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Abstract

Consider the problem of minimizing a convex differentiable function on the
probability simplex, spectrahedron, or set of quantum density matrices. We
prove that the exponentiated gradient method with Armijo line search always
converges to the optimum, if the sequence of the iterates possesses a strictly
positive limit point (element-wise for the vector case, and with respect to the
Löwner partial ordering for the matrix case). To the best of our knowledge, this is
the first convergence result for a mirror descent-type method that only requires
differentiability. The proof exploits self-concordant likeness of the log-partition
function, which is of independent interest.

1 Introduction

We consider the problem of minimizing a convex differentiable objective function on
the probability simplex, spectrahedron, or set of quantum density matrices. Such a
convex optimization problem appears in sparse regression, Poisson inverse problems,
low-rank matrix estimation, and quantum state tomography, to mention a few [31,
18, 21, 28].

Regarding the structure of the constraint set, a natural approach is the exponentiated
gradient (EG) method. In particular, for the probability simplex constraint case, the
corresponding iteration rule is computationally cheap—projection is not required.
The EG method can be viewed as a special case of mirror descent [24, 7], the interior
gradient method [2, 3], and the proximal gradient method [6], with the Bregman
divergence induced by Shannon or von Neumann entropy. Because of its close
relationship with the multiplicative weights update method (see, e.g., [1]), the EG
method was independently discovered by the computer science community: It was
studied for the probability simplex constraint in [20, 16], and generalized for the
spectrahedron constraint in [33], under the setup of online convex optimization.
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Existing covnergence guarantees of the EG method require conditions on the ob-
jective function. If the objective function is Lipschitz, standard analysis of mirror
descent shows that the exponentiated gradient method converges to the optimum
[7]. If the gradient of the objective function is Lipschitz, the EG method converges
either with a constant step size or Armijo line search [3]. Recently, the Lipschitz
gradient condition was generalized by the notion of relative smoothness in [6, 22]. If
the objective function is smooth relative to the negative von Neumann entropy, the
EG method converges with a constant step size [6, 12, 22].

Notice that checking the conditions can be highly non-trivial, and there are applica-
tions where none of the conditions above hold. In Appendix A, we show that quantum
state tomography, an essential task for calibrating quantum computation devices, is
one such application. The interior proximal method converges for all convex differen-
tiable objective functions, but its implementation is computationally expensive [14].
For first-order methods, there are indeed convergence guarantees that require mild
differentiability conditions, though they are all for gradient descent-type methods.
Bertsekas proved that the projected gradient descent with Armijo line search always
converges for a differentiable objective function, when the constraint is a box or
the positive orthant [8]. Gafni and Bertsekas generalized the previous result for any
compact convex constraint [15]. Salzo proved the convergence of proximal variable
metric methods with various line search schemes, assuming that the gradient of the
objective function is uniformly continuous on any compact set [30].

In this paper, we study convergence of the EG method with Armijo line search,
assuming only differentiability of the objective function. We prove that, as long
as the sequence of iterates possesses a strictly positive limit point, the EG method
with Armijo line search is guaranteed to converge to the optimum. In comparison to
existing results, we highlight the following contributions.

• To the best of our knowledge, we give the first convergence guarantee of a
mirror descent-type method1 that only requires differentiability.

• Our convergence analysis exploits the self-concordant likeness of the log-
partition function. As a by-product, we improve on the Peierls-Bogoliubov
inequality, which is of independent interest; see Remark 2 for the details.

2 Problem Statement and Main Result

We consider the optimization problem

f ? = min{ f (ρ) | ρ ∈D } , (P)

1Here we exclude the very standard projected gradient method.
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where f is a convex function differentiable on intdom f , and D denotes the set of
quantum density matrices, i.e.,

D := {ρ ∈Cd×d | ρ ≥ 0,Trρ = 1} ,

for some positive integer d . We assume that f ? >−∞.

This problem formulation (P) allows us to address two other constraints simultane-
ously:

• The probability simplex P := { x ∈Rd+ | ‖x‖1 = 1}.

• The spectrahedron S := { X ∈Rd×d | X ≥ 0,Tr X = 1}.

See Section 4.2 for the details.

Starting with some non-singular ρ0 ∈D, the EG method iterates as

ρk =C−1
k exp

[
log(ρk−1)−αk∇ f (ρk−1)

]
, ∀k ∈N, (1)

where Ck is a positive real number normalizing the trace of ρk , and αk > 0 denotes
the step size. Equivalently, one may write

ρk ∈ argmin{αk 〈∇ f (ρk−1),σ−ρk−1〉+H(σ,ρk−1) |σ ∈D } , (2)

where H denotes the quantum relative entropy, defined as

H(ρ,σ) :=
{

Tr(ρ logρ)−Tr(ρ logσ)−Tr(ρ−σ) if kerρ ⊆ kerσ,
+∞ otherwise.

The convention 0log0 := 0 is adopted in the definition.

There are various approaches to selecting the step size. In this paper, we will focus
on Armijo line search. Let ᾱ > 0 and r,τ ∈]0,1[. The Armijo line search procedure
outputs αk = r j ᾱ, where j is the least non-negative integer that satisfies

f (ρk ) ≤ f (ρk−1)+τ〈∇ f (ρk−1),ρk −ρk−1〉 ;

the dependence on j lies implicitly in ρk . Notice that implementing Armijo line
search does not require any parameter of the objective function, e.g., the Lipschitz
constant of the objective function or its gradient.

Our main result is the following theorem.

Theorem 1 Suppose that f is differentiable at every non-singular ρ ∈ D. Then we
have:

1. The Armijo line search procedure terminates in finite steps.

2. The sequence ( f (ρk ))k∈N is non-increasing.
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3. For any converging sub-sequence (ρk )k∈K , K ⊆N, it holds that

liminf{ H(ρk (β),ρk ) | k ∈K } = 0, ∀β> 0,

where we define

ρk (β) := C̃−1
k exp

[
log(ρk )−β∇ f (ρk )

]
, ∀k ∈N; 2

the real number C̃k normalizes the trace of ρk (β).

Remark 1 Statement 3 is always meaningful—due to the compactness of D, there
exists at least one converging sub-sequence of (ρk )k∈N. 2

Taking limit, we obtain the following convergence guarantee.

Corollary 1 If the sequence (ρk )k∈N possesses a non-singular limit point, the sequence
( f (ρk ))k∈N monotonically converges to f ?. 2

PROOF Let (ρk )k∈K be a sub-sequence converging to a non-singular ρ∞ ∈ D. By
Statement 3 of Theorem 1, there exists a sub-sequence (ρk )k∈K ′ , K ′ ⊆ K , such
that H(ρk (β),ρk ) → 0 as k →∞ in K ′. As ρ∞ is non-singular, we can take the limit
and obtain H(ρ∞(β),ρ∞) = 0, showing that ρ∞(β) = ρ∞. Lemma B2 in the appendix
then implies that ρ∞ is a minimizer of f on D. Since the sequence ( f (ρk ))k∈N is
non-increasing and bounded from below by f ?, limk→∞ f (ρk ) exists. We write

f ? ≤ lim
k→∞

f (ρk ) = liminf{ f (ρk ) | k ∈N } ≤ f (ρ∞) ≤ f ?. �

It is currently unclear to us whether convergence to the optimum holds, when there
does not exist a non-singular limit point; see Section 4.3 for a discussion. One way to
get around is to consider solving

f ?λ = min{ f (ρ)−λ logdetρ | ρ ∈D } , (P-λ)

where λ is a positive real number.

Proposition 1 It holds that limλ↓0 f ?
λ
= f ?. 2

PROOF Notice that − logdet(·) > 0 on D. We write

lim
λ↓0

f ?λ = inf
λ>0

f ?λ = inf
λ>0

inf
ρ∈D

fλ(ρ) = inf
ρ∈D

inf
λ>0

fλ(ρ) = inf
ρ∈D

f (ρ) = f ?,

where fλ(ρ) := f (ρ)−λ logdetρ. �

Existence of a non-singular limit point can be easily verified in some applications.
For example, hedged quantum state tomography corresponds to solving (P) with the
objective function

fHQST(ρ) := fQST(ρ)−λ logdetρ,
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for some λ > 0 [10], where fQST is given in Section A. As discussed above, all limit
points of the iterates must be non-singular. Similarly in the probability simplex
constraint case, if the optimization problem involves the Burg entropy as in [13], all
limit points must be element-wisely strictly positive2.

Notation

Let g be a convex differentiable function. We denote its (effective) domain by dom g ,
and gradient by ∇g . If g is defined on R, we write g ′, g ′′, and g ′′′ for its first, second,
and third derivatives, respectively.

Let A ∈Cd×d . We denote its largest and smallest eigenvalues by λmax(A) and λmin(A),
respectively. We denote its Schatten p-norm by ‖A‖p . We will only use the Hilbert-
Schmidt inner product in this paper; that is, 〈A,B〉 := Tr(AHB) for any A,B ∈ Cd×d ,
where AH denotes the Hermitian of A.

The function exp(·) and log(·) in (1) are matrix exponential and logarithm functions,
respectively. In general, let X ∈Cd×d be Hermitian, and X =∑

j λ j P j be its spectral
decomposition. Let g be a real-valued function whose domain contains {λ j }. Then
g (X ) :=∑

j g (λ j )P j .

Let ρ,σ ∈D be non-singular. The negative von Neumann entropy is defined as

h(ρ) := Tr(ρ logρ)−Tr(ρ).

It is easily checked that the quantum relative entropy is the Bregman divergence
induced by the negative von Neumann entropy. Pinsker’s inequality says that [17]

H(ρ,σ) ≥ 1

2
‖ρ−σ‖2

1.

Therefore, H(ρ,σ) = 0 implies that ρ =σ.

3 Proof of Theorem 1

The key to our analysis is the following proposition.

Proposition 2 Let ρ ∈D be non-singular. Suppose that

∆ :=λmax(∇ f (ρ))−λmin(∇ f (ρ)) > 0.

Then the mapping

α 7→ H(ρ(α),ρ)

e∆α(∆α−1)+1
(3)

2For any element-wisely strictly positive vector v := (vi )1≤i≤d , the Burg entropy is defined as b(v) :=
−∑d

i=1 log vi .
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is non-increasing on ]0,+∞[. 2

Proposition 2 was inspired by a lemma due to Gafni and Bertsekas [15], which says
that the mapping

α 7→ ‖ΠD(ρ−α∇ f (ρ))−ρ‖F

α
(4)

is non-increasing on [0,+∞[, where ΠD denotes projection onto D with respect to
the Frobenius norm ‖ · ‖F. The lemma of Gafni and Bertsekas was proved by an
Euclidean geometric argument; see [9] for an illustration. In comparison, we will
prove Proposition 2 by exploiting the self-concordant likeness of the log-partition
function.

We prove Proposition 2 in Section 3.1. Then we prove the three statements in Theorem
1 separately in the following three sub-sections. To simplify the presentation, we put
some necessary technical lemmas in Appendix B.

3.1 Self-concordant Likeness of the Log-Partition Function and
Proof of Proposition 2

For any non-singular ρ ∈D and α> 0, define

ϕ(α;ρ) := logTrexp
[
log(ρ)−α∇ f (ρ)

]
,

which, in statistical physics, is the log-partition function of the Gibbs state for the
Hamiltonian Hα := − log(ρ)+α∇ f (ρ) at temperature 1. We will simply write ϕ(α)
instead of ϕ(α;ρ), when the corresponding ρ is clear from the context or irrelevant.

The log-partition function is indeed closely related to the EG method, as shown by
the following lemma.

Lemma 1 For any non-singular ρ ∈D and α> 0, it holds that

H(ρ(α),ρ) =ϕ(0)− [
ϕ(α)+ϕ′(α)(0−α)

]
. 2

PROOF A direct calculation gives

D(ρ(α),ρ) =−αTr(∇ f (ρ)ρ(α))− logTrexp
[
log(ρ)−α∇ f (ρ)

]
=αϕ′(α)−ϕ(α).

Notice that ϕ(0) = 0. �

We say that a three times continuously differentiable convex function g is µ-self-
concordant like, if and only if |g ′′′(x)| ≤µg ′′(x) for all x [4, 5, 32].

Lemma 2 For any non-singular ρ ∈ D, the function ϕ(α) is ∆-self-concordant like,
where ∆ :=λmax(∇ f (ρ))−λmin(∇ f (ρ)). 2
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PROOF Lemma B3 shows that

ϕ′′(α) =E
(
ηα−Eηα

)2 , ϕ′′′(α) =E
(
ηα−Eηα

)3 ,

where ηα is a random variable taking values in [−λmax(∇ f (ρ)),−λmin(∇ f (ρ))]. The
lemma follows. �

The following sandwich inequality follows from self-concordant likeness [32]. We
defer the proof to Section C.

Lemma 3 Suppose that ∆> 0. For any non-singular ρ ∈D, it holds that(
e−∆α+∆α−1

)
∆2 ϕ′′(α) ≤ϕ(0)− [

ϕ(α)+ϕ′(α)(0−α)
]

≤
(
e∆α−∆α−1

)
∆2 ϕ′′(α). 2

Remark 2 The lower bound improves upon the Peierls-Bogoliubov inequality [27],
which says that

0 ≤ϕ(0)− [
ϕ(α)+ϕ′(α)(0−α)

]
.

Notice that lower bound provided by Lemma 3 is always non-negative. 2

Now we are ready to prove Proposition 2.

PROOF (PROPOSITION 2) We look for a differentiable function χ :]0,+∞[→]0,+∞[,
such that the mapping

g (α) := H(ρ(α),ρ)

χ(α)

is non-increasing on ]0,+∞[. Note that g is non-increasing if and only if g ′ ≤ 0 on
]0,+∞[. Applying Lemma 1, a direct calculation gives

g ′(α) = αϕ′′(α)χ(α)−{
ϕ(0)− [

ϕ(α)+ϕ′(α)(0−α)
]}
χ′(α)[

χ′(α)
]2 .

Therefore, g ′(α) ≤ 0 if and only if the numerator is negative, i.e.,

(logχ)′(α) ≥ αϕ′′(α)

ϕ(0)− [
ϕ(α)+ϕ′(α)(0−α)

] ,

where we have used the fact that χ′/χ= (logχ)′. By Lemma 3, we can set

(logχ)′(α) = ∆2α

e−∆α+∆α−1
.

Solving the equation gives χ(α) := e∆α(∆α−1)+1. �
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For convenience, we will apply Proposition 2 via the following corollary.

Corollary 2 Let ρ ∈D be non-singular and ᾱ> 0. Suppose that ∆> 0. It holds that

H(ρ(α),ρ)

α2 ≥ κH(ρ(ᾱ),ρ), ∀α ∈]0, ᾱ],

where κ := {
2
[
e∆ᾱ(∆ᾱ−1)+1

]}−1
∆2. 2

PROOF Define g (α) := e∆α(∆α−1)+1− (∆2/2)α2. Then g (0) = 0, and

g ′(α) =α[
e∆α∆2 −∆2]≥α(∆2 −∆2) = 0, ∀α ∈]0,+∞[.

Therefore, g (α) ≥ 0 on ]0,+∞[, i.e.,

e∆α(∆α−1)+1 ≥ ∆2

2
α2, ∀α ∈]0,+∞[.

By Proposition 2, we write

H(ρ(α),ρ)
∆2

2 α
2

≥ H(ρ(α),ρ)

e∆α(∆α−1)+1
≥ H(ρ(ᾱ),ρ)

e∆ᾱ(∆ᾱ−1)+1
, ∀α ∈]0, ᾱ]. �

3.2 Proof of Statement 1

The first statement is a direct consequence of the following proposition.

Proposition 3 For every non-singular ρ ∈D, there exists some αρ > 0 such that

f (ρ(α)) ≤ f (ρ)+τ〈∇ f (ρ),ρ(α)−ρ〉 , ∀α ∈ [0,αρ]. (5)
2

Recall that τ is the parameter in Armijo line search.

PROOF If ρ is a minimizer, by Lemma B2, we have ρ(α) = ρ for all α ∈ [0,+∞[, and
the proposition follows. Suppose that ρ is not a minimizer in the rest of this proof. By
Lemma B2, we have H (ρ(α),ρ) > 0 for all α ∈]0,+∞[. By the mean-value theorem, we
write

f (ρ(α))− f (ρ) = 〈∇ f (σ),ρ(α)−ρ〉 ,

for some σ in the line segment joining ρ(α) and ρ. Then (5) can be equivalently
written as

〈∇ f (σ)−∇ f (ρ),ρ(α)−ρ〉 ≤−(1−τ)〈∇ f (ρ),ρ(α)−ρ〉 , ∀α ∈ [0,αρ]. (6)

By Lemma B1, (6) holds if

〈∇ f (σ)−∇ f (ρ),ρ(α)−ρ〉 ≤ (1−τ)H(ρ(α),ρ)

α
, ∀α ∈ [0,αρ]. (7)

Consider two cases.
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• If λmax(∇ f (ρ)) =λmin(∇ f (ρ)), then ∇ f (ρ) is a multiple of the identity. We have

〈∇ f (ρ),σ−ρ〉 = 0, ∀σ ∈D;

showing that ρ is a minimizer. By Lemma B2, the proposition follows for every
αρ > 0.

• Otherwise, set αρ ≤ ᾱ. By Corollary 2, there exists some κ> 0, such that

H(ρ(α),ρ)

α
≥√

H(ρ(α),ρ)
√
κH(ρ(ᾱ),ρ), ∀α ∈ [0,αρ].

Applying Hölder’s inequality and Pinsker’s inequality, we write

〈∇ f (σ)−∇ f (ρ),ρ(α)−ρ〉 ≤ ‖∇ f (σ)−∇ f (ρ)‖∞‖ρ(α)−ρ‖1

≤ ‖∇ f (σ)−∇ f (ρ)‖∞
√

2H(ρ(α),ρ).

Then (7) holds if

‖∇ f (σ)−∇ f (ρ)‖∞
p

2 ≤ (1−τ)
√
κH(ρ(ᾱ),ρ), ∀α ∈ [0,αρ]

Recall that a convex differentiable function is continuously differentaible [29].
Notice that ρ(α) is continuous in α. As the right-hand side is a strictly positive
constant by Lemma B2, the proposition follows for a small enough αρ . �

3.3 Proof of Statement 2

By the definition of Armijo line search and Lemma B1, we have

f (ρk ) ≤ f (ρk−1)+τ〈∇ f (ρk−1),ρk −ρk−1〉 ≤ f (ρk−1)− τH(ρk ,ρk−1)

αk
.

As the quantum relative entropy D is always non-negative, it follows that the sequence
( f (ρk ))k∈N is non-increasing.

3.4 Proof of Statement 3

If ρk is a minimizer for some k ∈N, by Lemma B2, it holds that ρk ′ = ρk for all k ′ > k,
and the statement trivially follows. In the rest of this sub-section, we assume that ρk

is not a minimizer for all k; then by Lemma B2, it holds that ρk 6= ρk−1 for all k ∈N.

Let (ρk )k∈K be a sub-sequence converging to a limit point ρ∞ ∈ D, which exists
due to the compactness of D. Then ρ∞ must be non-singular; otherwise, mono-
tonicity of the sequence ( f (ρk ))k∈N (Statement 2 of Theorem 1) cannot hold. As f is
continuously differentiable, it holds that

∆∞
2

≤λmax(∇ f (ρk ))−λmin(∇ f (ρk )) ≤ 2∆∞, (8)

for large enough k ∈K , where ∆∞ :=λmax(∇ f (ρ∞))−λmin(∇ f (ρ∞).
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Lemma 4 If ∆∞ = 0, then liminf{ H(ρk (β),ρk ) | k ∈K } = 0 for every β ∈ [0,+∞). 2

PROOF Define ∆k := λmax(∇ f (ρk ))−λmin(∇ f (ρk )); then ∆k → ∆∞ = 0. Define ϕk :
α 7→ϕ(α;ρk ). By Lemma 3 and Corollary B1, we have

ϕk (0)− [
ϕk (β)+ϕ′

k (β)(0−β)
]≤ (

e∆kβ−∆kβ−1
)

∆2
k

ϕ′′
k (β)

≤
(
e∆kβ−∆kβ−1

)
4

.

By Lemma 1, we obtain

0 ≤ liminf{ H(ρk (β),ρk ) | k ∈K }

= liminf{ϕk (0)− [
ϕk (β)+ϕ′

k (β)(0−β)
] | k ∈K }

≤ e0 −0−1

4
= 0. �

Suppose that ∆∞ > 0. We have the following analogy of Corollary 2 for large enough
k ∈K :

Corollary 3 Suppose that ∆∞ > 0 and ρk is not a minimizer for every k ∈K . There
exists some κ> 0, such that

H(ρk (α),ρk )

α2 ≥ κH(ρk (ᾱ),ρk ), ∀α ∈]0, ᾱ],

for large enough k ∈K . 2

PROOF Recall that (8) provides both upper and lower bounds of λmax(∇ f (ρk ))−
λmin(∇ f (ρk )), for large enough k ∈K . With regard to Corollary 2, it suffices to set

κ= ∆2∞
4
[
e2∆∞ᾱ(2∆∞ᾱ−1)+1

] . �

Based on Corollary 3, we prove the following proposition.

Proposition 4 Suppose that ∆∞ > 0 and ρk is not a minimizer for every k ∈ K . It
holds that liminf{ H(ρk (ᾱ),ρk ) | k ∈K } = 0. 2

The proof of Proposition 4 can be found in Section D, which essentially follows the
strategy of Gafni and Bertsekas [15] with necessary modifications.

To summarize, we have proved that for any converging sub-sequence (ρk )k∈K , there
exists some γ> 0 such that

liminf{ H(ρk (γ),ρk ) | k ∈K } = 0.
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For the case where ρk is a minimizer for some k ∈K or ∆∞ = 0, γ can be any strictly
positive real number. Otherwise, we set γ= ᾱ by Proposition 4.

By Lemma 1 and Lemma 3, it holds that

0 ≤ liminf

{ (
e−(1/2)∆∞γ+ (1/2)∆∞γ−1

)
γ2 ϕ′′

k (γ)

∣∣∣∣∣ k ∈K

}
≤ liminf{ H(ρk (γ),ρk ) | k ∈K } = 0,

showing that liminf{ϕ′′
k (γ) | k ∈K } = 0. Applying Lemma 1 and Lemma 3 again, we

obtain

0 ≤ liminf{ H(ρk (β),ρk ) | k ∈K |k ∈K }

≤ liminf

{ (
e2∆∞β−2∆∞β−1

)
β2 ϕ′′

k (β)

∣∣∣∣∣ k ∈K

}
= 0,

for any β ∈]0,+∞[. This proves Statement 3 of Theorem 1.

4 Discussions

We give three remarks regarding the convergence result and its proof.

4.1 Importance of Self-Concordant Likeness

With regard to (4), one may suspect whether it suffices, for the convergence anal-
ysis, to prove the following: There exists some ε > 0, such that the mapping α 7→
α−εH(ρ(α),ρ) is non-increasing on ]0, ᾱ] for every non-singular ρ ∈D. Indeed, fol-
lowing the proof strategy for Proposition 2, we obtain the following result without
self-concordant likeness.

Proposition 5 Let ρ ∈D be non-singular. Define

M := sup{ϕ′′(α;ρ) |α ∈]0, ᾱ[ } , m := inf{ϕ′′(α;ρ) |α ∈]0, ᾱ[ } .

Suppose that m > 0. Then the mapping α 7→α−εH(ρ(α),ρ) is non-increasing on ]0, ᾱ[,
where ε := 2M/m. 2

Remark 3 For the case where m = 0, Lemma B3 implies that ∇ f must be a multiple of
the identity. Then it is easily checked that ρ is a minimizer as it verifies the optimality
condition. 2

Then in the proof of Proposition 3, for example, the condition we need to verify
becomes:

‖∇ f (σ)−∇ f (ρ)‖∞
p

2 ≤ (1−τ)αε/2−1

√
H(ρ(ᾱ),ρ)

ᾱ2 , ∀α ∈ [0,αρ].
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Notice that ε≥ 2 by definition. Both sides can converge to zero asα→ 0, so in general,
there does not exist a small enough αρ that verifies the condition. Moreover, because
αε ≤α2 for α ∈ [0,1], it is impossible to obtain an analogue of Corollary 2.

The point in our analysis is to show that there exists some χ(α), bounded from below
by α2 for every α close to zero, such that the mapping α 7→ H(ρ(α),ρ)/χ(α) is non-
increasing. This is where self-concordant likeness of the log-partition function comes
into play.

4.2 Extensions for the Probability Simplex and Spectrahedron Con-
straints

The EG method can be extended for the spectrahedron and probability simplex
constraints; in fact, the EG method is arguably better known for these two cases
[3, 7, 20, 33]. For the former case, the iteration rule writes exactly the same as (1),
and is equivalent to (2) with D replaced by the spectrahedron S . For the latter
case, the iteration rule becomes element-wise (see, e.g., [7]) and is equivalent to (2),
with D replaced by the probability simplex P , and the quantum relative entropy
replaced by the (classical) relative entropy. The Armijo line search rule applies without
modification.

It is easily checked that our proof holds without modification for the spectrahe-
dron constraint. As a vector in Rd is equivalent to a diagonal matrix in Rd×d , it
is easily checked that the statements in Theorem 1 applies to the probability sim-
plex constraint. Corollary 1 also holds true for these two constraints with slight
modification—for the probability simplex constraint, non-singularity should be re-
placed by element-wise strict positivity.

4.3 Convergence with Possibly Singular Limit Points

Corollary 1 requires existence of at least one non-singular limit point. Can this
condition be removed?

Suppose that the sequence (ρk )k∈N has a possibly singular limit point ρ∞, around
which ∇ f is locally L-Lipschitz continuous with respect to the Schatten 1-norm. Let
(ρk )k∈K , K ⊆ N, be a sub-sequence converging to ρ∞. Then following the proof
of the second part of Proposition 4, it is easily checked that liminf{αk | k ∈K } = 0
implies

αk ≥ L

r (1−τ)
,

a contradiction; hence, liminf{αk | k ∈K } must be strictly positive. Then following
the proof in [3], it holds that the sequence ( f (ρk ))k∈N monotonically converges to the
optimal value.
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In general without the local Lipschitz gradient condition, we conjecture that con-
vergence to the optimum cannot be guaranteed. However, we have not found a
counter-example.

5 Conclusions

Assuming only differentiability of the objective function, we have proved that the
EG method with Armijo line search monotonically converges to the optimum, if
the sequence of iterates possesses a non-singular limit point. Our proof exploits
the self-concordant likeness of the log-partition function, which is of independent
interest; in particular, Lemma 3 improves upon the Peierls-Bogoliubov inequality.
Our result extends for the probability simplex and spectrahedron constraints. If a
non-singular limit point may not exist, we conjecture that convergence cannot be
guaranteed without additional condition on the objective function.

A Inapplicability of Existing Convergence Guarantees
to Quantum State Tomography

Quantum state tomography is the task of estimating the state of a quantum systems,
which is essential to calibrating quantum computation devices [28, 19]. Numerically,
it corresponds to solving (P) with the objective function

fQST(ρ) :=−
n∑

i=1
logTr(Miρ),

where Mi are positive semi-definite matrices given by the experimental data.

The following proposition shows that existing convergence guarantees for the EG
method do not apply to quantum state tomography.

Proposition 6 The function fQST is not Lipschitz, its gradient is not Lipschitz, and it is
not smooth relative to the negative von Neumann entropy. 2

PROOF Consider the two-dimensional case, where ρ = (ρi , j )1≤i , j≤2 ∈ C2×2. Define
e1 := (1,0) and e2 := (0,1). Suppose that there are only two summands, with M1 =
e1⊗e1 and M2 = e2⊗e2. Then we have f (ρ) =− logρ1,1−logρ2,2. It suffices to disprove
all properties for this specific f on the set of diagonal density matrices. Hence, we
will focus on the function g (x, y) :=− log x − log y , defined for any x, y > 0 such that
x + y = 1.

As either x or y can be arbitrarily close to zero, g cannot be Lipschitz continuous in
itself or its gradient due to the logarithmic functions. Define the entropy function

h(x, y) :=−x log x − y log y +x + y,

13



with the convention 0log0 = 0. Then g is L-smooth relative to the relative entropy, if
and only if −Lh−g is convex. It suffices to check the positive semi-definiteness of the
Hessian of −Lh−g . A necessary condition for the Hessian to be positive semi-definite
is that

−L
∂2h

∂x2 (x, y)− ∂2g

∂x2 (x, y) = L

x
− 1

x2 ≥ 0,

for all x ∈]0,1[, which cannot hold for x < (1/L), for any fixed L > 0. �

We note that similar objective functions can be found in positive linear inverse
problems, positron emission tomography, portfolio selection, and Poisson phase
retrieval [11, 23, 26, 34].

B Technical Lemmas Necessary for Section 3

Define
ρ(α) :=C−1

ρ exp
[
log(ρ)−α∇ f (ρ)

]
,

for every non-singular ρ ∈D and α≥ 0, where Cρ is the positive real number normal-
izing the trace of ρ(α).

Lemma B1 For every non-singular ρ ∈D and α> 0, it holds that

〈∇ f (ρ),ρ(α)−ρ〉 ≤−H(ρ(α),ρ)

α
. 2

PROOF The equivalent formulation of the EG method, (2), implies that

α〈∇ f (ρ),ρ(α)−ρ〉+H(ρ(α),ρ) ≤α〈∇ f (ρ),ρ−ρ〉+H(ρ,ρ) = 0. �

Lemma B2 Let ρ ∈D be non-singular. If ρ is a minimizer of f on D, then ρ(α) = ρ for
all α≥ 0. If ρ(α) = ρ for some α> 0, then ρ is a minimizer of f on D. 2

PROOF The optimality condition says that ρ ∈ intD is a minimizer, if and only if

〈∇ f (ρ),σ−ρ〉 ≥ 0, ∀σ ∈D.

For any α> 0, we can equivalently write

〈α∇ f (ρ)+ [∇h(ρ)−∇h(ρ)
]

,σ−ρ〉 ≥ 0, ∀σ ∈D, (9)

where h denotes the negative von Neumann entropy function, i.e.,

h(ρ) := Tr(ρ logρ)−Trρ.

Notice that the quantum relative entropy H is the Bregman divergence induced by
the negative von Neumann entropy. It is easily checked, again by the optimality
condition, that (9) is equivalent to

ρ = argmin{α〈∇ f (ρ),σ−ρ〉+H(σ,ρ) |σ ∈D } = ρ(α). �
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For every non-singular ρ ∈D and α≥ 0, define

G :=−∇ f (ρ), Hα := logρ+αG .

Let G =∑
j λ j P j be the spectral decomposition of G . Define ηα as a random variable

satisfying

P
(
ηα =λ j

)= Tr
(
P j exp(Hα)

)
Trexp(Hα)

; (10)

it is easily checked that P
(
ηα =λ j

)> 0 for all j , and the probabilities sum to one.

Lemma B3 For any α ∈R, it holds that

ϕ′(α) =Eηα, ϕ′′(α) =E
(
ηα−Eηα

)2 , ϕ′′′(α) =E
(
ηα−Eηα

)3 . 2

PROOF Notice that

Eηn
α = Tr(Gn exp(Hα))

Trexp(Hα)
,

for any n ∈N. Define σα := exp(Hα)/Trexp(Hα). A direct calculation gives

ϕ′(α) = Tr(Gσα), ϕ′′(α) = Tr(G2σα)− (Tr(Gσα))2 ,

ϕ′′′(α) = Tr(G3σα)−3Tr(G2σα)Tr(Gσα)+2(Tr(Gσα))3 .

The lemma follows. �

Since ηα is a bounded random variable, it follows that ϕ′′ is bounded from above.

Corollary B1 It holds that ϕ′′(α) ≤ (1/4)∆2, where ∆ :=λmax(∇ f (ρ))−λmin(∇ f (ρ)).2

PROOF Recall that the variance of a random variable taking values in [a,b] is bounded
from above by (b −a)2/4. �

C Proof of Lemma 3

Recall the random variable ηα defined in (10). Suppose that ϕ′′(α) = 0 for some
α ∈ [0,+∞[. Then we have ηα = 0 almost surely, but this implies that ∆= 0, a contra-
diction. Therefore, we have ϕ′′(α) > 0 for all α ∈ [0,+∞[.

We prove a general result. Letψ :R→R be a µ-self-concordant like function. Suppose
that ψ′′(t) > 0 for all t . Consider the function χ(t) := log

(
ψ′′(t )

)
. We write, by the

self-concordant likeness of ψ, that

|χ′(t )| = |ψ′′′(t )|
ψ′′(t )

≤µ , ∀t ∈R .
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Then, for any t1, t2 ∈R, we have

|χ(t1)−χ(t2)| = ∣∣log
(
ψ′′(t1)

)− log
(
ψ′′(t2)

)∣∣≤µ|t2 − t1| ;

that is,
e−µ|t2−t1|ψ′′(t2) ≤ψ′′(t1) ≤ eµ|t2−t1|ψ′′(t2) .

Applying the Newton-Leibniz formula, we obtain

ψ′(t2)−ψ′(t1) =
∫ 1

0
ψ′′(t1 +τ(t2 − t1))(t2 − t1)dτ

≤
∫ 1

0
eµτ|t2−t1|ψ′′(t1)(t2 − t1)dτ

=
(

eµ|t2−t1|−1

µ|t2 − t1|
)
ψ′′(t1)(t2 − t1) ;

similarly, we obtain

ψ′(t2)−ψ′(t1) ≥−
(

e−µ|t2−t1|−1

µ|t2 − t1|
)
ψ′′(t1)(t2 − t1) .

Applying the Newton-Leibniz formula again, we obtain

ψ(t2)−ψ(t1) =
∫ 1

0
ψ′(t1 +τ(t2 − t1))(t2 − t1)dτ

=ψ′(t1)(t2 − t1)+
∫ 1

0

(
ψ′(t1 +τ(t2 − t1))−ψ′(t1)

)
(t2 − t1)dτ

≤ψ′(t1)(t2 − t1)+
∫ 1

0

(
eµτ|t2−t1|−1

µτ|t2 − t1|
)
ψ′′(t1)τ(t2 − t1)2 dτ

=ψ′(t1)(t2 − t1)+
(
eµ|t2−t1|−µ|t2 − t1|−1

)
µ2 ψ′′(t1) ;

similarly, we obtain

ψ(t2)−ψ(t1) ≥ψ′(t1)(t2 − t1)+
(
e−µ|t2−t1|+µ|t2 − t1|−1

)
µ2 ψ′′(t1) .

Lemma 3 follows from setting ψ=ϕ, µ=∆, t2 = 0, and t1 =α.
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D Proof of Proposition 4

Suppose that α := liminf{αk | k ∈K } > 0. We write

f (ρk )− f (ρk+1) ≥−τ〈∇ f (ρk ), f (ρk+1)− f (ρk )〉
≥ τα−1

k H(ρk+1,ρk )

= ταkα
−2
k H(ρk (αk ),ρk )

≥ τακH(ρk (ᾱ),ρk )

≥ 0,

for large enough k ∈K , where the first inequality follows from the Armijo line search
rule, the second follows from Lemma B1, and the third follows from Corollary 2.
Taking limit, we obtain that H(ρk (ᾱ),ρk ) → 0 as k →∞ in K .

Suppose that liminf{αk | k ∈K } = 0. Let (αk )k∈K ′ , K ′ ⊆ K , be a sub-sequence
converging to zero. According to the Armijo rule, we have

f (ρk (r−1αk ))− f (ρk ) > τ〈∇ f (ρk ),ρ(r−1αk )−ρk (αk )〉 , (11)

for large enough k ∈K . The mean value theorem says that the left-hand side equals
〈∇ f (σ),ρk (r−1αk )−ρk〉 for some σ in the line segment jointing ρk (r−1αk ) and ρk .
Then (11) can be equivalently written as

〈∇ f (σ)−∇ f (ρk ),ρk (r−1αk )−ρk〉 >−(1−τ)〈∇ f (ρk ),ρk (r−1αk )−ρk (αk )〉 . (12)

By Pinsker’s inequality and Hölder’s inequality, we obtain

‖∇ f (σ)−∇ f (ρk )‖∞
√

2H(ρk (r−1αk ),ρk ) ≥ ‖∇ f (σ)−∇ f (ρk )‖∞‖ρk (r−1αk ),ρk‖1

≥ 〈∇ f (σ)−∇ f (ρk ),ρk (r−1αk )−ρk〉 . (13)

for large enough k ∈K . Notice that r−1αk ≤ ᾱ for large enough k ∈K . By Lemma
B1 and Corollary 3, we obtain

−〈∇ f (ρk ),ρk (r−1αk )−ρk (αk )〉 ≥ H(ρk (r−1αk ),ρk )

r−1αk

≥√
κH(ρk (ᾱ),ρk )

√
H(ρk (r−1αk ),ρk ), (14)

for large enough k ∈K . Since H(ρk (r−1αk ),ρk ) is strictly positive for all k ∈K ′ by
assumption, (12), (13), and (14) imply

‖∇ f (σ)−∇ f (ρk )‖∞ > (1−τ)

√
κH(ρk (ᾱ),ρk )

2
≥ 0.

Taking limits, we obtain that H(ρk (ᾱ),ρk ) → 0 a k →∞ in K ′.

17



Acknowledgements

We thank Ya-Ping Hsieh for his comments. This work was supported by SNF 200021-
146750 and ERC project time-data 725594.

This is a pre-print of an article published in the Journal of Optimization Theory
and Applications. The final authenticated version is available online at: https:
//doi.org/10.1007/s10957-018-1428-9.

References

[1] ARORA, S., HAZAN, E., AND KALE, S. The multiplicative weights update method:
A meta-algorithm and applications. Theory Comput. 8 (2012), 121–164.

[2] AUSLENDER, A., AND TEBOULLE, M. Interior gradient and epsilon-subgradient
descent methods for constrained convex minimization. Math. Oper. Res. 29, 1
(2004), 1–26.

[3] AUSLENDER, A., AND TEBOULLE, M. Interior gradient and proximal methods for
convex and conic optimization. SIAM J. Optim. 16, 3 (2006), 697–725.

[4] BACH, F. Self-concordant analysis for logistic regression. Electron. J. Stat. 4
(2010), 384–414.

[5] BACH, F. Adaptivity of averaged stochastic gradient descent to local strong
convexity for logistic regression. J. Mach. Learn. Res. 15 (2014), 595–627.

[6] BAUSCHKE, H. H., BOLTE, J., AND TEBOULLE, M. A descent lemma beyond
Lipschitz gradient continuity: first-order methods revisited and applications.
Math. Oper. Res. 42, 2 (2017), 330–348.

[7] BECK, A., AND TEBOULLE, M. Mirror descent and nonlinear projected subgradi-
ent methods for convex optimization. Oper. Res. Lett. 31 (2003), 167–175.

[8] BERTSEKAS, D. P. On the Goldstein-Levitin-Polyak gradient projection method.
IEEE Trans. Automat. Contr. AC-21, 2 (1976), 174–184.

[9] BERTSEKAS, D. P. Nonlinear Programming, 3rd ed. Athena Sci., Belmont, MA,
2016.

[10] BLUME-KOHOUT, R. Hedged maximum likelihood quantum state estimation.
Phys. Rev. Lett. 105 (2010).

[11] BYRNE, C., AND CENSOR, Y. Proximity function minimization using multiple
Bregman projections, with application to split feasibility and Kullback-Leibler
distance minimization. Ann. Oper. Res. 105 (2001), 77–98.

18

https://doi.org/10.1007/s10957-018-1428-9
https://doi.org/10.1007/s10957-018-1428-9


[12] COLLINS, M., GLOBERSON, A., KOO, T., CARRERAS, X., AND BARTLETT, P. L.
Exponentiated gradient algorithms for conditional random fields and max-
margin Markov networks. J. Mach. Learn. Res. 9 (2008), 1775–1822.

[13] DECARREAU, A., HILHORST, D., LEMARÉCHAL, C., AND NAVAZA, J. Dual methods
in entropy maximization. application to some problems in crystallography. SIAM
J. Optim. 2, 2 (1992), 173–197.

[14] DOLJANSKY, M., AND TEBOULLE, M. An interior proximal algorithm and the
exponential multiplier method for semidefinite programming. SIAM J. Optim. 9,
1 (1998), 1–13.

[15] GAFNI, E. M., AND BERTSEKAS, D. P. Convergence of a gradient projection
method. LIDS-P-1201, Laboratory for Information and Decision Systems, Mas-
sachusetts Institute of Technology, 1982.

[16] HELMBOLD, D. P., SHAPIRE, R. E., SINGER, Y., AND WARMUTH, M. K. On-line
portfolio selection using multiplicative updates. Math. Finance 8, 4 (1998),
325–347.

[17] HIAI, F., OHYA, M., AND TSUKADA, M. Sufficiency, KMS condition and relative
entropy in von Neumann algebras. Pac. J. Math. 96, 1 (1981), 99–109.

[18] HOHAGE, T., AND WERNER, F. Inverse problems with Poisson data: statistical
regularization theory, applications and algoithms. Inverse Probl. 32 (2016).

[19] HRADIL, Z. Quantum-state estimation. Phys. Rev. A 55, 3 (1997).

[20] KIVINEN, J., AND WARMUTH, M. K. Exponentiated gradient versus gradient
descent for linear predictors. Inf. Comput. 132 (1997), 1–63.

[21] KOLTCHINSKII, V. von Neumann entropy penalization and low-rank matrix
estimation. Ann. Stat. 39, 6 (2011), 2936–2973.

[22] LU, H., FREUND, R. M., AND NESTEROV, Y. Relatively-smooth convex optimiza-
tion by first-order methods, and applications. arXiv:1610.05708v1.

[23] MACLEAN, L. C., THORP, E. O., AND ZIEMBA, W. T., Eds. The Kelly Capital
Growth Investment Criterion. World Sci., Singapore, 2012.

[24] NEMIROVSKY, A. S., AND YUDIN, D. B. Problem Complexity and Method Effi-
ciency in Optimization. John Wiley & Sons, Chichester, 1983.

[25] NESTEROV, Y., AND NEMIROVSKII, A. Interior-Point Polynomial Algorithms in
Convex Programming. SIAM, Philadelphia, PA, 1994.

[26] ODOR, G., LI, Y.-H., YURTSEVER, A., HSIEH, Y.-P., EL HALABI, M., TRAN-DINH,
Q., AND CEVHER, V. Frank-Wolfe works for non-Lipschitz continuous gradient
objectives: Scalable Poisson phase retrieval. In IEEE Int. Conf. Acoustics, Speech
and Signal Processing (2016), pp. 6230–6234.

19



[27] OHYA, M., AND PETZ, D. Quantum Entropy and Its Use. Springer, Berlin, 1993.
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