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1.  Introduction

Similarly to tokamaks, quasi-axisymmetric (QA) equilibria 
possess a magnetic field strength that is symmetric in the 
toroidal Boozer coordinate; they thus share many neoclassical 
properties with tokamaks. These configurations are capable of 
being compact thanks to their relatively large bootstrap cur
rent which provides a source of rotational transform, in addi-
tion to that from the coils. On the other hand, the similarity to 
stellarators provides potential benefits: QA configurations can 
run in steady state potentially without any current drive, and 
there is evidence from other types of stellarators that disrup-
tions can be avoided if the vacuum rotational transform, cre-
ated solely by the coils, is sufficiently large [2–4]. The related 
concept of quasi-helical symmetry was numerically proven in 
1988 [5] and experimentally confirmed in a series of experi-
ments on the HSX stellarator [6, 7].

Good confinement in quasi-symmetric fields is ensured by 
the existence of a third constant of the guiding-centre motion 
besides the energy and the magnetic moment to confine the 
guiding-centre orbits [8]. The guiding-centre Lagrangian in 

Boozer coordinates (ψ, θ, φ) [9] only depends on the magnetic 
field strength rather than the direction of the magnetic field:

L =
m

2B2 (Iθ̇ + Gφ̇)2 + Ze(ψθ̇ − χφ̇)− µB − ZeΦ� (1)

where m  is the mass, B is the magnetic field strength, I and 
G  are the toroidal and poloidal current, respectively, Ze is the 
charge, χ is the poloidal flux, µ is the magnetic moment and Φ 
is the electrostatic potential [10].

One obtains a third invariant (in addition to µ and the 
energy) if the magnetic field strength B and the scalar poten-
tial Φ only depend on two of the magnetic coordinates (e.g. θ 
and ψ). The canonical momentum corresponding to the third 
magnetic coordinate (φ) is then conserved:

ṗφ =
∂L
∂φ

= 0.� (2)

The first QA equilibria were presented in 1994 [11] and 1996 
[12]. They were followed by many more designs such as 
NCSX [13], CHS-qa [14] and ESTELL [15], none of which 
have been constructed. The aim of the present design is slightly 
different. Here we aim for a compact (aspect ratio of 3 to 4), 
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magnetohydrodynamic (MHD)-stable configuration with 
small fast-particle loss rates, so that the device could, at least 
in principle, scale up to a reactor. A compact, MHD-stable 
equilibrium has been designed before (e.g. NCSX, CHS-qa), 
but we simultaneously require improved fast-particle loss 
rates compared with previous designs.

The paper is organized as follows. In section 2 we describe 
the methods used to obtain the new configuration, including 
a description of the optimization code ROSE and the criteria 
which were targeted. The main section of this paper (section 
3) provides an overview of the new configuration including the 
geometrical properties of the new equilibrium design (section 
3.1), results of fast-particle loss-fraction calculations (section 
3.2), stability calculations (section 3.3), preliminary results of 
islands and chaotic region development with varying plasma 
beta and current (section 3.4), neoclassical transport and boot-
strap calculations (section 3.5) and a preliminary coil set (sec-
tion 3.6). The paper finishes with a summary and ideas for 
future work.

2.  Optimization methods

The optimization tool ROSE (ROSE optimizes stellarator 
equilibria [16]) was exploited to examine the configuration 
space of ideal-MHD plasma boundaries. The standard optim
ization method is Brent’s algorithm, which combines several 
root-finding methods such as the secant method, bisection 
method and a quadratic-inverse algorithm [17]. The cost func-
tion f  which is optimized is evaluated with the weighted sum 
method:

f =
∑

i

wi(Fi − F̃i)
2 ,� (3)

where wi are weights which have to be adapted for obtaining 
various configurations on the Pareto frontier3. The latter is the 
set of optima where an optimum configuration is defined such 
that one cannot improve any criterion without worsening at 
least one other criterion. In equation  (3), Fi is the value for 
the criterion, i, and F̃i is the corresponding target value. ROSE 
uses several other codes, including VMEC [18], a modified 
NESCOIL [19] and VM2MAG [20], and is capable of ana-
lysing many different criteria, including physical, geometrical 
and coil design properties.

For the plasma boundary optimization, we used the fixed-
boundary equilibrium mode of VMEC. In this mode, VMEC 
represents the plasma boundary with a set of two Fourier 
series:

r(u, v) =
∑

rm,n cos(2π(mu − nNv)), z(u, v)

=
∑

zm,n sin(2π(mu − nNv)),
�

(4)

where r  and z are cylindrical coordinates, u is the VMEC 
poloidal angle and v is the VMEC toroidal angle.

For the configuration presented here, the chosen input 
parameters are:

	 •	�aspect ratio A = R
a, where R = r0,0 and a =

√
r1,0z1,0 are 

the approximate major and minor radii of the plasma, 
respectively,

	 •	�number of field periods,

	 •	�volume-averaged plasma beta, β = 2µ0p
B2 , where p is the 

plasma pressure and µ0 is the vacuum permeability.

The targeted parameters for the optimization are:

	 •	�rotational transform, ι, at the magnetic axis and at the 
plasma boundary,

	 •	�vacuum rotational transform at the magnetic axis,

	 •	�vacuum magnetic well ∂
∂ψ

∫∞
−∞

dl
B < 0, where the inte-

gration is along a magnetic field line,
	 •	�the integrated absolute value of the Gaussian curvature of 

the plasma boundary,

	 •	�the quasi-axisymmetric error 
√∑

n�=0,m B2
m,n

B00
 where the  

magnetic field strength is given by B =
∑

m,n Bm,n  
cos(mθ + nNφ).

We anticipate that the bootstrap current is sufficient to be 
the only net current in the plasma (e.g. no ohmic current is 
required). This is supported by preliminary calculations with 
the one-dimensional (1D) transport code NTSS [21]. We 
therefore used a bootstrap-like current density profile for 
optimization (see figure 1).

We aimed for a vacuum rotational transform above 0.3 and 
forced the total rotational transform to stay below 0.5 eve-
rywhere in the plasma by targeting the boundary rotational 
transform to stay below this value (see figure 2(a)) in order 
to avoid the ι = 1/2 rational surface, in the interest of MHD 
stability.

It can be shown that quasi-axisymmetry can only be 
achieved exactly on one single flux surface [22, 23], and we 
therefore only minimized the QA error on one designated flux 
surface. Parameter scans are obtained by varying this flux sur-
face between the magnetic axis and the plasma boundary (see 
figure 3). The best fast-particle confinement is achieved where 
the QA error is minimized at the flux surfaces sqa = 0.4 and 
sqa = 0.5. The normalized toroidal flux surface s is defined 
as s = ψ

ψa
 with ψa the magnetic flux at the plasma boundary. 

Figure 1.  Normalized current density profile versus normalized 
flux s for a bootstrap-like scenario. This profile is normalized to the 
total toroidal current; at the reactor size, the total toroidal current is 
approximately 2.5 MA.

3 If the Pareto frontier is non-convex, there are points on it that cannot be 
found by this method.
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Of those two configurations we chose the configuration with 
a higher vacuum magnetic well for stability reasons (with 
sqa = 0.4). We will report on these scans in greater depth in 
a future paper. The following section describes the final con-
figuration, as illustrated in figure 4.

3. The new design—an overview

3.1.  Configuration specification

The configuration was optimized with an aspect ratio of 
3.4, two field periods, a volume-averaged plasma beta of 
3.5% and a pressure profile ∼1–0.8 s + 1.3 s2 − 1.5 s3 (see 

figure  4(a)). A primary design objective was compactness, 
which is an advantage of the QA configuration, and there-
fore an aspect ratio below 4 was considered to be desir-
able. The choice of two field periods facilitates the design 
of a modular coil set for low aspect ratios. The rotational 
transform profile of the optimized design lies between 0.3 
and 0.5 (see figure 2(a)) so that the low-order rational 1

2 is 
avoided. The scaled plasma current has a total value of  
2.5 MA at reactor size (V = 1900 m3). The flat vacuum-
rotational-transform profile is shown in figure 2(b). It varies 
between 0.317 and 0.332, and therefore 8/25 = 0.32 is the 
rational mode number with the smallest denominator in the 

(a) Rotational transform, ι, versus
normalized flux, s, with β = 3.5%.

(b) The vacuum rotational transform
estimated with a current-carrying
surface rather than coils. The
magnetic axis is approximately at
12.25m. The horizontal axis corre-
sponds to that in the poloidal cross
section of ϕ = 0, see Fig. 5a.

Figure 2.  Rotational transform profiles for the new configuration at β = 3.5% and β = 0%.

Figure 3.  The effect of varying the location for the QA error optimization: the cumulative percentage of particles which remain inside the 
plasma for each optimized configuration versus the location of QA optimization.

Nucl. Fusion 59 (2019) 026014
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vacuum-rotational-transform profile besides near the plasma 
boundary where it is close to 2/6 ≈ 0.333. The Poincaré 
plots of the vacuum magnetic field indicate nested magnetic 
surfaces (see figure 5). This is beneficial for the start-up of 
the device where there will be no plasma current to increase 

the rotational transform profile to its targeted profile. All 
vacuum parameters were calculated assuming a continuous 
current-carrying winding surface using the virtual-casing 
principle [24]. They therefore depend on the realization of 
discrete coils, which are not yet finalized. For β = 3.5%, the 

(a) (b)
Figure 4.  Magnetic field strength structure at the plasma boundary and at half-radius. (a) The magnetic field strength on the plasma 
boundary of the new equilibrium design. (b) Top: the contours of the magnetic field strength at half-radius (s = 0.25) and a field line 
starting at ϕ = 0◦ and θ = 180◦. Bottom: the magnetic field strength along a magnetic field line starting at ϕ = 0◦ and θ = 180◦. Each 
period is equivalent to a step size of ∆ϕ = 180◦.

(a) ϕ = 0 (b) ϕ = 45◦ (c) ϕ = 90◦

Figure 5.  Poincaré plots of the cross sections of the estimated vacuum field. These plots indicate nested magnetic surfaces. In a vacuum, 
islands can potentially only appear at high-order rational flux surfaces since the vacuum rotational transform avoids low-order rationals 
besides the plasma boundary where the rotational transform is close to 2/6.

Nucl. Fusion 59 (2019) 026014
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(a) ϕ = 0 (b) ϕ = 45◦ (c) ϕ = 90◦

Figure 6.  The flux surfaces at different toroidal angles ϕ and with β = 3.5% as calculated by VMEC.

(a) The Fourier spectrum of the
magnetic field strength normal-
ized to B00.

(b) The effective ripple of the op-
timized QA equilibrium design.

Figure 7.  Magnetic field strength spectrum (left) and the effective ripple profile (right).

(a) The fast particle loss fraction
at flux surfaces between s = 0.06
and s = 0.6 with the original pa-
rameters and with a plasma vol-
ume of 1900m3.

(b) The loss fraction of fast par-
ticles (dashed lines) and energy
(solid lines) including collisions
with the background plasma and
accounting for an electric field.

Figure 8.  Rates of fast-particle losses as calculated with ANTS.

Nucl. Fusion 59 (2019) 026014
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poloidal cross sections  of the flux surfaces calculated with 
VMEC at the toroidal angle ϕ = 0, 45◦, 90◦ are displayed in 
figure 6. The magnetic field strength on the plasma boundary 
is shown in figure  4(a). Figure  4(b) illustrates the (quasi-)
axisymmetric magnetic field structure at half-radius. The QA 
error is smallest around the flux surface s = 0.4, but increases 
towards the plasma edge and towards the plasma axis, as one 
would expect from theory [22]. As mentioned before, the QA 
error was optimized on various flux surfaces between s = 0.25 
and s = 0.5. This is also reflected in the Fourier spectrum of 
the magnetic field strength (see figure 7(a)) where the leading 
components of the magnetic field strength normalized to B00 
are shown. All the non-QA components of the magnetic field 
strength are smaller than 2.5% of B00. The leading non-QA 
component is the mirror term B01, which has a maximum near 
the plasma edge. The other components are smaller than 1% 
throughout the entire plasma. The effective ripple εeff , which 
is a measure of neoclassical transport [25], attains values 
between 0.01% at approximately half-radius and 0.6% at 
the edge, and lies below 0.2% in most of the plasma volume 
(see figure 7(b)). This is a side effect of the improved quasi-
axisymmetry (since perfect quasi-symmetry implies εeff = 0) 
rather than the result of explicit optimization.

3.2.  Fast-particle confinement

To determine whether this magnetic configuration could be 
relevant for a reactor, the alpha-particle (with energies of 
3.5 MeV) confinement was investigated. The fast-particle 
loss fraction was evaluated with the drift orbit code ANTS 
(plasmA simulatioN with drifT and collisionS) [26]. The 

configuration was scaled to reactor size with a volume of 
1900 m3, a major radius of 10.3 m, and a minor radius of  
3.1 m, with a volume-averaged magnetic field of 5 T. Two 
results are presented here: one where the guiding centre drifts 
are calculated without any collisions (figure 8(a)) and the 
other including collisions with the background plasma and 
an electric field (figure 8(b)). In the case with collisions, spe-
cific density profiles of deuterium and tritium were imposed. 
Using these profiles, the temperature and radial electric 
field were self-consistently determined following a similar 
procedure to that which is described in [27]. One thousand 

(a) (b)

Figure 9.  Pressure profiles with related rotational transform profiles and mode structures for β ≈ 3.5%. (a) Top: black, un-flattened 
pressure profile; green, red, altered profiles. Bottom: associated rotational transform profiles with fixed current density profiles. (b) Unstable 
modes. Top: mode structure for the red pressure profile (flattened only near the magnetic axis). Bottom: mode structure for green pressure 
profile (flattened near magnetic axis and near edge), this mode structure is less local than that for the other case.

Figure 10.  Ideal MHD stability β-limit: dependence of the growth 
rate on average plasma beta. The red points correspond to the 
pressure profile which has been flattened near the magnetic axis. 
The black points correspond to the pressure profile flattened at both 
the magnetic axis and the plasma boundary (see figure 9(a)). At 〈β〉 
below 3% ideal MHD stability prevails.

Nucl. Fusion 59 (2019) 026014
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test particles, equally distributed on a flux surface, were 
launched with uniformly distributed pitch angles and traced 
for half a second. In the collisionless case the loss fraction 
is below 1% for the flux surface s = 0.06 (r ≈ 0.25) and for 
the flux surface s = 0.25 (approximately half-radius) it is 
7.4% (see figure 8(a)). In the case including collisions with 
the background plasma, the particles are lost more quickly 
than without collisions (because of collisional scattering 
onto collisionless loss orbits); however, the energy losses 
are comparable to those without collisions (see figure 8(b)). 
Note that the curves describing particle and energy losses 
start to diverge after approximately one slowing-down time, 
which is about 0.03 s for s = 0.06.

3.3.  Stability

As described above, one of the main advantages of QA con-
figurations compared with tokamaks is their potential for 
being more stable and, hopefully, free from disruptions. 
The ideal MHD stability of the configuration was evalu-
ated with the CAS3D code [28] in its free-boundary ver-
sion. Three different pressure profiles were examined (see 
figure  9(a)). For the stability calculation, the equilibrium 
pressure profiles were chosen to be flat, p′(s) = 0, near the 
magnetic axis, where there are some low-order rational sur-
faces (e.g. ι = 2/5) in figure 2(a) for the finite-β case. In this 
way, diverging parallel current densities are eliminated that 
appear in ideal MHD equilibria instead of magnetic islands 
[9, 10]. This flattening of the pressure profile only has a small 
effect on the rotational transform profile (see figure  9(a)). 
For β ≈ 3.5% the plasma is ballooning unstable. The Fourier 
harmonics of the displacement in the direction normal to the 
flux surfaces are shown in figure 9(b). The ballooning nature 
of the modes, as well as their free-boundary nature, is evi-
dent from the high amplitudes near the plasma boundary. 
By reducing the plasma beta and keeping the normalized 
profile fixed, a β-stability limit of 3% is determined for the 
chosen numerical parameters (see figure 10). This scan was 
performed with a fixed current profile and a fixed plasma 
boundary (figure 6).

3.4.  Flux surfaces with varying β and current

Magnetic surfaces are not guaranteed to exist in general 
three-dimensional MHD equilibria without continuous sym-
metry [29, 30]. While the vacuum field can be designed to 
possess nested magnetic surfaces (see figure 5), plasma cur
rents are necessarily present at finite plasma pressure and 
thus the magnetic surfaces can potentially be destroyed at 
finite β. Moreover, the design presented herein considers a 
finite net toroidal current, Iφ, and thus we must also assess 
whether this current can degrade (or improve) the quality of 
the confinement. Following the procedure described in [31], 
we use SPEC (the stepped-pressure equilibrium code) [1, 32] 
in order to assess the possible formation of magnetic islands 
and magnetic-field-line chaos at different values of β and 
Iφ. A simplified pressure profile is assumed with p(s) = p0 
for s � 0.3 and p(s) = 0 for s � 0.3. In this way, the pres
sure gradient and the pressure-driven (bootstrap) current 
density are concentrated on a single flux surface. In each of 

Figure 11.  Poincaré plots of the poloidal cross section at ϕ = 37.5◦ and with Iφ = 0 at (from left to right) β = 0.08%, 1.72% and 3% 
calculated by SPEC with the plasma boundary fixed. The inner red surface which is at s = 0.3 indicates the position of the pressure step.

Figure 12.  Enlarged Poincaré plot of the poloidal cross section at 
ϕ = 37.5◦ with Iφ = 0 at β = 3% calculated by SPEC with the 
plasma boundary fixed. A chain of six islands is visible.

Nucl. Fusion 59 (2019) 026014
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the two volumes separated by that surface, SPEC allows the 
plasma to explore all possible magnetic reconnection events 
that would lower the plasma potential energy. The equilibria 
thereby obtained with SPEC may not correctly describe the 
expected equilibria at given β and Iφ, but rather represent 
the ‘worst-case scenario’ in which ‘maximal relaxation’ is 
allowed while supporting the prescribed pressure and current. 
We shall interpret the results as follows: whenever good flux 
surfaces are to be found despite the allowed relaxation, it shall 
be understood that no possible relaxation mechanism is likely 
to destroy these surfaces. When, on the other hand, islands 
and chaotic field lines are produced, it shall be inferred that 
this is the worst-case scenario and the potential destruction of 
flux surfaces is subject to the available relaxation and healing 
mechanisms.

Figure 11 shows examples of Poincaré sections  of the 
equilibrium magnetic field obtained from SPEC calculations 
with increasing values of β, keeping Iφ = 0. An island chain 
emerges at around β = 1.5% and continuously increases in 
size. This is caused by the rotational transform crossing the 
resonance ι = 2/6 = 1/3 (see figure  12). A second scan is 
performed in which the total enclosed net toroidal current Iφ 
is increased at fixed β = 3%. Some illustrative Poincaré sec-
tions  for different values of Iφ are shown in figure  13. We 
remark that the effect of the net toroidal current on the rota-
tional transform can be estimated as ι ∼ µ0IφR/(2πa2Bφ), 
where R is the major radius, a is the minor radius and Bφ is 
the toroidal magnetic field. Since the location of the current 
in SPEC calculations is at about half the minor radius, the 
rotational transform relevant for this design is obtained for 

Figure 13.  Poincaré plots of the poloidal cross section at ϕ = 37.5◦ with constant β = 3% and (from left to right) Iφ = 0.0 kA, 560 kA 
and 640 kA calculated by SPEC with the plasma boundary fixed.

(a) Dependency of the mono-
energetic radial transport coefficient
D∗11 to collisionality. A banana
regime is clearly visible at ν∗

between 10−3 and 10−2.

(b) The mono-energetic bootstrap
current D∗31 coefficient versus colli-
sionality.

Figure 14.  Mono-energetic transport coefficients [33] as calculated by DKES at r = 0.5 with |Bm,n > 0.0001|: triangular shapes, for the 
new equilibrium design for E/vB between 3 × 10−3 and zero (black, 3 × 10−3; red, 1 × 10−3; blue, 3 × 10−4; orange, 1 × 10−4; green, 
3 × 10−5; pink, 1 × 10−5; dark blue, zero); dotted line, transport coefficient for an equivalent tokamak case.

Nucl. Fusion 59 (2019) 026014
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Iφ ≈ 600 kA at reactor size. Around this value of current, 
we observe that the original region of β-induced islands and 
chaos are reduced (hence the current improves the quality 
of confinement), although other resonances around ι = 2/5 
appear soon thereafter. We conclude that the designed equi-
librium may not have chaotic regions but is clearly sensitive 
to the current within the plasma. Further investigations will be 
carried out in the future in order to gain confidence in these 
predictions. In particular, free-boundary SPEC calculations 
will be performed and the robustness of the magnetic topology 
will be assessed with respect to β and Iφ.

3.5.  Neoclassical transport and bootstrap current

The neoclassical mono-energetic transport coefficients [33] have 
been evaluated with DKES [34, 35]. Both the radial and boot-
strap transport coefficients are close to the equivalent tokamak 
coefficients at half-radius (see figures 14(a) and (b)). Only at 
very small collisionality ν∗ < 10−3 do the coefficients depend 
on the electric field. A clear banana regime can be observed, 
which is relatively rare in stellarators [33] and provides fur-
ther evidence for the minimization of the QA error near half-
radius. At smaller and larger radii, the transport coefficients are 
more dependent on the electric field. This is in agreement with 
the effective ripple of this configuration (see figure 7(b)). It is 
worth emphasizing that the reduction of the effective ripple is 
a by-product; it was not optimized explicitly but is a result of 
reducing the QA error between s = 0.25 and s = 0.5.

The bootstrap current has been evaluated with the NTSS 
code [21] for a hydrogen plasma in a configuration scaled 
to the same volume as ASDEX-Upgrade of around 14.5 m3 
with a magnetic field of 2.5 T on-axis and with a volume-aver-
aged β of 1.5%. The obtained bootstrap current was around  
226 kA, which is close to the current used in the optimization 
(for this size it would be 250 kA for β ≈ 3.5%). The rota-
tional transform profile changes only slightly with the new 

bootstrap current. We can therefore conclude that the configu-
ration behaves similarly to a tokamak and that the anticipated 
bootstrap current is of the right order. Finally, the next and 
final section presents an initial description of the coil design.

3.6.  Coils

Besides the physical properties depicted in this paper, engi-
neering characteristics are also of great importance [36, 37]. 
A first investigation concerning the practicability of modular 
coils for a reactor-sized configuration have been performed 
with the ONSET code [38]. Four poloidal field coils have been 
employed with eight types of modular coil corresponding to a 
total of 32 modular coils (see figure 15). The coils have a max-
imum relative magnetic field error (given by el = |B.n|/|B| 
with B the magnetic field on the plasma boundary and n the 
normal vector of the plasma boundary) of around 4.1% and 
a mean relative magnetic field error (

∫
dA el/A with A the 

surface of the plasma boundary) of 0.95%. One can see that 
the most difficult shape for the coils is near the φ = 45◦ cross 
section (see figure 5(b)). Nevertheless, the clearance between 
the centreline of any two coils exceeds 51 cm everywhere for 
a reactor-size machine and the minimum radius of curvature 
is 63 cm. This is an encouraging first step in the coil design 
process, but further work has to be done.

4.  Conclusion and future work

A new quasi-axisymmetric stellarator configuration has been 
designed to possess a number of favourable features. It was 
found by optimizing the curvature of the plasma boundary, 
the magnetic well, rotational transform and the quasi-axisym-
metric field error. By varying the flux surface on which the 
quasi-axisymmetry was enforced, the optimization procedure 
was able to find configurations with particularly good neoclas-
sical confinement.

(a) Side view of preliminary coils for
the new equilibrium design with the
original plasma boundary.

(b) Top view of preliminary coils for
the new equilibrium design with the
original plasma boundary.

Figure 15.  Preliminary set of coils: a set of eight types of coil leads to 32 modular coils with an additional four poloidal field coils. The 
smallest radius of curvature appears near the quarter-period poloidal cross section, due to the strong plasma edge shaping.

Nucl. Fusion 59 (2019) 026014
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The new plasma design has collisionless fast-particle loss 
rates below 8% for flux surfaces s � 0.25. We examined the 
ideal-MHD stability with CAS3D and found that it has a sta-
bility limit of 〈β〉 ∼ 3%. The vacuum flux surfaces do not 
posses significant islands, but small ones appear when the cur
rent and beta are varied, but without the appearance of large 
stochastic regions. The neoclassical transport coefficients are 
nearly the same as in an equivalent tokamak at half-radius. 
The weakest point of our optimization is probably the coil 
design; however, this is still preliminary.

In future work, we aim to reduce the strong shaping at 
the plasma boundary seen at the ϕ = 45◦ cross section (see 
figure 6(b)) to simplify the coil design. This might be possible 
by reducing the vacuum rotational transform while simulta-
neously checking MHD stability. Once improved coils have 
been found the confinement has to be verified.

Additionally, we will include a self-consistent bootstrap 
current into the optimization iteration to evaluate whether 
we can achieve all of these advantages. Further optimization 
work could seek to include ideal-MHD stability calculations 
and, if possible, check for stochastic fields inside the optim
ization loop. An appropriate divertor concept will also need to 
be found, which would feed back into the plasma boundary 
optimization.

Further, it has to be investigated whether the relatively 
large vacuum rotational transform is sufficiently large to avoid 
disruptions.
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