brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

IVIZ V1T 1 1INV e

VIR Vathematics Institute of Computational Science and Engineering _____________|
T RN Vathematics Institute of Computational Science and Engineering

School of Basic Sciences - Section of Mathematics

MATHICSE Technical Report
Nr. 10.2014
February 2014

A continuation multilevel
Monte Carlo algorithm

Nathan Collier, Abdul-Lateef Haji-Ali, Fabio Nobile,
Erik von Schwerin, Raul Tempone

http://mathicse.epfl.ch
Address:

Phone: +41 21 69 37648 EPFL - SB - MATHICSE (Batiment MA) Fax: +41 21 69 32545
Station 8 - CH-1015 - Lausanne - Switzerland

https://core.ac.uk/display/211994409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mathicse.epfl.ch/

A Continuation Multilevel Monte Carlo algorithm

Nathan Collier - Abdul-Lateef Haji-Ali -
Fabio Nobile - Erik von Schwerin -
Rail Tempone

Abstract We propose a novel Continuation Multi Level Monte Carlo (CMLMC) al-
gorithm for weak approximation of stochastic models that are described in terms of
differential equations either driven by random measures or with random coefficients.
The CMLMC algorithm solves the given approximation problem for a sequence of
decreasing tolerances, ending with the desired one. CMLMC assumes discretization
hierarchies that are defined a priori for each level and are geometrically refined across
levels. The actual choice of computational work across levels is based on parametric
models for the average cost per sample and the corresponding weak and strong errors.
These parameters are calibrated using Bayesian estimation, taking particular notice
of the deepest levels of the discretization hierarchy, where only few realizations are
available to produce the estimates. The resulting CMLMC estimator exhibits a non-
trivial splitting between bias and statistical contributions. We also show the asymp-
totic normality of the statistical error in the MLMC estimator and justify in this way
our error estimate that allows prescribing both required accuracy and confidence in
the final result. Numerical examples substantiate the above results and illustrate the
corresponding computational savings.

Keywords Multilevel Monte Carlo - Monte Carlo - Partial Differential Equations
with random data

Mathematics Subject Classification (2000) 65C05 - 65N22

N. Collier (E-mail: nathaniel.collier @ gmail.com)
Oak Ridge National Lab, Climate Change Science Institute (CCSI), Environmental Sciences Division

A. Haji-Ali (E-mail: abdullateef.hajiali @kaust.edu.sa) . R. Tempone (E-mail:
raul.tempone @kaust.edu.sa)
Applied Mathematics and Computational Sciences, KAUST, Thuwal, Saudi Arabia.

F. Nobile (E-mail: fabio.nobile @epfl.ch)
MOX-Dipartimento di Matematica “Francesco Brioschi”, Politecnico di Milano, Italy.

F. Nobile - E. Schwerin
MATHICSE-CSQI, EPF de Lausanne, Switzerland.

2 Nathan Collier et al.

1 Introduction

Multilevel Monte Carlo Sampling was first introduced for applications in the context
of parametric integration by Heinrich [19,20]. Later, to consider weak approxima-
tion of stochastic differential equations (SDEs) in mathematical finance, Kebaier [26]
introduced a two-level Monte Carlo technique in which a coarse grid numerical ap-
proximation of an SDE was used as a control variate to a fine grid numerical approx-
imation, thus reducing the number of samples needed on the fine grid and decreasing
the total computational burden. This idea was extended to a multilevel Monte Carlo
(MLMC) method by Giles in [12], who introduced a full hierarchy of discretiza-
tions with geometrically decreasing grid sizes. By optimally choosing the number of
samples on each level this MLMC method decreases the computational burden, not
only by a constant factor as standard control variate techniques do, but even reducing
the rate in the computational complexity from & (TOL’3) of the standard Euler-

Maruyama Monte Carlo method to & (log (TOL)ZTOL’Z), assuming that the work

to generate a single realization is & (TOL’I). For one-dimensional SDEs, the com-
putational complexity of MLMC was further reduced to & (TOL’z) by using the Mil-
stein Scheme [17]. Moreover, the same computational complexity can be achieved by
using antithetic control variates with MLMC in multi-dimensional SDEs with smooth
and piecewise smooth payoffs [16].

This standard MLMC method has since then been extended and applied in a wide
variety of contexts, including jump diffusions [34] and Partial Differential Equations
(PDEs) with random coefficients [7-9,13,33]. The goal in these applications is to
compute a scalar quantity of interest that is a functional of the solution of a stochastic
PDE (SPDE). It is proved in [33, Theorem 2.5] that there is an optimal convergence
rate that is similar to the previously mentioned complexity rates, but that depends on
the relation between the rate of strong convergence of the discretization method of
the SPDE and the work complexity associated with generating a single sample of the
quantity of interest. In fact, in certain cases, the computational complexity can be of
the optimal rate, namely & (TOL’z).

To achieve the optimal MLMC complexity rate and to get an estimate of the sta-
tistical error, sufficiently accurate estimates of the variance on each level must be ob-
tained. Moreover, finding the optimal number of levels requires a sufficiently accurate
estimate of the bias. As such, an algorithm is needed to find these estimates without
incurring a significant overhead to the estimation of the wanted quantity of interest.
In [12], Giles proposed an algorithm, henceforth referred to as Standard MLMC or
SMLMC, that works by iteratively increasing the number of levels and using sample
variance estimates across levels. Moreover, SMLMC uses an arbitrary fixed accuracy
splitting between the bias and the statistical error contributions. Other works [32, 14,
15,9] listed similar versions of this algorithm. We outline this algorithm in Section 3.

In Section 4, we propose a novel continuation type of MLMC algorithm that
uses models for strong and weak convergence and for average computational work
per sample. We refer to this algorithm as Continuation MLMC or CMLMC. The
CMLMC algorithm solves the given problem for a sequence of decreasing tolerances,
which play the role of the continuation parameter, ending with the prescribed toler-

A Continuation Multilevel Monte Carlo algorithm 3

ance. Solving this sequence of problems allows CMLMC to find increasingly accu-
rate estimates of the bias and variances on each level, in addition to the quantity of
interest, which is the goal of the computation. In each case, an optimizied MLMC
hierarchy is generated given the current estimate of parameters. Moreover, we use
a Bayesian inference approach to robustly estimate the various problem parameters.
The CMLMC algorithm is able to relax the statistical error bound given the bias esti-
mate, to achieve the optimal splitting between the two. These techniques improve the
computational complexity of the CMLMC algorihtm and increase the overall stability
of the algorithm.

The outline of this work is as follows: We start in Section 2 by recalling the
MLMC method and the assumed models on work, and on weak and strong conver-
gence. After introducing the algorithms in Sections 3 and 4, Section 5 presents nu-
merical examples, which include three-dimensional PDEs with random inputs and It
SDEs. Finally, we finish by offering conclusions and suggesting directions for future
work in Section 6.

2 Multilevel Monte Carlo
2.1 Problem Setting

Let g(u) denote a real valued functional of the solution, u, of an underlying stochas-
tic model. We assume that g is either a bounded linear functional or Lipschitz with
respect to u. Our goal is to approximate the expected value, E[g(u)], to a given accu-
racy TOL and a given confidence level. We assume that individual outcomes of the
underlying solution u and the evaluation of the functional g(u) are approximated by
a discretization-based numerical scheme characterized by a mesh size, 4. The value
of h will govern the weak and strong errors in the approximation of g(u) as we will
see below. To motivate this setting, we now give two examples and identify the nu-
merical discretizations, the discretization parameter, /, and the corresponding rates
of approximation. The first example is common in engineering applications like heat
conduction and groundwater flow. Here, the value of the diffusion coefficient and the
forcing are represented by random fields, yielding a random solution and a functional
to be approximated in the mean. The second example is a simple one-dimensional
geometric Brownian motion with European call option.

Example 2.1 Let (Q,%,P) be a complete probability space and Z be a bounded
convex polygonal domain in RY. Find u : 2 x Q — R that solves almost surely (a.s.)
the following equation:

=V (a(x;0)Vu(x;0)) = f(x; 0) forx € 2,
u(x;0) =0 forx € 09.

Here, we make the standard assumptions on the coefficients: there exist two posi-
tive random variables, 0 < @yin < dpgx < ©0 such that ay(®) < a(x, ®) < aper(O)
a.s. and almost everywhere (a.e.) on Z. With respect to the right-hand side, f :
D x Q — R, we here assume that there exists a random variable, C f(w) < oo, such that

4 Nathan Collier et al.

/(- @)]l2(9) < Cr(®) a.s. Denote the space Hj(D)={veH'(D):|v— Ol (o) —
0 as n — oo, for some sequence (¢,) C C; (D)} endowed with the norm ||vHH& D) =
Vvl 2(p)- Under the previous assumptions, there exists a unique solution, u(-, ®) €
H{ (D) C H'(D), such that

Cp | fll2(p) s

”u(w)”Hd(D) = dpin(@)

where Cp is the Poincaré constant of the domain 2, i.e., [|[v[|;2(5) < CP||V||H6(@>, for
allv e H}(2).

We also assume that there exists a random variable, 0 < C,(®) < o, such that
[Va(:,®)||;=(2) < Ca(®) as. Thus, there exists a random variable, 0 < C,(®), such
that [[u(®)||2(9) < Cu(@) as.

A standard approach to approximate the solution of this problem is to use Fi-
nite Elements on regular triangulations. In such a setting, the parameter 4 > 0 refers
to either the maximum element diameter or another characteristic length and the
corresponding approximate solution is denoted by u;(®). If g is an L?>(Z) con-
tinuous functional and with the assumptions in this example, then, for piecewise
linear or piecewise bilinear continuous finite element approximations, the follow-
ing approximation rates hold: there exist a random variable, 0 < C,(®) < oo such
that |g(u) — g(uy)| < Coh? a.s. By assuming extra integrability on the coefficients
a and f, we can even obtain the estimates |E[g(u) — g(us)]| = Ow h* + o (h*) and
E[(g(u) — g(uh))z] =Qsh*+o (h4) for some constants 0 < Qw, Qs < oo.

Example 2.2 Here we study the weak approximation of Itd stochastic differential
equations (SDEs),

du(t) = a(t,u(t))dr+b(t,u(t))dW (1), 0<t<T,

where u(t;®) is a stochastic process in R?, with randomness generated by a k-
dimensional Wiener process with independent components, W (¢; @), cf. [25,29], and
a(t,u) € R and b(t,u) € R¥** are the drift and diffusion fluxes, respectively. For
any given sufficiently well behaved function, g : R? — R, our goal is to approximate
the expected value, E[g(u(T))]. A typical application is to compute option prices in
mathematical finance, cf. [24,18], and other related models based on stochastic dy-
namics.

When one uses a standard Euler Maruyama (Forward Euler) method based on uni-
form time steps of size i to approximate (2.2), then the following rates of approxima-
tion hold: [E[g(u(T)) — g(uy(T))]| = Qw h -+ o (h) and E[(g(u(T)) — g(us(T)))?] =
QOsh+o(h), for some constants, 0 < Qw, Qs < co. For suitable assumptions on the
functions a, b and g, we refer to [27,22].

To avoid cluttering the notation, we omit the reference to the underlying solution
from now on, simply denoting the quantity of interest by g.

Following the standard MLMC approach, we assume, for any given non-negative
integer L € N, that we have a hierarchy of L+ 1 meshes defined by a decreasing
sequence of mesh sizes {hg}é‘zo where hy = hoﬁ’é for some iy > 0 and a constant

A Continuation Multilevel Monte Carlo algorithm 5

integer B > 1. We denote the resulting approximation of g using mesh size hy by g,
or by g/(®) when we want to stress the dependence on an outcome on the underlying
random model. Using the following notation:

20 if £=0,
Gy = .
80— 81-1 1f€>0a

the expected value of the finest approximation, gy, can be expressed as

L

Elgr] =) E[G/],
=0

where the MLMC estimator is obtained by replacing the expected values in the tele-

scoping sum by sample averages. Denoting the sample averages by Gy as

s My £ go(@o.m) if6=0,
(=M, .
M, lzgle (ge(wg,m) —ngl(wf,m)) if >0,

the MLMC estimator can be written as

L .
o =Y Gy. 2.2)
(=0

Each sample average, Gy, is computed using M, independent identically distributed
(i.1.d.) outcomes, { @y, }ZI‘: 1» of the underlying, mesh-independent, stochastic model;
the outcomes are also assumed to be independent between the different sample aver-
ages. The number of samples on any level is a positive integer, My € Z. .

We use the following model for the expected value of the cost associated with

generating one sample of Gy, including generating all the underlying random vari-

ables:

hy " if¢=0,

Weeed Sy v

h,"+h," if£>0,
for a given 7. Note the cost of generating a sample of G, might differ for different
realizations, for example due to different number of iterations in an iterative method
or due to adaptivity of the used numerical method. The parameter ¥y depends on the
number of dimensions of the underlying problem and the used numerical method.
For example, ¥ = 1 for the one-dimensional SDE in Example 2.2. For the SPDE in
Example 2.1, if the number of dimensions is d = 3 then y = 37, where ¥ depends on
the solver used to solve the resulting linear system. In that example, iterative methods
may have a smaller value of ¥ than direct methods. The theoretical best-case scenario
for iterative methods would be ¥ = 1 for multigrid methods. On the other hand, we
would have 7 = 3 if one used a direct method using a naive Gaussian elimination on
dense matrices. The total work of the estimator (2.2) is

W =

L
MyW,.

=0

6 Nathan Collier et al.

We want our estimator to satisfy a tolerance with prescribed failure probability
O<a<l,ie,

P[[E[g] — «/| > TOL] < a, (2.3)

while minimizing the work, W. Here, we split the total error into bias and statistical
error,

[Elg] - /| < [Elg — /]| + [E[o/] — o],
—_———— —

Bias Statistical error
and use a splitting parameter, 6 € (0, 1), such that
TOL = 0TOL +(1—-6)TOL.
N ad —_———

Statistical error tolerance Bias tolerance
The MLMC algorithm should bound the bias, B = |E[g — /]|, and the statistical error
as follows:
B=|E[g—]| < (1—-6)TOL, (2.4a)
|E[«/] — /| < OTOL, (2.4b)
where the latter bound should hold with probability 1 — .. Note that 6 does not have

to be a constant, indeed it can depend on TOL as we shall see in Section 4. In the
literature [12], some authors have controlled the mean square error (MSE),

MSE = [E[g — #/]]* +E [|E[£%] - ﬂlz} :

rather than working with (2.3). We prefer to work with (2.3) since it allows us to
prescribe both the accuracy TOL and the confidence level, 1 — &, in our results.
The bound (2.4b) leads us to require

Varle#] < <6TOL>27

c. (2.5)

for some given confidence parameter, Cy, such that ®(Cy) =1 — %; here, @ is the
cumulative distribution function of a standard normal random variable. The bound
(2.5) is motivated by the Lindeberg Central Limit Theorem in the limit TOL — 0, cf.
Lemma A.1 in the Appendix.

By construction of the MLMC estimator, E[</] = E[g], and denoting V; = Var[G/],
then by independence, we have Var[</| =):%:0 ViM, ! and the total error estimate
can be written as

Total error estimate = B+ Cy+/ Var[</]. (2.6)

Given L and 0 < 6 < 1 and minimizing W subject to the statistical constraint (2.5)
for {M, }ézo € REF! gives the following optimal number of samples per level /:

M, = (=L zq/w L\/W 2.7
[(GTOL) W[/;) Wi |- 2.7

A Continuation Multilevel Monte Carlo algorithm 7

When substituting the optimal number of samples in all levels the optimal work can
be written in terms of L as follows

Ca &
W(TOL,L)<9T0L> (%W)

Of course, the number of samples on each level is a positive integer. To get an ap-
proximate value of the optimal integer number of samples, we take the ceiling of the
real-valued optimal values in (2.7).

In this work, we assume the following models on the weak error and variance:

E[g— g ~ Qwh]', (2.92)
Var[g — g¢] = Qsh{’, (2.9b)

2

(2.8)

for some constants Qw # 0,Qs > 0,41 > 0 and 0 < g2 < 2¢g;. For example, the SPDE
in Example 2.1 has g = 2¢; and in Section 5, the SPDE is solved using a finite ele-
ment method with standard trilinear basis and it has g; = 2. For the SDE in Example
2.2 with Euler discretization, g = g2 = 1. Collectively, we refer to the parameters
41,92, Q0s, 0w and {V,}}_ as problem parameters. Based on these models, we can
write for £ > 0

E[G/] ~ Owh]' (1-B~1), (2.10a)
Var(Gy] = Vi ~ Qsh®? (1 fﬁ%‘”)z. (2.10b)

Specifically, as a consequence of (2.9a), the bias model is
B~ |Qw|h]. (2.11)

Finally, we note that the algorithms presented in this work are iterative. We there-
fore denote by My,Gy and V, the total number of samples of G, generated in all
iterations and their sample average and sample variance, respectively. Explicitly, we
write

1 %

Gy== G m, (2.12a)
M[m=1 "

_ 1 M _

Vi==Y (Gim—Gi)". (2.12b)
MZ m=1

3 Standard MLMC
3.1 Overview

While minor variations exist among MLMC algorithms listed in [12, 15, 16], we be-
lieve that there is sufficient commonality in them for us to outline here the overarch-
ing idea and refer to this collection of methods as the Standard MLMC algorithm or
simply SMLMC.

8 Nathan Collier et al.

SMLMC solves the problem by iteratively increasing the number of levels of the
MLMC hierarchy. In order to find the optimal number of samples of each level ¢, an
estimate of the variance V; is needed. If there were previously generated samples in
previous iterations for a levgl £, the sample variance V, is used. Otherwise, an initial
fixed number of samples, M, is generated. Moreover, in most works, the splitting
between bias and statistical error, 0, is chosen to be 0.5.

After running the hierarchy, an estimate of the total error is computed. To this end,
the work [12] approximates the absolute value of the constant, Qw, using a similar
expression to the following:

|G| |GL1]
A (1—=Ba) it (1— o)

= éw

|Ow| ~ max

In other words, the absolute value of the constant Q is estimated using the samples
generated on the last two levels. Thus, this estimate is only defined for L > 2. Next,
the variance of the estimator, Var[.</], is approximated by

Finally, a total error estimate can be computed as outlined by (2.6)

Total error estimate = éwhzl +Cq \/5 (3.1

The complete algorithm is outlined in Algorithm 1.

Algorithm 1

1: function STANDARDMLMC(TOL, M, 6)
2 Start with L = 0.

3 loop

4: Generate hierarchy {,}} .

5

6

Generate M samples for level L and estimate V..
Using sample variance estimates, {Vg}’[zo from all iterations, and the constant 6,
compute optimal number of samples, {M;;}%ZO, according to (2.7).

7: Compute with the hierarchy using the optimal number of samples.
8: If L > 2 and the total estimate error (3.1) is less than TOL, then END
9: Otherwise, set L =L+ 1.

10: end loop

11: end function

Usually all samples from previous iterations are used in the algorithm to run the
hierarchy in step 7 to calculate the required quantity of interest. However, the analysis
of the bias and the statistical error of the resulting estimator is difficult and has not
been done before, to the best of our knowledge.

A Continuation Multilevel Monte Carlo algorithm 9

3.2 Accuracy of the parameter estimates

In the standard algorithm, Qw and the variances {V;}%_ are needed and estimated. In
this section, we look at the accuracy of the estimators for these problem parameters.

We examine the accuracy of the sample variance by computing its squared relative
error for £ > 1:

— 0 .
V ‘EKZVZ] = (AZ;V;) (E[(G(%_E[Gg])ﬂ _W)
- C(M€M_21) (E [(G[- E[Gz])ﬂ v Zﬁ : i,)

~ (Mf_l)z 4] =2, -2 M;—-3
~C72 (E[(GK_E[GK]) }Qs hy qz_M€_1>-

Unless E[(Gg —E[G[])4] < Ch?'“, for some constant C > 0, or M, increases suffi-

ciently fast, the relative error in the estimator V, can become unbounded as £ — oo,
Similarly, the relative error of the sample variance at level £ = 0 can be shown to be
bounded for instance by assuming that the second and fourth central moments of Gg
are bounded.
Next, for simplicity, we look at the squared relative error estimate of Qw by as-
suming that it is estimated using samples on a single level, L, only.
G

h' (1-B1) } - VL
O O} Mihy™ (1 — B)2
2
o5 h¥ (1_;;"72)
S Oh My (1B

_ Os(1-B%)? <h2>

|

S Oy(1=pn2\ M

Observe now that if g < 2qy, then, for the previous relative error estimate to be o (1),
we must have M} o< h%z—qu — o0 as L — oo, The analysis shows that in some cases,
M, will have to grow to provide an accurate estimate to Qw, regardless of the optimal
choice of the number of samples outlined in (2.7).

4 Continuation MLMC (CMLMC)

In this section we discuss the main contribution of this work, a continution MLMC
(CMLMC) algorithm that approximates the value E[g(u)]. We begin in the next sub-
section by giving an overview of the general idea of algorithm. Subsequent subsec-
tions discuss how to estimate all the required problem parameters that are necessary

10 Nathan Collier et al.

for running the algorithm. CMLMC is listed in Algorithm 2. We also list the param-
eters that control the algorithm in Table 4.1.

4.1 Overview

The main idea is to solve for E[g(u)] with a sequence of decreasing tolerances, end-
ing with the desired accuracy requirement, TOL. By doing this, CMLMC is able to
improve estimates of several problem dependent parameters while solving relatively
inexpensive problems corresponding to large tolerances. These parameters estimates
are crucial to optimally distribute computational effort when solving for the last tol-
erance, which is the desired one.

Assuming that we want to approximate E[g ()] with tolerance TOL, we make the
following choice for the sequence of decreasing tolerances TOL; fori =0,1,---

TOL. — FET MTOL i < i,
Y AETITOL i >,

where r; > rp > 1. By imposing TOLy = TOL,x for some maximum tolerance, we

have
i {—log(TOL) +log(r) +log(TOLmax)J
log(ry) ’

Iterations for which i < ig are meant to obtain increasingly more accurate esti-
mates of the problem parameters. The iteration ig solves the problem for the tolerance
ry 'TOL. Notice that the problem is solved for a slightly smaller tolerance than the
required tolerance TOL. This tolerance reduction is to prevent extra unnecessary iter-
ations due to slight variations in estimates of the problem parameters. This technique
improves the overall average running time of the algorithm. Similarly, iterations i > ig
have tolerances that are even smaller to account for cases in which estimates of the
problem parameters are unstable. The parameters r| and r, are chosen such that the
total work of the algorithm does not exceed by much the work of the hierarchy that
solves the problem with the required tolerance, TOL. For example, if the work of
the MLMC estimator is ¢(TOL™2), we choose r; = 2 to ensure that the work of
iteration i is roughly four times the work of iteration i — 1 for iterations for which
TOL; > TOL. The choice of r, = 1.1, on the other hand, ensures that for iterations
for which TOL; < TOL, the work of iterations of i is roughly 1.2 times the work of
iteration i — 1.

Consider now the i-th iteration of CMLMC and assume that estimates for Q := {¢;,¢2, 0w, Os}
and {V, }fzo are available from previous iterations; we will discuss how to get these
estimate in Section 4.2. The i-th iteration begins by selecting the optimal number of
levels L[i] that solves the problem for the given tolerance, TOL;, as follows

L[i] = argmin; . ij<7<g,. ()W (TOL;, L), 4.1

where W is defined by (2.8) and depends on all the parameters Q and {Vg}éﬂzo and
0 = 6(L) given by
_ |OwlA!

0=1
TOL; ’

4.2)

A Continuation Multilevel Monte Carlo algorithm 11

which comes from enforcing that the bias model (2.11) equals (1 — 8)TOL;. More-
over, Ly, should satisfy Qwhznin = TOL,; or, since we have iy = hy B¢,

g110g (o) ~log (191)

Lyl = Lii—1
min]i] = max [L[i — 1], slogp

where L[i — 1] is the number of levels from the previous iteration. This ensures that
L does not decrease from one iteration to the next, which agrees with our intuition
that L increases with log (TOLi_l). On the other hand, L, is given by other con-
siderations. For instance, it could be related to the minimum mesh size imposed by
memory or computational restrictions. More practically, to ensure robustness, Lmax
can be chosen to be Ly, + Linc, for a given fixed integer Lic, so that L has limited
increments from one iteration to the next. Since only few values of L are consid-
ered in the optimization (4.1), it is easy to find the optimal L by exhaustive search.
The choice (4.2) implies that the statistical constraint (2.5) is relaxed (or tightened)
depending on the estimated bias of each hierarchy. The iteration then continues by
building the hierarchy {hg}é‘zo and computing with the optimal number of samples
{M, }%:0 according to (2.7). Finally the iteration ends by improving the estimates of
the problem parameters Q and {Vi}%:o as well as the quantity of interest based on
the newly available samples as described in Section 4.2.

To start CMLMC we compute with an initial, relatively inexpensive, hierarchy.
The purpose of using this initial hierarchy is to get rough estimates of the problem
parameters. Such a hierarchy cannot depend on estimates of problem parameters and
should have at least three levels to allow estimating Q. The algorithm stops when the
total error estimate is below the required tolerance TOL.

4.2 Parameters estimation
In this section, we discuss how to improve estimates of the parameters Q as well as

the variances V; base on the generated samples in all iterations and all levels. For
easier presentation, we will also use the following notation

we(q) = h{' (1B,
-0 2\ 72
si(q2) =hy, (1—[3 2))
Thus, using the notation above, (2.10) becomes

E[G¢] = Qwwi(q1), (4.3a)
Var[Gy| =V, ~ Oss; ! (2)- (4.3b)

12 Nathan Collier et al.

4.2.1 Estimating variances Vy

We first assume that we have estimates of g1, g2, Ow and Qg and discuss estimating
the variances, {V;}}_, and the total statistical error after computing with a given
hierarchy. Estimating gy, g2, Ow and Qg is discussed in the next subsection.

Usually the variances {Vg}%zo are estimated by using the sample variance estima-
tor (2.12b) to estimate the statistical error as well as the optimal number of samples
{Mg}é‘zo. However, sometimes there are too few samples in a given level to give a
corresponding accurate variance estimate. This is specially acute on the deepest lev-
els, and unlike the standard MLMC algorithm, we do not impose a minimum number
of samples across levels to get a stable estimate of the sample variance. Recalling that
we have the variance model (4.3b) at our disposal, we can use this model to estimate
the variance at all levels £ > 0. However, the model (4.3b) is only accurate asymptoti-
cally. We can use the generated samples on each level to locally improve the accuracy
of the V, estimates. To this end, we use a Bayesian setting [31].

We assume that G, follows a normal distribution with mean l, and precision
A¢ (precision is simply the inverse of the variance). To simplify the computation,
we choose a normal-gamma prior on (fs,As) — the conjugate prior of the normal
likelihood. The resulting posterior probability density function (pdf) i/s\ also a normal-
gamma distribution function. We choose the parameters (ty, kKo, 0.5+ Ak, k1) for the
normal-gamma prior, such that it is maximized at [i; and ii. The parameter [iy and L
serve as initial guesses for yy and A, respectively. Moreover, kj and k| are positive
constants that model our certainty in those respective guesses. We use the assumed
models of the weak and strong errors (4.3) to give the initial guesses

e = OQwwi(q1), (4.4a)
=05 "si(qa). (4.4b)

As mentioned, the posterior pdf is also a normal-gamma with parameters (1 ¢, Y5 ¢, 13 7, Y4)

13,-0.5 .
3";4[).Spemﬁcally

and it is maximized at (TM,

~ M
1-37(=05+ K‘lﬁ,g—‘r 747

1M —\2 KoM (Gy — Hg)?
Liy=x1+= Gim— Gy 4+ "
) 2 <m§’1(=) > 2(i0 +My)

As such, we use the following estimate of the variance V; for £ > 0

Iy

Vo
T h,-05

(4.5)

Estimating the variance at the coarsest mesh, Vj, can be done using the sample vari-
ance. The number of samples on the coarsest level, My, is usually large enough to
produce a stable and accurate estimate. Using these estimates and the bias estimate
(2.11), the total error can be estimated as (2.6).

A Continuation Multilevel Monte Carlo algorithm 13

4.2.2 Estimating Q

To incorporate prior knowledge on ¢; and g including initial guesses and the rela-
tion g2 < 2q;, we again follow a Bayesian setting to estimate these parameters and
assume that Gy follows a Gaussian distribution with mean Qwwy(q;) and variance
stzl (g2). In what follows, ¢y is a non-negative integer. With these assumptions, the
corresponding likelihood is

o
Q
“
T
S
i

=t

L My 1 L My 5
Z = <H (270ss; ' (g2)) *)eXP (- si(q2) Y, (Gem— Qwwi(qr)))
4.6)

Assuming a improper prior on Qw and Qg and maximizing the resulting posterior pdf
with respect to Qw and Qg gives the following weighted least-squares solution:

L -1 L
Ow = (Z MW%(CN)M(QZ)) Y we(q1)se(q2)M Gy, (4.7a)

=ty =ty
L\ 'L M,)
Qs = (Z Me) Y si(q2) Y (Gem—Qwwilq1))™ (4.7b)
(={y =Ly m=1

We can substitute the previous Qg and Qy in (4.6) to get a likelihood in terms of g
and ¢. Denoting M = Yj_, M, we write

M
—_\2\ 2
_ Vi L AT
MmN [L M (Zzzeosi(qz)wzz(m)MzGé)
L) = (-) $1(02) Gl — e
2 eg,’o mgo " Tty Mowe(q1)?se(q2)

We can then assume a prior on ¢; and g;. However, remember that g, < 2¢g;, and
q1 > 0. As such, we introduce the unconstrained parameters xo(q;) = log(gq;) € R
and x;(q1,92) =10g(2g1 — g2) € R and assume a Gaussian prior on them

1 (x0(g1) —%0)* (x1(q1,92) —%1)*
Pprior(q1,42) = exp (— = _ S .
Zn\/@ () oj

Here, Xo and x| represent our initial guesses of xy and x;, respectively, which we can
get from a rough analysis of the problem. Moreover, 67 and 6> model our confidence
in those guesses. The more accurate our initial guesses are, the faster the algorithm
converges. Finally, we numerically maximize the log of the posterior pdf with respect
to (xp,x1) € R? using a suitable numerical optimization algorithm. For robustness, we
choose £y = 1 to estimate ¢g; and g,. In other words we include samples from all levels
£ > 0 for this estimation.

Given estimates of g and g, we can produce estimates of Qg and Qw by using
the least-squares estimates (4.7). However, usually not all levels follow the assumed
asymptotic models (2.10) and as such special care must be taken to choose ¢y in

14 Nathan Collier et al.

Parameter | Purpose

X0,X1,00 and o7 | Parameters to model the initial guess of ¢ and ¢, and the confidence in those
estimates.
Ko and k7 | The confidence in the weak and strong error models, respectively.

TOLmax | The maximum tolerance with which to start the algorithm.

ry and r, | Controls the computational burden to calibrate the problem parameters com-
pared to the one taken to solve the problem.
Initial hierarchy | The initial hierarchy to start the algorithm. Must be relatively inexpensive and
has at least three levels.
Line | Maximum number of values to consider when optimizing for L.

£ | Maximum number of levels used to compute estimates of Qw and Qs.
Cy | Parameter related to the confidence in the statistical constraint.

Table 4.1 Summary of parameters in CMLMC

these estimates. The parameter Qy must be accurate on deeper levels since it is used
to compute the bias (2.11). Similarly, Qs must be accurate on deeper levels where not
many samples are available and the variance estimate (4.5) is mainly determined by
the initial guess (4.4b). For these reasons, when estimating Qg and Qw, we choose
¢y = max(1,L — £) in (4.7) for some positive integer £ that denotes the maximum
number of levels use to compute the estimates. Finally, Since Qw has an improper
prior, its posterior is also the Gaussian (4.6) with variance

Os .
1=ty MW%(%)SZ(QI)

M=

VW =

With 1 — & confidence, the sampling error of Qw is Cy+/Viy. Motivated by the accu-
racy analysis of the Oy estimate in Section 3.2, we produce a worst estimate of Qy
by adding the sampling error multiplied by the sign of Qw estimate.

Algorithm 2
1: function CMLMC(Parameters summarized in Table 4.1)

2: Compute with an initial hierarchy.
3: Estimate problem parameters {Vg}f:o ,0s,0w,q1 and g, according to section 4.2.
4: Seti=0.
5: repeat
6: Find L according to (4.1).
7: Generate hierarchy {,}%_,.
8: Using the variance estimates (4.5) and 6 from (4.2), compute the optimal number of
samples according to (2.7).
9: Compute with the resulting hierarchy using the optimal number of samples.
10: Estimate problem parameters, {Vg}i‘zo ,0s,0w,q1 and g7, according to section 4.2.
11: Estimate the total error according to (2.6).
12: Seti=i+1
13: until ; > ig and the total error estimate is less than TOL

14: end function

A Continuation Multilevel Monte Carlo algorithm 15

5 Numerical Tests

In this section, we first introduce the test problems. We then describe several imple-
mentation details and finish by presenting the actual numerical results.

5.1 Test Problems

We look at three test problems: the first two are PDEs with random inputs and the
last one is an Itd SDE.

5.1.1 Ex.1

This problem is based on Example 2.1 in Section 2.1 with some particular choices
that satisfy the assumptions therein. First, we choose 2 = [0, 1]* and assume that the
forcing is

fx0) = fo Jr}?Z Z Y Pii(x)Ziji,

i=0 j=0k=0
where
D ji(x) = \/ Aidj i (x1) 9 (x2) B (x3),
and
cos (loz/\iﬂx) iiseven,
0i(x) = sin(lOA(2i+1)n,x) iis odd,
: i=0,

4 22

li:(ZE)%AT exp (—2 (E%A)z) i is even,
exp (2 (x51A)7) s odd,

for given A > 0, and positive integer K and Z = {Z;} a set of (K + 1)* i.i.d. stan-
dard normal random variables. Moreover, we choose the diffusion coefficient to be a
function of two random variables as follows:

a(x; 0)) = ap+exp (4Y1 D19 (X) + 40Y, Pg77 (X)) .

Here, Y = {¥1,Y,} is a set of i.i.d. normal Gaussian random variables, also indepen-
dent of Z. Finally we make the following choice for the quantity of interest, g:

2 % —xo]13
g=(2mno)2 /@exp <_W u(x)dx,
and select the parameters ag = 0.01, fo = 50,]?: 10,A = 0—\/'%,1(=10,0=0.02622863

and xo = [0.5026695,0.26042876,0.62141498]. Since the diffusion coefficient, a, is
independent of the forcing, f, a reference solution can be calculated to sufficient ac-
curacy by scaling and taking expectation of the weak form with respect to Z to get a

16 Nathan Collier et al.

formula with constant forcing for the conditional expectation with respect to Y. We
then use stochastic collocation [3] with a sufficiently accurate quadrature to produce
the reference value E[g]. From this method, the reference value 1.6026 is computed
with an error estimate of 1074,

5.1.2 Ex.2

The second example is a slight variation of the first. First, we choose the following
diffusion coefficient instead:

a(x;) = 1+ exp (¥ 9121 (x) + V277 (x)).

Moreover, in this example Y is a set of two i.i.d. uniform random variables in the
range [—1, 1], again independent of Z. We also make the following choice for the
quantity of interest g

_ R
g =100 (277:(7)73 /@exp (—HXZGX;'Z) u(x)dx,

and select the parameters ap = 1, fy = l,f: 1,A=0.2,K=10,0 = 0.01194691
and

xo = [0.62482261,0.45530923,0.49862328]. The computed reference solution E[g]
in this case is 2.3627 with an error estimate of 10~

5.1.3 Ex.3

The third example is a one-dimensional geometric Brownian motion based on Exam-
ple 2.2. We make the following choices:

T=1,
a(t,u) = 0.05u,
b(t,u) = 0.2u,

g’(u) = 10max(u(1) —1,0).

The exact solution can be computed using a standard change of variables and It6’s
formula. For the selected parameters, the solution is E[g] = 1.04505835721856.

5.2 Implementation and Runs

All the algorithms mentioned in this work were implemented using the C program-
ming language, with the goal that the software be as optimal as possible, while main-
taining generality.

For implementing the solver for the SPDE test problems (Ex.1 and Ex.2), we
use PetIGA [10,28]. While the primary intent of this framework is to provide high-
performance B-spline-based finite element discretizations, it is also useful for appli-
cations where the domain is topologically square and subject to uniform refinements.

A Continuation Multilevel Monte Carlo algorithm 17

d ¥ @ @ s 5

Ex.1 and Ex.2 with GMRES solver | 3 1 2 4 2 0
Ex.1 and Ex.2 with MUMPS solver | 3 1.5 2 4 2.25 0
Ex3 | 1 1 1 1 2 2

Table 5.1 Summary of problem parameters

As its name suggests, PetIGA is designed to tightly couple to PETSc [5,6,4]. The
framework can be thought of as an extension of the PETSc library, which provides
methods for assembling matrices and vectors related to the discretization of integral
equations.

In our SPDE numerical tests (Ex.1 and Ex.2), we use a standard trilinear basis
to discretize the weak form of the model problem, integrating with eight quadrature
points. We also generate results for two linear solvers that PETSc provides an inter-
face to. The first solver is an iterative GMRES solver that solves a linear system in
almost linear time with respect to the number of degrees of freedom for the mesh
sizes of interest; in other words ¥ = 1 in this case. The second solver we tried is a
direct one, called MUMPS [1,2]. For the mesh sizes of interest, the running time of
MUMPS varies from quadratic to linear in the total number of degrees of freedom.
The best fit turns out to be ¥ = 1.5 in the case.

From [33, Theorem 2.5], the complexity rate for all the examples is expected to
be & (TOL™*'1log(TOL)*2), where s1 and s, depend on q,¢> and d7y. These and other
problem parameters are summarized in Table 5.1 for the different examples.

We run each algorithm 100 times and show in plots in the next section the medians
with vertical bars spanning from the 5% percentile to the 95% percentile. Finally, all
results were generated on the same machine with 52 gigabytes of memory to ensure
that no overhead is introduced due to hard disk access during swapping that could
occur when solving the three-dimensional SPDEs with a fine mesh.

In order to compare CMLMC to SMLMC, and since the latter does not include a
step to fit ¢ and ¢», we assume that these parameters are both known as discussed in
Example 2.1 and Example 2.2. Moreover, we use the parameters listed in Table 5.2.

5.3 Results

Figure 5.1 shows that the running time of CMLMC follows the expected complexity
rates & (TOL*! log(TOL)*2) as summarized in Table 5.1. Next, Figure 5.2 shows the
number of levels, L, in the last iteration of CMLMC for different tolerances. As ex-
pected, even though L depends on the particular realization, it is well approximated
by a linear function of log(TOL ™).

Next, Figure 5.3 shows the computational errors of CMLMC that were computed
using the reference solutions as listed in Section 5.1. This indicates that the imposed
accuracy is achieved with the required confidence of 95% — since Cy = 2. Compare
this figure to Figure 5.4 which shows the computational errors of SMLMC. One can
see that, in certain cases, SMLMC solves the problem for a smaller tolerance than
the imposed TOL. This is because 0 is fixed and the statistical error is not relaxed
when the bias is small. This can be especially seen in Ex.2 where the choice hy =

Nathan Collier et al.

Parameter | Value for SPDE examples (Ex.1 and | Value for SDE example (Ex.3)
Ex.2)
ho 1/4 for Ex.1, 1/8 for Ex.2 1
B |2 2
ko and k7 | 0.1 for both 0.1 for both
TOLpmax | 0.5 0.1
rpand rp | 2and 1.1, respectively 2 and 1.1, respectively

Initial hierarchy

L=2and hy = {4,6,8} and M; = 10
for all 4.

L =2 and hy = {1,2,4} and M, = 10
for all 4.

Linc 2 2
£13 5
Co | 2 2

Table 5.2 Summary of parameters values to used in numerical tests

1/8 produces a bias much smaller than 0.5TOL for the shown tolerances. On the
other hand, Figure 5.5 is a QQ-plot showing that the empirical cumulative distribution
function (CDF) of the MLMC estimates is well approximated by the standard normal
CDF, even for finite tolerances.

Figure 5.6 shows a comparison of the running time of CMLMC and SMLMC. No-
tice that a good value of M in SMLMC is not known a priori and the computational
time varies considerably for different values of M, especially for smaller tolerances in
Ex.1 and Ex.2. Specifically, a larger M in SMLMC increases the computational time
of the algorithm, but also its stability. A smaller M gives a smaller computational
time at the expense of increased variation. The variation of the running time is due to
inaccurate estimates of V; due to the smaller number of initial samples. On the other
hand, the running time of CMLMC is more stable, which is a reflection of the stabil-
ity of the estimates of V;,. The computational savings of CMLMC over SMLMC is an
aggregate effect of the different improvements. This includes 1) a more stable vari-
ance and bias estimates as already discussed, 2) a better splitting of bias and statistical
tolerances. This second point can be seen in Figure 5.7, which shows the tolerance
splitting parameter, 6, used in CMLMC as computed by (4.2). We can clearly see
here that 0 is not trivial and changes with the tolerance. Looking closely, one can no-
tice sudden jumps in the values of 6 due to changes in the discrete number of levels,
L. Between jumps, 8 changes continuously due to inaccuracies in the estimation of
the weak error constant, Qy . Specifically, notice that for TOL = 0.014 in Ex.1 when
using the direct solver, the splitting parameter 6 used in CMLMC is very close to 0.5
which explains why, for this case, the computational time of SMLMC is very close
to the computational time of CMLMC as shown in Figure 5.6.

Finally, the bias of the MLMC estimator when using samples generated in pre-
vious iterations to compute the quantity of interest is not well understood. Using
CMLMC, generating new samples at each iteration, instead of using samples from
previous iterations, does not add a significant overhead to the total running time of the
algorithm. Figure 5.8 explains this point by comparing the running time of CMLMC
for both cases for both CMLMC and SMLMC. This figure shows that computational
savings of CMLMC over SMLMC whether we reuse samples or not in the former,
mainly due to better splitting of the tolerance between bias and statistical errors.
Moreover, it shows that reusing samples in CMLMC does not offer significant com-

A Continuation Multilevel Monte Carlo algorithm 19

putational savings that justify the increased complexity in the analysis of the resulting
estimator.

6 Conclusions

We have proposed a novel Continuation Multi Level Monte Carlo (CMLMC) algo-
rithm for weak approximation of stochastic models that are described in terms of
differential equations either driven by random measures or with random coefficients.
Our algorithm uses discretization hierarchies that are defined a priori for each level
and are geometrically refined across levels. These hierarchies are either uniform at
each level or obtained by regular subdivision of a non-uniform mesh.

The actual choice of computational work across levels uses the optimal amount
of samples per level given the variance and the work contribution from each level.
Accurate computation of these relevant quantities is based on parametric models.

These parameters are calibrated using approximate samples, either produced be-
fore running the CMLMC and/or during the actual runs. We also propose a novel
Bayesian estimation of the strong and weak error model parameters, taking particular
notice of the deepest levels of the discretization hierarchy, where only a few realiza-
tions are available to produce the required estimates. The idea is to use results from
coarser levels, where more samples are available, to stabilize the estimates in the
deeper levels. The resulting MLMC estimator exhibits a non-trivial splitting between
bias and statistical contributions. Indeed, the actual split depends on the given accu-
racy and other problem parameters. In fact, as the numerical examples show, there
are cases where most of the accuracy budget is devoted to the statistical error. Fi-
nally, using the Lindeberg-Feller theorem, we also show the asymptotic normality of
the statistical error in the MLMC estimator and justify in this way our error estimate
that allows prescribing both required accuracy and confidence in the final result.

We presented three numerical examples to substantiate the above results, exhibit-
ing the robustness of the new CMLMC Algorithm and to demonstrate its correspond-
ing computational savings.

Other aspects of MLMC estimators can also be explored, such as the optimality
of geometric hierarchies compared to non-geometric ones. This will be the subject of
a forthcoming work, where extensions of the CMLMC to that setting will be consid-
ered.

A Normality of MLMC estimator

Theorem A.1 [11, Lindeberg-Feller Theorem, p. 114] For each n, let X,, ,, for 1 <n < m, be independent
random variables (not necessarily identical). Denote

n
anp = Z Xrum

m=1

20 Nathan Collier et al.

Suppose the following Lindeberg condition is satisfied for all € > 0:

n
352552’;1'5{ Ve lig e | = 0. (A1)
Then,
—E
lim p{w < Z} = d(z),
n—soo n

where ®(z) is the normal cumulative density function of a standard normal random variable.
Lemma A.1 For the MLMC estimator <7 given by

LY Gy(wnm)

o = ,
M,

(=0m=1

where Gy(@y,,) denote as usual i.i.d. samples of the random variable Gy. The the family of random vari-
ables, (Gy) >0, is also assumed independent. Denoting Y; = |G, —E[G/]| and assuming

0 <E[¥g], (A.22)
E[YOM] < o, (A.2b)
C1p! <E[r?] forall ¢ >0, (A2¢)
E [Y{m] <GB forall £>0, (A.2d)

for some B > 1 and strictly positive constants C1,Cy,q3,8 and T. Choose the number of samples on each
level My to satisfy, for q» > 0 and a strictly positive sequence {Hy} ;>0

TOL2H; ! (Yh o H, if ¢ =
Mz {10k, Ho” (Licoth) ey (A3)
B~*TOL2H; ' (Yi_oH,) forallt>0,
If, in addition to the above, we have that
either 21> (24 8)q3 +6q», (A.4a)
clog (TOL™")
or L<max|[0,———=+4C (A.4b)
log B
for some constants C, and c satisifying
28
O<ce< (A.S)

(24 8)q3+ 892 —21)

then

o —E[o]
%[<

Proof We prove this theorem by ensuring that the Lindeberg condition (A.1) is satisfied. The condition

becomes in this case

im =d(z).
TOL—0

TOLHO Var| 42%] Z Z {Mz i>«S\/Var{v(<f’]} =0

(=0m=1

=F
for all € > 0. Below we make repeated use of the following identity for non-negative sequences {a,} and
{bs} and g > 0.

q
Y alb, < <Z ag) Y b0 (A.6)
¢ ¢ [

A Continuation Multilevel Monte Carlo algorithm 21

First we use the Markov inequality to bound

1 L M Yéz
F= Var[d] Z Z E|:M71621)Q>£\/Val{ta/]Mg:|

(=0m=1
e? STPEENS NP
< Y M ORI
Var[%]wa/zégb 4 4
Using (A.6) and substituting for the variance Var[.<Z] where we denote Var[G;] = E {(G/ - E[G;])z] by V,,
we find

_ 1o\ 148/2
e (LioM; Vi) L 1-8/2, ~8/20[vats
Yv M, E|Y;
L N140/2 i ¢ ¢
(ZioVeM;) =0

L
<e? Y v, O O e).
=0

F<

Using the lower bound on the number of samples M, (A.3) and (A.6) again yields

M=

(:

L qpt
_5 S —1-68/2,,6/2 S —1-8/2 2025 . §5/2 S
F<e®TOL <V0 PHy e[]+;:1w 1575 H PRt D <

—5/2
Hy
0

< e dTOL? <V016/2E{Y02+5} I i v{“‘*”ﬁ(‘s/z)‘izf]a [yi+5]>)
=1

Finally using the bounds (A.2c) and (A.2d)

L
F< £5TOLS <V016/2E {Y()Zi»(s} _~_C1—175/2C2 ZB(1+5/2)q3ﬁ(5/2)qzlﬁré>
(=1

. i Lr—1q
—¢-%TOL? <VO ! S/ZE[YOM] +c;! 5/202[3PL),
r—1
where
p=(1+8/2)q3+(8/2)q2— .
We distinguish two cases here, namely:

— If (A.4a) is satisfied then limtop, 0 F = O for any choice of number of levels L > 0.
— Otherwise, substituting (A.4b) gives

—cpRCp _
F < ¢ 9TOL® <V0—1—5/2E {YOZ-HS} +C3ﬁ,,TOL7ﬁ1>

B
-0 (T0L5*°'P)7

and since in this case (A.5) is satisfied then limpop 0 F = 0. O

Remark A.1 The choice (A.3) mirrors the choice (2.7) up to constants, the latter being the optimal number
of samples to bound the statisitcal error of the estimator by TOL. Specifically, Hy o< /V,W; where W, is
the work per sample on level ¢. Moreover, the choice (2.7) uses the variances {Vg}’[:() or an estimate of it
in the actual implementation. On the other hand, the choice (A.3) uses the upper bound of V; instead, if
q> is the rate of strong convergence therein. Furthermore, if we assume the weak error model (2.9a) holds
and hy, = hoB " then we must have

Qwhi' = Qwh{! B~ < (1-6)TOL,
which gives a lower bound on the number of levels L, namely

log(TOL™") , —log(1=6) +log(Ow) +q1 log(ho)
q11og(B) q110g(B) '

22 Nathan Collier et al.

to bound the bias by TOL.
Finally, in Example 2.1 the conditions (A.2) are satisfied for g3 = 2 and, for example, § =2 and 7 =4.
Similarly, Example 2.2 satisfies the conditions (A.2) are for g3 = 1 and 6 =2 and 7 =2, cf. [21].

Remark A.2 The assumption (A.2c) can be relaxed. For instance, one can assume instead that

Vig1 <V forall ¢ > 1,

0 < lim Var[Y;]f%¢ < oo,
{00

and slightly different conditions than (A.4) and (A.5).

Acknowledgements The fifth author is a member of the Research Center on Uncertainty Quantification
in Computational Science and Engineering at KAUST (SRI-UQ). We would like to acknowledge the fol-
lowing open source software packages that made this work possible: PETSc [5], PetIGA [28], NumPy [30],
matplotlib [23].

References

1. Amestoy, P.R., Duff, L.S., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23, 15-41 (2001). DOI
10.1137/S0895479899358194. URL http://portal.acm.org/citation.cfm?id=587708.587825

2. Amestoy, PR., Guermouche, A., L’Excellent, J.Y.,, Pralet, S.: Hybrid schedul-
ing for the parallel solution of linear systems. Parallel ~ Computing
32(2), 136 - 156 (2006). DOI DOIL 10.1016/j.parco.2005.07.004. URL
http://www.sciencedirect.com/science/article/pii/S0167819105001328. Parallel Matrix Algorithms
and Applications (PMAA’04)

3. Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential
equations with random input data. SIAM Journal on Numerical Analysis 45(3), 1005-1034 (2007)

4. Balay, S., Brown, J., , Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G.,
Mclnnes, L.C., Smith, B.F,, Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision
3.4, Argonne National Laboratory (2013)

5. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., Mclnnes, L.C.,
Smith, B.F,, Zhang, H.: PETSc Web page (2013). Http://www.mcs.anl.gov/petsc

6. Balay, S., Gropp, W.D., Mclnnes, L.C., Smith, B.F.: Efficient management of parallelism in object
oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern
Software Tools in Scientific Computing, pp. 163-202. Birkhéuser Press (1997)

7. Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs
with stochastic coefficients. Numerische Mathematik 119(1), 123-161 (2011)

8. Charrier, J., Scheichl, R., Teckentrup, A.: Finite element error analysis of elliptic PDEs with random
coefficients and its application to multilevel Monte Carlo methods. SIAM Journal on Numerical
Analysis 51(1), 322-352 (2013)

9. Cliffe, K., Giles, M., Scheichl, R., Teckentrup, A.: Multilevel Monte Carlo methods and applications
to elliptic PDEs with random coefficients. Computing and Visualization in Science 14(1), 3—15 (2011)

10. Dalcin, L., Collier, N.: PetIGA: A framework for high performance isogeometric analysis (2013).
Https://bitbucket.org/dalcinl/petiga

11. Durrett, R.: Probability: theory and examples. second edn. Duxbury Press, Belmont, CA (1996)

12. Giles, M.: Multilevel Monte Carlo path simulation. Operations Research 56(3), 607-617 (2008)

13. Giles, M., Reisinger, C.: Stochastic finite differences and multilevel Monte Carlo for a class of SPDEs
in finance. SIAM Journal of Financial Mathematics 3(1), 572-592 (2012)

14. Giles, M., Szpruch, L.: Antithetic multilevel Monte Carlo estimation for multidimensional SDEs. In:
Monte Carlo and Quasi-Monte Carlo Methods 2012 (submitted). Springer (2013)

15. Giles, M., Szpruch, L.: Multilevel Monte Carlo methods for applications in finance, pp. 3—48. World
Scientific (2013)

16. Giles, M., Szpruch, L.: Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs
without Lévy area simulation. To appear in Annals of Applied Probability (2013/4)

A Continuation Multilevel Monte Carlo algorithm 23

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.
28.
29.
30.
31.
32.
33.

34.

Giles, M.B.: Improved multilevel monte carlo convergence using the milstein scheme. Monte Carlo
and Quasi-Monte Carlo Methods — Check this year! pp. 343-358 (2006)

Glasserman, P.: Monte Carlo methods in financial engineering, Applications of Mathematics (New
York), vol. 53. Springer-Verlag, New York (2004). Stochastic Modelling and Applied Probability
Heinrich, S.: Monte Carlo complexity of global solution of integral equations. Journal of Complexity
14(2), 151-175 (1998)

Heinrich, S., Sindambiwe, E.: Monte Carlo complexity of parametric integration. Journal of Com-
plexity 15(3), 317-341 (1999)

Hoel, H., Schwerin, E.v., Szepessy, A., Tempone, R.: Adaptive multilevel Monte Carlo simulation. In:
Engquist, B., Runborg, O., Tsai, Y.H. (eds.) Numerical Analysis of Multiscale Computations, no. 82
in Lecture Notes in Computational Science and Engineering, pp. 217-234. Springer (2012)

Hoel Hakon, v.S.E.S.A., Tempone, R.: Adaptive weak approximation of stochastic differential equa-
tions. Monte Carlo Methods and Applications (2014)

Hunter, J.D.: Matplotlib: A 2D graphics environment. Computing In Science & Engineering 9(3),
90-95 (2007)

Jouini, E., Cvitani¢, J., Musiela, M. (eds.): Option pricing, interest rates and risk management. Hand-
books in Mathematical Finance. Cambridge University Press, Cambridge (2001)

Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, Graduate Texts in Mathematics,
vol. 113. Second edn. Springer-Verlag, New York (1991)

Kebaier, A.: Statistical Romberg extrapolation: A new variance reduction method and ap-
plications to option pricing. Ann. Appl. Probab. 15(4), 2681-2705 (2005). URL
http://projecteuclid.org/euclid.aoap/1133965776

Mordecki, E., Szepessy, A., Tempone, R., Zouraris, G.E.: Adaptive weak approximation of diffusions
with jumps. SIAM J. Numer. Anal. 46(4), 1732-1768 (2008)

N. Collier L. Dalcin, V.C.: PetIGA: High-performance isogeometric analysis. arxiv (1305.4452)
(2013). Http://arxiv.org/abs/1305.4452

@ksendal, B.: Stochastic differential equations. Universitext, fifth edn. Springer-Verlag, Berlin (1998).
An introduction with applications

Oliphant, T.E.: Guide to NumPy. Trelgol Publishing (2006)

Sivia, D.S.: Data Analysis.: A Bayesian Tutorial. Oxford University Press (1996)

Teckentrup, A.: Multilevel Monte Carlo methods and uncertainty quantification. PhD thesis, Univer-
sity of Bath (2013)

Teckentrup, A., Scheichl, R., Giles, M., Ullmann, E.: Further analysis of multilevel Monte Carlo
methods for elliptic PDEs with random coefficients. Numerische Mathematik 125(3), 569-600 (2013)
Xia, Y., Giles, M.: Multilevel path simulation for jump-diffusion SDEs. In: Plaskota, L.,
Wozniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 695-708. Springer
(2012)

24 Nathan Collier et al.

[- = Reference 3 Algorithm]
Direct

108 Iterative

10° ===

10%E

Time (sec.)
Time (sec.)
=)

10°F

107

1 H H Y H H Y H
10-° w0t 102 10!
TOL TOL
[- - Reference 3% Algorithm]
.\ Direct , Iterative
10 10—
10° .
3 el
R R
(] (]
£ 2
& &
10°E
1
o= 107!
TOL TOL

Time (sec.)

107! 3

10-2 i : NS e
107! 103 T0-2

Fig. 5.1 From top: Ex.1, Ex.2, Ex.3. These plots show the running time of CMLMC and its the last
iteration. The reference dashed line is & (TOL“‘l log(TOL)SZ) as summarized in Table 5.1. Notice that,
asymptotically, the running times seem to follow the expected rates.

A Continuation Multilevel Monte Carlo algorithm

25

Direct

Iterative

4b
~
sl
1073 1072 1073 1072 1071
TOL TOL
49 Direct Iterative
4F-------0
s1fooe oipiie]
3o ° o o
102 107! 102 107!
TOL TOL
13
12
11
10
29
8
7
6
130"
TOL

Fig. 5.2 From top: Ex.1, Ex.2, Ex.3. These plots show the number of levels, L, for different tolerances, as
produced in the last iteration of CMLMC. Here, it is clear that L is depends on the particular realization.

However, the relation between L and log(TOL) looks linear, as expected.

26 Nathan Collier et al.

B Iterative
107! ERERRE) ;
gt
o,
10%F ot
10 3k
[<]
£ H
| ’
107 e §
]
s
10k 6o
s e
10 1073 1072 1072
TOL TOL
-- TOL
0 Direct T Iterative
S
<]
=
=

TOL TOL

TOL

Fig. 5.3 From top: Ex.1, Ex.2, Ex.3. Actual computational errors based on the reference solutions when
using CMLMC. The numbers above the dashed line show the percentage of runs that had errors larger than
the required tolerance. We observe that in all cases the computational error follows the imposed tolerance
closely with the expected confidence of 95%.

A Continuation Multilevel Monte Carlo algorithm 27

Iterative
10° 10° :
1071 G 107
I /!
1072E 1072k
3 3
£ 103k l .5 2109}
£ i £
<) ;.
o 9o
10-F eoiiho 107
102} 107k
i R i prelt
10 1073 1072 10 1073 1072
TOL TOL
, -- TOL .
0 Direct 0 T Iterative

Error
Error

TOL TOL

TOL

Fig. 5.4 From top: Ex.1, Ex.2, Ex.3. Actual computational errors based on the reference solutions when
using SMLMC. The numbers above the dashed line show the percentage of runs that had errors larger
than the required tolerance. We observe that in most cases the computational errors are below the imposed
tolerance with the expected confidence of 95%. For particular tolerances, the error is smaller than TOL
because the statistical error is not relaxed when the bias is small since 6 is constant.

28 Nathan Collier et al.

[xxx TOL=0.005 e TOL=0.00707107
Direct Iterative

1.0 T

1.0 T

0.8F 1 0.8}

e
=
T

ks Y
",

Normal CDF

o
%%
Normal CDF
o

4
9002 01 06 os 1o o 02 04 06 08 10
Empirical CDF Empirical CDF
[xxx TOL=0.0141421 ees TOL=0.02})
Lo . .Du (2499 . o . Ilteratlvle .
08y 1 0.8} ﬁ{'
’
4
<3 <3 ’
A0.6F 1 A0.6F
o o
E i E
S04r 1 S04f
Z. jfwj Z.
/e
‘«
0.2 5 1 0.2
0'%1) 0.2 0.4 0.6 0.8 1.0 0'%1) 0.2 0.4 0.6 0.8 1.0
Empirical CDF Empirical CDF
(%% TOL=0000110485 s TOL=0.00015625)
1.0
37
0.8 p
= {x
Sos . ‘;*f:/
£ 0. "’gx *
504 ggx ¥
z '—SA
g‘x
0.2 a;*f:ly'
“'%,0 0.2 0.4 0.6 0.8 1.0
Empirical CDF

Fig. 5.5 From top: Ex.1, Ex.2, Ex.3. Normalized empirical cumulative distribution function (CDF) of
MLMC estimates for different tolerances versus the standard normal CDF.

A Continuation Multilevel Monte Carlo algorithm 29

¥ cMLMC % SMLMC(M = 3,0 = 0.5)
3 CMLMC (0=05 §§ SMLMC(IT = 25,0 = 0.5)
s Direct . Iterative
T+ 6l
g 6} g
=] E5f
=" o0
S5k g
: £l
= £
3 T3l
=R S
£ E ol
o 2 L (=]
4 4
1k Ly
oL ol—i i iiiiii
103 103 102
TOL
¥ cMLMC % SMLMC(M = 3,6 =0.5)
1 CMLMC (0=05 §§ SMLMCQT = 25,6 = 0.5)
10 D1:rect: . Iter:atlv:e
6 L
2’ :
3 B 5r
o0 o0
£ ol £
: £l
£ £
=} =}
Syt 837
))
: ol
4 ol z
i
0 : IR ol
1072 107! 1072
TOL TOL
¥ cMmLMC 4% SMLMC(V = 10,0 = 0.5)

$4 CMLMC(@ =05 §—F SMLMC(OI = 1026 = 0.5)

45 - LA B S B

g
o

I3
o

Normalized running time
o
o

A

1072

Fig. 5.6 From top: Ex.1, Ex.2, Ex.3. The running time of CMLMC and SMLMC for different M and 6,
normalized by the median running time of CMLMC. This plot shows that a larger M increases the median
running time of the SMLMC but also increases its stability. One sees that CMLMC outperforms SMLMC
even for a small M in all numerical examples.

30

Nathan Collier et al.

Iterative

1.0 1.00
09} 0.95
0.8} 0.90
=0.7F =0.85
0.6} 0.80
051 0.75
04 y 0.70 - :
1073 102 1073 102
TOL TOL
1.00 Dl_reCt- 1.000 Iter_atlv.e —
000 ! 0.995f 0 l 1
0.990f ;I;g;:
098) i & 18 it
Q :] F
<0.97F = 0.980 - § B
g L
; X S B . T R
0.96 ‘ 8:
: [H
; (] R S S
0.95 :
: 1115751 SRR, S R
0.94 : 0.960
102 107! 102
TOL TOL

TOL

107!

Fig. 5.7 From top: Ex.1, Ex.2, Ex.3. The error splitting, 6, as computed in (4.2) an used in CMLMC,
versus TOL.

A Continuation Multilevel Monte Carlo algorithm

31

¥ CMLMC without reuse
¥ CMLMC with reuse

% SMLMC(M = 3,0 = 0.5) with reuse
F% SMLMC(M = 3,0 = 0.5) without reuse

. Direct 3 Iterative
6 i T
() ()
£l Eor
-~ -~
oo oo
g 50
- :
£ 2.l
= =
E ER
Eol -
(= (= 2 L
4 4
Theeeis 1k
0 i i 0
1073 1072 10! 10-°
TOL
3 CMLMC without reuse] SMLMC(M = 3,0 = 0.5) with reuse
3 CMLMC with reuse F—% SMLMC(= 3,6 = 0.5) without reuse
12 Dl.rect. 12 Iter.atlve
10 1 10| e e
[} [}
£ £
-~ -~
w 8 1 e 8
g £
g g
5 5
E gl I) I S S S
=3 =3
Q Q
= = :
g i 1 < I 7
g : g :
=3 : =} H
Z : Z :
2r :]
0 : : 0 :
1072 107! 1072 107!
TOL TOL

¥ CMLMC without reuse
3 SMLMC(M] = 10*,6 = 0.5) without reuse

$—4$ CMLMC with reuse

9

8
| P S| JTE |
: | N
20 : =
=]
£5
g 1
g
T4 \
8
EE]
3
Z 2
. e a1
{)0"‘ 1073 1072
TOL

Fig. 5.8 From top: Ex.1, Ex.2, Ex.3. Running time of CMLMC versus SMLMC when reusing samples
for both. Also included, is CMLMC without reusing samples. All running times are normalized by the
median of the running time of CMLMC without reusing samples. Notice that reusing samples in CMLMC
does not add a significant advantage. Moreover, CMLMC still produces savings over SMLMC, even when
reusing samples in the latter.

Recent publications:

MATHEMATICS INSTITUTE OF COMPUTATIONAL SCIENCE AND ENGINEERING

43.2013

44.2013

45.2013

01.2014

02.2014

03.2014

04.2014

05.2014

06.2014

07.2014

08.2014

09.2014

10.2014

Section of Mathematics
Ecole Polytechnique Fédérale
CH-1015 Lausanne

P. PACCIARINI, G. RozzA:
Stabilized reduced basis method for parametrized advection-diffusion PDESs

A. KosHAKJI, A. QUARTERONI, G. RozzA:
Free form deformation techniques applied to 3D shape optimization problems

J. E. CATRILLON-CANDAS, F. NOBILE, R. F. TEMPONE:
Analytic regularity and collocation approximation for PDEs with random domain
deformations

GIOVANNI MIGLIORATI:
Multivariate Markov-type and Nicolskii-type inequalities for polynomials associated
with downward closed multi-index sets

FEDERICO NEGRI, ANDREA MANZONI, GIANLUIGI ROZZA:
Certified reduced basis method for parametrized optimal control problems governed
by the Stokes equations

CEDRIC EFFENBERGER, DANIEL KRESSNER:
On the residual inverse iteration for nonlinear eigenvalue problems admitting a
Rayleigh functional

TAKAHITO KASHIWABARA, CLAUDIA M. COLCIAGO, LUCA DEDE, ALFIO QUARTERONI:
Numerical Well-posedness, regularity, and convergence analysis of the finite element
approximation of a generalized Robin boundary value problem

BJORN ADLERBORN, BOo KAGSTROM, DANIEL KRESSNER:
A parallel QZ algorithm for distributed memory HPC systems

MICHELE BENZzI, SIMONE DEPARIS, GWENOL GRANDPERRIN, ALFIO QUARTERONI:
Parameter estimates for the relaxed dimensional factorization preconditioner and
application to hemodynamics

ASSYR ABDULLE, YUN BAI: _ o
Reduced order modelling numerical homogenization

ANDREA MANZONI, FEDERICO NEGRI:
Rigorous and heuristic strategies for the apporximation of stability factors in
nonlinear parametrized PDEs

PENG CHEN, ALFIO QUARTERONI:
A new algorithm for high-dimensional uncertainty quantification problems based on
dimension-adaptive and reduced basis methods

NATHAN COLLIER, ABDUL-LATEEF HAJI-ALI, FABIO NOBILE, ERIK VON SCHWERIN,
RAUL TEMPONE:
A continuation multilevel Monte Carlo algorithm

	10.2014 Couverture
	http://mathicse.epfl.ch
	Address:
	EPFL - SB - MATHICSE (Bâtiment MA)
	Station 8 - CH-1015 - Lausanne - Switzerland
	Fax: +41 21 69 32545
	Phone: +41 21 69 37648
	Nathan Collier, Abdul-Lateef Haji-Ali, Fabio Nobile, Erik von Schwerin, Raúl Tempone
	School of Basic Sciences - Section of Mathematics
	Mathematics Institute of Computational Science and Engineering
	MATHICSE
	MATHICSE Technical Report
	Nr. 10.2014
	February 2014
	A continuation multilevel Monte Carlo algorithm

	Page blanche
	cmlmc10.2014
	10.2014 Liste

