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Abstract

We analyze the stochastic initial-boundary value problem for the elastic wave
equation with random coefficients and deterministic data. We propose a stochastic
collocation method for computing statistical moments of the solution or statistics
of some given quantities of interest. We study the convergence rate of the error
in the stochastic collocation method. In particular, we show that, the rate of
convergence depends on the regularity of the solution or the quantity of interest in
the stochastic space, which is in turn related to the regularity of the deterministic
data in the physical space and the type of the quantity of interest. We demonstrate
that a fast rate of convergence is possible in two cases: for the elastic wave solutions
with high regular data; and for some high regular quantities of interest even in
the presence of low regular data. We perform numerical examples, including a
simplified earthquake, which confirm the analysis and show that the collocation
method is a valid alternative to the more traditional Monte Carlo sampling method
for problems with high stochastic regularity.
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1 Introduction

The elastic wave equation describes phenomena such as seismic waves in the earth and
ultrasound waves in elastic materials. It is a system of linear second order hyperbolic
partial differential equations (PDEs) in a two or three dimensional physical space and
has a more complex form than the standard acoustic wave equation, as it accounts for
both longitudinal and transverse motions. There can also be surface waves traveling
along a free surface, as well as waves that travel along internal material discontinuities.

It is often desirable to include uncertainty in the PDE models and quantify its
effects on the predicted solution or other quantities of physical interest. The uncer-
tainty may be either due to the lack of knowledge (systematic uncertainty), or due
to inherent variations of the physical system (statistical uncertainty). In earthquake
modeling, for instance, seismic waves propagate in a geological region where, due to
soil spatial variability and the uncertainty of measured soil parameters, both kinds of
uncertainties are present.

Probability theory provides an effective tool to describe and propagate uncertainty.
It parametrizes the uncertain input data either in terms of a finite number of random
variables or more generally by random fields. Several techniques are available for solv-
ing PDEs in probabilistic setting. The most frequently used technique is the Monte
Carlo sampling [9] which features a very slow convergence rate. Other recent ap-
proaches, which in certain situations feature a much faster convergence rate, include
Stochastic Galerkin [11, 25, 45, 1, 37] and Stochastic Collocation [2, 29, 30, 44]. Such
methods are based on global polynomials and exploit the possible regularity that the
solution might have with respect to the input parameters to yield a very fast conver-
gence.

For stochastic elliptic and parabolic problems, under particular assumptions, the
solution is analytic with respect to the input random parameters [2, 28, 6]. Conse-
quently, Stochastic Galerkin and Stochastic Collocation methods can be successfully
applied to such problems due to the fast decay of the error as a result of the high
stochastic regularity. For stochastic hyperbolic problems, the regularity analysis is
more involved. For the one-dimensional scalar advection equation with a time- and
space-independent random wave speed, it is shown that the solution possess high regu-
larity provided the data live in suitable spaces [43, 12, 36]. The main difficulty, however,
arises when the coefficients vary in space or time. Recently, in [26], we have studied
the second order acoustic wave equation with discontinuous random wave speeds. We
have shown that unlike in elliptic and parabolic problems, the solution to hyperbolic
problems is not in general analytic with respect to the random variables. Therefore,
the rate of convergence may only be algebraic. However, a fast rate of convergence is
still possible for some quantities of interest and for the wave solution with particular
types of data. For the more difficult case of stochastic nonlinear conservation laws,
where the corresponding regularity theory is lacking, we refer to the computational
studies in [21, 22, 33, 40, 41].

In this work, we consider the elastic wave equation in a random heterogeneous
medium with time-independent and smooth material properties, augmented with de-
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terministic initial data and source terms and subject to different types of boundary
conditions. In particular, we are interested in low-to-moderate frequency seismic waves
propagating in slowly varying underlying media. We therefore assume that the wave
length is not very small compared to the overall size of the domain and is comparable
to the scale of the variations in the medium. We study the well-posedness and stochas-
tic regularity of the problem by employing the energy method, which is based on the
weak formulation of the problem and integration by parts. The main result of this
paper, presented in Theorems 4.2, 4.3, 4.4, 4.5, is that the regularity of the solution
or the quantity of interest in the stochastic space is closely related to the regularity of
the deterministic data in the physical space and the type of the quantity of interest.
We demonstrate that high stochastic regularity is possible in two cases: for the elastic
wave solutions with high regular data; and for some high regular physical quantities
of interest even in the presence of low regular data. For such problems, a fast spectral
convergence is therefore possible when a stochastic collocation method is employed.

The outline of the paper is as follows: in Section 2 we formulate the mathematical
problem and establish the main assumptions. The well-posedness of the problem is
studied in Section 3. In Section 4, we provide regularity results on the solution and
some physical quantities of interest. The collocation method for solving the underlying
stochastic PDE and the related error convergence results are addressed in Section 5.
In Section 6 we perform some numerical examples. Finally, we present our conclusions
in Section 7.

2 Problem statement

Let D be an open bounded subset of Rd, d = 2, 3, with a smooth boundary ∂D, and
(Ω,F , P ) be a complete probability space. Here, Ω is the set of outcomes, F ⊂ 2Ω

is the σ-algebra of events and P : F → [0, 1] is a probability measure. Consider
the stochastic initial boundary value problem (IBVP): find a random vector-valued
function u : [0, T ] × D̄ × Ω → R

d, such that P -almost everywhere in Ω, i.e. almost
surely (a.s), the following holds:

ν(x, ω)utt(t,x, ω)−∇ · σ(u(t,x, ω)) = f(t,x) in [0, T ]×D × Ω, (1a)

u(0,x, ω) = g1(x), ut(0,x, ω) = g2(x) on {t = 0} ×D × Ω, (1b)

σ(u(t,x, ω)) · n̂ = h(t,x) on [0, T ] × ∂D × Ω. (1c)

Here, the stress tensor is

σ(u) = λ(x, ω)∇ · u I + µ(x, ω) (∇u+ (∇u)⊤), (2)

with u = (u1, . . . , ud)
⊤ being the displacement vector, t and x = (x1, . . . , xd)

⊤ are
the time and location, respectively, and I is the identity matrix. A non-homogeneous
Neumann ( or normal stress or traction) boundary condition (1c) is imposed on the
boundary ∂D, where n̂ is the outward unit normal to the boundary. When h = 0, it is
called a stress-free boundary condition. We will also address other types of boundary
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conditions including non-homogeneous Dirichlet and absorbing boundary conditions
(see Section 3.3).

We take the external forcing, initial data, and boundary force term as

f ∈ L2((0, T );L2(D)), h ∈ L2((0, T );H1/2(∂D)),
g1 ∈ H1(D), g2 ∈ L2(D),

(3)

The precise definition of these real vector-valued function spaces will be given in Section
3.

The material properties are characterized by the density ν and the Lamé parameters
λ and µ that define the stress tensor (2). We consider a heterogeneous medium and
assume that these parameters are random and x-smooth, i.e.,

ν(., ω), λ(., ω), µ(., ω) ∈ C∞(D), a.s. (4)

This regularity may be relaxed, see for instance Remark 4.1. We also assume that the
parameters are uniformly bounded and coercive, and therefore the following inequalities
hold:

0 < νmin ≤ ν(x, ω) ≤ νmax < ∞, ∀x ∈ D, a.s, (5a)

0 < λmin ≤ λ(x, ω) ≤ λmax < ∞, ∀x ∈ D, a.s, (5b)

0 < µmin ≤ µ(x, ω) ≤ µmax < ∞, ∀x ∈ D, a.s. (5c)

The system (1) admits longitudinal (P or pressure) and transverse (S or shear) waves
which, in the case of constant density, propagate at phase velocities cp =

√

(2µ + λ)/ν,
and cs =

√

µ/ν, respectively. There can also be surface waves traveling along a free
surface, as well as waves that travel along internal material discontinuities.

We further make the following finite dimensional noise assumption on the form of
the coefficients,

ν(x, ω) = ν(x, Y1(ω), . . . , YN (ω)), ∀x ∈ D, a.s, (6a)

λ(x, ω) = λ(x, Y1(ω), . . . , YN (ω)), ∀x ∈ D, a.s, (6b)

µ(x, ω) = µ(x, Y1(ω), . . . , YN (ω)), ∀x ∈ D, a.s, (6c)

where N ∈ N+ and Y = [Y1, . . . , YN ] ∈ R
N is a random vector. We denote by

Γn ≡ Yn(Ω) the image of each component Yn and assume that Yn is bounded for
n = 1, . . . , N . We let Γ =

∏N
n=1 Γn and assume further that the random vector Y has

a bounded joint probability density function ρ : Γ → R+ with ρ ∈ L∞(Γ).
The finite dimensional noise assumption implies that the solution of the stochastic

IBVP (1) can be described by only N random variables,

u(t,x, ω) = u(t,x, Y1(ω), . . . , YN (ω)).

This turns the original stochastic problem into a deterministic IBVP for the elastic
wave equation with an N -dimensional parameter, which allows the use of standard
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finite difference and finite element methods to approximate the solution of the resulting
deterministic problem u = u(t,x, Y ), where t ∈ [0, T ], x ∈ D, and Y ∈ Γ. Note
that the knowledge of u = u(t,x, Y ) fully determines the law of the random field
u = u(t,x, ω). The ultimate goal is then the prediction of statistical moments of the
solution or statistics of some given quantities of physical interest.

In this work, we consider x-smooth random parameters (4) with bounded mixed
Y -derivatives of any order. Therefore, for a multi-index k ∈ N

N with |k| ≥ 0, we
assume

‖∂k
Y ν‖L∞(D), ‖∂k

Y λ‖L∞(D), ‖∂k
Y µ‖L∞(D) < ∞, ∀Y ∈ Γ. (7)

For instance, the random coefficients may be given linearly in Y by

ν(x, ω) = ν̂0(x) +

N
∑

n=1

ν̂n(x)Yn(ω), (8a)

λ(x, ω) = λ̂0(x) +

N
∑

n=1

λ̂n(x)Yn(ω), (8b)

µ(x, ω) = µ̂0(x) +
N
∑

n=1

µ̂n(x)Yn(ω), (8c)

where ν̂i, λ̂i and µ̂i, with i = 0, 1, . . . , N , are smooth functions defined everywhere in
D, and Yn are independent and identically distributed random variables. A typical
example is when the random field ν(x, ω) is approximated by a truncated Karhunen-
Loéve expansion with N terms. We note that, in this case, the covariance function
should be such that the corresponding eigenfunctions are smooth. For simplicity, and
without loss of generality, the proof of regularity results in the stochastic space are
given for linear coefficients (8). The regularity results hold true for general coefficients
satisfying (4)-(7). We will address the cases of discontinuous and piecewise x-smooth
random parameters elsewhere. See also our work in [26] on the acoustic wave equation
with discontinuous random coefficients.

3 Well-posedness

The well-posedness theory of linear hyperbolic IBVPs is well developed for many classes
of first and second order systems with different types of non-homogeneous bound-
ary conditions, including Dirichlet, Neumann, Robin, and absorbing-type boundary
conditions involving time derivatives. This general theory is based on a variety of
mathematical techniques, such as the energy integral method, Laplace-Fourier trans-
form, the construction of symmetrizers, and the theory of pseudo-differential operators
[15, 17, 23, 24, 14, 20].

In this section, we will address the well-posedness of the stochastic IBVP (1) with
the data satisfying (3) and the coefficients satisfying (4)-(6).
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3.1 Function spaces

We first define function spaces that we need in this work. For a real vector-valued
function v(Y ) = (v1(Y ), . . . , vd(Y ))⊤ ∈ R

d of the random vector Y ∈ Γ, we define the
space of square integrable functions:

L2
ρ(Γ) = {v : Γ → R

d,

∫

Γ

d
∑

i=1

|vi(Y )|2 ρ(Y ) dY < ∞},

endowed with the inner product

(v,u)L2
ρ(Γ)

=
d
∑

i=1

E [vi ui] =

∫

Γ

d
∑

i=1

vi ui ρ(Y ) dY.

For a real vector-valued function v(x) ∈ R
d of x ∈ D, we define the Sobolev space

Hk(D) for integer order k ≥ 0:

Hk(D) = {v : D → R
d,

∫

D

d
∑

i=1

|∂α
xvi(x)|2 dx < ∞, ∀α, |α| ≤ k},

where α = (α1, . . . , αd) ∈ Z
d
+ is a multi-index with |α| = α1 + . . . + αd, and ∂α

x :=
∂|α|

∂
α1
x1

... ∂
αd
xd

. Naturally, Hk(D) is a Hilbert space with the inner product

(v,u)Hk(D) =

∫

D

∑

|α|≤k

d
∑

i=1

∂α
xvi(x) ∂

α
xui(x) dx.

For the particular case of k = 0, we obtain the space of square integrable vector-valued
functions L2(D) = H0(D). The space H−k(D) is the dual of Hk(D). We also define
the space Hk

0(D) as the closure of the space of smooth functions with compact support
C∞

0 (D) in Hk(D).
Now let Hk(D)⊗ L2

ρ(Γ) be a tensor space with tensor inner product

(v,u)Hk(D)⊗L2
ρ(Γ)

=

∫

Γ

∫

D

∑

|α|≤k

d
∑

i=1

∂α
xvi(x) ∂

α
xui(x) dx ρ(Y ) dY.

Thus, if v ∈ Hk(D)⊗ L2
ρ(Γ), then v(x, .) ∈ L2

ρ(Γ) a.e. on D and v(., Y ) ∈ Hk(D) a.e.

on Γ. We then introduce the mapping u : [0, T ] → Hk(D)⊗ L2
ρ(Γ), defined by

[u(t)](x, Y ) := u(t,x, Y ), ∀ t ∈ [0, T ], x ∈ D, Y ∈ Γ.

In other words, we view the function u(t,x, Y ) as a function of t with values u(t) in the
Hilbert space Hk(D)⊗L2

ρ(Γ). Similarly, we introduce the function f : [0, T ] → Hk(D),
defined by

[f(t)](x) := f(t,x), ∀ t ∈ [0, T ], x ∈ D.
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Finally, for a real Hilbert spaceHk(D) equipped with the norm ‖v‖Hk(D) = (v,v)
1/2

Hk(D)
,

we introduce the time-involving space L2((0, T );Hk(D)⊗L2
ρ(Γ)), consisting of all mea-

surable vector-valued functions v with
∫

[0,T ]×Γ
‖v‖2

Hk(D) ρ(Y ) dY dt < ∞.

Similarly, for the Hilbert space V = Hk(D)⊗L2
ρ(Γ), we denote by Cm([0, T ];V), with

m = 0, 1, . . . , the space of all m times continuously differentiable functions defined on
[0, T ] with values in V.

3.2 Weak formulation

Because of the assumptions on the data (3), we need to interpret (1) in the distribu-
tional sense and consider a weak formulation of the problem. We therefore consider

∫

[0,T ]×D×Γ

(

ν u′′ −∇ · σ(u)
)

· v ρ dY dx dt =

∫

[0,T ]×D×Γ
f · v ρ dY dx dt,

for all test functions v ∈ C∞
0 ([0, T ];H1(D) ⊗ L2

ρ(Γ)). Integration by parts in space
gives us

∫

[0,T ]×D×Γ

(

ν u′′ · v +∇v : σ(u)
)

ρ dY dx dt =

∫

[0,T ]×∂D×Γ
v · σ(u) · n̂ ρ dY dx dt+

∫

[0,T ]×D×Γ
f · v ρ dY dx dt, (9)

where the tensor contraction on tensors A and B is defined by A : B =
∑

i,j Aij Bij .
We first notice that σ(u) · n̂ is well-defined on the boundary ∂D, see Appendix B.2
of [14] and [35]. For instance, in R

2, the domain D may locally be considered as
the half-plane R

2
0 = {x = (x1, x2)

⊤ : x2 ≥ 0,−∞ < x1 < ∞} with the boundary
∂D = {x2 = 0}, for which n̂ = [0,−1]⊤. Then, one can show that σ(u) · n̂ is a
continuous function of x2 with values in H−1((0, T ) × R) ⊗ L2

ρ(Γ), and therefore, the
restriction to {x2 = 0} is a well defined distribution. We also note that for the normal
stress boundary condition (1c), we have σ(u) · n̂ = h on the boundary. We then define
the notion of weak solutions to the stochastic IBVP (1).

Definition 3.1 For the stochastic IBVP (1) with the data satisfying (3) and coef-
ficients satisfying (4)-(6), the function u ∈ L2((0, T );H1(D) ⊗ L2

ρ(Γ)) with u′ ∈
L2((0, T );L2(D) ⊗ L2

ρ(Γ)) and u′′ ∈ L2((0, T );H−1(D) ⊗ L2
ρ(Γ)) is a weak solution

provided the following hold:

(i) u(0) = g1 and u′(0) = g2,
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(ii) for all test functions v ∈ C∞
0 ([0, T ];H1(D)⊗ L2

ρ(Γ)):

∫

[0,T ]×D×Γ

(

ν u′′ · v+∇v : σ(u)
)

ρ dY dx dt =

∫

[0,T ]×∂D×Γ
v · h ρ dY dx dt+

∫

[0,T ]×D×Γ
f · v ρ dY dx dt. (10)

Note that since u′′ ∈ L2((0, T );H−1(D)⊗L2
ρ(Γ)), then u′ ∈ H1((0, T );H−1(D)⊗L2

ρ(Γ))
and therefore u′ ∈ C0([0, T ];H−1(D) ⊗ L2

ρ(Γ)), see Theorem 5 in Section 5.9.2 in [8].
Similarly, we have u ∈ C0([0, T ];L2(D)⊗ L2

ρ(Γ)). Therefore, u(0) and u′(0) in (i) are
well-defined. We note that, due to (2), we have ∇v : σ(u) = λ (∇ · v) (∇ · u) + µ∇v :
(∇u+ (∇u)⊤).

We have the following result on the existence and uniqueness of the weak solution.

Theorem 3.1 Consider the Stochastic IBVP (1) with data satisfying (3) and random
parameters satisfying (4), (5), and (6). There exists a unique weak solution u ∈
C0([0, T ];H1(D) ⊗ L2

ρ(Γ)) ∩C1([0, T ];L2(D) ⊗ L2
ρ(Γ)) ∩H2((0, T );H−1(D) ⊗ L2

ρ(Γ))
to the problem which depends continuously on the data.

Proof. The proof is an easy extension of the proof for deterministic problems [23]. �

Remark 3.1 We note that the assumption on the regularity of the boundary term
h in (3) is not sharp. We can obtain the same regularity of the weak solution by
imposing weaker assumptions. The result of Theorem 3.1 remains true if we assume
h ∈ L2((0, T );H2/5+ǫ(∂D)), ∀ǫ > 0 [19]. For the purposes of this work however
assumption (3) suffices.

Remark 3.2 A similar result as in Theorem 3.1 can be obtained pointwise in Y ∈ Γ.
In this case we interpret the solution u(t,x, Y ) as a Hilbert-valued function on Γ,

u = u(Y ) : Γ → C0([0, T ];H1(D)) ∩C1([0, T ];L2(D)) ∩H2((0, T );H−1(D)).

Such function is uniformly bounded on Γ thanks to assumptions (5).

3.3 Boundary conditions

So far, we have studied the non-homogeneous Neumann boundary condition (1c). In
this section, we address two other types of boundary conditions: non-homogeneous
Dirichlet and absorbing boundary conditions.

3.3.1 Non-homogneous Dirichlet boundary conditions

Consider the stochastic IBVP (1) with the boundary condition (1c) replaced by

u(t,x, ω) = hD(t,x) on [0, T ]× ∂D × Ω, (11)

with hD ∈ L2((0, T );H1(∂D)). By an easy extension of the proof of Theorem 24.1.1
in [14] we can show that Theorem 3.1 also holds for the stochastic problem (1a)-(1b)
with the boundary condition (11).
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3.3.2 Absorbing boundary conditions

We now consider a boundary condition of the form

ut = M σ(u) · n̂, (12)

whereM is a given matrix in R
d×d independent of u. We assume that enough regularity

is present so that the terms ut and σ(u) · n̂ are well-defined on the boundary. It is
easy to observe that the time variation of the energy

E(t) =
1

2

∫

D×Γ

(

ν |u′|2 + λ |∇ · u|2 + 2µ

∣

∣

∣

∣

∇u+ (∇u)⊤

2

∣

∣

∣

∣

2
)

ρ dY dx,

is given by

d

dt
E(t) =

∫

∂D×Γ
u′ · σ(u) · n̂ ρ dY dx+

∫

D×Γ
f · u′ ρ dY dx. (13)

In particular, when f = 0, for the boundary condition of type (12), we obtain from
(13)

d

dt
E(t) =

∫

∂D×Γ
M−1 u′ · u′ ρ dY dx. (14)

Therefore, any boundary condition (12) with a negative definite matrix M results in
a non-increasing energy and hence a well-posed problem. Such types of boundary
conditions are called energy absorbing conditions. They are dissipative as they make
the right hand side of (14) negative. In a two-dimensional physical space, for instance,
for a boundary given by x1 = 0, a class of Clayton-Engquist boundary conditions
[5, 31] is obtained by setting

M = −
[ 1√

ν (2µ+λ)
0

0 1√
ν µ

]

. (15)

Such absorbing boundary conditions (12) with (15) are very important in wave prop-
agation problems, as they reduce the non-physical reflections of outgoing waves from
artificial boundaries used to truncate the computational domain.

4 Stochastic regularity

In this section we study the regularity of the solution and some quantities of interest
with respect to the random input variable Y . As it will be shown, the Y -regularity
is closely related to the regularity of data in time and space. The ultimate use of
Y -regularity in obtaining convergence rate of the error for the stochastic collocation
method will be discussed in the next section.
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4.1 Stochastic regularity of the solution

Let the data in (1) satisfy

f ∈ L2((0, T );Hs(D)), h ∈ L2((0, T );Hs+1/2(∂D)),
g1 ∈ Hs+1(D), g2 ∈ Hs(D),

(16)

where s is an integer with s ≥ −1. When s ≥ 1, we further assume the following
compatibility conditions,

σ(g1(x)) · n̂ = h(0,x), σ(g2(x)) · n̂ = ∂t h(0,x), x ∈ ∂D. (17)

We notice that for the low regular cases when s = −1, 0, the compatibility conditions
are not required to achieve the optimal regularity in the solution [23, 24, 19, 20].

We first state the main result on the time and space regularity of the solution:

Theorem 4.1 Consider the stochastic IBVP (1) with data given by (16)-(17) and with
random coefficients satisfying (4)-(7). Then there is a unique weak solution

u(., Y ) ∈ C0([0, T ];Hs+1(D)) ∩C1([0, T ];Hs(D)) ∩H2((0, T );Hs−1(D)), ∀Y ∈ Γ,
(18)

which is uniformly bounded in Γ and depends continuously on the data.

Proof. The proof is an easy extension of the proofs in [23, 24, 19]. �

In other words, in the interior, the solution u gains half a derivative in space over
the Neumann boundary force term h and one derivative in space over the force term f .
We note that in [19] sharper estimates are obtained improving the ”1

2 gain” regularity
to ”3

5 − ǫ gain” regularity with ǫ > 0.
To study the Y -regularity of the solution, we k-times differentiate (1), with k ≥ 1,

with respect to Yn and obtain

ν ∂k
Yn
utt −∇ · σ(∂k

Yn
u) = k∇ · σ̃(∂k−1

Yn
u)− k ∂Ynν ∂

k−1
Yn

utt =: f (k), (19a)

u(0,x, Y ) = 0, ut(0,x, Y ) = 0, (19b)

σ(∂k
Yn
u) · n̂ = −k σ̃(∂k−1

Yn
u) · n̂ =: h(k), (19c)

where
σ̃(v) := (∂Ynλ) ∇ · v I + (∂Ynµ) (∇v + (∇v)⊤). (20)

We note that since the coefficients are linear in Y , as in (8), their second and higher
Y -derivatives are zero. This however imposes no restriction. In fact, for nonlinear
coefficients in Y , the right hand side of (19a) may have additional terms containing
Y -derivatives of u of order less than k− 1. We also note that the following divergence
formula for integration by parts holds,
∫

D
v · ∇ · σ(u) dx = −

∫

D
∇v : σ(u) dx +

∫

∂D
v · σ(u) · n̂ dx =

=

∫

D
u · ∇ · σ(v) dx −

∫

∂D
u · σ(v) · n̂ dx+

∫

∂D
v · σ(u) · n̂ dx.

(21)

We now prove the following result on the Y -regularity of the solution.
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Theorem 4.2 For the solution of the stochastic IBVP (1) with data given by (16)-(17)
and with random coefficients satisfying (4)-(7), we have for 0 ≤ k ≤ s+ 1,

∂k
Yn
u(., Y ) ∈ C0([0, T ];Hs+1−k(D)), ∀Y ∈ Γ, (22)

and uniformly bounded in Γ.

Proof. The case k = 0 corresponds to Theorem 4.1. Now let k ≥ 1. We use induction on
1 ≤ k ≤ s+ 1.
Case k = 1. In this case s ≥ 0. First let s = 0. Due to low regularity of the data, we consider
(19) in the weak form. From (19a), with k = 1, and the divergence formula (21), we obtain
∀Y ∈ Γ,

∫

[0,T ]×D

ν ∂Yn
u′′ · v dx dt +

∫

[0,T ]×D

∇v : σ(∂Yn
u) dx dt−

∫

[0,T ]×∂D

v · σ(∂Yn
u) · n̂ dx dt =

−
∫

[0,T ]×D

∇v : σ̃(u) dx dt+

∫

[0,T ]×∂D

v · σ̃(u) · n̂ dx dt−
∫

[0,T ]×D

∂Yn
ν u′′ · v dx dt,

∀v ∈ L2((0, T );H1(D)). Using the boundary condition (19c), we arrive at

∫

[0,T ]×D

ν ∂Yn
u′′ · v dx dt +

∫

[0,T ]×D

∇v : σ(∂Yn
u) dx dt =

−
∫

[0,T ]×D

∇v : σ̃(u) dx dt −
∫

[0,T ]×D

∂Yn
ν u′′ · v dx dt. (23)

The right hand side of (23) is a linear functional of v,

f∗(v) := −
∫

[0,T ]×D

∇v : σ̃(u) dx dt −
∫

[0,T ]×D

∂Yn
ν u′′ · v dx dt,

with bounded L2((0, T );H−1(D)) norm:

sup
v∈L2((0,T );H1(D))

|f∗(v)|
||v||L2((0,T );H1(D))

< ∞,

due to (7) and (18) for s = 0 and noticing that σ̃(u), given by (20), is linear with respect to ∇u.
Therefore, comparing (23) with (10), we can consider ∂Yn

u as the weak solution of a problem
of type (1) with a force term in L2((0, T );H−1(D)) and homogeneous initial and boundary
data. Employing Theorem 4.1, we obtain (22) for k = 1 and s = 0 uniformly in Γ. In other
words, ∂Yn

u gains one derivative over the force term and lies in the space L2((0, T );L2(D)).
Now let s ≥ 1. By (18) and noticing that σ̃(u) is linear with respect to ∇u and employing

the trace theorem, we have

f (1) ∈ L2((0, T );Hs−1(D)), h(1) ∈ L2((0, T );Hs−1/2(∂D)).

Therefore, by Theorem 4.1 we get (22) with k=1.
General case. We now assume that (22) holds for 1 ≤ k = k0 ≤ s. We want to show that it
also holds for 2 ≤ k = k0 + 1 ≤ s+ 1, that is,

∂k0+1
Yn

u(., Y ) ∈ C0([0, T ];Hs−k0(D)), ∀Y ∈ Γ. (24)

11



For this, we need first to show that

f (k0+1) ∈ L2((0, T );Hs−k0−1(D)), h(k0+1) ∈ L2((0, T );Hs−k0−1/2(∂D)), (25)

and then employ Theorem 4.1 to arrive at (24). But (25) follows by the induction hypothesis

and using the same approach as in the case when k = 1, by considering two cases: when

s− k0 = 0, and when s− k0 ≥ 1. This completes the proof. �

We now consider the mixed Y -derivatives of the solution and state the following
result.

Theorem 4.3 For the solution of the stochastic IBVP (1) with data given by (16)-
(17) and with random coefficients satisfying (4)-(7), we have for a multi-index k ∈ N

N

with 0 ≤ |k| ≤ s+ 1,

∂k
Y u(., Y ) :=

∂|k|

∂k1
Y1

. . . ∂kN
YN

u(., Y ) ∈ C0([0, T ];Hs+1−|k|(D)), ∀Y ∈ Γ, (26)

and uniformly bounded in Γ.

Proof. The proof is an easy modification of the proof of Theorem 6 in [26]. �

Remark 4.1 The smoothness assumption in (4) may be relaxed to a weaker assump-
tion. In fact, we can obtain the same regularity results stated in Theorems 4.1, 4.2 and
4.3 with the coefficients ν, λ and µ belonging to Cs(D) almost surely.

4.2 Stochastic regularity of quantities of interest

4.2.1 Mollified solutions

Consider the quantity of interest

Q(Y ) =

∫ T

0

∫

D
u(t,x, Y ) · φ(x) dx dt, (27)

where u solves (1) and φ ∈ Hk(D) is a vector-valued mollifier with k ∈ N being a
non-negative integer. Moreover, we let the data in (1) satisfy (16)-(17) with s ∈ N.
We want to investigate the Y -regularity of (27).

We first introduce the influence function (or dual solution) ϕ associated to the
quantity of interest, Q, as the solution of the dual problem

ν(x, Y )ϕtt(t,x, Y )−∇ · σ(ϕ(t,x, Y )) = φ(x) in [0, T ]×D × Γ (28a)

ϕ(T,x, Y ) = 0, ϕt(T,x, Y ) = 0 on {t = T} ×D × Γ (28b)

σ(ϕ(t,x, Y )) · n̂ = 0 on [0, T ]× ∂D × Γ (28c)

We note that this is a well-posed backward elastic equation with zero data at the final
time T and a time-independent force term. By Theorem 4.1 and Theorem 4.2, the
dual solution ϕ satisfies

ϕ(., Y ) ∈ C0([0, T ];Hk+1(D)), ∂k+1
Yn

ϕ(., Y ) ∈ C0([0, T ];L2(D)), ∀Y ∈ Γ,
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with uniform norms in Γ. We further note that, since the coefficients and data in (28)
are time-independent, the above regularity results hold also for all time derivatives of
ϕ.

We now s-times differentiate (1a) with respect to Yn and obtain, thanks to (8),

ν ∂s
Yn
utt −∇ · σ(∂s

Yn
u) = s∇ · σ̃(∂s−1

Yn
u)− s ∂Ynν ∂

s−1
Yn

utt, (29)

where σ̃ is given by (20). We are now ready to prove the following result.

Theorem 4.4 Let k, s ∈ N be two non-negative integers. Moreover, assume that
φ ∈ Hk(D). Then, under the assumptions (16)-(17) and for linear coefficients of
type (8) satisfying (4)-(7), the Y -derivatives of the quantity of interest (27) are given
by

ds+k+1
Yn

Q(Y ) = Cs,k

∫ T

0

∫

D
∇∂k

Yn
ϕ : σ̃(∂s

Yn
u) dx dt

+ Cs,k

∫ T

0

∫

D
∂Ynν ∂

k
Yn
ϕtt · ∂s

Yn
u dx dt

+ Cs,k

∫

D
∂Ynν

[

∂k
Yn
ϕ(0,x, Y ) · ∂s

Yn
g2(x)− ∂k

Yn
ϕt(0,x, Y ) · ∂s

Yn
g1(x)

]

dx,

(30)

where Cs,k = −1
k!

∏k+1
ℓ=1 (s+ ℓ).

Proof. We prove (30) by induction on k ≥ 0.
Case k = 0. In this case, we s + 1 times differentiate (27) with respect to Yn and use (28a).
We have for every s ≥ 0,

ds+1
Yn

Q(Y ) =

∫ T

0

∫

D

∂s+1
Yn

u · φ dx dt =

=

∫ T

0

∫

D

∂s+1
Yn

u ·
(

ν ϕtt −∇ · σ(ϕ)
)

dx dt =

=

∫ T

0

∫

D

ν ∂s+1
Yn

u ·ϕtt dx dt−
∫ T

0

∫

D

ϕ · ∇ · σ(∂s+1
Yn

u) dx dt

+

∫ T

0

∫

∂D

ϕ · σ(∂s+1
Yn

u) · n̂ dx−
∫ T

0

∫

∂D

∂s+1
Yn

u · σ(ϕ) · n̂ dx, (31)

where the last equality follows by the second equality in (21). We now use (29) and note that by
(28c), the last term in (31) is zero. Moreover, by (1c), we have σ(∂s+1

Yn

u)·n̂+(s+1) σ̃(∂s
Yn

u)·n̂ =

13



0 on the boundary. Then

ds+1
Yn

Q(Y ) =

∫ T

0

∫

D

ν ∂s+1
Yn

u ·ϕtt dx dt

−
∫ T

0

∫

D

ϕ ·
(

ν ∂s+1
Yn

utt − (s+ 1)∇ · σ̃(∂s
Yn

u) + (s+ 1) ∂Yn
ν ∂s

Yn

utt

)

dx dt

− (s+ 1)

∫ T

0

∫

∂D

ϕ · σ̃(∂s
Yn

u) · n̂ dx,

=

∫ T

0

∫

D

ν
(

∂s+1
Yn

u · ϕtt −ϕ · ∂s+1
Yn

utt

)

dx dt

− (s+ 1)

∫ T

0

∫

D

∇ϕ : σ̃(∂s
Yn

u) dx dt− (s+ 1)

∫ T

0

∫

D

∂Yn
ν ϕ · ∂s

Yn

utt dx dt,

where the last equality follows by the first equality in (21) with σ replaced by σ̃. By integration
by parts in t, we therefore obtain

ds+1
Yn

Q(Y ) = −(s+ 1)

∫ T

0

∫

D

∇ϕ : σ̃(∂s
Yn

u) dx dt− (s+ 1)

∫ T

0

∫

D

∂Yn
ν ϕtt · ∂s

Yn

u dx dt

− (s+ 1)

∫

D

∂Yn
ν
[

ϕ · ∂s
Yn

ut − ϕt · ∂s
Yn

u
]T

0
dx =

= −(s+ 1)

∫ T

0

∫

D

∇ϕ : σ̃(∂s
Yn

u) dx dt− (s+ 1)

∫ T

0

∫

D

∂Yn
ν ϕtt · ∂s

Yn

u dx dt

+ (s+ 1)

∫

D

∂Yn
ν
[

ϕ(0,x, Y ) · ∂s
Yn

g2(x)−ϕt(0,x, Y ) · ∂s
Yn

g1(x)
]

dx. (32)

Note that the last term in (32) is zero for s ≥ 1. Therefore, (30) follows for k = 0.
General case k ≥ 1. We assume that (30) holds for every s ≥ 0 and 0 ≤ k ≤ K and show
that

ds+K+2
Yn

Q(Y ) = Cs,K+1

∫ T

0

∫

D

∇∂K+1
Yn

ϕ : σ̃(∂s
Yn

u) dx dt

+ Cs,K+1

∫ T

0

∫

D

∂Yn
ν ∂K+1

Yn

ϕtt · ∂s
Yn

u dx dt

+ Cs,K+1

∫

D

∂Yn
ν
[

∂K+1
Yn

ϕ(0,x, Y ) · ∂s
Yn

g2(x)− ∂K+1
Yn

ϕt(0,x, Y ) · ∂s
Yn

g1(x)
]

dx.

(33)

We first differentiate the induction hypothesis (30) for k = K with respect to Yn and get

ds+K+2
Yn

Q(Y ) = Cs,K

∫ T

0

∫

D

∇∂K+1
Yn

ϕ : σ̃(∂s
Yn

u) dx dt+ Cs,K

∫ T

0

∫

D

∇∂K
Yn

ϕ : σ̃(∂s+1
Yn

u) dx dt

+ Cs,K

∫ T

0

∫

D

∂Yn
ν ∂K+1

Yn

ϕtt · ∂s
Yn

u dx dt+ Cs,K

∫ T

0

∫

D

∂Yn
ν ∂K

Yn

ϕtt · ∂s+1
Yn

u dx dt

+ Cs,K

∫

D

∂Yn
ν
[

∂K+1
Yn

ϕ(0,x, Y ) · ∂s
Yn

g2(x) − ∂K+1
Yn

ϕt(0,x, Y ) · ∂s
Yn

g1(x)
]

dx.

(34)
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Next, we note that the hypothesis holds also for s+ 1 and k = K,

ds+K+2
Yn

Q(Y ) = Cs+1,K

∫ T

0

∫

D

∇∂K
Yn

ϕ : σ̃(∂s+1
Yn

u) dx dt

+ Cs+1,K

∫ T

0

∫

D

∂Yn
ν ∂K

Yn

ϕtt · ∂s+1
Yn

u dx dt. (35)

Using (34) and (35), we can eliminate the terms involving ∂s+1
Yn

u and obtain (33). This com-

pletes the proof. �

As a corollary of Theorem 4.4, we can write:

Corollary 4.1 With the assumptions of Theorem 4.4, we have ds+k+1
Yn

Q ∈ L∞(Γ).

Similarly, we can study the mixed Y -derivatives of Q.

Theorem 4.5 Let k, s ∈ N be two non-negative integers. Moreover, assume that φ ∈
Hk(D). Then, under the assumptions (16)-(17) and with random coefficients satisfying
(4)-(7), we have dmY Q ∈ L∞(Γ) for a multi-index m ∈ N

N with |m| = s + k + 1. In
particular, when φ ∈ C∞(D), then Q ∈ C∞(Γ).

Proof. The proof is similar to the proof of Theorem 4.4 by an easy modification of the

technique used in [26] for the representation of mixed derivatives. �

4.2.2 Filtered solutions

In seismology and petroleum and gas industry, the simulated seismic data are often
post-processed. One typical type of post-processing is filtering the data. For instance,
a low-pass filter (LPF) is used in order to isolate and remove the high-frequency noise in
the solution. In fact, the source time functions (see Section 6.2) trigger high frequency
motions which are not resolvable on the mesh. The simulated solutions are therefore
low-pass filtered and the high frequency errors are cut off. This is done by convolv-
ing the solution u(t,x) with some smooth Kernels known as transfer functions. Two
frequently used filters are Gaussian and Butterworth LPFs whose transfer functions
read

KG
σ (x) =

1

2π σ2
e−

|x|2

2σ2 , KB
n,r(x) =

1
∏d

i=1 (1 + (xi/r)2n)
, (36)

respectively. In a Gaussian LPF, the standard deviation σ is inversely proportional
to the maximum frequency that is allowed to pass. In a Butterworth LPF, the order
n controls the sharpness of the cutoff, and r represents the frequency where the cut-
off occurs. Fig. 1a shows the one-dimensional normalized Gaussian transfer function
2π σ2 KG

σ (x) for different values of σ, and Fig. 1b shows the one-dimensional Butter-
worth transfer function KB

n,r(x) with r = 3 and for different values of n. The value of
r corresponds to the point where the Butterworth transfer function has value 1/2.

The filtered solution is then given by

uf (t,x) = (u ⋆ Kσ)(t,x) =

∫

D
K(x− x̃)u(t, x̃) dx̃, (37)
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Figure 1: Transform functions for the one-dimensional Gaussian and Butterworth
LPFs.

with the Kernel K given by either a Gaussian or a Butterworth transfer function in
(36). We note that the filtered solution (37) is of a type similar to the quantity of
interest (27). However, the main difference here is the boundary effects due to the
convolution. Therefore, following the results of Sections 4.1 and 4.2.1, in the presence
of a compactly supported smooth kernel K ∈ C∞

0 (D) as mollifier, the quantity (37)
has high Y -regularity in the regions away enough from the boundary ∂D for which the
support of K(x − x̃) does not cross the boundary ∂D. Although the smooth kernels
given by (36) are not compactly supported, as we notice in Fig. 1, for small values of σ
in the Gaussian filter and for large values of n and small values of r in the Butterworth
filter, the kernels may be considered as essentially compactly supported. Hence, for
such Gausian and Butterworth LPFs, the filtered solution in points away from the
boundary behaves as a quantity of interest with high Y -regularity. We refer to the test
2 in Section 6 for a numerical verification of high Y -regularity of a smoothed solution
by a Gaussian filter.

5 Stochastic collocation

The stochastic collocation method consists of three main steps. First, the problem
(1) is discretized in space and time, using a deterministic numerical method, such as
the finite element or the finite difference method. The obtained semi-discrete problem
is then collocated in a set of η collocation points {Y (k)}ηk=1 ∈ Γ to compute the
approximate solutions uh(t,x, Y

(k)). Finally, a global polynomial approximation uh,p
is built upon those evaluations

uh,p(t,x, Y ) =

η
∑

k=1

uh(t,x, Y
(k))Lk(Y ),

for suitable multivariate polynomials {Lk}ηk=1 such as Lagrange polynomials. Here, h
and p represent the discretization mesh size and the polynomial degree, respectively.
For more details we refer to [2, 44].
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A key point in the stochastic collocation method is the choice of the set of colloca-
tion points {Y (k)}, i.e. the type of computational grid in the N -dimensional stochastic
space. A full tensor grid, based on cartesian product of mono-dimensional grids, can
only be used when the number of stochastic dimensions N is small, since the computa-
tional cost grows exponentially fast with N (curse of dimensionality). To clarify this,
let ℓ ∈ N be a non-negative integer, called the level. Moreover, for a given index j ∈ N,
let p(j) be a polynomial degree. Typical choices of the function p include

p(j) = j, (38)

and
p(j) = 2j for j > 0, p(0) = 0. (39)

In the full tensor grid, in each direction we take all polynomials of degree at most p(ℓ),
and therefore (p(ℓ) + 1)N grid points are needed.

Alternatively, sparse grids can reduce the curse of dimensionality. They were orig-
inally introduced by Smolyak for high dimensional quadrature and interpolation com-
putations [34]. In the following we will briefly review and generalize the sparse grid
construction.

Let j ∈ Z
N
+ be a multi-index containing non-negative integers. For a non-negative

index jn in j, we introduce a sequence of one-dimensional polynomial interpolant oper-
ators U jn : C0(Γn) → Pp(jn)(Γn) on p(jn) + 1 suitable knots. With U−1 = 0, we define
the detail operator

∆jn := U jn − U jn−1.

Finally, introducing a sequence of index sets I(ℓ) ⊂ Z
N
+ , the sparse grid approximation

of u : Γ → V at level ℓ reads

uℓ(., Y ) = SI(ℓ),N [u](., Y ) =
∑

j∈I(ℓ)

N
⊗

n=1

∆jn [u](., Y ). (40)

The statistical moments of the solution or some given quantities of interest are com-
puted by the Gauss quadrature formula corresponding to each interplant operator for
approximating integrals [26]. We note that V = C0((0, T );Hs+1(D)) as in (18), and
the regularity of the mapping Γ → V is given by (22). Furthermore, in order for the
sum (40) to have some telescopic properties, which are desirable, we impose an addi-
tional admissibility condition on the set I [10]. An index set I is said to be admissible
if ∀ j ∈ I,

j− en ∈ I for 1 ≤ n ≤ N, jn ≥ 1,

holds. Here, en is the n-th canonical unit vector.
To fully characterize the sparse approximation operator in (40), we need to provide

the following:

• A level ℓ ∈ N and a function p(j) representing the relation between an index
j and the number of points in the corresponding one-dimensional polynomial
interpolation formula U j .
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• A sequence of sets I(ℓ).

• The family of points to be used, such as Gauss or Clenshaw-Curtis abscissae,
[39].

Typical examples of index sets include

1. Full tensor grid: I(ℓ) = {j : maxn jn ≤ ℓ}.

2. Total degree sparse grid: I(ℓ) = {j : ∑N
n=1 jn ≤ ℓ} with p(j) = j.

3. Hyperbolic cross sparse grid: I(ℓ) = {j : ∏N
n=1(jn + 1) ≤ ℓ+ 1} with p(j) = j.

We now briefly motivate the construction of the hyperbolic cross sparse grid based
on a simple optimality argument. A rigorous optimal sparse grid construction will be
addressed elsewhere.

Let the error associated to a sparse grid be

ES = ||u− SI(ℓ),N [u]||V ⊗L2
ρ(Γ)

,

and the work WS be the number of collocation points in the grid. We aim at finding
the optimal set of indices that minimizes the error with a total work smaller than or
equal to a given maximum work. For this purpose, we introduce the error and work
contribution of a multi-index j as Ej and Wj, respectively. We then define the profit
of an index as

Pj =
Ej

Wj

,

and choose the optimal set including the most profitable indices: I∗(ǫ) = {j ∈ N
N :

Pj ≥ ǫ}, with a given positive threshold ǫ > 0 [3, 13, 4, 10].
Deriving a rigorous bound for the error is not easy. We denote the norm of each

detail from (40) by

Ej = ||SI(ℓ),N [u]− SI(ℓ)\j,N [u]|| = ||
N
⊗

n=1

∆jn [u]||, (41)

where I(ℓ) is any admissible index set containing j such that I(ℓ)\ j is still admissible.
For a function u with s ≥ 1 bounded mixed Y -derivatives, we have [26]

Ej ≤ C
N
∏

n=1

p(jn)
−s,

where C depends on s, N , and the size of all mixed Y -derivatives of u, but is indepen-
dent of p and ℓ. We simplify the bound by setting C ≡ 1. The work, for non-nested
grids, can be defined as Wj = WI(ℓ) −WI(ℓ)\j and can be bounded by

Wj ≤
N
∏

n=1

(p(jn) + 1). (42)
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We notice that the error contribution (41) of a multi-index j is always independent
of the set I(ℓ) to which the multi-index is added. However, the work associated to a
multi-index j depends, in general, on the set I(ℓ), except in the case of nested grids
(see Remark 5.1). Therefore, for non-nested grids, (42) is only an upper bound of the
work, independent of I(ℓ).

We can now estimate the profit of each multi-index and build an optimal set

I∗(ǫ) = {j ∈ N
N :

∏N
n=1 p(jn)

−s

∏N
n=1(p(jn) + 1)

≥ ǫ}.

Equivalently, for ℓ = 0, 1, . . . and large p(jn), we have

I∗(ℓ) = {j ∈ N
N :

N
∑

n=1

log(p(jn) + 1) ≤ ℓ},

which is a hyperbolic cross grid. We refer to the numerical test 2 in Section 6 for a
numerical verification of the advantage of using hyperbolic cross grids over total degree
grids.

Remark 5.1 In the case of using Smolyak-type grids with nested points (39), we can
obtain a sharper bound for the work:

Wj =
N
∏

n=1

(p(jn) + 1− p(jn − 1)− 1) =
N
∏

n=1

2jn−1.

In this case we will also get

Ej ≤ C

N
∏

n=1

p(jn)
−s = C

N
∏

n=1

2−jn s = C 2−s
∑N

n=1 jn ,

and therefore the set I∗(ℓ) = {j ∈ N
N :

∑N
n=1 jn ≤ ℓ} is optimal among nested

grids for which p(j) = 2j . Notice that this choice corresponds to the classical Smolyak
construction.

6 Numerical experiments

In this section, we consider the IBVP (1) in a two dimensional rectangular domain D =
[−1, 1] × [−2, 0]. We numerically simulate the problem by the stochastic collocation
method and study the convergence of the statistical moments of the solution u, the
linear quantity of interest (27), and the filtered solution (37) using a Gaussian low-pass
filter.

The deterministic solver employs an explicit, second order accurate finite difference
method which discretizes the PDEs in its second order form [27]. We note that an
alternative approach is to first rewrite the second order system (1) as a larger system
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of first order equations and then discretize the new system. This approach however
has the disadvantage of introducing auxiliary variables with their associated constraints
and boundary conditions. This in turn reduces computational efficiency and accuracy
[16, 18]. In the stochastic space, we use collocation on a variety of sparse grids based
on Gauss abscissas.

We perform two numerical tests. In the first test, we consider zero initial data and
a non-zero force term. In the second test, we simulate a simplified earthquake problem
with slip on an extended fault surface. For both tests, we consider zero initial data
g1 = g2 = 0 and apply a stress-free boundary condition (1c) with h = 0 at z = 0
and Clayton-Engquist non-reflecting boundary conditions (12) at the other edges. We
study the convergence rate of the low-regular solution and high-regular quantities of
interest.

6.1 Numerical test 1

In the first test, we consider a time-dependent force term f = (f1, f2)
⊤ with f1 = f2 =

−S(t)F (x, z), where

S(t) =
{

1, t ∈ [0, 0.1) ∪ [0.2, 0.4),
0.5, otherwise,

and

F (x, z) =







500 (0.2 − |x|), x ∈ C and |z + 1| ≤ |x|,
500 (0.2 − |z + 1|), x ∈ C and |z + 1| > |x|,
0, otherwise,

and C = [−0.2, 0.2] × [−1.2,−0.8], see Fig. 2. Note that, with this choice, we have
f ∈ L2((0, T );H1(D)).

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

t

S(
t)

(a) S ∈ L2(0, T ) (b) F ∈ H1(D)

Figure 2: Test 1. The force term f = (f1, f2)
⊤ given by f1 = f2 = −S(t)F (x, z).
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We consider the following x-smooth random coefficients

ν(x, Y ) = 2.6,

µ(x, Y ) = 2.5 + cos
4π z Y1

Lz
+ sin

6π z Y2

Lz
,

λ(x, Y ) = 2µ,

with two independent and uniformly distributed random variables Yn ∼ U(0.1, 0.5),
n = 1, 2. Note that the above coefficients satisfy the assumptions (4)-(7).

We employ the collocation method on a hyperbolic cross sparse grid. We use a
time step-size ∆t = ∆x/4 which guarantees the stability of the deterministic numerical
solver. We study the convergence rate of the sparse grid collocation for two different
choices of spatial grid-lenghts ∆x = ∆z = 0.05, 0.025. For each grid-length ∆x = h,
we consider different levels ℓ ≥ 1 and compute the L2-norm of error in the expected
value of the solution on a part of the domain D0 ⊂ D at a fixed time t = T by

εu :=
(

∫

D0

∣

∣

∣
E [uh,ℓ] (T,x)− E [uh,ℓref] (T,x)

∣

∣

∣

2
dx
)1/2

. (43)

Here, the reference solution uh,ℓref is computed with a high level ℓref > ℓ for the same
∆x = h. In this test, we choose D0 = D and T = 0.5.

We also compute the error in the expected value of the quantity of interest (27) at
T = 0.5 by

εQ :=
∣

∣

∣
E [Q[uh,ℓ]]− E [Q[uh,ℓref ]]

∣

∣

∣
,

with a smooth mollifier φ = (φ1, φ2)
⊤ ∈ C∞

0 (D), where

φ1(x, z) = φ2(x, z) =

{

50 exp
(

0.32
(x−0.4)2−0.16

+ 0.32
(z+0.4)2−0.16

)

, x ∈ Dφ \ ∂Dφ,

0, otherwise,

with the support Dφ = [0, 0.8] × [−0.8, 0] ⊂ D.
We note that since f ∈ L2(0, T ;H1(D)), by Theorem 4.2 for s = 1, we will have

∂k
Yn
u ∈ L∞(Γ;C0([0, T ];H2−k(D))), 0 ≤ k ≤ 2.

Therefore, the solution has only two bounded Y -derivatives in C0([0, T ];L2(D)) and
one bounded mixed Y -derivatives. Consequently, we expect a slow rate of error conver-
gence for εu. On the other hand, due to high Y -regularity of the quantity of interest,
we expect a fast convergence rate for εQ. Fig. 3 shows these two quantities versus the
number of collocation points η(ℓ). We observe a slow convergence of order O(η−1) for
εu and a faster convergence for εQ, as expected. We also notice that for large values of
h η, we observe exponential decay in the error εu, and as h decreases, more collocation
points are needed to maintain a fixed accuracy. In fact, as showed in [26], using the
inverse inequality, we can show that the semi-discrete solution uh can analytically be
extended to a region in the complex plane with a radius proportional to h. There-
fore, in building an approximate solution uh,ℓ to uh, we will observe a fast exponential
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εQ(h = 0.025)
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Figure 3: Test 1. The L2-norm of error in the expected value of the solution εu and
the error in the expected value of the quantity of interest εQ at time T = 0.5 versus the
number of collocation points η(ℓ). The solution has only two bounded Y -derivatives
and one bounded mixed Y -derivative. However, the quantity of interest has bounded
mixed Y -derivatives of any order and possesses high Y -regularity.

decay in the error when the product h ℓ is large. Consequently, with a fixed h, the
error convergence is slow (algebraic) for a small ℓ and fast (exponential) for a large ℓ.
Moreover, the rate of convergence deteriorates as h gets smaller.

6.2 Numerical test 2

In the second test, we simulate a simplified earthquake problem with slip on an ex-
tended fault surface. We consider a two-dimensional problem which is similar to the
three-dimensional problem LOH.2 defined by the Pacific Earthquake Engineering Cen-
ter [7].

In seismic wave propagation due to earthquakes and explosions, the source term is
often composed of point sources (point moments) distributed over a fault surface,

f(t,x) =
∑

r

f (M)
r (t,x), f (M)

r (t,x) = Sr(t)Mr ∇δ(x − xr), (44)

where Sr is the source time function, Mr is a constant symmetric matrix, and ∇δ
is the gradient of the Dirac distribution. Each term in (44) is applied at a location
xr = (xr, zr) which is independent of the grid xi,j. Based on the analysis of [42, 38],
it is possible to derive regularized approximations of the Dirac distribution and its
gradient, which result in point-wise convergence of the solution away from the sources.
The derivation of approximations of the Dirac distribution and its gradient is based
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on the following properties,

∫

φ(x) δ(x − xr) dx = φ(xr),

∫

φ(x) ∂xδ(x − xr) dx = −∂xφ(xr),

which holds for any smooth function φ. In one-dimension with a uniform grid xk with
grid size h, the integrals are replaced by a discrete scalar product (p, q)1,h := h

∑

pi qi.
Cubic approximations of the Dirac distribution and its gradient are then obtained
when the integral conditions are satisfied with φ being polynomials of degree three.
Let xk ≤ xr < xk+1 and α = (xr−xk)/h. Then a third order discretization of δ(x−xr)
is given by

δk−1 =
1

h
(−α/3 + α2/2− α3/6),

δk =
1

h
(1− α/2 − α2 + α3/2),

δk+1 =
1

h
(α+ α2/2 − α3/2),

δk+2 =
1

h
(−α/6 + α3/6),

δj = 0, j /∈ {k − 1, k, k + 1, k + 2}.

Similarly, a third order discretization of δ′(x− xr) is given by

δ′k−1 =
1

h2
(1/3 − α+ α2/2),

δ′k =
1

h2
(1/2 + 2α− 3α2/2),

δ′k+1 =
1

h2
(−1− α+ 3α2/2),

δ′k+2 =
1

h2
(1/6 − α2/2),

δ′j = 0, j /∈ {k − 1, k, k + 1, k + 2}.

For a two-dimensional problem, for instance, we then use

δ(x − xr) ≈ δ(x − xr) δ(z − zr),

and

∇δ(x− xr) ≈
(

δ′(x− xr) δ(z − zr)
δ(x− xr) δ

′(z − zr)

)

.

Using this representation, we obtain overall second order convergence of the solution
away from the singularity at xr [32].

We model the slip on the extended fault by distributing point moment sources on
a regular grid with size ∆s = 0.1 (which is independent of the computational grid size
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h = ∆x = ∆z) over the fault surface given by −0.3 ≤ x ≤ 0.1, −1.2 ≤ z ≤ −0.8. The
moment tensor in each source term is

Mr = 7.5 (∆s)2
(

1 0
0 0

)

.

The earthquake starts at the hypocenter xH = (−0.1,−1), and the rupture propagates
along the fault surface with a uniform rupture velocity crup = 1.7. We use the source
time function

Sr(t) =

{

0, t < Rr/crup,

1−
(

1 +
t−Rr/crup

τ

)

e
−(t−Rr/crup)

τ , t ≥ Rr/crup,

where τ = 0.1 is related to the rise time of the slip, and Rr = |xr − xH |. See Fig. 4.
Based on this time function, each point source gets activated as soon as the rupture
started from the hypocenter reaches the point source. We note that the size of the rise
time τ is related to the frequency of the seismic waves it generates: the smaller the
rise time, the higher the frequency.

r

H

H

x
z

Figure 4: Test2. The computational domain and fault surface. The tick rectangle
shows the fault surface, where the slip starts at the hypocenter indicated by concentric
circles. Point moment sources are distributed on a regular grid on the fault surface.

We consider the following x-smooth random coefficients of form (8)

ν(x, Y ) = 2.6,

µ(x, Y ) = 1.5 + Y1 + 0.15

2
∑

k=1

(Y2 k cos
2 k π z

Lz
+ Y2 k+1 sin

2 k π z

Lz
),

λ(x, Y ) = 2µ(x, Y ),
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where Yn ∼ U(0.1, 0.5), n = 1, 2, . . . , 5, are five independent and uniformly distributed
random variables.

We first employ the collocation method on a total degree sparse grid. We use a
time step-size ∆t = ∆x/4 which guarantees the stability of the deterministic numerical
solver. We compute the L2-norm of error in the expected value of the solution (43)
on D0 = [−1, 1] × [−0.8, 0] at T = 1. We also compute the L2-norm of error in the
expected value of the filtered solution (37) at a fixed time t = T by

εuf :=
(

∫

Df

∣

∣

∣
E

[

u
f
h,ℓ

]

(T,x)− E

[

u
f
h,ℓref

]

(T,x)
∣

∣

∣

2
dx
)1/2

, (45)

over a window Df = [0.1, 0.2] × [−1.1,−.9] ⊂ D away from the boundary ∂D. Here,

the reference solution u
f
h,ℓref

is again computed with a high level ℓref > ℓ on the same
grid with ∆x = h.

Fig. 5 shows the L2-norm of error in the expected value of the solution εu and
the error in the expected value of the filtered solution εuf using a Gaussian Kernel
KG

σ in (36) with σ = 2 at T = 1 versus the number of collocation points η(ℓ). For
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Figure 5: Test 2. The L2-norm of error in the expected value of the solution εu and
the error in the expected value of the filtered solution εuf at T = 1 versus the number
of collocation points η(ℓ). The solution has no bounded Y -derivatives. However, the
filtered solution behaves has a quantity with high Y -regularity.

the solution, there is no bounded Y -derivatives due to the presence of ∇δ in the force
term (44). We observe a slow convergence of order O(η−δ) with 0 < δ < 1/5. On
the other hand, for the filtered solution, we observe a fast convergence rate of order
about O(η−3), which verifies that the filtered solution behaves as a quantity with high
Y -regularity, as discussed in Section 4.2.2.

Next, we compare the performance of the collocation method on two different sparse
grids; the total degree grid and the hyperbolic cross grid. Fig 6 shows the L2-norm of
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error in the expected value of the solution at T = 1 versus the number of collocation
points η(ℓ) obtained by two different sparse grids. We clearly observe the advantage
of using hyperbolic cross grids over total degree grids as predicted in Section 5.
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Figure 6: Test 2. The L2-norm of error in the expected value of the solution εu at
time T = 1 versus the number of collocation points η(ℓ) computed on the total degree
(TD) and the hyperbolic cross (HC) sparse grids.

7 Conclusions

We have analyzed the stochastic initial-boundary value problem for the elastic wave
equation with random coefficients and deterministic data. We consider a random
heterogeneous medium with time-independent and smooth material properties. We
also assume that the wave length is not very small compared to the overall size of
the domain and is comparable to the scale of the variations in the medium. We have
studied the well-posedness and stochastic regularity of the problem by employing the
energy method. We have also proposed a stochastic collocation method for computing
statistical moments of the solution or some given quantities of interest and studied the
convergence rate of the error.

The main result is that the stochastic regularity of the solution or the quantity
of interest is closely related to the regularity of the deterministic data in the physical
space and the type of the quantity of interest. We demonstrate that high stochastic
regularity is possible in two cases: for the elastic wave solutions with high regular
data; and for some high regular physical quantities of interest even in the presence of
low regular data. For such problems, a fast spectral convergence is therefore possible
when a stochastic collocation method is employed. The numerical examples presented
in the paper are shown to be consistent with the analytical results and show that the
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stochastic collocation method are a valid alternative to the more traditional Monte
Carlo method for problems with high stochastic regularity.
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