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Supershear bursts in the propagation of a tensile crack in linear elastic material
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Since the early years of the linear elastic theory of fracture [linear elastic fracture mechanics (LEFM)],
scientists have sought to understand and predict how fast cracks grow in a material or slip fronts propagate
along faults. While shear cracks can travel faster than the shear wave speed, the Rayleigh wave speed is the
limiting speed theoretically predicted for tensile failure. This work uncovers the existence of supershear episodes
in the tensile (mode I) rupture of linearly elastic materials beyond the maximum allowable (sub-Rayleigh)
speed predicted by the classical theory of dynamic fracture. While the admissible rupture speeds predicted by
LEFM are verified for smooth crack fronts, we present numerically how a supershear burst can emerge from
a discontinuity in crack front curvature. Using a spectral formulation of the three-dimensional elastodynamic
equations coupled with a cohesive model of fracture, we study how these short-lived bursts create shock waves
persisting far from the discontinuity site. This study provides insight on crack front instabilities present in the
rapid tensile failure of brittle materials due to large distortions of the rupture front.
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I. INTRODUCTION

How fast cracks can propagate in linearly elastic solids is
a long-standing question that has challenged scientists and
engineers for many decades. The classical theory of linear
elastic fracture mechanics (LEFM) [1,2] predicts that the
Rayleigh wave speed cR of the surrounding bulk material is
the limiting propagation speed of tensile (mode I) cracks,
while intersonic crack speeds (i.e., between the shear wave
speed cs and the dilatational wave speed cd ) are allowed for
in-plane shear (mode II) cracks. Using a nonsingular cohe-
sivelike description of fracture, Burridge [3] and Andrews
[4] proposed a mechanism enabling shear cracks to transition
between the subsonic and intersonic regimes.

Due to crack kinking or branching, the experimentally
measured speeds of tensile cracks are substantially lower,
rarely exceeding 0.65cR [5–7]. The postmortem observation
of the fracture surfaces revealed the origin of the discrepancy
between the dynamic fracture theory and the experiments. As
the rupture speed increases, the crack stops having a unique
sharp tip and becomes a smeared rupture front interplaying
with the material microstructure. A complete review of the
dynamic fracture experiments and discussions about their in-
herent instabilities can be found in [5,6,8–11]. The appearance
of the fracture surface typically follows a three-stage (mirror-
mist-hackle) transition. The mirrorlike surface observed at
low rupture velocities progressively roughens with the appear-
ance of in-plane surface marks as the crack speed approaches
a few tenths of cR (mist). As the crack speed typically exceeds
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0.4cR , aborted microscopic branches start growing out of the
rupture plane with a repetitive pattern (hackle), up to the
occurrence of a macroscopic branching event if the rupture
speed keeps increasing. This progressive onset of dynamic
instabilities, which were observed within various kinds of
brittle materials [9,12–15], can be suppressed by constraining
crack growth along a weaker rupture plane [16,17] or by
reducing the specimen thickness up to plane stress conditions
[18–20]. The latter revealed the three-dimensional nature of
these dynamic instabilities, which occur when the transla-
tional invariance is broken, and explained why their theoreti-
cal and numerical description is particularly challenging and
still overlooked.

The first-order perturbation analyses of an initially straight
crack front became well-established approaches to describe
the three-dimensional (3D) effects associated with the dis-
tortion of quasistatic [21,22] and dynamic crack fronts [23].
These approaches, grounded on the hypothesis of small dis-
tortions of the front, have indeed been extensively used to
study crack propagation within disordered materials [24,25].
However, during dynamic instabilities, large distortions are
expected to arise locally along the front, including the for-
mation of cusps [26]. The higher-order effects associated with
these large distortions of the crack front are the focus of the
present study.

Using a spectral formulation of the 3D elastodynamic
equations coupled to a cohesive zone model of fracture, this
work investigates the rupture dynamics subsequent to large
distortions of the crack front in the presence of a tougher
asperity. Our study uncovers how supershear events can also
occur during mode I tensile ruptures, and how these events
are triggered by local discontinuities emerging along the crack
front.
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Supershear fronts and their strong impact on the rupture
dynamics received much attention in the context of shear
cracks and earthquakes, for which slip fronts have been mea-
sured to propagate faster than cs along some portion of the
fault [27–31]. Similarly to supersonic aircraft, elastic waves
radiated from supershear cracks gather to form shock wave
fronts, also referred to as Mach cones, leading to particularly
violent earthquakes [32–36]. Several studies have described
how local variation in toughness or elastic properties can
precisely favor the supershear transition of a mode II crack
[37–43]. Despite the relative rarity of supershear earthquakes
reported in nature, recent experiments [44] suggest that short-
lived supershear events may frequently occur at small scales
of crustal fault, out of the resolution of seismic inversion, yet
significantly impacting the rupture dynamics.

Similarly, our study demonstrates how the short-lived su-
pershear bursts existing only at the cusp locations along a
tensile crack front create nevertheless persistent shock waves,
capable of perturbing the dynamics far from the initial dis-
continuity site. This new result finds direct relevance in the
fast tensile rupture of materials characterized by dynamic
instabilities, for which crack front discontinuities are expected
to occur at heterogeneities [8,13,14] or to emerge from micro-
branching instabilities [26,45].

II. SETUP

We study the in-plane crack front propagation along a weak
plane located along y = 0 in an infinite linearly elastic solid
initially at rest under a uniform tensile stress σ0. At time
t = 0, a straight crack front parallel to the z axis starts to grow
dynamically in the positive x direction before encountering a
row of asperities. This 3D fracture problem is solved using
a boundary integral formulation of the elastodynamic equa-
tions [46,47] relating the normal displacement jump (or crack
opening displacement) δn(x, z, t ) and the normal traction
stress τn(x, z, t ) acting on the fracture plane. This numerical
method, referred to as the spectral scheme, allows for a very
fine discretization of the fracture plane, especially within
the failure zone described by a linear cohesive failure law
modeling the evolution of the cohesive strength of the material
in the immediate vicinity of the crack front:

τ str(x, z, t ) = τc(x, z) max [1 − δn(x, z, t )/δc(x, z); 0]. (1)

In Eq. (1), τc and δc respectively denote the spatially varying
failure strength and critical crack opening displacement of
the weak plane. The nonlinear dissipative processes associ-
ated with the dynamic failure event are thus confined to the

crack plane, with the fracture energy given by Gc(x, z) =
1
2τc(x, z)δc(x, z).

III. ELASTODYNAMICS AND NUMERICAL METHOD

Let us consider two semi-infinite solids with the same
linearly elastic properties bonded together along the plane
(y = 0) initially at rest under a uniform tensile stress σ0 such
that

u̇+(x, y, z, t = 0) = u̇−(x, y, z, t = 0) = 0,

σ+
yy (x, y, z, t = 0) = σ−

yy (x, y, z, t = 0) = σ0. (2)

In the above equations, u̇ is the velocity field and σ the
Cauchy stress tensor, while the superscripts +/− respectively
denote the top (y > 0) and bottom (y < 0) half spaces. The
momentum balance equation in the linear elastic materials in
the absence of body forces can be written as

c2
d∇(∇ · u±) − c2

s ∇ × (∇ × u±) = ∂2u±

∂t2
, (3)

where cs denotes the shear wave speed, cd =
√

2(1−ν)
1−2ν

cs =ηcs

is the dilatational wave speed, and ν is the Poisson’s ratio.
The numerical method adopted in this work relies on a
spectral boundary integral formulation of the elastodynamic
relation between the traction stresses acting on the fracture
plane located between two linearly elastic half spaces and the
resulting displacements. The steps leading to the boundary
formulation of this elastodynamic equation are detailed in
[46] for the combined spectral formulation and in [47] for
the independent spectral formulation. In this article, the 3D
independent formulation is adopted, for which the interface
tractions τj are related to the displacements uj by

τ±
j (x, z, t ) = τ±

0,j (x, z, t ) − Vjk

∂u±
k

∂t
(x, z, t ) + f ±

j (x, z, t ).

(4)
The first right-hand side (RHS) term τ±

0,j = {0, σ0, 0}� ac-
counts for the preexisting traction stresses present along the
interface in absence of any crack. The second RHS term
represents the instantaneous response to a change in interface
velocity, where Vjk is the diagonal matrix

Vxx = Vzz = μ/cs, Vyy = ημ/cs, (5)

with μ denoting the shear modulus. The last term, f ±
j (x, z, t ),

accounts for the history of interface displacements and is
expressed in the spectral domain as convolution integrals

{f ±
j (x, z, t ); u±

j (x, z, t )} = ei(kx+mz){F±
j (k,m, t ); U±

j (k,m, t )}, (6)

with⎧⎨
⎩

F±
x (k,m, t )

F±
y (k,m, t )

F±
z (k,m, t )

⎫⎬
⎭ = −iμ(2 − η)

⎛
⎝0 −k 0

k 0 m

0 −m 0

⎞
⎠

⎧⎨
⎩

U±
x (k,m, t )

U±
y (k,m, t )

U±
z (k,m, t )

⎫⎬
⎭ − μq

∫ t

0

⎡
⎣i

Hxy (qcst
′)

|q|

⎛
⎝0 −k 0

k 0 m

0 −m 0

⎞
⎠ ± Hyy (qcst

′)

⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠

±Hxx (qcst
′)

q2

⎛
⎝ k2 0 km

0 0 0
km 0 m2

⎞
⎠ ± Hzz(qcst

′)
q2

⎛
⎝ m2 0 −km

0 0 0
−km 0 k2

⎞
⎠

⎤
⎦

⎧⎨
⎩

U±
x (k,m, t − t ′)

U±
y (k,m, t − t ′)

U±
z (k,m, t − t ′)

⎫⎬
⎭|q|csdt ′ (7)
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FIG. 1. Convolution kernels Hij (T ) for ν = 0.35.

and q = √
k2 + m2. The convolution kernels, Hij (T ), whose

expressions can be found in [47], are presented in Fig. 1 for
the material properties considered in the article (ν = 0.35).
For the mode I fracture problem of interest, the spectral
formulation [Eq. (4)] is completed by interface conditions
which imply the continuity of tractions and displacements
along the interface as long as the normal traction τy is lower
than the interface strength τ str defined in Eq. (1). Otherwise,
the fracture process breaks the continuity of displacements
and the velocity ∂u±

j /∂t of the crack faces are computed such
that τ+

y = τ−
y = τ str, while the value of the interface strength

is related to the opening displacement jump δn = u+
y − u−

y

through the cohesive failure model described by Eq. (1).
Finally, the elastodynamic relations are integrated in time
using an explicit time-stepping scheme

u±
j (x, z, t + �t ) = u±

j (x, z, t ) + ∂u±
j

∂t
(x, z, t )�t, (8)

with the time step size defined as the fraction β of one grid
spacing �x traveled by a shear wave: �t = β �x/cs . In this
article, β = 0.2 is chosen to guarantee the stability of the
solution as discussed in [47]. The rupture planes studied in
this article are typically discretized with 4096×1024 points
in the x and z directions, respectively, providing more than
4×106 sampling points along the fracture plane.

IV. METHODOLOGY

A seed crack whose tips are initially parallel to the z axis
is artificially grown in the positive x direction from x = 0,
while the propagation of the left tip is prevented. In an infinite
solid under uniform tension σ0, the rate of energy released by
growing a static through crack of size L is given by

G(v = 0, L) = (1 − ν2)

E
(σ0)2π

L

2
. (9)

At t = 0, the crack reaches the critical size Lc where
G(v = 0, L = Lc ) exactly equates the fracture energy GH

c

and starts to propagate dynamically at a speed v > 0. Lc

corresponds then to the largest stable crack size [39,43,48]
given by

Lc = 2GH
c

π (σ0)2

E

(1 − ν2)
, (10)

FIG. 2. Typical crack tip dynamics observed along a homoge-
neous fracture plane. The dashed line highlights the Rayleigh wave
speed.

where E and ν respectively denote the Young’s modulus and
Poisson’s ratio of the elastic solid, and GH

c is the fracture
energy of the homogeneous portion of the fracture plane. In an
infinite homogeneous solid, Freund [1] showed that the energy
release rate evolves with propagation speed as G(v, L) =
g(v)G(v = 0, L), with g(v) denoting a function which is
unity for v = 0 and zero for v = cR . Combining Eqs. (9) and
(10), the dynamic energy balance can be expressed as

G(v, L) = GH
c ⇔ L

Lc

= 1

g(v)
. (11)

In this framework, Fig. 2 reports the crack dynamics obtained
along a perfectly homogeneous interface compared to Fre-
und’s approximation for a semi-infinite crack g(v) ≈ (1 −
v/cR ) [1]. In the initial phase of the heterogeneous failure
event studied in this article, the crack accelerates with a
straight front through a homogeneous region stretching from
x = Lc to x = 2Lc, at which point it encounters a tougher cir-
cular asperity of diameter ø= Lc and fracture energy G

asp
c =

ζGH
c , with τ

asp
c /τH

c = δ
asp
c /δH

c = √
ζ . This setup leads to a

crack propagation speed v = 0.6cs as the rupture front hits the
asperity. Different incident crack front speeds can therefore
be investigated by changing the asperity position according
to Fig. 2.

Due to the spectral nature of the numerical scheme, which
is based on a Fourier series representation of the spatial
variation of the interface quantities, the domain of interest is
periodic, with a period chosen as X = 10Lc and Z = 2.5Lc.
The simulated fracture event thus involves the dynamic in-
teraction of an initially straight mode I crack with a row of
circular asperities.

V. MATERIAL PROPERTIES

Material properties of Homalite have been chosen for
the simulations reported in the article; Young’s modulus
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FIG. 3. A supershear burst occurs at the cusp located at the center of the crack front line z = 1.25Lc. (a) Evolution of the crack front line
(in red) captured at regular time interval. (b) Space-time diagram of the rupture event along z = 1.25Lc. Colors divide broken surface (yellow),
cohesive zone (red), and intact interface, which is either black (homogeneous properties) or white (tougher asperity). (c) Evolution of crack
front velocity along z = 1.25Lc. The dashed black line depicts the Rayleigh wave speed.

E = 5.3 [GPa], Poisson’s ratio ν = 0.35, and shear wave
speed cs = 1263 [m/s]. The interface fracture energy GH

c =
50 [J/m2] is defined by the two parameters entering the co-
hesive failure model [Eq. (1)] τH

c = 5 [MPa] and δH
c = 0.02

[mm].

VI. SUPERSHEAR BURSTS

Rice [21] described how the distortion of a crack front
interacting with an asperity may locally increase the stress
intensity factor to a value sufficiently large to rupture the
asperity. Following his first-order perturbation analysis, the
interaction of quasistatic [22] and dynamic [23] crack fronts
with heterogeneities can be precisely described as long as
the perturbation to the crack front is small. Our numerical
work thereby aims at widening the investigation toward larger
toughness contrasts where higher-order effects cannot be ne-
glected. In this context, our study uncovers the existence of
short-lived supershear bursts emerging from large front dis-
tortions as presented in Fig. 3 for ζ = 3. A parametric study
where ζ is varied can be found later in the article. At the center
of the domain (along the line z = Z/2 = 1.25Lc), Fig. 3(c)
presents the evolution of crack front speed, which is always
in the x direction due to symmetry. Right after rupturing
the heterogeneity, the crack speed temporarily exceeds cs ,
which is visually confirmed in Fig. 3(b). This supershear burst
extends beyond the center line, as illustrated in Fig. 4(a),
which presents the distribution of apparent crack velocity
(i.e., the crack velocity vx in the x direction) over the entire
crack plane. A related study conducted in mode II [38] has
shown that asperities can be triggering sites for supershear
propagation of shear cracks. However, unlike its mode II
counterpart, super-Rayleigh propagation of tensile (mode I)
cracks in a linear elastic material is energetically impossible.
This fundamental result of the dynamic theory of LEFM is
indeed verified in Fig. 4(b), which presents the spatial distri-

bution of the crack speed vn computed normal to the front.
As apparent there, the crack speed remains sub-Rayleigh as
long as the crack front curvature is continuous. The evolution
of the crack front shape presented in Fig. 3(a) reveals how
the emergence of a cusp along the front line coincides with
the episode of supershear propagation. The latter emerges

FIG. 4. The supershear burst arises exclusively at the cusp
emerging along the front at z = Z/2. Evolution of the crack front
velocity vx/cs in the x direction (a) and in the direction normal to
the crack front vn/cs (b) computed along the interface for z < Z/2
and z > Z/2. The color map is scaled between the minimum and
maximum values verifying the supershear range of the apparent
forward velocity vx and the sub-Rayleigh range of the normal crack
speed vn (cR

∼= 0.934cs) predicted by LEFM for a smooth crack
front.
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FIG. 5. Schematic representation of a kinked crack front, with n
denoting the unit normal at (z, t).

exclusively at z = Z/2 where the symmetry of the problem
implies that vn = vx , except in the presence of a cusp for
which the normal is not defined and LEFM assumptions break
down. Nevertheless, the propagation velocity of the cusp can
be rationalized with geometric arguments, as presented in the
next section.

VII. GEOMETRICAL MODEL

Next, we introduce a geometrical model that explains and
predicts how a sub-Rayleigh crack velocity in the normal
direction of the front can yield supershear velocity on the pro-
jected forward direction, when a geometrical cusp is formed.

Let a(z, t ) denote the amplitude of the front distortion, i.e.,
the advance of the crack front at location z and time t relative
to the front location at the kink (z = Z/2) (Fig. 5). Let us
assume that the crack front propagates at uniform subsonic
speed κcR (with κ < 1) in the direction of the local normal
n to the front. Geometrical arguments readily lead to the
following approximate expression of the forward velocity vx

of the front:

vx (z, t )

cR

≈ κ

√
1 +

(
∂a(z, t )

∂z

)2

. (12)

Based on the observed shape of the front immediately past the
asperity (see Fig. 3), let us adopt the following expression for
the shape of the front between 0 � z � Z/2:

a(z, t ) = a0(t )[−8(z/Z)3 + 1], (13)

where a0(t ) = a(0, t ) = a(Z, t ). Equation (13) corresponds
to the lowest-order polynomial satisfying a(0, t ) = a0(t ),
a(Z/2, t ) = 0 as well as the continuity of tangents and
curvatures across the periodic boundaries, i.e., ∂a

∂z
(0, t ) =

∂2a
∂z2 (0, t ) = 0. Combining Eqs. (12) and (13), we obtain the
values of the front perturbation at which the center point
(z = Z/2) is predicted to propagate faster than cR:

a0

Z
= 1

6κ

√
1 − κ2. (14)

This relation is presented in Fig. 6. As expected, the amplitude
of the front perturbation a0 at which supershear crack motion

FIG. 6. Amplitude of the front perturbation required to observe
vx > cR at the center point as a function of the incident crack speed
v. The dashed lines highlight the required amplitude for each of
the three different crack speeds considered in the parametric study
presented in Fig. 8.

appears decreases with increasing normal crack speed (i.e.,
with increasing value of κ).

For a given amplitude of the perturbation a0/Z, we can also
compute the section of the crack front defined as z∗ � z �
(Z − z∗) that has a forward motion faster than the Rayleigh
wave speed.

z∗

Z
=

( √
1 − κ2

24κ (a0/Z)

)1/2

. (15)

This relation is shown in Fig. 7 for different values of the
normal crack front speed. For the reference case of the article

FIG. 7. Portion of the crack front moving with a forward velocity
vx > cR . The dashed blue line emphasizes the expected portion for
the reference case studied in Fig. 4, while the value a0/Z = 0.371 is
read from Fig. 8 (v = 0.6cs and ζ = 3).
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FIG. 8. Maximum crack front deflection a0 observed for various
asperity toughnesses and three different values of the incident crack
speed v/cs . The deflection of the crack front interacting with the
tougher asperity either creates a supershear burst (star symbols) or
not (round symbols). From the geometrical model [cf. Eq. (14) and
Fig. 6], this observed transition is predicted to occur at a given crack
front deflection, which depends on the incident crack speed and is
depicted by the horizontal dashed lines.

(v = 0.6cs), Eq. (15) predicts therefore that the crack front,
just after being released from the asperity, has an apparent
forward velocity vx > cR along a portion corresponding to
0.37 � z/Z � 0.63 (or equivalently 0.925 � z/Lc � 1.575)
in agreement with the velocity profile presented in Fig. 3(a).

VIII. PARAMETRIC STUDY

The supershear bursts studied in the article for v = 0.6cs

and ζ = 3.0 are also observed with different incident crack
speeds or asperity toughnesses as reported in Fig. 8. The
dashed lines correspond to the predicted minimum front per-
turbation required to observe a supershear burst at the center
of the domain according to Eq. (14). The proposed model
gives therefore a quantitatively good prediction with fast crack
front speeds. At slower crack velocity, the front perturbation
becomes larger and stops complying with the model hypoth-
esis of a uniform speed in the normal direction. This inverse
relationship between the incident rupture speed and the front
deflection is obvious in Fig. 8 and can be understood from
Freund’s crack tip equation of motion [1]:

Gc = G = (1 − ν2)

E
AI (v)K2

I . (16)

In Eq. (16), KI and AI (v) are respectively the mode I stress
intensity factor and universal function defined by

AI (v) = αdv
2

(1 − ν)Dc2
s

, (17)

where α2
s,d = 1 − v2/c2

s,d and D = 4αdαs − (1 + α2
s )2. The

front perturbation analyses presented in [21–23] describe how
the crack front deflection created by the presence of the

asperity leads to an increase of the stress intensity factor
�KI at the edge of a tougher heterogeneity to compensate
its associated increase in interface fracture energy �Gc. In a
first-order approximation, this change in energy release rate
can be written as

Gc + �Gc = (1 − ν2)

E
AI (v)(KI + �KI )2. (18)

The velocity-dependent coefficient AI (v) monotonically in-
creases with v, which implies that the interaction of a faster
crack speed with a given heterogeneity characterized by �Gc

leads to a lower �KI , i.e., to a smaller deflection of the crack
front. For a more detailed description of the link between the
perturbation amplitude for a dynamically propagating crack
front and the associated effect on the local value of the stress
intensity factor, please see [23].

IX. SHOCK WAVES

Our study demonstrates how supershear propagation can
also exist in the tensile failure of linear elastic materials.
However, supershear events emerge exclusively where the
crack front curvature is discontinuous and occur thereby in the
form of localized bursts along the crack front. Nevertheless,
these short-lived bursts can have a significant impact on
the overall rupture dynamics through the creation of shock
waves associated with these supershear propagation events.
Figure 9(a) presents the profile of the normal opening ve-
locity field δ̇n just after the rupture of the heterogeneity.
Two surface wave fronts can be identified: a circular front
released by the failure of the asperity and growing radially
at the Rayleigh wave speed along the fracture surface, and
a triangular front characteristic of the shock wave generated
by the supershear motion of the crack. For several locations
along the fracture plane, Fig. 9(b) shows how the amplitudes
of these wave fronts are comparable to the opening velocities
observed during the rupture. Moreover, as the circular wave
front progressively decays as it expands along the fracture
surface, the triangular shock wave front propagates along the
fracture surface with a persistent amplitude (Rayleigh Mach
front [35]), as highlighted in Fig. 9(c). The shock waves
visible in Fig. 9 are moving at the Rayleigh wave speed and
are hence progressively catching up with the sub-Rayleigh
rupture front. A video of this rupture event is provided as
Supplemental Material [49]. As extensively discussed in the
context of mode II cracks [7,35,50], this supershear event
should also radiate a shear Mach cone out of the interface but
the latter is not directly observable using the boundary integral
formulation of interest.

X. CONCLUSION

Taking advantage of the fine discretization allowed by
the numerical scheme based on a spectral boundary integral
formulation of the 3D elastodynamic equations, we study the
large distortion of an initially straight dynamically propagat-
ing crack front as it interacts with a circular asperity. Our
study uncovers the existence of supershear bursts emerging
during the tensile failure of a linearly elastic material, beyond
the range of crack propagation speeds allowed by the classical
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FIG. 9. The supershear burst creates shock waves driving energy far from the asperity site. (a) Snapshot of crack opening velocity field δ̇n

following the failure of the asperity whose position is highlighted by the white dashed circle. The colored stars denote the positions at which
the time evolution of δ̇n is computed and presented in (b) and (c). (b) Evolution of δ̇n observed at the different positions highlighted in (a). The
strong surface waves caused by the rupture of the asperity are visible after the initial peak characteristic of the rupture front. (c) Zoom-in of
δ̇n history [dotted rectangle in (b)] emphasizing first the trace left by the persistent “triangular” shock wave, sharply followed by the decaying
“circular” front. The black curves correspond to additional sampling points located between the red and cyan positions.

theory of dynamic LEFM. The crack front speeds computed
in a direction normal to the propagating front remain sub-
Rayleigh as long as the front curvature is continuous, and
the supershear bursts are associated with the formation of a
cusp in the crack front caused by the heterogeneity. These
intersonic episodes create shock waves persisting along the
fracture surfaces far from the asperity site. Several exper-
imental studies [5,6,13] reported how fast tensile ruptures
(between a few tenths of cs and the branching velocity) di-
verge from LEFM predictions. These events are characterized
by significant crack front distortions caused by macro- [51]
and microscopic [8,14] heterogeneities and/or the nucleation
of microbranches able to form cusps along the crack front line

[26]. In this context, the resulting discontinuities are favorable
sites to trigger these short-lived “sonic booms” capable of
significantly impacting the overall rupture dynamics. We hope
that our work will motivate further investigations on hetero-
geneous dynamic fracture to establish whether experimental
ruptures confirm our linear elastic predictions or if material
nonlinearities and/or viscosity impede the emergence of su-
pershear bursts.

ACKNOWLEDGMENT

This work was supported by the Swiss National Science
Foundation (Grant No. 162569).

[1] L. B. Freund, Dynamic Fracture Mechanics, Cambridge Mono-
graphs on Mechanics and Applied Mathematics (Cambridge
University Press, Cambridge, 1990).

[2] B. V. Kostrov and S. Das, Principles of Earthquake Source
Mechanics, Cambridge Monographs on Mechanics and Applied
Mathematics (Cambridge University Press, Cambridge, 1988).

[3] R. Burridge, Geophys. J. Int. 35, 439 (1973).
[4] D. J. Andrews, J. Geophys. Res. 81, 5679 (1976).
[5] K. Ravi-Chandar and W. G. Knauss, Int. J. Fract. 26, 65 (1984).
[6] J. Fineberg and M. Marder, Phys. Rep. 313, 1 (1999).
[7] A. J. Rosakis, Adv. Phys. 51, 1189 (2002).
[8] K. Ravi-Chandar and W. G. Knauss, Int. J. Fract. 26, 141

(1984).
[9] K. Ravi-Chandar and W. G. Knauss, Int. J. Fract. 25, 247

(1984).
[10] E. Bouchbinder, T. Goldman, and J. Fineberg, Rep. Prog. Phys.

77, 046501 (2014).

[11] J. Fineberg and E. Bouchbinder, Int. J. Fract. 196, 33 (2015).
[12] E. Sharon and J. Fineberg, Nature (London) 397, 333 (1999).
[13] J. Scheibert, C. Guerra, F. Célarié, D. Dalmas, and D. Bonamy,

Phys. Rev. Lett. 104, 045501 (2010).
[14] C. Guerra, J. Scheibert, D. Bonamy, and D. Dalmas, Proc. Natl.

Acad. Sci. USA 109, 390 (2012).
[15] T. G. Boué, G. Cohen, and J. Fineberg, Phys. Rev. Lett. 114,

054301 (2015).
[16] P. D. Washabaugh and W. G. Knauss, Int. J. Fract. 65, 97 (1994).
[17] A. J. Rosakis, O. Samudrala, and D. Coker, Science 284, 1337

(1999).
[18] A. Livne, O. Ben-David, and J. Fineberg, Phys. Rev. Lett. 98,

124301 (2007).
[19] T. Goldman, R. Harpaz, E. Bouchbinder, and J. Fineberg,

Phys. Rev. Lett. 108, 104303 (2012).
[20] J. Bleyer and J.-F. Molinari, Appl. Phys. Lett. 110, 151903

(2017).

063002-7

https://doi.org/10.1111/j.1365-246X.1973.tb00608.x
https://doi.org/10.1111/j.1365-246X.1973.tb00608.x
https://doi.org/10.1111/j.1365-246X.1973.tb00608.x
https://doi.org/10.1111/j.1365-246X.1973.tb00608.x
https://doi.org/10.1029/JB081i032p05679
https://doi.org/10.1029/JB081i032p05679
https://doi.org/10.1029/JB081i032p05679
https://doi.org/10.1029/JB081i032p05679
https://doi.org/10.1007/BF01152313
https://doi.org/10.1007/BF01152313
https://doi.org/10.1007/BF01152313
https://doi.org/10.1007/BF01152313
https://doi.org/10.1016/S0370-1573(98)00085-4
https://doi.org/10.1016/S0370-1573(98)00085-4
https://doi.org/10.1016/S0370-1573(98)00085-4
https://doi.org/10.1016/S0370-1573(98)00085-4
https://doi.org/10.1080/00018730210122328
https://doi.org/10.1080/00018730210122328
https://doi.org/10.1080/00018730210122328
https://doi.org/10.1080/00018730210122328
https://doi.org/10.1007/BF01157550
https://doi.org/10.1007/BF01157550
https://doi.org/10.1007/BF01157550
https://doi.org/10.1007/BF01157550
https://doi.org/10.1007/BF00963460
https://doi.org/10.1007/BF00963460
https://doi.org/10.1007/BF00963460
https://doi.org/10.1007/BF00963460
https://doi.org/10.1088/0034-4885/77/4/046501
https://doi.org/10.1088/0034-4885/77/4/046501
https://doi.org/10.1088/0034-4885/77/4/046501
https://doi.org/10.1088/0034-4885/77/4/046501
https://doi.org/10.1007/s10704-015-0038-x
https://doi.org/10.1007/s10704-015-0038-x
https://doi.org/10.1007/s10704-015-0038-x
https://doi.org/10.1007/s10704-015-0038-x
https://doi.org/10.1038/16891
https://doi.org/10.1038/16891
https://doi.org/10.1038/16891
https://doi.org/10.1038/16891
https://doi.org/10.1103/PhysRevLett.104.045501
https://doi.org/10.1103/PhysRevLett.104.045501
https://doi.org/10.1103/PhysRevLett.104.045501
https://doi.org/10.1103/PhysRevLett.104.045501
https://doi.org/10.1073/pnas.1113205109
https://doi.org/10.1073/pnas.1113205109
https://doi.org/10.1073/pnas.1113205109
https://doi.org/10.1073/pnas.1113205109
https://doi.org/10.1103/PhysRevLett.114.054301
https://doi.org/10.1103/PhysRevLett.114.054301
https://doi.org/10.1103/PhysRevLett.114.054301
https://doi.org/10.1103/PhysRevLett.114.054301
https://link.springer.com/article/10.1007/BF00032282
https://doi.org/10.1126/science.284.5418.1337
https://doi.org/10.1126/science.284.5418.1337
https://doi.org/10.1126/science.284.5418.1337
https://doi.org/10.1126/science.284.5418.1337
https://doi.org/10.1103/PhysRevLett.98.124301
https://doi.org/10.1103/PhysRevLett.98.124301
https://doi.org/10.1103/PhysRevLett.98.124301
https://doi.org/10.1103/PhysRevLett.98.124301
https://doi.org/10.1103/PhysRevLett.108.104303
https://doi.org/10.1103/PhysRevLett.108.104303
https://doi.org/10.1103/PhysRevLett.108.104303
https://doi.org/10.1103/PhysRevLett.108.104303
https://doi.org/10.1063/1.4980064
https://doi.org/10.1063/1.4980064
https://doi.org/10.1063/1.4980064
https://doi.org/10.1063/1.4980064


BARRAS, CARPAIJ, GEUBELLE, AND MOLINARI PHYSICAL REVIEW E 98, 063002 (2018)

[21] J. R. Rice, J. Appl. Mech. 52, 571 (1985).
[22] H. Gao and J. R. Rice, J. Appl. Mech. 56, 828 (1989).
[23] J. R. Willis and A. B. Movchan, J. Mech. Phys. Solids 43, 319

(1995).
[24] D. Bonamy and E. Bouchaud, Phys. Rep. 498, 1 (2011).
[25] L. Ponson, Int. J. Fract. 201, 11 (2016).
[26] I. Kolvin, G. Cohen, and J. Fineberg, Phys. Rev. Lett. 114,

175501 (2015).
[27] R. J. Archuleta, J. Geophys. Res.: Solid Earth 89, 4559

(1984).
[28] M. Bouchon, M.-P. Bouin, H. Karabulut, M. N. Toksöz, M.

Dietrich, and A. J. Rosakis, Geophys. Res. Lett. 28, 2723
(2001).

[29] M. Bouchon, Science 301, 824 (2003).
[30] E. M. Dunham, Bull. Seismol. Soc. Am. 94, S256 (2004).
[31] H. Yue, T. Lay, J. T. Freymueller, K. Ding, L. Rivera, N. A.

Ruppert, and K. D. Koper, J. Geophys. Res.: Solid Earth 118,
5903 (2013).

[32] K. Xia, A. J. Rosakis, and H. Kanamori, Science 303, 1859
(2004).

[33] K. Xia, A. J. Rosakis, H. Kanamori, and J. R. Rice, Science 308,
681 (2005).

[34] X. Lu, N. Lapusta, and A. J. Rosakis, Proc. Natl. Acad. Sci.
USA 104, 18931 (2007).

[35] E. M. Dunham and H. S. Bhat, J. Geophys. Res.: Solid Earth
113 (2008).

[36] I. Svetlizky, D. Pino Munoz, M. Radiguet, D. S. Kammer, J.-F.
Molinari, and J. Fineberg, Proc. Natl. Acad. Sci. USA 113, 542
(2016).

[37] E. Fukuyama and K. B. Olsen, Pure Appl. Geophys. 159, 2047
(2002).

[38] E. M. Dunham, P. Favreau, and J. M. Carlson, Science 299,
1557 (2003).

[39] Y. Liu and N. Lapusta, J. Mech. Phys. Solids 56, 25 (2008).
[40] F. Barras, D. S. Kammer, P. H. Geubelle, and J.-F. Molinari,

Int. J. Fract. 189, 149 (2014).
[41] X. Ma and A. Elbanna, Geophys. J. Int. 203, 664 (2015).
[42] G. Albertini and D. S. Kammer, J. Geophys. Res.: Solid Earth

122, 6625 (2017).
[43] F. Barras, P. H. Geubelle, and J.-F. Molinari, Phys. Rev. Lett.

119, 144101 (2017).
[44] F. X. Passelegue, A. Schubnel, S. Nielsen, H. S. Bhat, and R.

Madariaga, Science 340, 1208 (2013).
[45] E. Sharon, S. P. Gross, and J. Fineberg, Phys. Rev. Lett. 76,

2117 (1996).
[46] P. H. Geubelle and J. R. Rice, J. Mech. Phys. Solids 43, 1791

(1995).
[47] M. S. Breitenfeld and P. H. Geubelle, Int. J. Fract. 93, 13 (1998).
[48] T. L. Anderson, Fracture Mechanics: Fundamentals and Appli-

cations, 3rd ed. (Taylor & Francis, Boca Raton, FL, 2005).
[49] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.98.063002 for a video of the rupture event
studied in the article. The evolution of the fracture process is
presented (top frames) with the same color code as in Fig. 3(b),
while the evolution of the crack opening velocity is shown
(bottom frames) using the same color code and scale as in
Fig. 9(a).

[50] M. Mello, H. S. Bhat, and A. J. Rosakis, J. Mech. Phys. Solids
93, 153 (2016).

[51] F. Kerkhof, in Proceedings of an International Conference on
Dynamic Crack Propagation, edited by G. C. Sih (Springer,
Dordrecht, 1973), pp. 3–35.

063002-8

https://doi.org/10.1115/1.3169103
https://doi.org/10.1115/1.3169103
https://doi.org/10.1115/1.3169103
https://doi.org/10.1115/1.3169103
https://doi.org/10.1115/1.3176178
https://doi.org/10.1115/1.3176178
https://doi.org/10.1115/1.3176178
https://doi.org/10.1115/1.3176178
https://doi.org/10.1016/0022-5096(94)00075-G
https://doi.org/10.1016/0022-5096(94)00075-G
https://doi.org/10.1016/0022-5096(94)00075-G
https://doi.org/10.1016/0022-5096(94)00075-G
https://doi.org/10.1016/j.physrep.2010.07.006
https://doi.org/10.1016/j.physrep.2010.07.006
https://doi.org/10.1016/j.physrep.2010.07.006
https://doi.org/10.1016/j.physrep.2010.07.006
https://doi.org/10.1007/s10704-016-0117-7
https://doi.org/10.1007/s10704-016-0117-7
https://doi.org/10.1007/s10704-016-0117-7
https://doi.org/10.1007/s10704-016-0117-7
https://doi.org/10.1103/PhysRevLett.114.175501
https://doi.org/10.1103/PhysRevLett.114.175501
https://doi.org/10.1103/PhysRevLett.114.175501
https://doi.org/10.1103/PhysRevLett.114.175501
https://doi.org/10.1029/JB089iB06p04559
https://doi.org/10.1029/JB089iB06p04559
https://doi.org/10.1029/JB089iB06p04559
https://doi.org/10.1029/JB089iB06p04559
https://doi.org/10.1029/2001GL013112
https://doi.org/10.1029/2001GL013112
https://doi.org/10.1029/2001GL013112
https://doi.org/10.1029/2001GL013112
https://doi.org/10.1126/science.1086832
https://doi.org/10.1126/science.1086832
https://doi.org/10.1126/science.1086832
https://doi.org/10.1126/science.1086832
https://doi.org/10.1785/0120040616
https://doi.org/10.1785/0120040616
https://doi.org/10.1785/0120040616
https://doi.org/10.1785/0120040616
https://doi.org/10.1002/2013JB010594
https://doi.org/10.1002/2013JB010594
https://doi.org/10.1002/2013JB010594
https://doi.org/10.1002/2013JB010594
https://doi.org/10.1126/science.1094022
https://doi.org/10.1126/science.1094022
https://doi.org/10.1126/science.1094022
https://doi.org/10.1126/science.1094022
https://doi.org/10.1126/science.1108193
https://doi.org/10.1126/science.1108193
https://doi.org/10.1126/science.1108193
https://doi.org/10.1126/science.1108193
https://doi.org/10.1073/pnas.0704268104
https://doi.org/10.1073/pnas.0704268104
https://doi.org/10.1073/pnas.0704268104
https://doi.org/10.1073/pnas.0704268104
https://doi.org/10.1029/2007JB005182
https://doi.org/10.1029/2007JB005182
https://doi.org/10.1029/2007JB005182
https://doi.org/10.1073/pnas.1517545113
https://doi.org/10.1073/pnas.1517545113
https://doi.org/10.1073/pnas.1517545113
https://doi.org/10.1073/pnas.1517545113
https://doi.org/10.1007/s00024-002-8722-y
https://doi.org/10.1007/s00024-002-8722-y
https://doi.org/10.1007/s00024-002-8722-y
https://doi.org/10.1007/s00024-002-8722-y
https://doi.org/10.1126/science.1080650
https://doi.org/10.1126/science.1080650
https://doi.org/10.1126/science.1080650
https://doi.org/10.1126/science.1080650
https://doi.org/10.1016/j.jmps.2007.06.005
https://doi.org/10.1016/j.jmps.2007.06.005
https://doi.org/10.1016/j.jmps.2007.06.005
https://doi.org/10.1016/j.jmps.2007.06.005
https://doi.org/10.1007/s10704-014-9967-z
https://doi.org/10.1007/s10704-014-9967-z
https://doi.org/10.1007/s10704-014-9967-z
https://doi.org/10.1007/s10704-014-9967-z
https://doi.org/10.1093/gji/ggv302
https://doi.org/10.1093/gji/ggv302
https://doi.org/10.1093/gji/ggv302
https://doi.org/10.1093/gji/ggv302
https://doi.org/10.1002/2017JB014301
https://doi.org/10.1002/2017JB014301
https://doi.org/10.1002/2017JB014301
https://doi.org/10.1002/2017JB014301
https://doi.org/10.1103/PhysRevLett.119.144101
https://doi.org/10.1103/PhysRevLett.119.144101
https://doi.org/10.1103/PhysRevLett.119.144101
https://doi.org/10.1103/PhysRevLett.119.144101
https://doi.org/10.1126/science.1235637
https://doi.org/10.1126/science.1235637
https://doi.org/10.1126/science.1235637
https://doi.org/10.1126/science.1235637
https://doi.org/10.1103/PhysRevLett.76.2117
https://doi.org/10.1103/PhysRevLett.76.2117
https://doi.org/10.1103/PhysRevLett.76.2117
https://doi.org/10.1103/PhysRevLett.76.2117
https://doi.org/10.1016/0022-5096(95)00043-I
https://doi.org/10.1016/0022-5096(95)00043-I
https://doi.org/10.1016/0022-5096(95)00043-I
https://doi.org/10.1016/0022-5096(95)00043-I
https://doi.org/10.1023/A:1007535703095
https://doi.org/10.1023/A:1007535703095
https://doi.org/10.1023/A:1007535703095
https://doi.org/10.1023/A:1007535703095
http://link.aps.org/supplemental/10.1103/PhysRevE.98.063002
https://doi.org/10.1016/j.jmps.2016.02.031
https://doi.org/10.1016/j.jmps.2016.02.031
https://doi.org/10.1016/j.jmps.2016.02.031
https://doi.org/10.1016/j.jmps.2016.02.031

