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Abstract—Many schemes have been recently advanced for storing data on multiple clouds. Distributing data over different cloud storage providers
(CSPs) automatically provides users with a certain degree of information leakage control, for no single point of attack can leak all the information.
However, unplanned distribution of data chunks can lead to high information disclosure even while using multiple clouds. In this paper, we study an
important information leakage problem caused by unplanned data distribution in multicloud storage services. Then, we present StoreSim, an information
leakage aware storage system in multicloud. StoreSim aims to store syntactically similar data on the same cloud, thus minimizing the user’s information
leakage across multiple clouds. We design an approximate algorithm to efficiently generate similarity-preserving signatures for data chunks based on
MinHash and Bloom filter, and also design a function to compute the information leakage based on these signatures. Next, we present an effective storage
plan generation algorithm based on clustering for distributing data chunks with minimal information leakage across multiple clouds. Finally, we evaluate
our scheme using two real datasets from Wikipedia and GitHub. We show that our scheme can reduce the information leakage by up to 60% compared to
unplanned placement. Furthermore, our analysis on system attackability demonstrates that our scheme makes attacks on information more complex.

Index Terms—Multicloud storage, information leakage, system attackability ,remote synchronization, distribution and optimization
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1 INTRODUCTION

1.1 Motivation and Challenges

With the increasingly rapid uptake of devices such as lap-
tops, cellphones and tablets, users require an ubiquitous
and massive network storage to handle their ever-growing
digital lives. To meet these demands, many cloud-based
storage and file sharing services such as Dropbox, Google
Drive and Amazon S3, have gained popularity due to the
easy-to-use interface and low storage cost. However, these
centralized cloud storage services are criticized for grabbing
the control of users’ data, which allows storage providers
to run analytics for marketing and advertising [1]. Also,
the information in users’ data can be leaked e.g., by means
of malicious insiders, backdoors, bribe and coercion. One
possible solution to reduce the risk of information leakage
is to employ multicloud storage systems [2], [3], [4], [5] in
which no single point of attack can leak all the information.
A malicious entity, such as the one revealed in recent attacks
on privacy [6], would be required to coerce all the different
CSPs on which a user might place her data, in order to get a
complete picture of her data. Put simply, as the saying goes,
do not put all the eggs in one basket.

Yet, the situation is not so simple. CSPs such as Drop-
box, among many others, employ rsync-like protocols [7] to
synchronize the local file to remote file in their centralized
clouds [8]. Every local file is partitioned into small chunks
and these chunks are hashed with fingerprinting algorithms
such as SHA-1, MD5. Thus, a file’s contents can be uniquely
identified by this list of hashes. For each update of local
file, only chunks with changed hashes will be uploaded to
the cloud. This synchronization based on hashes is different
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Fig. 1. The motivating example

from diff -like protocols that are based on comparing two
versions of the same file line by line and can detect the
exact updates and only upload these updates in a patch
style [7]. Instead, the hash-based synchronization model
needs to upload the whole chunks with changed hashes
to the cloud. Thus, in the multicloud environment, two
chunks differing only very slightly can be distributed to
two different clouds. The following motivating example
will show that if chunks of a user’s data are assigned to
different CSPs in an unplanned manner, the information
leaked to each CSP can be higher than expected. Suppose
that we have a storage service with three CSPs S1, S2, S3

and a user’s dataset D. All the user’s data will be firstly
chunked and then uploaded to different clouds. The dataset
D is represented as a set of hashes generated by each data
chunk. This scenario is shown in Figure 1. In addition, we
consider that the data chunks are distributed to different
clouds in a round robin (RR) way. Apparently, RR is good
for balancing the storage load and each cloud thus obtains
the same amount of data. However, the same amount of data
does not necessarily mean the same amount of information. For
example, if we find that the set of chunks {C3, C6, C9} are
almost same, it means S3 actually obtains the information
equivalent to that in only one chunk. If all other chunks are
different, S1 and S2 obtain three times as much information

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/211993154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2808275, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 14, NO. 8, JANUARY 2016 2

as S3, even though all of them obtain the same amount
of data. The problem does not exist in a single storage
cloud such as Dropbox since users have no other choice
but to give all their information to only one cloud. When
the storage is in the multicloud, we have the opportunity to
minimize the total information that is leaked to each CSP.
The optimal case is that each CSP obtains the same amount
of information. In our example, data distribution based on
RR can achieve the optimal result only if all the chunks
are different. However this is not the case in cloud storage
service due to two reasons: 1) Frequent modifications of files
by users result in large amount of similar chunks1; and 2)
Similar chunks across files, due to which existing CSPs use
the data deduplication technique.

In fact, the data deduplication technique, which is
widely adopted by current cloud storage services like Drop-
box, is one example of exploiting the similarities among
different data chunks to save disk space and avoid data
retransmission [8], [9]. It identifies the same data chunks
by their fingerprints which are generated by fingerprinting
algorithms such as SHA-1, MD5. Any change to the data will
produce a very different fingerprint with high probability
[10]. However, these fingerprints can only detect whether or
not the data nodes are duplicate, which is only good for exact
equality testing. Determining identical chunks is relatively
straightforward but efficiently determining similarity be-
tween chunks is an intricate task due to the lack of similarity
preserving fingerprints (or signatures). At the same time,
similarity is of paramount importance if one wants to limit
information disclosure. Put simply, two paragraphs of text
with one word different would lead to two different chunks.
If one were to only consider identity, the two chunks would
be considered different and placed separately; however both
of them contain almost entirely the same information, hence
they should ideally be placed together. We note here that
the above problem is relevant even with encryption because
once the encryption key is exposed (as in coercion of the
CSP by some third party such as the National Security
Agency or due to the maliciousness of the CSP itself), the
entire data of the user can be easily leaked. If encryption
is performed after detecting near duplicate chunks and
placing them together, then the information leakage can be
reduced even if the encryption key is exposed. Therefore,
we need more sophisticated techniques to detect the near-
duplicate (or similar) data chunks to reduce the information
leakage in the multicloud storage system.

1.2 Approach and Contributions
Through the above example, we can see that storing the data
in a multicloud system without proper optimization on the
data distribution can lead to avoidable information leakage.
In this paper, we focus on reducing information leakage to
each individual CSP in a multicloud storage system and pro-
vide mechanisms for distributing users data over multiple
CSPs in a leakage aware manner. First we provide a novel
algorithm for generating similarity preserving signatures
for data chunks. Next based on this algorithm, we devise
a chunk placement storage plan that efficiently synchro-
nizes similar chunks together in a multicloud environment.

1. Most CSPs maintain revision history.

Finally, we evaluate and validate our design using real
datasets. Specifically, we make the following contributions
in this paper:

• We present StoreSim, an information leakage aware
multicloud storage system which incorporates three
important distributed entities and we also formulate
information leakage optimization problem in multi-
cloud.

• We propose an approximate algorithm, BFSMinHash,
based on Minhash and Bloom filter to generate
similarity-preserving signatures for data chunks. We
also design a pairwise information leakage function
based on Jaccard similarity.

• Based on the information leakage measured by BFS-
MinHash, we develop an efficient storage plan gen-
eration algorithm, SPClustering, for distributing users
data to different clouds.

• Finally, we use two datasets crawled from Wikipedia
and GitHub, containing files with multiple revisions,
to evaluate our framework. Through extensive ex-
periments, we show the effectiveness and efficiency
of our proposed scheme for reducing information
leakage across multiple clouds. Furthermore, our
analysis on the system attackability demonstrates
that StoreSim makes attacks on information much
more complex.

The rest of this paper is organized as follows. In section
2, we review existing literature related to our work and
explain why our work is different. In section 3, we introduce
multicloud storage services and discuss data synchroniza-
tion mechanisms among three interacting entities in the
multicloud. In section 4, we present the architecture, models
and storage protocols of our StoreSim. Section 5 details the
BFSMinHash algorithm to generate similarity-preserving
signatures for data chunk while section 6 presents the
SPClustering algorithm to distribute users data to different
clouds with respect to optimizing information leakage. In
section 7, we discuss our experiments results and limitations
of StoreSim. Finally, section 8 concludes our work.

2 RELATED WORK

In this section, we will review some of the literature related
to the four distinct pillars of our work, which are as follows:

Untrusted storage cloud: Depot [11] and SPORC [12]
assumed that the storage clouds are unstrusted and fault-
prone black boxes. However, both their work employed only
a single cloud which has both compute and storage capacity.
Our work is different since we consider a mutlicloud in
which each storage cloud is only served as storage without
the ability to compute. The earlier previous work such
as Cooperative File System (CFS) [13] and Samsara [14]
designed their storage system with a peer-to-peer network
comprised of potentially untrusted nodes. Our work targets
to use storage cloud without using decentralized P2P proto-
col [15] and optimizes data placement in a centralized way.
This paper extends our work on StoreSim [16].

Multicloud storage services. Our work is not alone
in storing data with the adoption of multiple CSPs, e.g.,
SPANStore [5], DepSky [2] and NCCloud [3]. However,
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these work focused on different issues such as cost optimiza-
tion [5], data consistency and availability [2] and service
response time [17]. Other efforts [18] on the cloud orches-
tration provided deployment plans in terms of the tradeoff
between price and performance. Unlike these works, our
work focuses on the information leakage optimization for
storage service in a multicloud environment by exploiting
information similarity caused by the synchronization of
modified data. Supplementary efforts on overcoming ven-
dor lock-in, DepSky [2] minimized the cost of data transfer
from one cloud to another by storing only a fraction of the
total amount of data in each cloud while Scalia [4] employed
the data replication at a higher storage cost. However, in
StoreSim, we provide a user-specific weight for each cloud
which not only coordinates the fraction of storage load for
each cloud but also prevents the information leakage across
the CSPs. Other studies have focused on measurement anal-
ysis of cloud storage services [8], [9]. Their work provided
us with many insights on designing StoreSim. But their
work failed to reveal optimization aspects of information
leakages of the commercial CSPs they studied.

Cloud security. Many studies [19], [20], [21] focus on
security and privacy aspects which are major obstacles of
cloud adoption for both individuals and companies. Pre-
vious work [20] proposed a semantic framework based on
crowd-sourcing to determine the sensitivity of items and
diverse attitudes of users towards privacy. Bohli et al. [19]
provided a survey for four different multicloud architec-
tures with various security and privacy-enhancing designs.
The architecture of StoreSim is one of them, which allows
distributing fine-grained fragments of the data to distinct
clouds. Our work further implements the StoreSim system
with new information leakage measures.

Near-duplicate detection. Li et al. [22] proposed a pri-
vacy loss measure based on the JS-divergence distance
which is a method of measuring the similarity between
two probability distributions. Inspired by their work, we
design our information leakage function based on similarity.
To compute the information leakage, we need to compute
the pairwise similarities. MinHash [23], [24] and SimHash
[23], [25] were designed for detecting the near-duplicate web
pages based on Jaccard and Hamming distance, respectively.
However, their work cannot apply to our work directly due
to heavy computation and high storage overhead. To the
best of our knowledge, this is the first work which applies
near-duplicate techniques for preventing information leak-
age in multicloud storage services.

3 MULTICLOUD STORAGE SERVICES

In this section, we first introduce multicloud storage services
from the perspectives of both distribution and optimization.
Then we discuss data synchronization mechanisms among
three distributed entities in multicloud storage services.

3.1 Distribution and Optimization

Cloud storage services such as Dropbox and Google Drive,
in essence, are centralized repositories for vast aggregations
of personal data which can be monetized to afford the low-
cost ( or free ) storage services for their users. While the

users enjoy these storage services, they also lose their control
on the data. Recent news about PRISM [6] shows that these
CSPs can be compromised under coercion. Some other cloud
storage services such as Wuala, SpiderOak employ client-
side encryption to encrypt all the data before uploading the
data. However, this does not change the inherent nature of
centralized architecture. As discussed previously, even with
encryption, once the encryption key is exposed (e.g., by
leveraging backdoors in the key-generation software [26],
by compromising the insiders who know the key or by
compromising the devices that stores the key), a user’s
entire data can be easily divulged. The situation can be
somewhat alleviated by using multiple clouds services so
that no single CSP has access to the user’s entire data
(encrypted or otherwise). Many works have been proposed
in both academia [2], [3], [4], [5] and industry [27], [28], [29]
for using multiple CSPs for storing data. These works show
that data distribution over multiple CSPs can avoid single
point of failure, thereby improving the service availability
and fault-tolerance. In addition, adopting multiple CSPs
offers the opportunities for optimization on different metrics
such as cost, network latency, service response time and
vendor lock-in. Unlike the previous work, we focus on
the optimization of information leakage in multiple storage
services (against single point of attack).

3.2 Data Synchronization Mechanism of Cloud Storage
Services

In multicloud storage system, there are three distributed
entities which synchronize users’ data from the remote
client to the cloud:

1) Client is in charge of pre-processing the users’ data for
the purpose of optimization, such as chunking (i.e., dividing
files into individual chunks of a maximum size data unit),
deduplication (i.e., avoiding storing and re-transmitting the
same content already available on the remote servers), delta
encoding (i.e., transmission of only modified portions of a
file), bundling (i.e., the transmission of multiple small files
as a single object) and encryption/decryption;

2) Metadata servers are used to store the metadata
database about the information of files, CSPs and users,
which usually are structured data representing the whole
cloud file system;

3) Storage servers store the raw data blocks which can
be both structured and unstructured data.

The most essential step of data synchronization is to
detect updates. One solution is diff-like protocols [30] which
are based on comparing two versions of the same file line
by line and can detect the exact updates. Only these updates
will be uploaded to the cloud in a patch file which describes
the difference between the old and the new version. How-
ever, diff-like protocols are not suitable for cloud storage
services for three reasons. First, to compute the patch file,
the client needs more storage overhead to store old versions,
leading to the loss of users. Second, cloud storage services
usually synchronize users’ files across different clients and
devices. If a file is modified in one client, then all other
clients need to update both the old and the new version
of this file, which results in high communication overhead.
Last but not least, cloud storage services will be in great
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Fig. 2. Architecture of StoreSim

danger if the client bears the burden of maintaining revision
histories. For example, a mistake of deleting old versions
made by users can result in synchronization errors.

Instead of using diff-like protocols, CSPs such as Drop-
box, among many others, employ rsync-like protocols [7]
to synchronize the local file to remote file in their cen-
tralized clouds [8]. rsync-like protocols only require each
client only storing the newest version and use signature-
based approach to detect updates. Specifically, every local
file in the client is partitioned into small chunks and these
chunks are hashed with fingerprinting algorithms such as
SHA-1, MD5. In this way, a file’s contents can be uniquely
identified by this list of hashes and we call these hashes
as signatures. To synchronize the updates to the cloud, the
client will firstly send the signatures of current file to the
metadata server. Then, the metadata server will detect these
modified chunks by comparing current signatures with the
signatures of last version and only returns the signatures of
these changed chunks to the client. Finally, the client will
only upload these chunks with changed signatures to the
storage server. In this paper, we design our system based
on rsync-like protocols and further optimize the system in
terms of information leakage.

In the next section, we present StoreSim, an information
leakage aware system for multicloud storage service with
considering three distributed entities and their interactions.

4 STORESIM

In this section, we firstly describe the architecture of
StoreSim. Then we introduce StoreSim in terms of metadata
and CSP models. Finally, we formulate the information
leakage optimization problem in the multicloud.

4.1 Architecture
The architecture of StoreSim is shown in Figure 2. It can
be observed that there is a trust boundary between the
metadata and storage servers. We assume that clients and
metadata servers, which are situated inside the trust bound-
ary, are trustable by users while remote servers outside the
boundary are untrustworthy. For example, the metadata can
be stored in private database servers while storage servers

can be located in public CSPs such as Amazon S3, Dropbox
and Google Drive. Storage servers can be accessed through
standard APIs (Application Programming Interfaces). As is
shown in Figure 2, all control flows are inside the trust
boundary while data flows can cross the trust boundary.
In order to optimize the information leakage, we design
two components in StoreSim. The first component is the
Leakage Measure layer (LMLayer) that is used to evaluate
the information leakage and further to generate the storage
plan which maps data chunks to different clouds. The other
component is the Cloud Manager layer (CMLayer) that
provides cloud interoperability in a syntactic way. In the
following, we will first present how we model metadata
and storage cloud.

4.2 MetaData Model
The data model we discuss in this section is for the metadata
that represents the file system of StoreSim. We model users’
data as a labeled graph G =< V, E ,Ω, π > where V is a
set of vertices, E is a set of edges, Ω is a set of labels, and
π : V ∪ E → Ω is a function that assigns labels to vertices
and edges. As is shown in the table 1, we summarize all
notations in this paper. Within the data graph, the vertices
V represent different objects in a file system such as users,
folders, files and data chunks. The edges E indicate a variety
of relationships among different objects which can be dis-
tinguished by a set of labels Ω. The labels also facilitate the
process of path-oriented search, e.g., to find all data chunks
of one file, or to find all the files of one user. In this paper, we
do not focus on optimizing query performance of different
data models. In practice, we may apply more techinques
such as indexing, caching to improve query performance
with the growth of the data volume. Furthermore, we define
N ⊆ V as the set of data nodes which store the raw data in
G. We aim to distribute data nodes N to different CSPs in
terms of storage protocols.

4.3 CSP Model
The cloud storage provider (CSP) model in our paper in-
cludes both user and system specific weights. User-specific
weight to each cloud can be assigned either by StoreSim
(the default) or by users in terms of their preferences, e.g.,
the fraction of data they want to store on a particular cloud,
the trust that the user has in a CSP or the general reputation
of the provider. Meanwhile, the system specific weight can
be assigned by StoreSim to evaluate different CSPs in terms
of cost, quota, network performance, etc. In this paper, we

Notation Semantics
G a labeled data graph for metadata, i.e., file system
V vertices set in a data graph
E edges set in a data graph
Ω a set of labels
π a function that assigns labels to edges

N ⊆ V vertics that are data nodes
L pairwise information leakage function given two data nodes
S a set of storage clouds
M a storage plan that maps data nodes to storage clouds
ni a data node i
si a storage cloud i

TABLE 1
Notations
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model user-specific weight as the storage load, i.e., the ratio
of the total size of data stored on a cloud to the size of entire
data of the user, while the system-specific weight is modeled
as prior knowledge of a CSP, i.e., the set of data nodes which
have been stored on it. Thus, the amount of prior knowledge
of a CSP increases with the number of data nodes stored on
it. We assume that the knowledge is unforgettable, i.e., the
knowledge of a data node will not be removed even when
the data node is removed from the cloud2. To sum up, a CSP
s ∈ S in StoreSim is parameterized by two factors < u, v >
where u is a storage load factor while v indicates the prior
knowledge of the CSP.

4.4 Storage Protocol
In essence, the storage protocol is a set of constraints or cost
functions to reduce the information leakage on data distri-
bution across multiple clouds. Motivated by our example
in Section 1.1, the protocol in StoreSim is to store similar
chunks on the same cloud, thereby reducing information
leakage to each individual CSP. In the following, we firstly
define information leakage for a pair of data nodes.
Definition 1. (Pairwise Information Leakage). Given a set of

data nodes N in data graph G, we define Lp : N ×N →
R as the pairwise information leakage function. For any
pair of data nodes ni, nj ∈ N ,Lp(ni, nj) computes the
pairwise information leakage of two nodes.

Lp can measure the information leakage in terms of either
syntactic or semantic way. For example, the information
leakage can be measured as the dissimilar information (i.e.,
new information) based on similarity measures or as the
information gain based on entropy measures. In this paper,
we only model information leakage based on syntactic sim-
ilarity. Specifically, we use delta Jaccard similarity of two
sets, as our information leakage function 3.

Lp(ni, nj) = J∆(σ(ni), σ(nj)) = 1− |σ(ni) ∩ σ(nj)

σ(ni) ∪ σ(nj)
| (1)

where the function σ(·) will convert a data node into a set
(i.e., representing a data node as a set of words). It follows
immediately that if a CSP gets a new data node that is a
duplicate of an existing data node on that cloud (i.e., Jaccard
similarity between them is 1.0 ), there will be no leakage due
to lack of new information. In the opposite case, the first
data node stored in a cloud is a totally new node, which we
define the information leakage of the first data node as a
constant 1. It can be interpreted that all the information in
the first data node at a CSP is leaked.

In addition, we also define a storage plan as a mapping
from data nodes to different CSPs, which is defined as:
Definition 2. (Storage Plan). Given a set of data nodes N in

the data graph G and a set of CSPs S , a storage plan
M : N → S is a mapping of each data node n ∈ N to a
CSP s ∈ S .

The storage plan can be generated in terms of users’ prefer-
ence and QoS factors. For example, the storage plan based

2. This is a necessary assumption since providers such as Dropbox also do not
actually delete user’s data immediately.

3. Other appropriate similarity functions can also be employed depending on
the data structure and application requirements

on round robin makes a good balance of the storage load
among different CSPs. In our paper, we will evaluate the
goodness of storage plan with respect to the information
leakage. The goodness of storage plan is defined as:

Definition 3. (Goodness of Storage Plan). Given a set of data
nodes N in the data graph, a pairwise information
leakage function Lp and a storage plan M, we define
GM(N ,M,Lp) ∈ R as the goodness function of storage
planM.

From the Definition 3, we can see that the goodness of
storage plan depends on the pairwise information leakage
function Lp and the storage plan M. Thus, an interesting
question is whether there exists an optimal storage plan
with respect to a given information leakage measure. We can
formulate this information leakage optimization problem as:

Definition 4. (Information Leakage Optimization Problem).
Given a set of data nodesN in the data graph, a pairwise
information leakage function Lp and a storage plan
M, the information leakage optimization problem is to
find the optimal storage plan with minimal information
leakageM∗ = argmin

M
GM(N ,M,Lp)

In this paper, we provide an approximate algorithm for
addressing this problem. We first discuss how to efficiently
measure pairwise information leakage in Section 5 and then
in Section 6 we propose a storage plan that places similar
chunks together in a multicloud environment.

5 EFFICIENT MEASUREMENT OF PAIRWISE INFOR-
MATION LEAKAGE

We define the pairwise information leakage as delta Jaccard
similarity, as is shown in Equation 1. For each pair of data
nodes (chunks), we convert the data nodes as sets of words
and compute the Jaccard similarity. However, the set opera-
tions for measuring pairwise similarity can be quite expen-
sive [31], even assuming small-sized chunks, given that the
number of pairs increases quadratically as the number of
chunks increases. Thus, we need an efficient algorithm to
compute the Jaccard similarity with less computation and
storage overhead. In the following, we first introduce the
background of MinHash algorithm [23], [31], [32], which
provides a fast way to compute Jaccard similarity, and ex-
plain why we cannot apply the existing approaches directly.
Next we present BFSMinHash, a Bloom filter sketch for
MinHash in order to reduce storage overhead.

5.1 MinHash Background

MinHash uses hashing to quickly estimate the Jaccard sim-

ilarity of two sets, J(S1, S2) = |S1 ∩ S2

S1 ∪ S2
|. It can be also

interpreted as “the probability that a random element from
the union of two sets is also in their intersection”:

Prob[min(h(S1)) = min(h(S2))] = |S1 ∩ S2

S1 ∪ S2
| = J(S1, S2)

where h is the independent hash function and min(h(S1))
gives the minimum value of h(x), x ∈ S1. Therefore, we
can choose a sequence of hash functions h1, h2, · · · , hk and



2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2808275, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 14, NO. 8, JANUARY 2016 6

compute the minimum values of each hash function as
MinHash signatures.

Sig1 = {min(hi(S1))|i = 1, · · · , k}

Sig2 = {min(hi(S2))|i = 1, · · · , k}

It follows that Jaccard similarity of two sets is approximated
as |Sig1 ∩ Sig2|/k. However, MinHash with many hash
functions needs to compute the results of multiple hash
functions for every member of every set, which is com-
putationally expensive. In our paper, we adopt a variant
of Minhash which avoids the heavy computation by using
only a single hash function. Instead of selecting only a single
minimum value per hash function, the signature of Min-
Hash with single hash function h will select the k smallest
values from the set h(S), which is denoted as mink(h(S)).
In this way, we have

Sig1 = {mink(h(S1))}

Sig2 = {mink(h(S2))}

Thus, a random sample of S1 ∪ S2 can be represented as:

X = {mink(h(S1 ∪ S2))} = mink(Sig1 ∪ Sig2)

The Jaccard similarity is estimated as |X ∩ Sig1 ∩ Sig2|/k.
For Minhash algorithm, to compute the similarity for a pair
of data nodes, we only need to store an array of MinHash
signatures rather than storing the whole data. Although it
reduces the storage cost greatly, it can still be heavy given
the huge number of data nodes. Suppose that each hash
function generates a signature of 64 bits and k is 64, the
storage cost of each data node is about 512 bytes. If we have
about two million chunks, the overhead of storing the signa-
tures is 1 Gigabyte. Thus, we need a compact representation
of these MinHash signatures to reduce the storage overhead.
Previous work [24] proposed b-bit MinHash which only
stores b lowest bits of each signature computed by different
hash functions to reduce the storage space. However, this
approach does not work for the MinHash with a single hash
function since all the signatures are computed by the same
hash function. Instead, we design BFSMinHash, a Bloom-
filter sketching scheme for Minhash, which uses a single
hash function. BFSMinHash exploits the space efficient fea-
ture of Bloom filter, thus reducing the storage overhead.

5.2 Bloom-filter Sketch for MinHash
Similar to the fingerprints in data deduplication, we expect
an algorithm to generate the signature with a relatively
small and fixed size for each data node. Our proposed
BFSMinHash algorithm employs a Bloom-filter with a single
hash function to sketch MinHash signatures. Algorithm 1
shows three steps in BFSMinHash: shingling (line 1), finger-
printing (line 2-6) and sketching (line 7-11). The input is a
byte stream of a data chunk and the output is a fix-sized
similarity-preserving signature of this chunk.

Firstly, we convert each data chunk to a set of shingles
which are contiguous subsequences of tokens. The process
of shingling is to tokenize the byte stream into a set of
shingles. For example, if the input is “abcde” and the size of
a shingle is 2, the set of shingles is {ab, bc, cd, de}. From this
perspective, we only consider the similarity in a syntactic

Algorithm 1 Bloom-filter Sketch for MinHash
Input: byte[] chunk: byte stream of a data chunk
Output: byte[] signature

1: List<byte[]> shingles = ByteSegment(chunk,size);
2: maxHeap← store k smallest values in a max heap
3: for each shingle : shingles do
4: fingerPrint = hashFunction(shingle);
5: maxHeap← fingerPrint
6: end for
7: BloomFilter bf; //implement with a single hash function
8: for each fingerPrint : maxHeap do
9: bf.add(fingerPrint);

10: end for
11: byte[] signature = bf.toByteArray();
12: return signature

way [33] rather than in a semantic way. In other words,
we do not consider the difference between the fruit apple
and the company Apple. Then, for each shingle, we will
compute its fingerprints by MinHash. We use a maximum
heap with the fixed-size of k to save k smallest MinHash
fingerprints for each data node. It only takes O(1) to get
the maximum value of all k values in a maximum heap.
Only when a new fingerprint is less than the maximum
value stored in the heap, it will be added to the heap
and the current maximum in the heap will be removed.
From the shingling and fingerprinting steps, we can see that
the time complexity of our algorithm is linear in the total
length of data chunks. Finally, sketching based on Bloom-
filter will convert the MinHash fingerprints into a fixed size
signature. The Bloom filter is a space efficient data structure
which can be used to test whether an element is in a set.
However, when we adopt Bloom filter, we have to tolerate
its effect of false positives. The rate of false positives is
computed as (1 − e−nk/s)n, where s is the size of Bloom
filter, k is expected number of elements that will be added in
Bloom filter and n is the number of hash functions [34]. For
example, if we implement a Bloom filter with size of 512 bits
and k is 64, the optimal number of hash functions is 1 with a
false positive rate of 11.7%. In our case, we aim to keep the
size of Bloom filter as small as possible and therefore the
Bloom filter in our BFSMinHash algorithm always employs
a single hash function. The final output of Algorithm 1 is
a signature with the same size as the Bloom filter. In this
way, computing similarity of two data nodes is converted
to compute the similarity of two bloom filters. Given two
signatures x, y, the Jaccard similarity is

J(x, y) =

∑
i(xi ∧ yi)∑
i(xi ∨ yi)

(2)

where xi, yi is the ith bit of x, y, and ∧, ∨ are bitwise and, or
operators respectively. Later we will evaluate approximate
errors of BFSMinHash, which are caused by both MinHash
and Bloom filter, in Section 7.

6 GENERATING MULTICLOUD STORAGE PLAN

Based on the pairwise information leakage measured by
BFSMinhash algorithm, the next step is to generate the
storage plan, as shown in Definition 2, with respect to the
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information leakage. Before we present our storage plan
generation algorithm, we need to introduce a goodness
function to quantify the quality of a storage plan.

6.1 Goodness of Storage Plan
The goodness function of storage plan is evaluated based
on the pairwise information leakage, as it is defined in Def-
inition 4. Recall from Equation 1, the pairwise information
leakage measures how much new information will be leaked
when a pair of data nodes are stored in the same cloud.
Thus, it is essential to find the pairs of data nodes with
minimal information leakage. In order to measure the good-
ness of a storage plan, we introduce a metric called relative
information leakage (RIL), which is defined as the average of
minimal pairwise information leakage among all the data
nodes in a storage plan. For example, in our motivating
example in Section 1.1, cloud S2 stores three data nodes for a

total of

(
3

2

)
pairs, {(C2, C5), (C5, C8), (C2, C8)}. Suppose

{Lp(C2, C5) = 0.25, Lp(C5, C8) = 0.15,Lp(C2, C8) =
0.1}, we have the information leakage of first data node
C2 as constant 1 while the minimal pairwise information
leakage forC5, C8 is 0.15 and 0.1, respectively. Thus, the RIL
of data nodes stored in S2 is the average minimal pairwise
information leakage (1 + 0.15 + 0.1)/3 = 0.416. Formally,
given an individual CSP si = (ui, vi) ∈ S in a storage plan
M, the RIL of all data nodes stored in si is formulated as:

RILi =
1

|vi|
(1 +

|vi|∑
l=2

Lmin(nl, nk)), (3)

s.t. vi = {n ∈ N|M(n) = si}, (4)

l 6= k, nl, nk ∈ vi (5)

where 1 is the information leakage for the first data node
and Lmin(nl, nk) returns the minimal pairwise information
leakage, Lp(nl, nk), for nl by searching the node nk, l 6= k,
which is most similar to it. vi in Equation 4 represents prior
knowledge and is modeled as the set of data nodes stored
in si. Since we have Lp ∈ [0, 1], it follows that RILi ∈
[

1

|vi|
, 1]. In the extreme case where all the data nodes stored

in a CSP are the same, the RIL is
1

|vi|
, which means the

actual information it has obtained equals to the information
of one node. In other words, a good storage plan, which
can effectively detect the similar chunks and distribute them
to the same cloud, has a low RIL value. Based on this, we
can compute the RIL for a storage planM as the weighted
average of the RILs of all CSPs:

RILM =

|S|∑
i=1

ui ∗RILi (6)

where ui is the normalized user-specific weights of CSPs

such that
|S|∑
i=1

ui = 1. In this way, the information leakage

optimization problem with respect to RIL is to find an opti-
mal storage plan with minimal relative information leakage
to each CSP.

6.2 Clustering for Storage Plan Generation

In Equation 3, Lmin needs to find the pairs with the minimal
information leakage. This search problem is challenging
when the number of pairs increases quadratically. Suppose
we have 100,000 data nodes, the number of pairs will be as

high as 5 billion

(
100, 000

2

)
. Thus, we need to design an

efficient search algorithm to find data pairs with minimal
information leakage.

Fig. 3. ClusterIndex for Centroids with b=4 Segments

Inspired by clustering problems [35], we propose a stor-
age plan generation algorithm, SPClustering, to group simi-
lar data nodes. We define a data node as the centroid when
no existing data node has low pairwise information leakage
with it. In practice, we define a leakage threshold, according
to which a data node becomes a centroid if all its pairwise
information leakage with other nodes are greater than this
threshold. In other words, a centroid represents all data
nodes which are similar to it. Given any new data node, we
only compute its pairwise similarities with a set of centroids,
which largely reduces the number of pairs. Moreover, we
build the ClusterIndex among the centroids to further prune
the search space. A single index entry in ClusterIndex points
to a set of similar centroids, which is similar to the Bitmap
index in traditional databases [36]. Specifically, suppose the
size of signature generated by BFSMinHash algorithm is s
bits, we divide the signature into b segments with the length
of each segment as s/b. We will use each segment as the key
in hash function and therefore, all the signatures with the
same key will be hashed together. For example, as is shown
in Figure 3, when the key is the value of first segment, c2
and c4 are hashed to the same index entry for they share
the same value of first segment. Those signatures are more
likely to be similar to each other since they already share
one same segment. Recall from Section 5.2, the number
of elements sampled by BFSMinHash is k, which means
its signature based on Bloom filter is at most with k bits
set to one. If we cannot search any similar node from the
ClusterIndex with b segments for a given node, that means
there are at least b bits different from the given node with all
the centroids. Based on Equation 2, it implies that there is
no centroid that has Jaccard similarity with the given node
larger than (k − b)/(k + b). For example, if k is 64 and we
divide the signature into 8 segments, the ClusterIndex can
efficiently search all the similar centroids with similarity
higher than 77.8%. Thus, in order to find centroids with
less or more similarity, we need to respectively increase and
decrease the value of b (the number of segments).

Algorithm 2 shows three main steps of how to generate
a storage plan. Firstly, in the initialization, the algorithm
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Algorithm 2 Generating Storage Plan based on Clustering
Input: N : a set of data nodes, S : a set of CSPs
Output: map ∈M storage plan

1: Build ClusterIndex for all centroids
2: for each x : N do
3: for each s : S do
4: c = getCandidateSet(x, s) //pruning

5: loss← 1

|c|
∑
y∈c
Lp(x, y)

6: end for
7: min loss← find s with minimal loss
8: if min loss > threshold then
9: assign x based on weights of CSPs

10: add x as a centroid and build ClusterIndex for x
11: end if
12: map.put(x,s)
13: end for
14: return map

builds the ClusterIndex for a set of centroids online. We do
not persist the ClusterIndex to reduce the storage overhead.
The cost of building ClusterIndex is acceptable, which takes
about 400 milliseconds for 100 thousand centroids. Then, we
will find the cloud with the minimal information leakage
based on candidate set for each new data node. The can-
didate set is queried based on ClusterIndex. Finally, if the
minimal information leakage is still larger than the thresh-
old, we will assign this node only based on the weights of
CSPs. Also, the node will be labeled as the centroid and be
indexed on the fly.

7 EXPERIMENTAL EVALUATION

In this section, we first introduce the implementation of
StoreSim and the two datasets used for evaluation. Then
we evaluate the performance of two algorithms, BFSMin-
Hash and SPClustering. Finally, we analyze the time cost
introduced by the leakage measure layer in StoreSim.

7.1 Implementation

We have implemented the StoreSim prototype using Java,
and it includes both basic components (such as chunking,
data deduplication, bundling and encryption/decryption),
and featured components including LMLayer and CMLayer.
In the LMLayer, we implement the algorithms described in
the previous sections, while the CMLayer enables StoreSim
to communicate with multiple CSPs. All those components
are optional, i.e., users can opt to use the LMLayer and
encryption at the same time or they can disable any of them.
StoreSim is also pluggable, i.e., StoreSim provides APIs for
developers to add their modules for different encryption
or information leakage measures. For example, StoreSim
employs the BFSMinHash algorithm but developers can
replace it with the SimHash algorithm based on Hamming
distance [25]. StoreSim employs the common fixed-size
chunking with a maximum chunk size of 512 KB. The chunk
is identified by SHA-1 signature, which is also used for data
deduplication. The small chunks can be bundled as a ZIP file
to minimize the network transmission overhead. Succinctly,

before the chunk is synchronized, it can be measured for
leakage optimization, encrypted, and bundled for better
network transmissions.

The synchronization of StoreSim is based on rsync-like
protocols [7], which only synchronizes the new chunks
(identified by SHA-1 signatures) between two copies. All
the metadata, which is organized as data graph, are stored
in a MySQL database. To deal with the heterogeneity in the
different data models of different clouds, StoreSim employs
CMLayer to enable cloud interoperability in a syntactic
way. CMLayer provides the uniform APIs such as initialize,
connect, upload, download and delete, for different CSPs.
With this abstraction, the user can move their data across
different CSPs in a transparent way, thereby alleviating ven-
dor lock-in problems. We have implemented for three public
storage clouds: Dropbox, Google Drive, and Amazon S3. All
the communications between StoreSim and public CSPs are
using APIs supplied by those CSPs. We also support the
synchronization of files to the local FTP servers. The meta-
data server is deployed on our local server machine and the
evaluation is conducted on a personal client machine with
Intel i7-2640M CPU and 4GB memory.

7.2 Dataset

For the evaluation, we aim to find such data which has
undergone several modifications, and thus results in many
similar chunks. This can serve as a model for the mod-
ifications that users make in the cloud storage services.
Wikipedia and Github are two such data sources that con-
tain web pages and files which are reviewed and modi-
fied multiple times. Thus, we crawled two datasets from
Wikipedia and Github, respectively. The Wikipedia dataset
contains a total of 2197 web pages and each web page has
a maximum 49 revisions. For each web page, the crawler
only stores the text that is extracted from HTML files. The
total size of the dataset is 1.2 GB. The size of each webpage
is relatively small, which ranges from 29 Bytes to 118 KB
with an average size of 11KB. The Github dataset contains
the United States code4 spanning 56 files. The files in this
dataset are much larger than those in the Wikipedia dataset,
in the range of 47.7KB to 50MB with an average size of
5.3 MB. The files in this dataset have a maximum of 8
modifications and the total dataset size is 2.1 GB. The size of
the dataset is controlled around 2GB since the free quota of
personal storage service such as Dropbox is 2GB. Through
these two datasets, we simulate two different use cases. The
data chunks generated by Wikipedia dataset are small in
size with maximum chunk size of 118 KB, but great in
number (91,929) while those generated by Github dataset
are bigger in size with maximum size of 512KB but are less
in number (4,274).

7.3 BFSMinHash

In this part, we will evaluate the performance of our BFS-
MinHash algorithm and answer two questions:

• what’s the approximation errors and effectiveness of
our proposed BFSMinHash?

• Is the information leakage measured by BFSMinHash
trustable?
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Fig. 4. Effect of parameters with MinHash-10-128 as baseline

Approximation Errors. We implement BFSMinHash
based on 64 bits Murmur hash function [37] and thus each
MinHash signature is 64 bits. In BFSMinHash, we have to
further fix three parameters: the shingle size l, the sam-
pling size of MinHash k and the Bloom filter size s. The
approximation error of MinHash algorithm is caused only
by sampling and shingle size while that of our BFSMin-
Hash is due to all the parameters. The larger the size of
sampling and Bloom filter, the closer that our algorithm
approximates to the actual Jaccard similarity. However,
we have to balance the tradeoff between approximation
errors and storage cost. We seek to determine the suit-
able parameters for BFSMinHash for our subsequent ex-
periments, by first comparing the performance among five
settings of our algorithm: 1) MinHash-10-128; 2) MinHash-
10-64; 3) BFSMinHash-10-64-512; 4) BFSMinHash-10-64-256;
5) BFSMinHash-8-64-256, where the numbers in the name
correspond to the value of l, k and s (only for BFSMinHash).
Among different settings, MinHash-10-128 theoretically has
the best performance since it has the largest sampling and
shingle size and no sketch. Given our goal is to evaluate the
approximation error between our BFSMinHash and Min-
Hash algorithm, we select MinHash-10-128 as the baseline
and compare its performance with that of the other four
algorithms. In addition, to evaluate the performance of
different algorithms, we define approximate error as the root
mean square error (RMSE) between the result of MinHash-
10-128 and that of the algorithm under comparison, i.e.,

RMSE =

√∑n
t=1(ŷt − yt)2

n
.

In this part, we randomly select two small sample
datasets from Wikipedia and Github datasets due to huge
number of pairs present in the original datasets. We select
400 pages from Wikipedia and 30 files from Github in which
each page or file in these samples has 4 revisions. After
chunking by StoreSim, the number of data chunks for both
samples is around 1600. Thus, the total number of pairs is

around 1,279,200 (

(
1600

2

)
). From Figure 4, we can see that

MinHash-10-64 without sketching outperforms the other
three for both datasets. The sampling size of MinHash-10-64
is 64, i.e., it will select 64 smallest MinHash signatures. The
storage cost for each chunk is 64*64 bits = 512 Bytes. We can
observe that BFSMinhash algorithms with the shingle size

4. https://github.com/divegeek/uscode
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of 10 are better than that with the shingle size of 8. This
is because a longer shingle size decreases the probability of
a given shingle appearing in any document. In addition,
we also observe that approximate error is influenced by
the ratio of the sampling size to the Bloom filter size. As
is shown in Figure 4, the performance of BFSMinhash-10-
64-512 is better than BFSMinHash-10-64-256 by about 6%.
However, the storage cost of BFSMinHash-10-64-256 (32
Bytes per chunk) is only half of BFSMinHash-10-64-512 (64
Bytes per chunk).

Considering the tradeoff between storage cost and ap-
proximate errors, in StoreSim we adopt the setting of
BFSMinHash-10-64-256. We observe that overall approxi-
mate errors of BFSMinHash-10-64-256 are about 10.4% for
Wikipedia and 12.2% for Github. Thus, an immediate ques-
tion is that are these approximation errors of BFSMinHash-
10-64-256 tolerable to find the pairs with the minimal in-
formation leakage? We will answer this question in the next
group of experiments. In the following, we use BFSMinHash
to refer to BFSMinHash-10-64-256 while MinHash refers to
MinHash-10-64.

Effectiveness of BFSMinhash. In the last experiment,
we evaluated approximate errors based on all the pairs.
In fact, the primary goal of our algorithm is to identify
those pairs which have minimal information leakage and
put them in the same cloud. Thus, we are more interested
in approximate errors of the pairs with the minimal infor-
mation leakage. Put bluntly, we are interested in those pairs
of nodes whose information leakage is low, say 0.3, rather
than those whose information leakage is very high, say 0.8,
since these do not serve our needs of placing similar nodes
on the same CSPs.

Therefore, in this set of experiments, we divide pairs into
ten groups in terms of their pairwise information leakage,
where the first group is all the pairs with information leak-
age less than 0.1 while the second group is set of pairs with
information leakage less than 0.2, and so on. The approxi-
mate errors of different groups are shown in Figure 5. It is
interesting to discover that the performance of BFSMinhash
is highly close to the MinHash algorithm for groups 1-7 of
Github dataset and groups 1-9 of Wikipedia dataset. For the
Github dataset, the performance of BFSMinhash degraded
dramatically after the information leakage is larger than 0.7
while for the Wikipedia dataset, the performance of BFS-
Minhash remains stable till the information leakage is 0.9.
The dramatic increase in approximation errors of the pairs
with large information leakage means that our algorithm
is not very accurate for the pairs with low similarities.
However, as stated earlier, in practice, we are targeted to
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Fig. 6. Precision and recall by varying threshold for (a) Github and (b) Wikipedia

identify the pairs with low information leakage (or high
similarity). Therefore, we can safely state that our BFSMin-
hash algorithm is effective enough to meet our demands
since it identifies pairs with information leakage as high as
0.7 with low error. To conclude and to answer the question
raised by the last set of experiments, the results clearly show
that our BFSMinHash is almost as effective as MinHash in
identifying the pairs with the minimal information leakage
while it can reduce the storage cost to 1/16 of MinHash.

Is the measured information leakage trustable? Given
the pairwise information leakage computed based on our
BFSMinhash algorithm, another question is that to what
extent we can trust those values. To answer this question,
we have to obtain the ground truth of pairwise informa-
tion leakage. Instead of using Human evaluation [25], we
compute pairwise similarities among all the data chunks
using the Gensim library5 for calculating cosine similarity
between documents based on TF-IDF weights. We assume
that the ground truth of pairwise information leakage is
highly close to the result computed by Gensim algorithm6.
Based on the Gensim result, we can generate the relevant set,
which is denoted as R, as the set of pairs whose information
leakage is less than 0.2. In the next step, we will query a
set of pairs from the result generated by our BFSMinHash
algorithm, denoted as search set S, with information leakage
threshold ranging from 0.1 to 0.7. i.e., we query all the pairs
with information leakage less than 0.1, all the pairs with
information leakage less than 0.2, and so on. Therefore, we
can calculate the precision, i.e., the fraction of searched pairs
that are relevant to all the searched pairs, and recall, i.e.,
the fraction of the searched pairs that are relevant to all the
relevant pairs, based on the search set S and relevant set R

: Prescion =
|S ∩R|
|S|

, and Recall =
|S ∩R|
|R|

.

Figure 6 shows the results of both datasets. It clearly
shows the tradeoff of precision and recall under different
information leakage thresholds. For the Github dataset,
choosing threshold as 0.4 achieves both good precision(0.85)
and recall(0.75). To our surprise, for the Wikipedia dataset,
both the precision and recall can be as high as 99.5%
when we set the threshold to 0.3. That means the search
set generated by our BFSMinhash algorithm is almost the
same as the relevant set which is generated by Gensim
algorithm. Therefore, we can safely reach the conclusion
that the information leakage computed by BFSMinHash
algorithm can be almost as good as that of GenSim by

5. http://radimrehurek.com/gensim/
6. We note that we cannot apply Gensim to StoreSim since it is too time

expensive. For the given data, it took us more than 24 hours to compute the
information leakage for all pairs on a server machine.
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choosing an appropriate threshold. In this case, we can set
the threshold as 0.4 for both datasets, which is the point
in both Figure 6(a) and (b) where a good balance between
precision and recall is achieved. Furthermore, we can also
observe from Figure 6, that the performance of BFSMinhash
and Minhash are similar for low thresholds. This further
confirms the effectiveness of our BFSMinHash algorithm in
identifying the data pairs with low information leakage.

7.4 SPClustering
In this part, we will evaluate the performance of our storage
plan generation algorithm SPClustering. Besides the metric
of RIL as defined in Section 6.1, we further define a new
metric, information density (InfoD) from the perspective of
entire dataset. The InfoD of a CSP is defined as the ratio of
the information it has stored to the entire information in the
whole dataset. Given a CSP si = (ui, vi) ∈ S, we further
denote the set of data nodes which are also centroids stored
in si as sci and the InfoD of si is computed as:

InfoDi =
|vci |∑|S|
j=1 |vcj |

(7)

where
|S|∑
j=1

|vcj | denotes the total number of centroids in a

dataset. From Equation 7, we approximate the total infor-
mation in a dataset to that information in its centroids since
the centroid represents all data nodes which are similar to
it. Base on this, the InfoD of a storage planM for a dataset
is computed as the weighted average InfoD of each CSP:

InfoDM =

|S|∑
i=1

ui ∗ InfoDi (8)

For example, consider all CSPs with equal normalized

weights of
1

|S|
. Here the optimal case of storage plan

ensures that InfoD =
1

|S|
, with every cloud obtaining

1

|S|
of total information, (i.e., InfoDM =

1

|S|
); while the

worst case is InfoD = 1 with every cloud obtaining all the
information in the dataset, (i.e., InfoDM = 1). Thus, we
can see that the higher the InfoD is, the more information
are leaked to each SDC.

In the following, we will evaluate the goodness of stor-
age plan generated by our SPClustering in terms of both RIL
and InfoD to answer three questions:

• What’s the impact of user’s modifications of data on
the information leakage?
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• Is there any effect on the number of CSPs on which
the users distribute their data?

• How does the weight specified to different CSPs by
users influence the information loss?

Number of modifications. In this set of experiments,
we have five CSPs with equal weights. After each modi-
fication, the dataset will be synchronized to clouds using
delta encoding. The more modifications a dataset has un-
dergone, the more resultant similar chunks. Figure 7 shows
the influence of number of modifications on information
leakage of storage plans generated by both SPClustering
and Round Robin (RR) algorithms. It clearly shows that
SPClustering outperforms RR greatly for both the Wikipedia
and Github datasets. From Figure 7 (a), we can observe
that with the increase in number of modifications, the RIL
of SPClustering decreases, by about 30% (from the first
modification to the last), much more quickly than RR, which
decreases by only about 16%. The decrease of RILs implies
that modifications on a dataset brings about more similar
chunks. Our SPClustering algorithm is much more effective
than RR to place those similar data chunks with the minimal
information leakage in the same cloud. In Figure 7 (b), we
can observe that RR without clustering the similar data
nodes leaks the information in the dataset quickly, for the in-
foDs of RR increase to about 80% and 40% for Wikipedia and
Github, respectively. Recall that the number of data chunks
in Wikipedia dataset is much larger than that in Github,
which also brings about much more similar data chunks.
Thus, under RR without optimization on data chunks dis-
tribution, we can observe that Wikipedia leaks information
much quicker than Github. On the other hand, InfoDs of
our approach almost remains stable (around 22%, 25% for
Github and Wikipedia, respectively), which indicates that
our approach prevents the information leakage effectively.
The reader may recall that the files in Wikipedia dataset
have undergone a maximum of 49 modifications while that
of Github a maximum of 8 modifications. Thus, we only
compare the first 9 versions of Wikipedia dataset to that of
whole Github dataset in Figure 7. If we evaluate the whole
Wikipedia dataset with 49 modifications, the final RILs of
Wikipedia decreases to 9.7% while InfoDs of Wikipedia
increase to 31%. Thus, we can conclude that our approach
greatly prevents information leaked in the process of data
synchronization.

Number of CSPs. In this set of experiments, we fix
the number of modifications to 8 and vary the number
of CSPs from 2 to 5. All CSPs in the experiments have
the same weight. In Figure 8(a), we can see that the RILs
of SPClustering are almost stable for both datasets while
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Fig. 9. (a) Effect of user’s weight and (b) Pruning efficiency by ClusterIndex

those of RR increase steadily. The stable RIL implies that
SPClustering algorithm is effective to prevent information
leakage by putting the pairs with the minimal information
leakage together regardless of the number of CSPs. As for
RR, with the increase in number of CSPs, the probability of
putting data pairs with minimal information leakage in the
same cloud decreases, thereby leading to increased RIL. In
Figure 8(b), we can observe that InfoDs of our approach
decreases as the number of CSPs increases. This is the
benefit of multicloud environment and the more CSPs there
are, the less the data obtained by each cloud. However,
we can observe from Figure 8(b) that a CSP under RR
without considering information leakage can obtain more
than 70% of entire Wikipedia dataset and 40% of Github
dataset even with a total of 5 CSPs while SPClustering can
achieve near-optimal value with respect to InfoD. For all
cases, we observe that SPClustering improves the InfoD by
about 60% and 45% for Wikipedia and Github respectively,
compared to RR, which means SPClustering prevents about
60% of total information in Wikipedia from being leaked.

User-specific weight. In practice, users may have dif-
ferent weights for different CSPs. In StoreSim, the weight
of each CSP not only coordinates the storage load but also
the InfoD for preventing the information leaking. In this
part, we do the experiments with 5 CSPs with normalized
weights. We increase the weight of one CSP from 0.2 to 0.5
while the remaining is evenly distributed to the other four
CSPs. Both datasets have 8 modifications and are synchro-
nized to five CSPs for 9 times. Figure 9(a) shows the results
for the CSP with the varying weight under SPClustering and
weighted round robin (WRR). The bottom most line represents
the expected InfoD in terms of user specified weights. Under
SPClustering, it can be clearly observed that users can
control the InfoD of a CSP by assigning different weights to
it. However, the results also shows that information leakage
of WRR for Wikipedia dataset can be as high as nearly 100%
when it is assigned to obtain only 50% of the entire data.
In other words, under WRR, the CSP ends up obtaining
nearly all the information even though the user expected it
to obtain only 50%.

ClusterIndex. Finally, we evaluate the pruning efficiency
of ClusterIndex employed by SPClustering algorithm. We
vary the number of data nodes in ClusterIndex from 2000 to
90,000 in Wikipedia dataset and compare the performance
with that of indexing without considering clustering. We
only evaluate based on Wikipedia dataset since the number
of data chunks in Github is limited. As is shown in Figure
9(b), ClusterIndex can reduce the number of searched pairs
by 86% without much tradeoff on the precision (about 2.6%,
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not shown in the figure).

7.5 System Attackability Analysis
Attack model. We assume that the attackers maintain a
network of resources to establish multiple attack channels to
launch attacks to the target system. The attack channel can
be either the communication links in computer networks
(e.g., cyber attack) or the Human connections in social
engineering (e.g., insiders attack). We define the average
cost of an attack channel as c which can be evaluated in
terms of time or money. In the multicloud scenario, instead
of a single point of attack to get everything, the attackers
have to figure out many things e.g., the number of CSPs
that stores the data and the impact on the number of attack
channels along with the increase in the number of CSPs,
which makes the attack much more complex. To model
this complexity, we assume that the attack channels has a
polynomial growth rate O(nm) with the number of CSPs
adopted in a multilcoud system, where n is the number of
CSPs andm is denoted as multicloud effect factor. Thus, given
the average cost per attack channel c, we can define the cost
function of an attack as f(c, n,m) = c ∗ nm, which captures
that the cost of an attack increases with the number of attack
channels. The c is mathematically a scale factor which can
incorporate other extra costs due to the diversity factors in
different systems. For example, the attacker may take more
time and money on attacking an encrypted system.

System attackability. For different CSPs storing different
proportion of information, w1, w2, . . . with probabilities of
being compromised in an attack, p1, p2, . . . , the expected

benefit for attackers is
n∑
i=1

pi ∗ wi. Based on this, We define

the attackability of a system as a benefit-cost ratio to the
attacker.

attackability =

∑n
i=1 pi ∗ wi
c ∗ nm

, 0 < pi, wi ≤ 1 (9)

In other words, the attackability of a system is a measure of
utility of potential attacks in terms of benefits gained and
costs incurred. We can see that the high attackability of a
system means that the attacker can gain high benefits at low
costs. The probability pi can be also interpreted as the risk of
information leakage for each SDC. We note that pi can equal
1 which can happen under the insider attack or coercion
from the government. We also note that the attackability
of a system is inversely proportional to nm, which means
that the more CSPs a multicloud system has and the higher
multicloud effect is, the more arduous a system can be
compromised.

Multicloud system settings. In this section, we further
discuss four different settings of the mutlicloud system: 1)
SingleCloud, a single centralized cloud storage system with
n = 1, w1 = 1: in this case, multicloud effector factor m
has no impact on the number of attack channels since it is
not a multicloud system. The attackability of SingleCloud
is
p1

c
, which only depends on the average cost and the

probability of CSP being compromised. 2) OptMulCloud, an

optimal multicloud storage system with n > 1,
n∑
i=1

wi = 1

: under this case, we can see that all the information are
ideally distributed among the SDCs, corresponding to the
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Fig. 10. Attackability of different systems with c=1, m=2, p=0.001

weight of each SDC. 3) StoreSim, our proposed system
approximates to the optimal status by putting all the similar
data nodes in the same cloud. 4) StoreRR, the system with
RR data distribution: the system without clustering similar
data nodes in the same cloud may leak more information
during the distribution. Both StoreSim and StoreRR have

the setting that n > 1,
n∑
i=1

wi > 1.

Proof of effectiveness. For the purpose of comparison,
we keep three factors c as 1,m as 2 and p as 0.001 unchanged
while varying the number of CSPs n from 1 to 5. We assume
that all the CSPs are equally reliable with the same proba-
bility p = 0.001 of being compromised (i.e., the reliability of
all the CSPs is 0.999) and all the CSPs are assigned the same
weight to get the same amount of information. The values
of wi for StoreSim and StormRR are supplied by values of
information density which are derived from our evaluation.
Figure 10 shows the attackability of four proposed systems.
It is clear that our proposed StoreSim, whose performance
is near to that of OptMulCloud, is two times more complex
than StoreRR to be attacked as the number of CSPs is 5.
As for SingleCloud system (n = 1 in the Figure 10), all
the information are stored in only one centralized cloud,
which leads to a high value of attackability. Furthermore, it
is worth mentioning that the attackability of StoreRR with
5 CSPs is higher than that of StoreSim with only 3 CSPs.
This is an important result which shows that unplanned
data distribution is worse than our scheme even under the
presence of comparatively more CSPs.

From our attackability analysis, we can safely conclude
that under our proposed StoreSim system, optimized data
distribution across the multicloud reduces the risk that
wholesale information is leaked and makes the attacks on
retail information much more complex.

7.6 Discussion
In this part, we will discuss limitations of our StoreSim from
four perspectives.

CPU overhead. It is clear that the client in our system
performs more additional work which introduces more
computation. To reduce the CPU overhead, we choose
MinHash algorithm with a single hash function and pro-
pose SPClustering with ClusterIndex as discussed before. In
addition, we design BFSMinHash, which combines Bloom
filters and MinHash algorithm, to further reduce the size
of similarity-preserving fingerprints by 1/16. In StoreSim,
there are four main components in the client: deduplication
based on SHA-1 signature, LMLayer based on BFSMinhash
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and SPClustering, encryption/decryption based on AES-
256 (same with that employed by SpiderOak [38]) and
bundling based on ZIP. We evaluate the overhead intro-
duced by LMLayer in terms of four configurations: 1) Nor-
mal : deduplication and bundling; 2) LMLayer : deduplica-
tion, LMLayer and bundling; 3) En/Decrypt: deduplication,
encryption/decryption and bundling; 4) All: all together.
We compare the time cost by varying the size of files from
1MB to 1GB and Figure 11 shows the results. The time cost
starts from dividing input files into small chunks and ends
with assembling chunks to the original file. The En/Decrypt
mode has an additional overhead since it has to decrypt the
chunks before assembling. We discover that for small files of
size less than 10MB, the overhead introduced by LMLayer
is almost the same as the En/Decrypt mode. Especially in the
case of 1MB, the performance of LMLayer is better than that
of En/Decrypt mode. We conjecture this is because compared
to En/Decrypt mode which needs key setup, there is no
initialization overhead for measuring information leakage.
For the large files (both 100MB and 1GB), the overhead
of LMLayer is about 20% higher than that of En/Decrypt.
In all cases, we notice that even in the All mode with all
components running, the time cost is still tolerable for cloud
storage services.

Storage overhead. The storage overhead depends on the
Bloom filter size in BFSMinHash algorithm. In pratice, we
set the Bloom filter size as 256 bits such that each chunk has
the storage overhead of 32 Bytes. In other words, the storage
overhead of 1GB data is around 64 KB if the chunk size is
512KB. Thus, the storage overhead is very low and constant
(about 0.006% in our case). However, with the increase in the
size of total data, the CPU overhead will increase as shown
in Figure 11.

Syntactic vs Semantic. In our paper, the information
leakage function is designed based on syntactic similarity
metric rather than semantic measures such as semantic
similarity, semantic relatedness and semantic distance [39].
Thus, our system is incapable of detecting the private data
such as financial documents and compromising photos in
a semantic manner. Distributing data based on semantic
measures is an orthogonal task to ours, since efficiently
analyzing semantic similarity in users’ data involves data
curation and sophisticated machine learning techniques,
which are not always time efficient for large datasets. Our
future work will focus on developing efficient algorithms of
optimizing privacy in multicloud storage based on seman-
tics. These algorithms can be incorporated in our StoreSim
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Fig. 11. Time cost with different configurations by varying file size

as plugin modules.
Encryption vs StoreSim. Encryption is the most

strongest and effective way to prevent information leakage.
However, if all the data are encrypted, users will not be able
to enjoy many other services provided by storage service
providers such as file sharing or collaboration. Most of these
services cannot operate over the ciphertext. Though there
are some works on homomorphic encryption (i.e., allows
computations to be carried out on ciphertext) [40], resorting
to encryption as the ultimate solution to prevent infor-
mation leakage requires rewriting most of the cloud stor-
age applications, which is evidently non-realistic. StoreSim
provides an alternative approach to reducing information
leakage to each CSP by optimizing data chunks distribution
algorithms. In addition, StoreSim can also incorporate en-
cryption after detecting near duplicate chunks and placing
them together. Then, the information leakage can be reduced
even if the encryption key is exposed. As shown in the
Section 7.5, there is no single point of attack which can leak
the wholesale information.

8 CONCLUSION

Distributing data on multiple clouds provides users with a
certain degree of information leakage control in that no sin-
gle cloud provider is privy to all the user’s data. However,
unplanned distribution of data chunks can lead to avoidable
information leakage. We show that distributing data chunks
in a round robin way can leak user’s data as high as 80% of
the total information with the increase in the number of data
synchronization. To optimize the information leakage, we
presented the StoreSim, an information leakage aware stor-
age system in the multicloud. StoreSim achieves this goal
by using novel algorithms, BFSMinHash and SPClustering,
which place the data with minimal information leakage
(based on similarity) on the same cloud. Through an exten-
sive evaluation based on two real datasets, we demonstrate
that StoreSim is both effective and efficient (in terms of
time and storage space) in minimizing information leakage
during the process of synchronization in multicloud. We
show that our StoreSim can achieve near-optimal perfor-
mance and reduce information leakage up to 60% compared
to unplanned placement. Finally, through our attackability
analysis, we further demonstrate that StoreSim not only
reduces the risk of wholesale information leakage but also
makes attacks on retail information much more complex.
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