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Abstract

In this work we discuss the Dynamically Orthogonal (DO) approximation of time depen-

dent partial differential equations with random data. The approximate solution is expanded

at each time instant on a time dependent orthonormal basis in the physical domain with fixed

and small number of terms. Dynamic equations are written for the evolution of the basis as

well as the evolution of the stochastic coefficients of the expansion.

We analyze the case of a linear parabolic equation with random data and derive a theo-

retical bound for the approximation error of the S-terms DO solution by the corresponding

S-terms best approximation, i.e. the truncated S-terms Karhunen-Loève expansion at each

time instant, under the assumption that the latter is continuously differentiable in time. Prop-

erties of the DO approximations are analyzed on simple cases of deterministic equations with

random initial data. Numerical tests are presented that confirm the theoretical bound and

show potentials and limitations of the proposed approach.

Keywords: Dynamically Orthogonal approximation, parabolic PDEs with random parameters,

Dynamical Low Rank approximation.

1 Introduction

Many physical and engineering problems can be properly described by mathematical models,

typically of differential type. However, in many situations, the input parameters may be affected

by uncertainty due e.g. to measurement errors, limited data availability or intrinsic variability

of the phenomenon itself. A convenient way to characterize uncertainty consists in describ-

ing the uncertain parameters as random variables or space and/or time varying random fields.

Starting from a suitable Partial Differential Equation (PDE) model, the aim of the Uncertainty

Quantification is to assess the effects of the uncertainty by computing the statistics of the so-

lutions or of some quantities of interest. Several approaches have been proposed and analyzed
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in the last decades. We name the Monte Carlo method [5, 7], Quasi Monte Carlo [6, 37] and

the corresponding Multilevel versions [36], or the approaches based on deterministic approxima-

tions of the parameters-to-solution map (response function) such as the generalized Polynomial

Chaos [8, 9, 27,44] in its Galerkin [10,42,43] and collocation versions [1–3,23,24].

In this work we focus on a reduced basis method to approximate the solution. We consider a

general type of time dependent PDE with random data of the form:
∂u(x,t,ω)

∂t = L(u(x, t, ω), ω), x ∈ D, t ∈ T , ω ∈ Ω,

B(u(σ, t, ω)) = h(σ, t), σ ∈ ∂D, t ∈ T , ω ∈ Ω,

u(x, t = 0, ω) = u0(x, ω), x ∈ D, ω ∈ Ω,

(1)

where x ∈ D ⊂ Rd is the spatial coordinate, t is the time variable in T ≡ [0, T ] and ω is

the random elementary event in the complete probability space (Ω,A,P). In addiction L is a

general (linear or non linear) differential operator and B is an operator defining the boundary

conditions. Here the randomness can appear in the operator L as a random parameter or forcing

term as well as in the initial datum. A possible approach to approximate the solution consists in

expanding u on a deterministic (Proper Orthogonal Decomposition- POD [26,45,46]) or stochastic

(gPC [4,9,21]) set of orthogonal basis functions, performing a Galerkin projection and computing

the coefficients at any time step. Specifically the POD method requires a set of pre-computed

snapshots for different parameter values and time instants. However, since the dependence of

the solution on the random parameters may significantly vary in time, any approximation which

makes use of time fixed basis functions (either deterministic or stochastic), necessarily requires

during the evolution an increasing number of terms to maintain a proper level of accuracy and,

in general, needs a very high computational effort. Several adaptive and greedy type techniques

have been proposed in the literature to (partially) overcome this problem, e.g. time-dependent

gPC [38,39] and Generalized POD [40,41,47]. On the other hand, in many cases, the collection of

all solutions at a given time corresponding to all possible outcomes of the input random processes

can still be well approximated in a low dimensional subspace, which however, will change at each

time instant.

It is well known that the optimal S-dimensional subspace, in L2 sense, is the one which is spanned

by the first S terms of the Karhunen-Loève decomposition of the solution [10, 22, 27]. The main

practical difficulty is that such subspace is, in general, not easy to characterize a priori and might

significantly change in time. Therefore the idea of the approach proposed here is to approximate

the solution on an evolving subspace, exploiting the structure of the differential equation. In

other words, the approximate solution is expanded on a dynamical deterministic orthonormal

basis with stochastic coefficients which evolve in time as well, i.e.:

uS(x, t, ω) = ūS(x, t) +
S∑
i=1

Yi(t, ω)Ui(x, t), (2)

Here ūS(x, t) ' E[u(x, t, ·)] is the approximated expected value, U1, ..., US are L2(D)−orthonormal

deterministic basis functions and Y1, ..., YS are zero mean stochastic variables. The approximate

solution (2) is obtained by suitably projecting the residual of the differential equation (non linear
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Galerkin projection) and aims to be close enough to the Karhunen-Loève decomposition, even if

it does not coincide, in general, with it.

This approach is not new; it has been introduced in [18] and named “Dynamically Orthogonal”

approximation (DO) and applied in [19,20] to the approximation of fluid equations with random

initial data. Analogous formulations are also used in [28,29,35]. On the other hand, similar ideas

have been developed in a quite different context, namely in chemistry and quantum dynamics, for

the approximation of the deterministic Schrödinger equations by the Multi-Configuration time-

dependent Hartree method (MCTDH, [13,14]) and the Dirac-Frenkel Variation principal [30,31].

There, the goal is to look for an approximate solution written in separable form as product of

functions depending on one space variable only, whereas in the DO approach presented here, we

aim at separating the space variables from the stochastic ones. The discrete analogue of the

MCTDH method consists in looking for a Dynamical Low Rank approximation of a deterministic

evolution matrix or tensor equation [11, 12, 17]. A few theoretical results are available on the

accuracy and error estimates for either the MCTDH approximation of Schrödinger equations or

Dynamical Low Rank approximation of matrix equations [11,14].

Our first goal in this paper is to establish a precise link between the DO approach (as proposed

in [18]) and the Dynamical Low Rank approximation analyzed e.g. in [11]. This allows us to “im-

port” some of the theoretical results developed in [11,14] to our situation of a parabolic equation

with random parameters. In particular, we reinterpret the DO equations given in [18–20] as a

Galerkin projection onto the tangent space to the manifold of the rank S functions of the form

(2). Using curvature bounds for such manifold, given in [14], we show that the DO approximation

error for a linear parabolic equation with random input data can be bounded in terms of the best

rank S approximation of the solution (Karhunen-Loève expansion), at each time instant, under

the assumption that the latter is differentiable in time. This assumption is actually unavoidable

and corresponds to the requirement that the eigenvalues of the Karhunen-Loève decomposition do

not cross in time. By means of simple examples with a deterministic linear operator and random

initial datum, we highlight how and when the crossing of the eigenvalues negatively effects the

DO approximation. In particular we show in which cases, for a deterministic operator, the DO

solution is exact and on the other hand, when the DO error can not be properly bounded by

the best approximation error. Finally we describe the numerical method that we have adopted

in this work and the technique utilized to deal with singular covariance matrices. We conclude

with some numerical examples in which we specifically address: i) a deterministic linear parabolic

equation with random initial condition, ii) a linear parabolic equation with stochastic coefficient

and deterministic initial datum, iii) a non-linear parabolic equation of reaction-diffusion type.

The outline of the paper is as follows: in Section 2 we introduce the mathematical problem and

basic notations; in Section 3 we describe the DO approximation, we show the analogy with the

dynamical low rank approach and we give a variational interpretation of it. In Section 4 the

DO approximation is applied to a linear stochastic parabolic equation and an analysis of the

DO approximation error is provided. In Section 5 we analyze the case of a linear deterministic

operator. Finally in Section 6 we describe the numerical discretization of the DO equations and

we present several numerical test cases that will show when the DO approximation is effective

and when is not.
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2 Problem setting

Let D ⊂ Rd, 1 ≤ d ≤ 3, be an open bounded domain and (Ω,A,P) a complete probability space,

where Ω is the set of outcomes, A a σ-algebra and P : A → [0, 1] a probability measure. The

problem considered in this paper is the following time dependent stochastic PDE:

∂u(x, t, ω)

∂t
= L(u(x, t, ω), ω), x ∈ D, t ∈ T , ω ∈ Ω, (3)

where L is a general (linear or non-linear) differential operator, x ∈ D is the spatial coordinate

and t is the time variable in T ≡ [0, T ]. Additionally, the initial state of the problem is described

by

u(x, t = 0, ω) = u0(x, ω), x ∈ D, ω ∈ Ω, (4)

and the (deterministic) boundary condition is given by

B(u(σ, t, ω)) = h(σ, t), σ ∈ ∂D,

where B is a linear differential or algebraic operator. We specifically address the parabolic case

in which L is an elliptic second order differential operator in the space variable x. For a random

function v(x, t, ω), we define its mean value as

v̄(x, t) = E[v(x, t, ·)] =

∫
Ω
v(x, t, ω)dP(ω),

as well as the L2 inner product in the physical space

〈u(·, t, ω), v(·, t, ω)〉 =

∫
D
u(x, t, ω)v(x, t, ω)dx.

In what follows we use the notation

u∗(x, t, ω) = u(x, t, ω)− E[u(x, t, ·)]

We assume that all the random fields considered in this paper are square integrable for any t ∈ T ,
that is, ∫

D
E[u2(x, t, ·)]dx < +∞ ∀t ∈ T .

As the approaches considered in this work have a strong relationship with the Karhunen-Loève ex-

pansion, we review some basic properties of the latter. To begin with, let us define the covariance

function of a space-dependent random field u(x, ω) as

Covu(x, y) = E [u∗(x, ·)u∗(y, ·)] , x, y ∈ D.

It is well known that any second order random field u(x, ω), with continuous and positive definite

covariance function Covu : D ×D → R, can be represented as an infinite sum of random variables,

by means of the Karhunen-Loève expansion [10]. To this end, we introduce the compact and self-

adjoint operator Tu : L2(D)→ L2(D), which is defined by

Tuv(·) =

∫
D

Covu(x, ·)v(x)dx, ∀v ∈ L2(D). (5)
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Then, consider the sequence of non-negative decreasing eigenvalues of Tu, {µi}∞i=1, and the corre-

sponding sequence of orthonormal eigenfunctions, {Zi}∞i=1, satisfying

TuZi = µiZi, 〈Zi, Zj〉 = δij ∀i, j ∈ N+, (6)

where δij is the Kronecker symbol. In addition, define the mutually uncorrelated real random

variables

γi(ω) :=
1
√
µi

∫
D
u∗(x, ω)Zi(x)dx ∀i ∈ N+, (7)

with zero mean and unit variance, i.e. E[γi] = 0 and E[γiγj ] = δij for i, j ∈ N+. Then, the

truncated Karhunen-Loève expansion of the stochastic function u, which we denote by zS , is

defined by

zS(x, ω) = ū(x) +
S∑
i=1

√
µiγi(ω)Zi(x), ∀S ∈ N+. (8)

By Mercer’s theorem [22], it follows that

lim
S→∞

sup
x∈D

E[(u(x, ·))− zS(x, ·)2] = lim
S→∞

sup
x∈D

∞∑
i=S+1

µiZ
2
i (x) = 0.

Observe that the S random variables in (7), describing the approximate random function zS
(8), are weighted differently due to the decay of the eigenvalues of the Karhunen-Loève expansion.

The decay properties of eigenvalues and eigenvectors has been investigated e.g. in the works

[10,32].

In the case of a time-varying random filed u(x, t, ω), the truncated Karhunen-Loève expansion

at each fixed t ∈ T would read

zS(x, ω, t) = ū(x, t) +
S∑
i=1

√
µi(t)γi(t, ω)Zi(x, t), ∀S ∈ N+ (9)

with
〈
Zi(·, t), Zj(·, t)

〉
= δij , ∀t ∈ T .

3 Dynamically Orthogonal approximation

Several approaches have been proposed in the literature to numerically compute the random

solution u(x, t, ω) of PDEs with stochastic input data. For instance, in a generalized Polyno-

mial Chaos (gPC) approach (see e.g. [8, 9, 27]), after parameterizing the probabilistic space by

a sequence of random variables {ηi}i≥1, the solution is expanded on a fixed basis of orthogonal

polynomials in ηi with space and time varying coefficients:

vS(x, t, ω) = v̄S(x, t) +
S∑
i=1

Vi(x, t)Φi(η1(ω), η2(ω), ...) = v̄S(x, t) +
S∑
i=1

Vi(x, t)Φ̃i(ω),
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and E[Φ̃iΦ̃j ] = δij .

Unlike the gPC approach, the Dynamically Orthogonal (DO) approximation, first introduced

in [18], utilizes a more general expansion

uS(x, t, ω) = ūS(x, t) +
S∑
i=1

Ui(x, t)Yi(t, ω). (10)

Namely, both the spatial basis {Ui(x, t)}Si=1 and the random basis {Yi(t, ω)}Si=1 are time dependent

and either Ui or Yi are kept orthogonal at all times, thus aiming to mimic the Karhunen-Loève

expansion (9). Note that the above approximations are finite sums where the index S represents

the approximation level.

In what follows we focus on the case where the spatial basis {Ui}Si=1 is kept orthogonal at all

times. The uniqueness of the DO approximation (10) is guaranteed by the following dynamically

orthogonal conditions [18], [19], [20]:

E[Yi(t, ·)] = 0, 〈Ui(·, t), Uj(·, t)〉 = δij ,

〈
∂Ui(·, t)
∂t

, Uj(·, t)
〉

= 0, 1 ≤ i, j ≤ S, ∀t ∈ T . (11)

Given problem (3), by using together the Galerkin projection onto the subspaces spanned by the

basis functions in (10) and the DO conditions (11), one gets the following DO system [18], [19], [20]:

∂ūS(x, t)

∂t
= E [L(uS(x, t, ·))] (12)

S∑
i=1

Cij(t)
∂Ui(x, t)

∂t
= Π⊥UE [L(uS(x, t, ·))Yj(t, ·)] j = 1, · · ·, S (13)

∂Yi(t, ω)

∂t
= 〈L∗(uS(·, t, ω), ω), Ui(·, t)〉 i = 1, · · ·, S (14)

where

Cij(t) = E[Yi(t, ·)Yj(t, ·)], ∀i, j = 1, · · ·, S,
L∗(u(x, t, ω), ω) = L(u(x, t, ω), ω)− E [L(u(x, t, ·))]

and Π⊥U is the projection operator from the space L2(D) to the orthogonal complement of the S

dimensional subspace U = span{U1, · · ·, US}, namely,

Π⊥U [v] = v −ΠU [v] = v −
S∑
i=1

〈v, Ui〉Ui, ∀v ∈ L2(D).

The associated boundary conditions have the form

B(ūS(σ, t)) = h(σ, t), σ ∈ ∂D (15)

S∑
i=1

Cij(t)B(Ui(σ, t)) = 0, σ ∈ ∂D, j = 1, · · ·, S (16)
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and the corresponding initial conditions are given by

ūS(x, 0) = ū0(x) = E[u0(x, ·)], Ui(x, 0) = Zi0(x), Yi(0, ω) = 〈u0(·, ω)− ū0, Zi0〉 , (17)

where {Zi0(x)}Si=1 are the spatial basis functions appearing in the Karhunen-Loève expansion of

u0(x, ω).

Note that the DO equations (12)-(14) are coupled together, in general. By solving this system,

one easily gets the approximation of the mean and of the total variance of the solution:

E[u(x, t, ·)] ≈ E[uS(x, t, ·)] = ūS(x, t), VarT [u](t) ≈ VarT [uS ](t) =
S∑
i=1

E[Y 2
i (t)].

where the total variance is defined as VarT [u](t) =
∫
D E[(u(x, t, ·) − ū(x, t, ·))2]dx. Concerning

the numerical approximation of the DO system (12)-(14), many approaches can be followed,

among which the Finite Elements or the Finite Difference methods for spacial discretization

and the Stochastic Collocation [1, 3, 24], gPC [9, 25] or (Quasi) Monte Carlo [5, 7] methods for

the stochastic discretization. Any time splitting scheme can be adopted for the time derivative

discretization, but care should be taken in respecting exactly or with good accuracy, the DO

conditions (11) at each time step.

3.1 Dynamically Double Orthogonal approximation

The DO conditions (11) in the derivation of the DO approach are somehow unsymmetric as only

the deterministic fields {Ui}Si=1 are required to be orthogonal. An alternative approach consists

in considering a double orthogonal basis {Ũi}Si=1 and {Ỹi}Si=1 and the general formulation:

u(x, t, ω) ≈ ũS(x, t, ω) = ˜̄uS(x, t) +
S∑

i,j=1

Aij(t)Ũi(x, t)Ỹj(t, ω) = ˜̄uS + ŨTAỸ, (18)

with notations

Ũ = (Ũ1, ..., ŨS)T , A =
(
Aij

)S
i,j=1

, Ỹ = (Ỹ1, ..., ỸS)T .

Here we require that both {Ũi}Si=1 and {Ỹi}Si=1 are dynamically orthonormal, or rather:

E[Ỹi(t, ·)] = 0, ∀ 1 ≤ i ≤ S, (19)〈
Ũi(·, t), Ũj(·, t)

〉
= δij , E

[
Ỹi(·, t), Ỹj(·, t)

]
= δij , ∀ 1 ≤ i, j ≤ S, (20)〈

∂Ũi(·, t)
∂t

, Ũj(·, t)

〉
= 0, E

[
∂Ỹi(·, t)
∂t

, Ỹj(·, t)

]
= 0, ∀ 1 ≤ i, j ≤ S. (21)
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Analogously to what has been done in the DO approximation, one can easily derive the following

dynamically double orthogonal (DDO) system:

∂ ˜̄uS(x, t)

∂t
= E [L(ũS(x, t, ·))] , (22)

d

dt
A(t) = E

[〈
L∗(ũS(·, t, ·)), ŨT (·, t)

〉
˜Y(·, t)

T
]
, (23)

AT (t)
∂Ũ(x, t)

∂t
= Π⊥ŨE

[
Ỹ(·, t)L∗(ũS(·, t, ·))

]
(24)

A(t)
∂Ỹ(t, ω)

∂t
= Π⊥Ỹ

〈
L∗(ũS(·, t, ω), ω), Ũ(·, t)T

〉
, (25)

where L∗(u) = L(u) − E [L(u)] and Π⊥Ỹ is the projection operator from the space L2(Ω) to the

orthogonal complement of the S dimension subspace Ỹ = span(Ỹ1, ..., ỸS) The related initial and

boundary conditions can be obtained by the same way as in (16) and (17). The decomposition

(18) and the corresponding system (22)-(25) have been proposed in [11, 12] for a dynamically

low rank approximation of a time dependent differential matrix/tensor equation. An analogous

formulation in infinite dimensional setting is derived in [13,14], related to the multi-configuration

time-dependent Hartree approach (MCTDH), in the quantum dynamics framework. We remark

that for time dependent SPDEs, a Dynamically bi-orthogonal method (DyBO), which has a close

relation with the DDO approximation, has been introduced in [28,29]. As our error analysis relies

on the symmetric property of the DDO approach, we will show in the following the equivalence

between the DDO and the DO approximations. Note that in the DDO system (22)-(25), the

equation for the mean function coincides with equation (12) in the DO system. Furthermore,

letting Y = AỸ, it is easy to show that the approximation ũS = ūS + ŨTY satisfies the DO

system. Indeed, by using together equations (23) and (25), we have

∂Y

∂t
=

dA

dt
Ỹ + A

∂Ỹ

∂t

= E
[〈
L∗(ũS), ŨT

〉
ỸT
]

Ỹ + Π⊥Ỹ
〈
L∗(ũS), ŨT

〉
= E

[〈
L∗(ũS), ŨT

〉
ỸT
]

Ỹ +
〈
L∗(ũS), ŨT

〉
− E

[〈
L∗(ũS), ŨT

〉
ỸT
]
Ỹ

=
〈
L∗(ũS), ŨT

〉
, (26)

which coincides with equation (14) in the DO system. Moreover, by multiplying both sides of

(24) by A we obtain

AAT ∂Ũ

∂t
= Π⊥ŨE [YL∗(ũS)] . (27)

Note that the covariance matrix of Y is

C = E[YYT ] = E[AỸ(AỸ)T ] = AAT . (28)

Thus, the equation (27) coincides with (13) in the DO system. Using similar techniques, one can

show that the corresponding initial and boundary conditions for the DO system and the DDO

8



system also coincide. On the other hand, if uS = ūS + UTY is a solution of the DO system

(12)-(14), then defining A as the square root of C one can show by the same arguments as above

that uS = ūS+UTAỸ with Ỹ = A−1Y is a solution of the DDO system (22)-(25). In particular,

Ỹ is a vector of orthonormal random variables in L2(Ω). We thus conclude that the DO and the

DDO formulations produce the same approximate solution.

3.2 An equivalent Variational Formulation

Let H ⊂ L2(D) be a suitable Hilbert space and H′ its dual. We assume that equation (3) can be

set in H′ ⊗ L2(Ω) and it admits a unique solution u(t) ∈ H ⊗ L2(Ω) for any t ∈ T .

Definition 3.1. We define a S-rank random field as a function uS ∈ H ⊗ L2(Ω) taking the

following form:

uS = ūS + u∗S = ūS(x) + UT (x)Y(ω),

where

• ūS(x) ∈ H,

• U = (U1, · · ·, US)T ∈ [H]S is a vector with orthonormal components in L2(D),

• Y = (Y1, · · ·, YS)T ∈ [L2(Ω)]S is a vector of random components in L2(Ω) with zero mean

and non singular covariance matrix C = E[YYT ]. (Referring to the DDO formulation, this

implies that the matrix A is non singular).

We denote by MS(H ⊗ L2(Ω)), or simply MS if no ambiguity arises on the functional spaces,

the manifold of all S-rank zero mean random fields u∗S ∈ H ⊗ L2(Ω) and by Tu∗SMS its tangent

space at u∗S = UTY ∈MS .

The following propositions hold, suitably adapted to our framework from [11,14].

Proposition 3.1. The tangent space Tu∗SMS consists of the elements δu∗S ∈ H ⊗ L2(Ω) of the

form:

δu∗S = UT δY + δUTY (29)

where δY and δU are uniquely determined in the representation (29) if we impose the orthogo-

nality conditions analogous to (11):〈
δU,UT

〉
= 0, E[δY] = 0 (30)

where 0 is the zero vector in RS .

Proposition 3.2. For all v ∈ H ⊗ L2(Ω) and u∗S ∈ MS , the orthogonal projection Pu∗S onto the

tangent space Tu∗SMS of v is given by

Pu∗S (v) = Pu∗S (v∗) =UT
〈
v∗,UT

〉
+ (Π⊥U {E[v∗YT ]}C−1)TY,

where C−1 is the inverse of the covariance matrix C = E[YYT ], that has full rank, by definition

of S-rank function.
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Then directly from Proposition 3.1 and 3.2 one can easily derive the following formulas for

Pu∗S and P⊥u∗S
:

Proposition 3.3. The orthogonal projection onto the tangent space Tu∗SMS at u∗S = UTY =

UTAỸ is given by

P⊥u∗S
v = Π⊥U ⊗Π⊥Ỹv, (31)

where U = span{U1, · · ·, US}, Ỹ = span{Ỹ1, · · ·, ỸS}.

Furthermore observe that the governing equation (3) can be formulated as:

∂ū(x, t)

∂t
= E[L(u(x, t, ·))], in H′ (32)

∂u∗(x, t, ω)

∂t
= L∗(u(x, t, ω), ω) in H′ ⊗ L2(Ω) (33)

with u∗ = u − ū. Then the DO approach corresponds to a Galerkin formulation according to

which the residual of the governing equation (33) is projected onto the tangent space Tu∗S(t)MS
in u∗S(t) at each time instant (see Dirac-Frenkel variational principle [30,31]). We can define the

following variational formulation for the DO approach:

Proposition 3.4. At each t ∈ T , find uS(·, t, ·) = ūS(·, t) + u∗S(·, t, ·) with (ūS , u
∗
S) ∈ H ×MS

such that:

E
[〈

∂uS(·, t, ·)
∂t

− L(uS(·, t, ·)), v
〉]

= 0, ∀v = v̄ + v∗, (v̄, v∗) ∈ H × Tu∗S(t)MS (34)

which can be equivalently written as

∂uS(x, t, ω)

∂t
= E [L(uS(x, t, ·))] + Pu∗S(t)(L∗(uS(x, t, ω)))

with L∗(uS) = L(uS)− E[L(uS)].

The approximate solution u∗S = uS − ūS is therefore forced to belong to the S dimensional

manifold MS at all times. The same conclusion holds for the DDO approximate solution ũS as,

by the above discussion, the two approaches lead to the same solution. We point out that the

DO solution (34) does not coincide, in general, with the best S-rank approximation (denoted by

zS in (9)) which instead minimizes the approximation error in L2 sense at each time instant, i.e.

zS(t) = ū(·, t) + argmin
w∈MS

E
[
‖u∗(·, t, ·)− w(·, ω)‖2L2(D)

]
, ∀t ∈ T . (35)

It is well known that the best S-rank approximation corresponds indeed to the truncated Karhunen-

Loève expansion, with S terms. Observe that in the best S-rank approximation (35) the solution

u∗ of the equation (33) is projected onto the manifold MS , whereas in (34) the residual of the

equation (33) is projected onto the tangent space Tu∗S(t)MS . However, the DO formulation takes

inspiration from the Karhunen-Loève decomposition. It aims at developing an analogous type
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of approximation without directly computing the Karhunen-Loève decomposition. In fact the

DO method evolves a dynamically low rank approximation and adapts at each time instant the

spatial basis as well the stochastic variables to what best describes the structure of the solution.

This makes the method numerically accessible and effective in terms of approximation error at

any time instant for long time integration.

3.3 Properties of the manifold

In this subsection, we shall discuss some properties of the manifold MS , which will play an

important role in the next section when analyzing the convergence properties of the DO approach.

Given the equivalence between the DO and DDO formulations, shown in Section 3.1 here we will

use either formalism depending on what is more convenient for the presentation.

Definition 3.2. Denoted with A the square root of the covariance matrix C = E[YYT ], the

singular values of a S-rank function uS = ūS + UTY are defined as the singular values of A:

σ(uS) := σ(A) =
√

eig(C).

Equivalently for the DDO formulation, uS = ūS + UTAỸ, the singular values of uS are by

definition the singular values of A.

In the following, we denote with ‖ · ‖0 := ‖ · ‖L2(D)⊗L2(Ω) the norm in L2(D) ⊗ L2(Ω). The

norm for a function vector U is defined as usual, namely, ‖U‖0 = (
∑

i ‖Ui‖2L2(D))
1/2. We also

denote with ‖ · ‖F and ‖ · ‖2 the Frobenius and the spectral norm of a matrix, respectively. Note

that, with such definition we have ‖u∗S‖0 = ‖A‖F , for u∗S = ŨTAỸ ∈MS .

We introduce now a useful lemma concerning the properties of the operator Pu∗S and the cur-

vature estimates for the manifoldMS . This lemma is taken from [14] with just small adjustments

to the notations and settings used here. We skip the proof as it would follow very closely the

one in [14]. Analogous results are achieved in [11], where the authors considered a very similar

approach for matrix equations in finite dimensional spaces.

Lemma 3.1. Consider the manifold MS(L2(D) ⊗ L2(Ω)). Let u∗S = UTY ∈ MS such that

the smallest nonzero singular value satisfies σs(u
∗
S) ≥ ρ > 0, and let v∗S = VTZ ∈ MS with

||u∗S − v∗S ||0 ≤
1
8ρ. Then, ∀w ∈ L2(D)⊗ L2(Ω), the following bounds hold

‖(Pu∗S − Pv∗S )w‖0 ≤ 8ρ−1‖u∗S − v∗S‖0 · ‖w‖0, (36)

‖P⊥u∗S (u∗S − v∗S)‖0 ≤ 4ρ−1‖u∗S − v∗S‖20. (37)

Further we observe that any linear deterministic bounded operator applied to a S-rank func-

tion, does not increases its rank.

Proposition 3.5. Let V1 and V2 be two Hilbert spaces such that V2 ⊆ V1 ⊆ L2(D) and B : V1 →
V2 a linear bounded operator. For any uS = ūS + u∗S with (ūS , u

∗
S) ∈ V1 ×MS(V1 ⊗ L2(Ω)), we

have that B ⊗ IuS = BūS + B ⊗ Iu∗S with (BūS ,B ⊗ Iu∗S) ∈ V2 × Tu∗SMS(V2 ⊗ L2(Ω)).

11



Proof. It is enough to observe that
(
B ⊗ I

)
u∗S =

∑S
i=1(BUi)Yi and it can be expanded as:

(
B ⊗ I

)
u∗S =

S∑
i=1

ΠU(BUi)Yi +
S∑
i=1

Π⊥U (BUi)Yi

S∑
i=1

( S∑
j=1

〈
BUi, Uj

〉
Uj

)
Yi +

S∑
i=1

Π⊥U (BUi)Yi

S∑
j=1

( S∑
i=1

〈
BUi, Uj

〉
Yi

)
Uj +

S∑
i=1

Π⊥U (BUi)Yi = UT δY + δUTY (38)

where δY =
〈
B(UT )Y,U

〉
and δU = Π⊥U (BU) is orthogonal to U by construction.

4 Application to stochastic parabolic equations

In this section, we consider the DO approach for the following linear stochastic parabolic equation:

∂u(x, t, ω)

∂t
−∇ · (a(x, ω)∇u(x, t, ω)) = f(x, t, ω), x ∈ D, t ∈ T , ω ∈ Ω, (39)

u(σ, t, ω) = 0 σ ∈ ∂D, t ∈ T , ω ∈ Ω, (40)

u(x, 0, ω) = u0(x, ω), x ∈ D, ω ∈ Ω, (41)

where a(x, ω) : D×Ω→ R is a random field with continuous and bounded covariance function and

D is an open, bounded and Lipschitz domain. We say that u is a weak solution of problem (39)-

(41) if it satisfies the initial condition u = u0 at t = 0 and if, at any t ∈ T , u(·, t, ·) ∈ H1
0 (D)⊗L2(Ω)

and

E[
〈∂u(·, t, ·)

∂t
, v
〉
] + E[

〈
a∇u(·, t, ·)),∇v

〉
] = E[

〈
f(·, t, ·), v

〉
] ∀v ∈ H1

0 (D)⊗ L2(Ω). (42)

A sufficient condition to guarantee the existence and uniqueness of the solution u consists in

assuming that f ∈ L2(T , L2(D) ⊗ L2(Ω)), u0 ∈ L2(D) ⊗ L2(Ω) and the diffusion coefficient

a(x, ω) is bounded and uniformly coercive almost surely, i.e.

∃ amin, amax ∈ (0,+∞) : P
(
ω ∈ Ω : a(x, ω) ∈ [amin, amax], ∀x ∈ D

)
= 1. (43)

Then by standard arguments applied for almost every ω ∈ Ω (see also [4]), it is straightforward to

show that there exists a unique solution u ∈ L2(T , H1
0 (D)⊗ L2(Ω)) with

∂u

∂t
∈ L2(T , H−1(D)⊗

L2(Ω)) and by standard energy estimates the following a priori bound holds ∀T ∈ T :

‖u(T )‖2L2(D)⊗L2(Ω) + amin‖u‖2L2(T ,H1
0 (D)⊗L2(Ω)) ≤ ‖u0‖2L2(D)⊗L2(Ω) +

c2
p

amin
‖f‖2L2(T ,L2(D)⊗L2(Ω)),

(44)

where cp denotes the constant appearing in the Poincaré inequality.

For the error analysis of the DO method that will be presented in the next section, we need

some extra regularity on the exact solution u as well as its DO approximation uS . We make the

following assumption: (For simplicity of notation we denote with u̇ the time derivative of u)

12



Assumption 1. h

• u, uS ∈ L2(T , H2(D) ∩H1
0 (D)⊗ L2(Ω))

• u̇, u̇S ∈ L2(T , L2(D)⊗ L2(Ω))

We give here an informal discussion on why this assumption is reasonable under mild extra

requirements on the data of the problem (39)-(41). In particular, while regularity results on

the exact solution u can be proved by standard techniques, it is not obvious whether analogous

results should hold for the DO solution uS , because of the projection on the tangent manifold.

Consider the pure Neumann problem ∂un = 0 on ∂Ω and look first at the exact problem (39)-

(41) (with Neumann boundary conditions instead of Dirichlet ones). Under the assumption that

∇a ∈ L∞(D × Ω) and ∇u̇(0) ∈ L2(D) ⊗ L2(Ω), by taking v = −∆u in (42) and integrating in

time we get:

‖∇u(T )‖2L2(D)⊗L2(Ω) + amin‖∆u‖2L2(T ,L2(D)⊗L2(Ω)) ≤
2

amin
‖∇a‖L∞(D×Ω)‖∇u‖2L2(T ,L2(D)⊗L2(Ω))

+
2

amin
‖f‖2L2(T ,L2(D)⊗L2(Ω))

+ ‖∇u̇(0)‖2L2(D)⊗L2(Ω), (45)

which implies, in light of (44), that u is bounded in L2(T , H2(D)⊗ L2(Ω)). In order to derive a

bound on the time derivative of u, let us now take v = u̇ in (42) and integrate in time. We get

the following a priori estimate:

‖u̇‖2L2(T ,L2(D)⊗L2(Ω)) + amin‖∇u(T )‖2L2(D)⊗L2(Ω) ≤ amax‖∇u0‖2L2(D)⊗L2(Ω) + ‖f‖2L2(T ,L2(D)⊗L2(Ω))

(46)

which shows that u̇ ∈ L2(T , L2(D)⊗ L2(Ω)). Therefore the regularity properties in Assumption

1 on u are sound provided that ∇a ∈ L∞(D×Ω) and u(0), u̇(0) ∈ H1(D)⊗L2(Ω). Observe that,

since the truncated Karhunen-Loève expansion inherits the spatial regularity of u [32], estimates

(45) and (46) are valid for zS as well, for any S ∈ N. By following the same approach as before,

we investigate now the regularity of the DO solution uS . The weak formulation of the DO method

reads: At each time t ∈ T , find uS = ūS + u∗S with (ūS , u
∗
S) ∈ H1(D) ×MS(H1(D) ⊗ L2(Ω))

such that

E [〈u̇S(·, t, ·), v〉] + E [〈a∇uS(·, t, ·),∇v〉] = E [〈f(·, t, ·), v〉] ,MS (47)

∀v = v̄ + v∗, (v̄, v∗) ∈ H1(D)× Tu∗S(t).

We now take as before v = −∆uS in (47). The key now is to observe that thanks to the Proposition

3.5, v∗ = −∆u∗S ∈ Tu∗SMS so that it is a suitable test function. By the same argument we can

take v = u̇S as a test function. Then, proceeding as before, one can derive the same bounds (45)

and (46) for the DO solution as well. This shows that the regularity assumption (Assumption 1)

are also sound for the DO solution uS under the same conditions on the data: ∇a ∈ L∞(D ×Ω)

and u(0), u̇(0) ∈ H1(D)⊗ L2(Ω).
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Remark 4.1. The informal arguments that we have used to derive the bounds (45) and (46) for

the exact solution as well as its DO approximation uS can be made rigorous e.g. by using the so

called Faedo-Galerkin method that consists on working with a sequence of Galerkin approximations

of the solution u, which satisfy the governing equation projected in finite dimensional subspaces,

and weakly converge to u (see e.g. [33, 34]).

4.1 Analysis of DO approximation error

We are now ready to prove the convergence result for the DO approximation of the stochastic

parabolic equation (39)-(41). The proof will follow closely the one by Lubich et al. in [11] for the

error analysis of the Dynamical Low Rank approximation of time dependent data matrices. For

notation simplicity, we denote

L(u) := ∇ · (a∇u) + f, L∗(·) = L(·)− E[L(·)]. (48)

We suppose that the problem (39)-(41) admits a unique solution u in L2
(
T ,H2(D) ∩ H1

0 (D) ⊗
L2(Ω)

)
and that there exists a continuously differentiable best S-rank approximation zS = z̄+z∗S

of the solution u at any t ∈ T . In light of what discussed in the previous section we can

argue that also the truncated Karhunen-Loève expansion zS and the DO approximate solution

uS will in general belong to L2
(
T ,H2(D) ∩ H1

0 (D) ⊗ L2(Ω)
)

and, in particular, the quantities

‖L(u)‖0, ‖L(zS)‖0 and ‖L(uS)‖0 will be bounded, which is a necessary condition for our proof

of the quasi-optimality of the DO approximate solution. We will estimate the error of the DO

approximate solution in terms of the best approximation error ‖u − zS‖H1(D)⊗L2(D) as long as

this remains small enough compared with the smallest singular value of zS .

Theorem 4.1. Suppose that a continuously differentiable best S-rank approximation zS(t) of

the exact solution u(t) of (39)-(41) exists in
(
H2(D) ∩ H1

0 (D)
)
⊗ L2(Ω) for 0 ≤ t ≤ t̄ and the

smallest singular value of zS(t) is uniformly bounded from below, with lower bound σ(zS(t)) ≥ ρ >
0, ∀t ∈ [0, t̄]. Then there exists 0 < t̂ ≤ t̄ such that the approximation error of the DO solution

uS = ūS + u∗S with initial value uS(0) = zS(0) is bounded by

‖uS(t)− zS(t)‖20 + amin

∫ t

0
|uS(τ)− zS(τ)|21dτ ≤ 2αe2β(t)

∫ t

0
‖zS(τ)− u(τ)‖21dτ, (49)

for all 0 < t ≤ t̂, with

β(t) = 4ρ−1

∫ t

0

(
4‖L∗(zS(τ))‖0 + ‖L∗(u(τ))‖0 + ‖L∗(uS(τ))‖0 + ‖ż∗S(τ)‖20

)
dτ,

α = max
{ a2

max

2amin
, 4ρ−1

}
, (50)

where ‖.‖1, |.|1 denote respectively the norm and semi-norm in H1(D)⊗ L2(Ω), provided that all

the terms in (49) are well defined.
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Proof. Thanks to the assumptions of boundedness of u̇ and żS and being uS(0) = zS(0), we have

that for any t ∈ [0, t̄]

‖uS(t)− zS(t)‖20 = ‖
∫ t

0

(
u̇S(τ)− żS(τ)

)
dτ‖20

≤ t
∫ t

0
‖u̇S(τ)− żS(τ)‖20dτ ≤ 2t (‖u̇S‖2L2([0,t],L2(D)⊗L2(Ω)) + ‖żS‖2L2([0,t],L2(D)⊗L2(Ω)))︸ ︷︷ ︸

A(t)

(51)

therefore, for t̂ = min
(
t̄, ρ2

2·82A(t̄)

)
the distance between uS and zS remains bounded by 1

8ρ, as

required in Lemma 3.1.

For the best approximation zS it must hold that E[zS ] = E[u] and E[żS ] = E[L(u)]. Moreover

(zS − E[zS ])− (u− E[u]) must be orthogonal to the tangent space Tz∗SMS , that is:

Pz∗S
(
(zS − E[zS ])− (u− E[u])

)
= Pz∗S (zS − u) = 0 (52)

For z∗S ∈ MS , we denote with Dz∗S
P [δz∗S ] the Gateaux derivative of the projection operator in

z∗S , i.e.

Dz∗S
P [δz∗S ] = lim

ε→0

Pz∗S+εδz∗S
− Pz∗S

ε
. (53)

Observe that d
dtPz∗S(t) = Dz∗S

P [ż∗S ]. We differentiate the relation (52) with respect to t and we

then obtain:

Pz∗S (żS − u̇) + Dz∗S
P [ż∗S ](zS − u) = 0, (54)

Since we have Pz∗S (żS) = Pz∗S (ż∗S) = ż∗S = żS − E[żS ] the above equation becomes

żS = E[żS ] + Pz∗S (u̇)−Dz∗S
P [ż∗S ](zS − u)

= E[L(u)] + Pz∗S (L∗(u))−Dz∗S
P [ż∗S ](zS − u) (55)

Since the DO solution satisfies

u̇S = E[L(uS)] + Pu∗S (L∗(uS)), (56)

by subtracting equations (55) and (56) we get

u̇S − żS = E[L(uS)]− E[L(u)] + Pu∗S (L∗(uS))− Pz∗S (L∗(u)) + Dz∗S
P [ż∗S ](zS − u).

By adding and subtracting (Pu∗S − Pz∗S )(L∗(zS)) we obtain

u̇S − żS = E[L(uS)]− E[L(u)] + (Pu∗S − Pz∗S )(L∗(zS)) + Pz∗S
(
L∗(zS)− L∗(u)

)
+
[
I − P⊥u∗S

](
L∗(uS)− L∗(zS)

)
+ Dz∗S

P [ż∗S ](zS − u).

and then

u̇S − żS = (Pu∗S − Pz∗S )(L∗(zS)) + Pz∗S
(
L∗(zS)− L∗(u)

)
+ Dz∗S

P [ż∗S ](zS − u)

+
(
L(uS)− L(zS)

)
− P⊥u∗S

(
L∗(uS)− L∗(zS)

)
+ E[L(zS)]− E[L(u)].
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By taking the inner product with uS − zS , on both sides, we obtain

E
[
〈u̇S − żS , uS − zS〉

]
=

T1︷ ︸︸ ︷
E
[ 〈

(Pu∗S − Pz∗S )(L∗(zS)), uS − zS
〉 ]

+

T2︷ ︸︸ ︷
E
[
〈L(uS)− L(zS), uS − zS〉

]
T3︷ ︸︸ ︷

+E
[ 〈
Pz∗S
(
L∗(zS)− L∗(u)

)
, uS − zS

〉 ]
+ E

[
〈E[L(zS)]− E[L(u)], uS − zS〉

]
T4︷ ︸︸ ︷

+E
[ 〈

Dz∗S
P [ż∗S ](zS − u), uS − zS

〉 ]
+

T5︷ ︸︸ ︷
E
[ 〈
−P⊥u∗S

(
L∗(uS)− L∗(zS)

)
, uS − zS

〉 ]
(57)

We now estimate separately each term on the right hand side of (57). Lemma 3.1 implies that:

T1 : E
[ 〈

(Pu∗S − Pz∗S )(L∗(zS)), uS − zS
〉 ]

= E
[ 〈
L∗(zS), (Pu∗S − Pz∗S )(uS − zS)

〉 ]
≤ 8ρ−1‖L∗(zS)‖0‖uS − zS‖20 (58)

T2 : E
[
〈L(uS)− L(zS), uS − zS〉

]
≤ −amin‖∇uS −∇zS‖20 ≤ −amin|uS − zS |21 (59)

For the term T3, since

E
[〈
Pz∗S
(
L∗(zS)− L∗(u)

)
, uS − zS

〉]
=E

[〈
L∗(zS)− L∗(u), uS − zS

〉
]

− E
[〈
L∗(zS)− L∗(u), P⊥z∗S

(uS − zS)
〉]

we have

T3 : E
[〈
Pz∗S
(
L∗(zS)− L∗(u)

)
, uS − zS

〉]
+ E

[〈
E[L(zS)]− E[L(u)], uS − zS

〉]
T3 = E

[〈
L(zS)− L(u), uS − zS

〉]
− E

[〈
L∗(zS)− L∗(u), P⊥z∗S

(uS − zS)
〉]

and then

T3 ≤ amax|zS − u|1|uS − zS |1 + 4ρ−1(‖L∗(zS)‖0 + ‖L∗(u)‖0)‖uS − zS‖20 (60)

Analogously

T5 : E
[〈
P⊥u∗S

(
L∗(uS)− L∗(zS)

)
, uS − zS

〉]
≤ ‖L∗(uS)− L∗(zS)‖0‖P⊥u∗S (uS − zS)‖0
≤ 4ρ−1(‖L∗(zS)‖0 + ‖L∗(uS)‖0)‖uS − zS‖20. (61)

Also we have:

‖Dz∗S
P [ż∗S ](zS − u)‖0 = lim

dt→0

Pz∗S+dtż∗S
− Pz∗S

dt
(zS − u) ≤ 8ρ−1‖ż∗S‖0‖zS − u‖0,

and hence:

T4 : E
[〈

Dz∗S
P [ż∗S ](zS − u), uS − zS

〉]
≤ 8ρ−1‖ż∗S‖0‖zS − u‖0‖uS − zS‖0. (62)
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Finally by combining (59)-(62) and denoting ε = uS − zS , we obtain

1

2

d

dt
‖ε‖20 +

1

2
amin|ε|21 ≤

{
16ρ−1‖L∗(zS)‖0 + 4ρ−1‖L∗(u)‖0 + 4ρ−1‖L∗(uS)‖0

+ 4ρ−1‖ż∗S‖2
}
‖ε‖20 +

a2
max

2amin
|zS − u|21

+ 4ρ−1‖zS − u‖20 (63)

The result now follows using the Gronwall inequality.

Remark 4.2. Improved upper bounds can be investigate under stronger assumptions as in [11].

Smaller errors over longer time intervals can be obtained if, not only the error u − zS, but also

its derivative is small.

5 Deterministic equation with stochastic initial datum

To have a better understanding of the DO approximation, let us have now a closer look at the

following simple problem

u̇(x, t, ω)−∆u(x, t, ω) = 0 x ∈ D, t ∈ T , ω ∈ Ω, (64)

u(σ, t, ω) = 0 σ ∈ ∂D, t ∈ T , ω ∈ Ω, (65)

u(x, 0, ω) = u0(x, ω) x ∈ D, ω ∈ Ω (66)

For sake of simplicity we assume E[u0] = 0. However observe that in case of a deterministic linear

operator the equation for the mean in the DO system (12)-(14) is completely decoupled from the

others,which implies that nothing changes in the following analysis for any ū0 6= 0.

5.1 Case I: exactness of the DO approximation

We assume that the initial datum u0 is in the manifold MS . According to the Karhunen-Loève

decomposition, u0 can be expanded as:

u0(x, ω) =

S∑
i=1

√
µiγi(ω)Zi(x) (67)

Let {λi}∞i=1 and {Φi}∞i=1 be respectively the eigenvalues and the eigenfunctions of the Laplace

operator, then the exact solution of problem (64) with initial datum (67) is simply given by:

u(x, t, ω) =

S∑
i=1

√
µiγi(ω)

[ ∞∑
k=1

< Zi,Φk > e−λktΦk(x)
]
. (68)

Observe that u is in the manifoldMS and the truncated Karhunen-Loève expansion of rank S is

actually exact for all times. The exact solution belongs indeed toMS at any time instant, hence
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it coincides with its best S-rank approximation zS . We show here that the DO approximate

solution is exact as well. First of all we have that the time derivative u̇ is in manifold MS :

u̇(x, t, ω) = −
S∑
i=1

√
µi(0)γi(ω)

[ ∞∑
k=1

< Zi,Φk > λke
−λktΦk(x)

]
.

Moreover we observe that, in light of Proposition 3.4, ∆u belongs to TuMS at each time instant,

indeed:

∆u =
S∑
i=1

< ∆u, Ui > Ui +
S∑
i=1

E[Π⊥U (∆u)Yi]Yi

which implies that the projection of ∆u onto the tangent space TuMS is actually equal to ∆u

itself. In particular, since the projection of the governing equation (64) onto the tangent space

TuMS coincides with the governing equation, we have that the DO solution uS satisfies the exact

equation (64). Finally the fact that u0 = zS(0) = uS(0) ensures that the three solutions coincide

at each time. Formally the same conclusion can be achieved by looking at the evolution equations

of zS and uS . As shown in (55) and (56) we have that:

żS = PzS (L(u))−DzSP [żS ](zS − u) (69)

u̇S = PuS (L(uS)) (70)

with initial condition u0 = zS(0) = uS(0). Since u(t) = zS(t) at each time, the second term on

the right side of the equation (69) is equal to zero, i.e.:

żS = PzS (L(zS)) = L(zS) (71)

u̇S = PuS (L(uS)) = L(uS). (72)

The two functions satisfy the same evolution equation with equal initial condition which implies

that they are equal at each times.

Remark 5.1. More generally, if the differential operator L(·) in (3) is a linear deterministic

operator and the initial condition u0 is in MS, then u belongs to MS and the DO approximate

solution (with rank equal to S) coincides with the exact solution at each time instant.

Proposition 5.1. If the initial condition u0 ∈ MS is a linear combination of S eigenfunctions

Φ = (Φ1, ...,ΦS)T of the Laplace operator, then the DO method coincides to the Proper Orthogonal

Decomposition method (see e.g. [27] chapter 2) in which the governing equation is projected in

the fixed (time independent) subspace spanned by Φ. Indeed the deterministic basis functions do

not evolve in time and the DO solution uS is given by uS(x, t, ω) = UT (x, t)Y(t, ω) with:

U(x, t) = U(x, 0), Y(t, ω) = Υ(0)e−ΛtΥ(0)>Y(0, ω), (73)

where Λ is the diagonal matrix of the eigenvalues of the Laplace operator associated to Φ, i.e.

−∆Φ = ΛΦ, and Υ(t) is the transformation matrix Υ(t)i, j = 〈Ui(·, t), Φj〉 between the basis of

modes U and the basis of eigenfunctions Φ.
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Proof. First of all we recall that, since u0 ∈ MS , the exact solution is in MS . Moreover it

is in the span of the S eigenfunctions Φ = (Φ1, ...,ΦS)T at any time instant. Indeed, being

u0(x, ω) = Φ(x)TΥ(0)Y(0, ω), the exact solution is given by:

u(x, t, ω) = Φ(x)T e−ΛtΥ(0)TY(0, ω)

As previously discussed, we have that the DO solution coincides to the exact solution. Then it

is easy to verify that u = UTY and the couple (U, Y) in (73) satisfies the DO system. To this

end, observe that the covariance matrix of the solution can be explicitly calculated as follows:

C(t) = Υ(0)e−ΛtΥ(0)TE[Y(0)Y(0)T ]Υ(0)e−ΛtΥ(0)T

= Υ(0)e−ΛtΥ(0)TC(0)Υ(0)e−ΛtΥ(0)T
(74)

The initial covariance matrix C(0) is assumed to have full rank and since Υ(0)e−ΛtΥ(0)T is

strictly positive definite, C(t) remains invertible at any t ∈ T . This implies that C(t) can be

simplified in (13) and then DO system is reduced to:
dΥ(t)

dt
=
[
Υ(t)Λ Υ(t)>Υ(t) − Υ(t)Λ

]
= 0

∂Y(t, ω)

∂t
= −Υ(t)ΛΥ(t)>Y(t, ω).

(75)

where we use that Υ(t) is a square orthogonal matrix. By integrating in time we get the result.

5.2 Case II: effect of truncation - zS is continuously time differentiable

We now consider an initial datum u0 6∈ MS . Assuming u0 ∈ L2(D)⊗ L2(Ω) it can be expanded

according to the Karhunen-Loève decomposition as:

u0(x, ω) =
∞∑
i=1

√
µiγi(ω)Zi(x) (76)

Analogously the exact solution u of problem (64) with initial condition (76) can be in general

decomposed at each time t as:

u(x, t, ω) =

∞∑
i=1

√
µ′i(t)γ

′
i(ω, t)Z

′
i(x, t). (77)

In order to apply the DO method, the initial datum is approximated by the first S terms of

the series (76), whose sum zS(0) corresponds to the best rank-S approximation of u0 in norm

L2(D)⊗L2(Ω) (S-rank truncated Karhunen-Loève expansion). In the same way, we denote with

zS(t) the best rank-S approximation of the exact solution at time t > 0, i.e.:

zS(x, t, ω) =

S∑
i=1

√
µ′i(t)γ

′
i(ω, t)Z

′
i(x, t) (78)
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where we assumed that the coefficient µ′i are ordered in decreasing order at each time t:

E[µ′1(·, t)] ≥ E[µ′2(·, t)] ≥ ... ≥ E[µ′S(·, t)].

In other words the triplet (γ′i(ω, t), µ
′
i(t), Z

′
i(x, t)) is the one with the ith biggest coefficient µ′i(t)

at time t. In addition, we denote with µi(t) the trajectory of the ith term of the Karhunen-Loève

decomposition of u0 or, rather, the evolution of the term that at t = 0 has the ith biggest variance.

Observe that the function

uS(x, t, ω) =
S∑
i=1

√
µi(t)γi(ω, t)Zi(x, t) (79)

is the exact solution of the problem (64) with initial condition zS(0) (the best S-rank approxi-

mation of u0):

u0S(x, ω) = zS(x, 0, ω) =

S∑
i=1

√
µi(0)γi(ω, 0)Zi(x, 0) ∈MS . (80)

and differs, in general, from zS(t). Moreover, from what previously discussed, since u0S is in

a S dimensional manifold the DO solution coincides to (79). This shows that the DO method,

differently to the best S-rank approximation, may be affected by the truncation of the initial

datum. Indeed the DO solution of problem (64) with initial condition u0 will be always equal to

the exact solution of the same problem with initial datum u0S , that is generally different to u

and zS as well.

We consider first the case in which the best S-rank approximation zS is continuously differentiable

in time, as in the hypothesis of Theorem 4.1. For the problem we are analyzing this regularity

assumption implies that the Sth eigenvalue of the correlation operator is differentiable in time,

which can be translated in practice by requiring that the maximum neglected eigenvalue µ′S+1

of the correlation operator, would never cross the trajectories µ1, ..., µS at any time. Under this

assumption the best rank-S approximation zS coincides to (79) and the approximation error is

given by

εS(t) =
∞∑

i=S+1

µ′i(t) =
∞∑

i=S+1

µi(t). (81)

We see that, for a deterministic linear operator L(·), the continuous time differentiability of zS
is a sufficient condition for the DO solution to coincide to the best rank S approximation.

5.3 Case III: effect of truncation - zS is not continuously time differentiable

We remove any hypothesis of regularity on the evolution of the eigenvalues of the correlation

operator. This implies that the trajectories of µi, µj may cross each other at any time instant, for

any i, j ∈ N. In particular, if the Sth eigenvalue of the correlation operator is not continuously

time differentiable, which means that µ′k(t) would cross µi(t) at some t ∈ T , for some i =

S+1, ...,∞ and k = 1, ..., S, then the best approximation zS will not be continuously differentiable
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in time. In this case the DO approximate solution and the best rank-S approximation do not

coincide:

zS(x, t, ω) =
S∑
i=1

γ′i(ω, t)
√
µ′i(t)Z

′
i(x, t)

uS(x, t, ω) =
S∑
i=1

γi(ω, t)
√
µi(t)Zi(x, t) (82)

The DO approximation error is then strictly larger then the best approximation error:

εDOS (t) =
S∑
i=1

µi(t) >
S∑
i=1

µ′i(t) = εS(t). (83)

and we do not have any control on it in terms of best approximation error. However observe that

the DO approximation error is always bounded by the initial truncation error:

εDOS (t) ≤ εS(0), ∀t ∈ T . (84)

5.4 An Illustrative Example

Consider the following problem:
∂u(x, t, ω)

∂t
− ∂2u(x, t, ω)

∂x2
= 0 x ∈ (0, 2π), t ∈ [0,T], ω ∈ Ω

u(0, t; ω) = u(2π, t; ω) = 0 t ∈ [0,T], ω ∈ Ω

u(x, 0; ω) = α1(ω)
1√
π

sin(x) + α2(ω)
1√
π

sin(2x) x ∈ (0, 2π), ω ∈ Ω

(85)

where α1, α2 are independent uniform random variables with zero mean and variance E[α2
1] = 1,

E[α2
2] = 2. As one can easily verify, the exact solution as well the total variance can be calculate

analytically, i.e.:

u(x, t, ω) = α1(ω)e−t
1√
π

sin(x) + α2(ω)e−4t 1√
π

sin(2x), VarT [u](t) = E[α2
1]e−2t + E[α2

2]e−8t.

(86)

Observe that u(x, 0, ω) is a 2-rank function in the span of the first two eigenfunctions of the

Laplace operator. Consequently the exact solution evolves in the manifold M2 at any time

instant, the DO method degenerates to the POD method and, with S = 2, both the DO and the

Karhunen-Loève solutions coincide with the exact solution.

Think now that we want to approximate the solution in a manifold of dimension 1. The

initial datum is approximated according to the Karhunen-Loève decomposition by the principal

component with largest variance, i.e. z1(x, 0, ω) = u1(x, 0, ω) = α2(ω)
1√
π

sin(2x), and the DO

method develops the following approximate solution:

u1(x, t, ω) = α2(ω)e−4t 1√
π

sin(2x) x ∈ [0, 2π], t ∈ [0,T], ω ∈ Ω (87)
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Figure 1: On the left: Evolution of the total variance VarT (t) of the exact solution as well as the

KL and DO approximate solution with S = 1. On the right: Time evolution of the mean square

error ε(t) of the DO method with S = 1, compared to the best approximation error.

On the contrary the Karhunen-Loève approximate solution is given by:

z1(x, t, ω) =


α2(ω)e−4t 1√

π
sin(2x) for t ∈ [0, T] : E[α2

1]e−2t ≤ E[α2
2]e−8t

α1(ω)e−t
1√
π

sin(x) for t ∈ [0, T] : E[α2
1]e−2t > E[α2

2]e−8t

(88)

That is not continuously time differentiable at t∗ = 1
6 log

(E[α2
1]

E[α2
2]

)
. Figure 1 shows the evolution

of the exact and approximate total variance (left) and the mean square error of the DO method

compared to the best 1-rank approximation.

One can see that the error of the DO method is bounded by the initial truncation error and goes

asymptotically to zero as t goes to infinity, but it is strictly larger than the best approximation

error as soon as the eigenvalues cross each other. Indeed, while the best approximation error

asymptotically goes to zero with exponential rate given by the second eigenvalue of the Laplace

operator, i.e.:

ε(t)KL = min
(
E[α2

1]e−2t, E[α2
2]e−8t

)
and ε(t)KL = E[α2

2]e−8t for t > t∗,

the exponential rate of DO approximation error is given by the smallest eigenvalue of the Laplace

operator:

ε(t)DO = E[α2
1]e−2t =


εKL(t) for t ∈ [0,T] : t ≤ t∗

E[α2
1]

E[α2
2]
e6tεKL(t) for t ∈ [0,T] : t > t∗

(89)

which shows that the DO error can not be bounded uniformly by the Karhunen-Loève error.

This result does not contradict Theorem 4.1. Indeed at time t∗ the truncated Karhunen-Loève

expansion with rank S = 1 is not differentiable in time, so one important assumption in the

Theorem 4.1 is not fulfilled.
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6 Numerical examples

In this section, we will give some numerical examples to verify the performance of the DO ap-

proximation. Thus, we need to numerically solve the following DO system:

∂ūS(x, t)

∂t
= E [L(uS(x, t, ·))] (90)

S∑
i=1

Cij(t)
∂Ui(x, t)

∂t
= Π⊥UE [L(uS(x, t, ·))Yj(t, ·)] , j = 1, · · ·, S, (91)

∂Yi(t, ω)

∂t
= 〈L∗(uS(·, t, ω), ω), Ui(·, t)〉 , i = 1, · · ·, S (92)

6.1 Numerical discretization

For what concerns the numerical discretization of the system (90)-(92) we use the Finite Element

method in the physical space, for equations (90)-(91), and Stochastic Collocation method (see e.g.

[1, 2]) for equation (92). We assume that the input data are functions of a uniformly distributed

random vector η = (η1, ..., ηN ) so that the stochastic space (Ω,A,P) is parametrized by η and

replaced by (Λ,B(Λ), f(η)dη) where Λ, B(Λ) and f denote respectively the domain, the Borel

σ-algebra and the density function of η. For the discretization in time we use a backward Euler

scheme in which however eventual non linear terms are computed explicitly. Both the covariance

matrix and the projection operator in (90) are treated explicitly, this allow us to linearize and

completely decouple equations (90)-(91) from equations (92). In particular, the projection onto

the orthogonal space in (91) is done on a basis freezed at the previous time step whereas the

update of the random variables {Yi} in (91) is done on the newly computed basis. The splitting

scheme is therefore of “Gauss-Seidel” type. Let Uh denote the finite element space of continuous

piecewise linear functions on a regular triangulation of the spatial domain D with mesh size h,

{ξi ∈ Λ} the set of Ny tensorized Gauss-Legendre collocation points and ∆t the time step. Then

the DO approximate solution at time tn = n∆t is discretized as follow:

unS,h,Ny
(x,η) =

Nh∑
j=1

Ūnj ρj(x) +
S∑
i=1

( Nh∑
j=1

Unj,iρj(x)

Ny∑
k=1

Y n
k,iLk(η)

)
where {ρi}Nh

i=1 and {Lk}
Ny

k=1 are respectively the finite elements basis functions in D and the mul-

tivariate tensorized Lagrange polynomials on the grid {ξk} in Λ. Observe that the first moment

of the DO approximate solution at t = tn corresponds to the function Ūnh (x) =
∑Nh

j=1 Ū
n
j ρj(x) and

the total variance can be easily computed as the sum of the variances of the stochastic coefficients

{Yi}, i.e.:

VarT [unS,h,Ny
] =

S∑
i=1

Var[Y n
i ] =

S∑
i=1

Ny∑
k=1

Y n
i (ξk)

2wk

where {wk}
Ny

k=1 are the weights of the Gaussian quadrature formula associated to the collocation

points of the stochastic grid. (For further details concerning other possible types of stochastic
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grids we refer to [2,3]). Moreover the computation of the covariance of the stochastic coefficients is

explicitly required in the equations (91). Indeed the equations for the deterministic basis functions

{Ui} are coupled together by the covariance matrix. A “natural” option to decouple the equations

consists in multiplying both sides in (91) by the inverse of the covariance matrix. Unfortunately

this is often not possible, since the covariance matrix C(tn) = Cn may be singular or very ill

conditioned at some time instant tn. A straightforward example is provided by any system of

PDEs with stochastic coefficients and deterministic initial data: the DO approximate solution

will require S ≥ 1 number of modes, in general, even if the initial covariance matrix is identically

equal to zero and then singular at least for the very first iteration. Furthermore the rank of the

covariance matrix typically evolves in time whatever the initial condition is. For instance in the

very simple case of linear diffusion equations with no forcing terms, the rank tends asymptotically

to zero as t goes to infinity whereas for non linear problem it may drastically increases or decreases

during the time evolution. This makes unsuitable also the direct use of the pseudo-inverse of Cn,

since such approach automatically sets to zero the “non active” deterministic basis functions

and then prevents the rank from increasing. Instead of multiplying both sides of (91) by the

pseudo-inverse of C, denoted by C†, we reformulate directly the problem in this form:

∂U

∂t
= C†Π⊥UE [YL(us)] ,

that is equivalent to solve (91) when the covariance matrix has full rank. From a numerical point

of view the strategy that we have adopted in this work, is based on diagonalizing the covariance

matrix at each time step in order to completely decouple the system of equation (91). Indeed,

even if the covariance matrix at t = 0 is diagonal, the DO method does not preserve in general

the un-correlation of the stochastic coefficients for t > 0. For a better understanding let us write

equation (91) in algebraic form with notations:

Un ∈ RNx×S : Uni,j = Uj(xi, t
n), Yn ∈ RNy×S : Y n

i,j = Yj(ξi, t
n)

Fn ∈ RNx×Ny : Fn
jk = 〈L(uS(·, ξk, tn)), ρj〉

Furthermore we denote with M the Finite Element mass matrix and with ENy [.] the discretized

expected value, computed by the quadrature formula on the collocation points {ξk}
Ny

k=1. Then

the algebraic formulation of system (91) is the following:

MUn+1Cn = MUnCn + (I−MUnUnT )ENy [F∗Yn] (93)

where F∗ denotes that the diffusion term is always treated implicitly, while eventual non linear

terms are computed at t = tn. Let Vn = (vn1 , ..., v
n
S) ∈ RS×S be the matrix of eigenvectors of

Cn and Σn ∈ RS×S : Σn
ij = δijµ

n
i the matrix of eigenvalues, such that CnVn = VnΣn. Then

multiplying both sides in (93) by Vn we get:

MUn+1VnΣn = MUnVnΣn + (I−MUnUnT )ENy [F∗YnVn]

Observe that Zn = YnVn is a vector of uncorrelated random variables with variance ENy [(Zni )2] =

µni . Finally we solve:

MUn+1Vn = MUnVn + (I−MUnUnT )ENy [F∗YnVn]Σ†n (94)
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where Σ†n is the pseudoinverse of Σn with tolerance ε, that is:

Σ†nij =

{
δijµ

n
i µni > εµnmax

0 otherwise

Roughly speaking we impose that only the “directions” associated to the eigenvalues µni > εµnmax
evolve, while the others remain constant. An alternative integrator for the low rank approximation

of time dependent matrix is proposed in [16]. This is based on a suitable splitting of the orthogonal

projector onto the tangent space.

As already mentioned, the DO method explicitly requires the deterministic basis functions to

be orthonormal in L2(D). At the continuous level the orthonormality is preserved at any time

instant thanks to condition (11). On the other hand, many numerical schemes, including the

one discussed here, will not preserve the orthonormality of the discrete basis (see e.g. [15] for a

discussion on orthogonality preserving numerical schemes). We therefore re-orthogonalize at each

time step the spatial basis {Ui} by means of a QR factorization (where the matrix Q is orthogonal

with respect to the continuous L2(D) inner product, i.e. QTMQ = I).

6.2 Linear parabolic problem with random initial conditions
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Figure 2: Left: The random variable α(η), blue, and Y1(t) (scaled by the variance E[Y1(t)2]), red

markers, at the collocation points. Middle: The first mode with S = 1 (red markers) and the

principal component Z1 (blue) at T=1. Right: Hierarchical basis function.

We start by considering the following simple problem already discussed in Section 5:

∂u(x, t, ω)

∂t
− ∂2u(x, t, ω)

∂2x
= 0, x ∈ [0, 8], t ∈ T , ω ∈ Ω (95)

u(0, t;ω) = u(8, t, ω) = 0, t ∈ T , ω ∈ Ω

where the initial condition is a random field. Here we take

u0(x, ω) = α(ω)u01(x) = α(ω)
1

4
| − x+ 4|+ 1
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where α(ω) = eη(ω)−E[eη] and η(ω) is a uniformly distributed random variable in [−1, 1]. It is easy

to see that the exact solution is a stochastic field with the same distribution of α(ω). Analytically

it can be calculated as uex(x, ω, t) = α(ω)ψ(x, t), being ψ the solution of the deterministic diffusion

PDE with initial condition ψ(x, 0) = u01(x). By normalizing the field ψ(x, t) the solution can

be rewritten in accordance with the Karhunen-Loève decomposition, having only one principal

component Z1(x, t) = ψ(x, t)/‖ψ(., t)‖0 and one stochastic coefficient γ1(ω, t) = α(ω)‖ψ(., t)‖0.

We can easily verify that the couple (Z1, γ1) satisfy the DO system (12)-(13) with S = 1:
Ż1 =

ψ̇

‖ψ‖0
− < ψ̇

‖ψ‖0
,
ψ

‖ψ‖0
>

ψ

‖ψ‖0
= ∆Z1− < ∆Z1, Z1 > Z1 = Π⊥Z{∆Z1}

γ̇1 =<
ψ̇

‖ψ‖0
,
ψ

‖ψ‖0
> γ1 =< ∆Z1, Z1 > γ1

(96)

and initial condition Z1(x, 0) = u01(x)/‖u01‖0, γ1(ω, 0) = α(ω). This confirms again the exactness

of the DO method in case of deterministic operator and initial condition that belongs to a finite

dimensional manifold. Now we want to show that the exactness of the DO method is preserved

at the discrete level as well: let uh,Ny ,∆t denote the discrete solution of (95), obtained by using

piecewise linear continuous Finite Elements in space with mesh size h , Stochastic Collocation

method on Ny Gauss-Legendre points in η(ω) and backward Euler discretization in time with

step ∆t. We show that the corresponding DO approximate solution coincides with uh,Ny ,∆t. Let

M and K be respectively the mass and stiffness matrix of the Finite Element discretization and

let µn1 denotes the variance of the random variable Y n
1 . The algebraic system for the DO solution

u1,h,Ny ,∆t = U1,h,∆tY
T

1,Ny,∆t with rank one is given by:

MUn+1µn + ∆tKUn+1µn = MUnµn + ∆tMUnUnTKUnµn (97)

Y n+1T + ∆tUnKUnY n+1T = Y nT (98)

where for simplicity of notation, we have omitted the subscripts. By multiplying the first equation

by Y n+1 and using (98) we get:

MUn+1Y n+1T + ∆tKUn+1Y n+1T = MUnY n+1T −MUnY n+1T + MUnY nT (99)

or equivalently:

Mun+1
1 + ∆tKun+1

1 = Mun1 (100)

which exactly corresponds to the algebraic system of the discretized problem for uh,Ny ,∆t. Figure

2 (middle) shows that the deterministic basis function U1 evolves in time and coincides to the

principal component Z1 of the discrete solution uh,Ny ,∆t at each time step. The stochastic coef-

ficient Y1 is as well proportional to the initial random parameter, with variance that decreases

in time and coincides with the total variance of the solution. Figure 2 (left) shows that Y n
1 ,

normalized with respect to the variance at time tn (E[(Y n
1 )2]), is equal to α(ω) at each time step.

Finally we aim at analyzing the efficacy of the DO method in case of over-approximation, that

occurs when the DO approximate solution is defined in a manifold of dimension larger then the

rank of the exact solution. To this purpose we again apply the DO method to problem (95) with
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S > 1 whereas we have seen that only one mode is really needed. We initialize the deterministic

basis functions {Ui}Si=1 to a sequence of hierarchical functions as in Figure 2 (right). To preserve

the consistency with the initial datum, the first stochastic coefficient is initialized to α(ω) and all

the other coefficients are initialized to zero. Since the DO method requires the deterministic basis

functions to be orthonormal in L2(D), the first step consists in the re-orthonormalizing the initial

hierarchical basis functions. From a computational point of view, this is achieved by using the

QR decomposition, with respect to the continuous L2(D) inner product. Let (Û1, ..., ÛS) denotes

the set of orthonormalized basis functions. Then the initial datum is expanded as

u0(x, ω) =
S∑
i=1

Ûi(x, 0)Ŷi(ω, 0) (101)

with Ŷi(ω, 0) = 0 for i = 2, ..., S. As the system evolves in time, all the spatial basis functions

evolve and all the random variables become in general different from zero (Figure 3). However

the stochastic coefficients {Ŷi} are all linearly dependent and the rank of the covariance matrix

Cn
ij = E[Ŷ nT

i Ŷ n
j ] remains constantly equal to one at each time step, as long as the total variance of

the solution is larger than zero. This confirms that the DO method in the version proposed here,

effectively deals with singular covariance matrices in case of over-approximation and is able to

identify the effective dimension of the manifold of the solution. Moreover we remark that at each

time step only one deterministic PDE is actually solved, thanks to the diagonalization technique

discussed in Section 6.1. Also in case of over-approximation we have verified numerically that the

DO solution corresponds to the discrete solution uh,Ny ,∆t at each time step.
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Figure 3: Left: The re-orthogonalized modes at time T = 0 (red) and T = 5 (blue), with S = 3.

Collocation points Ny = 11, time step ∆t = 0.001, spatial discretization h = 0.1 and threshold

ε = 1.e− 16. Right: Evolution in time of the variance of the stochastic coefficients.
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6.3 Linear parabolic problem with random diffusion coefficient

We consider now the following linear parabolic equation:

∂u(x, t, ω)

∂t
− div

(
a(x, ω)

∂u(x, t, ω)

∂x

)
= 0, x ∈ [0, 1], t ∈ T , ω ∈ Ω (102)

u(0, t, ω) = u(1, t, ω) = 0, t ∈ T , ω ∈ Ω

where now L(·) is actually a stochastic differential operator, being the diffusion coefficient a

a random field on (Ω,A,P) taking values in L∞(D). This means that the eigenvalues and

the eigenfunctions of L(·) are random fields in (Ω,A,P) as well. For reasons of existence and

uniqueness of the solution we assume a(·, ω) to be a strictly positive and bounded function over

D for each random event ω ∈ Ω. Here we consider a coefficient having the following form:

a(x, ω) = ā(x) +

2∑
i=1

(
η2i−1(ω) cos(iπx) + η2i(ω) sin(iπx)

)
where ā = 1.45 and η1, ..., η4 are zero mean uniform independent random variables with variance

E[η2
i ] = (1/3) · 10−i+1. On the other hand, the initial condition is taken to be a deterministic

function and is given by:

u0(x) = 10 sin(πx)

By this choice we can also verify the stability of the DO method in case of an initial zero rank

covariance matrix and emphasize the differences with respect to the type of problems discussed

in Section 5.1 and 6.2. Here the solution u(x, t, ω) is actually a function of the random variables

η = (η1, ..., η4). Figure 4 (left) shows the evolution of the total variance of the solution.

At each time step, we can introduce the parameter-to-solution map u(·, t,η) : [−1, 1]4 → H1
0 (D).

Defining now the set V(t) = {u(·, t,η), η ∈ [−1, 1]4} ⊂ H1
0 (D), at each time step the solution

u(·, t,η(ω)) is in V(t) for all ω ∈ Ω. The manifold V(t) is a multidimensional manifold which,
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and of the Karhunen-Loève expansion (blue, solid line) just after the crossing t∗. Left: The

eigenvalues of the covariance matrix of the stochastic coefficient of the DO solution (red markers)

with S = 5 and the first 5 eigenvalues of the covariance operator of the reference solution (blue,

solid line), in log scale. Note that the first DO and KL modes and eigenvalues are almost

indistinguishable.

29



1 2 3 4 5 6 7 8 9 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

number of modes

L
2
(
D

)
×
L

2
(
Ω

)
 
e

r
r
o

r

 

 

KL
DO

1 2 3 4 5
10

−4

10
−3

10
−2

10
−1

number of modes

L
2
(
D

)
 
e

r
r
o

r
 

 

 

DO

Figure 7: Left: The best approximation error (green) and the error of the DO approximate
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Right: The L2(D)-error on the mean of the DO approximate solution w.r.t. the number of modes,

at time T = 0.1

in this example, evolves in time. First of all we compute and analyze the Karhunen-Loève

decomposition of the numerical reference solution computed with a very accurate (and costly)

Stochastic Collocation method. The analysis of the Karhunen-Loève decomposition is very useful

to understand what we can expect from the DO method. Moreover, it allows us to directly

compare the DO solution with the best approximation. In Figure 4 (right) we see the evolution

of the eigenvalues of the covariance operator. Observe that only few of them reach remarkable

values. This immediately shows that the solution u can be well approximated in a low rank format.

On the other hand, notice that the first two eigenvalues cross each other at time t∗ ≈ 0.08. This

implies that the 1-truncated Karhunen-Loève expansion is not continuously differentiable in time

at the crossing. Hence Theorem 4.1 only applies for t < t∗, for S = 1. On the other hand, the

case S = 2 seems to be smooth (at least up to the final computational time T = 0.3). Similar

considerations apply to successive modes, for S = 3, 4, S = 5, 6, etc.

The numerical results confirm the theoretical ones given in Section 4 and are consistent with

the observations above. Figure 5 (left) shows the approximation error in the L2(D)×L2(Ω) norm

of the truncated Karhunen-Loève expansion as well as the DO solution, with rank S = 1 (solid

line) and S = 2 (dotted line). We see that the approximation error of the DO solution with rank

equal to 1 is proportional to the best approximation error only until the first two eigenvalues

of the Karhunen-Loève expansion cross each other. Before the crossing , the difference in the

L2(D)×L2(Ω) norm between the DO solution and the truncated Karhunen-Loève expansion with

rank 1 is bounded by the best approximation error so the error of the DO method is well controlled

by the error of the Karhunen-Loève expansion. After the crossing, the bound clearly degenerates.

The problem is due to the evolution of the first mode of the Karhunen-Loève expansion which

is no longer continuous in time. In Figure 5 (right) we see the first mode of the Karhunen-

Loève expansion in two consecutive time step, just before and after the crossing. By using only
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Figure 8: Mean solution at time t = 0 (left), t = 0.35 (middle-left), t = 1 (middle-right) and

t = 2 (right). Discretization parameters: Gauss-Legendre collocation points Ny = 41, spatial

discretization h = 0.03, time step ∆t = 0.001

one mode, the DO method is not able to follow accurately the evolution of the first mode of the

Karhunen-Loève expansion after the crossing. Indeed the hypothesis of continuous differentiability

of the rank-1 Karhunen-Loève approximation is not fulfilled and Theorem 4.1 can not be applied

after the crossing. However this problem can be overcome by using an approximation with rank

larger than 1, as we can see in Figure 6 (left). The plot shows the first three modes of the DO

approximate solution which are very close to those of the Karhunen-Loève expansion even after

the crossing t∗. Moreover the evolution of the eigenvalues of the covariance matrix related to the

DO solution, is comparable to the evolution of the eigenvalues of the covariance operator of the

exact solution (Figure 6, right). For what concerns the L2(D)× L2(Ω) error (Figure 7, left) and

the L2(D) error on the mean (Figure 7, right), good levels of accuracy can be achieved by using

only few modes. Moreover, the plot clearly shows an exponential convergence rate with respect

to the number of modes.

6.4 Parabolic equation with non linear reaction term

To conclude we consider a reaction-driven non liner parabolic operator with stochastic coefficient.

The problem is defined as follows:

∂u(x, t, ω)

∂t
− µ∆u(x, t, ω) = f(u(x, t, ω)), x ∈ D = [0, 1]2, t ∈ T , ω ∈ Ω,

∂u

∂n
(σ, t, ω) = 0, σ ∈ ∂D, t ∈ T , ω ∈ Ω

u(x, 0, ω) =

{
1 if x1 ≤ 0.5,

0 if x1 > 0.5.
x ∈ D, ω ∈ Ω,

The reaction term is a cubic polynomial in u, i.e. f(u) = βu(u − 1)(α(ω) − u), with constant

excitation rate β and stochastic threshold potential α(ω). We assume α(ω) to be a uniformly

distributed random variable. The initial condition is instead deterministic and it is represented

by a step function equal to one for values of coordinate x1 smaller than 0.5 and zero otherwise.

The solution is a traveling wave, whose direction and speed, proportional to β, is determined
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Figure 9: First (top) and second (bottom) mode of the DO approximate solution at time t = 0

(left), t = 0.05 (middle) and t = 0.5 (right) with a number of modes S = 6, excitation rate β = 100

and threshold potential α(ω) uniform r.v. in [0, 0.4]. Discretization parameters: Gauss-Legendre

collocation points Ny = 41, spatial discretization h = 0.05, time step ∆t = 0.001

by the value of the random variable α. After a while, the wave exits the computational domain

and the solution tends to the constant function u = 1 if α(ω) < 0.5, and u = 0 if α(ω) > 0.5,

irrespectively of the initial datum. Therefore for t� 0 the solution is at most a rank-1 function

and is deterministic if either α(ω) < 0.5 or α(ω) > 0.5 ∀ω ∈ Ω. Figure 8 shows the evolution

of the expected value of the solution, by assuming α(ω) < 0.5. Observe that the solution is a

function of the random variable α. By defining as before the parameter-to-solution map u(·, t, α) :

[−1, 1]→ H1(D) and the set V(t) = {u(·, t, α), α ∈ [−1, 1]} ⊂ H1(D), at each t ∈ T the solution

u(·, t, α(ω)) is in the one dimensional manifold V(t) for all ω ∈ Ω. However the manifold V(t)

evolves in time, driven by the non linear reaction term, and may feature a complex structure for

large times. In the DO approach, we try to approximate such manifold by a linear combination of

S modes. The number of basis functions that the DO approximate solution needs to well describe

the solution depends obviously on the complexity of the manifold V(t).

We analyze here the performance of the DO approach. First of all, since the initial condition is

deterministic, we have arbitrarily initialized the modes to a set of orthonormal functions. Due

to the zero Neumann boundary conditions, we have chosen S orthonormal cosine functions of

increasing frequency, i.e. ui(x1, x2) = ki cos(i1πx1)cos(i2πx2) (where ki is the normalization
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constant). Figure 9 shows the first two deterministic basis functions at different time iterations.

Observe that the modes adapt very fast to the structure of the problem and assume values different

than zero only around the front of the traveling wave. On the other, by analyzing the evolution

of the eigenvalues of the covariance matrix, we see that good levels of accuracy can be achieved

only if a relative large number of modes is used. Figure 10 (left) shows that several eigenvalues

reach remarkable values and many of them cross each other. This poses a serious limitation in the

use of low rank formats for this type of problems, which is intrinsically due to the nature of the

problem and the structure of the solution. This is confirmed also by the analysis of the effective
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rank of the DO approximate solution. Figure 10 (right) shows the evolution of the rank of the DO

approximate solution, for different values of S. Being the rank of the covariance matrix bounded

by the number of collocation points that are used in the stochastic discretization, in the plot we

consider a number of collocation points at least equal to S. We see that for S < 40 the rank

tends to reach the saturation level S, whereas it does not exceed 39 by using S > 40. However

that bound is influenced by the space discretization and tends to slightly increase by refining

the deterministic discretization parameter. Furthermore the bound is related to the value of the

excitation rate β, which affects the “sharpness” of the front. When the excitation rate is small,

e.g β ≈ 10, the maximum rank achieved is relatively smaller (≈ 22). In the latter case indeed the

reaction has weaker predominance on the diffusion term and the solution has less step gradients.

Looking at the solution for larger times, when the front is about to exit the computational domain,

the total variation of the solution decreases, and the rank decreases as well. If, on the one hand,

these results show the ability of the DO method to capture the effective dimension of the solution

at each time step, on the other hand they also show the need of using a large number of modes.

Figure 11 shows the L2(D)×L2(Ω) error of the DO approximate solution (red, dotted line) and of

the truncated Karhunen-Loève expansion (blue, solid line) with respect to the number of modes.

We observe that in both cases, high levels of accuracy may be achieved only for large values of S.

Furthermore the rate of convergence of the DO method is slower than the one of the truncated

Karhunen-Loève expansion. This is due to the fast increasing/decreasing of the eigenvalues of

the covariance matrix, that makes them frequently cross each other. As discussed in Section 4,

this fact may negatively affect the performance of the DO method. On the other hand numerical

evidence reveals that better performances for these types of problems can be achieved when the

stochastic input concerns the initial condition instead of the coefficients of the reaction-operator.

Conclusion

In this work we established and formalized a link between the DO approximation of PDEs with

random initial datum and the MCTDH method proposed for the approximation of deterministic

Schrödinger equations, or the discrete analogue Dynamical Low Rank approximation of evolu-

tion matrix or tensor equations. We have reinterpreted the DO approximation as a Galerkin

projection onto the tangent space to the manifold MS of all rank S functions, at any time in-

stant and in light of the theoretical results developed in [11, 14] for the MCTDH method and

the Dynamical Low Rank approximation, we investigated the properties of the manifold MS

for a linear parabolic equation with random parameters. Specifically we exploited the curvature

bounds of MS to show that the DO approximation error can be bounded in terms of the best

rank S approximation of the solution, at each time instant, under the assumption that the latter

is differentiable in time. On the other hand, we have seen that the regularity assumption on the

Karhunen-Loève decomposition is actually a necessary condition to maintain an effective control

on the DO approximation error. As confirmed by the numerical results, the DO approximation

error is properly bounded in terms of best approximation error as long as the eigenvalues of

Karhunen-Loève expansion included in the S rank approximation, do not cross the ones which
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have been initially omitted. In conclusion our work sets the bases for a theoretical analysis of

the DO approximation for random PDEs and provides indication of the effectiveness of the DO

method for different types of problems.
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