([an ω,g(mi), an ω,g(mj)](αk)

−an ω,g(mk)
(an ω,g(mi)αj − an ω,g(mj)(αi))ωg

ωg

)
g
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= [[an ω,g(mi), an ω,g(mj)]an ω,g(mk)]

+(an ω,g(mian ω,g(mj)αk − an ω,g(mj)an ω,g(mi)αk

−an ω,g(mk)an ω,g(mi)αj + an ω,g(mk)an ω,g(mj)αi)g.

It is then straightforward to notice that a circular summation of the previous expression over the

indices i, j, k yields zero, that is,

∑
cyclic i,j,k

〈〈mi,mj〉,mk〉 = 0

which is the Jacobi identity. ♠

2.9 Lie Algebroid Isomorphism

Proposition 2 The algebroids of Sections 2.6 and 2.8 are isomorphic in the sense that there exists

a one-to-one correspondance between O - projectable vectorfields and corresponding line bundle in

the g, ω-quotient bundle.

proof: The right-hand-side of (9) is the same as the right-hand-side of Property (II) of the

algebroid of the groupoid. Therefore, if one gives two O - projectable vectorfields m̃1 and m̃2, then

one simply defines corresponding line bundles as {m̃1 + αg,∀α : RN → R} and {m̃2 + αg,∀α :

RN → R} for which m̃1 and m̃2 are used as representatives. Then π(〈m̃1, m̃2〉) = π([m̃1, m̃2]) =

[πm̃1, πm̃2] = [m̄1, m̄2]. Reciprocally, suppose that two line bundles are given a priori, namely

{m1 + αg,∀α : RN → R}, and {m2 + αg,∀α : RN → R} and compute m̄1 = π(m1) = Pr(Φ∗(m1))

and m̄2 = π(m2) = Pr(Φ∗(m2)) so that after setting

m̃1 = (Φ∗)
−1

m̄1

0

 m̃2 = (Φ∗)
−1

m̄2

0

 .

one notices that because of the zero inserted in the last component, the vectorfields m̃1 and m̃2 are

O - projectable and therefore satisfy π([m̃1, m̃2]) = [m̄1, m̄2] = π(〈m̃1, m̃2〉) Because by construction
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of m̄1 and m̄2, it is true that [m̄1, m̄2] = π(〈m1,m2〉), this also means that m̃1 belongs to the line

bundle generated by m1, and m̃2 belongs to the line bundle generated by m2. The arbitrariness of

m1 and m2 within their respective line bundles shows that the construction of m̃1 and m̃2 does not

depend on the representatives m1 and m2 chosen.

Therefore, a one-to-one correspondance between O - projectable vectorfields and corre-

sponding line bundles is established. The elements of one set (the O - projectable vectorfields m̃1

or m̃2) or the other (the line bundles {m1 + αg,∀α : Rn → R} or {m2 + αg,∀α : Rn → R}) are

distinguished by the vectorfields m̄1 and m̄2 to which they map in TO. ♠

3 Application to Feedback Linearization

3.1 Algorithm using Algebroid I

This algorithm is described in [10] and is summarized hereafter. It consists of two phases. The first

phase reduces the number of coordinates using diffeomorphisms of the Lie groupoid, keeping track

of their inverses. The linearizing output is computed using the chain of inverses of the target maps

during the second phase.

3.1.1 Phase 1

• Initialisation: f0 := f , g0 := g and define anπ,0 using a diffeomorphism Φ0 such that

anπ,0(g0) = 0.

• Induction:

fi+1 = anπ(fi)

gi+1 = anπ,i([fi, gi])
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and choose ωi+1 such that it is integrable (or exact) such that ωi+1gi+1 6= 0 and construct a

diffeomorphism Φ associated with the groupoid and defining anπ,i+1 such that anπ,i+1(gi+1) =

0.

• Termination: Stop when i = n− 1.

3.1.2 Phase 2

The linearizing output is obtained using the chain of inverses of the target maps

z = Φ−1
0 ◦ Φ−1

1 ◦ . . . ◦ Φ−1
n−1(x1)

where x1 stands for the unique state of the last iteration.

3.2 Algorithm using Algebroid II

3.2.1 Phase 1

This algorithm is described in [17] without the formalism of Lie algebroids and groupoids.

• Initialisation: f0 := f , g0 := g and choose ω0 integrable (or exact) such that ω0g0 6= 0.

• Induction:

fi+1 := anωi,gi(fi)

gi+1 := anωi([fi, gi])

Choose ωi+1 integrable (or exact) such that ωi+1gi+1 6= 0.

• Termination: Stop when i = n− 1.
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3.2.2 Phase 2

The second phase constructs the linearizing output using the 1-forms ωi used in the first phase:

• Initialisation: νn−1 := ωn−1

• Induction:

νn−(i+1) := νn−i −
νn−i gn−(i+1)

ωn−(i+1)gn−(i+1)
ωn−(i+1)

• Termination: Stop when i = n− 1.

4 Polynomial Automorphisms and the Jacobian Conjecture

Key to all algorithms and properties of the previous sections is the construction of the 1-forms ωi.

The choice of exact forms for which ωigi are constants and those that cancel gi play a fundamental

role in the construction of the inverse of a polynomial automorphism as it will be shown in this

section through an example.
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4.1 Example

The polynomial vectorfield f is given by its components f =

(
f1 f2 f3

)T
as

f1 =
x4

3

2
+ x2x

2
3 +

x2
3

2
+
x3

2
+
x2

1

2
+
x2

2

2
+
x1

2
+
x2

2

f2 = −4x1x
7
3 + 2x7

3 − 4x1x
5
3 − 12x1x2x

5
3 + 6x2x

5
3

−2x5
3 − 5x1x

4
3 +

5x4
3

2
− 4x3

1x
3
3 − 6x2

1x
3
3 − 12x1x

2
2x

3
3

+6x2
2

f3 = x3
3 − 2x1x

3
3 − 8x1x2x

3
3 − 4x2x

3
3 − x1x

2
3

−6x1x2x
2
3 + 3x2x

2
3

−x
2
3

2
− 4x1x

3
2x3 + 2x3

2x3 − 4x1x
2
2x3 − 2x2

2x3

−x1x3 − 4x3
1x2x3 − 6x2

1x2x3 − 2x1x2x3 +
x3

2

−x3
1 −

3x2
1

2
− x1x

2
2 +

x2
2

2
− x1

2
− x1x2 −

x2

2

and the g vectorfield is

g =

(
0 −2x3 1

)T

The polynomial vectorfields f and g can be understood as polynomial derivations f =∑
i fi

∂
∂xi

and g =
∑

i gi
∂
∂xi

[16].

4.2 Algorithm with Algebroid II

4.2.1 Phase 1

The indices of f now relate to the iteration number of the algorithm (and not to its components).

Hence set f0 = f and g0 = g. The 1-form

ω0 = (2x2
3 + 2x2)dx2 + (x3

3 + 4x2x3 + 1)dx3

23



is such that ω0 g0 = 1 and is exact since ω0 = d(x4
3 + 2x2x

2
3 + x3 + x2

2). This will be used to define

the first anchor

an ω0,g0(m) = m− ω0m

ω0 g0
g0

A direct computation gives

g1 = an ω0,g0([f0, g0])

=


−1

2

4x1x
3
3 − 2x3

3 + 4x1x2x3 − 2x2x3 + x1 − 1
2

−2x1x
2
3 + x2

3 − 2x1x2 + x2


and f1 = f0. Selecting the trivial exact 1-form

ω1 = dx1

leads to the second iteration which is

g2 = an ω2,g2([f1, g1]) =

=

(
0 −4x3

3 − 4x2x3 − 1 2
(
x2

3 + x2

) )T

Choose ω2 = dx2 so that

ω2 g2 = −4x3
3 − 4x2x3 − 1

this will be the integrating factor of the 1-form ν0 constructed in Phase 2.
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4.2.2 Phase 2

Applying the iteration scheme of Section 3.2.2 gives

ν2 = ω2 = dx2

ν1 = (8x1x
3
3 − 4x3

3 + 8x1x2x3 − 4x2x3 + 2x1 − 1)dx1 + dx2

ν0 = (8x1x
3
3 − 4x3

3 + 8x1x2x3 − 4x2x3 + 2x1 − 1)dx1

+(4x3
3 + 4x2x3 + 1)dx2 + (8x4

3 + 8x2x
2
3 + 2x3)dx3

Integrating the exact form 1
ω2 g2

ν0 leads to the linearizing output

y =

∫
1

ω2 g2
ν0 = x1 − x2

1 − x2 − x2
3

4.3 Algorithm with Algebroid I

4.3.1 Phase 1

Set f0 = f and g0 = g. The polynomial morphism

Φ0 : x→


x1

x2
3 + x2

x4
3 + 2x2x

2
3 + x3 + x2

2


admits the inverse

Φ−1
0 : z →


z1

−z4
2 + 2z3z

2
2 + z2 − z2

3

z3 − z2
2


so that the anchor

an π,0(m) = Pr Φ∗,0(m)
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is defined such that an π,0(g0) = 0. Then

f1 = an π,0(f0)

=


z21
2 + z1

2 + z2
2 + z3

2

−z3
1 −

3z21
2 − z2z1 − z3z1 − z1

2 −
z2
2 + z3

2



g1 = an π,0([f0, g0]) =

 −1
2

z1 − 1
2


Select the second polynomial morphism as

Φ1 : z →

 z1 + z2
1 + z2

z1 − z2
1 − z2


with polynomial inverse

Φ−1
1 : w →

 1
2 (w1 + w2)

1
4

(
−w2

1 − 2w2w1 + 2w1 − w2
2 − 2w2

)
 (21)

defining the second anchor

an π,1(m) = Pr Φ∗,1(m)

with the property that an π,1(g1) = 0. The linearizing output is w1.

4.3.2 Phase 2

Phase 2 consists in expressing w1 through the successive polynomial-inverse maps:

y = Φ−1
0 (Φ−1

1 (w1)) = Φ−1
0 (z1 − z2

2 − z2)

= x1 − x2
1 − x2 − x2

3
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4.4 Relation to the Jacobian Conjecture

Setting

Φ : x→


y

Lfy

L2
fy

 =


x1 − x2

1 − x2 − x2
3

x2
1 + x1 + x2

3 + x2

x4
3 + 2x2x

2
3 + x3 + x2

2

 (22)

gives a polynomial morphism Φ : x → Φ(x). Extending the Φ1 map obtained in Phase 2 with

z3 → z3 and changing notations using x instead of z gives the polynomial morphism

Ψ : x→


x1 + x2

1 + x2

x1 − x2
1 − x2

x3


with inverse given as (21) with w replaced by x and with last component x3. It is then straightfor-

ward to show that Ψ−1 ◦ Φ−1
0 is the inverse map of Φ defined in (22).

Associated with any polynomial automorphism, one can construct a dynamical system

ẋ = f(x) + g(x)u which is feedback linearizable using the polynomial automorphism. With n = 3

this would be ż1 = z2, ż2 = z2, ż3 = u, and determine the associated f and g using the polynomial

morphism. Then proceed as described with f and g given above. The example was constructed

using a particular class of tame polynomial automorphisms.

5 Conclusion

The algebroids given in Section 2.6 and 2.8 have different anchors and can be used to give two

iteratives schemes to compute the linearizing output of nonlinear affine in the input single-input

system. The algebroids were shown to satisfy the Jacobi identity and all properties required. Key

in establishing this result is the fact that ω appearing in (7) is an integrable 1-form. Using the two
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algebroids an example using polynomial automorphisms instead of diffeomorphisms illustrated the

theory. The convergence and computation of the inverse polynomial map hinged on the construction

of exact forms in the intermediate steps of the algorithm. If all these forms could be constructed

explicitly and a suitable collection of which could be shown to have a constant determinant, then the

Jacobian Conjecture would be proved. An algorithm for a class of tame polynomial automorphisms

was used for generating the example and will be published elsewhere. An algorithm for the general

case using the ideas presented is still unknown at the moment.
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