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“Would you tell me, please, which way I ought to go from here?’

‘That depends a good deal on where you want to get to,’ said the Cat.

‘I don’t much care where -’ said Alice.

‘Then it doesn’t matter which way you go,’ said the Cat.

‘- so long as I get somewhere,’ Alice added as an explanation.

‘Oh, you’re sure to do that,’ said the Cat, ’if you only walk long enough.”

— Lewis Carroll
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Abstract
In this thesis we deal with one of the facets of the statistical detection problem. We study a

particular type of alternative, the mixture model. For the i.i.d. sample X1, . . . , Xn we consider

testing

H0 : Xi ∼F0, 1 ≤ i ≤ n,

against (1)

H1 : Xi ∼F1 = (1−p)F0 +pG , 1 ≤ i ≤ n.

The null hypothesis corresponds to the absence of a signal, represented by some known

distribution, e.g., Gaussian white noise, while in the alternative one assumes that among

observations there might be a cluster of points carrying a signal, which is characterized by the

distribution G . The main research objective is to determine a detectable set of alternatives in

the parameter space combining the parameters of G and the mixture proportion p. Asymptotic

theory, which dominates the articles concerned with this problem, investigates limits of testing

errors when n −→∞ with the parameters of F1 depending on n. On the contrary, we focus on

finite sample sizes and wish to study the possibility of detecting alternatives for fixed n, given

pre-specified error levels.

The first part of the thesis covers theoretical results. The main results here are developed

using asymptotic considerations, which are adapted in order to yield conclusions for finite n.

Specifically, we propose the approximate minimum sample size nmin necessary for detection of

an alternative in the case of small p. For our next result, we introduce a parametrization which

relates the parameter space of F1 to the sample size, and present the regions of detectability

and non-detectability. The regions of detectability are the subsets of the new parameter space

(induced by the parametrization) where for a pre-specified type I error rate, the type II error

rate of the likelihood ratio test (LRT) is bounded from above by some constant βmax. The

regions of non-detectability, conversely, are characterized by the condition that the type II

error rate of any test is higher than βmax. We show that for sample sizes starting from 100,

there is already good agreement between the proposed theoretical bound and simulation

results. Our findings are applicable not only for univariate normals, but for a broader range of

distributions. To move towards the real data applications, we also check the performance of

some non-parametric testing procedures proposed for this problem and some widely used

distributions. We draw conclusions about tests, whose detection boundaries lie close to

the boundary corresponding to the LRT. In particular, if p > 0.1, then mean-based tests are
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generally preferred among non-parametric procedures.

In the second part of the thesis we use this argument to develop a framework for clinical trial

designs aimed at detecting a sensitive-to-therapy subpopulation. Imagine that the hypothesis

(1) is tested for patients’ responses in a treatment group, and F0 represents the distribution

of responses in a reference control group. The idea of modeling treatment response as a

mixture of subpopulations originates from treatment effect heterogeneity. Methods studying

the effects of heterogeneity in the clinical data are referred to as subgroup analyses. They are

particularly widespread in oncology clinical trials, where the success of the therapy depends

on cancer characteristics. However, designs accounting for possible response heterogeneity

are rarely discussed, though in some cases they might help to avoid trial failure due to the

lack of efficacy. For example, in neurological disorders, such as depression, pain and anxiety,

the major confounding factor is a placebo effect. Its size can mask the drug-specific effect,

which in turn leads to trial failure. In our work we consider two possible subgroups of patients,

drug responders and drug non-responders. Given no preliminary information about patients’

memberships, we propose a framework for designing randomized clinical trials that are able

to detect a responders’ subgroup of desired characteristics. We also propose strategies to

minimize the number of enrolled patients whilst preserving the testing errors below given

levels and suggest how the design along with all testing metrics can be generalized to the case

of multiple centers.

The last part of the thesis is not directly related to the preceding parts. We present two su-

pervised classification algorithms for real-data applications. One of the proposed techniques

might be useful in a broad range of classification problems with not excessive dimensional-

ity. The other algorithm is developed specifically for annotating unknown genes to known

gene sets using RNASeq data. Both proposed methods are computationally inexpensive and

tractable alternatives to more complicated existing models.

Keywords: adaptive clinical trial design, mixture models, multiple testing, placebo effect, statis-

tical detection problem
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Résumé
Nous travaillons, dans cette thèse, sur une des facettes du problème de détection de signaux.

Nous étudions un cas particulier d’alternative, le modèle de mélange. Pour un échantillon de

variables aléatoires i.i.d X1, · · · , Xn , nous testons

H0 : Xi ∼F0, 1 ≤ i ≤ n

contre (1)

H1 : Xi ∼F1 = (1−p)F0 +pG , 1 ≤ i ≤ n.

L’hypothèse nulle correspond à l’absence d’un signal représenté par une distribution connue,

par exemple un bruit blanc gaussien, alors que dans l’hypothèse alternative, on peut consi-

dérer que parmi les observations, il existe un groupe de points portant un signal caractérisé

par la distribution G . L’objectif est de déterminer les alternatives détectables dans l’espace

des paramètres combinant les paramètres de G et la proportion du mélange p. La théorie

asymptotique prédominante dans la littérature liée à ce problème étudie les limites des er-

reurs du test quand n →∞ avec les paramètres de F1 dépendant aussi de n. De notre côté,

nous voulons contribuer à l’étude des échantillons de taille finie dans le but de trouver si la

détection de l’alternative est possible pour un n fixé avec des niveaux d’erreurs prédéfinis.

La première partie de la thèse présente les résultats théoriques. Les principaux résultats

sont développés dans le cadre de la théorie asymptotique adaptée pour produire des conclu-

sions pour n fini. En particulier, nous proposons l’approximation de la taille minimale de

l’échantillon nécessaire pour la détection de l’alternative dans le cas où p est petit. Pour

notre deuxième résultat, nous introduisons la paramétrisation qui lie l’espace des paramètres

de l’alternative à la taille de l’échantillon, et présentons les régions où la détectabilité est

possible ainsi que celles où elle ne l’est pas. Les premières régions sont les sous-ensembles

du nouvel espace de paramètres (induit par la paramétrisation) pour lesquels le taux d’erreur

de la deuxième espèce du test du maximum de vraisemblance est bornée supérieurement

par une constante βmax, étant donnés la taille de l’échantillon et un taux d’erreur de première

espèce prédéfini. Les régions de non-détéctabilité sont celles où le taux d’erreur de deuxième

espèce est supérieur à βmax quelque soit le test. Nous démontrons l’existence d’un accord clair

entre les résultats théoriques et les simulations, quand la taille de l’échantillon dépasse 100.

Contrairement aux études précédentes, nos résultats ne sont pas seulement applicables aux

mélanges de distributions normales univariées, mais aussi pour une classe de distributions

plus générale. Dans le but d’appliquer ces résultats à des données réelles, nous étudions la
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performance de certains tests non paramétriques. Nous tirons des conclusions concernant les

tests, pour lesquels les bornes de détections sont proches de celle du test du maximum de

vraisemblance. En particulier, nous obtenons que, pour p > 0.1, les tests basés sur la moyenne

de l’échantillon sont généralement préférés parmi les tests non paramétriques.

Dans la deuxième partie de la thèse, nous utilisons cet argument pour construire le cadre pour

les essais cliniques visant la détection de la sous-population sensible à la thérapie. Imaginons

que l’hypothèse (1) soit testée pour les réponses des patients dans un groupe de traitement, et

que F0 représente la distribution des réponses dans un groupe de contrôle de référence. L’idée

de modéliser la réponse des participants comme un mélange de sous-populations vient de

l’hétérogénéité de l’effet du traitement. Les méthodes qui étudient les effets de l’hétérogénéité

dans les données cliniques sont appelées analyses de sous-groupes. Ils sont particulière-

ment répandus dans les essais cliniques en oncologie, où le succès de la thérapie dépend

des caractéristiques du cancer. Cependant, les essais tenant compte de l’hétérogénéité des

réponses possibles sont rarement discutées, bien que dans certains cas, elles puissent aider

à éviter l’échec de l’essai en raison du manque d’efficacité. Par exemple, dans les troubles

neurologiques, tels que la dépression, la douleur et l’anxiété, le facteur de confusion principal

est un effet placebo. Sa taille peut masquer l’effet spécifique du médicament, ce qui pour-

rait conduire à un échec de l’essai. Dans notre travail, nous modélisons la réponse dans le

groupe de traitement comme le mélange de deux sous-populations, les répondeurs et les non-

répondeurs au traitement. En l’absence d’informations préliminaires sur l’appartenance des

patients, nous proposons un cadre pour la conception d’essais cliniques randomisés capables

de détecter un sous-population de répondeurs portant les caractéristiques souhaitées. Nous

proposons également des stratégies pour minimiser le nombre de patients inscrits tout en

préservant les taux d’erreurs inférieurs à certains niveaux prédéfinis. Nous généralisons des

conceptions et des erreurs au cas d’essais conduites dans plusieurs centres.

La dernière partie de la thèse n’est pas directement liée aux parties précédentes. Nous

présentons deux algorithmes de classification supervisés pour les applications de données

réelles. Une des techniques proposées pourrait être utile dans une large gamme de problèmes

de classification pour lesquels la dimension n’est pas très grande. L’autre algorithme est

développé spécifiquement pour annoter des gènes inconnus à des ensembles de gènes connus

en utilisant des données ARNSeq. Les deux méthodes proposées sont des alternatives élégantes

à d’autres modèles existants, tout en restant peu exigeantes sur le plan calculatoire et faciles à

interpréter.

Mots clés : conception d’essais cliniques adaptatifs, effet placebo, modèles de mélange, problème

de détection statistique, tests multiples
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1 Introduction

How often in statistical analysis does one wish to detect that the data deviate from a given

model? Probably, most of the time. This is usually referred to as goodness-of-fit testing. In

practice, not all deviations are of equal interest. Depending on applications, the alternative

models are “customized” to reflect the underlying mechanisms expected in the data. The

testing process is then built in such a way that the evidence against the tested model is

sufficient if the data come from the “customized” alternatives.

In many applications a natural way to narrow the alternatives is to attribute the potential

differences from the null model to the presence of a subgroup of points following another

law. The distribution of the data under the alternative is then modeled as a mixture of two

distributions from the same family but with different parameters, with the restriction that one

of the components has the same distribution as is assumed under the tested model. Noise,

multiple dimensions with little individual differences between the mixture components, and

small sample size blur the alternatives, making them overlap with the tested model.

Within this framework the goal is to determine which alternatives are detectable for the given

sample size and testing error rates. And, if detection is possible, what are the best testing

methods?

Outline of the thesis

In the Introduction, we describe the hypothesis testing problem and cover previous results on

the asymptotic rates of the detection for Gaussian mixture models. In Chapter 2, we discuss

the asymptotic limits of detection for a broader class of distributions and check them for finite

sample sizes. A review on clinical trial designs along with the reasons to model the response in

the group receiving a medication as a mixture are given in Chapter 3. In Chapter 4 we present

clinical trial designs aiming at detection of a drug-sensitive subpopulation at the early stages

of drug development. In Chapter 5, we present two classification procedures based on gene

expression biomarker data. One is aimed at classifying patients potentially at risk for cancer,
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Chapter 1. Introduction

and the second relates unannotated genes to existing gene sets.

1.1 Detection problem. Formulation

The original interest in this topic came from the field of communication systems. Let Xi (t ), i =
1, . . . ,n be signals in n channels observed in white Gaussian noise of known level σ> 0. The

corresponding stochastic differential equation is

d Xi σ(t ) = fi (t )d t +σdW (t ), t ∈ [0,1], i = 1, . . .n.

Here, the signal, if exists, is of known form fi (t) = ai f (t) ∈ L2(0,1) and W (t) is the stan-

dard Wiener process. Signal detection is then formulated as testing the null hypothesis

H0 : f1 = . . . = fn = 0 corresponding to the absence of a signal versus the alternative H1 : fi 6=
0 for some i = 1, . . . ,n, where { f1, . . . . . . , fn} is the sequence of functions in F ⊂ L2(0,1). It is

convenient to make a transformation

xi = 1

σ

∫ 1

0
f (t )d Xiσ(t ) = θi +ξi , i = 1, . . . ,n;

where θi = ai || f ||2
σ and ξi ∼N (0,1). And the test is reduced to testing the mean of the multi-

variate vector

H0 : θ = 0 (1.1)

H1 : θ 6= 0,

where

x = θ+ξ, (1.2)

with θ =
(

a1|| f ||2
σ , . . . , an || f ||2

σ

)
∈ IRn and ξ ∼ N (0,In). In the following sections we will discuss

which tests are usually employed to minimize testing errors, why and how the set of alternatives

in (1.1) should be modified to achieve satisfactory testing errors.

To start, we first need to review some important concepts of parametric hypothesis testing

theory.

1.1.1 The quality of testing

Let X be a random variable generated by the probability measure Pθ, where θ ∈Θ and realiza-

tions of X belong to the space x ∈X with σ−algebra A . Here we only consider the parametric

case withΘ ∈Rn . Given the data X from Pθ, we test H0 : θ ∈Θ0, Θ0 ⊂Θ versus H1 : θ ∉Θ0, or

H1 : θ ∈Θ1 =Θ\Θ0. The decision rule is a measurable function ψ(x) : X −→ [0,1] which gives

a probability of rejecting the H0 for some realization x ∈X . To compare tests, one considers

2



1.1. Detection problem. Formulation

the two possible errors. Type I error corresponds to a false rejection of the null hypothesis and

type II error corresponds to a false non rejection of the null when the alternative is true. The

corresponding probabilities (or rates) are expressed as

α(ψ,θ) = Eθ
[
ψ

]
, θ ∈Θ0,

β(ψ,θ) = Eθ
[
1−ψ]

, θ ∈Θ1.

The values 1−β(ψ,θ) and α= sup
θ∈Θ0

(α(ψ,θ)) are called the power and the level of the test.

The uniformly most powerful test

For one-parameter distributional families the best test selection is due to Neyman and Pearson

who introduced the notion of the uniformly most powerful (UMP) test.

Definition 1.1. The test is called UMP if it belongs to the level α testsΨα = {ψ : α(ψ,θ) ≤α, θ ∈
Θ0} and has the minimal type II error rate among them:

β
(
ψUMP,θ

)≤β(
ψα,θ

)
for all ψα ∈Ψα and θ ∈Θ1.

The Neyman–Pearson lemma shows the likelihood ratio test (LRT) to be the most powerful if

an alternative is simple (Θ1 consists of one point). However, for the family of distributions with

monotone likelihood ratios and for some partitions it is possible to construct UMP tests for

some complex alternatives. Monotone likelihood ratio implies that for any θ1,θ2 ∈R : θ1 > θ2,

L(x) := fθ1 (x)
fθ2 (x) is a non-decreasing function.

Theorem 1.1 (Karlin–Rubin). For the families of distributions with a monotone likelihood ratio,

the UMP level α test for H0 : θ ≤ θ0 against H1 : θ > θ0 satisfies

ψC =


1, L(x) >C ,

γ, L(x) =C ,

0, L(x) <C ,

(1.3)

and C : Pθ0 (L(x) >C )+γPθ0 (L(x) =C ) = α. Conversely, if the test satisfies (1.3), it is a UMP

level α test.

An example of the UMP test is the one-sided test for the univariate normal mean with a

known variance. For X ∼ N (θ,σ2) to test H0 : θ ≤ 0 versus H0 : θ > 0, the UMP test is

ψ(X ) = 1{X ≥ z1−α}, where z1−α is the (1−α) quantile of a standard normal distribution.

However, to test for the other side of the parameter space, H0 : θ ≥ 0, the decision rule

is ψ(X ) = 1{X < zα}, which means that there is no UMP test for the two-sided alternative

H1 : θ 6= 0. This classical example demonstrates that it is not always possible to find a UMP

test among all possible tests, and one should impose additional restrictions on the set of tests.

3



Chapter 1. Introduction

Figure 1.1 – ROC curves for three different tests of the univariate normal mean with the true parameter
θ = 1. The black line corresponds to the UMP test X > C , the red line is an unbiased test X 2 > C , the
dashed line corresponds to random guessing.

UMP unbiased and UMP invariant tests

One of the natural requirements for the testing procedure is to preserve some type of symmetry.

One would like the decision rule not to be affected by transformations of observed variables

such as shifts, scaling and rotations. Two concepts that represent the desired symmetry are

unbiasedness and invariance. When no UMP test exists within the class of all tests, one usually

looks for a UMP test among unbiased or invariant tests.

Definition 1.2. A test ψ of level α is called unbiased if

1−β(
ψ,θ

)>α, θ ∈Θ1.

It is straightforward to see that any UMP test is unbiased.

In the Gaussian signal detection in one dimension, the UMP unbiased test for the two-sided

alternative is ψ = 1 (|X | > z1−α/2). It is convenient to show testing performance with a ROC

curve, 1−β(ψC ,θ1) plotted against α(ψC ,θ0) for different thresholds C . In Fig. 1.1, the ROC

curves for the one-sided test of the normal mean are shown. The UMP test ψ = 1 (X >C )

is in black, an unbiased test but not the UMP ψ = 1
(
X 2 >C

)
is in red and the dashed line

corresponds to random guessing (when the decision rule does not depend on the data).

As for invariant tests, we will follow Lehman’s (Lehmann and Romano [2006]) introduction.

Let g : X −→X be a one-to-one transformation of the outcome space X of a random variable
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1.1. Detection problem. Formulation

X from a family Pθ, θ ∈Θ. Suppose that the distribution of the transformed random variable

Pθ(g X ) equals P ḡθ(X ). If bothΘ0 andΘ1 are preserved under the induced transformation of

the parameter space,

ḡΘ0 =Θ0, ḡΘ1 =Θ1,

then the transformation g is invariant for the testing problem. Usually transformations g form

a group G , e.g., the group of shifts or rotations.

Definition 1.3. The test is called invariant for the problem H0 : θ ∈Θ0 versus H1 : θ ∈Θ1 if the

transformation g is invariant and ψ(g x) =ψ(x) for all x ∈X .

An invariant test is equivalently determined as the test that depends on the data X only

through the so called maximal invariant. This is an invariant function which satisfies the

condition

T (x1) = T (x2) implies x2 = g x1 for some g ∈G .

Example 1.1.1. The UMP unbiased and invariant test for the univariate normal mean with

unknown variance is

ψ(X1, .., Xn) = 1

tn(X ) =
p

nX√
1

n−1

∑n
i=1

(
Xi −X

)2
>C

 ,

where tn has Student’s distribution with the non-centrality parameter
p

nθ and n −1 degrees of

freedom.

If G is the group of rotations around the origin, the maximal invariant will be the function of

||x||, i.e., x can be transformed into x ′ = g x by some g ∈G only if x and x ′ lie on the sphere

with the center in the origin.

Example 1.1.2. The group of rotations (or, more generally, orthogonal transformations) leads

to the UMP invariant test for (1.1) for the multivariate normal mean. The decision rule is

ψ(x) : 1

[
tn(X ) = ||X ||2 =

n∑
i=1

X 2
i >C

]
.

and tn has a non-central χ2 distribution with the non-centrality parameter ||θ||2 and n degrees

of freedom. Here, ||x||2 denotes the squared L2 norm in Rn .

For unbiased tests the condition 1−β>α guarantees protection against random guessing

over Θ1. Similarly, one should introduce the analogue of it for the invariant tests. This is

usually achieved by the reduction of the class of alternatives, separatingΘ0 fromΘ1. It is easier

to introduce via alternative hypothesis testing procedures, the minimax tests.
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Chapter 1. Introduction

The minimax approach

The minimax criterion considers performance under the worst alternatives. Let β(ψ,Θ1) =
sup
θ∈Θ1

β(ψ,θ). The minimax test is the test ψ that has the minimal β(ψ,Θ1) over all tests of level

α,Ψα. Since the minimax hypothesis testing problem focuses on the worst case scenario, it

depends onΘ1, and in the cases whenΘ0 andΘ1 are too close, the minimax type II error rate

achieves its maximum, 1−α. These testing problems are called trivial and are of no interest.

To escape this difficulty one usually removes a neighbourhood ofΘ0 inΘ1. It can be shown

that forΘ1 with the removed neighborhood ofΘ0, the UMP invariant test is also the minimax

test.

1.1.2 Asymptotic models

Removing the neighborhood leads to asymptotic models. Consider the test from Example

1.1.2, but instead ofΘ1 =Θ\Θ0, take the set of alternativesΘ1n = {θ ∈ IRn : ||θ|| ≥ ρn}, where

lim
n−→∞ρn = 0. With the central limit theorem the type II error rate of the test can be approxi-

mated as

β(ψα,θ) =Φ
(

z1−α− ρ2

p
2n

)
+op (1).

Here, the test is trivial ifρ = o
(
n1/4

)
. If hypotheses are asymptotically separated, i.e., ρn

n1/4 −→∞,

the asymptotic power of the test tends to 1 for any fixed alternative inΘ1n . This property is

called consistency.

For some classes of problems, there are asymptotically UMP tests for large sample sizes which

preserve the asymptotic level α(ψn) ≤ α+o(1), n −→∞, while maximizing the asymptotic

power.

Wilks (1938) showed that under regularity conditions (Cramér, 1946) the generalized likeli-

hood ratio test (GLRT)

Λn(x1, . . . , xn) =

 sup
θ∈Θ0

L(θ|x)

sup
θ∈Θ

L(θ|x)

<C

is consistent for the test H0 : θ ∈ Θ0 versus H0 : θ ∈ Θ/Θ0. If the parameter set of the null

consists of one pointΘ0 = θ0 (dim(Θ0) = 1), under the null

Λn = n
(
θ̂MLE −θ0

)T
I (θ0)

(
θ̂MLE −θ0

)+op (1),

and −2logΛn
d−→ χ2

dim(Θ)−dim(Θ0), where θ̂MLE = sup
θ∈Θ

L(θ|x) is the maximum likelihood esti-

mate of θ. Under the alternative, −2logΛn converges in distribution to a non-central χ2 with

dim(Θ)−dim(Θ0) degrees of freedom.
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1.2. Signal detection boundary. Models and Results

1.2 Signal detection boundary. Models and Results

Having briefly reviewed the main testing concepts, we are now ready to return to the hypothesis

test(1.1). As we have seen, to have a non-trivial problem, one should remove a neighborhood

ofΘ0 inΘ1. One way to so is by introducing the set of alternativesΘ1n as follows: each channel

i carries a a signal of amplitude µn > 0 and the number of channels carrying signals is fixed to

be n1−δn with δn ∈ [0,1], i.e., the multivariate mean vector under the alternative is of the form

Θ1n =
{
θ = (d1µn , . . . ,dnµn), di ∈ {0,1},

n∑
i=1

di = n1−δn

}
.

This model is explored from the minimax perspective in Ingster and Suslina [2002]. They

discovered the conditions when the minimax error rate γn(Θ1n) = inf
ψn

(
α(ψn)+ max

θ∈Θ1n

β(ψn ,θ)

)
asymptotically tends to zero or one, which correspond to asymptotic distinguishability and

non-distinguishability, respectively. If there is an asymptotic distinguishability, authors pro-

posed the minimax consistent tests of the form

ψn : γn(ψn ,Θ1n) = γn(Θ1n) −→ 0+op (1). (1.4)

The results are summarized in the following theorem:

Theorem 1.2. For the set of alternativesΘ1n the following holds:

(1) δn −→ δ ∈ [0,3/4). If
√

n1−2δn (eµ
2
n −1) −→ 0, then γn −→ 1. If

√
n1−2δn (eµ

2
n −1) −→∞,

then for the test ψ̂n,µn = max
(
ψn,µn ,ψthr

n

)
, where

ψn,µn ≡ 1


∑n

i=1

(
e−

µ2
n
2 +xiµn −1

)
√

n
(
eµ

2
n −1

) > 1

2

√
n1−2δn

(
eµ

2
n −1

) ; ψthr
n ≡ 1

(
max

i
xi >

√
2logn

)
,

γn(ψ̂n,µn ) −→ 0. Moreover, if δn −→ δ ∈ [0,1/2), the test ψ̃n = 1
(

1p
n

∑n
i=1 xi > 1

2

√
n1−2δn

(
eµ

2
n −1

))
is asymptotically consistent, γn(ψ̃n,µn ) −→ 0.

(2) δn −→ δ ∈ [3/4,1]. If µn <
(
1−

√
1−δn

)√
2log(n), then γn −→ 1. Otherwise, for the tests

ψ̂n,µn from (1), γn(ψ̂n,µn ) −→ 0.

The test ψn,µn is a modification of the likelihood ratio test, while the tests ψthr
n and ψ̃n are

non-parametric.

1.2.1 Asymptotic Rare/ Weak model

In Ingster’s work (Ingster and Suslina [2002]) the number of informative channels is fixed

to be n1−δn . Instead, Donoho and Jin [2004] introduced an uncertainty letting n1−δn be the

7



Chapter 1. Introduction

expectation of the number of informative channels. Their alternative set is described as

follows. Each channel Xi , i = 1, . . . ,n carries a signal of amplitude µn with a probability n−δn ,

so the data (signals) under the alternative come from a mixture of a signal and white noise.

If δn is constant, then the probability n−δn decreases with sample size. This assumption is

common in genetic applications that aim to find associations between a phenotype and a

genetic profile. When one tests for an association between single nucleotide polymorphisms

(single position genetic variants, SNPs) and phenotypic variation, as the number of SNPs

tested increases, the probability of any individuals SNP being associated with the phenotype

decreases. The number of truly associated SNPs is believed to be small. The hypothesis test

(1.1) is then transformed into testing

H0 : Xi
i .i .d .∼ N (0,1), i = 1, . . . ,n,

versus (1.5)

H1n : Xi
i .i .d .∼ (1−pn)N (0,1)+pnN (µn ,1), i = 1, . . . ,n;

where pn = n−δ with δ ∈ (1/2,1) and µn = √
2r logn with r ∈ (0,1). As with the proposed

parametrization the proportion of non-null points becomes very small pn ∈
(

1p
n

, 1
n

)
and

the corresponding strength of the signal µn is not more than the approximate value of the

maximum of n standard normal random variables,
√

2logn. This model was referred to as the

Asymptotic Rare / Weak (ARW) model.

Along with the reduction in dimensionality, the alternative in (1.2.1) is now simple, which

leads to the UMP LRT test. The detectable region here is characterized by the sum of error rates

of the LRT tending to zero, while in the undetectable region the sum of error rates of any test

should tend to one. It was shown that the Higher Criticism (HC) test (originally introduced by

Tukey 1976) is optimally adaptive, i.e., regardless of (δ,r ), αn
(
ψHC

n

)+βn
(
ψHC

n ,θ
)−→ 0+op (1)

in the detectable region. The detection boundary is shown in Fig. 1.2 and coincides with that

from Theorem 1.2:

r∗(δ) =
δ−

1
2 , 1

2 < δ≤ 3
4 ,(

1−p
1−δ

)2
, 3

4 < δ< 1.
(1.6)

The HC test is a second-level goodness-of-fit test based on the p-values of initial observations:

p-valuei =Φ(Z > Xi ), i = 1, . . . ,n, where Z ∼N (0,1). The test statistic is defined as

HC∗ = max
1≤i≤n

p
n

∣∣ i
n −p-valuei

∣∣√
i
n

(
1− i

n

) ,

which is the standardized Kolmogorov–Smirnov test of the uniform distribution of the p-

values. Under the null hypothesis the p-values are distributed uniformly on [0,1], and under

the alternative the HC test was shown to be asymptotically as effective as ψthr
n for δ ∈ [3

4 ,1
)

8



1.2. Signal detection boundary. Models and Results

Figure 1.2 – Phase diagram for the gaussian detection problem. The red area corresponds to r < r∗(δ) the
subspace where the asymptotic detection is not possible. The orange area r∗(δ) < r < δcorresponds to the
subspace where asymptotic detection and consistent estimation of pn is possible, but identification of
signal is not asymptotically possible. The green area r > δ is the subspace where both asymptotic detection
and identification are possible. Misclassification error, the percentage of falsely assigned observations,
was proven to tend to the random guessing error, nεn , for r < δ for any testing procedure.

and more sensitive for δ ∈ (1
2 , 3

4

)
. An extensive overview of this test statistic and its various

applications has is discussed in Donoho et al. [2015].

Failure of the GLRT for mixture alternative

It should be clarified why in the previous subsection the specific parametrization was intro-

duced. Why is the alternative X ∼ pN (µ,1)+ (1−p)N (0,1) withΘ1 = {(p,µ) : p ∈ [0,1], µ ∈R}

not tested using the GLRT. The reason lies in the regularity conditions. Specifically, the require-

ment that the true value of the parameter is in the interior of the parameter’s space is violated

whenΘ0 contains the point p = 0. The consequence can be easily seen. Consider n i.i.d. obser-

vations X1, . . . , Xn and test H0 : X ∼N (0,1) against H1 : X ∼ pN (µ,1)+(1−p)N (0,1), where

p ∈ [0,1] andµ ∈ IR. The likelihood ratio is then written as
∏n

i=1(1+p Zi ), where Zi = e Xiµ− µ2

2 −1

are i.i.d. random variables with zero mean and variance σ2 = eµ
2 −1. Let us fix µ and explore

the likelihood ratio as a function of p. Applying Jensen’s inequality for the log likelihood ratio

gives

l (p) =
n∑

i=1
log(1+p Zi ) ≤ n log

(∑n
i=1(1+p Zi )

n

)
= n log

(
1+ p

n

n∑
i=1

Zi

)
≤ p

n∑
i=1

Zi .

Therefore, if
∑n

i=1 Zi < 0, the maximum of the log likelihood ration equals zero with p̂MLE = 0.

If
∑n

i=1 Zi ≥ 0, standard theory can be applied. The function l (p) is three times differentiable

9



Chapter 1. Introduction

with finite E|l ′(p)|, E|l ′′(p)| and E|l ′′′(p)| < M , where M does not depend on p, and the Fisher

information is positive for any p. Taylor’s expansion of l (p) at p̂MLE gives

l (p̂MLE) = l (0)+ l ′(0)p̂MLE + 1

2
l ′′(0)p̂2

MLE +op (1) = l ′(0)p̂MLE + 1

2
l ′′(0)p̂2

MLE +op (1).

Under the null,
p

np̂MLE
p−→− l ′(0)

l ′′(0) . Substituting this in the above expression, one obtains

l (p̂MLE) =−1

2

(l ′(0))2

l ′′(0)
+ 1

2
l ′′(0)op

(
1

n

)
+op (1).

Note that (l ′(0))2

l ′′(0) = (
∑n

i=1 Zi )2∑n
i=1 Z 2

i
=

(p
n

∑n
i=1 Zi /σ

n

)2

∑n
i=1

(Zi /σ)2

n

, where
(p

n
∑n

i=1 Zi /σ
n

)2 d−→χ2(1) and
∑n

i=1(Zi /σ)2

n

p−→ 1.

We also have l ′′(0)
p−→ nI (0), and it follows that

(
∑n

i=1 Zi )2∑n
i=1 Z 2

i

d−→ χ2(1) and −2 l (p̂MLE) = χ2(1)+
op (1), which is the standard GLRT asymptotics. From the computations above one can see

that the asymptotic distribution of −2 l (p̂MLE) is a mixture of zero and χ2(1) with equal weights.

Hartigan (1985) showed that l (µ) = sup
p

l (p,µ) is unbounded in probability, which makes the

GLRT asymptotically inconsistent. The general case of the failure of the GLRT on the boundary

of Θ0 is covered in Chernoff [1954]. The generalized asymptotic analysis of the maximum

likelihood estimators can be found in Moran [1971], Chant [1974], Self and Liang [1987].

1.3 The research motivation

In our work we explore the detection problem in the more general setting, rather than restrict-

ing it to the Gaussian case. Given n iid observations X1, . . . , Xn the testing problem that we will

consider is

H0 : Xi ∼F0, 1 ≤ i ≤ n

against (1.7)

H1 : Xi ∼F1 = (1−p)F0 +pG , 1 ≤ i ≤ n,

where p is the probability for each point to be a signal from the distribution G =F0(x −µ),

while the background distribution F0 could be white noise or, in the case of biomedical

applications, the distribution of the observations in the control group. For some classes

of alternatives we propose a parametrization for the parameter space corresponding to µ

and the mixture proportion p. We also include in the parametrization admissible type I and

type II error rates. With this framework, given fixed sample size n, type I error rate α and

maximum type II error rate βmax, we want to reconstruct the regions of the parameter space

of F1 with βLRT (α,n) <βmax (which we refer to as the detectable set of alternatives) and with

β(α,n) >βmax (non detectable set of alternatives). Though we employ asymptotic arguments,

we later show the correspondence between theoretical results and empirically computed

power boundaries for finite n.
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1.3. The research motivation

Our goal is to provide a comprehensive guide for experimental design when testing (1.7).

In Chapter 2 we show how the likelihood ratio statistic enables us to approach this problem

for a broad range of distributions. Although the LRT gives a lower bound on the sample

size required for preserving prespecified error rates, it is a parametric test. For this reason

we will compare the empirical power of some non-parametric testing procedures previously

proposed in the literature for the detection problem with the theoretical detection boundary of

the LRT. Based on the results obtained from comparing different non-parametric procedures,

in Chapter 4 we develop the framework for clinical trials design suitable for the cases when

the patient population is represented as a mixture of two subgroups, drug-responders and

drug non-responders.
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2 Detection problems for finite sample
sizes

In this chapter we present results linking the sample size for the hypothesis test (2.1) with

the parameters of the distribution F1, while keeping the fixed type I error rate α < 0.5 and

controlling type II error rate at level βmax < 0.5. Suppose that we are given n iid observations

X1, . . . , Xn and wish to test

H0 : Xi ∼F0, i = 1, . . . ,n

versus (2.1)

H1 : Xi ∼F1 = (1−p)F0 +pG , p ∈ (0,1], i = 1, . . . ,n,

where F0 and G have the same support.

Notation:

• ε= p
1−p . Note that lim

p−→0

p
ε = 1. Hereafter we consider 0 < p ≤ 1/2 or 0 < ε≤ 1.

• k(X ) = g (X )
f0(X ) > 0, where f0 and g are the pdfs of F0 and G , respectively.

• Km = E f0 [(k(X ))m] .

Hereafter all expectations, if not indicated, are taken with respect to F0. Note that Km has the

following properties:

(1) K1 = E[k(X )] = Eg [1] = 1;

(2) Km ·Km−2 ≥ K 2
m−1 (which follows from the Cauchy–Schwarz inequality), m ≥ 2;

(3) From (1) and (2) it follows that Km ≥ Km−1 ≥ 1;

Theorem 2.1. If K4 <+∞, then the minimum sample size nmin(ε) for the LRT in testing (2.1)

satisfies

lim
ε−→0

ε2nmin(ε) =
(
Φ−1(α)+Φ−1(βmax)p

K2 −1

)2

.
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Chapter 2. Detection problems for finite sample sizes

For the next result we need to introduce the following conditions:

C 1. 1. f0(x), x ∈ (−∞,+∞) is a continuous, piecewise differentiable, unimodal and sym-

metric univariate function;

2. g (x) = f0(x −µ), µ> 0;

3. Km <+∞ for all m ≥ 2;

4. lim
µ−→0

Km−1
K2−1 <+∞ for all m ≥ 3;

and the parametrization

ε= ε0 n−δ, ε0 =−(
Φ−1(βmax)+Φ−1(α)

)> 0; 0 < δ≤ 1,

µ : K2 = 1+n2r , r ∈R. (2.2)

Theorem 2.2. Given parametrization (2.2) and with conditions C1 satisfied, the following

results for asymptotic detectability hold:

1. For an alternative with pdf f1 whose parameters lie in region

Rnd =
{

(δ,r ) : r < δ− 1

2

}
,

there is a sample size N :β(α, f1) >βmax, ∀n ≥ N for any testing procedure.

2. For an alternative with pdf f1, whose parameters are in

Rd =
{

(δ,r ) :

(
r < 0 and r > δ− 1

2

)
or

(
r ≥ 0, r > δ− 1

2
and K3 = o

(
n2r+δ

))}
or in

RC
d = {(δ∗,r∗) : δ∗ ≤ δ and r∗ ≥ r, for (δ,r ) ∈ Rd },

there is a sample size N :βLRT(α, f1) ≤βmax, ∀n ≥ N .

Further in the chapter we show how these results agree with simulations and which non-

parametric testing procedures give lower values of the type II error rate.

2.1 Likelihood ratio test

In this section we prove Theorem 2.1. The likelihood ratio test (LRT) for the hypothesis testing

problem (2.1), rejects H0 if ln ≡ log(Λn) = log
(∏n

i=1 f0(xi )∏n
i=1 f1(xi )

)
<C . It is the most powerful test for a

fixed type I error rate. The type I and type II error rates of the LRT are

α=P(ln <C |H0), β=P(ln >C |H1).
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2.1. Likelihood ratio test

If the first two moments E[l1|H j ] and E[l 2
1 |H j ], j = 0,1 are finite, by the central limit theorem

we have

p
n

(
1

n
ln −E[

l1|H j
]) d−→N

(
0,Var

[
l1|H j

])
, j = 0,1, n −→∞. (2.3)

The expectation E
[
l1|H0

]= KL(F0||F1) is the Kullback–Leibler divergence between F0 and

F1. This divergence is not symmetrical, i.e., KL(F1||F0) = E[−l1|H1
] 6= KL(F0||F1), and does

not satisfy the triangle inequality. By Jensen’s inequality one can obtain that KL(F0||F1), KL(F1||F0) ≥
0. Let us denote

E
[
l1|H0

]= KL(F0||F1) = KL1,

E
[−l1|H1

]= KL(F1||F0) = KL2,

Var[l1 |H0] = Var1,

Var[l1 |H1] = Var2.

If values ρ j = E[|l 3
1 ||H j ], j = 0,1, are finite, one can obtain the following inequalities using the

Berry–Essen theorem Berry [1941], Essen [1942],P
(

lnp
n
−p

n KL1 ≤Φ−1(α)
p

Var1 |H0

)
≤α+ Ap

n
,

P
(

lnp
n
−p

n KL1 ≤Φ−1(α)
p

Var1 |H0

)
≥α− Ap

n
;P

(
lnp

n
+p

n KL2 ≥Φ−1(1−β)
p

Var2 |H1

)
≤β+ Bp

n
,

P
(

lnp
n
+p

n KL2 ≥Φ−1(1−β)
p

Var2 |H1

)
≥β− Bp

n
;

where A = C̃ ρ0

(
p

Var1)3 , B = C̃ ρ1

(
p

Var2)3 and C̃ < 0.48 is the Berry-Essen constant. In the inequalities

above, we replace α with α− Ap
n

or with α+ Ap
n

, and β is replaced with β− Bp
n

or β+ Bp
n

. This

leads toP
(
ln ≤ n KL1 +Φ−1

(
α− Ap

n

) p
n Var1 |H0

)
≤α,

P
(
ln ≤ n KL1 +Φ−1

(
α+ Ap

n

) p
n Var1 |H0

)
≥α;P

(
ln ≥−n KL2 −Φ−1

(
β− Bp

n

) p
n Var2 |H1

)
≤β,

P
(
ln ≥−n KL2 −Φ−1

(
β+ Bp

n

) p
n Var2 |H1

)
≥β.

If nmin is the minimum sample size for the LRT with type I and type II error rates α< 0.5 and

β< 0.5, respectively, then the following should be satisfied:

nmin KL1 +Φ−1
(
α+ Ap

nmin

)√
nmin Var1 >−nmin KL2 −Φ−1

(
β+ Bp

nmin

)√
nmin Var1,
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which is equivalent to

p
nmin >−

Φ−1
(
α+ Ap

nmin

)p
Var1 +Φ−1

(
β+ Bp

nmin

)p
Var2

KL1 +KL2
. (2.4)

Another necessary condition is that the following inequality for nmin −1 should be satisfied

(nmin−1)KL1+Φ−1
(
α− Ap

nmin −1

)√
(nmin −1)Var1 <−(nmin−1)KL2−Φ−1

(
β− Bp

nmin −1

)√
(nmin −1)Var1,

which is equivalent to

√
nmin −1 <−

Φ−1
(
α− Ap

nmin−1

)p
Var1 +Φ−1

(
β− Bp

nmin−1

)p
Var2

KL1 +KL2
. (2.5)

To explore the asymptotic behaviour when ε−→ 0, we use the following inequalities. For all

l ≥ 1 and ε> 0:

log(1+ε) < ε− ε2

2
+ . . .+ ε2l−1

2l −1
;

log(1+ε) > ε− ε2

2
+ . . .− ε2l

2l
; (2.6)(

log(1+ε)
)2 > ε2 −ε3;

Lemma 2.1. For finite K3 the following inequalities hold:

ε2

2
(K2 −1)− ε3

3
K3 < KL1 < ε2

2
(K2 −1)+ ε3

3
K3;

ε2 (K2 −1)−2ε3K3 < Var1 +KL2
1 < ε2 (K2 −1)+2ε3K3.

Proof. KL1 and Var1 can be written as

KL1 =−E
[

log

(
1+εk(X )

1+ε
)]

= log(1+ε)−E[
log(1+εk(X ))

]
, (2.7)

Var1 +KL2
1 = E

[(
log

(
1+ε

1+εk(X )

))2]
= (

log(1+ε)
)2 −2log(1+ε)E

[
log(1+εk(X ))

]+E[(
log(1+εk(X ))

)2
]

.

(2.8)

Using (2.6), we get:

KL1 < ε− ε2

2
+ ε3

3
−ε+ ε2

2
K2 = ε2

2
(K2 −1)+ ε3

3
≤ ε2

2
(K2 −1)+ ε3

3
K3;

KL1 > ε− ε2

2
−ε+ ε2

2
K2 − ε3

3
K3 = ε2

2
(K2 −1)− ε3

3
K3.

16



2.1. Likelihood ratio test

The coefficient of the dominant term in both inequalities with KL1 is positive. For the second

moment of the log likelihood ratio we have

Var1 +KL2
1 < ε2 −2

(
ε− ε2

2

)(
ε− ε2

2
K2

)
+ε2K2

= ε2 (K2 −1)+ε3 (K2 +1)− ε4

2
K2 ≤ ε2 (K2 −1)+ε3 (K2 +1)

≤ ε2 (K2 −1)+2ε3K3.

For the case ε≤ 1 the upper bound is valid, because ε− ε2

2 ≥ 0 for ε≤ 2. To prove a lower bound,

we use the inequality (log(1+ε))2 > ε2 −ε3. Applying the same technique, we get

Var1 +KL2
1 >

(
ε2 −ε3)−2ε2 + (

ε2K2 −ε3K3
)= ε2 (K2 −1)−ε3 (K3 +1) ≥ ε2 (K2 −1)−2ε3K3.

This finishes the lemma.

With the assumptions from Lemma 2.1 it follows that the asymptotic behaviour of KL1 and

Var1 is

KL1

ε2

2 (K2 −1)
−→
ε−→0

1, (2.9)

Var1

ε2(K2 −1)
−→
ε−→0

1. (2.10)

Lemma 2.2. For the finite K3 the following inequalities hold:

ε2

2
(K2 −1)− 4

3
ε3K3 < KL2 < ε2

2
(K2 −1)+ 4

3
ε3K3;

ε2(K2 −1)−2ε3 K3 < Var2 +KL2
2 < ε2(K2 −1)+4ε3K3.

Proof. Notice that if η(X ) is an arbitrary random variable, E f1 [η(X )] = E
[
η(X ) 1+εk(X )

1+ε
]

. There-

fore, KL2 can be written as follows:

KL2 = E
[(

1+εk(X )

1+ε
)

log

(
1+εk(X )

1+ε
)]

(2.11)

=− log(1+ε)+ 1

1+εE
[
log(1+εk(X ))

]+ ε

1+εE
[
log(1+εk(X ))k(X )

]
; (2.12)

Var2 +KL2
2 = E

[(
log

(
1+εk(X )

1+ε
))2 1+εk(X )

1+ε
]

.

17



Chapter 2. Detection problems for finite sample sizes

Using (2.6), we have

KL2 <−ε+ ε2

2
+ (1−ε+ε2)

(
ε− ε2

2
K2 + ε3

3
K3

)
+ε2(1−ε+ε2)K2

= ε2

2
(K2 −1)+ε3

(
1− 1

2
K2 + 1

3
K3

)
+ε4

(
1

2
K2 − 1

3
K3

)
+ ε5

3
K3

(ε≤1)≤ ε2

2
(K2 −1)+ 4

3
ε3K3;

KL2 >−ε+ ε2

2
− ε3

3
+ (1−ε)

(
ε− ε2

2
K2

)
+ε(1−ε)

(
εK2 − ε2

2
K3

)
= ε2

2
(K2 −1)−ε3

(
1

3
+ 1

2
K2 + 1

2
K3

)
+ ε4

2
K3

≥ ε2

2
(K2 −1)− 4

3
ε3K3.

For the second moment of the log likelihood ratio under the alternative one has

Var2 +KL2
2 = E

[(
log

(
1+εk(X )

1+ε
))2 1+εk(X )

1+ε
]

≤ E
[

(1+εk(X ))

(
ε2(k2(X )+1)−2

(
ε− ε2

2

)(
εk(X )− ε2 k2(X )

2

))]
= ε2(K2 −1)+ε3(2−K2 +K3)+ε4

(
K2

2
+K3

)
− ε5 K2

2
< ε2(K2 −1)+4ε3K3;

and

Var2 +KL2
2 ≥ E

[
(1−ε)

(
ε2 k2(X )−ε3 k3(X )+ε2 −ε3 −2ε2 k(X )

)]
= ε2(K2 −1)−ε3(K2 +K3)+ε4(1+K3) ≥ ε2(K2 −1)−2ε3 K3.

Consequently, with the assumptions of Lemma 2.2, one has the following asymptotic be-

haviour of the first two moments of the log likelihood ratio under the alternative

KL2

ε2

2 (K2 −1)
−→
ε−→0

1, (2.13)

Var2

ε2(K2 −1)
−→
ε−→0

1. (2.14)

Now we can return to (2.4) and (2.5). The values nmin, KL1, KL2, Var1, Var2, A and B depend

on ε. Obviously nmin −→
ε−→0

+∞. If ε is small enough,

A = C̃ ρ0

(
p

Var1)3 =
C̃ E

[
| log

(
1+ε

1+εk(X )

)
|3

]
(
p

Var1)3 ≤ C̃ ε3(K3+1)(
ε2(K2−1)−2ε3K3−

(
ε2

2 (K2−1)+ ε3

3 K3

)2
)3/2 −→

ε−→0

C̃ (K3+1)
(K2−1)3/2 . Analogously,

18



2.1. Likelihood ratio test

B = C̃ ρ1

(
p

Var2)3 =
C̃ E

[
| log

(
1+εk(X )

1+ε
)
|3 1+εk(X

1+ε
]

(
p

Var2)3 ≤ C̃ (ε3 K3+ε4 K4+ε3+ε4)(
ε2(K2−1)−2ε3K3−

(
ε2

2 (K2−1)+ 4ε3

3 K3

)2
)3/2 −→

ε−→0

C̃ (K3+1)
(K2−1)3/2 .

Consequently, Ap
nmin

−→
ε−→0

0 and Bp
nmin

−→
ε−→0

0.

For sufficiently small ε, combining (2.4) and (2.5) with the results from (2.9), (2.10) ,(2.13),

(2.14), one obtains

ε2nmin >
Φ−1

(
α+ Ap

nmin

)p
Var1 +Φ−1

(
β+ Bp

nmin

)p
Var2

KL1 +KL2

2

−→
ε−→0

(
Φ−1(α)+Φ−1(β)p

K2 −1

)2

ε2nmin <
Φ−1

(
α− Ap

nmin−1

)p
Var1 +Φ−1

(
β− Bp

nmin−1

)p
Var2

KL1 +KL2

2

+ε2 −→
ε−→0

(
Φ−1(α)+Φ−1(β)p

K2 −1

)2

.

This ends the proof of Theorem 2.1.

Notice that using (2.3) instead of inequalities (2.4) and (2.5), the testing error rates can be

approximated as

α≈Φ
(

C −nKL1p
n Var1

)
, β≈Φ

(−C −nKL2p
n Var2

)
, (2.15)

and the decision boundary of the LRT approximately satisfies

C (α) ≈Φ−1(α)
√

n Var1 +nKL1.

The type II error rate of the test is approximately

β≈Φ
(
−Φ−1(α)

√
Var1

Var2
− (KL1 +KL2)

p
np

Var2

)
. (2.16)

Consequently, an approximate minimum sample size is

nmin ≈
(
Φ−1(α)

p
Var1 +Φ−1(βmax)

p
Var2

KL1 +KL2

)2

. (2.17)

We use this formula for numerical calculations of nmin in Fig. 2.1. From Lemmas 2.1, 2.2 and

Theorem 2.1, it follows that for ε¿ K2−1
K3

an approximate minimum sample size is

nmin ≈ 1

ε2

(
Φ−1(α)+Φ−1(βmax)p

K2 −1

)2

. (2.18)

To illustrate this formula, in Fig. 2.1 we plot asymptotes from (2.18) together with numerically

calculated sample sizes from (2.17). In Tab.2.1 we present K2 and K3 for some distributions. In

Fig. 2.2, we show the regions corresponding to ε¿ K2−1
K3

for various distributions.
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Chapter 2. Detection problems for finite sample sizes

(a) Normal distribution, σ= 1

.
(b) Laplace distribution, b = 1p

2
.

(c) Cauchy distribution, γ= 1.

Figure 2.1 – The asymptotes for the sample size necessary to achieve a power of at least 1−βmax. The
parameters are for α= 0.05, βmax = 0.2. ( ) - nmin computed numerically, ( ) - asymptotes from
(2.18). Colored dots on the asymptotes correspond to the points where ε= K2−1

K3
. For the distributions, see

Table 2.1.
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Chapter 2. Detection problems for finite sample sizes

(a) Mixtures of Gaussian with σ = 1, Cauchy with
γ= 1 and Laplace with b = 1p

2
.

(b) Exponential distribution

(c) Binomial distribution, p1 = 1/2, N = 20

Figure 2.2 – The curves correspond to ε= K2−1
K3

for various distributions.
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2.2. Asymptotic detection

2.2 Asymptotic detection

In the previous section we found the conditions for computing an approximate sample size

given predefined testing errors. However, for some distributions the condition ε¿ K2−1
K3

might

imply extremely small ε, which in turn implies enormous nmin. However, for some practical

applications, where n is fixed, one might be interested in the parameters of F1 which can be

detected for this sample size. To approach this problem, we incorporate a parametrization

where every alternative f1 is a member of some sequence f1n . We search for the region in the

parameter space where one can asymptotically distinguish H0 and H1 with the LRT of certain

power and level. In other words, the aim of an asymptotic framework is to answer whether the

type II error rate for the alternative is less than βmax with n −→∞. The results are presented

in Theorem 2.2.

Recall the conditions C1 given at the beginning of the chapter. If they are satisfied, the

function f1 is fully characterized by the pair (K2,ε), since K2 is an increasing function of µ.

Indeed, for the densities symmetric around zero, K2 =
∫ +∞
−∞

f 2
0 (x−µ)
f0(x) d x and

(
K ′

2

)
µ =−2

∫ +∞

−∞
f0(x −µ) f ′

0(x −µ)

f0(x)
d x =−2

(∫ µ

−∞
f0(x −µ) f ′

0(x −µ)

f0(x)
d x +

∫ +∞

µ

f0(x −µ) f ′
0(x −µ)

f0(x)
d x

)
=

=−2
∫ +∞

µ
f0(x −µ) f ′

0(x −µ)

(
1

f0(x)
− 1

f0(2µ−x)

)
d x.

Note that f ′
0(x −µ) ≤ 0 and f0(x) ≤ f0(2µ−x) for x ≥µ. One can prove that there exists x̃ > 2µ,

such that f ′
0(x̃ −µ) < 0 and f0(x̃) < f0(2µ− x̃). Therefore,

(
K ′

2

)
µ
> 0. This argument justifies the

choice of the parametrization (2.2). To be consistent with the introduction, the pair (K2,ε)

represents an element of the parameter space of the alternative hypothesisΘ1n .

The detectable set for the family of distributions satisfying C1 is defined as

Sd = {(δ,r ) : ∃N : βLRT (α, f1) <βmax, ∀n ≥ N }.

Conversely, the non-detectable set is

Snd = {(δ,r ) : ∃N : β(α, f1) >βmax, ∀n ≥ N }.

Reconstructing Sd is a challenging problem and an interesting research question. In our

work we present sufficient conditions for detectability, i.e., for the experimental design with

given α and βmax we conclude whether f1n determined by the parameters (δ,r ) could be

asymptotically detected. We refer to the subspace where the detection is possible as Rd , and

Rnd stands for the subspace where detection is not possible. For some distributions for almost

all pairs (δ,r ) we can say whether alternatives are in Rd or in Rnd . For the problems with

finite n, which we have mentioned in the beginning of this section, we propose the following

heuristic method: find (δ,r ) such that ε= ε0n−δ, K2 = 1+n2r , and infer about detectability

based on Rd and Rnd . Further in this chapter, we show that for sample sizes exceeding 100,

23



Chapter 2. Detection problems for finite sample sizes

this heuristic works quite well.

2.3 φ-divergences and testing errors

In this section we prove Theorem 2.2. To start the analysis of asymptotic detectability, we refer

to some general inequalities that link the testing errors and the distances between distributions

under the null and under the alternative. The divergences (or distances) mentioned in this

chapter are the representatives of the so-calledφ−divergence. Let the vector of iid observations

be (X1, . . . , Xn) ∼ F̃0 under the null and F̃1 under the alternative. We will consider functions F̃0

and F̃1 continuous in Rn . with the densities f̃ j (x) =∏n
i=1 f j (xi ), j = 0,1. The φ−divergence is

defined by the convex function φ : (0,∞) −→R, φ(1) = 0, as

Dφ(F̃0,F̃1) =
∫
Rn
φ

(
f̃1(x)

f̃0(x)

)
f̃0(x)d x .

In Section 2.1 approximate expressions for the testing errors are derived using the KLD, which

is the φ− divergence with φ(t ) =− log t . For φ(t ) = |t−1|
2 , Dφ(F̃0,F̃1) is the L1 distance. One of

the results from information theory states that the sum of the testing errors is bounded from

below by the L1 distance.

Denote the rejection region for (2.1) as R . Then the lower bound on the sum of α and β of an

arbitrary testing procedure depends on the L1 distance between F̃0 and F̃1:

(1−β)−α=
∫

R
( f̃1 − f̃0)d x ≤

∫
f̃1> f̃0

( f̃1 − f̃0)d x =
∫

f̃1> f̃0

| f̃1 − f̃0|d x

=
∫

f̃0> f̃1

| f̃0 − f̃1|d x = 1

2

∫
Rn

| f̃1 − f̃0|d x =⇒α+β≥ 1− 1

2

∫
Rn

| f̃1 − f̃0|d x .

(2.19)

In turn, the L1 distance is bounded above by
p

2H(F̃1,F̃0), where

H(F̃1,F̃0) =
√

1

2

∫
Rn

(√
f̃1 −

√
f̃0

)2

d x

is the Hellinger distance, the square root of φ−divergence with φ= 1−p
t .

∫
Rn

| f̃1 − f̃0|d x =
∫
Rn

∣∣∣∣√ f̃1 −
√

f̃0

∣∣∣∣(√ f̃1 +
√

f̃0

)
d x ≤

√∫
Rn

(√
f̃1 −

√
f̃0

)2

d x
∫
Rn

(√
f̃1 +

√
f̃0

)2

d x

=
√∫

Rn

(√
f̃1 −

√
f̃0

)2

d x
(
2+2

∫
Rn

√
f̃1 f̃0d x

)
≤ 2

√∫
Rn

(√
f̃1 −

√
f̃0

)2

or
1

2

∫
Rn

| f̃1 − f̃0|d x ≤
p

2H(F̃1,F̃0). (2.20)
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2.3. φ-divergences and testing errors

From these inequalities it follows that

α+β≥ 1−p
2H(F̃1,F̃0),

which we will use to prove asymptotic nondetectability.

Lemma 2.3. For α> 0 and l ≥ 1,

p
1+α> 1+ α

2
− α2

8
+ . . .− (4l −3)!!

22l (2l )!
α2l ;

p
1+α< 1+ α

2
− α2

8
+ α3

16
. . .+ (4l −1)!!

22l+1(2l +1)!
α2l+1;

Lemma 2.4. In Rnd = {
(δ,r ) : r < δ− 1

2

}
,

p
2H(F̃1,F̃0) −→ 0, n −→∞.

Proof. For Rnd it is sufficient to show that the Hellinger affinity

A(F̃0,F̃1) = 1−H 2(F̃0,F̃1) =
∫
Rn

√
f̃0 f̃1d x =

(∫ +∞

−∞

√
f0(x) f1(x)d x

)n

= (A(F0,F1))n

tends to one when n −→∞.

For r < 0 to bound the Hellinger affinity from below we use Lemma 2.3,

A(F0,F1) = 1p
1+εE

(p
1+εk

)
>

1+ ε
2 − ε2

8 K2 + . . .− (4l−3)!!
22l (2l )!

ε2l K2l

1+ ε
2 − ε2

8 + ε3

16 . . .− (4l−1)!!
22l+1(2l+1)!

ε2l+1

= 1−
ε2

8 (K2 −1)− ε3

16 (K3 −1)+ . . .+ (4l−3)!!
22l (2l )!

ε2l (K2l −1)+ (4l−1)!!
22l+1(2l+1)!

ε2l+1

1+ ε
2 − ε2

8 + ε3

16 . . .− (4l−1)!!
22l+1(2l+1)!

ε2l+1︸ ︷︷ ︸
zn

.

Choose l : δ> 1
2l+1 , then ε2l+1 = o

( 1
n

)
. If r < δ− 1

2 , then ε2 (K2 −1) = o
( 1

n

)
. With C1 satisfied,

εm (Km −1) = o
(

1
n1+(m−2)δ

)
, m ≥ 2. It follows that n zn −→ 0 and A(F̃0,F̃1) −→ 1.

For r ≥ 0 the proof follows from the inequalities

A(F0,F1) > 1+ ε
2 − ε2K2

8

1+ ε
2 − ε2

8 + ε3

16

= 1−
ε2

8 (K2 −1)+ ε3

16

1+ ε
2 − ε2

8 + ε3

16

,

A(F̃0,F̃1) >

1−
ε2

0n2r−2δ

8 + ε3
0n−3δ

16

1+ ε0 n−δ
2 − ε2

0 n−2δ

8 + ε3
0 n−3δ

16︸ ︷︷ ︸
zn


n

.
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Chapter 2. Detection problems for finite sample sizes

Since r < δ− 1
2 and r ≥ 0, δ> 1

2 > 1
3 and n zn −→ 0. Therefore, A(F̃0,F̃1) −→ 1.

If α is fixed, as in our case, from the Lemma 2.4 we conclude that in Rnd the lower bound on

β(α, f1) tends to 1−α> 0.5 >βmax.

Lemma 2.5. For the set of parameters

Rd =
{

(δ,r ) :

(
r < 0 and r > δ− 1

2

)
or

(
r ≥ 0, r > δ− 1

2
and K3 = o

(
n2r+δ

))}
,

the type II error rate of the LRT tends to zero when n −→∞.

Proof. Here we use the result due to Chernoff [1952] on the convergence rates of the error

rates for the LRT with rejection bound C = 0,

αn ≤
(

inf
s>0

∫ +∞

−∞
f1(x)s f0(x)1−sd x

)n

,

βn ≤
(

inf
s>0

∫ +∞

−∞
f0(x)s f1(x)1−sd x

)n

.

For s = 1/2, the error rates of the LRT are bounded by the Hellinger affinity A(F̃0,F̃1) =
(A (F0,F1))n . To prove the lemma, we will show that (A(F0,F1))n −→ 0 for pairs (δ,r ) in Rd .

If r < 0, we apply Lemma 2.3 to the Hellinger affinity:

A(F0,F1) <
1+ ε

2 − ε2

8 K2 + ε3

16 K3 − . . .+ (4l−5)!!ε2l−1

22l−1(2l−1)!
K2l−1

1+ ε
2 − ε2

8 + . . .− (4l−3)!!
22l (2l )!

ε2l

= 1−
ε2

8 (K2 −1)− ε3

16 (K3 −1)+ . . .− (4l−5)!!ε2l−1

22l−1(2l−1)!
(K2l−1 −1)− (4l−3)!!

22l (2l )!
ε2l

1+ ε
2 − ε2

8 + . . .− (4l−3)!!
22l (2l )!

ε2l
, l ≥ 2,

A(F̃0,F̃1) <

1−
ε2

0 n−2δ

8 n2r − ε3
0 n−3δ

16 (K3 −1)+ . . .− (4l−5)!!ε2l−1
0 n−(2l−1)δ

22l−1(2l−1)!
(K2l−1 −1)− (4l−3)!!ε2l

0 n−2lδ

22l (2l )!

1+ ε0 n−δ
2 − ε2

0 n−2δ

8 + . . .− (4l−3)!!ε2l
0 n−2lδ

22l (2l )!︸ ︷︷ ︸
zn



n

.

Let 2 ≤ l : δ> 1
2l , then for r > δ− 1

2 with C1 satisfied, n zn −→∞ and A(F̃0,F̃1) −→ 0.
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2.3. φ-divergences and testing errors

If r ≥ 0, then

A(F0,F1) < 1+ ε
2 − ε2K2

8 + ε3K3
16

1+ ε
2 − ε2

8 + ε3

16 − 5
128ε

4
= 1−

ε2

8 (K2 −1)− ε3

16 (K3 −1)− 5
128ε

4

1+ ε
2 − ε2

8 + ε3

16 − 5
128ε

4
;

A(F̃0,F̃1) <
1−

ε2
0n2r−2δ

8 − ε3
0 n−3δ

16 (K3 −1)− 5ε4
0 n−4δ

128

1+ ε0n−δ
2 − ε2

0 n−2δ

8 + ε3
0 n−3δ

16 − 5ε4
0 n−4δ

128

n

=

1−
ε2

0n2r−2δ

8

(
1− ε0

2

(
K3−1
n2r+δ

)
− 5ε2

0
16 n−2(r+δ)

)
1+ ε0n−δ

2 − ε2
0 n−2δ

8 + ε3
0 n−3δ

16 − 5ε4
0 n−4δ

128︸ ︷︷ ︸
zn


n

.

For
{
(δ,r ) : r > δ− 1

2 and K3 = o
(
n2r+δ)}, n zn −→∞ and, consequently, A(F̃0,F̃1) −→ 0.

Till now we proved the detectability for the case when rejection threshold of the LRT is C = 0,

i.e., both α and β change with n. If we fix α, then starting from some large N0 : αN0 <α and

βN0 >β(α, f1). Henceforth, as βn −→ 0 in Rd , β(α, f1) also tends to zero in Rd , i.e, ∃N : ∀n ≥
N : β(α, f1) ≤βmax.

Notice that if r ≥ 0 and the condition K3 = o
(
n2r+δ) is satisfied, r < δ/2. Indeed, Varg [k(X )] =

K3 −K 2
2 ≥ 0. Consequently, K3 ≥ K 2

2 , and if r ≥ δ/2, then 4r ≥ 2r +δ.

Example 2.3.1. From Table 2.1, we can derive the conditions for K3 = o(n2r+δ) given r ≥ 0:

1. Gaussian mixture: K2 = eµ
2
, K3 = e3µ2 = K 3

2 . Therefore, K3 = o(n2r+δ) iff r < δ/4.

2. Laplace mixture: K2 = 2
3 e

p
2µ+ 1

3 e−2
p

2µ, K3 = 3
5 e2

p
2µ+ 2

5 e−3
p

2µ. In order to have K3 =
o(n2r+δ), one needs r < δ/2.

3. Cauchy mixture. K2 −1 = µ2

2 , K3 = 3µ2

2 + 3µ4

8 +1. Consequently, K3 = o(n2r+δ) iff r < δ/2.

Note also that if K3 = o(n2r+δ), we can approximate β as

βn ≈Φ
(
−Φ−1(α)−ε

√
n(K2 −1)

)
=Φ

(
−Φ−1(α)−ε0 n

1
2+r−δ

)
.

In the paramterization we put ε0 = −(
Φ−1(βmax)+Φ−1(α)

)
to ensure βn ≈ βmax on the line

r = δ− 1
2 .

Lemma 2.6. If Rd is the region of detectability from Lemma 2.5, the parameter set defined as

RC
d = {(δ∗,r∗) : δ∗ ≤ δ and r∗ ≥ r, for (δ,r ) ∈ Rd }

also gives the asymptotic LRT error rates αn ,βn −→ 0.
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Chapter 2. Detection problems for finite sample sizes

Proof. To prove the statement we will show that A(F̃0,F̃1) is a monotonically non-increasing

function of ε and µ.

• The monotonicity in ε follows from(
1p

1+εE
(√

1+εk(X )
))′
ε

= 1

2(1+ε)3/2
E

(
k(X )−1p
1+εk(X )

)
= 1

2(1+ε)3/2

(∫
k(x)<1

k(x)−1p
1+εk(x)

d x +
∫

k(x)≥1

k(x)−1p
1+εk(x)

d x

)
≤ 1

2(1+ε)3/2

∫ +∞

−∞
k(x)−1p

1+ε d x = 0.

• The monotonicity of the Hellinger affinity in µ could be shown as follows

(
E(

√
1+εk(X ))

)′
µ
= E

(
εk ′(X )

2
p

1+εk(X )

)
k ′(x)=− f ′0(x−µ)

f0(x)= ε

2

∫ +∞

−∞
− f ′

0(x −µ)√
1+ε f0(x−µ)

f0(x)

d x

=−ε
2

∫ +∞

µ
f ′

0(x −µ)

 1√
1+ε f0(x−µ)

f0(x)

− 1√
1+ε f0(µ−x)

f0(2µ−x)

 d x.

Note that f ′
0(x −µ) ≤ 0 and f0(x) ≤ f0(2µ−x) for x ≥µ. One can prove that there exists

x̃ > 2µ, such that f ′
0(x̃ −µ) < 0 and f0(x̃) < f0(2µ− x̃). Because of the symmetry of f (x)

and the above considerations, the derivative of A(F̃0,F̃1) with respect to µ is negative.

Three last lemmas in this section prove Theorem 2.2. In Fig. 2.3, we depict Rd and Rnd in the

(δ,r ) plane for Gaussian, Laplace and Cauchy distributions. For rather large sample sizes, the

region filled with green corresponds to β≤βmax and in the region filled with red β≥βmax.

Comparison with the ARW model

In Chapter 1 we mentioned the ARW model for sparse normal signals. To cover all alternatives,

Tony Cai et al. [2011] proposed the additional parametrization for the case of dense normal

signals. A dense signal is characterized by a higher concentration of signals and weaker signal

magnitude. The combined parametrization is the following,

pn = n−δ, 0 < δ< 1;

µ
sparse
n =

√
2r log(n), 0 < r < 1,

1

2
< δ< 1; (2.21)

µdense
n = nr , − 1

2
< r < 0, 0 < δ< 1

2
.
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2.3. φ-divergences and testing errors
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(a) Normal distribution.
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(b) Laplace distribution.
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δ0 1
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d

Rnd

(c) Cauchy distribution.

Figure 2.3 – Phase diagram of Rd , RC
d and Rnd . Rd and RC

d regions with βn <βmax are filled with green,
the red region corresponds to Rnd with βn > βmax. For the region filled with white the possibility of
asymptotic detection has not been established.
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Chapter 2. Detection problems for finite sample sizes

(a) n = 103 (b) n = 104

Figure 2.4 – The parameter space for the Gaussian mixture model (1−p)N (0,1)+pN (µ,1). The blue line
corresponds to the numerical contour lines for the type II error rate of the LRT; the detection boundary
from (2.22) is shown in red; the region Rd is inside the area restricted by the green lines. The default
parameters of the test are chosen to satisfy α= 0.05, βmax = 0.2.

The asymptotic detection boundary in the case of Gaussian mixtures was found to be

ρ∗(δ) =
δ−

1
2 , 0 < δ≤ 3

4 ;(
1−p

1−δ
)2

, 3
4 < δ< 1.

(2.22)

If r > ρ∗(δ), the sum of the type I and type II error rates of the LRT with the rejection threshold

C = 0 tends to zero, which is referred to as the detectable region, while if r < ρ∗(δ), the sum

tends to one for any testing procedure (non-detectable region). The findings were illustrated

in simulations with the LRT, the Higher Criticism test, the sample mean and the maximum

value testing procedures. However, even sample sizes of order 107 were not enough to show a

clear distinction between the region of detectability and the region of non-detectability. For

many applications the asymptotic results are not satisfactory, because one should often plan

the experiment and estimate the errors for the chosen sample size. Our motivation was to

explore the boundaries of the detection for finite sample sizes and predefined maximum error

rates levels. To check how far the asymptotic boundary is from the one obtained numerically,

in Fig. 2.4(a), (b) we show the power of the LRT for n = 103,104. The contour lines of the type

II error rate are plotted in blue, and the boundary corresponding to (2.22) is plotted in red.

The detection region Rd corresponds to the area restricted by the green lines. We can see

that for these sample sizes the boundary defined in (2.22) gives an overly optimistic guidance,

resulting in power of less than 50%. Moreover, at δ= 1/2 a discontinuity occurs, which makes

the results not consistent, while our parametrization is a continuous mapping of r into µ.

For Cauchy and Laplace mixtures we do not have any references to compare, and we check
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2.4. Testing procedures for Gaussian mixtures

empirical power in Rd and Rnd based on simulations. For each point of the (ε,µ) plane, the

mixture from the corresponding distribution was generated, where the proportion of points

from the component with a location parameter µ is p = ε
1+ε . The results are depicted in

Fig. 2.5. Apart from the LRT test, we applied the rejection procedures based on the sample

mean (SM) and Higher Criticism. Rejection bounds were chosen as upper α quantiles of the

corresponding test statistics under the null. One can see that there is a good correspondence

of the theoretical detection boundary and the empirical one (the boundary of the light green

area and the red one) starting from sample sizes of order 102. It is smaller than for the Gaussian

mixtures where the empirical contour line β= 0.2 is close to the theoretical boundary starting

from sample size of order 103 (see Fig. 2.4). Interestingly, Higher Criticism does not seem

to be optimal, either for Laplace or for Cauchy mixtures. Conversely, we observe that the

gap between the detection boundary and the HC empirical power does not shrink when the

sample size is increased. For Laplace mixtures the sample mean converges to the detection

boundary and has satisfactory power for large ε.

In general, when comparing Gaussian mixtures with Laplace and Cauchy mixtures, one can

see how much more difficult the detection of signal is for heavy-tailed distributions.

2.4 Testing procedures for Gaussian mixtures

The parametric LRT is not a useful tool if the distribution is unknown. In this section we

compare the performance of several non-parametric tests for the case of Gaussian mixtures.

All the results for the univariate case are presented in Fig. 2.6.

2.4.1 Univariate Gaussian mixture

• Higher Criticism test. Transform each observation Xi into the p-value pi =P(N (0,1) >
Xi ), i = 1, . . . ,n. Then sort the p-values in an increasing order, p(1) ≤ p(2) ≤ . . . ≤ p(n). The

final statistic is the maximum standardized deviation between the empirical distribution

of the p-values and their expected distribution under the null, the uniform U [0,1],

HC
(
p(i )

)= p
n |i /n −p(i )|√
p(i ) (1−p(i ))

, HC∗
n = max

1≤i≤n
HC

(
p(i )

)= HC
(
p∗)

.

It was shown in Donoho and Jin [2004], Tony Cai et al. [2011] that HC is optimally

adaptive in the detectable region r > ρ∗(δ) (see Eq.2.22).

We simulated HC performance for n = 100 and n = 1000 random variables from Gaussian

mixtures with different (p,µ). Rejection bounds for the test corresponding to α= 0.05

were computed with 104 Monte-Carlo simulations: HC∗
100(0.05) = 4.8, HC∗

1000(0.05) =
4.83.

• The maximum value. The next non-parametric statistic we look at is the maximum of

the observations. If we continue with the multiple testing analogy, the test based on
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Chapter 2. Detection problems for finite sample sizes

(a) Laplace mixture. The HC test n = 102 (b) Laplace mixture. The HC test, n = 103

(c) Laplace mixture. The SM, n = 102 (d) Laplace mixture. The SM, n = 103

(e) Cauchy mixture. The HC test, n = 102 (f) Cauchy mixture. The HC test, n = 103

Figure 2.5 – Empirical detection power based on 103 simulations from the mixtures with the parameters (ε,µ). The
dark green area corresponds to the power of the corresponding statistic greater than 0.8; the light green area - to the
power of the LRT greater or equal to 0.8. The white line corresponds to r = δ− 1

2 . All tests are performed to ensure the
maximum error levels, α= 0.05, βmax = 0.2.
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2.4. Testing procedures for Gaussian mixtures

the maximum value can be considered as the analogue of the Bonferroni correction

(the minimal p-value converts to the maximal observation). Consequently, one would

expect it to be more conservative than HC.

Under the null,
max

i=1,...,n
Xip

2 log(n)

p−→ 1. So, it is natural to take
√

2log(n) as a rejection boundary

to let the type I error rate tending to zero. In the case of the Gaussian mixture, the

maximum value is the maximum of two components,

max
i=1,...,n

Xi ≈
√

2log(n) ·max
{

1,
p

1−δ+p
r
}

.

Therefore, the asymptotic separation of H0 and H1 is only possible if
p

1−δ+p
r > 1.

For this reason the usage of the maximum value statistic is restricted to the sparse case

where the detection boundary is defined by ρmax =
(
1−p

1−δ
)2

. It follows that the

maximum value statistic is less powerful than the HC for δ ∈ (1/2,3/4] and r ≥ 1 and

coincides with the HC for δ ∈ (3/4,1), r ≥ 1. In Fig. 2.6(a),(c),(b),(d) one can see for

the chosen sample sizes there is a negligible distinction for sparse signals, whereas the

distinction for the dense signals becomes substantial with bigger n.

For our analysis with a fixed type I error rate, the rejection bound corresponding to

α= 0.05 is determined by xα =Φ−1
(

n
p

1−α)
.

• The sample mean. X = 1
n

∑n
i=1 Xi could be a reasonable choice for big ε. From the central

limit theorem, the approximation of the type II error rate for big n is

β≈Φ
(

z1−α−µp
p

n√
1+ (1−p)pµ2

)
, (2.23)

where p = ε
1+ε and z1−α =Φ−1(1−α).

Consider first the case when r > 0. The asymptotic limit of (2.23) is

β≈Φ

 z1−α−ε0
√

2r log(n)n−δ+1/2√
1+ε0 2r n−δ log(n)

 −→
n−→∞

1−α, δ> 1/2,

0, δ< 1/2.

For the dense region with δ ∈ (0,1/2) and r < 0, β≈Φ
(
z1−α−ε0 n

1
2+r−δ

)
, and it follows

that

β −→
n−→∞

1−α, r < δ−1/2,

0 , r > δ−1/2
.

On the line r = δ−1/2 one has β≈βmax, i.e., the sample mean is asymptotically equiva-

lent to the LRT in the dense region.

Hence, to detect the mixture with power at least 1−βmax, the smallest possible num-

ber of points containing the signal should be ε0 n−1/2 (the amplitude of this signal is√
log2). For α= 0.05, β= 0.2 and n = 100 and n = 1000 the value of ε0 n−1/2 is 25 and 79,
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Chapter 2. Detection problems for finite sample sizes

sample size,
n

min # of
points in
the second

group

s minµ detected in Rd µ
(
ε0 n− 2

3

)
100 10 2 0.31 0.93

1000 24 2 0.22 1.09
100 10 3 0.26 0.76

1000 24 3 0.18 0.89
100 10 5 0.20 0.59

1000 24 5 0.14 0.69
100 10 7 0.17 0.50

1000 24 7 0.12 0.59
100 10 10 0.14 0.42

1000 24 10 0.10 0.49
100 10 15 0.11 0.34

1000 24 15 0.08 0.40

Table 2.2 – Some of the detection limiting characteristics for a multivariate gaussian mixture with sparse
mean value. The preserved type I and type II error rates are 0.05 and 0.2 respectively, and ε0 ≈ 2.49.

respectively.

2.4.2 Multivariate Gaussian mixture

For completeness, we consider the alternative hypothesis in (2.1) to be the d−variate mixture

Xi ∼ 1

ε+1
Nd (0,Σ)+ ε

ε+1
Nd (µ,Σ) , i = 1, . . . ,n; µ j ∈ {0,µ}, j = 1, . . . ,d .

Denote the number of µ j 6= 0, j = 1, ..,d as s. In the multivariate normal case the moments of

k(x) are

K2 = eµ
TΣ−1µ, K3 = e3µTΣ−1µ.

The parameterization of µ (the y-axis in Fig. 2.4a, 2.4b) in the multivariate normal case will

be changed by the scaling factor 1p
s

. The more true non-null components are in µ, the

easier it is to detect a mixture. The minimum theoretical ε in Rd is defined by ε0 n− 2
3 with

the corresponding effect of the size µ
(
ε0 n− 2

3

)
=

√
log

(
1+n

1
3

)
/s. The resulting values for

n = 100, 1000 are summarized in Tab. 2.2.

To check the detection for multivariate Gaussian mixtures, we consider two mean-based

tests and two variance-based tests:

• Hotelling’s test. The multivariate analogue of the squared standardized mean-value. If
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2.4. Testing procedures for Gaussian mixtures

(a) Higher Criticism, n = 100 (b) Higher Criticism, n = 1000

(c) The maximum value, n = 100 (d) The maximum value, n = 1000

(e) The sample mean, n = 100 (f) The sample mean, n = 1000

Figure 2.6 – Empirical power based on 103 simulations from the mixture 1
ε+1 N (0,1)+ ε

ε+1 N (µ,1). The dark green
area corresponds to the powers greater than 0.8 of the explored statistic; the light green area is the region where the
power of the LRT is greater or equal to 0.8. The white line corresponds to r = δ− 1

2 . α= 0.05, βmax = 0.2.
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Chapter 2. Detection problems for finite sample sizes

the null is true and x ∼Nd (µ,Σ), then

n (x −µ)T Σ−1(x −µ) ∼χ2
d .

In our case µ = 0 and Σ = I . The rejection region is chosen according to the (1−α)

quantile of χ2(d) distribution.

• Coordinatewise sample mean with the multiplicity correction. The null hypothesis for

the coordinatewise mean-based methods is H0 : µ1 = . . .µd = 0. Denote H0i : µi =
0, i = 1, . . . ,d . The method consists of two steps. First, the individual p-values for each

coordinate’s sample mean are computed. Then, one applies the Hochberg multiplicity

correction, which places the p-values in ascending order, p(1) ≤ p(2) . . . ≤ p(d). The

method controls the probability of at least one false positive among the set of the p-

values, i.e., the family wise error rate (FWER), to be less than a certain level and proceeds

as following: for the maximum rank k such that k : p(k) ≤ α
d+1−k the method rejects the

null hypotheses corresponding to the p-values with ranks i ≤ k. For Hochberg’s method

to control FWER, test statistics need to be independent or have a distribution of a certain

positive dependence structure, see Sarkar [1998]. For Σ= I , as in our simulations, the

p-values are independent. We count how many times at least one of the null hypotheses

is rejected, in this case we consider that the alternative was detected.

The next two testing methods that we consider below were proposed for the sparse detec-

tion problem in the recent work Verzelen and Arias-Castro [2017]. They explored minimax

detection rates in terms of the signal-to-noise ratio µTΣ−1µ for the fixed ε. For different spar-

sity regimes they claimed that methods based on the sample variance are minimax optimal

(γn −→ 0, see Eq. 1.4) and at the same time computationally tractable. For a sparsity regime

with s ≤√
d/log(d), it is shown that if the parameters satisfy

p(1−p)||µ||2 À
√

s2

n
log(d/s), (2.24)

the statistic max
j=1,...,d

σ̂ j j , where σ̂ j j = 1
n

∑
i (xi j − x̄ j )2 is consistent. For the non-sparse regime,

s ≥√
d/log(d), if

p(1−p)||µ||2 À
√

d

n
, (2.25)

the consistent test (in terms of minimax error tending to zero with the sample size tending to

infinity) is based on thresholding the top eigenvalue.

• Coordinatewise sample variance with the multiplicity correction. Hochberg’s multiplicity

correction procedure was applied for each coordinate’s sample variance. We found

this method to be more powerful than the maximum canonical variance, due to the

link between the maximum canonical variance and the overly conservative Bonferroni

correction.
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2.5. Reciprocal questions. Estimability and classification. Multivariate sparse mixture
models.

• The maximum eigenvalue. Here we take the top eigenvalue of the sample’s empirical

covariance matrix. The critical value is obtained by 104 Monte-Carlo simulations under

the null.

As expected, the power of the mean-based tests is higher for large values of ε and small values

of µ, while the variance-based tests are more powerful for small values of ε (see Fig. 2.7, 2.8).

The difference between the two mean-based tests is small for the considered sample sizes

and dimensionality. Conversely, the distinction between the canonical variance and the top

eigenvalue is rather big, especially between the µ is 1−sparse (s = 1) and d−sparse (s = d)

cases.

2.5 Reciprocal questions. Estimability and classification. Multivari-

ate sparse mixture models.

The next step after the detection is usually estimation of the parameters. For the univari-

ate gaussian case and parametrization (2.21), the estimation of εn and µn is discussed in

Meinshausen and Rice [2006], Cai et al. [2007], Jin and Cai [2007]. Consistent estimator of p

when δ> 1/2 requires additional restrictions on the model, while if δ ∈ (0,1/2), the estimation

procedure remains general. After the estimates are obtained, the classification can be done

by maximizing the posterior probabilities, see Sun and Cai [2007]. The authors also showed

that the misclassification error, the percentage of falsely assigned observations, tends to the

random guessing error, nεn , for any classification procedure if r < δ.

The natural transition to the multivariate case (dim = d) was proposed in Donoho and Jin

[2008, 2009], Jin [2009]. They considered two groups of labeled multivariate observations of

equal size n. Assuming the coordinatewise effect sizes to be independent, they fixed an effect

size to be equal in absolute value and differ in sign for the two groups. Then the data reduced to

d statistics, each of which is the mean difference between the groups in each of d dimensions.

Thus, the multivariate detection problem is transformed into a univariate problem by the

substitution of the sample size n with the dimension d . The proportion of signals associated

with a groups’ difference, ε and their strength µ are parametrized with regard to dimension

similarly to (2.21). In addition, Donoho let the sample size n depend on three different growth

regimes: no growth, slow and regular growth. A similar model is explored in the minimax

framework in Ingster et al. [2009]. The parametrization above was motivated by the explosion

of gene-wide association studies (GWAS), where the number of subjects is much smaller than

the extracted genetic information represented by single nucleotide polymorphisms (SNPs).

The sparsity of µ was also a natural choice in the early GWAS era. Then, researchers expected

to find very few SNPs associated with a phenotype. However, today the paradigm has changed,

and many studies claim that a more reasonable strategy is to search for the sets of genes that

could explain the phenotype variability, rather than concentrating on single gene candidates.

The methods, such as the top eigenvalue and the maximum canonical variance, which
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(a) The Sample mean & Hoch. correction. s = 1 (b) Hotelling’s test. s = 1

(c) The sample mean & Hoch. correction. s = 5 (d) Hotelling’s test. s = 5

(e) The sample mean & Hoch. correction. s = 10 (f) Hotelling’s test. s = 10

Figure 2.7 – Empirical power for X ∈R10×1 under the 1
ε+1 N (0,Σ)+ ε

ε+1 N (µ,Σ). The dark green area corresponds
to the power of the corresponding statistic greater than 0.8; the light green area - to the power of the LRT greater or
equal to 0.8. The white line corresponds to r = δ− 1

2 . α= 0.05, βmax = 0.2, n = 103.
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2.5. Reciprocal questions. Estimability and classification. Multivariate sparse mixture
models.

(a) The sample var. & Hoch. correction. s = 1 (b) The maximum eigenvalue. s = 1

(c) The sample var. & Hoch. correction. s = 5 (d) The maximum eigenvalue test. s = 5

(e) The sample var. & Hoch. correction. s = 10 (f) The maximum eigenvalue test. s = 10

Figure 2.8 – Empirical power for X ∈R10×1 under the 1
ε+1 N (0,Σ)+ ε

ε+1 N (µ,Σ). The dark green area corresponds
to the power of the corresponding statistic greater than 0.8; the light green area - to the power of the LRT greater or
equal to 0.8. α= 0.05, βmax = 0.2, n = 103.
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were taken to illustrate the detection of sparse multivariate mixtures detection are based on

Verzelen and Arias-Castro [2017]. For d−variate Gaussian mixtures they discuss the test

H0 :X i i d∼ N (µ0,Σ) versus

H1 :X i i d∼ p N (µ0,Σ)+ (1−p)N (µ1,Σ),

where ∆µ=µ1 −µ0 is s−sparse and p is fixed. The sparsity s is assumed to be known, and the

parameters s,d ,∆µ might depend on n. The authors give an extensive instruction to what

should be the minimum distance between the means of the mixture components, so that

the asymptotic minimax risk tends to zero with n −→∞. In addition, they suggested that

coordinatewise sample moments are consistent (assuming separation between N (µ0,Σ) and

N (µ1,Σ)) estimators of ∆µ support.

2.6 Summary and conclusions

The detection problem for gaussian mixtures has been extensively studied. For the parametriza-

tion where the signal depends on the sample size n, the asymptotic detection rates were found

for n −→∞ along with the optimal procedures that achieve this boundary. However, the limits

of the type I and type II error rates are not enough when one needs to plan the experiment.

There should be a guidance for practitioners whether their sample size is sufficient for de-

tection of the signal of interest with the desired accuracy. To approach this problem for the

non-asymptotic setting, we used the moments of the log likelihood ratio of the densities of the

given distributions under the null and under the alternative hypotheses.

Our first finding is that an approach straightforwardly leads to the asymptotes for the sample

size when the weight of the non-null mixture component p −→ 0. This result can be applied

for a broad range of distributions. The second result is for the case when the mixture is

parametrized in terms of the sample size n with two parameters (δ,r ). The first parameter

accounts for the proportion and the second represents the effect size of the non-null signals.

It is convenient to depict the power of testing procedures on the (δ,r ) plane. For mixtures of

two continuous symmetrical and homoscedastic distributions we found a way for splitting

the (δ,r ) plane into regions where the type II error rate of the LRT test is above or below some

predefined βmax, while keeping the level α of the test fixed. These regions have linear bounds

and allow easy inference, whether or not the sample size is sufficient to detect the alternative

with a desired power with the parameters within the regions. For some mixtures, e.g., Gaussian,

with the theory employed, we are not able to cover the whole parameter plane. To validate the

results and to fully reconstruct the regions’ bounds, we provide the numeric calculation of the

LRT performance using the moments of the likelihood ratio.

The LRT is a parametric test and not always applicable. For this reason, we checked the

performance of the most widely used testing procedures for the univariate and multivariate

Gaussian mixtures. With emphasis on planning and sample size computation, we conclude

40



2.6. Summary and conclusions

that for dense signals (small magnitude / high frequency) the first moment statistics are

preferred both for univariate and multivariate cases. For sparse signals (big magnitude / low

frequency) the HC and the maximum value give almost the same detection region in the

univariate case, while in the case of multiple dimensions either the methods aggregating

the coordinatewise second moments or the the maximum eigenvalue should be applied

depending on the sparsity of the components’ mean difference.
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3 Clinical trials

Because of population heterogeneity, treatment effects may vary considerably from one

subject to another. In Evans et al. [2004], it has been reported that on average only 60% of

treated patients react to prescription drugs, whereas the others either do not benefit or have

adverse effects. If a trial showed no significant average treatment effect, it can be wrong to

conclude that the treatment effect does not exist and that the treatment is futile. There may

well be a subpopulation for whom the treatment is effective. As an example, consider the

Clomethiazole Acute Stroke Study by Wahlgren et al. [1999] where the relative functional

independence of patients with acute hemispheric stroke was investigated. The trial results

showed no significant difference between the clomethiazole and the placebo groups (56.1%

vs. 54.8%) with a p-value of 0.649. However, in the group of patients with TACS (total anterior

circulation syndrome), 40.8% reached relative functional independence in contrast to 29.8%

of TACS patients in the placebo group, with a p-value of 0.008.

In this chapter we discuss the models that are conventionally used to design clinical trials

and the situations when they might decrease the power leading a trial to failure. We explain

why the mixture models are reasonable choice in the case of partial effectiveness of the tested

treatments, and how the results from Chapter 2 could be used in the design.

3.1 Clinical trials

The necessary testing procedure before a new drug or therapy is approved to enter the market,

a clinical trial, consists of three phases (Fig. 3.1). According to the U.S. FDA instructions, the

Phase I trial is an in vitro or a small-scale experiment conducted to assess the safety and

beneficial dosage of a new agent. If the drug has passed to Phase II, safety issues and side

effects are reviewed on a larger scale with up to several hundred patients from the target

population. Based on these results and the preliminary evidence of the treatment’s efficacy

the decision whether the drug development should continue is made. Next, during a long

and large Phase III trial the developer should finalize safety precautions and prove the new

product’s benefit for the target population.

43



Chapter 3. Clinical trials

Phase I: up to 100 healthy volunteers or people with the disease, several months
Goal: Safety, dosage

Phase II: up to several hundred people with the disease, several months - 2 years
Goal: Side effects, sometimes efficacy

Phase III: 300-3,000 people with the disease, 1-4 years
Goal: Efficacy (control or (and) alternatives), long-term & rare adverse effects

Market release

Figure 3.1 – Description of clinical trial phases according to FDA guidelines.

Despite diligent planning and validation in vitro and/or in animals, the majority of trials fail

to prove efficacy in patients. According to Wong et al. [2017], only 13.8% of new agent’s trials

pass Phase III and reach the market. The authors collected data from multiple sources over the

period 2000–2015 and evaluated the probability of success (POS) for phase transitions and for

the clinical trials themselves across indications (see Fig. 3.2). Although success rates increase,

they remain very low, causing huge financial and time losses to the pharmaceutical industry.

In Fig. 3.3, the failure statistics over the period 2008–2015 collected by Harrison [2016] show

that lack of efficacy is a leading reason.

The efficacy of a new drug is usually demonstrated in comparison with some control pop-

ulation. There are three main types of controls. In a no-treatment controlled trial, treated

patients are compared to those that do not receive any medication. In placebo-controlled

trials, patients in the control group receive medications without active ingredients for a treated

condition (sugar pills or saline injections). When new agent is compared to some recognized

effective agent, it is referred to as an active-control. The former type of controls only account

for the natural course of the disease. The latter type of control may pose problems, since

the absence of a difference between the average outcomes in the treatment and the control

groups may be due to the ineffectiveness of both treatments or to a poorly designed study.

This design is only valid if the conditions of the trial where the active-control outperformed

the placebo are recreated, which is a difficult task. For these reasons, the “gold standard” is the

double-blind, randomized, placebo-controlled study. There, patients are randomly allocated

to control and treatment groups, and neither doctors nor patients know the true memberships.
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3.2. Treatment effects

Figure 3.2 – Probability for passing the phases of clinical trial (top) and the overall success rate in the
development of new compounds across indications (bottom) according to Wong et al. [2017].

Figure 3.3 – Clinical trials’ failure reasons across indications over the period 2008-2015. The data is
provided by Thomson Reuters and Drugs of Today, Harrison [2016].

45



Chapter 3. Clinical trials

Figure 3.4 – Additivity of the effects in a RCT

3.2 Treatment effects

The improvement in a treatment group is considered to be due to a combination of three types

of factors, see Fig. 3.4,: natural factors, which include the natural course of the disease, the

Hawthorn effect and regression to the mean; non-specific (or physiologically driven) factors;

and specific (attributed to the drug/therapy itself) factors. Control and treatment groups are

compared with respect to the average outcome within groups. This means that the additivity

and the independence of all three factors contributing to the outcome are fundamental

assumptions in concluding the efficacy of new agent. This nowadays conventional model

was proposed more than 60 years ago by Beecher [1955]. Although this model remains

popular, various critiques appeared in, e.g., Grünbaum [1986], Kleijnen et al. [1994], Kirsch

[2000], Walach [2001], Moerman and Jonas [2002], Boussageon et al. [2008], Walach and

Loef [2015], and Boehm et al. [2017]. Many of them were concerned about the statistical

interactions between the pharmacological and the placebo effects. A correlation of 78%

between the placebo and the treatments response rates in 141 long-term trials for different

disease categories was reported in Walach et al. [2005]. An even higher correlation was reported

in antidepressant trials (see Kirsch and Sapirstein [1998]). There, the specific treatment effect

was estimated to be 25% of an overall therapeutic effect.

Strong placebo effect in psychiatric disorders (Khan et al. [2004], Khan et al. [2010]) is another

hot spot. Papakostas and Fava [2009] explored whether the probability of receiving a placebo

affects the treatment effect, with other design features fixed. In a meta-analysis of 182 RCTs,

authors revealed three significant relationships. First, the greater the probability of receiving a

placebo (which depends on the number of treatment arms and a randomization scheme), the

greater the difference in the response rate between the treatment and the placebo arms. Sec-

ond, the higher the depression severity, the more likely a patient will respond to a medication

rather than to a placebo. And the last relationship, which has been widely discussed, the later

the release date of the publication, the smaller the relative efficacy for antidepressants to a

placebo.
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Information
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The balanced placebo design (BPD). Usually
n11 = n12 and n21 = n22.
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1 2 3 4 5 6 7 . . .
first P T P P T T T . . .

second P T T T T P P . . .

The balanced cross-over design (BCD).

Table 3.1 – The modifications of designs for the placebo effect estimation.

To summarize, the treatment effect in an RCT is probably not as simple as it is generally

considered to be, see Fig. 3.4, at least for some treated conditions. The reported confounding

variables and non-linear relationships affecting the treatment response should be accounted

for in trial designs.

3.3 Trial designs

As mentioned above, recent findings point out that the beliefs (or expectations) of the enrolled

patients affect the difference in the placebo-treatment response rates. One way to evaluate a

“pure” treatment effect and to check an additivity assumption is to manipulate the information

provided to patients about the treatment. As an example, take the balanced placebo design

(BPD), after participants have been randomly allocated to treatment and control groups, in

each group some patients are correctly informed about their treatment, while the others are

misinformed. The placebo effect is estimated based on the outcome in the misinformed group

of patients who received a placebo. Conversely, the treatment effect is measured among the

misinformed group receiving the active treatment. Another example is balanced cross-over

designs, which are used to test several treatments on the same patients. There, participants

are divided into four groups, two of which follow a standard protocol, changing placebo and

the active treatment, while the remaining two groups receive either placebo or drug in both

treatments. Based on the observations from the two latter groups, the expectation components

in placebo and treatment effects are estimated.

Although the BPD and the BCD are easily implemented, they have many unwanted side-

effects, distorting the desired estimates. To avoid possible problems, randomization-to-

randomization (R2R) designs where patients are randomly given a random probability of

group assignment are employed. The estimation of the effects due to the active treatment and

placebo are then computed conditionally on the individual’s probability.

Another approach is to use designs where the placebo effect is deliberately decreased and the

treatment effect is magnified. These designs (sometimes referred to as enrichment designs)

usually involve some type of inclusion/exclusion criterion. It can be pre-testing with only a

placebo arm or sequential schemes with an elimination of the placebo responders at each

stage of the trial and subsequent re-randomizing the selected participants. Because of many
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design parameters and high dependence on the available data, these methods are highly

controversial and pose questions about robustness and reproducibility. Moreover, a common

issue is that regulatory authorities are less likely to approve complex alternative designs.

Consequently, either the clinical data should be analyzed in a different way or an intuitive

extension (depending on the response models) to conventional designs should be proposed.

3.3.1 Response models

Starting from early 70s when D. Rubin proposed his causal model (RCM) (Rubin [1974]),

in many research articles, e.g., Zhang et al. [2013], Jamshidian et al. [2014], the response

Y (t , s) is modeled as a function of treatment, t =∈ {0,1} (placebo or active treatment), and the

participant’s belief, s ∈ {0,1}, - strong or weak belief in the efficacy of the treatment. In Zhang

et al. [2013], for example, the average treatment effect is defined as

δ·s = E[Y (1, s)]−E[Y (0, s)],

and the average placebo effect is

δt · = E[Y (t ,1)]−E[Y (t ,0)].

The interaction between t and s is

τ= δ·1 −δ·0 = δ1·−δ0·.

With independence conditions of the type S ⊥ Y (t , s) |X = t ; t , s = 0,1, where X is a vector

of explanatory variables, one can estimate the effects δ·s , δ·t . The causal models raise many

questions, both about the dichotomized beliefs and the treatment effect estimates. For the lat-

ter, the model estimates an ‘intention-to-treat’ effect, which is a causal effect of the treatment

assignment, rather than a causal effect of the tested compound.

More realistic assumptions are based on the heterogeneity of the patients’ responses to the

treatment. The most widely used probabilistic models accounting for different subpopulations

in the observed data are finite mixture models. Muthén et al. [2002] were the first to use the

mixture approach for a longitudinal trial with two arms: a placebo and active treatment. The

patients’ outcomes were modeled using a random-effects model (REM), whose coefficients

depend on the latent subgroup membership and on the treatment arm. Consider k subpop-

ulations, in each of which the response to the drug and the response to a placebo might be

different. Given T observed time points, the model for the individual outcome at time t is

given by

yi t = η0i +η1i at +η2i a2
t +εi t ,

where a1 = 0 , at > 0, t = 1, . . . ,T are the time variables, εi ∼N (0,Θ), Θ ∈RT×T . The random
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effects are

η0i =α0k +ξ0i ,

η1i =α1k +γ1k Ii +ξ1i ,

η2i =α2k +γ2k Ii +ξ2i ,

where ξi ∼N (0,Ψ), Ψ ∈R3×3 and I = {0,1} for the control and the treatment group, respec-

tively. Thus, the mean trajectory for the k-th subpopulation in the control group is fully

determined by α0k ,α1k ,α2k . Assuming independence of εi and ξi , the conditional density of

yi , given the class membership ci and the treatment xi (the vector consisting of either all 0’s

or all 1’s), is

f
(

yi |ci = k, xi
)∼N (µi ,Σi ) with µi =Λk (αk +γk xi ), Σi =ΛkΨΛ

T
k +Θ.

αk =

α0k

α1k

α2k

 , γk =

 0

γ1k

γ2k

 ,Λk =


1 0 0

1 a2 a2
2

...
...

...

1 aT a2
T

 .

Specifying the number of subgroups k, the problem of parameter estimation becomes a

problem with incomplete data which can be solved by the EM-algorithm. The conditional

likelihood is

l
(

yi |ci , xi ,ηi
)= n∑

i=1
log

(
yi |ci , xi ,ηi

)+ log
(
ηi |ci , xi

)
.

To select k, the authors compare the BIC scores. The proposed growth mixture model with

random effects appeared to support an idea of the existence of the subclasses and improved

accuracy for treatment effect estimation, see Wong et al. [2017], Petkova et al. [2009], Stull et al.

[2011], He and Entsuah [2014].

Muthén and Brown [2009] studied a specified and simplified model for the subpopulations.

Following the Angrist, Imbens and Rubin (AIR) model (Angrist et al. [1996]), Muthen and

Brown investigated the mean differences between active treatment and placebo groups across

the principal strata, the homogeneous subgroup of patients, of four latent classes Never

Responders, Drug Only Responders, Placebo Only Responders, and Always Responders, see

Table 3.2. The class membership is assumed to be independent of the treatment arm and

determined by some other covariates. The marginal placebo and drug treatment effects are

then

µ0 =πnµn0 +πdµd0 +πpµp0 +πaµa0,

µ1 =πnµn1 +πdµd1 +πpµp1 +πaµa1.

This model can be reduced by putting πp = 0 (the existence of the Placebo Only Responders

stratum seems doubtful), µn0 =µn1 and µa0 =µa1 (the Always and Never Responders should
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Treatment group
Non-responder Responder

Placebo group
Non-responder Never responder:

πn , µn0, µn1

Drug only responder:
πd , µd0, µd1

Responder Placebo only responder:
πp , µp0, µp1

Always responder:
πa , µa0, µa1

Table 3.2 – The principal strata parameters in the placebo (0) and treatment arms (1).

have no difference between the arms). The difference between the experimental arms is then

µ1 −µ0 = πd (µd1 −µd0). On the other hand, π̂d = (1− π̂a), since the proportion of Always

Responders is directly estimated as the proportion of the responders in the placebo group.

One could argue that the assumption of equality of the strata proportions between the arms

does not hold in real clinical trials and that the model with so many parameters to estimate is

still redundant. Though estimation is possible, for the design one should employ parsimonious

and easily tractable models.

3.4 Conventional testing for the mixture response

Let the treatment group be a mixture of two subpopulations, placebo only responders Z ∼
N (µC ,1) and drug responders Z ∼ N (µT ,1) (we assume that these people may also expe-

rience an improvement due to the placebo). Under these assumptions, responses in the

treatment group follow X ∼ (1−p)N (µC ,1)+pN (µT ,1), where p is the prevalence of drug

responders in the population. What would be the power of the conventional mean difference

testing with the statistic X = X Treatment arm −X Control arm? The test is

H0 : γ= 0 versus (3.1)

H1 : γ> 0,

where γ= p
(
µT −µC

)
. For Gaussian responses the distribution of the groups’ mean difference

under the alternative is X ∼N
(
γ, 2

n

)
. For the minimum effect γmin and for the the maximum

type II error rate βmax, the level α test rejects the null if X > z1−α
√

2
n , and the number of

participants is

n =
(p

2
z1−α+ z1−βmax

γmin

)2

. (3.2)

• Assume an equal treatment-specific effect for all participants in the treatment group,

γmin = µmin. If the true alternative is a mixture, the power of the test substantially

decreases when p decreases, see Fig. 3.5(a).

• One could also consider the effect as the set {(µT −µC , p) : (µT −µC )p = γmin}. In

Fig. 3.5(b,c), we show simulation results for the mean-based test (3.1) when the data
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is generated from the mixture (1−p)N (0,1)+pN (µ, p) with µp = γ and the sample

size is from (3.2). One can see that p influences the power more than µ. Effects with the

bigger magnitude but rare frequency will be detected less often than those with smaller

µ and larger prevalence.

3.5 Conclusion

The examples above illustrate that misspecifying an alternative when building a trial design

can lead to a lack of power. Moreover, if the test is explicitly built assuming the mixture

alternatives, the region of (µ, p) corresponding to the potentially interesting effect sizes should

be accurately defined to ensure the power in this region is above a certain level.

Recall that in Chapter 2 we saw that if an alternative belongs to the region of dense signals

(small magnitude / high frequency), statistics based on the first moment of the observed data

are optimal in the sense that the detection boundary for these tests lies close to the detection

boundary for the most powerful likelihood ratio test. The dense region there corresponds

to alternatives with δ< 0.5. As far as we know, except for the cases with rare diseases which

are characterized by the known single genetic mutations, the percentage of population that

is assumed to react to the tested drug is rarely less than 10%. If the disease is not rare and

there are no known biomarkers for identifying the subgroup, clinical trial size of around few

hundred patients allows us to consider the dense regime and use the sample mean for the

inference.

In the next chapter we consider the designs where the response in the treatment group Z T is

modeled as a two-component mixture density (1−p)N (µC ,σ2)+pN (µT ,σ2) representing

the treatment responses of placebo responders and drug responders. The treatment-specific

effect is µ= µT −µC

σ and p is the prevalence of the drug responders in the population. Other

patients in the treatment group react as if they had received a placebo. We develop a specific

framework for one- and two-stage RCT designs that are able to detect a sensitive subgroup

based solely on the responses. We also extend designs to multicenter RCTs using multiple

testing procedures.
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4 Randomized controlled trial (RCT)
designs

The idea that there is a proportion of non-responders in the treatment group is often high-

lighted in clinical papers, e.g., Rubin [1974], Frangakis and Rubin [2002], Muthén and Brown

[2009], Leiby et al. [2009], He and Entsuah [2014]. If one has specific biomarkers which point

to the subjects who are likely to respond to an intervention, then a subgroup analysis is usually

conducted in addition to the standard procedure. Most of the time, however, there is no such

information about the sensitive subgroup, and standard designs may fail to prove the drug’s

efficacy.

Moreover, even if the proportion of the sensitive patients is big, there is another hurdle which

can mask a drug-specific effect, namely the placebo. When its effect is comparable with a

drug, the detection of a subgroup is complicated substantially. This problem may occur in

treatments for neurological disorders, where many trials fail to show efficacy, and the reason

is supposed to be a large placebo effect, see Agid et al. [2013], Tuttle et al. [2015], Holmes et al.

[2016]. For our purpose, the placebo effect is a combination of natural course of the disease,

the Hawthorne effect and other non-specific effects influencing the treatment outcome.

Given the assumptions above, we elaborate a framework in which we are able to detect the

sensitive subgroup based on the following model.

4.1 The Model

Let the response to the drug, Z , be a normally distributed random variable. We assume that

there are two groups of patients: placebo-only responders with Z ∼N
(
µC ,σ2

)
and placebo-

and-drug responders with Z ∼N
(
µT ,σ2

)
, where µT >µC . The drug-specific effect, µT −µC ,

and the placebo effect are additive. The response in the treatment group is then modelled as a

mixture (see Fig. 4.1)

Z T ∼ (1−p)N
(
µC ,σ2)+pN

(
µT ,σ2) ,

where p ≥ 0 is the proportion of placebo-and-drug responders (the sensitive subpopulation).

The design is constructed to determine whether p > 0. Denote the standardized drug-specific
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Figure 4.1 – Modelling drug response as a mixture of two continuous distributions has been proposed to
be more reasonable in RCT for some types of indications. On the left, the control group is centered at zero
and the mixture created in the treatment group is asymmetric with an enlarged upper tail. If we could
separate the responders and non-responders in the treatment group, we would observe the graphs as in
the right hand side.

effect as µ= µT −µC

σ . Given the standardized estimates of responses in the treatment group,

Xi =
Z T

i −Z C

σ
, i = 1, . . . ,n,

the average value X has expectation µp and is distributed as
∑n

k=0

(n
k

)
pk (1−p)n−kN

(
k
nµ, 2

n

)
.

The test based on the average of observations can be used in deciding between H0 : p = 0

against H1 : p > 0. As saw in Chapter 2, the performance of the mean-based test is close to

that of the LRT test for p > 0.1. Along with its simplicity the mean value statistic can also be

used with non-normal responses that may be encountered in clinical trials.

To control the power of detection, we consider the minimal power over a region of strong

effect, the set of (µ, p) that are deemed to be of interest. We propose one- and two-stage

designs for the single and multicenter trials. This framework is mainly aimed at the early

phase II before the identification of the drug-responders subgroup.

4.2 The designs

In all RCTs discussed in this chapter we consider any treatment group at any stage to have

a corresponding control group of the same size. Let Z T
1 , . . . , Z T

n and Z C
1 , . . . , Z C

n be the re-

sponses from the treatment and the control groups, respectively. For convenience we define

normalized responses as

Y C = Z C −µC

σ
∼N (0,1), Y T = Z T −µC

σ
∼ (1−p)N (0,1)+pN (µ,1),
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where µ= µT −µC

σ . Since we do not know µC and σ, it is not possible to observe Y T . Instead, we

take its estimate, Xi = Z T
i −µ̂C

σ , where µ̂C =
∑n

i=1 Z C
i

n . For the design development we assume σ to

be known, but in practice we may use the approximation σ̂C =
√∑n

i=1(Z C
i −µ̂C )2

n−1 . In simulations

shown later, we show that the approximation error has a negligible effect on the results.

In a simple RCT with a single center, the test is based on the mean value statistic,

X = X1 + . . .+Xn

n
= Y T − µ̂C −µC

σ
.

Note that

Y T ∼
n∑

k=0

(
n

k

)
pk (1−p)n−kN

(
k

n
µ,

1

n

)
,

µ̂C−µC

σ ∼N
(
0, 1

n

)
, and the distribution of X is

X ∼
n∑

k=0

(
n

k

)
pk (1−p)n−kN

(
k

n
µ,

2

n

)
.

4.2.1 Hypothesis testing

The goal of a trial is to determine if there is a sensitive subpopulation. The decision is based

on a statistical test of

H0 : Y T ∼N (0,1) versus

H1 : Y T ∼ (1−p)N (0,1)+pN (µ,1), p ∈ (0,1],µ> 0.
(4.1)

Of course, not all pairs (µ, p) are of equal interest for the drug developer. It is of small interest

if H0 is rejected when H1 is true with some small p and/or µ. Therefore, it is important to

define interesting values of (µ, p), for which one wants to reject the null.

Definition 4.1. The region E of strong effect (se) is the set of interesting pairs (µ, p) such that

µ≥µi if p ∈ [pi , pi+1], where µs <µs−1 < . . . <µ1 and 0 < p1 < . . . < ps+1 = 1 (see Fig. 4.2).

For large values of p, average or even small effect sizes, µ, can be of interest. Conversely, for

smaller values of p, µ would need to be larger. For each magnitude of the treatment effect we

set the smallest desirable fraction p of the sensitive subpopulation. In Fig. 4.2 we show the

example of the set of possible pairs (µ, p). In the simplest case the staircase consists of one

pair (µ1, p1). We suppose the region of this type to be provided by the user.

In the next two subsections, we introduce the single and the multicenter RCT designs, for

which type I and II errors are defined as follows.

Definition 4.2. For a simple study, a type I error occurs when a true null is rejected. A type II

error occurs if a false null is not rejected in the presence of a strong effect. The corresponding
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µ

p

1

ps

µs

pi

µi

p1

µ1

strong effect

E

Figure 4.2 – The region of strong effect, E , is a subset of the (µ, p) plane satisfying µ≥µi if p ∈ [pi , pi+1]
where µs <µs−1 < . . . <µ1 and 0 < p1 < p2 < . . . ps+1 = 1.

type I error rate will be denoted as α and the maximum of the type II error rate over E is denoted

as βse . In the case of a multicenter study with M centers a type I error occurs if at least one of the

true nulls is rejected, and a type II error occurs if at least m false nulls among the M1 centers

with strong effects are not rejected. Note that m ≤ M1 ≤ M. The type I error is a family-wise error,

while the type II error depends on M1 and m. The type II error rate maximized over E will be

denoted by βse for the single stage study and βse
fw(M1,m) of the multicenter study.

4.2.2 Simple RCT designs - single center RCT

We start with the simplest design: single center, one stage. For the mean value statistic the

hypothesis testing problem is

H0 : X ∼N

(
0,

2

n

)
;

H1 : X ∼
n∑

k=0

(
n

k

)
pk (1−p)n−kN

(
k

n
µ,

2

n

)
.

(4.2)

The design of a trial is defined by the sample size n and some positive threshold η, upon which

the decision about a subgroup’s existence is made,

Reject H0 if X > η. (D1)

The chosen test is justified by the following lemma:

Lemma 4.1. The tests that reject H0 for X > η are uniformly most powerful.
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Proof. We denote the pdf of X under H0 as f (x) and the pdf of X under an alternative as g (x).

The function g (x)
f (x) is non-decreasing in x if µ> 0, since

g (x)

f (x)
=

n∑
k=0

(
n

k

)
pk (1−p)n−k

f
(
x − k

nµ
)

f (x)
=

n∑
k=0

(
n

k

)
pk (1−p)n−k e

n
2

(
x k

n µ− 1
2

(
k
n µ

)2
)
.

From the Karlin–Rubin theorem it follows that the test X > η is UMP.

The equivalent formulation of the design is

Reject H0 if the p-value
(

X
)
<α, where p-value

(
X

)
= 1−Φ

(
X

√
n

2

)
and α< 0.5. (D1)

Here, α is a type I error rate, and η= z1−α
√

2
n , where z1−α =Φ−1(1−α) stands for the standard

Gaussian quantile. The probability of a false negative for a fixed alternative is

β(n,η,µ, p) =
n∑

k=0

(
n

k

)
pk (1−p)n−kΦ

((
η− k

n
µ

)√
n

2

)
. (4.3)

By Definition 4.2,

βse (n,α) = max
(µ,p)∈E

β

(
n, z1−α

√
2

n
,µ, p

)
. (4.4)

As the following lemma shows, one can easily compute βse (n,α) for the regions E of the form

we defined.

Lemma 4.2. For the region of strong effect defined as in Definition 4.1, the maximum type II

error rate for the one-stage RCT is

βse (n,α) = max
i=1,...,s

β

(
n, z1−α

√
2

n
,µi , pi

)
.

Proof. The probability of a false negative is

β(n,η,µ, p) =
n∑

k=0

(
n

k

)
pk (1−p)n−kΦ

(√
n

2

(
η− k

n
µ

))
.

The maximum value is attained in one of the corners of E . Indeed, this follows from

∂β

∂µ
(n,η,µ, p) < 0 and

∂β

∂p
(n,η,µ, p) < 0.

∂β

∂µ
(n,η,µ, p) =−

n∑
k=0

(
n

k

)
pk (1−p)n−k kp

2n
ϕ

(√
n

2

(
η− k

n
µ

))
< 0; (4.5)
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∂β

∂p
(n,η,µ, p) = n

n∑
k=1

(
n −1

k −1

)
pk−1(1−p)n−kΦ

(√
n

2

(
η− k

n
µ

))

−n
n−1∑
k=0

(
n −1

k

)
pk (1−p)n−k−1Φ

(√
n

2

(
η− k

n
µ

))

= n
n−1∑
k=0

(
n −1

k

)
pk (1−p)n−k−1

(
Φ

(√
n

2

(
η− k +1

n
µ

))
−Φ

(√
n

2

(
η− k

n
µ

)))
< 0.

(4.6)

Two stage designs

By Wald’s theory of sequential analysis, there are modifications of the RCT design enabling

significant reduction in the required minimum number of the participants. The idea of

sequential analysis is to split the testing process into several steps and update the inference

based on the information accumulated from the previous steps. In the context of RCT, the

steps are the stages of the trial.

The first sequential design was introduced by Gehan [1961] for anti-cancer drugs where

toxicity is the major concern and the goal of the trial is to make conclusions about the efficiency

with the minimum number of patients involved. The end point in these designs is the tumor

response, which is the proportion π of patients that have tumors’ shrink by at least 50%

during some time period. In Gehan’s design, 14 patients are enrolled at the first stage. With

the response rate of π≥ 0.2, which is considered as promising for further investigations, 14

patients is chosen to ensure the type I error rate of (1−0.2)14 = 0.044, close to 0.05. A second

stage is conducted to guarantee the standard error rate of the response with certain precision.

The main drawback of this design is the fixed value of n1 that might allow drugs with low

anti-tumor activity to pass the first stage.

In Simon [1989] two other designs were proposed. One minimizes the maximum sample size

n1 +n2 under H0 (minimax criterion) and the other minimizes the average sample size under

H0. Simon’s designs were adapted to early stoping for efficacy in Jones and Holmgren [2007].

However, for many indications an early acceptance even of a highly effective drug is rarely

possible, and most of the time a confirmatory trial is needed. On the contrary, in our case of

sensitive subgroup identification, the design admits an early acceptance (or an early rejection

of H0). The sooner one finds evidence in favour of the existence of sensitive population, the

more gain in terms of the drug development time she acquires.

Two-stage designs for continuous responses are discussed in Jennison and Turnbull [1999].

Optimality criteria along with corresponding designs were proposed in Whitehead et al. [2009],

Wason and Mander [2012] with individual responses distributed as N (δC ,σC ) and N (δT ,σT )

in the control and treatment groups, respectively.

Below we will show by how much the introduction of a second stage decreases the total ex-
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X 1

X 2

X 2 = n1+n2
n2

η2 − n1
n2

X 1

η0 η1

Figure 4.3 – Scheme of a trial performed in two stages. The rejection region is depicted in grey.
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(a) p-value <α1
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(b) p-value ∈ [α1,1−α0]
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η0 η1X 1

(c) p-value > 1−α0

Figure 4.4 – Computation of the p-value for a trial performed in two stages.
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pected number of enrolled patients in comparison with a one-stage design, while maintaining

the same error rates. For the first stage we propose two stopping rules. First, if the evidence

in favour of the alternative is very strong after the first stage, there is no need to conduct the

second stage. Second, if the evidence in favour of the null is strong enough at the first stage,

one can stop the trial early, claiming the absence of an effect.

To start with, consider some fixed sample sizes with n1 and n2 participants at the first and

second stages, respectively. We also assume that there are two different control groups at

each stage with the same number of participants as in the treatment groups. Denote the

mean observed values after the first and the second stages by X 1 and X 2, and the mean of all

observations as X . The design is described as follows:

• If X 1 < η0 : H0 is not rejected and the trial is stopped

(strong evidence of an absence of a positive treatment effect);

• If X 1 > η1 : reject H0 and stop the trial (strong evidence in favour of H1);

• If η0 ≤ X 1 ≤ η1 : conduct the second stage and reject H0 if X > η2

(strong evidence in favour of H1 after two steps).

(D2)

The rejection region is depicted in Fig. 4.3 (grey area). For the thresholds, η0, η1, denote the

corresponding probabilities P
(

X1 < η0

)
and P

(
X1 > η1

)
under the null as α0 =Φ

(
η0

√
n1
2

)
and

α1 = 1−Φ
(
η1

√
n1
2

)
. In terms of p-values, this design becomes:

Reject H0 if p-value
(

X 1, X 2

)
<α, where

p-value
(

X 1, X 2

)
=


1−Φ

(
X1

√
n1
2

)
, X 1 ∉ [η0,η1],

η1∫
η0

√
n1
2 ϕ

(
x1

√
n1
2

)(
1−Φ

(p
n2 X 2+ n1p

n2

(
X 1−x1

)
p

2

))
d x1 +α1, X 1 ∈ [η0,η1].

(D2)

The computation of the p-value is complicated by the fact that the grey region in Fig. 4.4(b) is

not simple. The p-value is an integral of the joint density function f(
X1,X2

)(x1, x2) under H0

over the grey area in Fig. 4.4. If X 1 ∈ [η0,η1], we integrate above the line

n1 +n2

n2
X − n1

n2
x1 = X2 + n1

n2

(
X1 −x1

)
and for the fixed x1 the probability that x2 is above this line equals

1−Φ
p

n2X 2 + n1p
n2

(
X 1 −x1

)
p

2

 .
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Under H0 this p-value is uniformly distributed on the interval (0,1), because for any two

different realizations of
(

X 1, X 2

)
, one of the grey areas (see Fig. 4.4) contains the other one.

The design D is fully determined by the sample sizes in the first and second stages, n1 and

n2, and the probabilities α0 and α1; the overall level of the procedure is α. These values often

satisfy 1−α0 >α>α1. If this does not hold, the second stage is not needed. The thresholds

η0, η1, η2 can be computed as

η0 = zα0

√
2

n1
,

η1 = z1−α1

√
2

n1
,

η2 such that
∫ η1

η0

√
n1

2
ϕ

(
x1

√
n1

2

)(
1−Φ

((
n1 +n2

n2
η2 − n1

n2
x1

)√
n2

2

))
d x1 +α1 =α.

(4.7)

Denote the maximum type II error rate for the two-stage design as βse
2 (D,α). To compute it,

we use an expression for the probability of the false negative:

β2(D,α,µ, p) =P
(
p-value

(
X 1, X 2

)
≥α|µ, p

)
=

=
β

(
n1, z1−α1

√
2

n1
,µ, p

)
, α ∉ (α1,1−α0),

β(n1,η0,µ, p)+∫ η1
η0
βη(n1, x1,µ, p)β

(
n2, n1+n2

n2
η2(D,α)− n1

n2
x1,µ, p

)
d x1, α ∈ (α1,1−α0).

(4.8)

We introduce the case α ∉ (α1,1−α0) in (4.8), because we will need it later for the multicenter

two-stage design. Similarly to the one-stage trial, the following holds.

Lemma 4.3. For the region of strong effect defined as in Definition 4.1, the maximum type II

error rate for the two-stage trial is

βse
2 (D,α) = max

i=1,...,s
β2(D,α,µi , pi ).

Proof. This can be shown by proving that

∂β2

∂µ
(n1,η0,η1,n2,α,µ, p) < 0 and

∂β2

∂p
(n1,η0,η1,n2,α,µ, p) < 0.

We will use inequalities ∂β
∂µ (n,η,µ, p) < 0 and ∂β

∂p (n,η,µ, p) < 0 from Lemma 4.2 and inequality
∂β
∂η (n,η,µ, p) > 0, which is a trivial consequence from (4.3). There are two different cases:
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1. α ∉ (α1,1−α0):

∂β2

∂µ
(n1,η0,η1,n2,α,µ, p) = ∂β

∂µ
(n1, z1−α

√
2

n1
,µ, p) < 0,

∂β2

∂p
(n1,η0,η1,n2,α,µ, p) = ∂β

∂p
(n1, z1−α

√
2

n1
,µ, p) < 0.

2. α ∈ (α1,1−α0):

∂β2

∂µ
(n1,η0,η1,n2,α,µ, p) = ∂β

∂µ
(n1,η0,µ, p)+

∫ η1

η0

∂β

∂η∂µ
(n1, x1,µ, p)β

(
n2, x2(x1),µ, p

)
d x1+

+
∫ η1

η0

∂β

∂η
(n1, x1,µ, p)

∂β

∂µ

(
n2, x2(x1),µ, p

)
d x1 = ∂β

∂µ
(n1,η0,µ, p)+ ∂β

∂µ
(n1, x1,µ, p)β

(
n2, x2(x1),µ, p

)∣∣∣η1

η0

+

+ n1

n2

∫ η1

η0

∂β

∂µ
(n1, x1,µ, p)

∂β

∂η

(
n2, x2(x1),µ, p

)
d x1 +

∫ η1

η0

∂β

∂η
(n1, x1,µ, p)

∂β

∂µ

(
n2, x2(x1),µ, p

)
d x1 =

= ∂β

∂µ
(n1,η0,µ, p)

(
1−β(

n2, x2(η0),µ, p
))+ ∂β

∂µ
(n1,η1,µ, p)β

(
n2, x2(η1),µ, p

)+
+ n1

n2

∫ η1

η0

∂β

∂µ
(n1, x1,µ, p)

∂β

∂η

(
n2, x2(x1),µ, p

)
d x1 +

∫ η1

η0

∂β

∂η
(n1, x1,µ, p)

∂β

∂µ

(
n2, x2(x1),µ, p

)
d x1 < 0;

∂β2

∂p
(n1,η0,η1,n2,α,µ, p) = ∂β

∂p
(n1,η0,µ, p)+

∫ η1

η0

∂β

∂p∂η
(n1, x1,µ, p)β

(
n2, x2(x1),µ, p

)
d x1+

+
∫ η1

η0

∂β

∂η
(n1, x1,µ, p)

∂β

∂p

(
n2, x2(x1),µ, p

)
d x1 = ∂β

∂p
(n1,η0,µ, p)+ ∂β

∂p
(n1, x1,µ, p)β

(
n2, x2(x1),µ, p

)∣∣∣η1

η0

+

+ n1

n2

∫ η1

η0

∂β

∂p
(n1, x1,µ, p)

∂β

∂η

(
n2, x2(x1),µ, p

)
d x1 +

∫ η1

η0

∂β

∂η
(n1, x1,µ, p)

∂β

∂p

(
n2, x2(x1),µ, p

)
d x1 =

= ∂β

∂p
(n1,η0,µ, p)

(
1−β(

n2, x2(η0),µ, p
))+ ∂β

∂p
(n1,η1,µ, p)β

(
n2, x2(η1),µ, p

)+
+ n1

n2

∫ η1

η0

∂β

∂p
(n1, x1,µ, p)

∂β

∂η

(
n2, x2(x1),µ, p

)
d x1 +

∫ η1

η0

∂β

∂η
(n1, x1,µ, p)

∂β

∂p

(
n2, x2(x1),µ, p

)
d x1 < 0,

where x2(x1) = n1+n2
n2

η2(n1,η0,η1,n2,α)− n1
n2

x1.

4.2.3 Multicenter RCT designs

In this section, we generalize the designs proposed above to multicenter RCTs. We suggest first

to conduct single center RCTs with identical designs in all centers in parallel, with each center

having its own control group. Following this initial stage, the results are analyzed together in

order to make conclusions about the existence of the subpopulation in each center.

Combining the evidence across multiple centers requires p-values. For this reason, in the

previous subsection, we introduced an equivalent designs formulation using p-values. We
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0
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α 1−α0
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Figure 4.5 – The figure shows two examples. The green squares corresponds to the centers for which H0

was rejected and the red ones to the centers where it was not rejected. In both c(1) and c(2) the study was
terminated after the first stage (their p-values are less than α1). However, the decision to reject the null
for c(2) depends on the results in the centers c(3) and c(4). On the left-hand side, the null is rejected at c(2)

and c(3). On the right-hand side, decisions about c(2),c(3),c(4) are all non-rejections.

assume patient enrollment in all centres is done independently, and that all the p-values are

independent.

In the single center design one rejects H0 if the p-value is below α, but to control the family

wise type I error rate in the multi-center context at the level α, we need a multiple testing

procedure, such as Hochberg’s step-up procedure Hochberg [1988]. The whole design is then

described as follows:

• Let p-value1,p-value2, . . . ,p-valueM be the set of p-values at the end

of each study (see Eq.D2). Put the p-values in an ascending order:

p-value(1) ≤ p-value(2) ≤ ·· · ≤ p-value(M).

• Denote the index of the center corresponding to p-value(k) as c(k). (D3)

• Given the thresholds, α(1) ≤α(2) ≤ . . . ≤α(M), find the index K

corresponding to the largest k such that p-value(k) ≤α(k).

In Hochberg’s step-up procedure α(k) = α

M +1−k
.

• The centers c(1) through c(K ) are then judged to have sensitive subpopulations,

and the null hypothesis is rejected for them.

There is a complication for the two-stage multicenter design. In the case of a single center,

if the p-value < α1, then H0 is rejected after the first stage. When more than one center is

involved, the condition p-valuei <α1, which only occurs when we stop after the first stage,

does not necessarily mean that for this center the null is rejected. If the design parameter

α1 is such that α(1) >α1, rejection always occurs. Otherwise, rejection depends on the other

p-values or, more precisely, on their arrangement with regard to α(k), which is only known at

the completion of the second stage.
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Consider two p-value realisations shown in Fig. 4.5. There are two centers, c(1),c(2) where

the trial was stopped after the first stage, and their p-values are less than α1. In two other

centers the second stage was conducted and their p-values are in the interval (α1,1−α0). For

c(1) the null is rejected after the first stage in both situations, because p-value1 <α(1), but the

decision about c(2) depends on the results in the centers where the second stage is conducted.

To summarize, if for some center after the first stage α(k) < p-value(k) <α1, the final decision

about this center might depend on the results from the centers where the trial continues to

the second stage.

Recall that the type II error is defined as "at least m false nulls with strong effect among M1

centers (m ≤ M1 ≤ M) are not rejected". Denote the maximum type II error rates asβse
fw(M1,m).

It is complicated to calculate βse
fw(M1,m) exactly for arbitrary couples (M1, m), but the upper

bound can be obtained rather straightforwardly. To do this, we introduce auxiliary values

βse
j =

βse (n,α( j )), one-stage design,

βse
2 (D,α( j )), two-stage design.

(4.9)

Lemma 4.4. The following inequality always holds:

1−βse
fw(M1,m) ≥

(
1−βse

M1+1−m

)M1+1−m
. (4.10)

If M1 = M and m = 1, equality is achieved.

Proof. Consider an arbitrary set of p-values: p-value1, . . . , p-valueM of which M1 correspond

to the alternatives with the strong effect. Let βfw(M1,m) be the type II error rate for these

p-values. We will show that

1−βfw(M1,m) ≥
(
1−βse

M1+1−m

)M1+1−m
.

Then, for the set of p-values where the maximum type II error rate is achieved, the statement

in the lemma holds.

Let S1 be the set of indexes for the centres with the strong effect. Define k̃ as the rank of the

m-th highest p-value among S1, ∑
c(k)∈S1

1(k ≥ k̃) = m. (4.11)

First, we will prove that

1−βfw(M1,m) ≥P(
p-value(k̃) ≤α (M1 +1−m)

)
. (4.12)

By definition, k̃ ≥ M1 +1−m. The condition p-value(k̃) ≤α (M1 +1−m) is sufficient to reject

at least M1 +1−m null hypotheses for the centers with strong effect and therefore to avoid
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type II error. The second inequality we have to prove is

P
(
p-value(k̃) ≤α (M1 +1−m)

)≥ (
1−βse

M1+1−m

)M1+1−m
. (4.13)

For the proof we will use S2, an arbitrary subset of centers with strong effects such that

|S2| = M1 +1−m:

P
(
p-value(k̃) ≤α (M1 +1−m)

)=P( ∑
ck∈S1

1
(
p-value(k) ≤α (M1 +1−m)

)≥ M1 +1−m

)

≥P
( ∑

i∈S2

1
(
p-valuei ≤α (M1 +1−m)

)≥ M1 +1−m

)
≥

(
1−βse

M1+1−m

)M1+1−m
.

(4.14)

If M1 = M and m = 1 then the inequality (4.12) becomes an equality, because in this case k̃ = M

and condition p-value(M ) ≤α(M ) is necessary and sufficient to reject all null hypotheses. Also

if P
(
p-valuei ≤α(M)

)= 1−βse
M for all i then the inequality (4.13) becomes an equality :

P
(
p-value(M) ≤α(M)

)=P(
p-valuei ≤α(M), ∀i = 1, . . . , M

)= (
1−βse

M

)M . (4.15)

Comment: If M1 < M or m > 1, equality in (4.12) cannot be attained, because there is a

non-zero probability of having

k̃ = M1 +1−m, p-value(k̃),p-value(k̃ +1) ∈ (α(M1 +1−m),α(M1 +2−m)] ,

in this case there is no type II error.

From this lemma, we conclude that

βse
fw(M1,m) ≤ 1−

(
1−βse

M1+1−m

)M1+1−m
,

and

βse
fw(M ,1) = 1− (

1−βse
M

)M .

4.3 Planning the trial

In this section we present a framework which helps the user to choose the design parameters in

order to control the type II error rate below some given levelβmax or the power above (1−βmax).

For the multi-centre trial we suggest to control βse
fw(M ,1). Here we assume βmax < 0.5 for the

single center RCT and βmax < 1− 0.5M for the multicenter RCT. At the beginning the user

should carefully define the region of strong effect as in Definition 4.1. Next, the user chooses

βmax and the design parameters. We also provide additional information that may influence
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the user’s choice of βmax. In the case of changing βmax, one should recalculate the design

parameters. To illustrate the planning procedure, we use the region of strong effect as depicted

in Fig. 4.6 and βmax = 0.2.

4.3.1 Planning a single center RCT

One-stage design: choosing the sample size

The planning of a single center trial proceeds by choosing α and computing the sample size

that ensures the desired minimal power. After α is chosen (here and elsewhere α= 0.05), n is

computed as

n = min
(
n : βse (n,α) ≤βmax

)
. (4.16)

To compute βse (n,α), we use an asymptotic approximation of β(n,η,µ, p) based on the cen-

tral limit theorem. Notice that Y T
1 , . . . ,Y T

n are i.i.d. random variables with E
(
Y T

i

) = µp and

Var
(
Y T

i

)= 1+ (1−p)pµ2. Hence,

Y T ∼N

(
µp,

1+ (1−p)pµ2

n

)
, X ∼N

(
µp,

1+ (1−p)pµ2

n
+ 1

n

)
.

With Barry–Essen’s upper bound ( Berry [1941]) on the absolute deviation of the probability of

a false negative from its normal approximation, we have∣∣∣∣β(n,η,µ, p)−Φ
( p

n(η−µp)√
2+ (1−p)pµ2

)∣∣∣∣≤ Cp
n

. (4.17)

We use this normal approximation in the following computations, because the real difference

in (4.17) is negligible even for small sample sizes. From Lemma 4.2,

βse (n,α) ≈ max
i=1,...,s

Φ

p
2z1−α−

p
nµi pi√

2+ (1−pi )piµ
2
i


and

n ≈ max
i=1,...,s


p

2z1−α+ z1−βmax

√
2+ (1−pi )piµ

2
i

µi pi


2

. (4.18)

Example

Let the region E be as in Fig. 4.6 and let the maximum type II error rate be 0.2. The minimum

sample size for the trial with these parameters from (4.18) is n ≈ 85.3, whereas the exact

value from (4.16) is 86. For n = 86 and α = 0.05, the rejection threshold η = 0.251 and it is
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µ

p

E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Figure 4.6 – Region of strong effect, characterised by~µ= (2,1,0.7), ~p = (0.2,0.4,0.6).

straightforward to conduct the trial (D1).

Two-stage design

The design is determined by D = {n1, α0, α1, n2}. After α is chosen, the sample size at the

second stage is computed as

n2 = min
(
n : βse

2 (D,α) ≤βmax
)

. (4.19)

To approximate n2, we use the following approximation for the type two error for the two-stage

design:

β2(D,α,µ, p) ≈Φ
( p

n1(η0 −µp)√
2+ (1−p)pµ2

)
+

∫ η1

η0

ϕ

( p
n1(x1−µp)p

2+(1−p)pµ2

)
√

2+(1−p)pµ2

n1

Φ

 n1+n2
n2

η2(D,α)− n1
n2

x1 −µp√
2+(1−p)pµ2

n2

d x1.

We next compute n2 numerically. Note that it is possible that no design fulfills the condition

on βmax. In the following we will address this problem.

For planing purposes we next consider the expected sample size under the null,

q0(D) = n1 + (1−α0 −α1)n2 (4.20)

and the analogous formula for the maximum expected sample size under the alternative is

q1(D) = n1 + max
µ>0, p>0

(
β

(
n1,

p
2 z1−α1p

n1
,µ, p

)
−β

(
n1,

p
2 zα0p

n1
,µ, p

))
n2. (4.21)

Figure 4.7 depicts all of these values in a schematic way.

We set α0 > 0.5 as a condition for stopping the trail early in the case of the absence of the
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µ

n1

n1 +n2

E(n|H0)

E(n|H1)

a

b

P(two stages) = a
a+b

Figure 4.7 – Expected sample sizes under the null and under the alternative for constant p.

Figure 4.8 – Possible pairs of (n1,α0) for the two-stage design. The parameters are α = 0.05, βmax =
0.2, n = 86; 12 ≤ n1 ≤ 86.
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effect. With this choice, both z1−α1 and zα0 are positive.

Lemma 4.5. If 0 < zα0 < z1−α1 , the maximum probability of conducting the second stage in

(4.21) approximately satisfies

max
µ>0, p>0

(
β

(
n1,

p
2 z1−α1p

n1
,µ, p

)
−β

(
n1,

p
2 zα0p

n1
,µ, p

))
≈ 2Φ

( z1−α1 − zα0

2

)
−1. (4.22)

The maximum is achieved for µ= z1−α1+zα0p
2n1

, p = 1.

Proof. To show this, we bound the probability of conduction the second stage as follows:

max
µ>0, p>0

(
β

(
n1,

p
2 z1−α1p

n1
,µ, p

)
−β

(
n1,

p
2 zα0p

n1
,µ, p

))
≈Φ

(p
2z1−α1 −

p
n1µp√

2+ (1−p)pµ2

)
−Φ

(p
2zα0 −

p
n1µp√

2+ (1−p)pµ2

)

≤Φ
(p

2z1−α1 − (
p

2z1−α1 +
p

2zα0 )/2√
2+ (1−p)pµ2

)
−Φ

(p
2zα0 − (

p
2z1−α1 +

p
2zα0 )/2√

2+ (1−p)pµ2

)

= 2Φ

(p
2z1−α1 −

p
2zα0√

2+ (1−p)pµ2

)
−1 ≤ 2Φ

( z1−α1 − zα0

2

)
−1.

Notice, that an equality is achieved for µ= z1−α1+zα0p
2n1

> 0 and p = 1. This ends the proof.

From Lemma 4.5, it follows that q1(D) ≈ n1 +
(
2Φ

(
z1−α1−zα0

2

)
−1

)
n2.

We let the user choose n1 and α0, but we suggest setting α1 such that it minimizes q1(D) for

given n1, α0. This leads to the choice α1 = argmin
α1

q1(D). Once n1, α0, α1 have been fixed, all

the other quantities including n2, q0, q1 can be computed.

In the following text we discuss guidance for the user on the choice of n1 and α0. We suppose

that the choice of n1, α0 is based on q0, q1, n2 and n. We note that the design does not exist for

every pair (n1,α0). With 0.5 <α0 < 1−α and (4.8), we have βse (n1,1−α0) <βse
2 (D,α) ≤βmax,

and with an approximation for βse (n1,1−α0), mentioned above,

α0 < min
i=1,...,s

Φ

√
n1

2
µi pi − z1−βmax

√
1+ (1−pi )pi

2
µ2

i

. (4.23)

This in turn implies that

n1 >

 max
i=1,...,s

z1−βmax

√
2+ (1−pi )piµ

2
i

µi pi


2

. (4.24)

Keep in mind also that the first stage sample size should satisfy n1 < n, otherwise the two-

stage scheme is less efficient than the one-stage design. Based on (4.23) and (4.24), the region
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of possible (n1,α0) provided to the user is shown in Fig. 4.8.

Among all possible pairs (n1,α0) an optimal selection would make q0, q1 and n1 +n2 min

small. However, these criteria cannot be achieved simultaneously. This trade-off is left for the

user to resolve, and in Fig. 4.9 we provide an example of a graphical aid for decision making.

Recall that the design is built to ensure the type II error rate is not greater than βmax in all the

corners of E . However, this probability can be very sensitive to µ and/or p. We assume that

given the probability of a false negative for all (µ, p), for example, as in Fig. 4.10, the user may

decide to change βmax. If these rates are small, the trial size may be reduced by using a larger

βmax, and if βmax is considered to be reduced, then the larger trial is necessary. If he decides to

change βmax, the design needs to elaborated from the beginning.

4.3.2 Planning a multicenter RCT

The design is determined by the set {M ,n1, α0, α1, n2}. For a multicenter trial we build the

design to control βse
fw(M ,1). The type II error rates βse

fw(M1,m) where M1 < M or m > 1 are not

controlled. From Lemma 4.4, the condition βse
fw(M ,1) ≤ βmax is equivalent to βse

M ≤ 1− (1−
βmax)

1
M . This means that if we consider M centers separately, the design in each of the centers

will correspond to the single center RCT with the type I and type II errors controlled at levels

α(M), the largest threshold of the multiple rejection procedure, and βse
M = 1− (1−βmax)

1
M ,

respectively.

To illustrate the planning for a RCT with four centers, suppose that FWER is controlled at 0.05

and the family-wise type II error rate is controlled at βmax = 0.2. With Hochberg’s multiple

testing procedure the design is then determined by α(4) = 0.05 and βse
M = 1− (1− 0.2)

1
4 ≈

0.054. As in the single center RCT, the choice of n1 and α0 is made by the user based on the

information provided in Fig. 4.11.

Nonetheless, maximum type II error rates for M1 < M or m > 1 can be also of interest for the

study. Even if an effect exists, it is not necessarily strong in all centers. Furthermore, a trial

missing a few centers with strong effect can still be useful if in the other centers the strong

effect is detected. Hence, given the information about βse
fw(M1,m), the user might change βmax

and recalculate the design. In Lemma 4.4, we show an upper bound on these errors,

βse
fw(M1,m) ≤ 1−

(
1−βse

M1+1−m

)M1+1−m
.

Once the parameters n1, α0 have been chosen, the user is supplied with Table 4.1(a).

Type II error rate for the multi-center design computation

We do not know an exact value of βse
fw(M1,m), but we can compute the type II error rate

βfw(M1,m) for the given responses. Let α(1) <α(2) < ·· · <α(M) be the p-value thresholds for

the rejection procedure. For convenience put α(0) = 0, α(M +1) = 1. To compute βfw(M1,m),
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Figure 4.10 – Probability of a false negative computed for n1 = 55, α0 = 0.7, α1 = 0.026, n2 = 38.

one should look at the disposition of the p-values inside the intervals (α( j − 1),α( j )], j =
1,2, . . . , M +1.

Define βi , j = P(p-valuei ≥ α( j )) to be the type II error for the i−th center evaluated at

α=α( j ) (see Fig. 4.12). The probability that the p-value of the i−th center is in the interval

(α( j −1),α( j )] is

P(p-valuei ∈ (α( j −1),α( j )]) =βi , j−1 −βi , j , i = 1, . . . , M ; j = 1, . . . , M +1. (4.25)

Notice that if p-values for some centres are in the same interval (α( j ),α( j −1)], the decision

about H0 there will be the same.

Let the random index ji define an interval of the i−th center p-value,

ji =
(

j |p-valuei ∈ (α( j −1),α( j )]
)

, ji = 1, . . . , M +1. (4.26)

The probability of observing { j1, . . . , jM } is then expressed as

M∏
i=1

(
βi , ji−1 −βi , ji

)
, where 1 =βi ,0 >βi ,1 > . . . >βi ,M >βi ,M+1 = 0. (4.27)

Define e j to be the number of p-values falling in the interval (0,α( j )],

e j = e j ( j1, . . . , jM ) =
M∑

i=1
1

(
ji ≤ j

)
. (4.28)

Using e j , an alternative formulation of Hochberg’s step-up procedure is as follows:
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(a) q0
n . min q0 = 113 for n1 = 85, α0 = 0.7. (b) q1

n . min q1 = 134 for n1 = 105, α0 = 0.75

(c) n1+n2
nmin

Figure 4.11 – The diagnostic plot for choosing the design. The parameters are M = 4, α= 0.05, βmax =
0.2,~µ = (2,1,0.7), ~p = (0.2,0.4,0.6), n = 153. For the parameters n1 = 100, α0 = 0.7, α1 = 0.026, n2 =
65, η0 = 0.07, η1 = 0.28, η2 = 0.19, we have q0 = 118, q1 = 134, n1 +n2 = 165.

p-valuei

f (p-valuei )

0 α(1) α( j ) α(M) 1

βi , j

Figure 4.12 – βi , j for the multiple testing procedure.
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Table 4.1 – βfw(M1,m). The design parameters are α = 0.05, βmax = 0.2, n1 = 100, α0 = 0.7, α1 =
0.026, n2 = 65. Real parameters in the centers with strong effects are (µ∗, p∗), for the other centers
H0 is true.

M1

1 2 3 4

m

1 0.305 0.469 0.534 0.200
2 0.305 0.469 0.534
3 0.305 0.469
4 0.305

(a) Upper bound on βse
fw(M1,m).

M1

1 2 3 4

m

1 0.303 0.464 0.515 0.200
2 0.091 0.170 0.099
3 0.026 0.030
4 0.004

(b) βfw(M1,m) for (µ∗, p∗) = (2,0.2).

M1

1 2 3 4

m

1 0.032 0.050 0.050 0.002
2 0.001 0.002 < 0.001
3 < 0.001 < 0.001
4 < 0.001

(c) βfw(M1,m) for (µ∗, p∗) = (1.2,0.5).

• Compute e j for each j = 1, . . . , M ;

• Find the maximum J such that e J ≥ J ;

• Reject H0 in centres ck , k = 1, . . . ,e J .

Let S1 be the set of indexes for the centers with the strong effects. Define

j̃ = min

(
j | ∑

i∈S1

1
(

ji > j
)< m

)
(4.29)

Now an expression for βfw(M1,m) can be written as

βfw(M1,m) =P(e j < j , for all j ≥ j̃ ). (4.30)

Consequently, one can compute the type II error rate as

βfw(M1,m) =
(

M+1∑
j1=1

. . .
M+1∑
jM=1

)
e j< j for all j≥ j̃

M∏
i=1

(
βi , ji−1 −βi , ji

)
, (4.31)

which is the sum of the probabilities of all realisations { j1, . . . , jM }, such that e j < j for all j ≥ j̃ .

The user will have a better intuition about βse
fw(M1,m) if we provide him with βfw(M1,m)
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M1

1 2 3 4

m

1
0.303 0.464 0.515 0.200
0.294 0.498 0.523 0.185

2
0.091 0.170 0.100
0.099 0.179 0.079

3
0.026 0.030
0.032 0.032

4
0.004
0.007

(a) For the centres with strong effect
(µ∗, p∗) = (2,0.2).

M1

1 2 3 4

m

1
0.032 0.050 0.050 0.002
0.041 0.044 0.043 0.005

2
0.001 0.002 < 0.001
0.001 0 0

3
< 0.001 < 0.001

0 0

4
< 0.001

0

(b) For the centres with strong effect
(µ∗, p∗) = (1.2,0.5).

Table 4.2 – Theoretical (top) and empirical (bottom) βfw(M1,m) for 1000 simulations. The parameters
are M = 4, α= 0.05, βmax = 0.2, n1 = 100, α0 = 0.7, α1 = 0.026, n2 = 65.

computed for different sets of responses. We take M1 centres with the same (µ∗, p∗) ∈ E , while

in the remaining M −M1 centres H0 is true (see Table 4.1 (b),(c)). We suggest that the user

checks more than one pair (µ∗, p∗) to have a better understanding of the possible type II error

rates. Based on these tables, the user decides whether to change βmax.

As illustrated, the values of βfw(M1,m) are very sensitive to the true parameters (µ∗, p∗).

In Tab.4.1(b), we took µ∗ = 2, p∗ = 0.2, which is the lowest corner of E , while in Tab.4.1(c),

µ∗ = 1.2, p∗ = 0.5 is inside E but not far away from the boundary. These numbers show that

β f w (M1,m) decreases rapidly when µ∗ and/or p∗ increases.

4.4 Examples

To validate the model, we take the parameters from the previous section: M = 4, α= 0.05, βmax =
0.2, n1 = 100, α0 = 0.7, α1 = 0.026, n2 = 65. For different M1 and m we simulate the trial

1000 times. The responses in the control and treatment groups are, Z C ∼ N (0,1), Z T ∼
(1−p∗)N (0,1)+p∗N (µ∗,1). We estimate the standard deviation as σ̂=

√∑n
i=1(Z C

i −µ̂C )2

n−1 . The

results are summarized in Tab.4.2.

Consider now three different sets of true parameters (µ, p) as in Fig. 4.13. For the optimal

design, the probability of conducting the second stage (and, implicitly, the number of patients

enrolled) is shown in Fig. 4.13. In Table 4.3 we show the results of the simulations for different

non-optimal designs, which means that the values (n1,α0) are chosen without optimization,

which assumed the worst case scenario under the alternative; see Section 4.3. The results

of the simulated clinical trials and theoretical predictions agree. The scenario where all the

centers have the same effect size attains the largest type II error rate. The last section in

Table 4.3 demonstrates, indeed, the maximum type II error rate of 20%. Though these designs

are not optimal in the sense that we declared before, they can still be applied if they satisfy any
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other restrictions or objectives of the trial.

(a) Three parameters sets (PS). (b) PS1 = {(2,0.2), (1.5,0.4), (1,0.4), (1,0.7)}.

(c) PS2 = {(2,0.2), (2,0.3), (2,0.1), (1.8,0.2)}. (d) PS3 = {(2,0.2), (2.1,0.2), (1.9,0.2), (1.9,0.2)}.

Figure 4.13 – In (a) we show three parameter sets employed for simulations. For them in (b), (c), (d) we
present a frequency function of the number of groups with second stage conducted. The parameters are
M = 4, α= 0.05, βmax = 0.2,~µ= (2,1,0.7), ~p = (0.2,0.4,0.6), n1 = 100, α0 = 0.7, α1 = 0.026, n2 = 65.

4.5 Discussion

Region of strong effect

The region of strong effect for the mixture response model was introduced as an instrument

for decision making. Further standardization for regulatory reasons might be of interest. From

our point of view, it may also assist in making the research on trial designs more coherent. In

our framework we suggest to first determine the region of strong effect, while βmax and other

parameters may be tuned according to the needs of the study.
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Mean value statistic

The choice of the mean value statistic is not only motivated by its simplicity and its role in the

classical RCT design. The mean value statistic also has some advantages for mixture models.

If the responses in the control and treatment groups, Y C and Y T , have densities f (y) and

(1−p) f (y)+p f (y −µ), respectively, and Var
(
Y C

)= 1, then by the central limit theorem the

following approximations hold

Y T ∼N

(
µp,

1+ (1−p)pµ2

n

)
, X ∼N

(
µp,

1+ (1−p)pµ2

n
+ 1

n

)
.

This means that all the designs presented here may be used for non-normal responses.

In the two-stage design we use the criterion X > η2 to decide on rejection of the null after the

second stage. It is not obvious why this test works well and why X 1 and X 2 are not combined

in some other way, but the proposed test is close to the UMP. The likelihood ratio based on the

joint distribution function of
(

X 1, X 2

)
is

g(
X1,X2

)(x1, x2)

f(
X1,X2

)(x1, x2)
=
ϕ

(√
n1
2

x1−µp√
1+ (1−p)p

2 µ2

)
ϕ

(√
n2
2

x2−µp√
1+ (1−p)p

2 µ2

)
ϕ

(√
n1
2 x1

)
ϕ

(√
n2
2 x2

) ≈
ϕ

(√
n1
2 (x1 −µp)

)
ϕ

(√
n2
2 (x2 −µp)

)
ϕ

(√
n1
2 x1

)
ϕ

(√
n2
2 x2

)
= e

(x1n1+x2n2)µp− 1
2 (µp)2

2 ,
(4.32)

where f (x1, x2) and g (x1, x2) are pdfs under the null and alternative, respectively. The normal

approximation in the likelihood works if the variance 1+ (1−p)pµ2

2 is close to one. In this case

likelihood ratio is the monotone non-decreasing function of x1n1+x2n2
n1+n2

. The test becomes UMP

when p = 1.

Expected sample size

As we have seen in Sec.4.3, the minimum value of the optimized q1 is quite close to n. This

value is reached for the ’worst’ alternative µ = z1−α1+zα0p
2n1

, p = 1, and for other values it can

be substantially lower. Further in many situations we have much smaller expected sample

sizes. To illustrate this, we plot the probability of conducting the second stage for single- and

multicenter designs, see Fig. 4.14, presented as examples in Sec.4.3. This graph might be also

of interest for the user during the design planning.

Rejection procedures for multicenter trials

For multicenter RCTs, we construct the design using Hochberg’s step-up rejection procedure.

However, one can use any step-up procedure with thresholds α(1), ...,α(M). For example, it

could be Benjamini–Hochberg’s procedure ( Benjamini and Hochberg [1995]) with α(k) = kα
M
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(a) Single center trial. The maximum probability
is 0.52.

(b) Multicenter trial. The maximum probability is
0.52.

Figure 4.14 – The plot is in the (µ, p) space and shows the region of strong effect together with the
probability of conducting the second stage. On the left is the case of a single center RCT and on the right is
the case of 4 centers RCT. In each case the red dot, (0.24,1) on the left and (0.17,1) on the right, shows the
worst combination of µ and p in terms of the expected sample size under the alternative. The design on
the left is n1 = 55, α0 = 0.7,α1 = 0.026, n2 = 38, whereas on the right it has M = 4, n1 = 100, α0 = 0.7,α1 =
0.026, n2 = 65.

which controls the false discovery rate (FDR). There will be no difference in parameters

{n1,α0,α1,n2} for the designs using Hochberg’s or Benjamini–Hochberg’s procedures to con-

trol βse
fw(M ,1), because in each center the design corresponds to the single center RCT with the

maximum type I error rate controlled at the same level α(M) =α (see (4.9) and Lemma 4.4).

If M = 2, these methods are fully equivalent, including the thresholds α(1) = α/2, α(2) = α.

Nonetheless, if M > 2, βse
fw(M1,m) is generally smaller for the Benjamini–Hochberg procedure

(see Table 4.4).

To emphasize the importance of step-up procedures, consider the classical Bonferroni cor-

rection. For this procedure the decision is made for each center individually. However, the

method may be reformulated as a step-up procedure with α(k) = α
M for k = 1, ..., M . An addi-

tional constraint for the two-stage design will be α1 < α
M . If this is not satisfied, the second

stage is not needed. In Fig. 4.15, we give a diagnostic plot similar to those in Fig. 4.11 for

the Bonferroni method. First, the sample size for the one-stage design is n = 209, while for

Hochberg’s and Benjamini–Hochberg’s procedures n = 153 < 209.

The minimum values of q0, q1, n1+n2 for the Bonferroni method are also considerably higher

than for the step-up procedures (q0 = 118, q1 = 134, n1 +n2 = 165). Therefore, the designs

using Hochberg’s step-up procedure control the same FWER as the Bonferroni and is clearly

superior in terms of effort.
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(a) q0
n . min q0 = 134 for n1 = 100, α0 = 0.775. (b) q1

n . min q1 = 185 for n1 = 140, α0 = 0.875.

(c) n1+n2
n . min(n1 +n2) = 209 for

n1 = 205, α0 = 0.55.

Figure 4.15 – The diagnostic plot for choosing the design. The parameters are M = 4, α= 0.05, βmax =
0.2,~µ= (2,1,0.7), ~p = (0.2,0.4,0.6). For the Bonferroni procedure n = 209.
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M1

1 2 3 4

m

1
0.303 0.464 0.515 0.200
0.298 0.380 0.200 0.200

2
0.091 0.170 0.099
0.082 0.069 0.027

3
0.026 0.030
0.014 0.009

4
0.004
0.002

(a) For the centres with strong effect
(µ∗, p∗) = (2,0.2).

M1

1 2 3 4

m

1
0.032 0.050 0.050 0.002
0.032 0.033 0.030 0.002

2
0.001 0.002 < 0.001
< 0.001 < 0.001 < 0.001

3
< 0.001 < 0.001
< 0.001 < 0.001

4
< 0.001
< 0.001

(b) For the centres with strong effect
(µ∗, p∗) = (1.2,0.5).

Table 4.4 – βfw(M1,m) for Hochberg’s (top) and Benjamini–Hochberg’s (bottom) rejection rules. The
parameters are M = 4, α= 0.05, βmax = 0.2, n1 = 100, α0 = 0.7, α1 = 0.026, n2 = 65.

Random treatment effect

In our model the treatment-specific effect for the drug responders is a fixed value µT −µC .

However, a more realistic model might consider it to be random. To address this issue, we

present type II error rates for the chosen designs if the treatment-specific effect is a random

variable from N
(
µT −µC ,δ2

)
. There, Z T ∼ (1−p)N

(
µC ,σ2

)+pN
(
µT ,σ2 +δ2

)
. In Table 4.5,

average empirical type II error rates for the fixed and random treatment-specific effects are

given. We observe bigger error rates when an effect is random. This might be taken into

account in the development of the design.
M1

1 2 3 4

m

1
0.294 0.498 0.523 0.185
0.321 0.519 0.571 0.355

2
0.099 0.179 0.079
0.111 0.22 0.193

3
0.032 0.032
0.038 0.068

4
0.007
0.009

(a) For the centres with strong effect
(µ∗, p∗) = (2,0.2).

M1

1 2 3 4

m

1
0.041 0.044 0.043 0.005
0.150 0.279 0.353 0.253

2
0 0 0

0.038 0.075 0.072

3
0 0

0.008 0.012

4
0
0

(b) For the centres with strong effect
(µ∗, p∗) = (1.2,0.5).

Table 4.5 – Empirical type II error rates based on 1000 simulations. Z C ∼N (0,1), Z T ∼ (1−p∗)N (0,1)+
p∗N (µ∗,1) for fixed effect (top) and Z T ∼ (1−p∗)N (0,1)+p∗N

(
µ∗,1+0.52

)
for random effect (bottom)

effects. The parameters are M = 4, α= 0.05, βmax = 0.2, n1 = 100, α0 = 0.7, α1 = 0.026, n2 = 65.
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Estimation of µT , µC , σ and p

For the classical sequential RCT design (no mixture response) the estimation of the parameters

is discussed in Armitage et al. [1969], Siegmund [1978], O’Brien and Fleming [1979], and Tsiatis

et al. [1984]. In the mixture framework, to characterize the sensitive subgroup, one would

like to have estimators of µT , µC , σ and p. We do not further investigate this question, but

there are some estimation procedures that can be applied to the data. A large literature covers

various aspects of estimation of the mixture model parameters. In the case of a one-stage

design, one can use the likelihood-based estimators of µT , µC , σ and p (e.g., the EM algorithm

or the method proposed in Pavlic et al. [2001]). Regarding a two-stage trial, one can apply

these algorithms to either the first or the second stage results.

4.6 The next step. Subgroup analysis

For a late-stage clinical trials, methods aimed at investigating the efficacy of the drug in

pre-specified subgroups are referred to as a subgroup analysis. This rapidly growing area

of research is of particular interest, for example, in oncology where tumor heterogeneity

might not allow all patients to benefit from the molecularly targeted drugs. Given a large

set of biomarkers, patient stratification is routinely done, and the testing of a new treatment

is conducted given some information about the potential responders. One discriminates

between a confirmatory and exploratory subgroup analysis. The former is used when the

subgroups have already been identified and the goal is to build the design for the confirmatory

trial controlling the type I error rate with regard to multiple hypotheses testing (for the details

we address the reader to Li and Chan [2006], Brannath et al. [2009], Millen et al. [2012], Stallard

et al. [2014], Wang and Hung [2014], and Kitsche and Hothorn [2014]). The latter focuses

either on the discovery of the most promising subgroups or on the additional evaluation of

the hypothesized subgroup and estimation of its treatment effect. Usually such an analysis is

performed in a post-hoc manner employing machine learning algorithms. Examples include

single gene logistic regression to extract markers with significant gene-treatment interactions

(Freidlin et al. [2010]); voting methods (Breiman [1996]); regression trees (Su et al. [2009],

Lipkovich and Dmitrienko [2014]) and penalized regressions (Gunter et al. [2011]).

However, adaptive schemes recently have been proposed where subgroup identification is

made during the course of the trial, e.g., in Simon and Simon [2013], Xu et al. [2016], Gu et al.

[2016], and Antoniou et al. [2016]. These represent two-stage adaptive designs, where in the

first stage one classifies responders and non-responders, and the following enrollment is done

only for patients that are in the "responders" subgroup. Given a new patient’s results, one

may increase the prediction accuracy and recalculate the model for classification. Targeted

designs with patient selection are obviously more effective than sampling from the whole

population. They enable a smaller sample size to be used for demonstrating the drug’s efficacy

and terminate the trial earlier, see Maitournam and Simon [2005].
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4.7 Conclusion

In this chapter we presented an extension of the classical continuous response RCT design

to the case when only a fraction of the treated patients responds to the tested treatment.

The response in the treatment group is modeled as a two-component mixture, representing

placebo and drug responders. We modified the conventional procedure that decides on

the existence of a treatment-specific effect to a test that decides on the existence of a drug-

responders subgroup. We characterize the latter by the fraction p > 0 and the treatment-

specific effect µ> 0. We assume that pairs (µ, p) of potential interest belong to the set E , the

region of strong effect. The trial protocol is then determined by the testing procedure that

ensures a certain power of detection for any subgroup whose parameter is in E . We developed

one- and two-stage RCT designs along with exact and approximate expressions for the type II

error rates. We also generalized these designs to the multicenter framework where we control

the family-wise error rate. To decrease the sample size, we use Hochberg’s step-up multiple

test. If one wants to control FDR, one may simply use Benjamini–Hochberg’s test or any other

suitable thresholding of the p-values. We provide graphical aid to guide the user in choosing

design parameters, where a few are determined by minimizing the required effort.
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5 Classification procedures for real-data
applications

5.1 Example 1: Classification models for gene expression data in

cancer patients

5.1.1 Background and objectives

One of the most common applied medical research problems nowadays involves patient

classification based on biomarker data. The classification may be done between disease stages,

treatment outcomes, etc. In this chapter we present classification strategies for patients at risk

for colon cancer. This type of cancer is the third most common after breast and lung cancers.

Starting as adenoma polyps (benign tumors), the tumor’s development into a malign form

usually takes a long time with the first symptoms appearing at late stages. Early detection of

the disease significantly increases 5-year survival rates, from 12% for stage IV to 35% for stage

III, 71% for stage II and up to 90% for stage I (see National Cancer Institute (NCI). SEER 18

2008-2014). For years routine screening was done by colonoscopy, whose cost and side effects

make patients less prone to agree to the procedure. However, recent studies, e.g., Ward et al.

[2006], Marisa et al. [2013], Sideris and Papagrigoriadis [2014], Ciarloni et al. [2015], showed

that gene expression measurements from blood cells can potentially be used for screening. If

the predictive power is good enough, affordable, mininally-invasive diagnostics might become

available in the future.

In the following sections we will compare the performance of linear and non-linear gene

expression-based classifiers based on the subsets of biomarkers reported in Ciarloni et al.

[2015]. We demonstrate that the projection pursuit method proposed in Anderson and Ba-

hadur [1962], which we will refer to as the most powerful linear projection method (MPLP),

has comparable results to those of the logistic regression and the support vector machine.

Surprisingly, the MPLP is not often mentioned and used in applications though its simple im-

plementation and the absence of tuning parameters make it worth considering for multivariate

problems even if the model assumptions do not hold for the observed data.
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Figure 5.1 – The Pearson correlation matrices of 29 biomarkers for control (figure on the left) and cancer
patents (figure on the right).

5.1.2 Data and Methodology

Data

The training dataset (TS), Fig. 5.1, consists of 50 control and 30 cancer patients measurements

{(y1, x1), ..., (yn , xn)}, where yi = {0,1}, i = 1, ...,n is the vector of labels and X = (x1, ..., xn) ∈
Rn×K is the matrix of biomarkers. For each individual there are K = 29 biomarkers values that

have been pre-selected by the Wilcoxon rank test and validated through penalized logistic

regression as significant in discriminating between the patient populations. Three additional

datasets, validation (VS), test (TestS) and extension (ES) sets (see Table 5.1) are used to validate

the models.
Training set Validation set Test set Extension set

# of controls 50 25 48 26
# of cases 30 15 39 41

Table 5.1 – The datasets for training and validation.

Methodology

Feature selection

• Robust PCA. The biomarker correlation structure (see Fig. 5.1) suggests that the feature

selection might be done based on the principal components. Denote the eigenvectors

and the corresponding eigenvalues of the covariance matrix as (ak ,λk ), k = 1, ...,29. The

total variance of the data projected onto the space spanned by the principal components

is
∑K

i=1λi . In order to reduce the initial set of biomarkers, we search for variables in the

original space that contribute to the variance along the i -th principal component more
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than an average value of 1
K λi . The heuristic selection rule is then

1

(
K

∑K
i=1 w2

i j λi∑K
i=1λi

≥ 1

)
, (5.1)

where wi j is the weight of the j -th variable of the original space in the vector of loadings

ai .

Outliers can strongly affect the results of PCA. Thus, it is safer to consider the robust

PCA, which is a modification of the standard PCA procedure based on a robust measure

of variance, the Median Absolute Deviation,

MAD(x1, ..., xn) = 1.48 ·med
j

|x j −med
i

xi |. (5.2)

Finding the principal components then becomes a nonlinear eigenvector problem, with

k-th eigenvector

ak = argmax
||a||=1

{
MAD(X̂k a)

}
,

where X̂k = X −∑k−1
s=1 X as aT

s .

• Data & biologically driven selection. Here, feature selection was guided by possible

disease-driven changes. First, the standardized changes in the biomarker mean values,

second, the loss of correlations (positive or negative) that have been observed among

healthy individuals but changed in the case of the disease.

• Aggregated set of biomarkers. These are the significant predictors of the penalized

logistic regression, the main model used in the production for clinical patients.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14
robust PCA X X X X X X X X X X X

data & biology X X X X X X X
aggregated X X X X X X X X

Table 5.2 – Reduced sets of biomarkers

Remark: If any of methods for feature selection or for classification required the estimation of

the covariance matrix Σ, we used a shrinkage covariance estimator proposed in Schäfer and

Strimmer [2005], Σ∗ =λT + (1−λ)U , where T is the target covariance. In genetic applications

it is usually considered to be diagonal with unequal diagonal elements, and U is the MLE

of the covariance matrix. The shrinkage parameter in this case is λ̂ =
∑

i 6= j V̂ar(si j )∑
i 6= j s2

i j
, where

si j = 1
n−1

∑n
k=1(xki − x̄i )(xk j − x̄ j ).
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Classification algorithms

• Penalized logistic regression (PLR). The log-odds ratio of class memberships is mod-

eled as a linear function of biomarkers,

log

(
P(y = 1|x)

P(y = 0|x)

)
=β0 +βT x .

To fit the model one minimizes the penalized negative binomial likelihood,

−l (β0,β|(y1, x1), ..., (yn , xn))+λ
(

1−α
2

||β||2 +α||β||1
)

.

The tuning parameters λ and α are determined by cross-validation and bootstrap.

• Linear projection. When two classes are modeled by multivariate normal distributions

∼ N (µi ,Σ) with prior probabilities πi , i = 0,1, applying Bayes’ theorem shows that

the a posteriori log odds ratio log
(
P(y=1|x)
P(y=0|x)

)
equals Fisher’s linear discriminant function

λ(x) =β0 +βT x , where

β0 = log
π1

π0
− 1

2

(
µT

1 Σ
−1µ1 −µT

0 Σ
−1µ0

)
,

βT = (µ1 −µ0)TΣ−1.

Therefore, the LR and the Fisher’s LDA are closely linked. In the given clinical data, nei-

ther multivariate normality nor equality of the covariance matrices holds. Nevertheless,

it has been claimed (Hastie et al. [2009], Hosmer Jr et al. [2013], McLachlan [2004]) that

if the assumptions of the LDA are not severely violated, it still might be successfully

applied. To eliminate the assumption of equal covariance matrices, we decided to use

the method proposed in Anderson and Bahadur [1962], which is a projection pursuit

method searching for the most powerful discriminant direction under the parametric

assumptions of Fisher’s LDA except for the condition on the equality of the covariance

matrices. Surprisingly, we have not seen many examples of its application and it is not

listed among the most useful machine learning techniques, though it is an excellent

example of an intuitive and efficient method with low computational burden.

Let the class models be N (µ0,Σ0) and N (µ1,Σ1), respectively. For the predefined

type I error rate α < 0.5, one searches the hyperplane c T x = b such that P(c T x >
b |N (µ0,Σ0)) = α and β(c ,b) = P(c T x < b |N (µ1,Σ1)) is minimized. Having the esti-

mates of models’ parameters, we shift the first group mean to zero and successively

rotate the data with the eigenvectors ofΣ0 and then with the eigenvectors ofΣ1. The new

parameters are µ̃0 = 0, µ̃1 = (µ1, ...,µK ), µi ≥ 0, Σ̃0 = I , Σ̃1 = diag(σ2
1, ...,σ2

K ), i = 1, ...,K .

Denote also c̃ = e = (e1, ...,eK ) and b̃ = a. Without loss of generality consider
∑K

i=1 e2
i = 1.

Denote the mean and the standard deviation of the projected data as µ=∑
i µi ei and

σ=
√∑

i σ
2
i e2

i , respectively, put a =Φ−1(1−α) = z1−α > 0. The optimization problem is
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then reformulated as

G(e) =
∑

i µi ei −a√∑
i σ

2
i e2

i

−→ max given that
K∑

i=1
e2

i = 1. (5.3)

Let e ∗ = {e∗1 ,e∗2 , ...e∗K } be the point that solves (5.3). Denoteµ∗ =∑
i µi e∗i ,σ∗ =

√∑
i σ

2
i e∗2

i

and the corresponding type II error rate β∗ =Φ
(

a−µ∗
σ∗

)
. Then the following holds

β∗ < 0.5 if and only if
∑

i
µ2

i > a2,

β∗ = 0.5 if and only if
∑

i
µ2

i = a2,

β∗ > 0.5 if and only if
∑

i
µ2

i < a2.

An algorithm to find e ∗

We will focus now on the case
∑

i µ
2
i > a2, as it is the one of practical interest.

Lemma 5.1. The components of the vector e ∗ satisfy

e∗i = µi

a + µ∗−a
σ∗2 σ

2
i

, i = 1, ...,K . (5.4)

Proof.

The point e ∗ should satisfy the condition ∇G(e ∗) ∼ e ∗, i.e.,

∃λ> 0 :
µi

σ∗ − µ∗−a

σ∗2

σ2
i e∗i
σ∗ =λe∗i , i = 1, ...,K .

Multiplying the equation above by e∗i and summing for all i , we get

µ∗

σ∗ − µ∗−a

σ∗2 σ∗ =λ=⇒λ= a

σ∗ .

Therefore, µi = e∗i
(

(µ∗−a)σ2
i

σ∗2 +a
)
. Recall that for

∑
i µ

2
i > a2, one has G(e ∗) = µ∗−a

σ∗ > 0.

Consequently,
(µ∗−a)σ2

i

σ∗2 > 0 and e∗i = µi

a+ µ∗−a

σ∗2 σ2
i

.

Note that if
∑

i µ
2
i < a2, it is possible that for some i : a + (µ∗−a)σ2

i

σ∗2 = 0, and the formula

(5.4) is not valid.

The vector e ∗ can be found numerically with Newton’s iterative procedure. First we

prove that there is a unique e : ei = µi

kσ2
i +a

for some k > 0. Indeed, the function f (k) =∑
i

(
µi

kσ2
i +a

)2 −1 is decreasing on [0,+∞). Since f (0) =∑
i
(µi

a

)2 −1 > 0 and f (k) −→
k−→∞

−1,
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there exists a unique k > 0 : f (k) = 0, which gives a unique vector e with the components

ei = µi

kσ2
i +a

, i = 1, ...,K .

For the point e ∗ where the global maximum of G(e) is attained, e∗i = µi

k∗σ2
i +a

and k∗ =
µ∗−a
σ∗2 > 0. Therefore, we conclude that e ∗ is obtained from the unique solution of the

equation f (k∗) = 0.

Notice that f ′(k) < 0 and f
′′
(k) > 0. Therefore f (k) is decreasing and convex. Starting

from some k0 : f (k0) > 0 (for example, k0 = 0), the sequence

km = km−1 − f (km−1)

f ′(km−1)

converges to the solution k∗.

• Support Vector Machines. Finally, we add to the analysis one of the most widely used

non-parametric generalized linear classifiers, support vector machines (SVM). For the

purposes of the method, the class of an observation is yi =±1. In the case of perfect

separability, SVM find a hyperplane w T x − b = 0 such that yi [w T xi − b] ≥ 1 for all

i = 1, ...,n and the margin 2
||w || between w T x −b =−1 and w T x −b = 1, the hyperplanes

that completely separate two classes, is maximized. Perfect separability is, however, an

unrealistic assumption and the optimization problem is modified with the hinge loss

function max(0,1− yi (w T xi −b)) as the following

min
w ,ξ

(
1

2
||w ||2 + C

n

n∑
i=1

ξi

)
such that yi ((w T xi −b) ≥ 1−ξi ∀i = 1, ...,n. (5.5)

Here, ξi ≥ 0 is a slack variable indicating the location of the i -th observation with regard

to the margin:

– If ξi = 0, then the i -th observation is on the correct side of the margin;

– If 0 < ξi ≤ 1, then the i -th observation is inside the margin, but on the correct side

of the hyperplane;

– If ξi > 1, then the i -th observation is on the wrong side of the hyperplane.

C is the penalty for violating the margins.

The solution for (5.5) is of the type

w =
n∑

i=1
αi yi xi (5.6)

with αi > 0 only for the points (they are called the support vectors) inside the margin or

on the wrong side of the discriminating hyperplanes. A decision about a new observation

x ′ is made based on its inner products with the support vectors. This property enables

one to generalize the optimization to the nonlinear cases using kernels. In our analysis

we took linear and radial kernels,
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– Linear: k(xi , x j ) = xT
i x j ;

– Radial: k(xi , x j ) = exp(−γ‖xi −x j ‖2), for γ> 0.

The SVM decision function is determined by sign
((∑n

i=1αi yi k(xi , x ′)
)+b

)
.

5.1.3 Results and conclusions

The best models were chosen based on 500 bootstraps from the Training Set. In Tables 5.3

and 5.4, we list the top seven models along with:

• Tuning parameters: the penalization parameter cost(C ) for SVM or α for the logistic

regression (for fixed α, λ is chosen based on the 5-fold cross validation); the parameter

of the radial kernel in SVM, γ;

• Sensitivity (Se) and specificity (Sp) of a method for a given dataset and the average

value for bootstraps;

• The average area under ROC curve (AUC) on bootstraps;

• The L1 measure of a model’s stability, Diff= |Sensitivity TS−Sensitivity Boot|+|Specificity TS−
Specificity Boot|.

The ROC and the Precision-Recall curves for the corresponding models are given in Fig. 5.2.

Dimensionality reduction significantly improves the performance of any of the trained

classifiers. The biomarkers selected based on biological evidence and those extracted from the

data given some strong external assumptions are reasonably good as predictors (the first four

models in Table 5.3). The sets of biomarkers chosen solely by the data-dependent methods

(here we mention the robust PCA, the only method with a satisfactory performance) are

mostly non-informative. Except for the Validation Set where both sensitivity and specificity

drop for all models (which is, probably, because of the small sample size), the results are in

agreement with the bootstraps of the Training Set, which represent the ’average’ data. The

linear projection method and SVM with linear kernel showed the best overall results. Note that

the difference between the TS bootstraps and Test or Extension Sets sensitivity and specificity

is less for the linear projection method, which means that for the given data, it is more robust.

In conclusion we note that with the reduced dimensionality the performance of the linear

classifiers can be comparable with the non-linear methods. In particular, the projection

pursuit method, an extension of Fisher’s LDA for unequal covariance structures, might be a

good alternative before applying more complex classifiers. With a careful feature selection, it

gives tractable results with no additional tuning parameters needed.
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5.1. Example 1: Classification models for gene expression data in cancer patients
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Chapter 5. Classification procedures for real-data applications

5.2 Example 2: Linking non-annotated genes to existing gene sets

Genes involved in the same biological or biochemical pathway can be grouped into gene sets.

These sets can then be used to make sense of microarray or RNASeq data by linking genes to a

function. We describe a method for assigning non-annotated genes to existing gene sets (GS)

based on the statistical similarity.

5.2.1 Background and objectives

Instead of analyzing differences in the expression level of a single gene between given con-

ditions, gene set analysis focuses on a collection of genes that share a common biological

function, e.g., participating in a certain biological pathway. The conclusion about the strength

of an association between gene set and experimental target is usually based on the ranks

of some relevant to the problem statistic values corresponding to genes in a query set. A

similar approach is applied to classifying non-annotated genes. It is believed that equally

co-expressed genes share a similar biological functions. Thus, to infer potential membership

of a gene, one explores its co-expression with known pathways, e.g., Subramanian et al. [2005],

Adler et al. [2009], Baughman et al. [2009], Zhu et al. [2015], Li et al. [2017].

One of the major problems in this type of analysis is inter-gene correlation in a gene set

which inflates the type I error rate of the statistical tests (if they ignore the correlation). Many

solutions to this problem have been proposed , e.g., Wang et al. [2008, 2009], Nam [2010],

Wu and Smyth [2012], Yaari et al. [2013]. In particular, there are three main strategies. If in

the study one measures gene activities in two or more groups, e.g., phenotypic categories,

control/treatment, etc., the correction for the inter-gene dependence can be handled using the

variance inflation factor (VIF). After the correction, the univariate statistics reflecting gene set

associations are tested for significance. If there is only one available dataset, which is our case,

one can either decorrelate genes in the gene set or permute sample labels and estimate the

p-values of the resulted statistics based on the empirical null distribution. The decorrelation

requires accurate estimate of the covariance matrix, which is computationally expensive in

small size/high dimension problems. The permutation approach, on the other hand, besides

carrying the same computational burden, was criticized for changing the hypothesis being

tested, see Irizarry et al. [2009], Tamayo et al. [2016].

We propose a simple and comprehensible method that picks a non-annotated gene as a

candidate for a given gene set based on its correlation with a so-called "gene set representative".

This enables us to avoid correcting for the inter-correlation in the gene set while keeping

necessary information about the gene similarities.
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5.2. Example 2: Linking non-annotated genes to existing gene sets

5.2.2 Data and Methods

The numbered set of all genes is G = {1,2, . . . ,k} and a gene set of size m is a subset GS ={
g1, g2, . . . , gm

}⊂G . We want to construct a method for deciding whether a target gene t ∈G

(t 6∈ GS) should be considered linked to or associated with the gene set GS. To decide this, we

dispose of data measuring the activity of all genes in various organs. Our method is based on

the pairwise correlation observed in the data, which for a single data set is defined as

r (g1, g2) =
∑n

i=1

(
xi ,g1 − x̄g1

)(
xi ,g2 − x̄g2

)√∑n
i=1

(
xi ,g1 − x̄g1

)2 ∑n
i=1

(
xi ,g2 − x̄g2

)2
. (5.7)

In this formula, (x1,g , x2,g , . . . , xn,g ) are the n observed activities of gene g measured in compa-

rable instances and x̄g is the observed average activity of gene g .

To represent the gene set GS = {g1, . . . , gm}, we construct an artificial gene with observed

activities (s1, . . . , sn) representing the set. We choose the values of si to maximize the average

correlation or equivalently the sum of the correlations
∑

g∈GS r (g , s) with all genes in the gene

set. This leads to

si = 1

m

∑
g∈GS

xi ,g − x̄g√∑n
j=1

(
x j ,g − x̄g

)2
, i = 1, . . . ,n,

that is, the average of activities of the genes in the gene set. If we correlate a non-annotated

target gene with the representor, we obtain a correlation which is proportional to the average

correlation of the target gene with the members of the gene set. The proportionality constant

is equal to one over the square root of the average entry in the inter-gene set correlation matrix.

In particular, for an equi-correlated structure with r (g1, g2) = r0 > 0 for all pairs of (different)

genes g1, g2 ∈ GS, then the correlation between the representor and any one of the genes in

the gene set can be shown to be equal to√
r0 + 1

m
(1− r0) >p

r0 > r0 . (5.8)

Even when the average gene-gene correlation in a GS is small, the average correlation between

representor and the genes in the GS is high, which makes it possible to use the correlation

with the representer as an indicator. An example is shown in Fig. 5.3, where the observed

correlation matrix of the reactome respiratory electron transport gene set is depicted. On

average the correlation between the representor and the genes in this gene set is 0.4, while the

average inter-gene set correlation is only 0.145.

Statistics

Given a dataset of measured gene activities, we scan across unannotated target genes outside

a given gene set in order to test the null hypothesis that the target gene is not associated with

the gene set. As a test statistic, we use the correlation r (t , s), where t is a target gene and s is
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Figure 5.3 – Correlation matrix of RNA expression levels of the reactome respiratory electron transport
gene set. RNASeq data is sampled from adipose subcutaneous tissue.

the representor of the gene set. We work with a null model in which the correlation over all

pairs of genes fluctuates around ρbase, whose value may change from one data set to another.

A possible choice for this base value is the average correlation of all pairs of genes. Another

one would be a zero correlation.

The test declares a target gene to be an associate of a gene set, if the observed correlation

with the representor is significantly higher than the base correlation. To determine what

significantly higher means, we compute the correlations of the m genes in the gene set GS

with the representor, which as we noticed above are on average quite high. Next, we choose

0 <β< 1 and let rβ be the β quantile of the values r (g1, s), . . . ,r (gm , s), that is, the value such

that mβ of the values are smaller or equal to rβ. This choice means that m(1−β) of the genes

in the GS have a correlation that exceeds the bound rβ and would thus be detected as having

an association with GS if the test were based on the this bound. The larger our choice of β, the

more stringent this test becomes, because the value of rβ increases. If we attempt to create a

method that declares most of the m members of a GS as being associated with that GS, we

choose a small value of β, but this will make it easier for other target genes to be declared

associates of GS. A good compromise is the choice β= 0.5 or even β= 0.75.

Instead of the raw correlation r (t , s), we will use the value obtained by Fisher’s variance

stabilizing transformation of a correlation r , which is defined as z(r ) = ln((1+r )/(1−r ))/2. We
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5.2. Example 2: Linking non-annotated genes to existing gene sets

conclude that the target gene t is an associate of the gene set GS, if

D = 1

2
ln

(
1+ r (t , s)

1− r (t , s)

)
− 1

2
ln

(
1+ρbase

1−ρbase

)
≥ 1

2
ln

(
1+ rβ
1− rβ

)
− 1

2
ln

(
1+ρbase

1−ρbase

)
. (5.9)

This choice ensures that if it were applied to the genes in GS, it would detect a fraction of 1−β
of them.

If the null hypothesis is true, we approximately have

D ∼ N

(
0,

1

n −3

)
,

where n is the number of samples in the data set. It follows that the rate of false positives

corresponding to the cutoff rβ is

α= 1−Φ
(p

n −3

(
1

2
ln

(
1+ rβ
1− rβ

)
− 1

2
ln

(
1+ρbase

1−ρbase

)))
,

whereΦ(z) is the standard normal cumulative distribution function. We will use this quantity

to estimate the expected number of false positive annotations by multiplying α with the

number of target genes to be tested.

Combining across multiple data sets

By combining the findings from several independent data sets (in our case these are different

tissues), we can increase the power of the test. To combine, we first use the procedure

described above to compute the type I error α j for data set j = 1, . . . , J . Then we scan through

all the target genes, that is, the genes whose activities were observed and are non-annotated

with the given gene set. Suppose there are N j such potential targets. Next, we estimate the

expected number of false positives and control its total value to be less than 1. Finally, we

combine the evidence only over the J ′ ≤ J data sets with the smallest number of expected false

positives N jα j , where J ′ is the largest number of data sets which still satisfies

J ′∑
j ′=1

αG
j ′ ·N j ′ < 1. (5.10)

In this formula, j ′ is the rank of a data set with regard to the expected false positives, that is,

j ′ = 1 is the data set with the smallest value of Nα, while j ′ = J is the data set with the largest

such value.

The combined statistic for the target gene t employs the inverse variance weighted score,

which is based on the test statistics computed separately for each data set D j ′ (5.9). The
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combined score is

Dcombined =
∑J ′

j ′=1 (n j ′ −3)D j ′∑J ′
j ′=1(n j ′ −3)

, (5.11)

where n j ′ is the sample size in the corresponding sample. If the null hypothesis of no associa-

tion is true we have approximately

Dcombined ∼N

0,
1∑J ′

j ′=1(n j ′ −3)

 ,

and the combined p-value is

pcombined = 1−Φ
Dcombined

√√√√ J ′∑
j ′=1

(n j ′ −3)

 .

We will, however, not make use of the above null distribution, because it would lead to a

high number of genes associated with a gene set. Instead, we refer to the bound rβ, which we

calculated for each data set. In the analysis based on the combined correlation, we reject the

null hypothesis if

Dcombined >
∑J ′

j ′=1 (n j ′ −3)
(
z(r j ′,β)− z(ρ j ′,base)

)
∑J ′

j ′=1(n j ′ −3)
, (5.12)

where z(r ) = ln((1+r )/(1−r ))/2 is the Fisher transformation. The rejection boundary in (5.12)

is one among many possible choices. The proposed one is consistent with (5.9) for one data

set. In case of many data sets the rejection rule selects as candidates genes that are strongly

correlated with a representor of a gene set in every tissue explored. Not all genes in the gene set

pass this bound, since their expression levels may vary between the tissues. For the combined

procedure the pooled type I error is

αpooled = 1−Φ

∑J ′
j ′=1 (n j ′ −3)

(
z(r j ′,β)− z(ρ j ′,base)

)
√∑J ′

j ′=1(n j ′ −3)

 .

Based on corresponding p-values one can apply further multiple testing corrections. In the

next chapter we compare two multiple testing procedures with (5.12).

5.2.3 Example. Reactome respiratory electron transport gene set enrichment anal-
ysis

As an example of the procedure, we take the reactome respiratory electron transport pathway.

If β= 0.2 and ρbase = 0, eight tissues out of 52 are left out of the analysis due to the number

of false positives they bring. For consistency we scan only the genes that are present in all

analyzed data sets. Having the set of supposed and not-supposed genes for this gene set, we
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Figure 5.4 – The ROC curve for the rank based classifier of unannotated genes for the reactome respiratory
electron transport gene set. The vertical line defines the significance cutoff. Here it is the 80 % quantile of
correlations of genes in the set with its representor.

validate the procedure, plotting in Fig. 5.4 the chance of detecting supposed genes along the

rank of the combined score from (5.11). The plot shows a good predictive performance with the

top genes being among the supposed ones. In Tables 5.5, 5.6 results for different experimental

setups are given. As is shown in Table 5.5, ρbase does not have a marked effect on the number

of discoveries, while it varies between 0 and 0.2. We think that this is a realistic range for

baseline correlation, though one should decide about it based on the average correlations

across the investigated gene sets. Table 5.6, on the contrary, shows that changing the power

for the genes in the set directly modulates the number of discoveries. The value of αpooled is so

small that making inference based on procedures like the Bonferroni correction or the FDR

leads to many more possible candidates.

ρbase # of discoveries # of scaned

genes

# of discoveries.

Bonferroni

# of discoveries.

FDR

0 106 34614 4170 4191

0.1 105 34644 1578 1579

0.2 105 34686 758 758

Table 5.5 – An example of the method for the reactome respiratory electron transport pathway. Thresholds
are determined by β= 0.2

99



Chapter 5. Classification procedures for real-data applications

1−β # of discoveries # of scanned

genes

# of discoveries.

Bonferroni

# of discoveries.

FDR

0.7 42 34335 754 755

0.6 29 34309 754 754

0.5 14 34309 754 754

Table 5.6 – An example of the method for the reactome respiratory electron transport pathway. ρbase = 0.2

5.2.4 Conclusion

The GSEA method proposed here is an alternative to existing approaches designed to correct

for a gene-gene interactions. Our method combines the gene set expression values into a single

gene, the set representative. We investigate the relatedness between the set representative

and unannotated gene candidates and compare it to the gene set members. Depending on

the gene set, we compute the cutoff value, which determines the extent of relatedness that

is considered as an indicator of the membership in this gene set. This allows us to compute

the type I error rate of the assignment using only the the log transformed correlations and

the cutoff value. Hence, for the given gene set in a given dataset, the false discovery rate is

computed in seconds without additional sampling. The explicit type I error rates for the given

gene set could be employed when one needs to combine the evidence across multiple datasets.

As a consequence, if in some dataset the investigated gene set is not coherent, meaning the

absence of a strong linkage, the resulting type I error rate will be big and the dataset most likely

will be excluded from the meta-analysis. As for the final inference, we claim that rather than

considering p-values, which we also provide, the selection of new candidates should be based

on the cutoff value which reveals the consistency of the scanned candidates with the gene set

members. The advantage of this method is in its interpretability, i.e., rather than operating on

the p-values as an argument for the gene membership, one can claim that the selected genes

have been picked due to performing like the top (1−β)% percent of the genes in the gene set.

One can criticize the method for being too conservative, as we require the selected genes

to be in agreement with the most of the genes in the set in most of the datasets. However,

changing the parameters β, ρbase and the number of false positives in (5.10), will weaken the

selection criteria and uncover many more new candidates.
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