
1

A comparison of network embedding approaches
Nguyen Thanh Tam, Duong Chi Thang

École Polytechnique Fédérale de Lausanne, Switzerland

Abstract—Network embedding automatically learns to encode
a graph into multi-dimensional vectors. The embedded repre-
sentation appears to outperform hand-crafted features in many
downstream machine learning tasks. There is a plethora of
network embedding approaches in the last decade, based on
the advances and successes of deep learning. However, there
is no absolute winner as the network structure varies from
application to application and the notion of connections in a
graph has its own semantics in different domains. In this report,
we compare different network embedding approaches in real and
synthetic datasets, covering different graph structures. Although
our prototype currently includes only two network embedding
techniques, it can be easily extended due to our systematic
evaluation methodology, and available source code.

I. INTRODUCTION

Graphs are structural data and often a natural representa-
tion in different domains such as social networks, biological
networks, scientific collaboration networks, and recommender
systems. Many downstream machine learning tasks use graph-
structured data as feature information to make predictions or
discover new patterns [1], [2], [3], [7], [8], [9].

The challenging is that there is no unique way to encode
graph-structured information as vectorized features. Tradi-
tional machine learning approaches rely on hand-crafted graph
statistics such as degrees or clustering coefficients. But they
require heavy tuning of model parameters and the selection
of kernel functions. The feature engineering step becomes a
bottle-neck, needs to be re-done if failed, and cannot be shared
among different tasks.

In this decade, deep learning has surged as a universal ap-
proach to embed data into the vector space in an unsupervised
manner. This open research directions for network embedding,
which transform the graph elements into high-dimensional
vectors such that the structural information can be encoded
and inferred in the embedding space. These automatically
learned features appear to outperform hand-crafted ones in
many downstream machine learning tasks [4], [10], [11], [12],
[13].

While many network embedding techniques have been
developed, there has been little work on the evaluation of their
performance in a comprehensive manner. The main reason is
the lack of a universal setting and a universal metric of success.
As a result, understanding the performance implications of
these techniques is challenging, since each of them has distinct
characteristics to deal with different graph structures and
application domains. One, for example, may achieve very high
accuracy over strongly connected graphs, while another is
sensitive to neighborhood information [4].

To this end, we present a comparison of network embedding
approaches within a unified benchmarking framework that
offers the following salient features:
• We developed a prototype to integrate the most represen-

tative state-of-the-art techniques, including node2vec [5]
and GraphSAGE [6].

• We designed a generic, extensible benchmarking frame-
work to assist in the evaluation of different network
embedding techniques for downstream machine learning
tasks such as node classification and link prediction.

• We offer extensive as well as intensive performance
analyses on real-world networks and on synthetic ran-
dom graphs to cover different domain characteristics. We
believe that the analyses can serve as a practical guide-
line for how to select a well-suited network embedding
technique on particular application scenarios.

II. NETWORK EMBEDDING APPROACHES

A. Model

Problem definition. The network embedding problem can be
formulated as follows:

Definition 1: Given a graph G = (V,E,A) where V is a set
of nodes, E is a set of vertices and A is the adjacency matrix,
the problem of network embedding is to find a mapping f :
V → Rd from the nodes to a d-dimensional space where d <<
|V | and the homophily property of the graph is preserved.

Graphs that follow the homophily property tend to have
connected nodes to be similar. In real-world networks such
as social networks, this property can be observed as we tend
to be similar to our friends.

Approaches. There are different approaches in network em-
bedding. However, these techniques can be summarized by
two different components[4]: encoder and similarity function.

The goal of an encoder is to map each node in a network
G into a low dimensional vector. Formally, an encoder f is
defined as follows:

fθ : V → Rd

where θ is the parameter of the encoder.
It maps each node vi ∈ V to an embedding ei =

fθ(vi) where ei ∈ Rd. There are two types of encoders
which are embedding-lookup encoders and graph convolu-
tional encoders. We will discuss their represenatives which
are node2vec and GraphSAGE in Section II-B.

On the other hand, similarity functions allow to enforce
network property that we want to preserve in the embedding
space. Regarding the homophily property, we want nodes that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/211993846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

are similar in the network to have close embeddings. Tradion-
ally, the “closeness” of embeddings are usually measured by
their dot product eTi ej . The most prominent way to measure
similarity between nodes in the network are based on random
walk. More precisely, the similarity between node u and v in
the network corresponds to the probability of visiting v on
a random walk starting from u using random walk strategy
S. In addition to the encoder, different random-walk-based
network embedding techniques differ in the random walk
strategy they use. Following a random walk strategy S, random
walks from vi generate a multiset NS(vi) which contains all
the nodes that are visited on random walks starting from vi.
Detail discussion of random-walk-based similarity function is
provided in Section II-C.
Network embedding learning process. As a network embed-
ding technique has two components which are the encoders
and the similarity functions, the first step in the learning
process is to define the encoder fθ and the similarity function
similarity(u, v). The next step is to optimize the parameters
θ of the encoder so that our requirement on the embeddings
is satisfied:

similarity(vi, vj) ∼ eTi ej
For random-walk-based similarity function, the above re-

quirement can be captured by the following loss function:

L =
∑
vi

∑
vj∈NS(vi)

−log(P (vj |ei)) (1)

where NS(vi) is the multiset obtained from random walks
starting from vi using random walk strategy S. By minimizing
the loss function, we can find the parameters θ of the encoder.

The probability P (vj |ei) can be parametrized using the
softmax function:

P (vj |ei) =
exp(eTi ej)

Zi

where Zi =
∑
vk∈V exp(eTi ek) is the normalization term. This

normalization term makes the calculation of Equation 1 to be
expensive as the complexity would be O(|V |2). Traditionally,
Zi is approximated using only m nodes (which are called
negative samples) instead of all the nodes in V .

B. Encoder

Embedding lookup. The encoder in this case is just an
embedding matrix. In order to find an embedding for a node,
we just need to perform a “lookup” to find the corresponding
column of the node. Formally, an embedding lookup encoder
maps a node vi which is represented as a one-hot vector vi
as follows:

fθ(vi) = Zvi

where Z ∈ Rd×|V | is an embedding matrix.
Node2vec [5] uses this type of encoder. In this case, the

whole embedding matrix Z is the parameters θ that need to
be learned by the network embedding learning process.
Graph convolution. The general idea of graph convolution
encoder is that it takes into account the network structure (e.g.
a node neighborhood). It aims to compute a node embedding

based on the information aggregated from nodes in its neigh-
borhood. Techniques using graph convolution encoders follow
the following framework[4]:

l0i = ai

lkN(i) = aggregate({lk−1j|vj∈N(i)})

lki = σ(Wkcombine(lkN(i), l
k−1
i ))

ei = lKi

where N(i) is the neighborhood of node vi, K is the width
of the neighborhood that encoder considers. Different graph
convolution network embedding techniques use different ag-
gregate and combine function. The parameters of the encoders
following the above framework are {Wk,∀k ∈ [1,K]}.

GraphSAGE [6] uses graph convolution encoder. To aggre-
gate the neighborhood information, it uses different operations
such as mean, max-pool, LSTM[4]... while the combine func-
tion is just a concatenation between lkN(v) and lk−1i .

C. Random walk similarity function

Although there are different ways to measure the similarity
between nodes in the network, random-walk-based approaches
are the most popular as they are flexible in how to define
similarity while efficient in computation. In addition to the
encoder, GraphSAGE and node2vec differ in the random walk
strategy. While GraphSAGE uses a vanilla strategy, node2vec
uses a biased random walk strategy.

Vanilla random walk. GraphSAGE uses this random walk
strategy in which a random walk of fixed length h is performed
as follows: Given a node ui which is the i-th node in the
random walk from u0 = v, the next node to be visited is
computed as follows:

P (ui+1 = x|ui = q) =

{
δxq

Z , if (x, q) ∈ E
0, otherwise

where δxq is the transition probability between node x and q.
Informally, in an unweighted undirected graph, the probability
of moving to a neighbor from a node is equally among the
neighbors i.e. δxq = Axq = 1.

Biased random walk. node2vec proposes a biased random
walk strategy in which it wants to combine both BFS and
DFS through some control parameters a, b. Formally, let ui, o
be the i, i−1-th node in the random walk respectively and the
random walker is standing at ui and considering a neighbor q
of ui, the unnormalized transition probability between ui and
q is computed as δuiq = σ(ui−1, q)Aui,q where

σ(o, q) =


1
a , if doq = 0
1, if doq = 1
1
b , if doq = 2

where doq is the length of the shortest path between o and q.
doq can only be 0, 1, 2 as either q does not connect to o or q
connects directly to o or q connects to o through ui. Informally,
higher a increases the chance of the random walker to visit
a previous node. On the other hand, b controls the tendency



3

of the random walker to explore farther or closer to node ui.
b > 1 makes the walker tend to visit nodes closer to ui while
b < 1 makes the walker to visit nodes far away from ui.

III. BENCHMARK METHODOLOGY

Framework. The primary goal of this study is to provide
a flexible and poweful tool to support the comparison and
facilitate the benchmarking analysis of network embedding
techniques. Figure 1 illustrates a simplified architecture of the
framework. The source code of the framework is available for
download 1.

Application Layer
configurationvisualization

Data Access Layer

Computing Layer

real networks synthetic networks

evaluations
computation time
link prediction
node classification

...

node2vec
GraphSAGE

...

algorithms

random graph 
generator

u

Fig. 1: Benchmarking framework for network embedding

Datasets. We have integrated real-world networks from dif-
ferent domains. Table I summarizes the basic statistics of these
network datasets. 1) Facebook [14]: nodes represent Facebook
users, and edges represent a friendship relation between any
two users; 2) Wikipedia [15]: This is a cooccurrence network
of words in Wikipedia articles. The labels represent the Part-
of-Speech tags for each word; 3) BlogCatalog [16]: This
is a network of social relationships of the users listed on
the BlogCatalog website. The labels represent users interests
inferred through user profiles; 4) arXiv ASTRO-PH [17]: This
is a collaboration network generated from arXiv papers in the
astro-physics field. Nodes represent scientists, and an edge
is present between two scientists if they have co-authored
a paper; 5) Protein-Protein Interactions [18]: This is only
a portion of the protein network of Homo Sapiens. The
labels represent biological states of the proteins. The network
contains several disjoint connected components; 6) Reddit [6]:
is an online discussion forum. Two posts are connected if the
same user comments on both. A node label in this case is
the community, or “subreddit”, that the post belongs to. The
network has several connected components.

Our benchmark also includes synthetic datasets, which
help users to study unbiased evaluations of network embedding
techniques in a wide range of graph models. 1) Watts-Strogatz
random graph model: WS(n, k, p) attempts to simultaneously
capture high clustering and small diameter. Note that with
p = 1, this model is equivalent to Erdos-Renyi random graph
model. Random regular graphs also have a similar structure.

1https://github.com/tamlhp/net emb

We omit them in this report since there is no significant dif-
ference in our preliminary results; 2) Preferential attachment:
It is also known as Barabasi-Albert model BA(n,m), which
generates a graph of n nodes such that every node has a fixed
m degree.

Evaluation Procedure. For a fair comparison, we only use the
unsupervised-learning output (which relies only on structural
information of the network) of network embedding approaches
for downstream machine learning tasks.
• Node Classification: is the most common task for eval-

uating node embeddings. Common applications of node
classification include classifying proteins into biological
functions and classifying documents, videos, web pages
into different categories/communities [5], [6].

• Link Prediction: is another downstream classification task
that predicts whether a link exists between two nodes in
a network. To generate the labeled dataset of edges, we
remove 50% of edges chosen randomly from the network
while ensuring that the residual network obtained after
the edge removals is connected. These removed edges
are positive examples. Negative examples are a random
subset of node pairs that do not have an edge.

IV. EXPERIMENTAL EVALUATION

A. Computation time

This experiment studies the effects of real datasets on
computation time, which includes random-walks generation
and embedding (training) – two important phases of network
embedding methods. In Figure 2, most of the computations
of node2vec method is generating random-walks, whereas
GraphSAGE heavily relies on training time. In general, graph-
sage method is slower as it involves an iterative propagation
process to collect embedding information from neighbors to a
node and pass the embedding information of a current node
to the neighbors. However, the GraphSAGE method allows us
to save the random-walks to disks for reuse [6].

B. Node classification

This experiment studies the predictive power of learned
embeddings in classifying a node. To avoid over-fitting, we
perform cross-validation by splitting the nodes into three sets:
81% train, 9% validation, 10% test. The best model selected
on the validation set is used to evaluate on the test set.

Multi-class. In this setting, each node can be assigned only
to a single label. The used classifier is SGD solver with
logistic loss function. For simplicity, we calculate the metrics
globally by counting the total true positives, false negatives
and false positives. Therefore, the precision, recall, F1-score,
and accuracy are the same, which is equal to the ratio of
true positives over all positives. We also measure Area Under
Curve (AUC) score since choosing a cutting threshold for
deciding the node labels might be too strict.

In Table II, node2vec method is better than graphsage in
small datasets (wikipedia, blog) but worse in the large dataset
(reddit). This is because graphsage is designed for embedding
dynamic graphs, large-scale graphs, and supervised learning.

https://github.com/tamlhp/net_emb


4

Quantity Dataset

(1) facebook (2) wikipedia (3) blog (4) arxiv (5) protein (6) reddit

Nodes 4039 4777 10,312 18,772 56,944 5 231,443 5

Edges 88,234 92,517 4 333,983 198,110 818,716 11M
Avg. degree 44 39 65 21 29 100
Diameter 8 3 5 14 N/A 1 N/A 1

Avg. cluster coeff. 0.61 0.54 0.46 0.63 0.18 0.17
# Triangles 1.6M 760,505 5.6M 1.4M 2.7M 5.6M
# Node Labels N/A 40 2 39 2 N/A 121 3 50 2

1 These datasets have disjoint connected components; 2 Multi-class targets; 3 Multi-label targets; 4 Weighted
5 Each node has hand-crafted features

TABLE I: Statistics for real-world datasets Fig. 2: Computation Time

TABLE II: Single-label node classification

Dataset Accuracy AUC

node2vec graphsage node2vec graphsage

wikipedia 0.5460 0.4874 0.9589 0.9350
blog 0.3073 0.1595 0.8309 0.7411
reddit 0.6910 0.8085 0.8457 0.9895

When the graph is large, there is much more neighborhood
information for graphsage to mutually embed the nodes.

Multi-label. In this setting, each node is associated with a set
of labels. We rely on the set-based definition of precision and
recall to evaluate the individual correctness of each data item.
Per item i, individual precision Pi is the ratio of correctly
predicted labels and the total number of predicted labels,
whereas individual recall Ri is the ratio of correctly predicted
labels and the total number of true labels. For a complete
dataset, precision P and recall R are the respective averages
over all items. For the result, we measure the F1-score as a har-
monic mean of precision and recall. Only the protein dataset
has multi-label ground-truth. We also compare node2vec and
graphsage with available hand-crafted features, resulting in
F1-scores of 0.7570, 0.7419, and 0.7408 respectively.

C. Link prediction

This experiment predicts whether two nodes have an edge
solely based on their embedding vectors. We use Hadamard
function to aggregate the vectors of a node pair into an edge
vector. We also measure Average Precision (AP) beside AUC,
because this metric is not interpolated and is different from
computing the AUC with the trapezoidal rule, which uses
linear interpolation and can be too optimistic.

TABLE III: Link prediction

Dataset AUC Average Precision

node2vec graphsage node2vec graphsage

facebook 0.5372 0.5047 0.5281 0.5116
wikipedia 0.6106 0.6573 0.6065 0.6738
blog 0.5705 0.5599 0.5646 0.5568
arxiv 0.5174 0.5096 0.5139 0.5082

Table III shows that there is no single winner for all cases.
The superior performance of graphsage over node2vec in
wikipedia dataset could be explained as this graph is strongly

connected (diameter is only 3); and hence, graphsage could
end up aggregate all the nodes via neighborhood information.

D. Qualitative analysis

Figure 3a-3f highlights the visualization of node embedding
vectors of two synthetic datasets and one real dataset (arxiv)
by PCA [19] and t-SNE [20]. While the former reveals the
relatedness between subgraphs, the latter captures the distance
between nodes.

(a) PCA of WS(10K, 25, 0.15) (b) tSNE of WS(10K, 25, 0.15)

(c) PCA of BA(10K, 2) (d) tSNE of BA(10K, 2)

(e) PCA of arXiv astro-physics (f) tSNE of arXiv astro-physics

REFERENCES

[1] H. Yin, X. Zhou, B. Cui, H. Wang, K. Zheng, and N. Q. V. Hung,
“Adapting to user interest drift for POI recommendation,” TKDE, pp.
2566–2581, 2016.

[2] H. Yin, Z. Hu, X. Zhou, H. Wang, K. Zheng, N. Q. V. Hung, and
S. W. Sadiq, “Discovering interpretable geo-social communities for user
behavior prediction,” in ICDE, 2016, pp. 942–953.

[3] H. Yin, H. Chen, X. Sun, H. Wang, Y. Wang, and Q. V. H. Nguyen,
“SPTF: A scalable probabilistic tensor factorization model for semantic-
aware behavior prediction,” in ICDM, 2017, pp. 585–594.

[4] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” arXiv:1709.05584, 2017.



5

[5] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in KDD, 2016, pp. 855–864.

[6] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NIPS, 2017, pp. 1025–1035.

[7] N. Q. V. Hung, N. T. Tam, N. T. Lam, and K. Aberer, “An evaluation
of aggregation techniques in crowdsourcing,” in WISE, 2013, pp. 1–15.

[8] N. Q. V. Hung, D. C. Thang, M. Weidlich, and K. Aberer, “Minimizing
efforts in validating crowd answers,” in SIGMOD, 2015, pp. 999–1014.

[9] N. Q. V. Hung, H. Jeung, and K. Aberer, “An evaluation of model-based
approaches to sensor data compression,” TKDE, pp. 2434–2447, 2013.

[10] H. Yin, L. Chen, W. Wang, X. Du, N. Q. V. Hung, and X. Zhou, “Mobi-
sage: A sparse additive generative model for mobile app recommenda-
tion,” in ICDE, 2017, pp. 75–78.

[11] H. Yin, N. Q. V. Hung, Z. Huang, and X. Zhou, “Joint event-partner
recommendation in event-based social networks,” in ICDE, 2018, pp.
1–12.

[12] H. Chen, H. Yin, W. Wang, H. Wang, Q. V. H. Nguyen, and X. Li,
“Pme: projected metric embedding on heterogeneous networks for link
prediction,” in KDD, 2018, pp. 1177–1186.

[13] W. Wang, H. Yin, Z. Huang, Q. Wang, X. Du, and Q. V. H. Nguyen,
“Streaming ranking based recommender systems,” in SIGIR, 2018, pp.
525–534.

[14] J. Leskovec and J. J. Mcauley, “Learning to discover social circles in
ego networks,” in NIPS, 2012, pp. 539–547.

[15] M. Mahoney, “Large text compression benchmark,” URL: http://www.
mattmahoney. net/text/text. html, 2011.

[16] R. Zafarani and H. Liu, “Social computing data repository at asu,” 2009.
[17] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densifi-

cation and shrinking diameters,” TKDD, vol. 1, no. 1, p. 2, 2007.
[18] C. Stark, B.-J. Breitkreutz, A. Chatr-Aryamontri, L. Boucher,

R. Oughtred, M. S. Livstone, J. Nixon, K. Van Auken, X. Wang, X. Shi
et al., “The biogrid interaction database: 2011 update,” Nucleic acids
research, vol. 39, no. suppl 1, pp. D698–D704, 2010.

[19] H. Abdi and L. J. Williams, “Principal component analysis,” Computa-
tional statistics, vol. 2, no. 4, pp. 433–459, 2010.

[20] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” JMLR,
vol. 9, no. Nov, pp. 2579–2605, 2008.


	Introduction
	Network embedding approaches
	Model
	Encoder
	Random walk similarity function

	Benchmark Methodology
	Experimental Evaluation
	Computation time
	Node classification
	Link prediction
	Qualitative analysis

	References

