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1 INTRODUCTION Safety factor pro�le as CHEASE input

1 Introduction

The CHEASE code, which has been developed at the Swiss Plasma Center, gen-
erates an accurate reconstruction of toroidal magnetohydrodynamics equilibria by
numerically solving the Grad-Shafranov equation. Having demonstrated its ability
to achieve good convergence while remaining fast and very �exible, this code is now
extensively used at di�erent research facilities. From two input pro�les, usually the
pressure and the current density as well as speci�ed boundary conditions, the code
provides a complete equilibrium description which is essential for the study of toka-
mak plasmas.

This project focuses on computing axisymmetric equilibria within ideal magneto-
hydrodynamics (MHD) by imposing a speci�c shape for the safety factor q. The
Grad-Shafranov equation requires two free functions to be speci�ed: one for the cur-
rent density and one for the pressure (p=nT). Until now, the options in CHEASE
allowed to give the pressure pro�le or its derivative on one hand and either TT ′, I∗,
I‖, or J‖ on the other hand. The safety factor pro�le was therefore a result of the
computation of the equilibrium. However, this pro�le and its radial derivative are
essential for stability and transport issues into the tokamak. The goal of the present
project is thus to modify the code so as to be able to provide a safety factor pro�le
as a CHEASE input.

However, equilibria generated with the safety factor pro�le as input can easily lead
to surface currents if strong variation of the derivative dq

dρ
appears in the solution.

It is therefore necessary to develop a method to avoid these problems, especially at
the edge of the plasma. A further aim of this work is hence to demonstrate that
there is no continuity problem within solutions computed with a q-pro�le as input.
There are two ways of achieving this: one is to impose the current pro�le within
one iteration to obtain the desired safety factor pro�le and the other is to impose
the TT ′ pro�le in the same way. The two solutions are explored in this project with
the purpose to determine which one is most appropriate.

Finally, the extended version of CHEASE developed in this master project is used
to study the in�uence of safety factor pro�les on the stability of tearing modes by
solving the energy principle equation within the cylindrical approximation which
depends directly on q, q′ and q′′.
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2 Tokamak equilibria

As one of Europe's leading fusion research facilities, the Swiss Plasma Center works
towards developing fusion as an energy source. Experimental research can be un-
dertaken at the TCV (Tokamak à Con�guration Variable) which provides unique
shaping capabilities as well as a large variety of diagnostics. A wide range of re-
search programs are run both internally and within international collaborations to
try to get a better understanding of the observed physics phenomena, which is essen-
tial to provide an interpretation of the experimental results. One of these programs,
the CHEASE code, which solves the Grad-Shafranov equation for toroidal MHD
equilibria, was developed mainly by H.Lütjens, A.Bondeson and O.Sauter and will
be used in the present work.
Being able to explore the nature of equilibria is very important in plasma physics
as the plasma has to be close to an equilibrium to be con�ned. In this project we
will focus on axisymmetric MHD equilibria and will use the cylindrical coordinate
system (R,Z, φ). The toroidal axisymmetry, assumed from here on, implies that all
the equilibrium quantities are independent of φ which leads to a 2-D equilibrium.

2.1 The Grad-Shafranov Equation

The MagnetoHydroDynamics (MHD) model is a 1-�uid model extensively used in
plasma physics as it can be applied in the great majority of stability studies despite
its restrictive assumptions. The plasma, modelled as a single �uid containing ions
and electrons, is assumed to be at high temperature in order to avoid collisions
which would go against the 1-�uid assumption. The ideal-MHD model, by opposi-
tion to the resistive-MHD model, makes the additional approximation that there is
no plasma resistivity which eventually breaks down for too long time-scales. One
speci�c characteristic of the ideal MHD model is that the plasma and the magnetic
�eld are frozen together.
As explained in more clear steps below, the Grad-Shafranov equation is computed
by combining Maxwell's equations to the MHD equilibrium condition and is crucial
for equilibrium description. In order to derive the Grad-Shafranov equation, we
start from the Maxwell-Thomson law:

∇ ·B = 0 (1)

to express the magnetic �eld components as functions of the poloidal magnetic �ux
ψ. The expression of the current density can then be derived from the Ampere law:

∇∧B = µ0J (2)

These expressions of B and J are then inserted into the force balance equation:

J ∧B = ∇P (3)

which leads directly to the Grad-Shafranov equation (from papers [9], [10] and [11]).
This equation will be used as rewritten in equation (31) of COCOS paper [3]:

∆∗ψref = −µ0R
2p′(ψ)− TT ′(ψ) = µ0Rjφ(R,Z) (4)
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2 TOKAMAK EQUILIBRIA Safety factor pro�le as CHEASE input

2.2 CHEASE parameters

The CHEASE code needs two input pro�les and boundary conditions to be speci-
�ed in order to compute all the other equilibrium quantities by solving the Grad-
Shafranov equation. The most common way to use CHEASE is to specify the
pressure derivative p′ and the surface average of the current density I∗. However, it
would be very useful to rather give q instead of I∗ in order to investigate the safety
factor's in�uence on the equilibrium.

2.2.1 De�nition of the safety factor q

The safety factor is de�ned as the ratio of toroidal over poloidal turns of the magnetic
�eld lines. Let us start with its expression in equation (7) of the COCOS paper [3]:

q =
1

2π

˛

ψ=const

B · ∇φ
B · ∇θ

dθ (5)

As q has the same value for all magnetic �eld lines on a given magnetic surface, it
is only a function of the poloidal magnetic �ux ψ, so:

q(ψ) =
1

2π

˛

ψ=const

1

R

Bφ

Bp

dlp (6)

Where Bφ = T
R
, T being the poloidal current �ux function, and |Bp| = |∇ψ|

R
are

respectively the toroidal and poloidal magnetic �elds and dlp is the poloidal contour
element. Hence:

q(ψ) =
T (ψ)

2π

˛

ψ=const

1

R2

dlp
Bp

(7)

Where dlp
Bp

= Jdχ, J being the Jacobian to go from the (ψ, χ, φ) non-orthogonal co-

ordinates system to the Cartesian one. Using the expression of C2 =
¸
s=const

1
R2Jdχ

given in equation (9) of paper [2] The CHEASE code for toroidal MHD equilibra, we
obtain the following expression for the safety factor:

q(ψ) =
T (ψ)

2π
C2(ψ) (8)

2.2.2 De�nition of the toroidal current density jφ and its surface average

I∗

The expression of the toroidal current density jφ is obtained from the Grad-Shafranov
equation (4) which gives in CHEASE units:

jφ(R,Z) = −Rp′(ψ)− 1

R
TT ′(ψ) (9)
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where CHEASE normalizes distances with R0 and magnetic �elds with B0. As
explained in paper [6] Normalizations on CHEASE, if one uses the boundary con-
dition TCHEASE(edge) = 1, B0 is then the vacuum magnetic �eld at R = R0 such
that T (edge) = R0B0. The I

∗ surface averaged current can then be computed:

I∗(ψ) =

¸
jφ(ψ) J

R
dχ¸

J
R
dχ

(10)

=

¸
[−Rp′(ψ)− 1

R
TT ′(ψ)] J

R
dχ¸

J
R
dχ

(11)

=
1

C0

(
− C1p

′(ψ)− C2TT
′(ψ)

)
(12)

which corresponds to equation (7) of paper [2]. The surface integrals Ci, i = 0, 1, ..4,
are de�ned in equation (9) of this same paper as:

{C0(s), C1(s), C2(s), C3(s)} =

˛

s=const

{
1

R
, 1,

1

R2
,
|∇ψ|2

R2

}
Jdχ (13)

Now, using the de�nition of q from equation (8), we can replace the term TT ′

in the de�nition of I∗ as
( q

C2

)′
(ψ) =

T ′(ψ)

2π
to obtain:

I∗(ψ) = −C1

C0

p′(ψ)− 4π2

C0

q(ψ)
( q

C2

)′
(ψ) (14)

3 Using a prede�ned q pro�le as CHEASE input

with an external loop to �nd the appropriate I∗

and TT ′ expressions

The safety factor pro�le is a crucial quantity for achieving stability in a tokamak.
Indeed, depending on the value of its radial derivative at speci�c rational values,
perturbations will either tend to grow or to vanish. It would therefore be very useful
to be able to impose a speci�c q pro�le as CHEASE input in order to investigate
its in�uence on the output equilibrium stability. The Grad-Shafranov equation (4)
is non-linear in ψ as the functions p′ and TT ′ both depend on ψ. Its resolution
with CHEASE therefore requires an iterative numerical method in order to make it
converge towards a solution.
Let us �rst explain the main idea behind the calculation performed in CHEASE.
The numerical solving starts by initializing ψ and the coe�cients Ci (13). A �rst
"guess-computation" of ψ with a parabolic shape ψ0 = ψguess is made in order to
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EXTERNAL LOOP TO FIND THE APPROPRIATE I∗ AND TT ′

EXPRESSIONS Safety factor pro�le as CHEASE input
compute a �rst current density j0

φ and to test it within the Grad-Shafranov equation
(4). A second pro�le ψ1 is computed from solving the Grad-Shafranov equation with
j0
φ to compute j1

φ which is then injected into the Grad-Shafranov equation...and so
on until achieving convergence:

• p′ & I∗ as inputs→ �rst guess on ψ0 → computation of Rj0
φ with equation (9)

• ∆ψ1 = Rj0
φ(ψ0) → ψ1 → Rj1

φ

• ∆ψ2 = Rj1
φ(ψ1) → ψ2 → Rj2

φ

• and so on...

Before implementing the new input case into the CHEASE code, external work
has to be done in order to �nd the appropriate I∗ expression which will lead to
convergence towards the q pro�le we want. The aim of this whole section is to
determine how to turn the safety factor pro�le we want into a fully consistent new
equilibrium, that is to say to determine what input one needs in order to obtain a
numerical answer which is consistent with our new q pro�le.
By recalling the Grad-Shafranov equation (4),

∆∗ψref = −µ0R
2p′ − TT ′ = µ0Rjφ

it appears that the two easiest input pro�les to give are respectively the derivative
of the pressure p′ and the product of the poloidal current �ux function with its
derivative TT ′. This corresponds to the case NSTTP=1. However other options are
implemented in CHEASE which allow to rather give the toroidal surface average
of the current density I∗ (case NSTTP=2) or the parallel one I‖ (case NSTTP=3).
Our goal here is to create a new case where we can replace TT ′ directly by the
safety factor pro�le q. There are two ways to do that: one can either impose it
through the surface averaged current density pro�le I∗ or through TT ′. Ideally,
these two options would give similar answer but if this is not the case, one can
determine which one is more suitable than the other. However, as stated in note
[1], the relations between q and I∗ or between q and TT ′ involve metric coe�cients,
the Ci, characterizing the equilibrium which means that they are di�erent for each
numerical iteration. One therefore has to choose very carefully the combination of
old and new coe�cients to compute the right CHEASE inputs in order to obtain a
consistent equilibrium in output with qout = qin. Our aim is to obtain the equilibrium
quantities Ci corresponding to an equilibrium where q = qtarget.

3.1 I∗ as the surface average of the current density jφ

It turns out that it has been a long process to �nd a non-diverging I∗ expression
whilst imposing the safety factor pro�le. The �rst choice was naturally to use the
expression (14) derived above:

I∗(ψ) = −C1

C0

p′(ψ)− 4π2

C0

q(ψ)
( q

C2

)′
(ψ) (15)
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3.1 I∗ as the surface average of the current density jφSafety factor pro�le as CHEASE input
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Figure 1: On the right graph, the initial I∗ expression (drawn in green) has been
updated with the qtarget pro�le (blue curve on left graph). The resulting I∗ expression
is drawn in blue.

and to try di�erent ways of using it, namely with di�erent radial coordinates or
di�erent combination of old and new quantities. The main options tested which led
to some improvements or which will be referred to later on in the text are presented
below while the other ones can be consulted in details in the appendices.
Until stated di�erently, the runs have been carried out starting from an expeq.out
�le, generated by the CHEASEgui tool, using the mesh of the radial coordinate:

ρpoloidal =

√
ψ

ψmin

An other option which will be tried below is to start from the expeq.out.tor �le
and to use the quantities with respect to ρtoroidal.

In order to impose the desired safety factor pro�le (referred to as the "targeted
pro�le") through equation (15), one started by updating all the q terms to qtarget.
However, as shown in �gure 1, the corrections induced on the new current density
pro�le I∗corrected are far bigger than needed. Indeed, as I∗ evolves as 1

q
, we should

observe almost the same changes in amplitude from q to qtarget than from I∗0 to
I∗corrected. However the bump in I∗ supposedly corresponding to the bump in q is far
too important, which leads to another opposite huge bump in order to conserve the
total current. Receiving this pro�le as input, CHEASE cannot even run because it
does not make any physical sense to have a large negative surface averaged current
density pro�le.
An option, detailed in appendix A, was to update either one of the two q terms of
equation (15). However, regarding the failure of this test, this work directly moves
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on to the next option while only keeping in mind that the derivative term:

d

dψ

(
q

C2

)
is the one to be worked on.

3.1.1 Combining old and new I∗ expressions

Another attempt to limit the correction induced in the I∗ curve was to gradually
update the input pro�le. That is to say to use only a small percentage of I∗target and
a majority percentage of I∗n−1 resulting from the last run by introducing a variable
α such that:

I∗input,n = α · I∗target + (1− α) · I∗n−1 (16)

Since the I∗target has huge oscillations (as shown in �gure 1), the α has to be really
small to avoid the curve of the current density to become negative which of course
jeopardizes any chance of achieving convergence since it is not physically realistic.
With an α = 0.05, and so an input I∗ corresponding to the red curve of �gure 2,
CHEASE runs and gives very correct �rst results, as shown in �gure 3a. However
the I∗ pro�le starts rapidly to oscillate (�gure 3b) and this has a knock-on e�ect
on the safety factor pro�le, especially at the center. Indeed for a given �ux surface,
the safety factor not only depends on the current density jφ on this surface but also
on all the inner surfaces. Therefore q is very sensitive to current variations at the
center but less and less while approaching the edge. The oscillations of the I∗ pro�le
near the center from the second run have therefore very bad consequences on the
safety factor pro�le and make it impossible to obtain a consistent equilibrium.

3.1.2 Using an alternative radial coordinate

This option was motivated by looking more carefully at the respective evolution of
the two radial coordinates accessible to us to do our calculations: ρpoloidal (corre-
sponds to graph label smesh) and ρtoroidal being respectively de�ned as:

ρpoloidal =

√
ψ

ψmin
(17)

ρtoroidal =

√
Φ

πB0

(18)

where ψmin is the �rst value of ψ, ie on the axis. Their respective evolutions over the
runs are visible in �gure 4 and while the variations of ρpoloidal appear clearly, ρtoroidal
remains nearly constant and seems therefore to be a better spatial coordinate for
our calculation. Indeed, the toroidal spatial coordinate is a function of the toroidal
magnetic �ux Φ:

Φ =

‹
BφdSφ =

‹
T (ψ)

R
dSφ (19)
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3.1 I∗ as the surface average of the current density jφSafety factor pro�le as CHEASE input
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Figure 2: Computation of a decent I∗ input pro�le (red dashed curve) from 95% of
I∗0 and 5% of I∗new without imposing a special boundary condition.

where T denotes the poloidal current �ux function whose value remains around 1.
The toroidal magnetic �eld Bφ which is highly dominant compared to the poloidal
magnetic �eld has a 1/R-dependence and is maximum at the center of the torus
and does not vary much across the plasma area. The Φ value is therefore not really
dependent on the change of the plasma current density pro�le and remains almost
equal to:

Φ ≈
‹

B0dSφ (20)

On the contrary, the poloidal spatial coordinate is directly linked to ψ which mea-
sures the �ux of poloidal magnetic �eld. As Bp is generated by the plasma current,
ψ is sensitive to changes of the current density pro�le over the iterations.
Hence input I∗ will be tested in this section using the radial coordinate ρtoroidal in-
stead of ρpoloidal. This means that we give the �le expeq.tor as input and that the
namelist coe�cient nfunrho is changed to 1. Note that the input TT ′ is not com-
patible with using nfunrho=1: if attempted, the calculation diverges immediately
and is aborted.
The improvement is immediately visible in �gure 35 (presented is appendix D) com-
pared to �gure 3 as the bump at the edge �nally disappeared from the safety factor
pro�le. However, despite this improvement, the current density pro�le is still oscil-
lating which does not allow the calculation to go further than run 3.

At this point lots of tests and e�orts have been made working on the expression
(15) of I∗. Despite the improvements which allow now CHEASE to run, namely
using α and switching the radial coordinate, an input expression allowing conver-
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(a) First run with input I∗(q) and α = 0.05
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(b) Second run with input I∗(q) and α = 0.05
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(c) Third run with input I∗(q) and α = 0.05

Figure 3: Q and I∗ pro�les after a few runs of CHEASE using input I∗ formula
(15). Even though the �rst run output seems quite good except for the bump at the
edge of the safety factor pro�le, the next run shows the pro�les to start oscillating
and diverging. Run done with α = 0.05 and nfunrho=0 (ie with ρpoloidal).
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√
V .

gence towards the targeted safety factor pro�le has still not been established. It is
therefore time to try another input expression which leads us to the next section.

3.2 TT ′(q) as input instead of I∗(q)

Another way of specifying q in input would be through the TT ′ quantity, using ex-
pression (8) reminded below:

T = 2π
q

C2

which leads directly to the expression of TT ′ (21):

TT ′target = 4π2 qtarget
C2

d

dψ

[
qtarget
C2

]
(21)

The �rst run results, presented in �gure 5a, are as good as the one using input
TT ′(I∗) (shown in appendix C) although no special boundary condition have been
used here. However, similar oscillations start from the second run (�gure 5b) and
make the third run's attempt fail. This input expression (21) was motivated by the
fact that it was no longer depending on p′ which contribution is not negligible at
all at the center and at the edge and could have been responsible for the central
bump. However, the same oscillation problem remains with the computation of the

derivative term d
dψ

(
q
C2

)
.

The fact that this option is not conclusive dismisses the idea of implementing a case
NSTTP = 6 where TT ′ would be calculated directly as a function of the input q
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Figure 5: Q and TT ′ pro�les after a few runs of CHEASE using input TT ′ expression
TT ′n = α · TT ′target + (1−α) · TT ′n−1 (where TT

′
target comes from expression (21) and

TT ′n−1 is the output pro�le of the previous run). Run made without any special
boundary condition, with α = 0.05 and nfunrho=0.
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3.3 I∗ from Antoine Merle's note Safety factor pro�le as CHEASE input

pro�le. From here on the focus will then be to �nd an appropriate I∗ expression for
the implementation of the case NSTTP = 5.

3.3 I∗ from Antoine Merle's note

While still being the surface average of the toroidal current density, I∗ will be ap-
proached di�erently in this section as the derivative of the plasma current Ip with
respect to ψ. The plasma current is known to be the surface integral of the toroidal
current density jφ and can therefore be expressed as:

Ip =

‹
jφdSφ (22)

=

‹
jφ

dψ

|∇ψ|
dlp (23)

=

‹
jφ

dψ

|∇ψ|
Bp
dlp
Bp

(24)

=

‹
jφ

dψ

|∇ψ|
|∇ψ|
R

Jdχ (25)

Hence, with the expression of C0 =
¸

s=const

1
R
Jdχ from equation (13), and recalling

that I∗(s) =
¸
s=const jφ( J

R
)dχ¸

s=const(
J
R

)dχ
we obtain:

dIp
dψ

=

˛
jφ

(J
R

)
dχ (26)

= I∗(ψ)

˛ (J
R

)
dχ (27)

= I∗(ψ)C0(ψ) (28)

From this last expression, one can re-derive the expression of I∗ used in the note
written by Antoine Merle [1] by �rst expressing ψ as a function of ρ and the surface
integral of 1

R
as the ratio of C0 over C1 :〈

1

R

〉
=

¸
1
R

dlp
Bp¸ dlp
Bp

=
C0

C1

(29)

I∗ =
1

C0

dIp(ρ(ψ))

dψ
(30)

=
1

C1

1〈
1
R

〉 dρ

dψ

dIp
dρ

(31)

=
1

µ0 〈|∇φ|〉

(
1

2π

dV

dψ

)−1
dρ

dψ

d

dρ
[µ0Ip] (32)

(33)
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3 USING A PREDEFINED Q PROFILE AS CHEASE INPUT WITH AN

EXTERNAL LOOP TO FIND THE APPROPRIATE I∗ AND TT ′

EXPRESSIONS Safety factor pro�le as CHEASE input

since:
dV

dψ
= 2πC1

To obtain the targeted expression inside the derivative term, one can use the Ampere
law which links the poloidal magnetic �eld to its source: the plasma current.

µ0Ip =

˛
Bpdlp =

˛
B2
p

dlp
Bp

=
〈
B2
p

〉 ˛ dlp
Bp

(34)

=
〈
B2
p

〉
C1 =

〈
B2
p

〉 dV

dψ

1

2π
(35)

=

〈
|∇ψ|2

R2

〉
dV (ψ(ρ))

dψ

1

2π
(36)

=

〈
|∇ρ|2

R2

(
dψ

dρ

)2
〉

dV

dρ

dρ

dψ

1

2π
(37)

=
1

2π

dV

dρ

〈
|∇ρ|2

R2

〉
dψ

dρ
(38)

To re-arrange the outside terms of the derivative, one uses the fact that |∇Φ| = 1
R

and that
(

1
2π

dV (ρ(ψ))
dψ

)−1

= 2π
(

dV
dρ

)−1
dψ
dρ
. This leads directly to the expression of

I∗ used in note [1]:

I∗ =
σBp

(2π)eBp
1

µ0 〈|∇Φ|〉

(
dV

dρtor

)−1
d

dρtor

(
dV

dρtor

〈∣∣∣∣∇ρtorR

∣∣∣∣2
〉

dψ

dρtor

)
(39)

where only dψ
dρtor

will be the only updated quantity. The ρ quantity used all along is
the previous calculation refers to the toroidal spatial coordinate ρtoroidal. Note that
the COCOS convention used here is the second one for which σBp = 1 and eBp = 0.

In order to express the updated quantity dψ
dρtor

one has to start from equation (9) of

the COCOS paper [3]:

q =
σBpσφθρ

(2π)(1−eBp )

dΦtor

dψref
(40)

which will be from here on expressed in the COCOS 2 convention. In order to
compute a correct expression, one has to carefully recall to use the CHEASE units
which normalize distances with R0 and magnetic �elds with B0:

Φtor,CHEASE =
Φtor,physical

R2
0B0

(41)

ρtor,CHEASE =
ρtor,physical

R0

(42)

From the expression of ρtor =
√

Φtor
πB0

, one can then compute the quantity dΦtor and
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3.3 I∗ from Antoine Merle's note Safety factor pro�le as CHEASE input

go on with the calculation:

R0ρtor,CHEASE =

√
R2

0B0Φtor,CHEASE

πB0

→ ρtor,CHEASE =

√
Φtor,CHEASE

π
(43)

The safety factor is then computed from equation (40):

qCHEASE =
1

2π

dΦtor,CHEASE

dψCHEASE
(44)

=
1

2π

(2πρtor,CHEASEdρtor,CHEASE)

dψCHEASE
(45)

From here on the label "CHEASE" will be implicit and the quantity updated in the
expression (39) of I∗ will write:(

dψ

dρtor

)
updated

=
ρtor
qtarget

(46)

Using the new I∗ expression (39) directly as input (NSTTP = 2) or through

TT ′ = −C0

C2

I∗ − C1

C2

p′ (NSTTP = 1)

leads immediately to stunning improvements. The �rst �ve runs of both input
options are presented respectively in �gures 6 and 36 (the latter can be consulted
in appendix E) and convergence is achieved for both cases. The convergence is
reached without any oscillation or bump towards a perfectly consistent equilibrium
with a safety factor corresponding to the targeted one. Moreover, the exact same
results are observed when running with either ρpoloidal (nfunrho=0) or ρtoroidal
(nfunrho=1). However, the expression (39) is really meant to be used as written,
only with the ratio (46) being an updated quantity. If used di�erently, the results
can vary signi�cantly.
The convergence of expression (39) is mainly achieved because some terms compen-
sate the others. For example, the poloidal magnetic �eld sets a zero-value for the
inner-integral term at the center and it would have been less steady with another
combination of terms. Expression (39) has been re-arranged for simplicity purposes
when will come the time of its implementation inside the CHEASE code. Having
to deal mainly with the already existing variables, the following �nal expression will
be used from here on:

I∗ =
1〈
1
R

〉 (dV

dρ

)−1
d

dρ

(
dV (ρ(ψ))

dρ

〈∣∣∣∣∇ρR
∣∣∣∣2
〉

dψ

dρ

)
(47)

=
1〈
1
R

〉 (dV

dρ

)−1
dV

dρ

d

dV

(
dV

dψ

dψ

dρ

〈(
dρ

dψ

)2 ∣∣∣∣∇ψR
∣∣∣∣2
〉

dψ

dρ

)
(48)

=
1〈
1
R

〉 (dV

dψ

)−1
d

dψ

(
dV

dψ

dρ

dψ

〈
B2
p

〉 dψ

dρ

)
(49)
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3 USING A PREDEFINED Q PROFILE AS CHEASE INPUT WITH AN
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(a) First run with input I∗(q) (39)
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(b) Second run with input I∗(q) (39)
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(c) Fifth run with input I∗(q) (39)

Figure 6: Input I∗, nsttp=2, nfunrho=0, α = 1. Q and I∗ pro�les after a few
runs of CHEASE using input I∗ formula (39). The graphs show that the solution is
steadily converging and leads to very good results.
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3.4 Testing speci�c q pro�les Safety factor pro�le as CHEASE input

I∗ =
1〈
1
R

〉 (dV

dψ

)−1
d

dψ

(
dV

dψ
q
〈
B2
p

〉 1

qtarget

)
(50)

where Bp refers to the poloidal magnetic �eld. This expression (50) given as such
in input gave exactly the same very good convergence results as shown in �gure 6.
Some tests with speci�c safety factor shapes will be conducted in the next section
in order to approve this expression to be implemented as option NSTTP = 5 in
CHEASE. Note that the choice of keeping the term(

dV

dψ

)−1
d

dψ

untouched instead of calculating directly the derivative with respect to V has been
made for convenience purposes. Indeed, while the term(

dV

dψ

)
is directly accessible in the code via the coe�cient C1 and the derivative with re-
spect to ψ can be easily computed, the volume V is not directly accessible for the
calculation where one wants to implement the calculation for I∗(q).

3.4 Testing speci�c q pro�les

3.4.1 First pro�le

The �rst pro�le, drawn on the right graph of �gure 7, is in fact the one which has
been used all along in the previous section to �nd the appropriate I∗ expression.
The expeq �le given in input is shown on the left graph of �gure 7 and the outputs
of runs one to �ve were presented above in �gure 6.

3.4.2 Series of four pro�les

The aim of this section is to test the I∗ expression (50) found in section 3.3 on a
four-pro�les-series with a circular plasma shape. Also being in the large aspect ratio
approximation (as R0

a
= 20), the surface averaged current density should be equal

to the averaged parallel current density, which means that one should �nd I∗ = I‖.
The general expressions for the safety factor and for the expected I‖ are written
below in equations (51) and (52). Depending on the case studied, pi will either be
equal to 1, 2, 4 or 8.

qtarget,i = q0

(
1 +

( ρ
α

)2pi
) 1

pi

(51)

I‖,i =
I0(

1 +
(
ρ
α

)2pi
)(1+ 1

pi
)

(52)
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3 USING A PREDEFINED Q PROFILE AS CHEASE INPUT WITH AN

EXTERNAL LOOP TO FIND THE APPROPRIATE I∗ AND TT ′
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Figure 7: First targeted safety factor pro�le and the expeq �le given in input.

Where: 

ρ = ρtor,norm

α0 = 0.595

R0,exp = 10

aminor = 0.5

q0 = 1.15

(53)


qtarget,1 → p1 = 1

qtarget,2 → p2 = 2

qtarget,3 → p3 = 4

qtarget,4 → p4 = 8

(54)

The respective ten �rst runs corresponding to each one of the four pro�les are
presented in �gures 9, 10, 11 and 12. The �rst computation of I∗ from expression
(50) corresponds indeed to the expected expression for I‖ (with I0 = I∗(1)) and
the output current density pro�le remains constant over the runs. The �rst output
safety factor corresponds for each case to the targeted one and remains converged
over the runs. This expression of I∗ is therefore validated for this series of pro�les too
by leading immediately to the equilibrium we were looking for. Note that CHEASE
computation's time is shorter for those target-pro�les than for the one tested above.
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(a) Input expeq �le for the series of four pro�les. Note that the plasma boundary is

circular in those cases with a large aspect ratio (20).
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(b) Plot showing the four pro�les of the series and their respective expected I‖ (with I0 = 1)
pro�les which can be approximated to I∗ in large aspect ratio.
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(b) First q-series pro�le. Run 2.
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(c) First q-series pro�le. Run 10.

Figure 9: First q-series pro�le. Run 1 to 10 using I∗ input expression (50), nfun-
rho=1, α = 1. From the �rst run the output safety factor is very well superimposed
to the target one and this convergence holds over the runs. The �rst computation of
I∗ using formula (50) already corresponds to the expected I‖ and so does the output
pro�le. 21
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(a) Second q-series pro�le. Run 1.
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(b) Second q-series pro�le. Run 2.
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(c) Second q-series pro�le. Run 10.

Figure 10: Second q-series pro�le. Run 1 to 10 using I∗ input expression (50),
nfunrho=1, α = 1. From the �rst run the output safety factor is very well su-
perimposed to the target one and this convergence holds over the runs. The �rst
computation of I∗ using formula (50) already corresponds to the expected I‖ and so
does the output pro�le. 22
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(a) Third q-series pro�le. Run 1.
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(b) Third q-series pro�le. Run 2.

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

RhoTorNorm

Q
 p

ro
fi
le

Qseries−3 profile

 

 

Qtarget

Qin

Qout 10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

RhoTorNorm

Is
ta

r 
p

ro
fi
le

Istar profile

 

 

I
parallel

Istar
in

Istar
out

10

(c) Third q-series pro�le. Run 10.

Figure 11: Third q-series pro�le. Run 1 to 10 using I∗ input expression (50), nfun-
rho=1, α = 1. From the �rst run the output safety factor is very well superimposed
to the target one and this convergence holds over the runs. The �rst computation of
I∗ using formula (50) already corresponds to the expected I‖ and so does the output
pro�le. 23
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(a) Fourth q-series pro�le. Run 1.
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(b) Fourth q-series pro�le. Run 2.
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(c) Fourth q-series pro�le. Run 10.

Figure 12: Fourth q-series pro�le. Run 1 to 10 using I∗ input expression (50),
nfunrho=1, α = 1. From the �rst run the output safety factor is very well su-
perimposed to the target one and this convergence holds over the runs. The �rst
computation of I∗ using formula (50) already corresponds to the expected I‖ and so
does the output pro�le. 24
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3.4.3 Test case with a speci�ed pro�le

A question about CHEASE from a SPC PhD student has revealed to be a very
good test for the method developed above. The question was about varying the
pressure pro�le while keeping the same safety factor. The original expeq �le with
the plasma shape and the pressure and current pro�les are shown on the left graph
in �gure 13. The aim is then to keep the same safety factor pro�le while lowering the
pressure pro�le from the blue curve to the green one of the right graph in �gure 13.
A �rst run with the received expeq �le (�gure 13) was performed with CHEASEgui
and its output expeq �le (�gure 14) was then used in input of our method. This
was done mainly to avoid a divergence in the calculation which appeared when
using nppfun=8 (corresponds to input p) and disappeared when using nppfun=4
(corresponds to input p′). The runs have been made with α = 0.5 as it leads to a
better convergence of the safety factor pro�le at the edge. With α = 1, the output
pro�le was oscillating between above and below the targeted pro�le over the runs
and reducing the α value helped solving that problem. As the given pro�le of I∗

was very abrupt at the edge, the last point of the targeted safety factor pro�le was
lowered to avoid a discontinuity in the pro�le. One can see in �gures 15 that the I∗

tends to stabilize itself at the edge over the runs. For this speci�c pro�le, the use of
the α led to a real improvement and will be necessary too for the implementation
in CHEASE, as detailed later on.
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Figure 13: Left �gure shows the original expeq �le (with p as input) received while
the right �gure presents the original pressure pro�le (blue curve) and the lowered
one (green curve): plow = 0.7 · poriginal
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Figure 14: Left �gure shows the input expeq �le (with p′) used for the external runs
of CHEASE while the right �gure presents the targeted safety factor pro�le (the one
obtained in output of CHEASEgui with input 13 expeq �le).
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(a) Test case. Run 1 with α = 0.5.
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(b) Test case. Run 2 with α = 0.5.
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(c) Test case. Run 10 with α = 0.5.

Figure 15: Input I∗, nsttp=2, nfunrho=0, α = 0.5. Q and I∗ pro�les after a few
runs of CHEASE using input I∗ formula (50). The graphs show that the solution is
steadily converging and leads to very good results.
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4 Implementing the procedure into CHEASE

Now that the expression (50) giving the surface averaged current density as a func-
tion of the safety factor has been veri�ed successfully with several safety factor
pro�les in the previous section, the true purpose of this work can now be addressed,
namely to implement this expression directly into the CHEASE code.

4.1 Approach

As introduced above, in order to be able to specify the safety factor q as input, a
new NSTTP case has to be implemented. Until now, the following options were
available:

• case NSTTP = 1 → p′ and TT ′ as inputs

• case NSTTP = 2 → p′ and I∗ as inputs

• case NSTTP = 3 → p′ and I‖ as inputs

• case NSTTP = 4 → p′ and J‖ = 〈j·B〉
B0

as inputs

Note that while it is more common to use p′ as �rst entry pro�le one can rather pro-
vide the pressure pro�le and run CHEASE with nppfun=8 instead of nppfun=4.
As a reminder, the purpose is to implement two alternative options where the safety
factor can be given as input and then get imposed internally via the current density
pro�le expression I∗(q) or via TT ′(q) to solve the Grad-Shafranov equation:

• case NSTTP = 5 → p′ and q as inputs → internal computation of I∗(q)

• case NSTTP = 6 → p′ and q as inputs → internal computation of TT ′(q)

However, remembering the results presented in section 3.2, when one tries to impose
the safety factor directly through TT ′ using its expression:

T = 2π
q

C2

the results were not conclusive and the output was diverging, mainly because of the
derivative term in T ′. This indicates that the case NSTTP=6 will in fact not be a
conceivable option and will be left behind from here on.
The NSTTP = 5 line of calculation should be similar to the case NSTTP = 2 except
that the input pro�le, stored in the variable RFUN in the code will be q instead of
I∗. The averaged current density pro�le will then be computed internally from this
pro�le with expression (50). Hence, in some subroutines, the condition "if NSTTP
= 2" has been updated to "if NSTTP = 2 or NSTTP = 5".
To elaborate this alternative, one had to add the computation of the C3 surface
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integral in order to be able to compute the surface average of the poloidal magnetic
�eld: 〈

B2
p

〉
=

¸
s=const

(
|∇ψ|
R

)2

Jdχ¸
s=const

Jdχ
=
C3

C1

(55)

The surface coe�cients (expression (13)) are computed in subroutine cint. For
memory optimization purposes, once each coe�cient has been computed separately,
only the required ratios are stored into the variables. Even though for NSTTP =
5 one needs to compute C3 (which was before only needed for cases NSTTP = 3
or 4), one also needs to keep the same ratios in the same variables as for NSTTP
= 2 to be consistent with further calculations. Therefore for NSTTP = 5, one can
now make use of the following coe�cients (CID0 & CID2 remaining the same as for
NSTTP = 2): 

CID0 =
CID0

CIDQ
→ C0

C2

CID2 =
CIDR

CIDQ
→ C1

C2

CID3 =
CID3

CIDR
→ C3

C1

(56)

The main focus has been to compute the proper I∗ pro�le (expression (50)) from the
safety factor's input. This calculation was �rst implemented into subroutine prfunc
which aims to compute the second input pro�le. However, as can be understood by
looking at �gure 17 which attempts to summarize in a sketch the procedure followed
by CHEASE, subroutine prfunc usually interpolates the I∗ pro�le from constant-
�ux surfaces to CHEASE surfaces. But here the I∗ was systematically re-calculated
instead of being kept �xed on �ux-surfaces until a new solution ψ was computed.
The I∗ pro�le is now computed on �ux-surfaces in isofun and is interpolated on
CHEASE's surfaces in prfunc.

The architecture of the algorithm in CHEASE is the following, with two suc-
cessive sets of iterations: a �rst one on a coarse grid (ns=nt=24 & niso=100) and
a second one on a more precise grid (for example with ns=nt=40 & niso=180

but these values can be adjusted by the user). A �rst guess-solution is chosen in
subroutine guess from a paraboloid �ux pro�le in order to initiate the iteration, the
niso constant-�ux surfaces are then computed in subroutine isofind in terms of
the equilibrium coordinates (σ, θ). The surface integrals Ci can then be calculated
on these surfaces, in subroutine cint, before being used in subroutine isofun to
compute the I∗ pro�le for the case NSTTP = 5 (precise steps of computation are
listed below). The pro�les TT ′ and p′ are also evaluated on �ux-surfaces in this
subroutine which allows to describe the current density jφ. The source term jφ is
then computed on CHEASE mesh by subroutine curent (with back and forth calls
to prfunc required to interpolate the I∗ pro�le on CHEASE surfaces) with surface
integrals Ci being kept constant. This step consists in fact of computing the current
density value for each point of the CHEASE mesh. Knowing all the values jφ(σi, θj)
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Figure 16: Constant-ψ surfaces are represented in 1D by the dashed pink lines in
this �gure surrounding the magnetic axis (Rmag, Zmag). They are not to be mistaken
for the CHEASE surfaces, represented in 1D by the blue lines, which illustrate the
CHEASE mesh (σi, θj) on which the Grad-Shafranov equation is solved in the code.
They start from the origin of CHEASE mesh (RC , ZC) (which can be less-centred
than drawn on the �gure) and are homotheties of the plasma boundary. The aim of
the numerical iteration over the current density pro�le is to �nd the magnetic axis
and to compute an output solution centred on it.
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(�gure 16), the current density pro�le is then computed by 2D-Gauss-integrations
in subroutine nonlin.
Notice that, on �gure 16, when going from a �ux-surface to a CHEASE surface, the
variation of ψ is so small that the interpolated I∗ pro�le in subroutine prfunc is
nearly constant.
Once the equilibrium solver has converged to give a new ψ(σi, θj) solution, which
stands as the new equilibrium pro�le, one tries to �nd the surfaces ψ = constant
(with constant being a 1D array) in isofind. The surface integrals Ci are then re-
evaluated. This outer loop over ψ only stops once the equilibrium quantities do not
vary much from one ψ solution to the next one. This it evaluated with the residue
over mapping quantity which should become smaller than a prede�ned number
ε. These convergence properties are explained in details in paper [2]The CHEASE
code for toroidal MHD equilibria.
The equilibrium solution on this �rst mesh is then stored in subroutine iodisk in
order to start the second set of iterations by interpolating these quantities on the
new, more precise mesh. The same steps are then followed as before which solve
the Grad-Shafranov equation with two nested Picard iterations visible in �gure 17.
Once convergence is achieved, a �nal mapping of the equilibrium quantities is per-
formed into the �ux coordinate system (ψ, χ,Φ) (cf section 3 of paper [2]).
CHEASE can generate a whole variety of solutions to the Grad-Shafranov equation:

ψ̃(R,Z) = λψ(R,Z) + ψ0 (57)

which are all solutions of a rescaled Grad-Shafranov equation:

∆∗ψ̃ = λ∆∗ψ (58)

The solution given in output is computed with respect to the boundary conditions
speci�ed by the user. They are usually given for the safety factor pro�le values at
the center or at the edge which determines the value for λ and rescales the solution
in subroutine norept.
The main steps performed in subroutine isofun to compute the I∗ expression (50)
are listed below:

1. Interpolate input safety factor pro�le stored in RFUN(1:NPPF) from input mesh
FCSM(1:NPPF) on mesh CSIPR(1:NISO) (ρpol mesh used for the calculation)
in variable Qtarget(1:NISO) with function interpos.

2. Compute X1 and X2 on the NISO �ux surfaces:

X1(i) = CID3(i)*TMF(i)*CIDQ(i)/(2*pi)

X2(i) = (2*pi*CIDR(i))*X1(i)/Qtarget(i)

3. Compute derivative dX2dpsi(1:NISO) with function interpos.

4. Set value for α and compute I∗ expression (50) on �ux surfaces:

IstarTarget(i) = (1-alpha)*IstarTarget(i)

+ alpha*(CID2(i)/CID0(i))*dX2dpsi(i)/(2*pi*CIDR(i))
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Figure 18: Targeted safety factor pro�le (blue curve) while testing ways of imple-
menting the case NSTTP=5 internally. Once run properly, CHEASE provided an
output safety factor (red curve on the left graph) corresponding exactly to the input
pro�le. The output corresponding I∗ pro�le is reported in red on the right graph.

One has to be careful when using the mesh. CSIPRI indicates the beginning of each
interval in the code while CSIPR stands for the center of the corresponding interval.
PSIISO, which is computed from CSIPR is also located at mid-intervals, except for
the last iteration in CHEASE where it is shifted so as to indicate the beginning of
the interval. This can generate a last value gap between CSIPR (global variable) and
ZS (local variable computed from PSIISO) and could lead to an o�ine last value for
the output safety factor pro�le with respect to the target pro�le.
Even though CHEASE now succeeds into providing a fully-consistent output equi-
librium with an input safety pro�le, one has to point out that the computation of
equilibria is a lot slower than for NSTTP=2. Even since the introduction of the α
variable which makes computation much faster, they remain slow compared to the
case NSTTP=2.
Now that one is able to specify a safety factor pro�le as input, the functions to read
and plot the expeq �le, so as the CHEASEgui interface have been updated with the
new NSTTP=5 case. An illustration of plot_expeq with an input safety factor
pro�le can be seen in �gure 19.

4.2 Validation with the q pro�les tested externally

Now that CHEASE manages to run with the option NSTTP = 5 (input expeq 19)
and leads to the very same output safety factor pro�le as the one given in input
(�gure 18), the implemented method will be tested with the same pro�les which
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Figure 19: Just one example to illustrate the fact that the safety factor pro�le can
now be given as input in the expeq �le.

have been used externally in section 3.4.

4.2.1 First pro�le

The results obtained with the �rst safety factor pro�le received as input are shown
in �gure 20. The input safety factor pro�le is represented by the blue curve while
the output safety factor pro�le is represented by the red one on the left graph of this
�gure. The fact that the two curves are perfectly superimposed and that the other
output quantities, especially the averaged current density pro�le I∗ are consistent,
con�rms the success of the implemented calculation.

4.2.2 Series of four pro�les

The respective results for the four input q-series pro�les are presented in �gures 21,
22, 23 and 24. The very same conclusion as the one made for the previous pro�le
applies here and contributes in validating the implemented method.

4.2.3 Test case with a speci�ed pro�le

The convergence of the test safety factor pro�le sent by the SPC PhD student has
been more challenging to achieve. Indeed, as it had already been noticed while
iterating externally, the edge slopes of q and I∗ were very abrupt and the output
safety factor pro�les kept oscillating between above and below the targeted edge
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Figure 20: First safety factor pro�le. Left �gure shows input q-pro�le in blue and
output pro�le in red. With these two curves perfectly superimposed and a credi-
ble output averaged current density pro�le (right �gure), the numerical method is
validated for this pro�le.
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Figure 21: First q-series pro�le. Left �gure shows input q-pro�le in blue and output
pro�le in red. With these two curves perfectly superimposed and a credible output
averaged current density pro�le (right �gure), the numerical method is validated for
this pro�le.
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Figure 22: Second q-series pro�le. Left �gure shows input q-pro�le in blue and out-
put pro�le in red. With these two curves perfectly superimposed and a credible output
averaged current density pro�le (right �gure), the numerical method is validated for
this pro�le.
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Figure 23: Third q-series pro�le. Left �gure shows input q-pro�le in blue and output
pro�le in red. With these two curves perfectly superimposed and a credible output
averaged current density pro�le (right �gure), the numerical method is validated for
this pro�le.

36



4 IMPLEMENTING THE PROCEDURE INTO CHEASESafety factor pro�le as CHEASE input

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

smesh

Q
 p

ro
fi
le

Qseries 4

 

 

Qin

Qout

0 0.2 0.4 0.6 0.8 1

0.8

1

1.2

1.4

1.6

1.8

2

smesh

Is
ta

r 
p
ro

fi
le

Istar profile

 

 

Istar out

Figure 24: Fourth q-series pro�le. Left �gure shows input q-pro�le in blue and output
pro�le in red. With these two curves perfectly superimposed and a credible output
averaged current density pro�le (right �gure), the numerical method is validated for
this pro�le.

value until the introduction of α. The same method has been applied internally and
solved the problem, reducing signi�cantly the iteration's time along the way.
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Figure 25: Test case q-pro�le. Left �gure shows input q-pro�le in blue and output
pro�le in red. With these two curves perfectly superimposed and a credible output
averaged current density pro�le (right �gure), the numerical method is validated for
this pro�le.

5 Applying the procedure for tearing modes stabil-

ity analysis

Tearing instabilities can occur when �eld lines break and reconnect in the plasma.
The reconnection can only occur at locations with rational values of the safety fac-
tor and in the presence of resistivity (that is to say that one has to assume there is
some localised resistivity on a tiny surface where reconnection could happen while
the ideal MHD holds everywhere else). When experiencing a radial perturbation
two separate magnetic �eld lines next to each other can connect. This disrupts
completely the plasma stability as this new closed �eld line layer creates a magnetic
island which changes the pressure pro�le (same value for the pressure everywhere in-
side the island) by creating a �at plateau where reconnection occurred. The safety
factor pro�le can indicate whether or not an equilibrium is stable or unstable by
evaluating if a perturbation would tend to grow or disappear. Slightly modifying
the q-pro�le could make perturbations to evolve in a di�erent way. The following
section is meant to focus on this in�uence.
Starting from a given safety factor, one will then modify this pro�le around one of
the rational values 2/1 or 3/2 (as they are known to be the most likely to generate
magnetic reconnection). To know if the plasma is stable or not around this value of
q one has to evaluate the quantity ∆′ (expression (59), from book Tokamaks [7]): if
it is positive, this means that the con�guration is unstable and reconnection occurs
but if it turns out to be negative, this means that the con�guration is stable. In-
deed, as the amplitude of the instability is exponentially-dependent on ∆′, a positive
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value would make it grow exponentially while a negative value would make it vanish
quickly.

∆′ =
1

Br(rs)

[
dBr

dr

]rs+ε
rs−ε

ε→ 0 (59)

where Br is the perturbed radial magnetic �eld and rs denotes the resonant sur-
face r = rs where m = nq. Practically, one uses the �le eqdsk.out generated by
CHEASE when given in input the safety factor pro�le and run the routine deltap-
cyl with it. This directly computes the values of rs∆

′.
From the di�erent safety factor pro�les studied in the previous section, the one re-
ferred to as the "�rst pro�le" (�gure 20) happens to be stable for both modes 2/1
and 3/2 with respective rs∆

′-values of (−1.4801 · 101) and (−2.5004). The 3/2-
modi�ed pro�le (with dq

dρ

∣∣
q=3/2

= 0) represented by the red curve in �gure 26a leads
to: {

q = 2/1→ rs∆
′ = −2.52383 · 101

q = 3/2→ rs∆
′ = 5.21293 · 102 (60)

while another 3/2-modi�cation of the pro�le (with dq
dρ

∣∣
q=3/2

= 10), drawn in red on

�gure 26b, leads to: {
q = 2/1→ rs∆

′ = 8.76578

q = 3/2→ rs∆
′ = 6.5870 · 101 (61)

The �rst modi�cation (�gure 26a) therefore tends, roughly speaking, to stabilize
mode 2/1 and to destabilize mode 3/2 while the second modi�cation (�gure 26b)
tends to destabilize both modes.

Starting this time from an unstable mode, one can look at the 2/1-mode of the
third q-series pro�le (�gure 23) for which:{

q = 2/1→ rs∆
′ = 2.93169 · 10−1

q = 3/2→ rs∆
′ = 4.5149

(62)

and apply the same modi�cations as for the previous pro�le but this time near the
2/1 mode. The �rst 2/1-modi�ed pro�le (with dq

dρ

∣∣
q=2/1

= 0) represented by the red

curve in �gure 27a leads to:{
q = 2/1→ rs∆

′ = 1.68557 · 103

q = 3/2→ rs∆
′ = 4.89832

(63)

The second 2/1-modi�ed pro�le (with dq
dρ

∣∣
q=2/1

= 10) represented by the red curve

in �gure 27b leads to: {
q = 2/1→ rs∆

′ = 1.03947 · 102

q = 3/2→ rs∆
′ = 4.14678

(64)

Both modi�cations therefore strongly destabilize the 2/1-mode while having no-
e�ect on the 3/2-mode.
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These e�ects of the safety factor pro�le on equilibrium stability would require to
be studied in more details with di�erent speci�ed pro�les in order to be able to
deduce some results. Nevertheless, this section opens the way to a new range of
equilibrium-dependence studies. Indeed, the previous values con�rm that the safety
factor pro�le has a great impact on the equilibrium stability and that �ne-tuning it
can be crucial to guarantee stability with respect to tearing modes.

6 Conclusion

This work was developed within a master project which main purpose was to develop
a method enabling the user to specify a safety factor pro�le as input of the equilib-
rium solver CHEASE. Two di�erent alternatives were explored in order to impose
the safety factor pro�le either via the averaged current density I∗(q) or via TT ′(q).
Prior to implementing the proper method in the core code, tests were conducted
with an external computation of both I∗(qtarget) and TT ′(qtarget) as input pro�les
for CHEASE. No TT ′(q) expression has demonstrated good-convergence properties
but a suitable expression for I∗(q) has been constructed, Eq. (50), and tested with
several safety factor pro�les, leading each time to a fully consistent equilibrium.
Only one method has then been implemented into CHEASE, referred to as the
NSTTP=5 case. This method consists of giving q as input and internally comput-
ing the I∗(q) expression which was demonstrated to be successful externally. This
calculation, implemented into the subroutine isofun, has con�rmed very good con-
vergence properties for several tested safety factor pro�les without any continuity
issue in the solution. This extension of CHEASE was then used to study the in�u-
ence the safety factor pro�le could have on tearing instabilities. This was con�rmed
to be crucial and would require further investigations. Being now able to specify the
safety factor pro�le as CHEASE input opens the way to further equilibrium stabil-
ity studies as the whole output equilibrium of CHEASE could respond di�erently
to induced perturbations depending on the input q pro�le. Note that an extension
to this new NSTTP=5 case is available, manually at this stage, which consists of
modifying slightly the edge q derivative in order to obtain I∗ = 0 at the edge, since
I∗ depends on dq/dψ as seen in Eq. (50). Using CHEASE functionalities, it is easy
to use the resulting I∗ pro�le and modify it slightly near the edge as well, since with
our method we do not obtain unphysical edge current.
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(a) Modi�ed "�rst" q-pro�le with a 0-derivative at q = 3/2.
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(b) Modi�ed "�rst" q-pro�le with a derivative equal to 10 at q = 3/2.

Figure 26: First studied q-pro�le modi�ed near surface where q = 3/2 with a degree
three polynomial and a derivative equal once to 0 and once to 10 at q = 3/2.
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(a) Modi�ed Qseries-3 pro�le with a 0-derivative at q = 2/1.
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Figure 27: Third Q-series pro�le modi�ed near surface where q = 2/1 with a degree
three polynomial and a derivative equal once to 0 and once to 10 at q = 2/1.
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Appendices

A Selecting the updated quantity

Remembering �gure 1 showing the current density curve obtained from updated
equation (15), there is a real need to limit the correction induced in the I∗ curve by
the new safety factor pro�le. A �rst attempt, presented in this appendix, was then

to update either the q term or the derivative term d
dψ

[
q
C2

]
but no longer both at

the same time.

Update only q

The results are presented in �gures 28. At least, with only an update of the q term,
CHEASE manages to run, as we can see the I∗ input pro�le is a lot less chaotic
than before. The two runs presented in �gures 28 have been done with a boundary

condition, added with the interpos tool when calculating the derivative d
dψ

(
q
C2

)
,

imposing I∗(edge) = 0. Without this condition the results were far worse and the
safety factor pro�le obtained in output of the �rst run was a lot below the targeted
one. However, even if CHEASE manages to run, the pro�les become chaotic in
output of the second run and made CHEASE diverges when attempting a third run.
The huge change of the current pro�le at the center in�uences a lot the safety factor
pro�le. One then tried to impose the value of I∗ at the center to remain constant by
adding the boundary condition I∗(0) = I∗0 (0). The resulting pro�les are presented
on �gures 29. One can see that even though the �rst run seems to give better results,
the second output I∗ pro�le shows even bigger bumps than before.

Update only d
dψ

(
q
C2

)
It appears in �gure 30 that the I∗ obtained from expression (15) with only the

derivative term d
dψ

(
q
C2

)
being updated is quasi-similar to the one with both terms

updated. This shows that the derivative term is dominant in the expression of I∗

and is thereby the one to be focused on. In �gure 31 one can see that the derivative
term actually initiates the bumps of I∗. Being multiplied by 4π2 in the second term
of expression (15), the amplitude of the bumps grows bigger. Further investigations
have shown that the C1 surface integral (de�ned in equation (13)) has a weird shape
from the �rst run which in�uences C2 and of course q

C2
and the I∗. This came from

the dV
dψ

term. By changing the I∗ expression, one changes the current pro�le passing
in each �ux surface that is to say: one changes the dψ. This explains the huge
variation observed for dV

dψ
. In order to reduce this, one has tried to keep constant

the quantity
dV

dψ
=

(
dV

dψ

)
0

In this case, the quantity d
dψ

(
q
C2

)
only slightly changes but the bumps of the I∗

are still steadily increasing over the runs which lead to a steadily diverging safety
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(a) First run with only the q quantity updated
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(b) Second run with only the q quantity updated

Figure 28: First two runs of CHEASE using expression (15) for input I∗ with only
the q quantity updated to qtarget. Run have been made imposing boundary condition
I∗(edge) = 0.
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(a) First run with only the q quantity updated and I∗(0) = I∗0 (0)
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(b) Second run with only the q quantity updated and I∗(0) = I∗0 (0)

Figure 29: First two runs of CHEASE using expression (15) for input I∗ with only
the q quantity updated to qtarget. Runs have been made imposing boundary condition
I∗(edge) = 0 and I∗(0) = I∗0 (0).
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induce the

big bumps in I∗ when multiplied by the other terms in the expression.

factor. One has to approach the problem di�erently. Another possibility was to
derive with respect to a more stable quantity such as the volume V instead of the
poloidal magnetic �ux ψ, this leads us to the next appendix B.
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B Deriving with respect to a more stable variable

Another approach was to derive q
C2

with respect to the volume V rather than with
respect to the poloidal magnetic �ux ψ by re-expressing the surface averaged current
density as:

I∗ =

(
−C1

C0

)
∗
(
p′ + 8π3Q

d

dV

[
Q

C2

])
(65)

This change was motivated by the fact that the total volume V remains more con-
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Figure 32: Plot of the expressions (15) and (65) (without the boundary condition
to have a 0-value at the edge) respectively represented by the red and green curves.
Their superimposition attests that the two formulas are equivalent.

stant than ψ over the iterations to solve Grad-Shafranov equation. Indeed, as ex-
plained brie�y above, while iterating to obtain convergence over the current density
pro�le and over the surface coe�cients, there is forward and backward substitution
on ψ. Each time the current pro�le converges, the new �ux surfaces are computed
(with the new ψ solution) to see if the equilibrium coe�cients converge too. There-
fore, the poloidal magnetic �ux pro�le ψ can be varying a lot from one iteration to
the next one while the overall volume surrounding the �ux surfaces remains nearly
constant. Even if the shape of the exterior surface varies, the impact on the total
inner volume will remain very small. The di�erence between �gures 3 and �gures
33 is that the second ones have been made with the derivative of q

C2
calculated with

respect to V instead of ψ and without the boundary condition imposing I∗ to be 0
at the edge. With the same boundary condition, the two series of runs were exactly
identical which indicates that it makes no improvement at all to derive with respect
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(a) First run with α = 0.05

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

smesh

Q
 p

ro
fi
le

Q profile

 

 

Qtarget

Qin

Qout 2

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

smesh

Is
ta

r 
p
ro

fi
le

Istar profile

 

 

Istar1

Istar
in

Istar
out

2

(b) Second run with α = 0.05
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(c) Third run with α = 0.05

Figure 33: Q and I∗ pro�les after a few runs of CHEASE using input I∗ formula
(65) (without the boundary condition to have a 0-value at the edge). Run done with
α = 0.05 and nfunrho=0.
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to V than to ψ. Lots of boundary conditions and complementary �t have been tried
here but unfortunately no improvement came without any side e�ect.

C Using TT ′(I∗) as input

From equation (15), one can compute TT ′ as:

TT ′target = −C0

C2

I∗target −
C1

C2

p′ (66)

This consists of using the same I∗ expression as before but to give it directly via
TT ′ in input and therefore to try it with the case NSTTP = 1. Because of the
oscillations of the I∗target the α is still used:

TT ′input,n = α · TT ′target + (1− α) · TT ′n−1 (67)

As before, α = 0.05. The graphs 34 show that despite a �rst good output, very
similar to the one obtained for NSTTP = 2 with the same bump at the edge, the
output of the second run starts to oscillate which leads to steadily diverging pro�les
of q and TT ′.
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(a) q and TT ′ pro�les after one external run of CHEASE using input TT ′ with α = 0.05
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(b) q and TT ′ pro�les after two external runs of CHEASE using input TT ′ with α = 0.05
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(c) q and TT ′ pro�les after three external runs of CHEASE using input TT ′ with α = 0.05

Figure 34: Q and TT ′ pro�les after a few runs of CHEASE using input TT ′(I∗).
After a good start with the output of the �rst run, the TT ′ pro�le starts to oscil-
late which leads to a diverging safety factor pro�le. Run done with α = 0.05 and
nfunrho = 0. Run diverges immediately if tried with nfunrho = 1.
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D Using an alternative radial coordinate: complement
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(a) First run with α = 0.05 with ρtoroidal and I
∗(edge) = 0
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(b) Second run with α = 0.05 with ρtoroidal and I
∗(edge) = 0
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(c) Third run with α = 0.05 with ρtoroidal and I
∗(edge) = 0

Figure 35: Q and I∗ pro�les after a few runs of CHEASE using input I∗ formula
(15). Even though the �rst run output is quite good, the next run shows the pro�les to
start oscillating and steadily diverging. Run done with α = 0.05 and nfunrho=1.
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E I∗ from Antoine Merle's note: complement

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

smesh

Q
 p

ro
fi
le

Q profile

 

 

Qtarget

Qin

Qout 1

0 0.2 0.4 0.6 0.8 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

smesh

T
T

p
ri
m

e
 p

ro
fi
le

TTprime profile

 

 

TTprime0

TTprime
in

TTprime
out

1

(a) q and TT ′ pro�les after one external run of CHEASE using input TT ′(I∗)
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(b) q and TT ′ pro�les after two external runs of CHEASE using input TT ′(I∗)
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(c) q and TT ′(I∗) pro�les after �ve external runs of CHEASE using input TT ′

Figure 36: Input TT ′, nsttp=1, nfunrho=0, α = 1. Q and TT ′ pro�les after a
few runs of CHEASE using input TT ′. The graphs show that the solution is steadily
converging and leads to very good results.
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