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Abstract
Mechanical oscillators are among the most important scientific tools in the modern physics.

From the pioneering experiments in 18th by founding fathers of modern physics such as

Newton, Hooke and Cavendish to the ground braking experiments in the 21th century where

the merge of two massive black holes 1.3 billion light-year away detected on earth by a

gravitational wave detectors[1], the high Q mechanical oscillators were at the core of many

monumental experiments in physics. Their ability to couple to many different physical

quantities such as mass [2, 3], charge[4], acceleration[5], electro-magnetic forces[6] and

optical fields[7] makes them an ideal candidate for sensing applications. In addition, their

intrinsically low dissipation rates (Γm) results in reduced coupling to the thermal bath. Since

the invention of micro/nano-technology in the second half of the 20th century and ability to

control the dimensions at micro and nano-scales, new horizon was opened up for mirco/nano-

mechanical oscillators. Miniaturization of the mechanical oscillators made them small and

stiff enough to be used in our handheld electronics where dozens of mechanical sensors such

as accelerometers and gyroscopes are used in our laptops and smartphones everyday.

Besides these technological advancements, since the beginning of 21th century, a new op-

portunity for mechanical oscillators emerged: the idea of “putting mechanics into quantum

mechanics”[8] and observing the quantum effects of these massive classical oscillators. Aside

from the numerous technical challenges for achieving this goal, two fundamental obstacles

has to solved: I) Even the smallest nano-mechanical oscillators still consist of billions of atoms

and molecules and are orders of magnitude more massive that the traditional “quantum

objects” such as atoms and molecules. Larger mass results in smaller zero point motion — the

length scale where quantum effects are visible — which means in order to “see” these quantum

effects, we have to detect smaller displacement than ever before [9]. II) The second challenge

is the low frequency of the mechanical oscillators which makes their thermal Brownian energy,

orders of magnitude larger than the quantum ground state of the oscillator — the energy scale

where the quantum effects are visible — as n̄th ≈ kB T
�Ω � 1 even for a Ω/2π∼ 1 GHz oscillator

at room temperature.

Both of these obstacles, can be seen as the competition between few fundamental rates:

thermal decoherence and measurement rate/mechanical frequency. Thermal decoherence

is the rate at which the mechanical oscillator exchange phonons — quanta of mechanical

energy (�Ω)— with its thermal environment and is given by Γdecoherence = n̄thΓm . The first

obstacle translates to having the measurement rate being faster than the decoherence rate

of the mechanical oscillator, Γmeasurement � Γdecoherence [10]. This means in order to see the
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quantum coherent motion of the mechanical oscillator, we have to “look” at it before it has

time to exchange random thermal energy with its environment. In other words, the life time

of the quantum states of macroscopic objects are limited by their thermal decoherence rate

and we have to interact with the oscillator in this short lifetime. The second obstacle on the

other hand, reduces to having the mechanical frequency larger than its thermal decoherence

rate, Ωm � Γdecoherence. Over the past 15 years, the field of cavity opto-mechanics was very

successful in improving the measurement schemes and designing new opto-mechanical

systems with higher measurement rates. Recently measurement rate higher than decoehrence

rate became possible at cryogenic temperatures[11]. The second obstacle on the other hand,

is purely a mechanical design and mechanical oscillator has to be designed to be “quantum

enabled”[12]. One traditional approach to reduce the thermal decoherence in the field of

opto-mechanics was to operate at cryogenic temperatures to reduce n̄th. However, if we want

to observe quantum effects of mechanical oscillators are room temperature — a long standing

goal in the field cavity opto-mechanics — the only route to achieve this is to isolate mechanical

oscillator from its thermal bath, namely reducing it dissipation rate. Therefore pursuing the

mechanical oscillator with reduced dissipation, is at the core of the efforts and key to observe

quantum effects of mechanical oscillators at room temperature and is the focus of this thesis.

In this thesis, we review several strategies to reduce mechanical losses and achieve unprece-

dented mechanical quality factors. First we observe that the presence of the initial tensile

stress in the mechanical oscillator, would lead to enhancement of its intrinsic material losses

through a process known as “dissipation dilution”[13]. Then we study the geometrical origin

of dissipation dilution through the basic equations of motion and find that “geometrical non-

linearity” is responsible for this enhancement[14]. Next we attempt to analytically calculate

the dissipation dilution for the beam and membrane geometries and observe that the curva-

ture near the clamping points (clamping losses) is the major limitation in the performance of

the high stress Si3N4 micro-mechanical resonators. We present theoretical and experimental

result of three strategies to enhance the Q× frequency product and Q/m as the two main

figures of merit associated to the two fundamental challenges of observing quantum effects of

micro-mechanical oscillators. In our third and most effective strategy, we demonstrate that

the co-localization of flexural motion of the a Si3N4 with the region of geometrically enhanced

stress would lead a previously unaccessible regime of mechanical quality factors. Using a

spatially non-uniform phononic crystal pattern of high aspect ratio beam (thickness of 20

nm and length of 7 mm) we produce picogram-mass flexural modes with room-temperature

Q factors as high as 800 million and Q × f products exceeding 1015 Hz — both in fact un-

precedented for a mechanical oscillator of any size. At ambient temperature, the devices

we study can have force sensitivities of aN/
�

Hz and at the same time perform hundreds of

oscillations within their thermal decoherence time. These results signal a paradigm shift in the

control of dissipation in nanomechanical systems, with impact ranging from precision force

microscopy to tests of quantum gravity. With these results, the long standing goal of observing

the qunautm effect of macroscopic objects at room temperature is within a reach. Combining

the reported material independent approach presented in this thesis with crystalline or 2D

materials may lead to further improvement, of as yet unknown limitation.
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Résumé
Les oscillateurs mécaniques font partie des plus importants outils scientifiques de la physique

moderne. Depuis les expériences pionnières au 18e siècle par les pères fondateurs de la

physique moderne, tels que Newton, Hooke et Cavendish, jusqu’au 21e siècle avec la mesure

extraordinaire de la fusion de deux trous noirs massifs distants de 1.3 milliards d’années

lumières par un détecteur d’ondes gravitationnelles sur Terre [1], les oscillateurs mécanique

de haut facteur qualité (Q) ont été au coeur de bon nombre d’expériences monumentales

en physique. Leur capacité à être couplés à de nombreuses différentes quantités physiques

telles que la masse [2, 3], la charge [4], l’accélération [5], les forces électro-magnétiques [6]

et les champs optiques [7] les rend idéaux comme senseurs. De plus, leur très bas taux de

dissipation (Γm ) les isolent du bain thermique. Depuis l’inventions des technologies à l’échelle

micro et nanoscopiques dans la deuxième moitié du 20e siècle, de nouveaux horizons se sont

ouvert pour les micro- et nano-oscillateurs mécaniques. Leur miniaturisation les a rendu

suffisamment petits et rigides pour être utilisés dans l’électronique portable, et des douzaines

d’oscillateurs sont incorporé dans chaque téléphone et ordinateur comme accéléromètres et

gyroscopes de nos jours.

D’autre part, une nouvelle opportunité a émergé pour les oscillateurs mécaniques depuis le

début du 21e siècle : l’idée de “mettre la mécanique dans la mécanique quantique” [8] et d’ob-

server les effets quantiques de ces oscillateurs massifs classiques. En sus des nombreux défis

technologiques pour accomplir ce but, deux obstacles fondamentaux doivent être franchis :

I) Le plus petit nano-oscillateur est constitué de milliards d’atomes et de molécules et est

plus massif que les “objets quantiques” traditionnels tels que les atomes et molécules par des

ordres de grandeurs. Une plus grande masse résulte en de plus faibles fluctuations de l’état

du vide (zero-point motion), qui donne l’échelle de longueur à laquelle les effets quantiques

deviennent visibles. Pour pouvoir “voir” les effets quantiques, il faut détecter des déplace-

ments à une échelle bien plus faible que précédemment [9]. II) Le deuxième défi est dû à la

fréquence basse des oscillations mécaniques, qui rendent leur énergie thermique brownienne

très grande par rapport à l’énergie de l’état fondamental quantique, qui est l’énergie à laquelle

les effets quantiques sont visibles, avec n̄th ≈ kB T
�Ω � 1 pour une oscillateur de Ω/2π∼ 1 GHz à

température ambiante.

Ces deux obstacles peuvent être perçus comme une compétition entre deux taux fonda-

mentaux : le taux de décohérence thermique et le taux de mesure/fréquence mécanique.

La décohérence thermique est le taux auquel l’oscillateur mécanique échange des pho-

nons (les quanta d’énergie mécanique (�Ω) avec son environnement thermique, donné par
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Γdecoherence = n̄thΓm . Le premier obstacle se traduit par l’obligation que le taux de mesure

soit plus grand celui de décohérence Γmeasurement � Γdecoherence [10]. Cela veut dire que pour

voir le déplacement quantique cohérent de l’oscillateur mécanique, nous devons le “regarder”

avant qu’il n’ait eu le temps d’échanger aléatoirement de l’énergie thermique avec son environ-

nement. En d’autres termes, le temps de vie de l’état quantique d’objets macroscopiques est

limité par leur taux de décohérence et nous devons interagir avec l’oscillateur dans ce temps

court. Le second obstacle d’autre part, est équivalent à devoir avoir une fréquence mécanique

plus grande que le taux de décohérence, Ωm � Γdecoherence. Pendant les 15 dernières années,

l’optomécanique (cavity optomecanics) a rencontré beaucoup de succès en améliorant les

techniques de mesure et en concevant de nouveaux systèmes optomécaniques avec des taux

de mesures plus élevés. Récemment, un taux de mesure plus grand que le taux de décohérence

a été réalisé a des températures cryogéniques [11]. Le deuxième obstacle d’autre part est

purement un problème de conception de l’élément mécanique, qui doit être conçu pour être

“quantum enabled” [12]. Une approche traditionnel pour réduire la décohérence thermique

en optomécanique est de faire les mesures dans un cryostat pour réduire n̄th. Cependant, si

nous voulons observer les effets quantiques pour les oscillateurs mécaniques à température

ambiante (un but de longue date dans le domaine), le seul moyen est d’isoler l’oscillateur

mécanique de son bain thermique, autrement dit réduire son taux de dissipation. Concevoir

des oscillateurs mécaniques avec un taux de dissipation réduit est donc un point clé et au

coeur de l’effort pour observer les effets quantiques mécaniques à température ambiantes.

Cette thèse se concentre sur ce point.

Dans cette thèse, nous passons en revue de multiples stratégies pour réduire les pertes mé-

caniques et atteindre des facteurs de qualité mécaniques sans précédent. Premièrement,

nous observons que la présence d’une tension initiale dans l’oscillateur mécanique mène

à l’amélioration de ses propriétés de pertes intrinsèques dans un processus qu’on appelle

“dilution de la dissipation” [13]. Ensuite, nous étudions l’origine géométrique de la dilution de

la dissipation à travers les équations du mouvement et trouvons que l’amélioration est due à

une “non-linéarité géométrique”[14] . Puis nous calculons analytiquement la dilution de la

dissipation pour une nano-poutre et une membrane, et observons que la courbure près des

points d’attaches (“clamping losses”) est la limitation majeure pour la performance des micro-

résonateurs mécanique de Si3N4 en haute tension. Nous présentons des résultats théoriques

et expérimentaux de trois stratégies pour améliorer le produit facteur-de-qualité fréquence

Q × f , et le rapport facteur de qualité divisé par la masse Q/m, qui sont les deux figures de

mérite associés aux deux défis fondamentaux de l’observation d’effets quantiques dans des

micro-oscillateurs mécaniques. Avec notre troisième stratégie, la plus efficace, nous montrons

que la localisation des déplacements de flexion de l’oscillateur en Si3N4, avec des régions de

tension augmentée géométriquement permet d’atteindre des régimes de facteurs de qualité

mécaniques inatteignables jusqu’ici. En utilisant un crystal phononique non-uniforme dans

l’espace avec un haut rapport de dimensions (épaisseur de 20 nm et longueur de 7 mm), nous

réalisons des modes de flexion de masse d’échelle picogramme dont le facteur de qualité à

température ambiante atteint 800 millions et le produit Q × f dépasse 1015 Hz (les deux sans

précédent pour un oscillateur mécanique à n’importe quelle échelle). A température ambiante,
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les systèmes que nous étudions peuvent avoir des sensibilité de force d’un aN/
�

Hz et en

même temps osciller des centaines de fois pendant le temps de décohérence. Ces résultats

signalent un changement de paradigme dans le control de la dissipation pour les systèmes

nanomécaniques, avec des applications tels que la microscopie de force ou pour tester la

gravité quantique. Avec ces résultats, le but de longue date d’observer les effets quantiques

d’objets macroscopiques à température ambiante devient atteignable. Combiner l’approche

présentée dans cette thèse qui est indépendante du matériau, et des matériaux crystallins ou

bidimensionnels pourrait mener à des améliorations supplémentaires, sans qu’une limite soit

pour l’instant connue.
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Zusammenfassung
Mechanische Oszillatoren gehören zu den wichtigsten wissenschaftlichen Hilfsmitteln in der

modernen Physik. Von den Experimenten der Gründern der modernen Physik wie Newton,

Hook und Cavendish bis zu bahnbrechenden Experimenten im einundzwanzigsten Jahr-

hundert, wo die Vereinigung zweier massiver schwarzer Löchern 1.3 Milliarden Lichtjahre

entfernt auf der Erde mittels Gravitätswellendetektoren beobachtet wurde [1]. Mechanische

Oszillatoren mit hohem Qualitätsfaktor Q waren der Schlüssel zu vielen monumentalen Expe-

rimenten in der Physik. Ihre Fähigkeit die verschiedenen physikalischen Grössen wie Masse

[2, 3], Ladung [4], Beschleunigung [5], elektromagnetische Felder [6] und optische Felder [7] zu

koppeln macht sie zum idealen Kandidaten für Messanwendungen. Zusätzlich führen ihre int-

rinsisch sehr kleinen Dissipationsraten (Γm) zu einer verringerten Kopplung zum thermischen

Bad. Die Erfindung der Mikro- und Nanotechnologie in der zweiten Hälfte des zwanzigsten

Jahrhunderts und damit der Möglichkeit Dimensionen in der Mikro- und Nanoskala zu mani-

pulieren, öffnete einen neuen Horizont für mikro- und nanomechanische Oszillatoren. Das

Miniaturisieren der mechanischen Oszillatoren machte sie klein und steif genug um in unserer

Alltagselektronik, wie beispielsweise dutzende mechanische Sensoren wie Akzelerometer und

Gyroskope in unseren Laptops und Smartphones, verwendet zu werden.

Neben diesen technologischen Fortschritten seit dem einundzwanzigsten Jahrhundert ent-

wickelte sich eine neue Möglichkeit für mechanische Oszillatoren: die Idee von “Mechanik in

der Quantenmechanik“ [8] und der Beobachtung von Quanteneffekten von massiven klassi-

schen Oszillatoren. Neben den zahlreichen technischen Herausforderungen um dieses Ziel zu

erreichen müssen zwei fundamentale Probleme gelöst werden: I) Selbst die kleinsten nano-

mechanischen Oszillatoren bestehen aus Milliarden von Atomen und Molekülen und sind

damit Grössenordungen schwerer als traditionelle “Quantenobjekte“ wie einzelne Atome und

Moleküle. Grössere Masse führt zu einer kleineren Nullpunkt-Bewegung, jene Längenskala

auf der Quanteneffekte sichtbar sind. Das bedeutet, um diese Quanteneffekte zu “sehen“,

müssen wir kleinere Verschiebungen als je zuvor messen [9]. II) Die zweite Herausforderung

ist die niedrige Frequenz mechanischer Oszillatoren, welche die thermische Energie Grössen-

ordnungen grösser sein lässt als die Grundzustandsenergie des mechanischen Oszillators –

die Energieskala auf der Quanteneffekte sichtbar sind – weil n̄th ≈ kB T
�Ω � 1 selbst für einen

Ω/2π∼ 1 GHz Oszillator bei Raumtemperatur ist.

Beide diese Hürden können als ein Wettstreit zweier fundamentaler Raten gesehen werden:

thermische Dekohärenzrate und Messrate/mechanische Frequenz. Die thermische Deko-

härenzrate mit der mechanische Oszillator Phononen – Quanta der mechanischen Energie
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(�Ω) – mit seiner Umgebung austauscht. Diese ist gegeben durch Γdecoherence = n̄thΓm . Die

erste Hürde lässt sich als Messrate schneller als Dekohärenzrate eines mechanischen Oszil-

lators interpretieren, Γmeasurement � Γdecoherence [10]. Dies bedeutet, dass man um quanten-

mechanische Effekte zu beobachten, bevor der Oszillator zufällige thermische Energie mit

seiner Umgebung ausgetauscht hat, “schauen“ muss. In anderen Worten, die Lebenszeit eines

Quantenzustands eines makroskopischen Objektes ist durch die thermische Dekohärenzrate

limitiert und damit müssen wir mit ihm in dieser kurzen Lebenszeit interagieren. Die zweite

Hürde lässt sich darauf herunterbrechen, dass die mechanische Frequenz grösser als die me-

chanische Dekohärenzrate sein muss, Ωm � Γdecoherence. In der letzten fünfzehn Jahren war

das Feld der Kavitätenoptomechanik im Verbessern dieser Messverfahren und der Entwick-

lung neuer optomechanischer Systeme mit hohen Messraten sehr erfolgreich. Neulich würden

Messraten höher als die Dekohärenzrate in kryogenischen Temperaturen erreicht [11]. Die

zweite Hürde ist dahingegen rein mechanischer Natur. Es muss ein mechanischer Oszillator

entworfen werden, um “quantenfähig“zu sein [12]. Ein traditioneller Ansatz, die thermische

Dekohärenzrate im Feld der Quantenoptomechanik zu reduzieren, ist es das Experiment bei

kryogenischen Temperaturen zu betreiben, um die mittlere thermische Besetzungszahl n̄th zu

reduzieren. Um jedoch Quanteneffekte eines mechanischen Oszillators bei Raumtemperatur

zu beobachten– ein seit Langem bestehendes Ziel der Quantenoptomechanik–, führt kein

Weg an der Isolierung des mechanischen Oszillators von seiner thermischen Umgebung, also

der Reduzierung der Dissipationsrate, vorbei. Daher ist ein mechanischer Oszillator mit ver-

ringerter Dissipation einer der Hauptanstrengungen und der Schlüssel, um Quanteneffekte

mechanischer Oszillatoren bei Raumtemperaturen zu messen und der Fokus dieser Arbeit.

In dieser These stellen wir verschiedene Strategien vor, um mechanische Verluste zu verringern

und beispiellos hohe Qualitätsfaktoren zu erreichen. Zuerst beobachten wir, dass die Anwe-

senheit von ursprünglicher Zugspannung im mechanischen Oszillator zu einer Verstärkung

der intrinsischen Materialverluste durch einen Prozess namens “Verlustsverdünnung“[13]

führt. Später studieren wir die geometrischen Ursprünge von Verlustsverdünnung durch

die grundlegenden Bewegungsgleichungen und finden heraus, dass “geometrische Nichtli-

nearitäten“ für diese Verstärkung zuständig sind [14]. Danach versuchen wir analytisch die

Verlustsverdünnung von Balken- und Membrangeometrien zu berechnen und beobachten,

dass die Krümmung nahe der Klemmpunkte (Klemmverluste) die grösste Limitierung in

dem Betriebsverhalten von Hochspannungs-Si3N4-Mikroresonatoren darstellt. Wir stellen

sowohl theoretische als auch experimentelle Resultate vor, die Q×-Produkt und Q/m, wel-

che die zwei Gütezahlen in Verbindung mit den zwei fundamentalen Herausforderungen

Quanteneffekte eines mechanischen Oszillators zu beobachten, sind, verbessern. In unserer

dritten und effektivsten Strategie zeigen wir, dass die Delokalisierung von Flexbewegungen

in Si3N4 mittels geometrisch verstärkter Spannung zu einem zuvor unerreichten Regime von

mechanischen Quatiltätsfaktoren führt. Mit räumlich nicht-uniformen phononischen Kristall-

strukturen auf Balken mit hohem Aspektverhältnis (Dicke von 20 nm und Länge von 7 mm)

produzieren wir Pikogramm schwere Flexmoden mit Raumtemperatur Q-Faktoren von bis

zu 800 Millionen und Q × f -Produkten über 1015 Hz – beide unübertroffen für mechanische

Oszillatoren jeder Grösse. Bei Umgebungstemperatur erreichen die Geräte, die wir studieren,
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Kräftesensitivitäten von aN/
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Hz und können zur selben Zeit hunderte von Oszillationen

während ihrer thermischen Dekohärenzzeit durchführen. Diese Resultate signalisieren einen

Paradigmenwechsel in der Kontrolle von Dissipation in nanomechanischen Systemen mit

Einfluss von Präzisionskraftmikroskopie bis zu Quantengravitation. Mit diesen Resultaten

scheint das seit Langem bestehende Ziel, Quanteneffekte von makroskopischen Objekten bei

Raumtemperatur zu beobachten, in Reichweite. Die Kombination des materialunabhängigen

Ansatzes, präsentiert in dieser Arbeit, mit kristallinen oder 2D Materialien kann zu weiteren

Verbesserungen mit unbekannten Limitationen führen.
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1 Ultra-high-Q mechanical resonators

“[· · · ] we regard the struggle to isolate one degree of

freedom from all others - i.e., the struggle for high Q -

as a noble task for experimenters.”

V. Braginsky, Systems with Small Dissipation [15]

1.1 History of the pursuit of the high-Q mechanical resonators

From the early days of classical mechanics, in the pioneering experiments by the founding

fathers of modern physics such as Newton, Hooke and other leading scientists of 18th and

19th century, mechanical oscillators were the work horse of modern science. In fact, many

of these initial experiments were “optomechanical” experiments, a canonical example is the

Cavendish’s experiment. In a fascinating series of experiments in 1798, Henry Cavendish used

“torsion balance” mechanical oscillators in what could be considered as the first optomechani-

cal experiment to measure the gravitational constant, G [16]. In this experiment, schematically

illustrated in Fig. 1.1, the torsion balance is made of two 0.73 Kg lead spheres attached to

opposite ends of a 1.8 m wooden rod (red spheres in Fig. 1.1.b) and the entire system was

suspended from the roof by a wire 51 mm in diameter. Then two 300 mm lead balls weighting

158 kg each, were positioned on the alternate sides of the resonator (gray spheres in Fig. 1.1.b).

The gravitational attraction between the small and the large lead balls causes the arm to rotate,

twisting the wire in the process. The arm would come to a resting angle where the twisting

force of the wire balances the gravitational force between the balls. By measuring the rotation

angle of the small spheres and calibrating the torsion coefficient 1 of the wire (by measuring

1Torsion coefficient is the equivalent of the spring constant for torsional modes in the angular form of the
Hooke’s law: τ=−κθ, where τ is the torque, κ is the torsion coefficient and θ is the angle.
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Chapter 1. Ultra-high-Q mechanical resonators

the natural resonance frequency of the torsion balance oscillator), Cavendish was able to

measure G more than 3 centuries ago with amazing precision. His recorded value defers only

by 1% from 2014 recommended value of 6.67408×10−11 m3 kg−1 s−2 set by CODATA2 [17].

m

F

F M

M m

r

L/2

A
B

Figure 1.1 – Cavendish’s experiment for measuring the gravitational constant, G. A) The
original figure from Cavendish’s 1798 paper [16] at Philosophical Transactions of the Royal
Society of London. B) Schematic representation of the experiment (taken from [18] )

There are several interesting facts worth noting about the Cavendish’s experiment. An experi-

mental apparatus built more than 300 years ago,which still bares interesting resemblance to

today’s modern optomechanical experiments:

1. To prevent air currents and temperature fluctuations from interfering with his measure-

ments, Cavendish placed the entire apparatus in a closed wooden box with 61 cm thick

walls and dimensions of 10m×3m×3m. This is similar to the vacuum chambers and

temperature isolation stages used in modern experiments to isolate the system from gas

damping and temperature fluctuations.

2. At its core, Cavendish’s experiment was an optomechanical force sensor. With his setup,

he was able to measure forces as small as 1.74×10−7N equivalent to approximately

5×10−5 times smaller than the weight of his test masses [16], a remarkable sensitivity for

its time. Cavendish measured the force by detecting the displacement of a mechanical

resonator, a method still used in modern force sensors [6]. It is interesting to note that

over the past 300 years and even today, mechanical oscillators, whether they are used in

macro or micro dimensions, are among the best choices and transducers of force [6],

acceleration [5], mass [2, 3], charge [4] and etc.

3. Similar to a modern optomechanical sensor, Cavendish used optical techniques to

measure the displacement of his test masses. As illustrated in Fig. 1.1.a, he shined

2International Council for Science Committee on Data for Science and Technology

2



1.1. History of the pursuit of the high-Q mechanical resonators

collimated light (analogous to the modern lasers) from one of the two holes in the walls

and observed the displacement via a telescope mounted on the second hole on the other

wall (analogous to the modern photodetectors, he used his eyes as the detector). With

this technique he was able to measure displacements with accuracy better than 25μm, a

record which stood for nearly a century until it was eventually beaten by Charles V. Boys

in 1894 [19], [20].

After this “golden era” of the mechanical oscillators as an essential instrument in the scientific

community in 18th and early 19th centuries, simultaneously by the discovery of electricity,

electromagnetism, relativity and quantum mechanics, mechanical oscillators slowly lost their

importance in the frontier scientific research. It would be decades in the future before the

technology is advance enough to allow the control of dimensions at micro and nano-scales

paving the way to fabrication of the first [21] micro-electro-mechanical systems (MEMS), a new

golden age for mechanical oscillators in which dozen of different mechanical based sensors,

clocks, RF filters and switches are used in our smartphones, laptops and other electronic

products. One exception to this trend (dark age of mechanical oscillators) was the watch indus-

try, which continued to rely on the stable resonance frequency of the mechanical resonators

for time keeping purposes. Quartz crystal oscillator were invented at Bell labs in 1918 [22],

and have ruled the time keeping industry for decades including today. This is mainly due to

two factors: I) their intrinsically high quality factor (∼ 106) at room temperature [23] which

leads to low phase noise. II) small long term drifts achieved with specific cut angles. Over the

course of many years, engineers in the quartz industry have learned to cut crystals in specific

angles such as AT-cut (temperature-compensated) [24] or SC-cut (stress-compensated) [25]

where the resonance frequency has the minimum susceptibility to temperature and other

environmental fluctuations. Quartz oscillators creates a platform not for stable time keeping,

but also for studying the physics of mechanical loss. In deed, it should be emphasized that

to the best of our knowledge, the highest quality factor that has ever been reported for an

engineered mechanical oscillator at any temperature is 8×109 at 204 MHz, achieved for the

65th overtone of a SC-cut commercial planoconvex quarts oscillator measured at 3.75 K [26].

Continuing with the history of high Q mechanical oscillators, after this period of down fall of

mechanical oscillators from the frontiers of scientific research, in an interesting turn of events,

it was again gravity which brought mechanical oscillators back to the fore front of the scientific

community. In the mid-20th century through their efforts to detect the gravitational waves [1],

predicted by Einstein’s theory of general relativity [27] that researchers turned their eyes back

on high Q mechanical oscillators as precision measurement tools. From the first proposals

on gravitational wave detectors, whether in the form of resonant bar gravitational antenna

such as Weber bars [28] (Fig. 1.2.A) or in the form of kilometer- long laser-interferometer-

based detectors [29] [30], such as the LIGO3 experiment (Fig. 1.2.B), these detectors rely

on massive high Q mechanical oscillators in their detection schemes. One fundamental

difference between the modern gravitational wave detectors and Cavendish’s experiment, is

3Laser Interferometer Gravitational-Wave Observatory
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Chapter 1. Ultra-high-Q mechanical resonators

A B

Figure 1.2 – Two generation of gravitational wave detectors. A) Joseph Weber with one of
his aluminum cylinder resonant bar gravitational detector known also as Weber bars [Photo
courtesy of AIP Emilio Segrè Visual Archives] B) Long interferometric gravitation wave detector
such as LIGO [Photo courtesy of Caltech/MIT/LIGO Lab]

that due to the extremely small nature of the displacement caused by gravitational waves,

the thermal Brownian motion [31] of the mechanical oscillator poses a fundamental limit on

the detection sensitivity. Since the environmental noise scales as 1
Q [9], high Q mechanical

oscillators had to be used in order to reduce the thermal noise. This led to an extensive

study of dissipation mechanisms in different materials and designs in pursuit of ultra-high-Q

mechanical oscillators conducted in 1960s and 1970s. This journey still continues today and is

the basis for this thesis.

The first experimental attempts to study the dissipation mechanisms in materials (especially

in the 1950s) were based on measuring the acoustic absorption of ultrasonic waves launched

in different materials [32], [33], [34]. Due to technical difficulties in calibrating the coupling

efficiency from the source to the resonator, as well as the issues associated to back reflections

and scatterings of traveling waves, these measurements were not sensitive enough accurate

to measure 10 ppt level required to measure dissipation for ultra-high-Q resonators (Q >
100×106). Therefore, starting in the early 1960s, scientist became favoring resonance-based

techniques to measure losses. In this technique, a mechanical resonator, made out of the

material of interest is excited at its natural resonance frequency and upon reaching a certain

amplitude, the drive is then turned off and the amplitude of the free running resonator

is observed as it rings down. Due to various dissipation mechanisms, the oscillator loses a

fraction of its energy with every oscillation and its motional amplitude decreases exponentially

over time. Figure 1.3 shows an example of a typical ringdown. By measuring the time constant

of its decay, one can infer the quality of the resonator and thereby the lossiness of the material.

In appendix A.I, we discuss the physics of simple harmonic oscillator in details, where we drive

the ringdown equation as time-domain solution to the equation of the motion of a mechanical

oscillator eq. (A.I.32):
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1.1. History of the pursuit of the high-Q mechanical resonators

x(t ) = x0e
−Γm

2 t sin(Ωm t )u(t ) (1.1)

Here Γm and Ωm are the damping rate and resonance frequency of the oscillator, respectively,

expressed in angular frequency units, and x0 is its initial amplitude. In appendix A.I, we

demonstrate that the amplitude of a free-ringing oscillator decays with the rate of Γm/2 and

its energy decays with Γm . Therefore, Γm is commonly also known as the “energy decay rate”.

We define the quality factor of a resonator to be the ratio of its natural resonance frequency to

its energy damping rate:

Q ≡ Ωm

Γm
(1.2)

The ringdown technique circumvent numerous technical challenges faced by the traveling

wave approach. In particular, it does not rely on knowledge of input/output coupling efficien-

cies. it is also well-suited to measurements of low-level loss.

x(t) = P

m meff
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- m
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Impulse force, F(t)= p (t)

Figure 1.3 – Impulse response of a simple harmonic oscillator with Q = 20. Dashed green
lines show the exponential decaying envelope of the damped oscillation. Inset shows the delta
Dirac impulse force applied at t = 0 to the oscillator.

Russian scientists were among the first to extensively use the ringdown technique to study the

mechanical losses of different materials, in 60s and 70s. They observed quality factors above

10 million in the 1960s [35] , [36] at room temperature and over 1 billion at 70s at cryogenic

temperatures [37], [38]. This is equivalent of detecting less than 1 part per billion (ppb.) energy

loss per oscillation. Ringdown is the only reliable measurement technique that can offer the

sensitivity required to measure such a small mechanical loss.

It should be noted that an alternative approach to ringdown is to use the frequency domain
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Chapter 1. Ultra-high-Q mechanical resonators

techniques in which the line shape of the resonance is measured either in a driven response

measurement where the frequency of the driving force is swept cross the resonance or by

detecting the power spectral density of thermo-mechanical motion [39]. In appendix A.I we

demonstrate that for a high Q resonator, lineshape can be approximated with a Lorentzian

lineshape where the “Full Width Half Maximum” (FWHM) of the lineshape is equal to the

energy damping rate:

Q = Ωm

ΔΩ
, FWHM =ΔΩ= Γm (1.3)

To choose which technique is the best choice for measuring the Q, it depends largely on the

damping rate of the mechanical oscillator and the speed of the measurement instruments.

As a general rule of thumb, we normally choose the method that give us more points for the

fitting (either an exponential or a Lorentzian). For large damping rates (usually larger than

10-100 Hz) the frequency techniques are favored as the lineshape of such a resonator is broad.

For example for a mechanical oscillator with Γm/2π=10 KHz, depending on the settings of the

spectrum analyzer for the span and the number of points and RBW4, there could be 1000s of

data points in the frequency response that forms the Lorentzian lineshape and statistical errors

for fitting are minimized. On the other hand, ringdown of such resonator will only take about

τ= 1/Γm = 100 μs. Even with a 100 KHz sampling rate, the time domain response will only

contains few 10s of data points which increases the fitting errors if the time domain techniques

are used. But when we are dealing with a mechanical oscillator with for example Γm = 10 mHz,

even the best spectrum analyzers with RBW=1 Hz cannot resolve its lineshape. Ringdown time

of such an oscillator however, will last for several minutes and provides 1000s of data point for

an excellent fitting to an exponential. Putting this technical fact aside, in general, ringdown is

considered to be more reliable than frequency domain techniques as they are less sensitive

to frequency fluctuation of the oscillator. In case of presence of frequency fluctuations, the

spectral broadening of the lineshape can occur which lead to underestimation of the quality

factor.

Going back to the history of high Q mechanical oscillators, the pioneering efforts were mostly

tailored around the studying of the mechanical dissipation in crystalline materials which

were considered as a candidate for massive mirrors in gravitational detectors; as well as low

loss clamping strategies for mirror suspensions. Figure 1.4 shows examples of experimental

apparatuses where cylindrical shape resonators were hanged via suspension wires (normally

Tungsten wires as they proved to have less losses [40], [41]). Different materials such as silicon

[38][41][42], sapphire [15][43][44][45], quarts [35] [37][36], fused silica [46] [47][46][48][49] ,

CaF2 [50][51], MoS2 [40], Spinel [52], YAG [52], aluminum [53] [54] and tungsten [40] have

been studied over that last 60 years. It is important to emphasize a fundamental assumption

behind all these experimental efforts that the intrinsic material losses are frequency- and, to a

large extent, geometry-independent. We will revisit this assumption in later sections where

4Resolution Band Width
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1.1. History of the pursuit of the high-Q mechanical resonators

A) B) C)

Figure 1.4 – Examples of experimental apparatus to measure high Q suspended cylindrical
shape substrates. A) The 40 Kg mirrors and the suspension system for advance LIGO. Mirrors
are made of fused silica and suspended by fused-silica wires. The image is taken from [55]. B)
3D design of a measurement setup used to study the mechanical losses of different materials.
These setups are built in way to resemble the LIGO suspension structure in A. Image taken
from [41], C) Schematic of measurement apparatus used to study the mechanical losses of
different materials. Image taken from [43].

we discuss different loss mechanisms and the role of geometry in reducing the dissipation of

mechanical resonators. In the framework of an elastic theory, intrinsic material losses can be

written as the ratio of the real to the imaginary part of the material’s Young’s modulus:

Q = Ereal

Eimag
(1.4)

It has been experimentally demonstrated as early as 1920s [56] that both real and imaginary

parts of the Young’s modulus are weak functions of the frequency and could be considered

frequency independent constants for a wide range of the frequency band. This means that

researchers didn’t need to reconstruct the expensive setups of LIGO with 40 kg mirrors [55]

in order to study mechanical losses (figure 1.4.A). Assuming that the intrinsic Q is frequency

independent, material losses could be studied in smaller and cheaper samples (figures 1.4.B,

1.4.C) and the results could be extended to the size and frequency of the actual LIGO mir-

rors. In the next section, we will observe that such an assumption holds even for mico- and

nano-mechanical oscillators and that the intrinsic Q, to a large extent, remains frequency-

and geometry-independent for bulk resonators. We will also observe one exception to this

seemingly in-dependency: the surface losses, which effects the thin film resonators for which

the intrinsic Q scales linearly with the film’s thickness [57]. However, even surface loss remains

a frequency-independent parameter.

Alongside experiments, there have been extensive theoretical efforts in the last 60 years to

understand the origin of mechanical dissipation. This accounts to modeling the micro-physics
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Chapter 1. Ultra-high-Q mechanical resonators

behind the imaginary part of the Young’s modulus (Eimag) in equation (1.4). There have been

many theoretical proposal regarding the origin of mechanical dissipation. A summery can be

found in chapter II of Vladimir Braginsky’s celebrated book, “System with Small Dissipation”

[15]. We also refer the reader to the review given in [58]. In this thesis we do not explore the

micro-physics of mechanical losses but instead focus on the effect of elastic tensile strain

on the enhancement of the Q (phenomenon known as dissipation dilution [59]). Therefore,

without going into the details of micro-physics of losses, we have list the main dissipation

models and relevant references:

• Thermoelastic damping (QThermoelastic) [60][61][62][63].

• Phonon-phonon scattering (also know as Akhiezer loss-QAkhiezer) [64][65][66][67].

• Two level systems (TLS-QTLS) [68][69][70][71].

• Surface losses (QSurface) [57], [48], [72], [73].

One of the challenges of studying the mechanical loss is that even by today, we do not have

a proper quantum theory for material losses (a quantum theory of friction) that can fully

describe all the physical observations in regards with high Q mechanical resonators (for

example the Q-temperate curves of different materials [71]). Each of the above models can

only explain a few observations and fails to predict the others. One of reasons behind this

difficulty is the additive nature of mechanical dissipation that is the total loss (the quantity is

measured in experiments), is in practice a sum of several different components:

Q−1
tot =

∑
n=i

Q−1
i ≈Q−1

Material +Q−1
Radiation +Q−1

Evanescent +Q−1
Gas (1.5)

As in customary, here we have approximated the loss as sum of four contributions QMaterial

refers to the internal losses in the material, originated from the friction which is modeled

phenomenologically by the imaginary part of Young’s modulus. We will study this loss channel

in section 1.3 of this chapter, QRadiation refers to acoustic radiation into the substrate and

becomes a dominant factor especially at high frequencies where the acoustic wavelength

is comparable to the physical dimensions of the system. In this regime, acoustic energy

starts to leak into the substrate as we move to higher frequencies. We will study this loss

channel in section 1.6 and present techniques on how to fight it. QEvanescent associates with

the near field region of the acoustic field [74] (as opposed to radiation loss which is a far field

phenomenon). We briefly discuss this type of loss at the end of section 1.6 and argue that it is

responsible for relatively low Q of the fundamental mode of Si3N4 membranes [75]; Last but

not least, QGas is known as gas damping and refers to the viscous damping that an oscillator

experiences in the presence of air molecules. We will discuss this type of loss in appendix A.II.

A common technique to fight gas damping is to operate at low pressures in a vacuum chamber.
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1.1. History of the pursuit of the high-Q mechanical resonators

In appendix A.II we present the designs for a custom-made ultra-high vacuum (UHV) chamber

with which we realized record-breaking Q values.

In practice, several of these loss channels are usually present at the same time, each accounting

for a fraction of the dissipated energy. Often, some of these loss-channels have comparable

traces and fingerprints which leads to an infamous confusion and misinterpretation among

the scientists in the past [76], [77], [78]. Isolating a single channel to study it independently

can be technical challenging. In this thesis, we try to study the different channels presented

in equation (1.5) and discuss their scaling laws with frequency, geometry and other design

parameters.

If external loss mechanisms are eliminated (QRadiation , QEvanescent , QGas), the mechanical Q

is ultimately determined by internal losses of materials, QMaterial, which macroscopically is

caused by friction. As mentioned above, there is still a debate about the true origin of the micro

physics of internal loss , QMaterial is therefore usually divided into multiple subcategories:

Q−1
Material =Q−1

Surface +Q−1
Thermoelastic +Q−1

Akhiezer +Q−1
TLS +·· · (1.6)

It is important to note that studying the micro physics of losses is beyond the scope of my PhD

research and for the completion of this review, I only provided few references for the interested

reader with regards to each loss model. Instead, in this thesis we focus on the geometrical

techniques and ideas on how to enhance QMaterial by taking advantage of elastic tensile strain.

Our discussion and models in sections 1.2, 1.3 are completely material-independent. We

implement them experimentally on high stress Si3N4 [78] because of its availability and our

previous experience with the fabrication of Si3N4. However, our techniques can be used

on any material under tensile stress. It is an opportunity for the next generation of PhD

students to apply these techniques to new materials especially crystalline materials such as

strained silicon [79], strained germanium [80], strained InGaP [81] which may lead to improved

performance.

Continuing with the history of high Q mechanical oscillators: Experimental efforts to study

the intrinsic material quality of different substrates led to the discovery of a new method to

enhance the quality factor which later became known as “dissipation dilution” [82]. From our

daily experience, stretching a guitar string not only increases its pitch (resonance frequency)

but the time over which its sound can be heard (its coherence time). In the similar fashion, as

illustrated in figure 1.4, under the heavy weight of LIGO mirrors, the suspension wires of the

mirrors are under a high tensile stress. Researchers observed that the flexural (“violin”) modes

of these suspension wires[83] [84] [85], had larger quality factors compared to their unstressed

intrinsic Q of the material that the wire was made of [86], [87]. Extensive theoretical studies

[82], [13] on this “stress enhancement” effect took place in the 1990s. This led to the invention

of the concept of dissipation dilution [82], in which the intrinsic quality factor of a material,

Qint, is enhanced by a unit-less number, DQ :
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Chapter 1. Ultra-high-Q mechanical resonators

Qσ
Material =QintDQ (σ) (1.7)

where σ is stress in the material. We will explore the details of dissipation dilution in sections

1.2 and 1.3. It is important to note that studies by G. Gonzfilez and P. Saulson [82], [13] in

the 90s are important landmark which form the backbone of our analysis in that chapter.

However, it was not until about 15 years after these pioneering works, that dissipation dilution

resurfaced again at a completely different scales (micro/nano scale), as a means to understand

the mechanism behind the exceptionally high mechanical quality factor of strained micro-

and nano-mechanical.

Since 1965 and the invention of the first "micro-electro-mechanical systems" (MEMS) [21], a

new horizon for micro- and nano-mechanical oscillators has appeared. Micro-mechanical

oscillators began to appear in our daily lives in the form of sensors, filters and switches used

in our smart phones, cars, airplanes and other applications. Miniaturization of mechanical

oscillators not only significantly reduced the foot print of these MEMS devices (to the point

where they could fit in our handheld electronics such as tablets and smartphones), but also

came with the added bonus of extra stiffness, k. In general, the stiffness of a mechanical

objects scales inversely with its length scale, k ∝ L−1. Large stiffness is essential for portable

applications where the device might experience more than 1000 g shock [88] if dropped on the

ground. The extreme stiffness of MEMS devices enabled delicate and fragile mechanical sys-

tems of the past to be carried around in our watches, phones and other consumer electronics

without the risk of breaking them.

Miniaturization of mechanical oscillators, however, came with a cost: lower quality factors.

A graphical review by M. Imboden et al.[89] reproduced in figure 1.5, illustrates the problem

beautifully. We believe this scaling might be attributed to the increase of surface to volume

ratio for smaller devices and dominance of the surface losses [94][95].

In the early applications of MEMS however, mechanical Q was not a major concern and

oscillators were typically limited by their intrinsic material losses. Few techniques were

available to achieve higher intrinsic Q: for example, using different materials with higher

intrinsic Q, surface treatments, annealing and operating at cryogenic temperature. The

emergence of quantum electro/optomechanics in the early 2000s changed the landscape and

pursuit of mechanical oscillators with ultra-low dissipation became a high priority, particularly

for micro/nanoscale devices. In the past decade, we have observed a “Moore’s law” for

mechanical dissipation where by each year mechanical oscillators with higher quality factors

and longer coherences are introduced. Today, the highest reported value of the mechanical Q

(at room temperature) belongs to the work presented in this thesis , a value of Q 1 billion at

room temperature. This record is likely be broken in the near future.

Another breakthrough in the field of high Q micro/nano-mechanical resonators was the

development of high stress Si3N4 string resonators in 2006 by the group of Harold Craighead
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1.1. History of the pursuit of the high-Q mechanical resonators

A) B) C) D)

Figure 1.5 – Q versus resonator volume taken from [89]. This plot, phenomenologically
shows that mechanical Q reduces with resonator size. Overlaid, are the high stress Si3N4

resonators in the past 10 years, which have emerged as exceptions to this phenomenological
scaling: A) Strain-engineered and soft-clamped beams [90], B) soft-clamped membranes [91],
C) trampoline resonators [92][93], D) commercial Si3N4 membrane resonators [75]

[78] followed shortly by Si3N4 membrane resonators in 2008 and 2009 [96][75]. LPCVD5

deposition of stoichiometric silicon nitrite (Si3N4) on silicon substrate results in relatively

uniform ∼ 1.2 GPa of tensile stress in the film [97] (Varying with deposition conditions such as

temperature, pressures and etc.). As we will present in later sections, this initial stress is the

key to our Q-enhancement techniques.

In the early days of high stress resonators in the micro/nano mechanics community, there

was a confusion about the origin of the exceptionally high Q factor of Si3N4 resonators. In

2010 Q. P. Unterreithmeier et al. [98] presented a detailed explanation for the anomaly of Si3N4

resonators, and numerically demonstrated the concept of stress-induced dissipation dilution.

Shortly thereafter, an analytical model for dissipation dilution was reported by S. Schmid et al.

[99]. Schmid’s formalism serves as an important building block theoretical discussion later

in this chapter. Another important insight into the exceptional Q factor of Si3N4 resonators

5Low pressure chemical vapor deposition
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Chapter 1. Ultra-high-Q mechanical resonators

was provided in 2014 by Villanueva et al. [57]. They phenomenologically demonstrated that

such oscillators are limited by the surface loss, manifesting as an intrinsic quality factor which

scales linearly with the device thickness, Qint ∝ h.

Schmid et al. [99] demonstrated that a major factor limiting the quality of high stress resonators

is the sharp curvature of the mode shape near the clamping points. Therefore, the next big

question in the field of ultra-high Q mechanical oscillators was that if there is a technique that

allows us to engineer a smooth curvature near the clamping areas. In 2017, Tsaturyan et al.

[91] demonstrated that by incorporating a carefully patterned phononic crystal [100],[101]

into a high stress Si3N4 membrane resonator, the bending curvature at the clamping area

can be strongly suppressed and this leads to a dramatic increase in the quality factor. Using

this technique , which they named “soft clamping”, Tsaturyan et al. [91] were able to realize a

quality factor of 200×106 for a 770 kHz mode, operating at room temperature. In this thesis,

we applied the soft clamping technique for the first time to a beam resonators, an object

with ∼1000 times smaller mass. In addition, we explored a new technique where we enhance

the local stress via geometrical means [102][103] from a weak deposition stress of ∼ 1 GPa to

∼ 6 GPa, near the breaking point of Si3N4 (σyield). Especially, using a spatially non-uniform

phononic crystal pattern, we co-localize the strain and flexural motion of a Si3N4 nanobeam.

This combined strategy produces picogram-mass flexural modes with room-temperature

Q factors in the excess of 800 million and Q × f products exceeding 1015 Hz both values

are unprecedented values compare to any mechanical oscillator of any size and material

at room temperature. These results signal a paradigm shift in the control of dissipation in

nanomechanical systems, with impact ranging from precision force microscopy [6] to tests

of quantum gravity [104]. Combining the reported approach with crystalline or 2D materials

may lead to further improvement, of as yet unknown limitation.

In the following sections, we will walk through different aspects and challenges of design,

implementation and characterization of ultra-high-Q nano-mechanical resonators. We start

our analysis in section 1.2, by defining the dissipation dilution, DQ , in abstract. We will

observe its relation to the conservative and non-conservative parts of the stored energy in

the oscillator. In section 1.3 we lay down the theoretical foundations of this chapter. We start

with the basic theory of elasticity and show how dissipation dilution in a stressed mechanical

resonator arises in general due to a “geometrical nonlinearity”[14]. Then we demonstrate

that dissipation dilution is restricted to flexural modes of motion (in-plane and out of plane

modes of beams) , whereas other mode classes such as torsional, breathing and longitudinal

modes cannot be diluted by the stress. At the end of section 1.3 we specialize to a uniform

doubly clamped beam which will be used to inform the designs of ultra-high Q resonators. In

the section 1.4, we present three strategies to achieve enhanced Q and Q × f values. First we

observe that by operating at the optimum mode order of a long beam, we can create “quantum

enabled” mechanical oscillators with Q × f > kB T
�

. In our second strategy, the designs for the

soft clamped beams and details of the phononic crystal and band structures are discussed

which will be followed by the experimental demonstration of soft-clamped beams. Next we

present our geometrical method for strain engineering in 1D objects and how to create regions
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1.2. Dissipation dilution and lossless potential

with locally enhanced stress by tapering the width of the resonator. Then we show how to

combine the soft clamping with strain engineering using a special non-uniform phononic

crystal as our third and most effective strategy and how to co-localize the displacement and the

regions of high stress to achieve even further boost on the Q factor. Then we experimentally

demonstrate the performance of these strained enhanced soft-clamped beams where we

show case our record-breaking quality factor of 800 million for a megahertz oscillator at room

temperature as the main experimental achievement of this thesis. In section, 1.5, we review an

example where we apply our strain engineering method specifically to the clamping regions

on a doubly-clamped beam and show how by removing mass at the clamping region can

result in enhanced Q factors. Finally, in section 1.6, we study a form of loss which cannot be

addressed by dissipation dilution: radiation loss. We demonstrate how radiation loss becomes

dominant at frequencies above a certain threshold. We conclude this chapter by presenting a

phononic crystal shielding technique to reduce radiation loss and realize intrinsic Q values for

resonator modes at VHF and UHF frequencies.

1.2 Dissipation dilution6

The origin of dissipation dilution has been the subject of a long debate. When the phenomenon

was first discovered in suspension wires of the test masses in the gravitational waves detectors,

it was explained by an additional lossless gravitational potential “diluting" lossy elastic energy

[82]. Surprisingly and in contrast to this picture, the same phenomenon was also found

to enhance Q factors of suspended nanomechanical resonators made of highly-strained

materials (most notably, silicon nitride resonators [98], [99]), where no external potential such

as gravity is present. The quality factors of flexural modes of strained uniform beams [99]

and membranes [105] were modeled and shown to be much greater than intrinsic material

quality factor, Qint., in excellent agreement with experiments [98], [57], [105], [101]. These

results established dissipation dilution to pertain to the domain of structural mechanics, but

the understanding of this effect is still incomplete. Open questions include: (1) What is the

physical origin of dissipation dilution due to tensile stress, (2) does it apply to mode families

other than flexural modes, and (3) to what extent can it be optimized, for a particular mode

family? Here we address these questions with a general and consistent theory of dissipation

dilution in solid-state resonators. The main difference from the original work of Gonzalez

[82][13], is that we do not resort to the concept of an a priori lossless potential and do not limit

consideration to a pendulum-like geometry.

We start with a high-level definition of dissipation dilution and argue for its geometrical origin.

In literature, dissipation dilution is commonly illustrated by a harmonic oscillator subjected

to an external lossless potential [82], as in the case of optically-trapped mirrors [106] , [107]

or massive pendula in a gravitational field [82]. In this thesis, we model material losses by

the imaginary part in the spring constant (or imaginary part of Young’s modulus for the case

of continues material) in contrast to velocity dependent damping term known as viscous

6The content of this section is published at [14]
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Chapter 1. Ultra-high-Q mechanical resonators

damping. It should be noted that one has to be careful when modeling the losses in this way

and introducing the complex numbers in the equations of motion, as it could lead to the

causality issues in such a model if the math is not properly done.

We begin by observing the effect of an external lossless potential on the mechanical oscillator.

The equation of motion of structurally damped oscillator is given by:

ẍ +Ω2
int(1+ iφ)x = Fext

meff
(1.8)

It is much easier to solve the equation of motion in the frequency domain rather than time

domain. Therefore, in this section and the following ones, we only work with the frequency

domain version of the equations:

(
Ω2

int −Ω2 + iφ(Ω)Ω2
)
= Fext(Ω)

meff
(1.9)

where Ωint is the oscillator intrinsic natural frequency, φ is the oscillator loss tangent [108],

meff is the oscillator’s effective mass and Fext is the external force applied to the oscillator.

In appendix A.I, we argued that if damping is dominated by material elastic losses, the in-

trinsic quality factor of the oscillator —Qint— is a frequency independent constant over a

large frequency span and is equal to the inverse of the material loss tangent (an important

phenomenological observation supported by many measurements [56] [109]); We define the

approximately frequency-independent, intrinsic quality factor:

Qint ≡φ−1 (1.10)

Now we introduce a lossless potential of the form Udil = 1
2 meffx

2Ω2
dil to the oscillator. Such

a potential can be applied using optical trapping potential [106] , [107], gravity [13] or as we

will see in section 1.5, via the static tensile stress in the elastic body. Since we assume this

potential is lossless (with no imaginary part), it only changes the resonance frequency of the

oscillator and modifies equation (1.9) to:

(
Ω2

int +Ω2
dil −Ω2 + iφ(Ω)Ω2

)
= Fext(Ω)

meff
(1.11)

The quality factor of the modified system is equivalent to the real part of it eigenfrequency

divided by its imaginary part:

Qdil =
Ω2

int +Ω2
dil

φ(Ω)Ω2
int

=Qint
Ω2

int +Ω2
dil

Ω2
int

(1.12)

we define to the dissipation dilution factor to be:
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1.3. Material elastic losses and geometric non-linearity

DQ ≡ Qdil

Qint
= Ω2

int +Ω2
dil

Ω2
int

(1.13)

this simple analysis shows that adding a loss less potential to a lossy potential, will result in

dilution of the quality factor of the oscillator. Intuitively, that the enhancement factor can be

expressed as the ratio of the lossless potential to the lossy potential as:

Uint = 1

2
meffx

2Ω2
int

Udil =
1

2
meffx

2Ω2
dil

⎫⎪⎪⎬
⎪⎪⎭=⇒ DQ = Uint +Udil

Uint
(1.14)

For flexural vibrations of tensioned beams or membranes, the Q enhancement takes place

in a way similar to (1.14) with the important distinction that in this case, unlike an external

optical or gravitational potential, the potential energy is in elastic deformation. Instead

of introducing an external potential, the elastic deformation potential is divided into lossy

(“bending”) and lossless (“elongation”) parts, related to the curvature and gradient of the

mode shape, respectively. It is not evident a priori, however, how to make this separation

in a general case and under which conditions the lossless part of the energy is non-zero. In

the following section, we answer both questions and show that effectively the lossless elastic

energy emerges if two conditions are satisfied: a) static strain is non-zero in the resonator and

b) the average of strain variation over the oscillation period is non-zero, i.e. the geometric

nonlinearity of strain is significant. In the next section, we first derive the Q dilution for a the

flexural modes and then for the a general complex geometry and mode flavor.

1.3 Material elastic losses and geometric non-linearity

In this section, we first start by driving the dissipation dilution of a specific example: flexural

modes of a doubly clamped beam (same derivation can be applied to the case of a membrane).

As we will show at the second part of this section, these modes experience a significant

dissipation dilution compared to other mode flavors such as torsional and longitudinal modes,

given a large enough initial stress in the film. Analyzing these modes gives useful insights into

the geometrical nature of dissipation dilution in elastic bodies and the notion of geometrical

nonlinearity. In addition, since we can analytically calculate the mode shapes of doubly

clamped beams and square membranes, we will be able to analytically derive the dissipation

dilution factors. These analytical solution will prove to be insightful when we present strategies

to enhance the quality factor by soft clamping and strain-engineering also will help us to

understand the source of loss in doubly clamped high stress beams.
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Chapter 1. Ultra-high-Q mechanical resonators

Dissipation dilution of flexural mode of beam/plate type resonators

In order to calculate the dilution factor, we have to calculate the elastic energy stored in the

material [63]:7

Uel =
∫

1

2
Eε2dV (1.16)

where E is the material’s Young’s modulus and ε is the strain. For an isotropic elastic material,

strain is defined to be the relative length change of the material for a given applied stress, as

illustrated in figure 1.6.

L

L ΔL

σ= P
Aσ

ε= ΔL
L

E = σ
ε

Figure 1.6 – Definition of elastic strain. ε in an isotropic elastic rod is defined as the fractional
length change to the applied stress where E is material’s Young’s modulus, σ is the stress, P is
the pressure applied to the rod , and A is the rod’s cross section.

In the following, we will prove that the strain in the flexural modes of a beam is in the following

form:

ε(u, z) = ε0(x)︸ ︷︷ ︸
pre-strain

− u′′
xx z︸ ︷︷ ︸

bending strain

+ (u′
x )2

2︸ ︷︷ ︸
elongation strain

(1.17)

where ε0(x) is the pre-strain in the material at position x along the beam axis, u(x) is the mode

shape and z is the coordinate in the direction of motion. It should be noted that since a beam

with non-uniform width w(x), the pre-stress is not constant along the length of the beam

and is inversely proportional to the local width ε0(x) ∝ 1
w(x) . Will revisit this issue in the next

section where we introduce our strain engineering strategy to locally enhance the stress by

tapering the beam’s geometry.

Proving equation (1.18) in not easy. First we show that for an infinitely thin beam, the elonga-

tion strain is induced as direct result of the mode curvature, u(x). Then we derive its value to be

equal to εen = (u′
x )2

2 , the third term in equation (1.18). Next we see that for a beam with a finite

thickness, different parts of the thickness experiences different stretching and contraction

7Equation (1.16) is the continuum form of the stored energy in a simple harmonic oscillator:

U = 1

2
kx2 (1.15)

where k is the spring constant (equivalent to E in the continuum form) and x is the oscillator displacement
(equivalent to ε in the continuum form)
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1.3. Material elastic losses and geometric non-linearity

(strain) due of the bending curvature of the beam which leads to the second term in equation

(1.18).

Figure 1.7 illustrates the elongation strain for a beam with infinitely thin thickness and the

mode shape of u(x). It is illustrated in the figure that the elongation strain is equal to εen = (u′
x )2

2 .

This shows that the relation between elongation elastic strain and the mode shape is nonlinear

(quadratic). We will observe that this nonlinear relation will lead to a lossless potential and is

responsible for the Q dilution in high stress beams and membrane resonators. This quadratic

relation is what we refer to as “geometrical nonlinearity” in this text.

lel

l
l

l

l

l

l+
l el

l 

tanθ = u′
x

l +Δlen =
√

l 2 + l 2(u′
x )2

Δlen = l
(u′

x )2

2 =⇒ εen = (u′
x )2

2

Figure 1.7 – Derivation of elongation strain. Mode shape curvature, u(x) of an infinity thin
beam, creates elongation of the beam (orange region). In this figure, we prove that the

elongation strain is equal to εen = (u′
x )2

2 .

Calculating the bending strain however, is more challenging. Figure 1.8 shows that for a beam

with a finite thickness, different parts of an infinitesimal volume element experience different

strains because of the bending curvature. For example, in figure 1.8, due to continuity of the

material, the red region above the so called “neutral axis” experiences an additional stretching

and the orange region experiences compression. It is illustrated in the figure 1.8 that the strain

induced at each z position, is inversely proportional to the local radius of curvature — ξ— of

mode shape at each point.

It can be shown that for a smooth curvature of u(x) with small bending radius, an assumption

valid for most physical systems and beams, the inverse radius of curvature ξ, is equal to the

second derivative of the mode shape [110] [63]:

1

ξ
≈−u′′

xx =⇒ εbn(z) =−u′′
xx z (1.18)
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l0

l0+ lbn

l0  

lbn

lbn

l0 

Figure 1.8 – Bending strain for a beam with a finite thickness. In a beam with a finite thick-
ness, different parts along thickness, experience different stretch/contraction due to curvature.
For example, the red region experiences an extra stretching compared to the neutral axis
(dashed line) and the orange region experiences a compression. We show this extra strain
which is known as the bending strain is inversely proportional to the bending radius, ξ.

Now after proving the equation (1.18), the rest of the derivation is downhill. First we have

to calculate the elastic energy, eq. (1.16), using our formula for the strain in eq. (1.18), for a

beam with the length of l and the variable width and thickness of w(x) , h(x) respectively (our

derivation is valid for an arbitrary geometry in a beam as long as it remains symmetric in with

respect to two axial planes):

Uel =
∫

l
d x
∫w(x)/2

−w(x)/2
d y
∫h(x)/2

−h(x)/2
d z

E

2

(
ε2

0 + (u′′
xx )2z2 +

( (u′
x )2

2

)2 −u′′
xx (u′

x )2z −2ε0u′′
xx z +ε0(u′

x )2
)

=Uel.0 +
∫

l
d x

E

2

(
I (x)(u′′

xx )2︸ ︷︷ ︸
Energy stored in bending

+ A(x)ε0(x)(u′
x )2 + A(x)

(u′
x )4

4︸ ︷︷ ︸
Energy stored in elongation

)
(1.19)

where
∫

l d x is the integral over the length of the beam, Uel.0 =
∫

dV E
2

(
ε0(x)

)2 is the static part

of the elastic energy due to the initial stress in the resonator and I (x) and A(x) are geometrical

moment of inertia and cross-sectional area defined as the following:
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A(x) =
∫w(x)/2

−w(x)/2
d y
∫h(x)/2

−h(x)/2
d z = w(x)h(x) (1.20)

I (x) =
∫w(x)/2

−w(x)/2
d y
∫h(x)/2

−h(x)/2
z2d z = 1

12
w(x)h(x)2 (1.21)

Note that equation (1.19) doesn’t require that the beam cross-section to be rectangular and

would work equally well for a string with arbitrary cross-sectional shape which varies with

position, as long as A(x) and I(x) are defined as (1.20), (1.21).

Lets summarize all the energy terms in equation (1.19). The first term is the energy stored in

the bending deformation of the mechanical oscillator:

Ubending =
∫

l

E

2
I (x)(u′′

xx )2 (1.22)

the energy stored in elongation:

Uelongation =
∫

l
d x

E

2
A(x)ε0(x)(u′

x )2 (1.23)

and the last term is what we call it the energy term due to self-induced-stress.

Uself-stress =
∫

l
d x

E

8
A(x)(u′

x )4 ≈ 0 (for small amplitudes) (1.24)

where this term is usually negligible for small amplitudes as it contains higher orders of u′
x 
 1.

This term only becomes important when the oscillator’s amplitude is large. In that scenario,

the large amplitude of the resonance creates a non-zero average stress in the oscillator which

in turn, can dilute the Q similar to the static pre-stress of the beam. That is why we call this

term self-induced-stress. In this thesis, we only work with the linear regime of mechanical

oscillator where amplitudes are small and Uself-stress can be safely neglected. In summary, the

elastic energy stored in the material is given by:

Uel =Ubending +Uelongation (1.25)

The next step is to calculate the lost energy in the resonator. In order to calculate the lost

energy, it is easier to work with the phasor format. Where ũ(x, t ) can be written as the product

of the vibrating part with the frequency of Ωn and un(x) being the mode profile for the nth

mode:
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Chapter 1. Ultra-high-Q mechanical resonators

ũn(x, t ) = un(x)eiΩn t (1.26)

The sign ˜ indicates that ũn(x, t ) is a complex number in the phasor domain. We can always

retract the real-time domain values of our resonator by taking the real part of the phasor vector.

The strain in phasor domain can be written as:

ε̃(t ) = ε0 +u′′
xx zeiΩn t + (u′

x )2

2
ei 2Ωn t (1.27)

Similar to the last section (section 1.2) where we introduced the imaginary spring constant to

model the material intrinsic losses, here we assume that (phenomenologically) our material

has an imaginary part in its Young’s modulus which is responsible for the losses:

Ẽ = Er + i Ei , Qint =φ−1 = Er

Ei
(1.28)

Therefore, the relation between the stress and strain becomes:

σ̃(t ) = (Er + i Ei)ε̃(t ) (1.29)

In other word, the imaginary part of Young’s modulus creates a phase lag of φ between the

stress and strain fields which is responsible for losses.

The dissipated energy per unit volume averaged over one period can be written as:

wdiss = Real
{〈

σ̃(t ) · d ε̃∗

d t

〉
T

}
(1.30)

where = Real
{
· · ·
}

is the real part operator,
〈
· · ·
〉

T
is the time average over the time, T ( here it

is equal to one mechanical period T = 2π
Ωn

) and ∗ is the complex conjugate operator8. It should

be noted that eq. (1.30) is the continuum form of the equation ΔW =
〈

F ẋ
〉

T
which indicated

the average worked done on the oscillator by the force F . The second term of equation (1.30)

cab be written as:

d ε̃∗

d t
= iΩnu′′

xx zeiΩn t +2iΩn
(u′

x )2

2
ei 2Ωn t (1.32)

It is worth emphasizing that the pre-stress term, ε0, vanishes in the derivative of the strain.

This is the key factor for understanding the dissipation dilution of high stress resonators.

8 When a ,b are real numbers, then:
(a + i b)∗ = a − i b (1.31)
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1.3. Material elastic losses and geometric non-linearity

As we saw in equations (1.16), (1.30), the stored energy is proportional to Uel ∝ ε2 and the

dissipated energy is proportional to wdiss ∝ εε̇. Therefore, we observe the presence of the

non-zero pre-strain in the stored energy as it has a non-zero average and appears as Uelongation

and increases the stored energy, but it vanishes in the derivative and does not play a role in

dissipated energy. Therefore, the existence of a pre-stress in the beam, enhances the stored

energy but does not contribute to the losses. Consequently, it acts as a lossless potential which

in section 1.2 we demonstrate is responsible for Q dilution factor.

To simplify equation (1.30), we can use the lemma that the time average of the oscillatory parts

over one period is zero9 and only keep the non-oscillatory terms:

〈
σ̃(t ) · d ε̃∗

d t

〉
T
=−Ei

(
(u′′

xx )2z2 + (u′
x )4

2

)
+ i Er

(
(u′′

xx )2z2 + (u′
x )4

2︸ ︷︷ ︸
≈0 (small signal)

)
(1.34)

we observe that the existence of the imaginary part of the young’s modulus enables the (1.34)

to have a non-zero real part. Equation (1.34) means that a negative work is done on the

oscillator at each cycle due to the imaginary part of Young’s modulus. On the other word, the

oscillator is losing a fraction of its energy with each oscillation. By neglecting the non-linear

self-stress term in equation (1.34), we can calculate the dissipated energy per unit volume to

be:

wdiss = Real
{〈

σ̃(t ) · d ε̃∗

d t

〉
T

}
=−Ei (u′′

xx )2z2 (1.35)

Now the total lost energy to be the volume integral of wdiss:

Wdiss =
∫

wdissdV = Ei

2

∫
l

d xI (x)(u′′
xx )2 (1.36)

according to eq. (1.22) we have:

Wdiss =
Er

Ei
Ubending =

1

Qint
Ubending (1.37)

Therefore, the quality factor of the oscillator is the total elastic energy divided by the total lost

energy per cycle:

9For n is an integer number: 〈
ei nΩt

〉
T
=
∫T

0
ei nΩt d t = 0 (1.33)

if T = 2π/Ω
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Chapter 1. Ultra-high-Q mechanical resonators

Q = Uel

Wdiss
=QintDQ , DQ = Ubending +Uelongation

Ubending
(1.38)

by comparing the equations (1.38) and (1.14), we realize that the initial stress in the materials

acts as lossless potential for the oscillator. It increases its stored energy without adding losses

to the oscillator. On the other word, the bending of an elastic body is a lossy process but

the elongation is lossless. Here we have to emphasize that this argument is only valid if the

loss mechanism is due to the imaginary part of the Young’s modulus. In the general case,

for non-isotropic materials, if the Poisson ratio also have an imaginary component, then

elongation also becomes lossy. However, such cases are outside the scope of this thesis and

we only work with the models where Young’s modulus can be complex but the Poisson ratio is

real.

In summary, the dissipation dilution of a flexural modes of a symmetric beam or membrane

resonator is given by:

DQ = 1+
∫

l d x A(x)ε0(x)(u′
x )2∫

l I (x)(u′′
xx )2

(1.39)

In order to calculate eq. (1.39) we only need to know the beam/plate’s geometry (expressed in

I (x), A(x)) and its mode shape, u(x). However, it is usually very difficult to find an analytical

expression for the mode shapes of a resonator with arbitrary geometry except maybe for the

case of a simple rectangular uniform beam or a rectangular membrane [13] [99] [105]. In the

next section first we try to simplify the equation 1.39 for flexural modes of a high aspect ratio

beam (l /h � 1 and l /w � 1 where w,h, l are beam’s width, thickness and length respectively)

for an arbitrary geometry using few simple assumptions. Then at the end, for completion of

this chapter, we re-derive the dissipation dilution for a rectangular uniform beam as we believe

this example illustrates important insights toward engineering of ultra-high Q mechanical

resonators.

Equilibrium strain distribution in a suspended film and average stress

Until now we have considered beams of arbitrary variable transverse cross-section (both in

width and thickness). In the following we impose one geometrical constraints: a constant

uniform thickness. This is consistent with the fabrication methods where nano-mechanical

resonators are fabricated by suspending a micropatterned thin film. Although qualitatively

most of our conclusions are not affected by this assumption, it considerably simplifies the

notations while allowing the theory to be directly applied to a very broad range of practical

high-strain resonators. In particular, we assume that the y z cross section of the beam to

be rectangular, and the width w(x) to be, in general, x-dependent and the thickness to be

constant (for example see the representative geometries shown in figure 1.9).
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1.3. Material elastic losses and geometric non-linearity

Figure 1.9 – Examples of beam shapes with uniform thickness and non-uniform width that
will be explored in the next sections. A) Phononic crystal beam with “soft-clamped" localized
mode, B) Tapered phononic crystal beam with soft-clamped mode and engineered local strain
enhancement C) Beam with thin clamps and its fundamental mode.

Strain can be present in the thin film used for microresonator fabrication due to lattice

mismatch [81][79] between the film and substrate in crystalline materials or by mismatch in

their thermal expansion coefficients [111] in amorphous materials such as Si3N4. Although it

should be noted that to the best of my knowledge, the true origin of high stress in Si3N4 are

not completely understood and thermal stress only accounts for a portion of the observed

stress in the experiments. On the other hand, another phenomenon that has to be taken into

account is the anisotropicity of real materials modeled by Poisson’s ratio. Upon suspension, the

originally homogeneous strain inside the film is redistributed. The strain is locally enhanced

in constrictions between voids and reduced elsewhere [102][112][103].

The analysis of the vibrational properties of a beam in this case requires the axial tension force

T to be found first from the unsuspended deposition film strain εfilm =σfilm/E . This can be

done by considering that (a) the total elongation of the beam
∫l

0 ε(x)d x is constant over the

relaxation process, as it is defined by the separation of the beam clamping points (anchoring

pads) before releasing the structure (this defined as the total beam’s length of the resonator)

and (b) that the balance of tensile force requires:

ε(x)w(x) = const = T

hE
(1.40)

It should be noted that equation (1.40), although very simple, plays a crucial role in the next

sections where we present our methods on stress engineering to locally enhance the stress in

desired regions. We will observe in the section 1.4 that by tapering the width of a suspended

structure, we can locally increase the stress in that region and use it to enhance the quality

factor. From the initial condition

∫l

0
ε(x)d x = εfilm(1−ν)l (1.41)

where ν is the Poisson’s ratio and the factor (1−ν) accounts for transverse relaxation of the
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Chapter 1. Ultra-high-Q mechanical resonators

strain due to anisotropicity of the materials. Equilibrium tension is thus given by:

T = εfilmE(1−ν)h

(
1

l

∫l

0

1

w(x)
d x

)−1

. (1.42)

One other useful relation for the strain distribution follows from (1.40)

ε(x) = εavg

v(x)
(1.43)

where the εavg, v(x) are introduced as:

1. Mean beam width

wavg = 1

l

∫l

0
w(x)d x (1.44)

2. The normalized width variation function

v(x) = w(x)

wavg
(1.45)

3. The static average stress σavg, and strain εavg, is given by:

σavg = E εavg (1.46)

εavg = 1

hw0l

∫l

0
hw(x)ε(x)d x = T

w0h
(1.47)

which it can be simplified to:

εavg = εfilm(1−ν)(
1
l

∫l
0

1
w(x) d x

)(
1
l

∫l
0 w(x)d x

) (1.48)

However, based on Cauchy–Schwarz inequality 10

(
1

l

∫l

0

1

w(x)
d x

)(
1

l

∫l

0
w(x)d x

)
≥ 1 (1.50)

which means regardless of the geometry:

εavg ≤ εfilm(1−ν) (1.51)

Equation (1.51) has crucial implications. It means that although we can locally increase

the strain by narrowing down a region, the average strain can never be increased via the

10Based on Cauchy–Schwarz inequality [113] we have :∣∣∣∣∣
n∑

i=1
ui v̄i

∣∣∣∣∣
2

≤
n∑

j=1
|u j |2

n∑
k=1

|vk |2. (1.49)
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1.3. Material elastic losses and geometric non-linearity

geometrical manipulation. Also, the largest average strain belong to a uniform beams

where w(x) = const. It should be emphasized however, that for almost all the geometries

investigated in this thesis, the average stress is very close to the stress of the uniform

beam, εavg ≈ εfilm(1−ν).

Dissipation dilution of beams with rectangular cross section

In order to proceed with the explicit calculations of dissipation dilution, we first need to

find eigenfrequencies Ωn and vibrational mode shapes un of a beam. For a high aspect ratio

(l /h � 1 and l /w � 1) elastic beam, eigenmodes can be found by solving the Euler-Bernoulli

equation [63]
d 2

d x2

(
I (x)E

d 2un

d x2

)
−T

d 2un

d x2 −ρl (x)Ω2
nun = 0 (1.52)

where n is the mode index, ρl (x) = ρhw(x) is the linear mass density and I (x) is the geo-

metrical moment of inertia given by equation (1.21). In order to simplify the notation, it is

convenient to introduce a new normalized coordinate s = x
l , taking values from 0 to 1, and

transform (1.52) to a new form using eq.(1.21):

λ2 1

v(s)

d 2

d s2

(
v(s)

d 2un

d s2

)
− 1

v(s)

d 2un

d s2 − Ω̌2
nun = 0 (1.53)

where Ω̌ is the dimensionless frequency defined as:

Ω̌2 = ρl 2Ω2

εavgE
(1.54)

and λ is the stress dilution parameter defined as:

λ2 = 1

12εavg

h2

l 2 (1.55)

The high-stress/high aspect ratio regime corresponds to λ
 1.

For the case of a doubly clamped beam or a membrane, the equation of motion (1.53) is

supplemented with these boundary conditions⎧⎨
⎩u(0) = u(1) = 0

u′(0) = u′(1) = 0
(1.56)

Now we can rewrite the dissipation dilution, eq. (1.39), using our normalized parameters
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(s, v(s),λ,Ω̌) for the n-th order mode:

DQ,n = 1+ 1

λ2

∫1
0

(
u′

n(s)
)2 d s∫1

0 v(s)
(
u′′

n(s)
)2 d s

(1.57)

From this point, it is difficult to move forward without knowing the mode shape of the res-

onator which is typically very difficult to analytically calculate for an arbitrary geometry.

Especially because of the boundary condition of u′(0) = u′(1) = 0, the eigenmodes of Euler-

Bernoulli equation are not in the form of sinusoidal functions. However, we can use the

perturbation theorem to approximate the dissipation dilution for the case of a high aspect

ratio sdevice l
h � 1 which results in strong dilution (DQ � 1). Although this is the second

geometrical constrain that we are applying to our derivations, it is valid for a broad range of

micro-mechanical oscillators especially the ones we are interest in this thesis. For this, we fol-

low the method presented by S. Schmid et a. [99] where we separate the contributions due to

distributed region at the center and the clamping parts of the mode. At the distributed region

at the center, the mode shape approximately looks like a sinusoidal shape and exponential

near the clamping points illustrated in figure 1.10.

Since we are interested in the high aspect ratio beams where λ
 1, we can neglect the first

term in equation (1.53) for the regions far from the clamping points for our first perturbation

approximation. The first term in (1.53) only represent the bending, which weakly perturbs

the solution in the regions far away from the clamping points (see figure 1.10). Therefore, the

normalized Euler-Bernoulli equation for the regions far from the clamping points, modifies to:

− 1

v(s)

d 2un(s)

d s2 = Ω̌2
nun(s) (1.58)

For a fixed width, v(s) = 1, the solutions to equation (1.58) are sinusoidal as expected. However,

it could be more complicated for an arbitrary v(s). But the elongation and bending energy

integrals in eq. (1.57) can be transformed to a new form using partition integrals:

Uelongation-central =
∫1

0

(
u′

n(s)
)2 d s = u′

nun

∣∣∣∣1
0
−
∫1

0

(
u′

nu′′
n

)2 d s (1.59)

= Ω̌2
n

∫1

0
v(s)un(s)2d s

and

Ubending-central =
∫1

0
v(s)

(
u′′

n(s)
)2 d s = Ω̌4

n

∫1

0
v(s)3un(s)2d s (1.60)

In addition to the distributed contributions (sinusoidal parts at the center), the bending energy

includes a contribution from the clamping regions. In contrast, the elongation energy stored

in these regions is negligibly small since u′(s → 0) ≈ 0 but the bending energy ∝ u′′(x) is not.

In fact, we will observe that due to sharp and exponential curvature near the clamping area,
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1.3. Material elastic losses and geometric non-linearity

Figure 1.10 – Demonstration of sharp bending curvature at the clamping points due to
boundary condition. Shapes of third order flexural modes of beams assuming the values of
λ= 10−1, 10−3, 10−3. The zoomed-in region shows the mode in the clamping regions, which
illustrates an increase in bending curvature around the clamps with the reduction of λ.

majority of the bending energy comes from the clamping region.

Near the clamping points, the bending term in Euler-Bernoulli equation is significant due

to the boundary condition u′(0) = u′(1) = 0, but, on the other hand, u is close to 0 so we can

neglect the term Ω̌2
nu ≈ 0 in the equation (1.53). In the very small region around s = 0, to find a

close form for dilution factor, we are assuming that the beam width is approximately constant

and is equal to v(s) = vcl, therefore (1.53) reduces to11:

λ2vclu
′′′′(s)−u′′(s) = 0 (1.61)

The general solution is given by

u(s) =C1 +C2s +C3e−s/(λ
�

vcl) +C4es/(λ
�

vcl) (1.62)

where the constants C1−4 can be found from the boundary conditions: u(0) = 0, u′(0) = 0 and

u′(s �λ
�

vcl) = u′
cl,n , where u′

cl,n = u′
n(0) in which un are the solutions to the wave equation

given by (1.58), therefore it separately does not satisfy the boundary condition u′
n(0) = 0 per se.

Instead the sinusoidal function has to asymptote to the exponential solutions at the clamping

area given by (1.62). This ensures the continuity of our mode shape and that the two pieces of

our solution (exponential term near the clamping and sinusoidal at the center) are smoothly

connected. Explicitly for s around 0 the solution at (1.62) simplifies to:

u(s) = u′
cl,n

(
s +λ

�
vcl

(
e−s/(λ

�
vcl) −1

))
(1.63)

11the same conclusions can also be reached if v(s) is smooth and slowly varying function near the clamping
where its derivatives can be neglected.

27



Chapter 1. Ultra-high-Q mechanical resonators

We emphasize that the length of the clamping region has an ambiguous definition but the high

curvature region of the mode shape responsible to the majority of clamping losses is located

at 0 ≤ s ≤λ
�

vcl where the exponential term is dominant compare to the linear term in (1.63)

(beyond this region, the exponential term in (1.63) approaches to zero and its contribution to

the energy integral beyond s >λ
�

vcl is negligible) . The contribution of the clamping region

into the elongation and bending energy is found to be

Uelongation-clamping ≈ 0 (1.64)

Ubending-clamping =
∫∞

0
v(s)

(
u′′(s)

)2 d s = 1

2λ

�
vcl(u′

cl,n)2 (1.65)

Note, that the clamping region is small Δxcl/l =λ
�

vcl 
 1 and the bending energy stored here

is proportional to the magnitude of the mode envelope at the beam boundaries (u′
cl,n).

Combining the energy at the clamping (assumed to be equal at both clamping points, s = 0

and s = 1) and at the distributed region (central parts away from the clamping) , we arrive at:

DQ,n = 1

2αnλ+βnΩ̌
2
nλ

2
(1.66)

where

αn =
�

vcl(u′
cl,n)2

2Ω̌2
n

(∫1
0 v(s)un(s)2d s

) (1.67)

βn =
∫1

0 v(s)3un(s)2d s∫1
0 v(s)un(s)2d s

(1.68)

Equations (1.66)-(1.68) are our master equations for dissipation dilution engineering that

we will use to design our ultra-high Q resonators and shows us the path for optimization of

the dissipation dilution. Such an optimization can be performed by shaping v(s) to reduce

αn (clamping losses) and βn (distributed losses). We explore three of such a beam shaping

strategies in sections 1.4 and 1.5.

For the completion of this section let us calculate the dissipation dilution, DQ , for the canonical

example of a uniform rectangular beam with the width of w , thickness of h, and length of l . In

this scenario, our parameters simplifies to:

uniform rectangular beam

with dimensions of (w,h, l )
−→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v(s) = 1

Ω̌2
n = (πn)

un =�
2sin(πn s)

=⇒
⎧⎨
⎩αn = 1

βn = 1
(1.69)
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this reproduces the result reported by [13][99][105][57]:

Drect.beam
Q,n = 1

2λ+ (nπ)2λ2 , λ= h

l

√
E

12σavg
(1.70)

where σavg can be calculated from equation (1.41). For a uniform beam is given by:

σavg = (1−ν)σfilm (1.71)

Dissipation dilution in generic 3D mechanical resonator

So far we have only focused on the flexural modes of doubly clamped beams which are the

modes that we are experimentally interested. However, for completion of the discussion, here

we study the dissipation dilution in its most general condition for any mode flavor and any

3D geometry. Then, we apply the results of the generic solution, to numerically calculate the

dilution factor for 3 different mode flavors (flexural, torsional and longitudinal modes) and

observe that only dissipation of flexural modes gets diluted by the presence of an initial stress.

The lack of geometrical nonlinearity in mode flavors other than flexural modes, prevents them

from enjoying the lossless elongation energy and experience enhancement of the Q.

To derive the dissipation dilution factor of a generic vibrational mode, we have to use the

generic form of Euler-Bernoulli equation where the relation between the strain field and the

displacement field is tensorial product. This is in contrast to equation (1.18) which was only

valid for flexural modes of a beam or a membrane . The time-dependent displacement field is

denoted by Ũi (x, y, z, t), where i = x, y, z is the coordinate index. The strain field is derived

from the generalized Euler-Bernoulli equation [63]:

ẽi j = 1

2

(
∂Ũi

∂x j
+ ∂Ũ j

∂xi
+ ∂Ũl

∂xi

∂Ũl

∂x j

)
(1.72)

where summation over repeating indices is implied. The last term in (1.72) is nonlinear in

the displacement and can be identified as the geometric nonlinearity. We emphasize here

that this nonlinearity is fundamental, it is not related to nonlinear stress-strain relation and is

relevant even for infinitesimally small vibrations.

and the stress σ̃i j is related to strain via generalized Hooke’s law in tensor form [63]

σ̃i j = E

1+ν

(
ẽi j + ν

1−2ν
ẽl lδi j

)
(1.73)

where δi j is the Kronecker delta. We now assume that the deformation field consists of a static
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part, Ui (x, y, z), and a dynamic part, ΔUi ,n(x, y, z, t) which vibrates at the frequency of Ωn .

ΔUi ,n(x, y, z, t ) can be written as

ΔUi (x, y, z, t ) =ΔUi ,n(x, y, z)e−iΩn t +c.c. (1.74)

where ΔUi ,n(x, y, z) is the complex mode shape of the n-th mode and c.c. refers to counter

clockwise propagating terms. Strain, stress and elastic energy can be also separated into static

and time-dependent contributions accordingly:

ẽi j (t ) = ei j +Δei j (t ) (1.75)

σ̃i j (t ) =σi j +Δσi j (t ) (1.76)

w̃(t ) = w +Δw(t ) (1.77)

The instantaneous elastic energy density is then given by [63]:

w̃ = 1

2
σ̃i j ẽi j = E

2(1+ν)

(
ẽi j ẽi j + ν

1−2ν
(ẽl l )2

)
(1.78)

and the average of its variation, Δw(t), which is the elastic energy stored by the vibrational

mode, is found as:

〈Δw(t )〉 =1

2
(σi j 〈Δei j (t )〉+ei j 〈Δσi j (t )〉+〈Δσi j (t )Δei j (t )〉)

= E

2(1+ν)

(
(2ei j 〈Δei j (t )〉+〈Δei j (t )Δei j (t )〉)+ ν

1−2ν
(2ell 〈Δekk (t )〉+〈(Δekk (t ))2〉)

)
(1.79)

We can then find the dissipated power density as:

pdiss =
〈
σ̃i j

∂ẽi j

∂t

〉
=σi j

〈
∂

∂t
Δei j (t )

〉
+
〈
Δσi j (t )

∂

∂t
Δei j (t )

〉
(1.80)

Here, the second term, 〈Δσi j (t)∂Δei j (t)/∂t〉, yields non-zero dissipated power if a delayed

strain response to stress is introduced as a perturbation by the substitution Δei j [ω] → (1+
iφ)Δei j [ω] and the average over time is found using the unperturbed Δei j . Unlike (1.79)

for the stored energy, the extra term which arises in the presence of static deformation,

σi j 〈∂Δei j (t )/∂t〉, is always zero as

〈
∂

∂t
Δei j (t )

〉
= 1

T

∫T

0

∂

∂t
Δei j (t )d t =Δei j (T )−Δei j (0) = 0 (1.81)
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where T is the oscillation period. Overall the dissipated power density is found as:

pdiss =φωn〈Δσi j (t )Δei j (t )〉 =φωn
E

(1+ν)

(
〈Δei j (t )Δei j (t )〉+ ν

1−2ν
〈(Δekk (t ))2〉

)
(1.82)

We find the quality factor of the mode from the stored energy and dissipation rate as:

Q = 2ωn
∫〈Δw(t )〉dV∫

pdissdV
(1.83)

and then find the dissipation dilution ratio as:

DQ = Q

Qint
= 1+ 2

∫
(σi j 〈Δei j (t )〉+ei j 〈Δσi j (t )〉)dV∫〈Δσi j (t )Δei j (t )〉dV

= 1+ 〈Wdil(t )〉
〈Wlossy(t )〉 (1.84)

where Qint = 1/φ and the dilution and lossy energies are given, respectively, by:

〈Wdil(t )〉 =
∫

(σi j 〈Δei j (t )〉+ei j 〈Δσi j (t )〉)dV (1.85)

as an effectively lossless potential that generalizes the “elongation energy" in treatment of

beams and membranes [13][99][105] and generalized equation (1.23). The lossy part of energy

is given by:

〈Wlossy(t )〉 = 1

2

∫
〈Δσi j (t )Δei j (t )〉dV (1.86)

which generalizes the “bending energy" [13][99][105] and corresponds to general case of (1.22).

Unlike the toy model, Wlossy in general depends on the static strain. Therefore, the intuitive

picture that tension increases stored energy without affecting dissipation is not correct in

general.

(1.84) is the most general form of the expressions for dissipation dilution of non-zero Poisson’s

ratio (an-isotropic material). For a simple isotropic material with zero Poisson’s ratio, equation

(1.84) reduces to:

DQ = 1+
∫

2ei j 〈Δei j (t )〉dV∫〈Δei j (t )Δei j (t )〉dV
(1.87)

(1.87) reveals the peculiar effect of static strain ei j on dissipation. If the static strain is zero

then DQ =Q/Qint = 1 irrespective of the mode shape (we emphasize that corrections due to

imaginary part of Poisson’s ratio are here neglected). In contrast, DQ can be higher (or lower)

than unity if ei j �= 0 and 〈Δei j (t )〉 �= 0, the latter being possible due to geometric nonlinearity

in (1.72).
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Chapter 1. Ultra-high-Q mechanical resonators

Figure 1.11 – Dissipation dilution factors for vibrational modes of a 3D resonator A) A dou-
bly clamped beam with two quarter-sphere pads (hatched gray) and subjected to tension.
The total length is 20 μm, the block size is 8.5×7×4 μm, the bridge diameter is 100 nm and
the material pre-strain is 0.4%. It shows that only flexural modes are subjected to dissipation
dilution B) Distribution of effectively lossless elastic energy in a thin bridge during flexural
vibration.

To give an example, we apply (1.87) to a doubly-clamped 3D resonator made of pre-strained

material as shown in figure 1.11.A and calculate the dilution factors for a few representatives

modes from different families. It can be seen that among these modes only the flexural

one experiences dissipation dilution, whereas the torsional and longitudinal modes do not.

Visualization of lossless energy density 〈wdil(t )〉 in figure 1.11.B shows that it is concentrated

in thin bridges between the blocks for the flexural mode. This is explained by a) static strain

concentration in constrictions and b) relatively large geometric nonlinearity of strain in flexural

deformations, which is not the case for torsional or longitudinal modes.

Strong dissipation dilution of flexural modes in high-aspect-ratio beams and membranes is

thus due to the combination of tension and large geometrically nonlinear contribution in the

dynamic strain.

Figure 1.12 provides another example of a geometry closer to the shapes we usually work

with, in this thesis. Flexural modes (Figure 1.12A, C) of the beam resonator experiences

enhancement of Q through the process of dissipation dilution but the torsional mode (figure

1.12.B) and the longitudinal mode (figure 1.12.D) do not experience such a dilution as the

geometrical nonlinearity (elongation) is negligible for these modes.
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1.3. Material elastic losses and geometric non-linearity

Figure 1.12 – Simulated frequencies, mode shapes and dissipation dilution factors for dif-
ferent vibrational mode families of a doubly-clamped strained silicon nitride nanobeam
(width = 1 μm, length = 100 μm, thickness = 100 nm). A) fundamental out of plane mode, B)
torsional mode C) 13-th order out of plane mode and D) the longitudinal mode.

Before we finish this section and present our strategies on how to design a geometry [v(s)] in

order to enhance the quality factor, let’s review two remaining unanswered questions about the

theory of internal material losses and dissipation dilution. I) the ultimate limit of dissipation

dilution and II) the role of surface losses versus the bulk losses.

Ultimate limit of dissipation dilution

Here we derive a rigorous upper bound for DQ . This bound is set by the yield strain, material

parameters, beam thickness and the frequency of vibration, but surprisingly does not depend

on the beam length nor the mode order. From equations (1.40) - (1.47), we can derive our

master equation for strain engineering which will be used in next sections:

ε(x)

εavg
= wavg

w(x)
(1.88)

Now we assume that the clamping losses are negligible (αn = 0) and evaluate the distributed

loss coefficient βn using the strain-width relation, eq. (1.88), and the condition that the

maximum strain in the beam cannot exceed the yield strain εmax = εyield. Using equation

(1.88) we have:

v(x) = w(x)

wavg
= εavg

ε(x)
≥ εavg

εyield
=⇒

∫1

0
v(s)3un(s)2d s ≥

(
εavg

εyield

)2∫1

0
v(s)un(s)2d s (1.89)
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Therefore using the definition of βn in eq. (1.68) we obtain:

βn ≥
(
εavg

εyield

)2

(1.90)

and thus, the ultimate dissipation dilution bound is given by

DQ ≤
12Eε2

yield

ρh2ω2 (1.91)

This limit is formally equivalent to the dissipation dilution of a clamp free uniform beam

strained to the yield strain of the material that is made of. On the other word, the ultimate

limit of dissipation dilution is a sinusoidal curvature where the stress in the entire beam has

reached it maximum value, εyield. This is regardless of the beam length and only depend on

the frequency (wavelength) of the sinusoidal beam.

Surface losses in thin beams

The last theoretical topic that we are going to cover in this chapter is the effect of surface losses

on the geometrical scaling of the mechanical Q. If the resonator’s dissipation is dominated by

its intrinsic material losses, the absolute mode quality factors can be calculated according to

(1.38) from the intrinsic material quality factor Qint and DQ as

Q = DQ ×Qint (1.92)

So far, we have only discussed the dissipation dilution and the role of geometry on its scaling.

In the high-strain limit (λ
 1), DQ depends only on the beam’s geometry, mode order and the

initial strain, but not on any of the material parameters. Dissipation dilution can therefore be

understood without ever specifying a material. As a result, we argue that all of the techniques

we are going to present for Q enhancement are material independent and can be used with

any other strained materials.

On the other hand, in our derivation of dissipation dilution, we assumed that we are dealing

with homogeneous materials in which the material parameters such as Young’s modulus and

Qint are uniform across the entire geometry. This enabled us to summarize all the effects of

the geometry into dissipation dilution factor. However, it has been shown by Villanueva et

al. [57] that the real materials are not homogeneous. Especially the imaginary part of Young’s

modulus and Therefore, the Qint seems to depends on the thickness of the resonator and

reduces for thinner resonators [91].

This phenomenon is illustrated in figure 1.13, taken from a literature review performed by

Villanueva et al. [57] . In this review, Villanueva et al. compiled a list of different Si3N4

resonators published over the past ∼10 years, with different sizes and frequencies, extract
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Figure 1.13 – A literature review performed by Villanueva et al. [57] to determine the
dependency of Qint to the thickness (h). The red line represents fitted to all values with
β= 6×1010 ±4×1010 m−1 and a volume loss related Qvol = 28000±2000. The fine red lines
represent the estimated error of β of ±60%.

their dissipation dilution from the geometry and plotted their corresponding intrinsic quality

factor versus the resonator’s thickness. It is clear that the for thicknesses below 1μm, the

intrinsic quality factor increases by thickness and eventually saturate to an upper bound

(Qbulk). Villanueva et al. argued that this is an evidence of surface losses and attribute the

following phenomenological law to Qint by fitting to this data:

Qint(h) ≈ 6000
h

[100nm]
. (1.93)

In this section, without going into the details of micro physics behind the surface losses, we

try to derive this scaling law by using a toy phenomenological model with an inhomogeneous

imaginary part of Young’s modulus. We assume there are two phenomena responsible for

friction. Friction at the surface which is much stronger than the friction in the bulk. Although

the micro physics behind this observation is not completely understood, its evidence in the

scaling of Qint in thin mechanical resonators is apparent. We can attribute such a stronger

friction at the surface to phenomena such as surface roughness, free dangling bonds or extra

contamination on the surface. Regardless of the micro physics behind this effect, we can

model the surface losses with two exponential functions with a very thin penetration depth

(hPD) of few nano meters. The in-homogeneous imaginary Young’s modulus for a rectangular

cross section can be written as:

Ei (z) = Ei ,B +Ei ,Se
|z|−h/2

hPD (1.94)
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Chapter 1. Ultra-high-Q mechanical resonators

where Ei ,B ,Ei ,S are the imaginary components responsible for frictions in the bulk and at

the surface respectively and h is the thickness of the resonator. Figure 1.14 shows the plot of

equation (1.94) for the parameter fitted to figure (1.13) and assuming 1 nm penetration depths

for the surface losses.

W(x)

h

Figure 1.14 – In-homogeneous imaginary part of Young’s modulus according the phe-
nomenological model of (1.94) with 1 nm penetration depth. Inset A) Color coding of the
dissipated energy as a function of position in cross section a rectangular beam. The extra
surface losses induced by the top and bottom surface highlighted by darker color. Inset B) The
calculated Qint with the model in equation (1.98) corresponding to red fit in figure 1.13.

To derive the contribution of the surfaces losses, our calculations from equations (1.18) to

(1.35) will remain exactly identical (as we assumed the real part of Young’s modulus is still

homogeneous). The difference between the homogeneous and in-homogeneous case appears

at equation (1.36) where we calculate the volume integral of dissipated energy. In eq. (1.36),

we assumed the Ei is a constant number and could be factorized from the integral. Now with

z dependent imaginary Young’s modulus, the equation (1.36) transforms to:

Wdiss =
∫

wdissdV = Ei

2

∫
l

d xI (x)(u′′
xx )2 −→W inhomog

diss = 1

2

∫
l

d x
∫h/2

−h/2
d zz2Ei (z)w(x)(u′′

xx )2

(1.95)

therefore we have to calculate the integral of
∫h/2
−h/2 d zz2Ei (z) for a Ei (z) which follows equation

(1.94). In the condition where hPD 
 h, we can approximate the integral to be:

∫h/2

−h/2
d zz2Ei (z) =

∫h/2

−h/2
d zz2(Ei ,B +Ei ,Se

|z|−h/2
hPD ) ≈ Ei ,B

h3

12
+Ei ,S

h2

2
hPD (1.96)
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the in-homogeneous dissipated energy is then given by:

W inhomog
diss =W homog

diss

(
1+ 6Ei ,ShPD

Ei ,B h

)
(1.97)

where for the W homog
diss , the bulk imaginary Young’s modulus is considered. Therefore, following

our notation for the dissipation dilution, the equation (1.92) modifies to:

Qhomog = DQ × Er

Ei
−→Q inhomog = DQ

Er

Ei ,B + 6Ei ,S hPD

h

= DQ
Er h

Ei ,B h +6Ei ,ShPD
(1.98)

we can further simplify (1.98) if we define the quality factors associated to the bulk and surface

losses as the following:

Qbulk =
Er

Ei ,B
(1.99)

Qsurface(h) = Er

Ei ,S

h

hPD
=β ·h (1.100)

Equation (1.98) then simplifies to:

Q inhomog = DQQint(h) (1.101)

where

Q−1
int(h) =Q−1

bulk +Q−1
surface (1.102)

We reproduce the results from eq. (1.93) by separating the contributions from the surface

and the bulk. It can be shown that for the very thin resonators (h = 10−100 nm) which is

the range of thicknesses that have been fabricated for the experimental results of this thesis,

Qbulk �Qsurface and the losses associated to bulk could be neglected. Therefore we assume a

linear scaling for intrinsic quality factor, Qint(h) =β ·h for our resonators. At the end of section

1.4 we show the experimental demonstration of thickness scaling on our soft-clamped beams

and experimentally confirm the same conclusion.

Surface losses has an interesting consequence for the fundamental mode of high aspect ratio

uniform beams where λ
 1:
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f1 =Ω1/2π= 1

2πl

√
σavg

ρ

D(Q,1) = 1

2λ+n2π2λ2 ≈ 1

2λ
= l

2h

√
12σavg

E

Qint =β ·h

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q1 = βl
2

√
12σavg

E

Q1 · f1 = βσavg

π

√
3

4ρE = const

(1.103)

where f1,Q1 are the frequency and quality factors of the fundamental mode. Equation (1.103)

shows that I) the quality factor of the fundamental mode is thickness independent and by

thinning down the resonator, we do not gain on the quality factor. II) The Q−frequency prod-

uct of the fundamental mode of a uniform rectangular beam is a geometrical independent

constant. It means that regardless of the length, thickness and the width of the resonator, the

Q × f product of the fundamental mode can be used as a standard candle to compare the res-

onators of different geometry and different fabrication methods. For Si3N4 and the measured

deposition parameters [90] of εfilm = 0.46% (stress σfilm = 1.14 GPa), Young’s modulus E = 250

GPa, Poisson’s ratio ν= 0.23 and density ρ = 3100 kg/m3. and β calculated from (1.93), the

Q−frequency product of the fundamental mode is:

Q · f ≈ 1012 Hz (1.104)

Unfortunately this value is below the threshold of quantum coherency at room temperature

where Q × f = kB T
�

= 6.62×1012 Hz [9]. As a result, the fundamental mode of Si3N4 beams

regardless of their size, can never become “quantum enabled” [12][114] at room temperature

and we need other techniques to achieve this goal. Based on the lessons that we learned about

dissipation dilution in this section, we present 3 strategies that will enable us to cross this

barrier and fabricate mechanical resonators that are quantum coherent at room temperature,

in the next section.
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1.4. Q-enhancement via high order modes, soft clamping and strain engineering

1.4 Q-enhancement via high order modes, soft clamping and strain

engineering 12

In section 1.2, we described the concept of dissipation dilution where the quality factor of

a mechanical oscillator is enhanced beyond its material’s intrinsic quality factor due to a

combination of initial stress and geometrical nonlinearity. We find out that in a general case,

the dissipation dilution is in the form of equation (1.66) for thin film mechanical oscillators. In

this section we present three strategies to enhance quality factor and Q × f product of a beam

resonator to achieve quantum coherency at room temperature Q × f > kB T
�

[12]. First we look

at the higher order modes of a long uniform beam and will demonstrate how to achieve higher

Q× f by operating at optimum mode order of longer beams. Then we present two geometrical

micro-patterns (an especially designed v(s)) to further enhances the quality factor. In the first

design, we try to reduces the clamping losses (reducing αn in equation (1.66)) by placing the

resonator in the bandgap of a phononic crystal to isolate the vibration from the clamping

points; a technique known as “soft clamping” [91]. In the second strategy, we introduce a

non-uniform phononic crystal pattern in which by tapering the central region of the beam, we

locally create a region of enhanced strained, compared to the weak deposition stress of the film.

Complementary to soft clamping, our second strategy consists of colocalizing the mode shape

with a region of geometrically enhanced stress, making use of the tension balance relation

[σ(x) = T /[w(x)h]. This approach allows us to cross the barrier of the soft clamping limit

and reach a regime that has been inaccessible by any other oscillator in the past. Ringdown

measurements at room temperature reveal string-like vibrational modes with Q factors as high

as 800 million and Q× frequency exceeding 1015 hertz. These results illustrate, a promising

route for engineering ultracoherent nanomechanical devices.

Strategy I: Q-enhancement via higher order modes of long uniform beams

To start our first strategy, let’s review the quality factor and frequency of a uniform rectangular

beam (presented in equation (1.70) )

uniform beam

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q(σ,n) =Qint

(
1+

(
2λ︸︷︷︸

supports

+π2n2λ2︸ ︷︷ ︸
antinodes

)−1
)

, λ= h
l

√
E

12σavg

f (σ,n) = n
2l

√
σ
ρ ·

�
1+n2π2λ2

(1.105)

where the frequency of the a high stress doubly clamped beam is taken from [115] and has

been rearranged to fit to the notation in this thesis. The
�

1+n2π2λ2 term in frequency is often

neglected in high aspect ration devices where λ
 1. The uniform beam model gives several

rules of thumb for maximizing the Q or Q × f of a stressed nanomechanical resonator, namely,

Q is typically highest for the fundamental mode (n = 1) and can be increased by increasing

12The content of this section is published at [101] and [90]
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aspect ratio (l /h) or the stress. By contrast, Q × f is typically larger for high order modes. Both

strategies have been explored for a wide variety of membrane-like geometries [76], [75]. In

fact, it has been a mystery especially in the early years of the high stress nano-mechanics

community on why Si3N4 membrane resonators had superior performance to their 1D counter

parts 13 Although, both resonators enjoy similar initial stress and made of the same material.

, the first-high stress beam shape Si3N4 mechanical resonators were invented and studied

as early as 2006 [78] which predates Si3N4 membrane-like resonators by 2-3 years [116][75],

their Q × f performance was limited to Q × f ≈ 1012 Hz for many years (this limit is discussed

in (1.103)). On the other hand, Si3N4 membranes resonators (although a latecomer to this

field), were able to achieve Q × f > 1013 Hz as early as 2009 by Wilson et al. [75] and followed

by impressive improvements over the next years and achieving Q × f as high as 1014 Hz in

2014 [76]. For many years, Si3N4 membrane resonators were considered the only platform

that could reach the quantum coherency threshold at room temperature by operating at a

regime where Q × f > kB t
�

= 6.62×1012 Hz.

It was only at 2015 that the first 1D objects could barely operate at the quantum coherency

threshold [117]. This resonator was designed in the form of Si3N4 tuning fork and its higher

performance wasn’t completely understood at the time. Today with our dissipation dilution

model [equation (1.66)] we hypothesize that in this work, Zhang et al. unknowingly took

advantage of the strain engineering technique (similar to the method discussed in section 1.5)

where an extra stress at the clamping points was achieved due to their specific geometrical

design. It took until 2016 [118] that this discrepancy between the 1D and 2D objects were fully

understood. The reason behind this discrepancy turned out to be a simple historical reason.

Traditionally, people in the nano-beam community worked with the fundamental mode

(a mode with highest quality factor) of relatively short beams (typically below 100μm long

because of fabrication limitations). But researchers in the membrane community normally

worked with higher order modes of a large membrane because a) the fundamental mode

was significantly damped due to other damping mechanism (we revisit this issue in section

1.6) and the only way for them to achieve higher Q was to work with higher order modes. b)

Because of the assembly of the optomechanical setups [39], membranes bigger than 1mm
2 were normally used. Beside millimeter size Si3N4 membranes were already commercially

available.14

In the following analysis, we show that although the fundamental mode of a beam resonator

has the highest quality factor, it is not the mode with the highest Q× f . Figure 1.15.B beautifully

illustrates this concept. We observe that even though the quality factor decreases in higher

order modes, the frequency increases at a faster rate; but effectually Q takes over and we see

a decline in Q × f . In figure 1.15.B, we observe that Q × f rises at the beginning and then

ultimately falls off because in very high order modes, Q ∝ 1/n2 drops faster than frequency

13This trend actually holds for nearly 10 years from 2008 [75] to 2018 [90] and was only broken by the work
presented in this thesis.

14Because of their application as the vacuum windows for x-ray spectroscopy and as sample holders for trans-
mission electron microscopy (TEM)[119]
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Figure 1.15 – Q and Q × f of uniform rectangular beams. A) Illustrates the quality factor of
uniform rectangular beams at different mode orders and beam lengths according to equation
(1.105). The quality factor of the fundamental mode, linearly increases by increase of the
beam’s length and roughly stays on the green dashed line representing the Q × f = 1012 Hz.
Red curve represents the ultimate limit of soft clamping (clamp free beam) where the curvature
at the clamping region is negligible. Very high order modes of a uniform beam, asymptote to
this limit. B) Q× f plot for the same parameters used in A. It illustrates that there is an optimum
mode order for each length that maximizes the Q × f .The maximum value of Q × f increases
with beam length and moves toward lower frequencies. The gray regions in both plots shows
the regime where mechanical oscillator in not quantum coherent at room temperature. The
parameters used in this plot: Young’s modulus E = 250 GPa, density ρ = 3100 kg/m3, thickness
h = 100 nm, and σavg = (1−ν)σfilm = 900 MPa.

which is a linear function of n. This mean that there is an optimum mode order for each length

that maximizes the Q × f . Another observation from figure 1.15 is that the maximum value of

Q × f increases with the beam’s length. For lengths above ∼ 300μm, it is possible to operate a

Si3N4 beam resonator in the quantum coherent regime at room temperature. In the following
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we will present the quantitative description of this picture.

Assuming λ
 1 and treating n as a continuous variable in equation (1.105), the optimum

mode order associated to the maximum Q × f product is given by:

d(Q(n) · f (n))

dn
= 0 · · · =⇒ nopt ≈

√
2

(π2λ)
∝

�
l (1.106)

the first observation from the equation(1.106) is that nopt increases by going to longer beams.

However, the frequency of the optimum mode order, decreases by going to longer beams:

f (n = nopt) ≈
√

σ

ρπ2hl

√
2σ

E
∝ 1�

l
(1.107)

This is illustrated in figure 1.15 and is considered a weakness of this strategy as larger Q × f

is only accessible at low frequencies. Operating at low frequencies (typically Ωm/2π < 1

MHz) could potentially creates technical issues for the optomechanical systems. For example

existence of various technical noise sources at these low frequencies such as laser classical

noise [120], 1/ f noise of the photo-detectors and thermo-refractive noise [121]. The quality

factor at the optimum mode order is:

Q(n = nopt) ≈ 1

4λ
∝ l (1.108)

it shows that the Q of the optimum point is only half of the Q of fundamental mode Q(n =
nopt) =Q0/2. The linear scaling of the Qopt with the length means that the Q

m of this resonator

is fixed and we do not gain on the Q/m parameter. Finally, the Q × f at the optimum mode

order is given by:

Qopt × fopt ≈ f0Q0�
2π2λ

∝
�

l (1.109)

where f0, Q0 are the frequency and quality factor of the fundamental mode. Although equation

(1.109) shows us a path on how to increase the Q × f without any apparent limitation, the

scaling is very week. If we decide to increase the Q × f by one order of magnitude from the

highest in figure 1.15, 1013 → 1014 Hz, we have to fabricate a beam with 100 times the length of

device in figure 1.15 (10 cm). Fabrication of such a beam is impractical. Also as we discussed

in chapter 3, there are two figures of merit for a mechanical oscillator that we are interested in

optimizing: Q × f and Q/m. Our first strategy only allows us to enhance the Q × f but does

not provide any improvement on Q/m ratio. In our next strategies, we present alternative

approaches such as soft clamping and strain engineering which are significantly more efficient

as they provide much faster scaling for Q × f . In addition they offer enhancements of Q/m as

our second figure of merit.
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100 m

20 m

2 m

Figure 1.16 – Optical and SEM images of a series of mechanical beam resonators with vary-
ing lengths. In this sample we have fabricated beams (black horizontal stripes) from l = 100
μm to 1.5 mm. The two green regions at the two ends of each beam are the Si3N4 pads that
solidly clamps the resonators to the silicon substrate. The circles at the center are optical
micro-disk cavities monolithically fabricated from the same Si3N4 layer and used as an effi-
cient readout sensor for the vibration of the mechanical resonator. In this work, we considered
only in-plane flexural modes because of their compatibility with our displacement readout.
The beam are made of a 400 nm thick Si3N4 and have a width of 100 nm (For in-plane modes,
the thickness in the direction of motion is the beam’s width). The micro-disks are separated
by a gap of ∼ 80 nm from the beams. The near-field interaction between the beam and the
micro-disk [122], [123] provide a displacement readout with an imprecision of ∼ 1 fm/

�
Hz

capable of resolving the thermal Brownian motion of the oscillator with more than 70 dB
signal to noise.

As the first experimental study presented in this thesis, we decided to experimentally explore

the predictions made in equations (1.106) -(1.109). For this purpose, a series of beams with

different lengths were fabricated from high stress stoichiometric Si3N4. Figure 1.16 shows a

small fraction of this “harp shape” sweep of resonators (black horizontal stripes) where the

lengths is varied from l = 100 μm up to 1.5 mm. Details of the fabrication is presented in

chapter 2 but in summary, the devices are made from a 400 nm high stress LPCVD Si3N4 layer.

The green areas in figure 1.16 are the regions that Si3N4 is attached to the underneath silicon

substrate and the pink regions are the suspended parts of Si3N4 as the underneath Si layer has

been etched away in the KOH bath during the undercut step. The Si3N4 beams are clamped

to the silicon substrate using the two rectangular pads at each ends. In order to detect the

vibrations of Si3N4 nano-beams, an optical micro-disk cavity is monolithically fabricated

from the same Si3N4 layer with a separation gap of ∼ 80 nm from each beam and used as an

efficient readout sensor for the vibration of the mechanical resonator. Since the nano-beam is

positioned at the evanescent optical field of the micro-disk, the near-field interaction between
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the beam and the micro-disk [122], [123], [124], [125], [126] modulates the effective optical

path and results in phase modulation of the laser light sent on-resonance with the micro-disk

cavity. Phase fluctuation of the transmitted light is detected on homodyne interferometer [7][9]

with imprecision of ∼ 1 fm/
�

Hz at only few of μW of input power, capable of resolving the

thermal Brownian motion of the oscillator with more than 70 dB signal to noise. The laser light

is coupled in and out of the optical micro cavity using a tapered optical fiber [127][128][129].

We measured the quality factor of these resonators using a ringdown technique described in

appendix A.I. To perform a ringdown, the beam were resonantly excited using a piezo located

beneath the sample chip; the drive is then shuttered off, while displacement is continuously

recorded using a network analyzer (with bandwidth RBW � Γm). It is important to note that

in our real experimental apparatus, we record the demodulated signal at the output of the

network analyzer which correspond to the envelope of the signal presented in figure 1.3 (the

green dashed line). An example of such a ringdown measurement is presented at the inset of

figure 1.17 (the exponential decay appears linear in logarithmic scale). Mechanical linewidths

are measured by fitting an exponential function to these ringdown curves (black solid line

in the inset). The experiments are perform in a high vacuum chamber operating at pressure

P ∼ 10−4 mbar. Details of the setup and the vacuum chamber is discussed in appendix A.II.
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Figure 1.17 – Measured quality factor versus mode order for long high-stress SiN
nanobeams. Q versus frequency for the odd-ordered flexural modes of nanobeams with
lengths L = 1.28, 0.55, 0.15, and0.095 mm. Gray shading indicates Q · f < kB · 300K/h =
6.2×1012 Hz. Black dashed lines correspond to models for Q including internal loss (1.105)
and an estimated gas damping rate of γgas = 0.15 Hz (Qgas = f /(0.15 Hz)). Inset: Ringdown
measurement used to obtain the green point, Q × f ≈ 9.0×1012 Hz

The results of Q spectrum measurement for some representative beams is plotted in figure
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1.17. For the longest beam, L = 1.28 mm, we observe a maximum of Q · f ≈ 9.0×1012 for n =
21( f ≈ 4MHz). We compare this against a model curve for Q(n) vs f (n) (solid black line) based

on a value of λ= h
l

√
E

12σavg
≈ 5 ·h/L estimated by fitting the dispersion relation f (n) (1.105)

and consistant with our deposition values for E ,σfilm. The model predicts Q(nopt) · f (nopt) to

within 10%, but qualitatively overestimates Q for lower frequencies. This discrepancy is due to

gas damping which contributes a systematic additional damping of γgas ≈ 0.15 Hz. This shows

the importance of ultra-high vacuum (UHV) chambers for these measurements. Especially

in the next section, we present two techniquesin order to enhance the mechanical Q to 1

billion at 1MHz equivalent of mechanical linewidth of Γm ∼ 1mHz. In-order to measure these

ultra-high Q mechanical resonators, we built a custom made UHV chamber with operating

pressure of ∼ 10−8mbar for this experiment as a major part of this thesis. The details of design,

blue prints and mode of operation of this UHV chamber is presented at appendix A.II.

In summary, in our first strategy, we theoretically and experimentally studied the possibility

of using the higher order modes of a long beam as a method to enhance the Q · f beyond

the threshold for quantum coherency at room temperature, Q × f > 6× 1012 Hz. We also

demonstrate these findings by measuring the Q spectrum of beams with different lengths

and achieved Q × f = 9.0×1012 Hz. Although this is on par with the membrane resonators

with similar aspect ration and stress, nano-beam resonators have 100-1000 time smaller mass

which could lead to higher optomechanical coupling strength. We observe that the general

scaling laws of the main figures of merit for this strategy are :

Higher order modes of rectangular uniform beam:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q × f ∝ 1�
l

Q
m = const.

(1.110)

The main disadvantage of this method to enhance the quality factor are:

• weak scaling of Q × f

• no improvement on Q/m

Strategy II: Q-enhancement via soft clamping

An alternative approach that recently has been demonstrated with a patterned Si3N4 mem-

brane resonator [91], is to use periodic micropatterning of a phononic crystal (PnC) to localize

the mode shape away from the supports. By this “soft clamping" approach, the leading term in

(1.105) can be suppressed, giving access to the performance of an ideal clamp-free resonator

(red line in figure 1.15).

The core of the idea behind the soft clamping technique is illustrated in figure 1.18. Since the

sharp curvature near the clamping points is responsible for majority of losses, if (by some

geometrical design) we manage to create a mode shape where its derivative, approaches to
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u(x, t ) = A0 sin(Ωm t )sin(2πx/λm)e−|x|/λPnC-PD

Figure 1.18 – Localized mode shape of a soft-clamped beam. The core of the idea of soft
clamping is to create a medium where motion is localized at the center and slowly damps as it
approaches the clamping points. The blue curve is an example of such a mode shape, localized
sinusoidal with exponentially damped envelope (orange curve). The displacement and its
derivative asymptote to zero (u(0, l ) = 0,u′(0, l ) = 0) and matches the boundary conditions.
With this “soft clamping" method, there won’t be a need for a sharp curvatures at the clamping
regions to match the mode shape to the boundary conditions as is the case for uniform beams.

zero near the clamping region, we diminish the contribution of the clamping losses as αn → 0

in equation (1.66). Figure 1.18 illustrates one example of such mode shape; A resonator which

its amplitude exponentially drops as it moves away from the center toward the clamping points.

Given enough length for the exponential drop, the amplitude and its derivative asymptote to

zero (u(0, l )→ 0,u′(0, l )→ 0). Such a condition provides a soft clamping for the resonator as

there won’t be a need for a sharp curvature to match the mode shape to the boundary condition

(“hard clamping”). The main question however, is how we can engineer a beam geometry

(v(s)) that results in a mode shape similar to figure 1.18. It has been recently proposed by Y.

Tsaturyan et al. [91] that placing a defect membrane resonator at the center of a 2D phononic

crystal, creates a localized mode shape similar to figure 1.18. With this technique Y. Tsaturyan

et al. were able to enhance the mechanical quality factor of a Si3N4 resonator to about 200

million at 777 KHz, a new record Q for the membrane community. In this section we try to

apply this idea to 1D geometry.

A phononic crystal consists of an infinite chain of a periodic structure (see figure 1.19), a

concept that has been widely used in nano-mechanics community [130] [131]. The figure 1.19

shows a canonical example of such a periodic structure made of masses and springs used

as a toy model to understand the vibration in solid crystals [132][133]. In appendix A.I.1 we

analytically calculate dispensation relation of this canonical example to be:

Ω± =
√

(Ω2
1 +Ω2

2)±
√

(Ω2
1 +Ω2

2)2 −4Ω2
1Ω

2
2 sin2(k/2) (1.111)

where Ω+ and Ω− are the frequencies on the upper and lower branch in figure 1.19 and

Ω1 = ks
m1

, Ω2 = ks
m2

are the natural resonance frequency of individual parts of the “unitcell” and

k is the special angular frequency in the direction of propagation. If m1 �= m2 =⇒ Ω1 �=Ω2,

equation (1.111) shows that by cascading two pieces with different masses that are connected

via a series of identical springs, we can create a region in the frequency domain known as
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Figure 1.19 – A canonical example of a phononic crystal The bandgap (gray band) created
by cascaded chain of connected masses and springs with two different mass elements in the
chain. The upper and lower frequency branches are calculated using (1.111) where Ω1 = 1
MHz , Ω2 = 1.3 MHz. k is the special angular frequency and L is the length of the unitcell.

“bandgap” (gray area in figure 1.19), that there are no modes in the PnC chain to support

these frequencies. On the other word, if we drive a part of this infinite periodic chain at a

bandgap frequency, the oscillations cannot propagate in the structure and it gets exponentially

damped as it penetrates inside the phononic crystal. Therefore, if we position a resonator

at the middle of a PnC chain which its natural resonance frequency coincides with PnC’s

bandgap, its vibration will be localized at the center and its amplitude drops exponentially as

it penetrates into the PnC, creating a mode shape similar to figure 1.18.

The width of the bandgap for this canonical case is given by (see appendix A.I.1):

ΔΩB =�
2|Ω1 −Ω2| (1.112)

This means that the larger the mass difference between the two pieces is, the larger the

bandgap is. We will use this simple conclusion in section 1.6 to design our PnC shield to stop

the radiation losses.

In fact, the unitcells we use to construct our phononic crystals in 1D, looks very similar to

the canonical example of figure 1.19. In our PnC design, we create a mass difference by

patterning alternating regions of wide and narrow on a high stress Si3N4 film. A schematic

illustration of our PnC design is shown in figure 1.20. Before we proceed with the design details

and experimental results, it is important to emphasize that phononic crystals are not a new

concept and has been widely used in nano-mechanics community especially in 1D geometry

[134][135][136][137][138][139]. However, in most of these works, the phononic crystals were

used as an “acoustic shield” to stop the acoustic radiation loss at VHF-UHF frequencies. We
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will study the concept of ration losses and our means to stop them via PnC shields in section

1.6, but in summary radiation losses are dominant at very high frequencies, f > 100 MHz.

However, for the frequency range that we are interested in this section, Ω/2π< 10 MHz, the

radiation losses are negligible.

Figure 1.20 – Schematic illustration of PnC design, bandgap calculations and mode spec-
trum. A) Top: localized flexural mode shape u(x) (blue) and its exponential envelope (orange).
Bottom: Schematic of geometry of a corrugated beam for soft clamping (red). PnC unit cell is
highlighted in blue within the beam. B) On the left: The band diagram of a phononic crystal
for the unitcell highlighted in panel A illustrates the fundamental bandgap and higher order
bandgaps of the PnC. In the middle: Red dots: spectrum of the out-of-plane flexural vibrations
of the corrugated beam shown in panel A. Blue dots: spectrum of a uniform rectangular beam
with same l , h as the PnC beam plotted for the reference. The sparse mode spectrum near the
bandgap is a unique and important feature of the corrugated beams. On the right: The mode
shapes for few selected modes where red mode shapes belong to the localized modes.

Our proposal to use phononic crystals to enhance the quality factor via soft clamping, is

fundamentally different than the traditional applications of PnC shields. Here we propose to

use phononic crystals as a “mode shaping medium” in order to engineer a specific mode shape

that has a smooth transition between the sinusoidal region and the clamping parts. A major

consequence of these two approaches to phononic crystals (PnC as shield versus PnC as mode

shape engineering device) is the difference in design targets and goals, which has deep impact

in the final geometrical design. When we design PnCs for an acoustic shield, we normally

prefer to create as large of a mass mismatch between the two pieces of unitcell as possible to

create a larger bandgap in order to shield wider range of frequencies. In addition, the larger

48



1.4. Q-enhancement via high order modes, soft clamping and strain engineering

the mass mismatch between the two pieces is, the faster a bandgap oscillation is damped in

the phononic crystal. Therefore, one of the main design parameters for PnC shields is to create

a large mass difference in order to achieve a more effective and broadband shield. However, in

the case of soft clamping, if the exponential drop is too fast, it creates additional curvature due

to its sharp transition, which leads to reduction of the quality factor. On the other hand, if the

mass ratio is too small, then the oscillation won’t be damped in finite number of unitcells that

we can fabricate and we won’t achieve suppression of the clamping losses. Therefore, there is

a sweat spot in the middle which creates a smooth exponential without additional curvature

but fast enough so that the entire length of the structure is not too long. Through different

numerical optimizations, we realized that the width ratio of 1.9 < wmax
wmin

< 2.3 for a fish-bone

design (figure 1.20.A) is the optimum choice.

Fig. 1.20 shows an example of a 1D PnC nanobeam featuring a soft-clamped vibrational mode

for which the clamping losses is suppressed. A defect resonator with the length of ldef and

typically with the width of the small piece wmin, is encapsulated between two PnC barriers

with ncell on each side (10 in figure 1.20). The localized mode shape of the defect presented in

1.20.A shows the desired exponential damping for soft claiming. The band diagram for out-of-

plane (z-direction) modes of the unitcell is plotted in figure 1.20.B, showing the frequencies

of the bandgaps (gray bands). It is important to note that the unitcell in figure 1.20.A, unlike

our toy mass and spring example in figure 1.19, is multi-mode object that could result in

higher order bandgaps. For soft clamping, we mainly focus on the fundamental bandgap

of the unitcell as our numerical simulations showed that the fundamental bandgap leads to

the highest quality factors. It is equally important to point out that in our example in figure

1.20, we work with the fundamental mode of the defect as ldef ∼ lcell. We could also imagine

working with higher order modes of defect in the same fundamental bandgap.

Among the different higher order defect modes, we find that the second order defect mode is

especially interesting as its mode shape is an odd function with a node at the center of the

beams. In our experiments (which will be followed shortly), we find out that the second order

defect mode has the highest quality factor (even slightly higher than the fundamental mode of

the defect) and is more robust. In fact, our record value for the Q = 800 million, was achieved

on a sample designed to localize the 2nd order mode of the defect with ldef ∼ 2.2lcell. Besides

offering higher quality factors, 2nd order defect modes have another positive aspect: we can

take advantage of the node at the center of geometry and clamp the structures at the center.

We experimentally checked this idea which will be presented at the end of this section and it

seems that such a clamping doesn’t affect the Q of localized mods significantly. On the other

hand, having the beams clamped at the center, solves one of major technical challenges of

fabricating these extremely high aspect ratio devices.

The frequency versus mode order plot of the corrugated beam from panel 1.20.A is shown next

to the band diagram in 1.20.B. First observation from this plot is that the frequency dispersion

of the corrugated beam (red dots) is not significantly different than of a uniform beam (blue

dots). The major difference between the two is the sparse mode spectrum of the corrugated
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beams near the band gap frequencies. We can observe this sparse spectrum, more visibly in

our experimental data in figure 1.27. The sparse spectrum of the localized modes, is another

differentiating feature of our design which becomes very essential for the future quantum

optomechanic experiments. One of the major limitations of laser cooling schemes for these

mechanical oscillators is the off resonant tails of the neighboring modes interfering with our

measurements [10]. As a bonus, the issue of neighboring modes is automatically solved in soft

clamped beams.

Figure 1.21 – Dissipation dilution of PnC beam for different modes (red dots) compared to the
modes of a uniform beam (blue dots) plotted for the reference. The solid blue line represents
the quality factor of clamp-free resonator as an ultimate limit of soft clamping (discussed in
equation (1.113)). We observe an enhancement of the quality factor for the modes near the
band gap with a celebrated mode (highest in among the red data points corresponding to the
localized mode) in which the quality factor approached that of the soft clamping limit.

The most interesting part of the discussion about the soft clamped beams however, is the

performance of their quality factor. Figure 1.21, illustrates the Q spectrum of the geometry

presented in figure 1.20 (red dots) as comparison to the Q spectrum of high order modes

of a uniform beam of the same length (blue dots), plotted for the reference. Outside of the

bandgaps, the Q spectrum of the corrugated beam closely follows the trend of the uniform

beam. However, as we approach the bandgap, mechanical Q increases and it finally peaks at

the middle of the bandgap. The solid line in figure 1.21, represents a clamp free resonator as

the ultimate limit of soft clamping technique:

Qsoft-limit =Qint
1

λ2 =Qint
12σavg2

ρh2EΩ2 , σavg = (1−ν)σfilm (1.113)

The mechanical Q of the mode in the middle of the bandgap approaches to this limit, which

means that the clamping losses for localized modes are significantly suppressed (αn ≈ 0 in

equation (1.66)). However, the localized mode in figure 1.21 doesn’t exactly reach the soft
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clamping limit presented in equation (1.113). The reason for this is that the integral for βn in

equation (1.66) does not approach to unity for all localized mode shapes. However, if wmax
wmin

= 2,

we can show 15 that 0.44 <βn < 1.77 which means:

Qsoft-limit ×0.56 <Qlocalized <Qsoft-limit ×2.25 (1.117)

we can modify βn by changing the defect length and optimizing for the mechanical Q. In

fact, in the experiment, we fabricate 10s of soft clamped beams on one chip (illustrated in

figure 1.24) where we sweep the defect length to observe localized mode travels through the

bandgap as we observe the quality factor. We experimentally observe that by optimizing the

defect length, localized modes can asymptote to Qsoft-limit.

So far we demonstrate that by employing a phononic crystal, we can engineer a medium where

the oscillations of the localized mode exponentially drop as it penetrates to the phononic

crystal. This leads to a smooth transition to the clamping points. We observed that if we

have enough number of unitcells, we can diminish the contribution of the clamping losses

by making αn = 0 in equation (1.66). Now the main unanswered question is that how many

unitcells are enough number of unitcells? On the other word, how many unitcells do we need

to make the clamping losses negligible? It is very difficult to analytically answer this question.

In figure 1.22 we try to numerically simulate Q for different number for unitcells and beam

lengths. To understand the figure 1.22 lets only focus on data points for the longest beams,

l = 10 mm. The dark blue data points represent the Q spectrum of a uniform beam with the

same length plotted for the reference. Dark red data points, represents the Q of the localized

mode, corresponding to the peak value in figure 1.21. To generate the dark red data points, we

sweep the number of unitcells while fixing the total length of the beam and maintaining the

ratio for ldef/lcell = const and wmax/wmin = const. In this way, we make sure that the localized

mode stays at the same position with respect to the bandgap. By increasing the number of

unitcells in a fixed length, we shorten the length of the unitcell. As a result, the bandgap and

the localized modes shift to higher frequencies. Now if we have many unitcells (the points

to the right side of the curve), the Q of the localized mode asymptotes to the soft clamping

15In our integral for βn , if the lengths of the thick and the thin parts the unitcell are equal, we have vmin(s) =
2wmin

wmin+wmax
, vmax(s) = 2wmax

wmin+wmax
according to equations (1.44). therefore:

(
2wmin

wmin +wmax

)2
< v(s)2 <

(
2wmax

wmin +wmax

)2
(1.114)

this translates to:

=⇒
(

2wmin

wmin +wmax

)2∫1

0
v(s)un (s)2d s <

∫1

0
v(s)3un (s)2 <

(
2wmax

wmin +wmax

)2∫1

0
v(s)un (s)2d s (1.115)

equation (1.115) is only valid because v(s and un (s)2 or even positive functions with respect to the center of the
beam. From eq. (1.115) we can conclude:

βn =
∫1

0 v(s)3un (s)2∫1
0 v(s)un (s)2d s

=⇒
(

2wmin

wmin +wmax

)2
<βn <

(
2wmax

wmin +wmax

)2
(1.116)
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ε > εyield

Figure 1.22 – Optimization of number of unitcells for soft clamping technique. Red dots:
Quality factor of the localized mode (peak data point if figure 1.115) as we vary the number of
unitcells for fixed total beam length while maintaining the ratio of ldef/lcell and wmax/wmin

constant. Blue data pints: Q spectrum of uniform beam of the same lengths (plotted for
comparison). Beam thickness for this simulation is h = 20 nm. For high number of unitcells,
the Q of the localized mode follows the clamp-free beam (blue solid line). For low number of
unitcells, the quality factor declines due to additional losses at the clamping as the PnC is not
effective for low number of unitcells. The hatched region represents the forbidden zone for a
mechanical resonator according to equation (1.91) as the strain has to be larger than the yield
strain of the material. Light red region represented by equation (1.118), in theory is accessible
via dissipation dilution but is beyond the reach of soft clamping technique.

limit (the solid blue line corresponding to eq. (1.113)). However, as we lower the number of

unitcells, below a threshold, we no longer climb on Qsoft-limit and the Q of the localized mode

starts to decline. This is because below this threshold, the phononic crystal is not efficiently

damping the mode shape and the clamping losses starts to dominate. Therefore, the optimum

position to operate a PnC beam is with the number of unitcells that maximizes the Q for a

fixed beam length, nsoft-max. Fabricating more unitcells than nsoft-max, will not improve the

performance of the soft clamping technique as the clamping losses are already negligible.

In figure 1.22, we illustrate that nsoft-max changes by changing the total length of the beam

(light red and orange data points). However, it should be pointed out that the dependency

of nsoft-max to the total length of beam is logarithmic and very weak. For the lengths that we

explore in this thesis, nsoft-max is in the range of 6 < nsoft-max < 9. It is important to point out

that the maximum value of Q in figure (1.22) is only proportional to the total length of the

mechanical oscillator. This means that the recipe to achieve higher quality factors using the

soft clamping approach is to fabricate longer beams.

The hatched region in figure 1.22 illustrates the “forbidden zone” for a mechanical resonator

with the yield strain of εyield according to equation (1.91). It is impossible to achieve a Q in

this region as the mechanical oscillator would breaks before reaching this regime. Red region
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in figure 1.22 however, illustrate the region were:

Qint
12σavg2

ρh2EΩ2 <Q <Qint
12σyield2

ρh2EΩ2 (1.118)

This region is accessible in theory with dissipation dilution, but is beyond the reach of soft

clamping method. This regime remains unexplored with both of the strategies we presented

so far. As we will see in the following, we can enhance the mechanical Q and Q × f of the

soft-clamped resonators by geometrical scaling, but we can never cross the barrier of Qsoft-limit

with this technique. In order to cross the soft clamping barrier, we have to increase the average

stress, σavg. One difficult and unfruitful method of pursuing such goal is to find new deposition

recipes that results in higher initial stress in the film, σfilm. However, in the next chapter we

introduce our third and most efficient strategy, where we use geometrical tricks to locally

enhance the stress in the localized region of the beam and be able to cross this barrier for the

first time.

Before we present our experimental results on soft-clamped beams, let’s review the geomet-

rical scaling laws associated with our 2nd strategy. The dissipation dilution factor scales as

Dsoft-clamped
Q ≈ 1

λ2 ∝ l 2
cell

h2 (we use lcell because it determines the frequency of the bandgap and

thus, the localized mode). As we discussed in previous section, that intrinsic Q of the materials

scales linearly with the thickness due to surface losses, Qint ∝ h. Therefore, the Q of the soft

clamped modes scales as:

Qsoft-clamped ∝ l 2
cell

h
(1.119)

This scaling is completely different compared to the scaling for the fundamental mode of a

uniform beam (eq. (1.103)) or optimum mode order of a uniform beam (eq. (1.110)). One

major difference of the soft-clamped resonators is that the performance of the resonator

improves as we fabricate thinner samples. Y. Tsaturyan et al. [91] experimentally observed

similar scaling for the thickness of the soft-clamped membrane oscillators. In addition, Q

scales quadratically with length which means the scaling of the Q × f is linear ( f ∝ 1
lcell

); a

much faster scaling than our first strategy of using the optimum higher order mode of uniform

beam. Also, the mass scales linearly with the length of the unitcell, going to longer devices

improves the Q over mass ratio ( Q
m ), which is our second figure of merit for a mechanical

resonator. In summary:

soft-clamped beams

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q × f ∝ lcell
h

Q
m ∝ lcell

h2

(1.120)

If we compare this scaling with the historical scaling of mechanical resonators presented in

figure 1.5, we observe an opposite trend as higher quality factors are achieved by using smaller

mode volumes (by going thinner). This gives us fundamentally new toolbox in design and opti-
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mization of optomechanical systems. Now only by proper design of the mechanical oscillator

(regardless of the optical subsystem), we can achieve better optomechanical performance and

longer coherency at the same time.

Experimental demonstration of soft-clamped beams

In order to put this idea into the test, many devices were fabricated and several sweeps set

in place to experimentally understand the different physical aspects of these soft-clamped

resonators. Most important sweeps that we performed were: I) Sweep of the defect’s length

(ldef) which was normally performed between the samples of each chip (figure 1.24) as a

method to observe the effect of the bandgap on the quality factor of the localized mode. As

we see in figure 1.28, with this method, a single defect mode appears to move in and out

of the band gap as the defect length is varied. II) Number of the unitcells where we could

experimentally observe the behavior described in figure 1.22. III) The total length of the

beam in order to achieve higher quality factors. IV) All the samples were fabricated in 3

thicknesses (20 nm, 50 nm and 100 nm) in order to observe the thickness scaling described in

(1.119),(1.120). Observing 1/h scaling for Qint with these ultra-high Q samples, is a direct and

unambiguous experimental proof for surface losses.

The details of the fabrication process of these beams is discussed in chapter 2. However, it

is important to emphasize few aspects of the fabrication process. Apart from the thickness

scaling experiments where thickness of 50 nm and 100 nm were employed, our main devices

were patterned on 20 nm-thick films of high-stress Si3N4 with nominal parameters of E = 250

GPa, σfilm = 1.2 GPa, ρ = 3200 kgm−3 grown by low-pressure chemical vapor deposition on

a 100mm double sided polished 700 μm thick silicon wafers. Since the scaling of the quality

factor for soft-clamped beams is given by Q ∼ 1
h , we choose h = 20 nm for the thickness of our

main devices as it is the minimum thickness that we can still grow and control the fabrication

in a deterministic way. In order to achieve extreme quality factors, a multistep release process

was used to suspend beams as long as 7 mm, enabling aspect ratios as high as 3.5×105 and

dilution factors in excess of λ≈ 3×104. To the best of our knowledge this is among the highest

aspect ratio devices of any size and any kind that has ever been made. Even higher than high

aspect ratio carbon nano-tubes [140]. Such an extreme aspect ratio, made the fabrication of

these ultra-high Q beams the most challenging part of this thesis which it took almost 1.5

year to master the techniques required for successful fabrication of these samples. One of the

aspects of this complexity is the thickness of Si3N4 layer. With 20 nm thickness and typical

width between 300 nm to 5 μm for different parts of the beams, the choices for undercut

process are limited. With these aspect ratios for the width and the thickness, we required an

etching selectivity better than 1 : 10,000 between Si3N4 : Si in order to successfully release the

structures without damaging the nitrite layer. This means the dry Si etching chemistries for

undercutting (such as SF6 or XeF2) are not suitable as they both have selectivity lower than

1 : 1000. The only reliable solution that is accessible in our fabrication facility is Potassium

hydroxide (KOH) solution which has near infinite selectivity between Si3N4 and Si (Silicon
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Figure 1.23 – False colored SEM images of the beams before and after releasing. (a) and (b)
are right before the KOH undercut and highlights the up-scaled masked that has been etched
deep into silicon substrate to expose the fast etching facets of Si. Focusing on (a) , (c) is the
region near the clamping pads and (b) , (d) illustrates the actual geometry of one unitcell. The
smoothed transition between the wide and narrow regions of the unitcell helps with stress
relation in the film and avoid buckling at the corners. (c) and (d) shows the beams after the
KOH undercut and CPD drying. Red: Si3N4, Blue: Silicon pillar, Green: Silicon substrate

etch rate depends on the temperature of the bath, KOH concentration and its density but the

etch rate of Si3N4 in KOH bath is so small that is practically unmeasurable!). For this project

we undercut our samples using 40% concentrated (weight concentration) VLSI grade KOH at

60◦C while we maintain the bath density at 1.37. KOH bath, solves the selectivity issue and

allows us to work with the thinnest possible Si3N4 layers, but it comes at cost of few major

challenges in the process:

• (a) Using a liquid undercut step requires delicate drying procedure especially when

dealing with extreme aspect ratios presented in this work. Because of the extreme

aspect ratios of our samples, drying in the open air would result in either breaking or

collapsing of the structures. This is due to the strong surface tension of water. While the

water droplets under the beam are shrinking due to evaporation, they pull the beams

down with them. On the other hand, since our beams are very long and thin at the

same time, they are very soft springs that can easily be bent with smallest forces. To
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avoid phase transition and surface tension16, critical point drying (CPD) was used to

avoid structural collapse where we used the critical point of CO2 at 31◦C and 1072 psi,

performed in a high-pressure chamber to dry our samples. In fact, it should be note that

the liquid undercut and drying process turned out to be the most challenging part of

the fabrication process where we had an extremely low yield at the beginning. However,

overtime we learned how to carefully handle our samples in liquid and control the CPD

parameters and gas flows in order to achieve better than 95% yield at the end.

• (b) The second major problem of KOH undercut is the anisotropicity of silicon etching in

a KOH bath. Different crystalline surfaces etched with different speeds in KOH solution.

For example, <111> planes are etched ∼200 times slower than <100> planes [142].

As illustrated in chapter 2, if we attempt to undercut Si3N4 beams immediately after

transferring the mask to Si3N4 layer, we will face a “pyramid” shape structures under

the beams (the slow surfaces) where it will take a very long time to etch and release

the beams. The problem we observed was not just the length of the process, but more

importantly, the fact that the silicon underneath the clamping pads would get etched

away before we consume all the silicon material underneath the beams. To solve this

problem, an up-scaled version of the beams were patterned using e-beam lithography

and etched deep in silicon substrate (depth of 10−30 μm) using Bosch process . This is

illustrated in figure 1.23.A and 1.23.B). With this technique, the fast surfaces of silicon

on the sides are exposed and KOH can quickly etch the silicon underneath the beams.

Since the angle between slow surface ( <111>) and the fast surface ( <100>) in silicon

crystal is θ = 54.74 degree, the minimum depth for the Si etching should be a bit longer

than wmax · tanθ ≈ 1.5×wmax where wmax is the maximum width in our design. Another

positive advantage of introducing the Si etching step is that we can independently

control the distance between the Si3N4 layer and the surface of the substrate. With an

extreme aspect ratios reported in this thesis, by experience we realized that a gap of

10-30 μm between the surface of Si3N4 and silicon substrate is required to avoid the

structural collapse during the CPD drying.

• (c) Another difficulty of working with KOH undercut step is the issue of handling these

fragile structures in liquid medium. These high aspect ratio beams acts like an efficient

sail’s boat in liquid and could be dragged and often break because of the turbulence in

the water. To answer this challenge, an especial chip holder was designed and made

from Teflon (see chapter 2) which solidly clamps our chip while keeping them in the

horizontal position. It is important that we let water remains on surface of the chips

while transferring them from one bath to the next (for example from KOH to water for

cleaning). In our experience, careful handling of the chips in the liquid and especially

during the bath transfer is the most crucial step of the fabrication that may lead to

extremely low yield if it is not done properly.

16If we go from the liquid phase to the gas phase without passing through a phase transition surface, we can
avoid surface tension. This is done via going around the critical point of the liquid, via the super-critical phase
where due to high temperature and high pressure, the difference between the gas and liquid cannot distinguished
via a surface.[141]
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During the measurements, we realized cleanness of the samples are crucial to achieve ultra-

high quality factors. Therefore, in this process we went through a number of cleaning steps

to ensure the contamination is kept at the minimum level. These cleaning steps includes N-

methyl-pyrrolidone (NMP) bath (used to strip photoresists), Piranha bath (to remove organic

residues), BHF bath (to remove ebeam resist and silica particles), KOH bath (for undercut and

removing Si particles) and finally a HCL bath which neutralizes the potassium leftovers from

KOH undercut step.

Figure 1.23 illustrates the actual shape of the unitcells that was used in our experiment. We

realized that unitcells with rectangular shapes as shown in the schematic design of figure 1.20,

results in upward bending of the corners due to stress relaxation after the release. This leads

to lower quality factors. Therefore, the masks were changed to adapt a smooth transition

between the wide and narrow regions of the unitcell. Our numerical simulations show no

significant difference between the two geometry. It is important to note that all the models and

fittings for the measured data are based on the exact geometry extracted from SEM images.

Figure 1.24 – Optical image of a sample chip. Dimensions of the chip are 12 mm×5 mm. On
this chip there are 75 beams, each with a different defect length; photographed on top a 5cent
Swiss coin as a reference for the scale. (this images is creased by superimposing 60 individual
photos taken from the same angle with different focal depths in order to create a fully focused
photo)

For this experiment, silicon wafer was diced into 12 mm×5 mm chips (we could effectively

fit up to 65 chip on a 100 mm wafer for each run). Figure 1.24 shows the optical image

of one of these samples where 75 devices fabricated on each individual chip. One of the

advantages of working with 1D objects compare to 2D membrane resonators is their extremely
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small footprint. Many devices can fit into a small area and different parameters can be

experimentally swept. In our design, we usually sweep the length of the defect from 0.5lcell

to 2.5lcell in extremely fine steps over the samples inside each chip. This allows us to observe

the localized mode in different parts of the bandgap and unambiguously observe the effect of

bandgap on the mechanical Q. Normally we swept the other parameters (such as the total

beam’s length and number of unitcells) from one chip to another. The reason behind this

choice is that we would like to fix the parameters of the bandgap (namely its frequency as well

as mode spectrum of the beams) for every time that we load a new sample in our vacuum

chamber. In this way, we can quickly characterize and test many samples for each pump

down as the geometry doesn’t change a lot between the neighboring devices. It is important to

emphasize that we normally place two calibration uniform beams at each end of our chips.

One with the fixed length of 1 mm and width of 2.5 μm (the top beam in figure 1.24) and

one uniform beam with the same length of the corrugated beams but with a fix width of

2.5 μm (bottom device in figure 1.24). These two beams were used at the beginning of each

measurement campaign as a calibration devices to a) check the Qint on a simple geometry

that we understand its spectrum b) to vertically align our fiber interferometer with the chip.

To characterize these devices, we carried out thermal noise and ringdown measurements in

vacuo (< 10–7 mbar) using a lensed-fiber interferometer. Based on our numerical model, we

are expecting to observe mechanical Qs approaching 1 billion for our highest aspect ratio for

frequencies close to Ωm/2π ≈ 1 MHz. This means that the expected mechanical linewidth

would be around Γm/2π ≈ 1 mHz. Such an extreme linewidth together with the fact that

thickness of our devices is very small (∼ 20 nm) means17 that gas damping could become a

limitation for our resonators. Our analysis (see appendix A.II) shows that we need a vacuum

below 10−7 mbar in order for the gas damping to be negligible. This pressure is an order of

magnitude below the all of the previous operational vacuum chambers in our lab. Therefore,

as one the major projects of this thesis we construct a custom made UHV chamber and

measurement apparatus to characterize ultra-high Q mechanical resonators. We discuss the

details of the design and operation of this UHV chamber in appendix A.II but here we only

review few major aspects of it. In figure 1.25 we can find the 3D rending and an optical image

of our vacuum chamber designed in SolidWork [143] . All the previous experiences of vacuum

chamber designs and experiment setup in our lab was put into making this setup most suitable

and easy-to-use for our experiments, with lots of flexibilities to host future upgrades. One

of these experiences was the fact that in the field of optomechanics we change samples very

often compare to for example ultra-cold atom experiments. In our previous chamber designs,

the entire chamber had to be vented to load a new chip and pumped again. This process could

even take up to several days before the pressure of the chamber is low enough that the gas

damping becomes negligible. This made the process of sample characterization very long and

inefficient, In addition, this practice could damage the ion pumps in the long run. In the UHV

17Gas damping scales as [95]:

Qgas ∝ Ω×h

P
(1.121)

where P is pressure. Therefore, the thinner the device is, higher the gas damping becomes.
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Figure 1.25 – (A) the 3D SolidWork rendering and (B) the image of our completed custom made
vacuum chamber. The samples are transferred to the main chamber through a lock chamber
via the magnetically coupled load lock arm. The loadlock enables samples to be loaded from
ambient pressure into 10−8 mbar vacuum in less than 5 minutes which significantly increases
the speed and efficiency of our measurements. The main chamber is always pumped via
the ion pump and could reaches the pressure of 9×10−9 mbar without backing. The 3-axis
nono-nanopositioning stages that controls the position of the sample, the fiber lens, piezo
drive, and sample chip are housed together in the vacuum chamber. The laser light and
electrical signals are transmitted in and out of the chamber via especial UHV compatible
fiber and SMA feed-throughs. The pressure of both chambers is constantly monitored via the
pressure gauges connected to each chamber. An optical microscope is setup on the top of the
view point and used for alignment procedure.

chamber illustrated in 1.25, in order to over come this obstacle, a small load lock was designed

with separate vent and pumping valves. To operate the system, the main chamber is always

kept under high vacuum (∼ 10−8 mbar) by opening the ion pump valve which constantly

pumps on the main chamber. In order to load and unload samples, the small load lock is

pumped via a turbo pump and the samples are transfered to the main chamber by opening

the transfer valve and using the magnetically coupled load lock arm. We normally keep the

loadlock chamber also in vacuum to avoid contaminating the load-lock. In our experimental

setup, the samples are sitting on a 3D stage UHV compatible nano-positioning systems. An
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automated program was written to position the sample holder in front of the load lock during

the loading and bring it close to the tip of the fiber interferometer during the measurements.

The load-lock enables samples to be loaded into ∼ 10−8 mbar vacuum in less than five minutes.

λ/4

PBS

PD

PD

Input

Bias
Tee

PI

DC

AC

λ/2

λ/2

λ/4

λ/4
λ/2

PZT

PZT

Network
Analyzer

Drive

BS

x y z

<10-6 mbar

Ti:Sa

Figure 1.26 – Schematic of measurement setup. The reflected light from the facet of the
beams is collected by the lensed fiber and the mechanical induced phases shift is detected
on a double balanced Mach-Zehnder homodyne interferometer. λ/2: Half-wave plate. λ/4:
Quarter-wave plate. PBS: Polarizing beamsplitter. BS: 50/50 beamsplitter. PZT: Piezoelectric
transducer. PI: Proportional-integral loop filter. PD: Photodiode.

In our experiments, nanobeams were characterized using a custom, balanced Mach-Zehnder

interferometer whose signal arm is terminated with a lensed fiber where the focal spot radius

of the lens is r ≈ 1.4 μm and focal distance of ∼ 3 μm. Figure 1.26 illustrate the schematic

design of our setup. To align a nanobeam to the interferometer, the sample chip is maneuvered

in the focal plane of the lens using a 3-axis nanopositioning stage. For the measurements

reported, a signal (reference) arm power of 0.1−10 (1) mW was used. The reference arm

length was served with a piezo-actuated mirror in order to stabilize the interference fringe

at its inflection point. Despite alignment inefficiency (typically 0.1% of the power incident

on the beam was retro-reflected into the fiber), thermal motion of the nanobeam could be

observed in the power spectrum of the photocurrent at frequencies as high as 10 MHz.

Ringdown measurements were initiated by resonantly exciting the nanobeam (at frequency f )
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using a thin piezo-electric plate attached to the sample holder. After turning off the drive, the

slowly-varying amplitude of the beam was monitored by demodulating the photocurrent at

f with a bandwidth BW > 100 Hz � Γm/2π. The large demodulation bandwidth was used to

mitigate the influence of resonance frequency drift (typically 1 Hz/s in steady state with laser

on) on ringdown measurements.

We start our experiment demonstration of soft-clamped 1D nanomechanical resonators by

studying 2.6 mm-long devices with unit cells of length Lcell = 100 μm and width wmax/wmin = 2

and wmin = 500 nm fbricated on 20 nm high stress Si3N4 layer. There are 12 unitcellls at each

side of the defect in this samples (slightly higher than the optimum number of unitcells studied

in figure 1.22) and the defect length was varied between 0.5lcell and 2.5lcell. In the first step, we

measured the thermal noise spectrum of each device. An example of such a thermal noise is

plotted in figure 1.27.B. Bandgap for this geometry is presented at figure 1.27 where in-plane

and out of plane mode of the unitcell are highlighted. Since the aspect ratios of both in-plane

and out of plane modes is extremely large, the fundamental mode bandgap for the two modes

overlap. It is important to emphasize here that although all our measurements and designs in

this section are designed for out of plane motion (as it is the mode that can be measured better

with our interferometer), the same discussion can be held for in-plane modes. In fact, in the

next section, we will observe the in-plane modes by off centering the fiber interferometer and

measuring on the edge of our beams. Particularly one of the striking features of corrugated

beams is the sparse mode spectrum inside the bandgap, visualized by compiling spectra of

beams with different defect lengths (figure 1.27.C). As we discussed before, such a sparse

spectrum is really beneficial for laser cooling experiments where the off-resonance tail of

neighboring modes could pose a fundamental limitation for cooling. A single defect mode

appears to move in and out of the bandgap as the defect length is varied.

This mode is expected to be localized and therefore have a reduced effective mass. One of

the other important features of our localized modes compare to, for example higher order

modes of uniform beam is that the effective mass of these resonators are extremely small.

Much smaller than the physical mass of the oscillator since only a very small fraction of the

beam is oscillating at the center of the resonator. The exponential damping of the amplitude

in the PnC be is the form of e−|n|/nPD were n is the unitcell number from the center of the beam

and nPD is the penetration depth of localized mode into the PnC. Based on our analysis in

figure 1.22, we can numerically simulate the penetration depth to be 2 < nPD < 3 with a weal

logarithmic dependency on total length of the beam. Therefore we can show the effective mass

of the localized mode to mlocalized
eff ≈ nPD

2 mdefect
phys . On the other word, a soft-clamped mode has

an effective mass approximately equal to the physical mass of the defect but with the quality

factor of 100-1000 times larger. Comparing the area under thermal noise peaks and estimating

the physical beam mass to be m0 = 100 pg, we infer that indeed m ≈ 5pg 
 m0. This value is

in good agreement with the mode profile obtained from the Euler-Bernoulli equation, and is

roughly 2 orders of magnitude smaller than that of an equivalent 2D localized mode.

The next step is to look at the quality factor of these soft-clamp resonators. The mechanical
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Figure 1.27 – (A) Band diagram showing in(∥)- and out(⊥)-of-plane normal modes of a unit
cell for geometry presented in figure 1.20. (B) Displacement thermal spectrum (blue) of
a single beam, scaled to the theoretical RMS thermal displacement of the defect mode,√

kB T /md (2π f )2 ≈ 6 pm. Overlaid are effective mass coefficients m/mdefect (red circles)
inferred from the area beneath noise peaks. Gray is a model based on mode shapes in (D),
used to estimate mdefect ≈ 5 pm (C) Frequency spectra of multiple beams with different defect
length. Black lines are a solution to the Euler-Bernoulli equation. By sweeping the defect
length, a localized mode can be tracked as it moved in and out of the bandgap. (D) Mode-
shapes obtained from the Euler-Bernoulli equation where red illustrate the mode shape of the
localized mode.

quality factors are several modes near the bandgap were measured using the ringdown tech-

nique. The results are illustrated in figure 1.28. In accordance with (1.66), we also observe a

dramatic increase in the Q of localized modes. To visualize this enhancement, we compiled

measurements of Q versus mode frequency for 40 beams of different defect length (figure

1.28.A). Outside the bandgap, we find that Q( f ) is consistent with that of a uniform beam,

asymptoting at low mode order (n � 20) to Q ≈ 2×107, implying Q0 ≈ 2λQ ≈ 1500. Inside the

bandgap (n ≈ 26), Q approaches that of an idealized clamp-free beam (Q ≈Q0/(πnλ)2 ≈ 108).

The transition between these two regimes agrees well with a full model (blue dots) based

on (1.66). In figure 1.28.A we highlight the 19-second ringdown of a 2.46 MHz defect mode,

corresponding to Q = 1.5×108 and Q × f = 3.7×1014 Hz marked by the star in figure 1.28.B as

the highest Q measured in this sample set. It is important to point out that our quality factor is

on par with the best quality factors achieved with 2D soft-clamped membranes [91] at higher

frequency which means higher Q · f . This value is higher than any recorded value for Q × f of

any mechanical oscillator of any size at room temperature is equivalent to about 60 coherent
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Figure 1.28 – (A) Interferometric ringdown of for the highest Q measured on 2.6-long, 20-
nm-thick PnC nanobeam excited in its 2.46 MHz defect mode (cyan star). Black solid line is
an exponential fit with a decay time of ∼ 20 seconds. (B) Q versus mode frequency of PnC
nanobeams for different defect lengths and modes. We experimentally observe that the quality
factor of localized modes approaches the limit of clamp free beam (solid black line). Green
regions correspond to the area accessible via higher order modes of uniform beams, blue
correspond to area accessible via soft clamping and red is the region beyond the access of soft
clamping technique. The dashed lines correspond to constant Q × f .

oscillation of the mechanical oscillator at room temperature. These results demonstrate the

strength and validity of the soft clamping technique to create mechanical oscillator with

extreme quality factors.

The last remaining piece of the puzzle in regard to our soft-clamped modes is two show that

we surface loss limited and have Qsoft-clamped ∝ 1/h scaling for localized mode as discussed

in (1.120). In order to experimentally verify this hypothesis, same geometry discussed in

figure 1.28 where were fabricated on 50 nm and 100 nm high stress Si3N4 and measured in our

vacuum systems. The results of this measurements can be found in figure 1.29. In figure 1.29.A.

We observe that for other 50 nm and 100 nm thick resonators, the mechanical Q follows our

numerical model (solid lines). Although as expected, the dissipation dilution factor is lower for

thicker samples. In figure 1.29.B, we stack all the measurements of the figure 1.29.A into one

line for each thickness. We observe the peak values of the quality factor which corresponds to

the localized modes, follows a linear scaling with thickness as predicted by equation (1.100).
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Figure 1.29 – (A) Measured Q (circles) versus frequency for corrugated PnC beams with different
defect length and thickness of Si3N4 layer super imposed on the model for each thickness
(solid lines). (B) All the measured Qs for each mode is stacked on top of each nitrite thickness.
Overlaid is a model with Q0 = 6900 ·h/(100 nm), consistent with surface loss as the localized
mode (the top Qs for each thickness) should follow a 1/h scaling law.

In conclusion, in this section we theoretically and experimentally discussed the idea of soft-

clamped oscillator and show case its strength at engineering mechanical oscillators with

extreme quality factors. Soft clamping technique enhances the quality factor by diminishing

the extra curvature at the clamping points, while localizing the motion at the small portion of

the beam that leads to reduce mass. This offers a unique and strong toolbox (summarized in

equations (1.120)) for engineering optomechanical system that are capable of reaching the

quantum ground state at room temperature. However, for the completion of this section, lets

also briefly review the weaknesses of soft clamping approach. There are to major drawback we

can think of while working with soft clamping beams. a) the performance of the soft clamping

beams at best (if we succeeded in complete suppression of clamping losses) is limited by a

clamp-free model presented in equation (1.113). This means the Qsoft-clamped× f ∝ 1/Ω. Such

a scaling for Q × f is one of the major limitation of soft clamping as the highest Q × f and

operation frequencies are locked to each other. If for a certain experiment, we need to achieve

Q × f , we are forced to operate at lower frequencies. Considering all the technical noise at

frequencies below 1 MHz (such as laser classical noise, thermo-refractive noise [121] and

etc.), this could limit the ultimate performance of these oscillators. b) the second weakness

as discussed in equation (1.118) is that the regions identified by light red bands in figure 1.28

and 1.22 in theory is accessible for mechanical resonators. However, the performance of soft-

clamped resonators are bounded to the Qsoft-limit and therefore, they can never be accessed

with soft clamping technique. In other word, it seems that soft clamping cannot fully make

use of all the potential capabilities of dissipation dilution. In the next section, we present a

third strategy to that takes advantage of the geometrical strain engineering to locally enhances

the strain at the region of the localized motion lives. We will observe that both of these two

weaknesses can be addressed via our third strategy as with this strain engineering, we can
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break the soft clamping barrier and explore the forbidden zone. Also our third strategy will

offer a technique to independently engineer Q × f at any desired frequency for an operation

which gives us a lot of degrees of freedom in the design of optomechanical systems.

Strain-enhanced soft-clamped beams

Having established near-ideal soft clamping of uniform PnC nanobeams, now we focus on

our third and most efficient strategy to enhance dissipation dilution via geometrical designs.

In the last section, we observe encapsulating a defect in the middle of a phononic crystal

bandgap would result in a localized mode with near clamp-free quality factors that approaches

Qsoft-limit according to equation (1.113). But as we illustrate in figures 1.28 and 1.22, Qsoft-limit

is still far from the ultimate limit of dissipation dilution discussed in section 1.2. In this

section, we present a new strategy that enables us to surpass the Qsoft-limit barrier and make

a nano-mechanical resonator with unprecedented performance. Lets start by reviewing our

remaining degrees of freedom. According to equation (1.66), in its most general case, the Q of

a clamped-free beam can be written as:

Qclamp-free-general =Qint
1

β

12σ2
avg

ρh2EΩ2 (1.122)

Assuming that we fabricated the thinnest possible resonator (smallest h), the only remaining

degree of freedom is to design a geometry that enhances β. This is because, in equation (1.51),

we demonstrated that unfortunately it is impossible to increase the average stress (σavg) via

geometrical designs.However, the good news is that we do not need to increase the average

stress across the entire beam. Especially in the case of the soft-clamped beams, we can use

localized mode shape to our advantage. Due to their confined and localized nature, we only

need to locally enhance the stress in the region where the localized mode exist which in turn

lead to further enhancement of the dissipation dilution. It should be noted, however one

difficult and fruitless path would be to find new deposition recipes that increase the σfilm

which in turn could lead to higher average stresses. However, we are interested in perusing the

enhancement of stress via geometrical means [102][103][144].

[GPa]

w(x)×σ(x) = const

Figure 1.30 – Numerical simulation for geometrical strain engineering where by narrowing
down the cross-section of a high-stress beam, we can locally concentrate the stress (Yellow
regions represent the areas with higher stress.). (A) a sharp-step like transition with a constant
narrow region. (B) Smooth transition via a Gaussian envelope.
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Equation (1.88), shows the main principle behind the concept of geometrical strain engi-

neering. By narrowing down a region of high-stress mechanical beams, we concentrate the

entire tensile force on a small bottleneck and locally enhance the quality factor. Figure 1.30

beautifully illustrates the concept of strain engineering by color coding the stress in different

regions of a non-uniform beam. It should be pointed out that geometrical strain engineering

has a long history in solid-state community to realize unusual material properties [145]. For

instance, stress can be used to enhance the electron mobility of a semiconductor, enabling

more efficient solar cells [146] and smaller, faster transistors [147]. Here we want to use it for

controlling the mechanical properties of elastic materials. Although Elastic strain engineering

traditionally relies on extreme inhomogeneous stresses produced by nanoscale deformation

[148] [e.g., by lithographic patterning [80] [102], or nano-indentation [149]], here the main

challenge is how we use this powerful technique through the process of dissipation dilution to

boost the performance of phonons with very large wavelengths that often approach several

100s of micrometer.

The main schematic design for the concept for strain enhanced soft-clamped beams is il-

lustrated in figure 1.31. In our third strategy, if we will manage co-localized the mechanical

mode shape with the of regions enhanced stress, this may lead to higher quality factors. To

wclamp

lbeam

ltaper

wtaper

Figure 1.31 – Schematic design of the idea of strained enhanced soft-clamped beams. In this
idea, the regions of high stress (yellow regions at the center) is created via tapering the width
of the beam where a localized mode shape is created via phonoic crystals. The co-localization
of high stress and the mode shape results in dramatic enhancement of the quality factor. It
is also important to realize that for the tapered region to have higher stress, other regions of
beam ends of have lower stress compare to a uniform beam. This results that the stress of the

tapered region is a function of both
wtaper

wbeam
and

ltaper

lbeam
according to equation (1.127).

understand this further enhancement, let review the equation for β:

β=
∫1

0 v(s)3u(s)2d s∫1
0 v(s)u(s)2d s

(1.123)

where u(s) and v(s) are the mode shape and normalized width respectively. Now if we assume

the tapered region of the is much smaller than the entire length of the beam (ltaper � lbeam),

then we can assume that wavg ≈ wclamp and σavg ≈ (1−ν)σfilm based on figure 1.31 geometry.

Now in such a situation if via PnC localization on the soft-clamped, the extent of u(x) will be

only limited to ltaper, then we can approximate the β factor to be:
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βtapered soft-camped ≈
(

wtaper

wavg

)2

(1.124)

which means that the Q of the strained enhanced localized modes can be derived to be:

Qtapered soft-camped ≈Qint

12σ2
taper

ρh2EΩ2 (1.125)

where

σtaper =
wavg

wraper
σavg (1.126)

with this idea and via combining a strained engineering through taper and mode localization

though, we achieve higher quality factors if σtaper > (1−ν)σfilm. Here it is important that

we understand the non-intuitiveness and complexity of strain engineering. Based on stress

relaxation laws, in order for the tapered region at the center of figure 1.31 to have higher stress,

other regions of beam ends of have lower stress compare to a uniform beam. In other word, the

reason beside the enhanced stress at the tapered region is the other parts of the beam attempt

to shrink and relax their stress and as result they pull the central region with them. For a small

region to have enhanced stress, a large amount of mass has to shrink. As a result, if the length

the tapered region in figure 1.31 is comparable with the length of the entire beam, we can

no longer assume that σavg ≈ (1−ν)σfilm and in fact we reduce the average stress. Therefore

we have to engineer our system in a way that local enhancement of the stress does not come

at the cost of large reduction of the σavg. Lets calculate the σtaper for geometry presented in

figure 1.31 as it provides insights about our strategy on choosing the taper parameters. Based

on equation (1.48), we can show:

σtaper ≈ (1−ν)σfilm
ltaper

lbeam
+ wtaper

wbeam

(1.127)

Equation (1.127) shows, not only we can change the stress of the tapered region by changing

the tapering ratio, but also with the length of the taper. In fact, in our in our experiment, we

sweep the stress of the tapered region by changing the length of taper rather than the width

of the taper. This is because changing the width of the taper, requires some changes in the

design of the PnC and technically changing the tapering length is much easier. Eq. (1.127)

is useful not only for the evaluation of geometric strain enhancement in beams, but also in

membranes. For example, it predicts that no significant enhancement of strain takes place in

the tethers of a trampoline membrane with fillet radius smaller than the tether length. This

contradicts with the claim from [92], [93].

It should be noted that for technical reasons, in our experiments we implement a smoother
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. . . . . . . . .

wminwmax

(x)

Figure 1.32 – Geometry of strain-engineered 1D phononic crystals. (A) A segmented scan-
ning electron micrograph (SEM) of 1 4 mm fabricated tapered PnC nanobeam, vertically scaled
for perspective (1:4). (B) Width/stress profile and defect mode shape of a device with 60 unit
cells where a non-uniform tapered phononic crystal is used to co-localize the stress and mode
shape at the same time (the image is not to scale and is vertically scaled for perspective). In
this design we used a Gaussian tapering envelope according to equation (1.128).

tapering presented in 1.30.B. The Q factors of both two tapering geometries displayed in figure

1.30 simulated to be similar (within a factor of two). Figure 1.32 illustrated the actual geometry

we used in our experiments. In this geometry, by weakly corrugating a prestressed nanobeam,

we create a bandgap for localizing its flexural modes around a central defect. By tapering the

beam, we colocalize these modes with a region of enhanced stress. Reduced motion near the

supports (soft clamping) results in higher dissipation dilution, while enhanced stress increases

both dilution and mode frequency. Leveraging a multi-step release process, we implement

our approach on extremely high aspect ratio tapered beams (as long as 7 mm and as thin as 20

nm) made of pre-stressed (1.1 GPa) Si3N4, and achieve local stresses as high as 3.8 GPa.

In our proposed geometry in figure 1.32, unlike the toy model in figure 1.30, we implement the

tapering by patterning a non-uniform phononic crystal. Colocalization of stress with these

modes is achieved by adiabatically tapering the width of successive unit cells toward the defect

according to a Gaussian envelope function. Implementation of the strain engineering in this

way proves to be significantly less complicated than other geometries. However, designing a

non-uniform phononic crystal comes with its complication. The chief among them is the fact

that by increasing in the tapering regions, we are also changing the speed of the sound in the

material (vs =
√
σ/ρ). Therefore in return, we have to adapt the length of the unitcell in order

to maintain the bandgap frequency at any given location of the non-uniform PnC beam.

The tapering geometry is displayed in figure 1.33. In our designs, we fixed the width ratio of

the wide and narrow region of the unitcellls, wmax(n)
wmin(n) = 2.3.The transverse adiabatic tapering is

applied to the beams cell-by-cell (see figure 1.33), with the widths of the unit cells following

the Gaussian envelope:

wmax(i ) = 2.3 ·wmin(i ) ∝ 1− (1−αw )exp
(−i 2/i 2

0

)
. (1.128)

Here i = 0,1, ... is the unit cell number counting from the central defect, αw and i0 respectively

define the transverse and longitudinal sizes of the waist region. In out numerical simulations,
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A

B

Figure 1.33 – Design of tapered 1D PnC. (A). Paramters of the tapered PnC that used for
Gaussian envelope according to equation (1.128). (B) Details of the device shown in figure
1.32. Width profile w(x), axial stress σ(x), and out-of-plane displacement u(x) of the first
order localized mode, plotted versus axial coordinate along the beam, x. A deposition stress of
σfilm = 1.1 GPa is assumed.

we realized that too sharp and narrow tapering (small i0 and large αw ) although leads to higher

stress in tapering regions according to eq. (1.127), it could lead to lower Q. This is because

a sharp tapering, would lead to sharp curvature in the mode shape which results in lower

dissipation dilution. Also to wide and long tapering is not effective as it does not produce

a large σtaper. Therefore, there is an optimum value for αw , i0.The values we used in our

experiments, αw = 0.15−0.2, and i0 = 8−10. were optimized by a random-search algorithm

to maximize Q/Q0. This means that our tapering ratio is
wclamp

wtaper
= 1

αw
= 5−6.6. This mean by

adjusting the length of the tapered region according to equation (1.127), we can tune the stress

in the tapered region between 0.9 GPa <σtaper < 6 GPa (note that the yield stress of the Si3N4

is about σyield ∼ 5 GPa). On the hand, having i0 = 8−10 which means that the length of the

tapering region is roughly 8-9 unit-cell on each side. Considering the fact that in figure 1.22

we demonstrate the localize mode penetration depth into PnC is also about 6-8 unitcell, we

observe that the localized mode is completely confined in the high stressed tapered region.

Importantly, we also taper the unit cell length as Lc (i ) ∝ 1/
√

wmax(i ). This has the effect of

matching the bandgap frequency of each cell, ensuring strong co-localization of stress and

defect motion.

Similar to what we did in the case of soft-clamped beams, first we start our analysis by looking

at the Q spectrum of a tapered PnC beams. In figure 1.34 we find the Q spectrum of tapered

PnC beams (red dots) compare to a uniform beam of the same size (blue does). An interesting

difference figure 1.21 and figure 1.34 is that a tapered corrugated beam, unlike a uniform PnC
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Figure 1.34 – Dissipation dilution spectrum of the modes of a PnC beam (red dots) l = 3 mm
h = 20 nm beam with the shape described in figure 1.33 . Blue: modes of uniform beam with
the same l , h plotted for the reference. The region with red background shows the range of DQ

values that exceed the DQ (blue solid line) of an idealized clamp free beam, Qsoft-limit, but is
allowed in theory by dissipation dilution theorem (eq. (1.66)). Localized mode of the tapered
PnC beam can reach the quality factors of the red region. Hatched region is the forbidden
region by dissipation dilution according to equation (1.91) as it requires stress beyond the
breaking point of the material.

beam, does not behave like a uniform beam outside the bandgap. In fact, the Q factors of mode

outside the bandgap usually fall below the Q of a standard uniform beam. This is because this

mode has an extended mode shape which has non-zero amplitude outside the tapered area

where the Q is reduced. On the other word, if the strain engineering is not correctly used and

doesn’t complement with our PnC localization technique, could even lead to lower quality

factor rather than being beneficial. However, the most interesting data point in figure 1.34 is

the Q of the localized mode which goes beyond the soft clamping limit (solid blue line) and

enters a regime (red region) that wasn’t accessible with any other technique we studied before.

These results signal a paradigm shift in the control of dissipation in nanomechanical systems,

with impact ranging from precision force microscopy [6] to fundamental quantum science

[9] such as tests of quantum gravity [104]. Combining the reported approach with crystalline

[150][81] or 2D materials [148] [149][151] may lead to further improvement, of as yet unknown

limitation.

Having demonstrated the extreme quality factors of these resonators beyond the soft clamping

limit, now the next task is to understand their scaling behavior and how does the Q and

Q × f scale with the dimension. Equation (1.125) already shows the thickness scaling of the

tapered localized beams are similar to the normal localized modes Q ∼ 1/h (we include the

contribution of surface losses here as Qint ∝ h). However, the more interesting question is
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the scaling with length. Similar to our analysis with uniform localized mode, we foxed the

total length of the beam and change the band-gap frequency by changing the number of

unitcells and keeping all the other parameters (such as αw , i0 and wmax(n)
wmin(n) ) fixed. Since unitcell

length determine the bandgap frequency therefore we have: Ω ∝ 1/lcell. Also we assume

for a small αw , the stress in tapered region scales inversely with the length of the tapered

resonator: σtaper ∝ lbeam
ltaper

. Since in our designs we fix the taper length to be ltaper = ηi0 × lunitcell

(η is constant number that accommodate the fact that the length of unitcells are not equal in

the tapering region), the quality factor of the taper soft-clamped beams scales as:

Q ideal
tapered soft-camped ∝ l 2

beam

h
(1.129)

This the most unusual scaling that we observe compare to uniform beams or uniform PnC

beams. The quality factor of the localized mode in the ideal scenario is independent from the

frequency and is only limited by the total length of the cavity. In contrast, in the last sections,

we observe the Q of the fundamental modes (or the optimum higher order mode) of a uniform

beam scales with Q ∼ 1
Ω or scaling of Q ∼ 1

Ω2 for the localized modes. For the tapered PnC

beams however, Q is constant regardless of the geometry. This is because by putting more

unitcell in the beam and decrease of the length of the unitcell, bandgap moves to higher

frequency, we increase the bending curvature but its effect gets compensated by having higher

stress. This scaling is for an ideal localized mode in the form of figure 1.31 in which the stress

is uniformly enhanced through out the tapered region. However, for the real geometry we

used in figure 1.32 where adiabatic taper of the PnC is used to enhance the stress, the stress in

not uniformly enhanced throughout the tapered region. Therefore correctly calculating the Q

scaling for our geometry in figure 1.32 will results in:

Qtapered soft-camped ∝ lbeam

hlcell
(1.130)

Equation (1.130) means the 1/Ω scaling for the mechanical Q and it means the Q × f is a fixed

number independent of the frequency. This is beautifully illustrated in figure 1.35 where we

numerically calculate the quality factor of the localized mode in a tapered geometry. Similar

to our analysis of uniform soft-clamped beams (figure 1.22), here we also change the localized

mode’s frequency by changing the number unitcell for a fixed length of the beams. In figure

1.35.A we see that how the Q of the tapered localized mode goes beyond limit of soft clamping.

The gap between the two grows stronger in higher and higher frequencies. In figure 1.35.B,

we observe that the Q × f of the tapered localized modes (light red data points) is almost

fixed regardless of the frequency. Decoupling the Q × f and frequency solves one of the major

limitation we faced with uniform localized modes. With just soft clamping technique alone,

we observe that the only way to achieve higher Q × f was to move to lower frequency. An

option which could come at a cost of major technical challenges due to various noise sources

at low frequencies. But with our third strategy, not only we can use the dissipation dilution to

its full extent, but also we can engineer an ultra-high Q × f at any desired frequency.
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ε>εyield

×f×f

ε>εyield

Figure 1.35 – Comparison of the Q in panel A and Q× f in panel B, between our three proposed
strategies. These results simulated for a beam with a fixed length l = 3 mm and thickness
h = 20 nm. The value of Qint = 1.4×103 is considered to calculate the Q factor. Blue circles
correspond to modes of uniform doubly clamped beams (or first strategy) where highest Q × f
is achievable at an optimum mode order. Dark red and red points correspond to localized
modes of uniform PnC beams where we change the number of unitcells to go to higher
frequencies. These soft-clamped modes have superior Q and Q × f compare to uniform
beams but their performance is limited by the ideal limit for a soft-clamped beam Qsoft-limit,
(blue line) and higher Q × f is achievable only at lower frequencies. Red circles represent our
third strategy of strain enhanced soft-clamped beams where a non-uniform PnC is used to
co-localize the stress and the modes shape to achive higher Qs. These tapered PnC beams, not
only can achieve Qs beyond the access of the soft-clamped beams in the red region, they offer
almost a constant Q × f for any given frequency. This give a lot of degrees of freedom in design
of optomechanical systems to be able to independently choose the frequency of the system.
Hatched region is the forbidden region by dissipation dilution according equation (1.91).

Equation (1.130) shows us the route to further increase the Q factor. In an interesting coin-

cident, the ultimate performance of a beam is only limited by the total length of the beam
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that we can fabricate. This actually turns the main fundamental question of how we design

higher Q resonator to an engineering question of how we can fabricate longer and longer

(higher aspect ratios to be precise) beams. With this in mind we tried to experimentally test

this hypothesis. But before we review our experimental results, let summarize the scaling law

for our two main figure of merit for a mechanical oscillator:

Tapered soft-clamped

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q × f ∝ lbeam
h

Q
m ∝ lbeam

lcellh2

(1.131)

where lbeam is the total length of the released beam. This mean that by improving the aspect

ratio of our beams and find new fabrication methods to fabricate longer structures, we can

improve the performance of the mechanical oscillator.

In the next step, we tried to experimentally investigate the performance of these tapered PnC

beams. Details of the fabrication of these devices is presented in chapter 2 but in summary,

the process is very similar to our discussion about the uniform soft-clamped beams with

the difference that by having the scaling law with the total length of the beam in mind, here

went to the extreme of the aspect ratio we could fabricate, thickness of 20 nm and length of 7

mm. This as aspect ratio appear to be anomalously high for a suspended thin film, including

2D materials [140]. Due to the extreme aspect ratio of these devices, it is unfortunately very

difficult to image them in one figure. However, a segmented SEM of these localized modes is

shown in figure 1.32.A. Samples where measured on our UHV chamber (see appendix A.II) at

pressures near 10−8 mbar to unsure gas damping is negligible. In our measurement, to speed

up the process, we normally start to procedure by with finding the frequency of the localized

mode via the thermal spectrum. Then the mechanical quality factors were measured using a

ringdown technique where the vibrations of the mechanical resonator were detected using a

fiber interferometer (described in figure 1.26)

In the first step, similar to our experiments with uniform PnC beams, we try to measure

and understand the spectrum and the behavior of the bandgap. For this we measured the

thermomechanical spectrum of the Brownian motion of the tapered PnC beams. In figure

1.36, we can find the thermal displacement spectrum of few selected 4 mm-long devices with

different unitcell. As we can see, similar to uniform soft-clamped beams, our tapered ones

also consist of a jungle of low order modes with relatively low Q and a sparse spectrum near

the bandgaps (highlighted in orange). We can use the frequency of the band gap to indirectly

measure the stress in the tapered region as illustrated in figure 1.37.

In figure 1.37, the yellow, orange and red squares are represent the three cases presented in

figure 1.36 and correspond to 28, 60 and 118 unitcells respectively. As expected, the frequency

of the bandgap increases by increasing the number of unitcells. A part of this scaling is due to

reduction of the length of the unitcellls (the solid blue line in figure 1.37). However, what we
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Figure 1.36 – (A) Thermal displacement spectrum of few selected 4 mm-long devices with
different number of unitcells. Band gaps are highlighted in orange. (B) Width/stress profiles
and the mode shape of each devices corresponding device in panel (A)

Figure 1.37 – (A) Simulation of peak stress versus band gap frequency for the devices shown
in figure 1.36. (B) Measurements of bandgap frequency versus length of the central unit cell
(parameterizing the taper length). Red and blue lines are models with and without accounting
for stress localization, respectively.

observe in the experiment (red circles in figure 1.37) is that the frequency rises faster than of

1/lcell. This is because by increasing the number of unitcell and thus, decreasing the length of

the taper compare to the total length, the stress in the tapered region also increases according

to equation (1.127). The red solid line in figure 1.37.B is the model that account for stress

localization. Fitting to this model to our data, we observe that we have increased the stressed

in the tapered region from ∼ 0.9 MPa to 3.8 GPa. In the next section, we measure the yield

stress oft Si3N4 to be about 6 GPa. In that sense, we want to emphasize that even through in

this thesis we broke the record for highest Q, Q × f and Q/m at room temperature, there is

still a large room for further improvements for the next generation of students.

Now after understanding the spectrum and measured stress in these beam, the next step
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7 mm tapered beam model4 mm tapered beam model

Figure 1.38 – Compilation of the measured quality factors of tapered PnC beams Measured
quality factors of the localized modes of h = 20 nm l = 4 mm beams are shown as red circles,
with different shades denoting geometries with different numbers of unit cells and, corre-
spondingly, different localized mode frequencies. The corresponding beam profiles are shown
to the right of the plot. The highest value recorded for 4 mm sample set is Q × f = 8.1×1014

Hz. Quality factors of h = 20 nm l = 7 mm beams are shown as red squares, with the highest-Q
sample denoted by red star. The two continuous red lines show theoretical quality factors,
calculated for optimized localized modes in l = 4 and l = 7 mm beams. The experimental
values show an unexplained factor of 3 reduction compared to the model. Blue circles are
the quality factors of in- and out-of-the -bandgap modes of h = 20 nm l = 2.6 uniform PnC
presented in figure 1.28 and plotted for the reference.

is to look at their quality factor. Results of the Q measured on the tapered soft-clamped

beams are presented in figure 1.38 as red circles and squares. Blue data points represent the Q

measurement for the uniform PnC beams kept for the reference. As the first measurement

campaign, we tried to experimentally l observe that a) we can go beyond the soft clamping

region and b) demonstrate the frequency independent Q × f we established in equation

(1.131). Unlike the soft-clamped beams, instead of plotting Q for defect sweep, we only plotted

the highest Qs (corresponding to the localized modes) for each length. The corresponding

number of unitcells for each data groups and their schematic design is plotted on the right

hand side.

Red circles are compiled for localized modes of 4 mm-long tapered beams with various peak

stresses, corresponding to a bandgap frequency varied from fbg = 1−6 MHz. According to a

full model (eq. (1.66)), Q( fbg) should in principle trace out a line of constant Q × f ≈ 1015 Hz,

exceeding the clamp-free limit of a uniform beam (Q× f ∝ 1/ f ) for sufficiently high frequency.

We observe this behavior with an unexplained ∼ 30% reduction compare to the red trace

as theoretical expectation for 4 mm beams, with Q factors exceeding the clamp-free model

by a factor of up to three and reaching absolute values high as 3×108. Although our data

follows the expected Q from these beams, this factor of 3 reductions could be attributed the

worse surface condition of our samples for these measurements. Another possible scenario

could be attributed to the fact that Eimg is a function of stress and increases by going to higher
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stress. Further research has to be done in order to fully understand this factor of 3 discrepancy

between the model and the measurements. Though theoretically this Q should be accessible

by soft clamping alone at lower frequency, our strain-engineering strategy gives access to

higher Q × f , reaching a value as high as 8.1×1014 Hz for the 3.2 MHz mode of a 4 mm-long

device.

Figure 1.39 – Interferometric ringdown of a 7 mm-long, 20 nm-thick tapered PnC nanobeam
excited in its 1.33 MHz defect mode (pink). Dotted line is an exponential fit with a decay time
of 190 seconds. The inferred Q of 8.0×108 is indicated by a red star in figure1.38. Overlaid is a
stroboscopic ringdown with measurement-on(off) intervals in red(gray). Fits to stroboscopic
ringdowns yield the same Q to within 5%, suggesting that photothermal damping is negligible.
Also shown in blue is a ringdown of the highest recorded uniform PnC nanobeam (cyan star in
fig 1.38) plotted for the reference.

To investigate our finding in equation 1.131 that we can increase the Q × f by fabricating

longer devices, longer beams were tested. Higher Q and Q × f factors were achieved using

longer beams (red squares). In figure 1.39 we highlight the 190 second ringdown of a 7-mm-

long device excited in its 1.33 MHz defect mode (pink)., corresponding to Q = 8.0×108 and

Q × f = 1.1×1015 Hz as our record value (corresponding to red star if figure 1.38). Th blue data

correspond to the highest Q we measured with uniform PnC beams in the previous section

(blue star). We note that for the mechanical oscillators with such a high quality factor, damping

date approaches the low mHz regime ( f /Q ∼ 1 mHz), During the experiments, we discover

that laser light in some cases can affect these ultra-high Q beams and at certain conditions

(depending on the power and position of the beam width respect to laser spot and focal point

of the lensed fiber) , they can can induce damping or anti-damping which is at the same order

of our linewidth (∼ 1 mHz). Typically these effects are negligible in lower Q samples but it

become a major challenge in the charachterization of ultra-high Q beams where the quality

factor approaches 1 billion at room temperature. Figure 1.40 shows an exampled of a recorded

measurement on one device the measured quality factor is different depending on the vertical

position of the beam with respect to lensed fiber.

There are number of different physical mechanism which link the mechanical objects to
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Figure 1.40 – Position-dependent photothermal damping. The plots show ringdown mea-
surements of the same mechanical mode (a 1.06 MHz localized mode of a 7 mm tapered PnC
beam) taken at different fiber positions. The damping rates vary from f /Q = 0.35mHz (red) to
f /Q = 0.9 mHz (green) to finally f /Q = 1.5 mHz (blue). The true quality factor of the beam
was not determined.

optical fields such as radiation pressure or photothermal effects. We believe that the effect

we are observing has some signatures of photothermal effect. Absorption of light can lead

to photothermal forces including viscous damping, which can mask the intrinsic damping

rate of the oscillator. The photothermal damping (or anti-damping) rate is proportional to the

laser power, and thus may be detected by comparing the total damping rate of the oscillator

measured different powers. For all but the lowest mechanical damping rates, ringdown

times were found to be independent of laser power in the range 0.1− 10mW, suggesting

that photothermal damping was negligible. We found, however, that this effect may be

non-negligible for the modes with the lowest observed mechanical linewidths f /Q � 2 mHz.

For such modes we observed both photothermal damping and anti-damping approaching

∼ 1 mHz, magnitude and sign being dependent on the position of the lensed fiber above the

beam (see 1.40).

In order to make sure that we are measuring the intrinsic dissipation of the highest-Q 7 mm

samples, “stroboscopic" ringdown measurements we performed (red data points in 1.39),

where the laser is turned off between short (compared to the τ= 1/Γm of the oscillator) ‘on’

intervals. The laser pulse sequence is described in 1.41 and the data is shown in 1.39. Both the

continuous and stroboscopic ringdowns shown here were performed using 1.2mW of laser

power incident on the beam. In figure (1.39), we can observe that the stroboscopic and the
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continues ringdown measurement has an excellent agreement. For our highest Q, we actually

took one step further to unambiguously prove the measured Q is the actual Q of the resonator

and effect of laser light is negligible, we change the time between the strobes and thus the

change the absorbed power by the beam. The results are presented in figure 1.42.

Laser

Drive

Threshold reached
Data recording begins

5s 5st 5s45s
Repeat 5s strobes with 45s
period until approaching
thermomechanical noise level

50s

Figure 1.41 – Stroboscopic ringdown sequence. The figure shows the sequence of strobes
used to perform a stroboscopic measurement of a mechanical mode quality factor. The length
of each trace is kept constant. As t , the separation between the initial measurement and
the first strobe is increased, the number of strobes is reduced to keep the total length of the
trace constant. The 50 s long measurement at the end of the trace is used to measure the
thermomechanical background of each trace in order to calibrate the alignment drift between
traces.

In the first set of experiments, we sweep the gap between the strobes (figure 1.42). At the core of

its logic, in the stroboscopic measurements, the idea is that during the dark periods of laser, the

oscillator is losing its energy in the background even though we are not “looking” at it. Even if

by the act of measurement each time we excite the beam by some amplitude, the stroboscopic

ringdown should be different for different waiting times for the experiment. In figure 1.42.B

we explore the sweeping time of the dark time in a different way. In this experiment step

by step, we increase the time delay between the first two strops. Our observations is that

there is an excellent agreement between the continuous measurement and stroboscopic

measurement regardless of the time difference between two strobes. By separately fitting into

each stroboscopic measurement, we confirm that photothermal damping contributes less

than 5% uncertainty.

Before we conclude this section, let’s review two more aspects of these localized beams

(whether in the case of uniform or tapered nano-beams). The first question is regarding the

robustness of the localized modes with respect to fabrication imperfections. In theory, the

presence of ultrahigh-Q localized modes in high-strain phononic crystal beams is robust with

respect to small variations in the beam parameters like unit cell geometry and the central

defect size. The localized mode Q is a weak function of these parameters, attaining values close

to those of a clamp free uniform beam (the ideal situation) even with the simple geometries

used in this work. This is in contrast to photonic crystals, where minor changes in the unit cell

pattern and/or fabrication imperfections can dramatically reduce the Q factor of a localized
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B

A

Figure 1.42 – Stroboscopic ringdown. Light red: data taken with light on throughout the
ringdown. Red: Stroboscopic ringdowns. Gray: Data recorded with light off. A: The duty
cycle was varied from left to right from 45 off/5 on to 95 off/5 on and finally to 195 off/5
on. B: The time t as described in 1.41 was varied in steps of 45 seconds from 45 seconds to
345 seconds. In both cases, no significant change in damping rates was observed. Fits to
stroboscopic ringdowns with different duty cycles yield the same Q to within 5%, suggesting
that photothermal damping is negligible.

mode. The robustness of phononic modes originates primarily from the fact that sound cannot

irradiate energy into free space (in vacuum), which can constitute a major source of loss in

photonic crystals (radiation losses). We believe at its core, the source of this robustness is the

extremely large wavelength of these mechanical modes at MHz frequencies. With wavelengths
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in excess of 100 μm, these modes are averaging out the nano-meter random imperfections

and roughness.

Figure 1.43 – Impact of shape imperfections. Bottom plots show the variation of the localized
mode quality factor under different types of shape perturbations illustrated at the top as
perturbed beam shapes (red) vs unperturbed (black). A) uniform beam width reduction — 1
in the text, B) random variation of the beam unit cell widths — 2, C) side-wall roughness of
the beam — 3.

The typical fabrication resolution, limited by e-beam lithography to ∼ 10 nm, is orders of

magnitude below the acoustic wavelength in this work (50-200 μm). However, the thinnest

part of the beams can be as small as a few hundred nanometers wide, raising concerns about

the effect of random or systematic width imperfections. We theoretically model three types

of sidewall-related fabrication errors: 1) uniform beam width reductions compared to the

optimum design due to over-etching of Si3N4 during pattern transfer; 2) random variation of

beam unit cell widths; 3) side-wall roughness of the beam. In 2) the width of each unit cell was

perturbed by a Gaussian-distributed random number d wcell, and in 3) a Gaussian-distributed

random width perturbation d w(x) was applied to the beam profile at each grid point, in

both cases due to computational constraints, the perturbed beam shapes were assumed to

preserve in-plane reflection symmetry and the Q degradation was calculated as the average of

30 realizations of random shape perturbations at each perturbation magnitude. The results

are presented in 1.43 for a typical 38 unit cell tapered beam design from this work, with 4 mm

beam length, 400 nm beam width in the narrowest part (center) and 20 nm Si3N4 thickness.

The unperturbed design predicts a localized mode at 2.1 MHz with Q = 530 million. From 1.43

it follows that for none of the considered imperfection types with variations of order 10% of

the minimum beam width results in more than 10% degradation in Q.
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Another important imperfection, which arises during fabrication of tapered beams is trans-

verse buckling of the wide unit cells (near the supports) due to stress relaxation in the y

direction. The buckling increases the effective beam crossection, reducing the Q of the local-

ized mode. This effect limits the maximum achievable frequency of localized modes (≈ fbg)

within a beam of given length and given minimum width in the center, as the length/width

ratio of the widest unit cells near the beam clampings decreases as a function of fbg. In our

work buckling was observed with unit cell length/width<3 for 20 nm-thick beams.

Figure 1.44 – Presence of in-plane and torsional beam modes A) Thermal spectrum around
phononic bandgap taken with the lensed fiber positioned off the beam axis. An in-plane mode
is co-localized with an out-of-plane one in a tapered beam with the parameters l = 3 mm,
h = 20 nm, Ncells = 52. B) 3D finite element simulation of the spectrum of a l = 3 mm, h = 100
nm, Ncells = 52 beam. The phononic bandgap for out-of-plane modes is shaded gray with the
modes nearest to the localized out-of-plane one annotated by their shapes. Unlike the pure
soft clamping beams where the experimental and simulated frequencies agree very well (at %
level), the measured localized mode frequencies for tapered beams are typically 10% lower
than the results of simulations.

The last remaining topics in regard to the localized modes are the other flavors modes. So far

in our discussion we were only focused on the out of plane flexural modes, but in reality, these

oscillators have other type of modes such as in-plane, torsional, longitudinal and other types

of modes. The structures investigated in this manuscript are optimized for high-quality factor

out-of-plane modes. Therefore, the measurement setup is engineered to be more sensitive

to the out-of-plane modes by using a lensed fiber positioned directly above the beam. The

in-plane and torsional modes have much lower transduction. However, by displacing the

lensed fiber perpendicularly to the beam axis, the in-plane resonances can be observed in

the measured signal. While it is challenging to identify all modes outside the bandgap, a

localized in-plane mode may be identified near the localized out-of-plane mode. This mode is

shifted slightly higher in frequency than the localized out-of-plane mode (see 1.44 A). Also, to

give an idea of what other modes except for the localized out-of-plane one can populate the

bandgap, we perform a 3D finite element simulation of the vibrational spectrum of a 100 nm

thick nanobeam (1.44 B). 3D simulations of the 20 nm structures used in this work were not

performed due to the large problem sizes for such extreme aspect ratios.
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Figure 1.45 – Ultra-high-Q nanobeams through dissipation dilution. (a) Mode shapes rep-
resenting three strategies to enhance the Q of a nanobeam via dissipation dilution. From
bottom to top: uniform stress, soft clamping, and geometric strain engineering. Color-coding
represents axial stress, σ. (b) Q versus mode frequency ( f ) accessible for a 20 nm-thick Si3N4

nanobeam, following (1.66). Gray region: Q( f ) of an unstressed beam, limited by material loss.
Green region: Q( f ) of a 3 mm-long uniform beam with σ< 1 GPa. Blue region: Q( f ) acces-
sible by soft clamping. Red region: Q( f ) accessible by soft clamping and strain engineering.
The hatched region is forbidden by the material yield strength. Solid circles correspond to
measurements described by equation (1.91).

In summary, in this section, we introduce 3 strategies in order to enhance the quality factor: I)

Using the higher order modes of uniform long beam at it optimum mode order. II) Reducing

the contribution of the clamping losses (soft clamping) by localizing the mode shape in

bandgap phononic crystal and isolating it from the clamping regions III) Using the strain

engineering techniques to boost the stress to near the yield stress of the material and combine

it with non-uniform tapered PnC that co-localizes the mode shape and the regions of the

enhanced stress at the center of the cavity. All of these strategies are visualized in figure 1.45.

In this plot, we start from the gray region at the bottom. This region shows the extent of a Q of

an unstressed beam, limited by material loss (no dissipation dilution effect). Above the gray

section, an limited by the forbidden zone (hatched area) is the region that we can access by

the means of dissipation dilution technique. Green, is the area that can be achieved using

uniform stress in uniform standard beams and their higher order modes. Most of the work
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around high-stress nano-mechanical resonators were only exploring this limited region of

dissipation dilution. By taking advantage of the recently introduced soft clamping technique

and diminishing the clamping loses, we can access the blue region. In this thesis, for the first

time we introduced the strained enhanced localized modes that let us cross into the red area

and use the dissipation dilution with its maximum capability.

In conclusion, realization of Q × f ∼ 1015 in a m ∼ pg mechanical oscillator has numerous

intriguing implications. First, such an oscillator is an exquisite force sensor. For example,

localized modes of the beam outlined in figure 3 are limited by thermal noise to a sensitivity of√
8πkB Tm f /Q ≈ 3(aN/

�
Hz) at T = 300 K. This value is on par with a typical AFM cantilever

operating at 100 times lower frequency and temperature [152], creating new opportunities

for applications such as high-speed force microscopy (MRFM) [153] . Of practical impor-

tance is that the reported devices also exhibit an exceptionally strong thermal displacement

of
√

kB TQ/(4π3m f 3) ∼ nm/
�

Hz, accessible by rudimentary detection techniques such as

deflectometry. Indeed, their zero-point motion
√
�Q/(2π2m f 2) ∼ pm/

�
Hz is orders of mag-

nitude larger than the sensitivity of modern microcavity-based optical interferometers [9],

offering possibilities in the field of quantum measurement and control [10]. A fascinating

prospect is to use measurement-based feedback to cool such an oscillator to its ground state

from room temperature [154]. A basic requirement is that the oscillator undergo a single

oscillation in the thermal decoherence time �Q/kB T . The devices reported are exceptional in

this respect, capable of performing 2πQ× f
kB T /� > 100 coherent oscillations at room temperature.

Remarkably, the performance of our devices seems far from exhausted. First, the dilution

factors we have achieved are still an order of magnitude below the limit set by the breaking

stress of Si3N4. Our results may thus benefit from more aggressive strain engineering. (For

example, 30-nm-wide Si microbridges have been fabricated with geometric stresses as high

as 7.6 GPa [102].) We also emphasize that higher aspect ratio devices offer a direct route to

higher Q. The aspect ratios of our longest beams (L/h = 3.5×105) appear to be anomalously

high for a suspended thin film, including 2D materials [140]; however, a recent report has

demonstrated high-stress Si3N4 membranes with cm-scale dimensions [155], hinting at a

trend towards more extreme devices. Interestingly, the Q ∝ lbeam
hlcell

scaling of strained enhanced

soft-clamped resonators preserves the advantage of thinner and longer devices without any

apparent limitation. The performance of our devices seems far from exhausted. First, the

dilution factors we have achieved are still an order of magnitude below the limit set by the yield

stress of Si3N4. Our results may thus benefit from more aggressive strain engineering. (For

example, Si microbridges have been fabricated with local stresses as high as 7.6 GPa [102].)

Looking forward, several directions seem promising for realizing yet higher Q. One route

is to fabricate mechanical resonators from strained 2D materials. Extreme aspect ratios as

high as 3×105 have been demonstrated for suspended graphene sheets [140], matching the

highest values realized in the present work. These materials can moreover have yield stresses

well in excess of 10 GPa [156], and are currently being widely explored in the field of elastic

strain engineering. Another route is to reduce intrinsic loss, for instance by improved surface
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conditioning [57][157] or by employing cryogenic temperatures [158][159] or using crystalline

thin films [160]. The latter approach is intriguing because pre-stresses of σ0 ∼ GPa are in fact

readily accessible by lattice mismatch in epitaxial growth (for critical thicknesses of h ∼ 10 nm).

To give an example: engineering the reported devices out of a 1%-strained InGaP film (σ0 ≈ 1

GPa, E0 ≈ 100 GPa) [81] and operating at 4 K should in principle enable Q0 ∼ 105, Q ∼ 1011 and

Q × f ∼ 1017 Hz, corresponding to zepto newton force sensitivities and a thermal decoherence

rate of kB T /hQ ∼ 1 Hz. This value sparks the imagination, as it exceeds even the performance

of trapped ions [161]. The crystalline platform moreover dovetails handsomely with proposals

for hybrid quantum systems based on strain-coupled defect (e.g. NV diamond) centers [162],

inviting speculation that such systems may one day serve as a realistic platform for solid state

quantum sensing [163].

Outlook for UHQ beams (I): challenges of integration

In the previous sections, we study three different strategies to achieve ultra-high Q resonators

and we observed that the strained enhanced soft-clamped beams have the best performance

among the three. Besides all these positive aspects of these strategies especially in terms

of interesting scalings laws for Q × f and Q/m, the major downside and challenge of these

ultra-high Q beams are their incredible aspect ratio. In order to achieve quantum enabled

devices (Q × f > kB T
�

) with Q factors in excess of 100 million, we usually require beams that

are several mm long and few 10s of nano-meter thick. A beam with such dimensions is

an extremely soft spring that can bend with tinniest forces. By experience, we learn that

fabricating such structures is a very delicate and challenging task. For example, during the

release process, these beams can easily stick to abject around them including the underneath

substrate and it is very difficult and almost impossible to unstick them. For examples for many

of the devices measured in the last section, we had to push down the underneath substrate

by more than 10μm during the Bosch process in order to create a gap that is large enough

and beams won’t collapse into the substrate. This “softness” and aspect ratio pose a major

limitation and challenge on integrating these mechanical beams into any optomechanical

systems especially near field based optomechanical systems [123], [125], [126] where the

optical cavity and mechanical oscillator often are required to be as close as 100s of nm from

each other.

Our solution to this challenge is surprisingly simple: anchoring the beam at it nodes of the

mode shape. For example figure 1.46 illustrates an example of a beam where the second

order mode of the defect is localized. For this geometry, the length of the defect is designed

to be ldef = 2.2× lcell where lcell is the neighboring cell of the defect. The performance of

these second order localized modes have no major difference between the first order modes

presented in 1.33. In the measurement we observed that the second order modes have even

better performance compare to the fundamental defect modes and we observe consistently

more reliable samples fabricated to operate at their second order mode of the defect. In fact,

our highest ever recorded Q in figure 1.39, is achieved on second order defect mode of a 7 mm
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beam with the geometry similar to figure 1.46.A. Beside being more reliable, the second order

modes also have a node at the center of the beam as illustrated in figure 1.46.A.

Symmetric node at x=0

Hard anchor at x=0

Figure 1.46 – Schematic of the proposed geometry for anchored localized beams where a solid
anchor is used at the node of the mode shape to fix the beam during release process without
affecting its quality factor. (A) Schematic and mode shape for a second order mode of the
defect with a symmetric node at the center of the beam. For this mode ldef = 2.2× lcell. (B)
Schematic and mode shape after adding a thin clamp at the center of the beam. Fo infinity
thin clamp, the mode shape does not get affected by the clamps.

According to dissipation dilution and Euler–Bernoulli theorem, if now we clamp the beam at

the node of its geometry, the dynamic response of the system does not change (figure 1.46.B).

Meaning that if the width of the anchor is infinitely small, the mode shape and the quality

factor of this beam will be the same as the free standing beam. However, in reality the smallest

anchor we can fabricate is limited to beams as small as 40-50 nm . It should be noted that if

the anchors are wider than the threshold the motion of the beam creates a torsional motion in

the anchoring beams. We have shown in figure 1.11 that the Q of torsional motions do not

dilute via the dissipation dilution and remains low Q. Therefore, we predict the Q of the beams

would reduce for wide anchors. On the other hand, anchoring the beam at its weakest point

(at the center) could completely change the static behavior of the beams. Now from the static

point of view, these beams are very solid and stable near their center (anchoring point) where

the amplitude of the motion is largest and we normally prefer to integrate an optical cavity.

Recently we attempted to test this idea. Figure 1.47 shows the SEM image of an anchored

localized beams where in red we see the central defect of the beam attached to a thin anchor
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Figure 1.47 – False color SEM image of released 4 mm long taper PnC beams (red) with
anchored at the center by 50 nm wide beams (Blue). Green represent the silicon substrate.

(blue). In these samples we fabricate defects as thin as 50 nm which is near the limit of

lithography resolution at EPFL fabrication facilities. We have tested these devices and recently

we were able to measure Qs as high as 100 million for the anchored geometry. This is about

a factor of 3-4 lower than the free standing beams of the same geometry we measured in

previous section. Although more measurement has to be performed to confirm that if such

a reduction is systematic and is due to the anchoring and is not just statistical fluctuations

of the quality factor due to other causes such as poorer surface conditions of the particular

sample that we measured. As an outlook and next steps of this project, I believe the anchored

beams has to be studied more systematically to understand the effect of the anchor beams on

the quality factor of these resonators. Such an anchoring strategy will be at the core of any

future integration of these devices even if it comes with the cost of an order of magnitude

reduction in the quality factor.

If such an anchoring strategy proves to work as expected, one can think of putting more

anchors at other nodes along the beam. With this approach, extreme aspect ratios and lengths

beyond several cm is within a reach. Although anchoring the beam at any other point except

its symmetric point at the center will create further complication for our strain engineering

strategy. As we discussed in the previous section, the enhanced stress in the tapered region is

created as result of shirking of the outer parts of the beam. Anchoring the device at several

points would complicate such a stress redistribution process and more complex anchoring
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may be needed in such a case. It should be also noted that the anchoring the beam at its

central point, also removes odd order modes (such as 1st, 3rd and other odd modes) from

the spectrum. This could be very beneficial for any future optomechanical systems as these

modes have an anti-node at the center which results in their small effective mass. But such an

anchoring strategy, we remove all these modes from our spectrum and make sure only the

localized mode have the strongest optomechanical coupling to the optical cavity.

Outlook for UHQ beams (II): Process flow for strained silicon beams

All the theoretical and experimental studies including all the strategies we present in this thesis

to enhance the quality factor of materials are pure geometrical designs and fundamentally

material independent. We applied those techniques to resonators made of high stress Si3N4

only because Si3N4 is widely available and established material to reliably achieve high stress.

However, Si3N4 is an amorphous materials with relatively low intrinsic quality factor. All of our

techniques could be applied to other strained materials. We can draw insights from the field

of elastic strain engineering (ESE)[145], in which extreme stresses (approaching the material

yield strength) are routinely achieved in nano-scale structures made of crystalline and/or 2D

materials. An important example of ESE is the use of epitaxial strain to enhance the mobility

of silicon in modern transistors [164]. Indeed, strained silicon-on-insulator (sSOI) is now a

commercial wafer-scale technology, which has yet to be explored for nanomechanics. As is a

broad zoo of compound semiconductors and/or 2D materials routinely subject to epitaxial or

deformation-based stress in the context of ESE, ranging from germanium microbridges [80] (7

GPa) to nano-indented graphene [156] or MoS2 sheets (∼10 GPa). To give a realistic example,

applying our techniques to a nanostring released from a 20 nm film of strained silicon should

enable, at an operating temperature of 4 K, an intrinsic quality of Qint > 105, a diluted quality

factor of Q > 1011, and an enhanced Q × f product of > 1017 Hz, corresponding to a thermal

coherence time of hQ/kB T ∼ 1 second and an astounding hQ f /kB T ∼ 106 quantum coherent

oscillations. As an initial testing ground, these devices hold particular promise in the field of

measurement-based quantum optomechanics, making long-established goals, such as room

temperature ground-state cooling using active feedback [10]Measurement-based quantum

control of mechanical motion, a realistic endeavor.

Viewed more broadly the ability to increase the mechanical coherence by several orders of

magnitude – achieved via combining insights from elastic strain engineering, 2D or crystalline

thin films and phononic bandgap engineering – can provide a rich new scientific setting for

exploration. It can provide impetus to a wide range of applications that already make use

of mechanical systems for storing, interconversion or processing of signals and information.

Likewise it can catalyze devices for sensing of force, mass, acceleration, electrical or magnetic

fields with exceptional sensitivity. Extremely coherent mechanical systems can therefore serve

as the technological basis for a wide range of future or already existing hybrid devices.

For the next steps of this project, we propose to utilize commercially available crystalline thin-
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film materials, in particular strained silicon-on-insulator (sSOI) wafers (from SOITEC, used

for high speed micro-electronics) to fabricate exceptionally high quality factor nanobeams

or membranes. soft clamping and strain engineering will be used to engineer the dissipation

dilution of the resonators. These techniques have never been used to enhance mechanical

oscillators in crystalline thin-films. The main challenge in the fabrication of strained silicon

nanobeams is, of course, the fabrication. The commercially available sSOI wafers only have a

thin 10 nanometer layer of oxide separating the strained silicon from the silicon substrate. In

our work with Si3N4, gaps as large as 10μm were created in order to release the beams from the

substrate without collapse. The commercially available wafers therefore require modification

of the fabrication techniques previously used for Si3N4.
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Figure 1.48 – The proposed fabrication process flow for high aspect ratio devices made from
strained silicon on insulator.

In figure 1.48 we propose a process flow that could possibly allow fabrication of high aspect

ratio beam in sSOI platform. With Si3N4 deposited on a silicon substrate, the different chemical

composition of the beams and the substrate allow the use of highly selective etching processes.

In the case of sSOI wafers, both the substrate and the devices will be made of silicon and a

different technique must be used where the beams are encapsulated for protection during

the etching process. The proposed process in figure 1.48 is optimized for fabrication of high

aspect ratio (105) strained silicon beams. The process starts by pattering the nano beams using

electron beam lithography on hydrogen silsesquioxane resist (HSQ). A reactive ion-etching

(RIE) step follows for pattern transfer from the HSQ mask to the strained silicon (sSi) (figure

1.48.a). In order to protect the 20 nm sSi layer from the following Si undercut steps, a second
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electron beam lithography layer is incorporated using a thick flowable oxide resist (FOX). As

illustrated in figure 1.48.b, the sSi beam will be encapsulated in FOX and the buffer oxide

(BOX) layer which is resistive against the fluorine chemistry used for etching the Si substrate.

The BOX layer outside the beam region is RIE etched and the second beam mask is used as

the mask for deep etching of the substrate using the Bosch process. This step is essential for

high aspect ratio beams – a large gap between the beam and the substrate must be created

to avoid the collapse of the structures during the undercut step. In the next step, the silicon

pillar underneath the BOX layer is undercut using isotropic SF6 plasma etching (figure 1.48.c)

or using XeF2 undercut step. Finally, the protective FOX and BOX layer around the beam is

stripped in a vapor HF etching step and the beams are released (Fig 1.48.d).

1.5 Strain engineering and tapered clamping

In the previous section, we focused on implementing geometrical designs that enabled us to

achieve record-breaking value for quality factor and to use the dissipation dilution to its full

capability. However, one main drawback of all the strategies that we proposed in the previous

section is that they all require extremely long and thin devices to achieve high Q × f . As we

observed this aspect ratio could present a technical challenge for integration of these devices.

In this section, we would like to turn our attention to a simpler alternative that enables us to

enhance quality factor via the lessons we learned in strain engineering and without requiring

a long beam. However, it should be noted that with this technique, we will only can maximum

up to a factor of 3 for out of plane modes. This may seem negligible compared to our previous

methods but still could be interesting for applications where the length of the structure is

limited to few 100s of μm.

Figure 1.49 – Pinched beam geometry. Ltot: total beam length, Ltran: transition length, wclamp:
beam width at the clamping point, wbeam: beam width after the transition region. The color
coding corresponds to the stress profile for the following design parameter:

wclamp

wbeam
= 0.2 , a = 20

and Ltran
Ltot

= 0.2.

Our proposed geometry is illustrated in figure 1.49 where we apply the stress engineering
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technique to the clamping area. In this approach by enhancing the stress at the clamping

point we increase the quality factor. To understand this effect, let’s look back at the generalized

dissipation dilution of a mechanical oscillator ( equation (1.66)):

DQ,n = 1

2αnλ+βnΩ̌
2
nλ

2
(1.132)

In the previous section we tried to diminish the first term by forcing αn → 0 via localizing the

mechanical mode at the center via a PnC. We observe that in return, soft clamping requires a

long beam (to host enough number of unitcells so that amplitude approaches to zero at the

clamping points). In contrast, in this approach instead of diminishing α , we try to reduce it

by tapering the width at the clamping area and concentrating the stress in this region. Here

we consider reduction of the beam widths of vcl = w(0)/wavg, in order to create local strain

enhancement in clamping regions (see 1.49). (1.67) shows that αn is proportional to αn ∝�
vcl

and thus can be reduced by thinning down the clamps. It should be noted that for a device

in the shape of figure 1.49 where the tapering is localized around the clamping area (where
Ltran
ltot


 1 we can assume that u′
cl,n and Ωn are almost unaffected by vcl and still have sinusoidal

mode shape. In this case the α can be calculated to be:

αn ≈�
vcl =

√
wbeam

wavg
(1.133)

This can be interpreted as an effective decrease of λ over the clamping region to

λcl =αnλ= h

l

√
σavg × wbeam

wavg

12E
= h

l

√
σclamp

12E
(1.134)

using λcl we can rearrange the dissipation dilution for the tapered clamped beams in the

shape of fig 1.49 to be:

DQ,n ≈ 1

2λcl + (nπ)2λ2 . (1.135)

In contrast to the PnC approach, tapered-clamped beams are predicted to have improved

quality factors for low-order beam modes, including the fundamental mode. However, the

improvement the maximum enhancement will be limited to
√

σyield

σavg
≈ 2.5 in which the clamps

are thinned until we reached the breaking point of the material (σyield).

Figure 1.50.B shows the simulated stress for width, respect to the ratio of wbeam
wavg

. If the length

of the tapering region is much smaller than the total length of the beam, the stress increases

linearly with the tapering ratio and reaches values close to yield strength for tapering ratio of

0.1. In figure 1.50 we also considered a negative tapering (fillet) because it has been suggested

by Norte et al [93] that a fillet clamping can lead to an increase of the quality factor. Figure

1.50.c shows the Q spectrum for the three illustrated situations. Red data points correspond to

the positive tapering scenario where the enhancement of Q is observed. Compare to the blue
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s

Figure 1.50 – Dissipation dilution for a tapered clamped resonator (A ) geometry and color-
coded strain distribution in beams with thin (top) and thick (bottom) clampings. (B) Variation
of the strain in the clamping region as a function of clamp width wcl relative to the beam
center wb. (C) Dissipation dilutions and quality factors of modes of a thin-clamp beam (red), a
uniform rectangular beam (blue) and a thick-clamp beam (green). Here l = 1 mm, h = 20 nm.

data points (regular uniform beam), we see a factor of 2 enhancement for the fundamental

mode and in the difference rises to the factor of 4 for the optimum higher order mode. However,

for very high order modes (soft clamping limit) the Q of the tapered-clamped beams falls

below the uniform beams. This is because the average stress in tapered beams is lower than of

the stress in uniform beams as discussed in equation (1.51). The Q factor of the fillet beams

sees a reduction for all the modes of a beam.This reduction is not only because we reduce the

stress at the clamping point which lead to more losses (less dilution) at the clamping point,

but also we reduce the average stress for the rest of higher order modes. Therefore, our finding

is in the exact contradiction with the claim by Norte et al [93] for trampoline shape resonators.

In the next step, we put this idea to the test. For this purpose, we choose an arcTan shape for

our tapering (see figure 1.49). This is because with arcTan function, we can independently

control the length, the width and the slope of the tapering region. In our simulations, we

realized that the optimum length of the tapering length is Ltran
ltot

≈ 1%. Tapering length larger

than this, will reduce the average stress and does not benefit the clamping losses. Also if

the tapering length is smaller than 1%, our high stress region becomes smaller than the

sharp curvature near the clamping, thus our method won’t be efficient. In regards to the

slope, if the slope is large (mean a sharp transition from wide to narrow region), then due to

stress relaxation, we observe a buckling at there corners which leads to lower quality factors.

Therefore, in this experiments we choose a very smooth tapering (in our simulations, we did

not observe a significant difference when the slope is lower than 1 in normalized unit, s ).

For this experiments, samples are fabricated on a chip where
wclamp

wtotal
is swept from 10 to 0.05 in

80 steps using the w(x) ∝ arctan(x) for two different lengths (L = 250μm,150μm). This allows
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Figure 1.51 – Yield stress breaking of Si3N4 nanobeams. Fabricated devices start to break
after reaching the clamp to beam width ratio of 0.16 which corresponds to 6.3 GPa stress.
Inset shows a false colored image of a device with tapered geometry. Apparent wave pattern
on some of the beams is due to excitation of cantilever modes during electron microscope
imaging.

us to access to stress from 90 MPa to 19 GPa. Many samples with σcl >σyield will break at their

clamping point. In fact, another purpose of this experiment is to experimentally determine

the yield stress of the material. Figure 1.51 shows the SEM of the fabricated tapered beams. For

both lengths it is observed that after reaching
wclamp

wtotal
≥ 0.16 which corresponds to σclamp ≥ 6.3

GPa, no working device was survived and it is shown in figure 1.51 that all the devices break

after reaching this point (corresponding to the bent beams after beam number 3 from the top).

Based on this observation, we use σ∼ 6 GPa to calculate the forbidden region for the figures in

the previous section.

In the next step we measured the frequency and Q of the tapered beam. Frequency and quality

factor of the devices are measured using lensed-fiber-based homodyne interferometer at

λ= 780 nm . Frequencies are determined by measuring the thermal Brownian motion of the

nanobeams. Measurements are performed in a high vacuum chamber (P = 10−8 mbar) to

avoid gas damping of the modes. The Q factors are determined using ringdown spectroscopy.

Mechanical modes are driven using a piezoelectric slab attached to the bottom of the chip

holder on which samples are clamped. The piezoelectric slab is driven using UHF lock-

in amplifier [Zurich Instrument] with a frequency swept tone to drive a desired mode on

resonance and measuring the ringdown. Figure 1.52 shows the measured frequency of tapered

beam as a function of the tapering ratio. We observe that the quality factor of these beams

follow the predicted trend from the theory where frequency reduces as we tinning down the

clamps.
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However, the interesting observation is the Q measurements illustrated in figure 1.53. We

observe a geometric enhancement of the Q factor by changing from a fillet design to a tapered

clamping geometry. The experimental data in Figure 1.53 and 1.52 are whithin 10% agreement

with the fit using semi-analytic model for the solutions of Euler-Bernouli equations with the

deposition stress assumed to be 1.1 GPa. We believe similar mechanism was responsible for

high Q × f in the previous design of tuning fork resonators [117]. It has been observed that a

tuning fork design with neck has higher Q factor compared to a uniform beam. In this design,

necking geometry is essentially equal to tapering of the clamping point. This increases the

stress at the clamps and results in enhancement of the Q factor which supports our results

shown in Figure 1.53.

In conclusion we showed a technique to enhance the quality factor of the fundamental and

lower order modes for Si3N4 nanobeams by geometric tapering its clamping points which

allow us to enhance the quality factor by
√

εyield

εavg
depending on the deposition and yield stress

of the thin film. Enhancement of the fundamental mode quality factor by even a factor of 2.5 is

of great interest for optomechanical systems. Since this method can be applied to short beam

lengths, it has been used for relatively easy integration with optical microcavities [123]. Finally,

by varying the taper width, we are able to estimate the yield stress of Si3N4 at about 6.3 GPa.

1.6 Acoustic radiation losses at VHF and UHF frequencies and PnC

shield18

In last few sections we focused on studying the internal material losses of high stress materials.

These losses coming from the intrinsic friction force between different nano-scale pieces of the

materials and although we did not present a model to describe the micro-physics these sort of

losses, we phenomenologically model it by the imaginary parts of Young’s modulus. Then we

observe the existence of initial stress in the material together with the concept of geometrical

non-linearity in deformation, give rise to boost of the mechanical quality factor for few specific

more flavors such as flexural modes. A process know as dissipation dilution. Then in the next

step we developed a theoretical model to analytically calculate dissipation dilution for any

arbitrary geometry. Based on our modeling of dissipation dilution, we studied four strategies

to enhance the quality factor and Q× freqeuncy product via I) optimum mode order of a long

uniform beam. II) soft clamping by using and PnC to reduce the effect of clamping losses

III) strained enhanced localized mode technique in which in a non-uniform tapered PnC

design we localized the region of high stress and the mode shape to achieve record-breaking

quality factors IV) and finally tapered clamped beams where stress engineering techniques

were directly used to reduce the clamping losses. In this section, we would like to switch our

attention to a completely different source of losses and the means to reduce it. Although this

new channel of loss seems at the beginning to be unrelated to the story of this chapter, the

methods that we use to fight it, have very close similarities with the soft clamping approach.

18The content of this section is published at [101]
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Beside, studying the losses in high frequency mechanical oscillators have a also a practical

use. I) mechanical frequencies studied in previous section are all below 10 MHz. Although

they offer extremely high quality factors their frequencies are typically below 10 MHz. On the

other hand the optical micro cavities such as optical micro disk cavities [165][166][123] and

photonic crystal defect cavities [167][168] have optical linewidth of 100s of MHz, we have to

work with VHF-UHF mechanical frequencies [169] if we are interested in creating a resolved

side band optomechanical system [9] with these mechanical resonators and access to resolved

side band toolbox [170][171][172]. On the other hand, going toward higher frequency oscillator

means lower masses which is advantages for applications such as mass [173], charge [4] and

force [174] sensing applications.

For the mechanical frequencies in the mid range frequencies (MF and HF range) from few

100s of KHz to 10s of MHz, we have observed that the internal losses are dominant. The

internal model predicts that for high frequencies mechanical resonators where the aspect

ratio becomes very small, dissipation dilution approach to 0 and Therefore, the internal losses

asymptote to a constant given by intrinsic quality factor of the material, Qint = Ereal
Eimg

. In sections

1.1 and 1.2 we argued that a major assumption behind all of our analysis is that Ereal,Eimg are

frequency independent constants (or at least they are extremely weak functions of frequency).

This assumption seems to hold for many experiments performed by us and many researchers

in the past 50 years of research in the field of high Q mechanical resonators. Although or

expectation from internal model is that the Q factor asymptote to a constat number, many

researchers have repeatedly observed that the quality factor deviates from this model and

reduces at VHF and UHF frequencies [175] [176][177][140][178].

Such a deviation from the internal loss model drives the scientist to propose a new chan-

nel of loss which is particular dominant at very high frequencies: acoustic radiation losses

[179][77][180][181][182][183]. A form of phonon tunneling in to the substrate. According to

this picture, at very high frequencies. the mechanical wavelength become so small that is

comparable to the size of our system and we cannot use the lumped model approximation.

In this regime, the object surrounding the mechanical resonator (pillars, anchors and the

substrate) are no longer solid objects that every part of the system modes with the same phase.

In another word, so far in our calculation we assume a boundary condition of u(x = 0, l ) = 0,

u′(x = 0, l ) = 0 for our mechanical oscillators. However, in reality this just an approximation

valid for low frequency modes. At high frequencies, However, we have to rely on wave picture

and impedance mismatch. In the wave picture to the mechanical oscillators, the energy con-

finement in an string is due to its impedance-mismatch between the beam and the clamping

pads. At low frequencies, since the acoustic wavelength is much larger than the lateral dimen-

sions of the beam, the confinement is near ideal and reflection at the clamping are near 100%.

However, as we increase the frequency of the system and the acoustic wavelength becomes

comparable with the lateral dimensions of the oscillator (namely the width and thickness for

rectangular cross section). This leads to reduction of the impedance mismatch and leaking of

the energy into the substrate.
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Figure 1.54 – Quality factor of nanobeams for beam length sweep. Q versus f for the funda-
mental mode of nanobeams of various lengths (L ≈ 5−1000μm). Solid black lines are a single
parameter fit to the internal loss model in (1.70), using Qint as the fit parameter. Dashed black
lines indicate constant Q · f . The solid blue line is an FEM simulation of radiation loss for the
unshielded beams. The inset shows a sample chip containing a typical set of devices with
different beam length, in this case without a PnC.

In order to investigate such a scaling, we fabricate and measured mechanical oscillators with

decreasing length in an attempt to observe a deviation from the internal loss model. Inset of

1.54 shows an array of such resonators. In this section we follow the path we present in figure

1.16 and will use optical micro disk cavities as our displacement sensor in contrast to lensed

fiber reflectometry used to measured UHQ resonators in the previous section because will

need better sensitivity for the measurements in this section compared to the last sections. We

believe it is useful to the scope of this thesis to understand why it is more difficult to make

measurements at higher frequencies. First complication in regard with high frequencies, is

the driving the mechanical oscillator becomes increasingly more difficult. On fact, in our

system with a thin piezo drive glued under the chip holder, we could not drive the resonances

above 20 MHz. This is because, in high frequency, we have look at the wave picture again. In

VHF-UHF frequencies, driving a piezo does not mean that the chip is going up and down in

phase with the drive (as it is the case for low frequencies). But instead we have to consider

the piezo driving the as lunching ultra-sonic VHF mechanical waves into the system. As we

move to higher frequencies and the acoustic wavelength reduces, leakage of these modes

to the other part of the system (sample holder, nano-positioners, the chamber and optical

table and etc.) increase as transferring energy to mechanical resonator become less and less

efficient. n order to drive a mechanical oscillator at VHF and UHF frequencies, the actuator

(whether in the form of piezo [184][185] or electro-static [186] drive) has to be fabricated next
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to the resonator due to added complication that these methods would have on the Q of the

resonator, we avoid this path. If we want to study the pure isolated mechanical oscillator,

the other option is to work with its thermo mechanical Brownian motion (on the other word,

we use the broad band thermal random force for our drive). Here we will show that the

thermo-mechanical signal reduces in an accelerative rate as we go to higher frequencies. In a

cavity based optomechanical displacement detection scheme, the power spectral density of

frequency fluctuations induced by thermal motion of the mechanical oscillator is given by [9]:

Sth
ΩΩ(Ω) = nthg 2

0L(Ω−Ωm ,Γm) (1.136)

S 
    

[H
z /
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]
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Figure 1.55 – Lorentzian lineshape of the power spectral density of the thermo-mechanically
induced frequency fluctuation in the optical cavity. The peak of the Brownian motion in unit

of frequency fluctuations Hz2/Hz is calculated to be Sth
ΩΩ(Ωm) = 2nthg 2

0
piΓm

[9].

where nth = kB T
�Ω is the average thermal phonon occupation, g0 is the optomechanical vacuum

coupling rate and L(Ω,Γ) is the Lorentzian function defined in (A.I.29). The vacuum coupling

rate [9] is given by g0 =G
√

1
2meffΩm

where G is the frequency pulling factor of the mechanical

oscillator. For the simplicity, we assume G is a frequency indipendent parameter and is purely

a function of the distance between an optical disk and the mechanical resonator [122]. For the

1D mechanical oscillators, the mass is a linear function of the oscillator’s length and therefore

inverse function of its frequency. In Summary, the peak of the thermo-mechanical signal in

the units of cavity frequency fluctuations is given by:

g 2
0 ∝ 1

meffΩ

L(0,Γm) = 2Q

πΩm

nth = kB T

�Ω

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=⇒ Sth
ΩΩ(Ωm) ∝ Q

Ω3
m

(1.137)

Equation 1.137 illustrate why making measurement at higher frequencies becomes accelera-

97



Chapter 1. Ultra-high-Q mechanical resonators

tively more difficult. If we assume we are in the regime where quality factor is fixed, the peak of

the signal reduces 30 dB per decade. In reality the signal scales even faster than this rate. This

because for high stress doubly clamped uniform beams. at the beginning, due to dissipation

dilution we are in the regime that Q ∝ 1
Ω (see equation (1.103)) which means we lose the signal

with Sth
ΩΩ(Ωm) ∝ 1

Ω4
m

or 40dB per decade. In the other word, making measurements at 200

MHz for example is 8 orders of magnitude more difficult than it is at 2 MHz. We realized that

our fiber interferometer is not sensitive enough to resolve such a weak signal. Towards this end,

we employ a microcavity-based near-field sensor [122] capable of non-invasive thermal noise

measurements with fm/
�

Hz resolution and provide the sensitivity required to make these

measurements. In this regard, in this study, we consider only in-plane flexural modes because

of their compatibility with displacement readout (using an in-plane microcavity-based sensor

shown in blue in figure 1.54).

To probe mechanical displacement, an elliptical microdisk cavity is patterned next to each

beam, separated by ∼ 80 nm. Whispering gallery modes of the microdisk are excited with a

detuned 1550 nm laser field using a tapered optical fiber, enabling evanescent displacement

readout [122] with an imprecision of ∼ 1 fm/
�

Hz. All measurements were performed in a

vacuum chamber at 10−4 mbar (as these higher frequencies and lower Q, we do not need a

UHV pressure) in order to reduce gas damping. In conjunction with the relatively large cavity

linewidth of ∼ 1 GHz (mitigating radiation pressure effects), this enables non-invasive thermal

noise measurements for beams as short as 4 μm with frequency as high as 207 MHz.

Coming back to the Q measurement illustrated in figure 1.54 we have made a comprehensive

study of Q vs f for unshielded beams (red data points) of various lengths, using thermal

noise measurements. These results correspond to unshielded uniform beams with lengths of

10.5−90.5 μm, comprising a total of 121 independent devices. The back solid lines correspond

the dissipation dilution model from equation (1.70). At low frequencies, it seems to be an

excellent agreement between the measurement and the dissipation dilution model. The most

striking feature in figure 1.54 is a sharp transition at f0 ∼ 50 MHz, corresponding to L ∼ 10 μm,

at which the Q of unshielded beams changes from Q ∝ f −1 to a Q ∝ e−α( f − f0). Such a sharp

deviation is an indication that a new channel of loss is activated at these frequencies.

To confirm that the deviation from the internal loss model in Figure 1.54 is indeed due to

acoustic radiation, we have conducted a no-free-parameter finite element simulation using

COMSOL [187] where the geometry of the beam and PnC are determined from SEM imaging

and used in the finite element simulation (blue solid line in figure 1.54). Although there haves

been several attempts in the past to find an analytical model for radiation losses [179][77], in

these models many assumption and geometrical simplification had to be taken into account

which at the end makes these analytical models useless for our geometry. Due to complexity

of the wave nature of the radiation losses and different reflection from complex surfaces, we

believe finite element simulation using perfectly matched layers (PML) is the best approach to

model radiation losses [188][189][190][182].
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Figure 1.56 – FEM simulation of radiation loss. (a) Geometry of the simulated device. The
gray volume indicates the mechanical structure and the blue volume is a PML. (b) Magnified
image of the mechanical structure, including the SiN beam and PnC shield, SiN support pads,
Si pillars beneath the support pads, and a portion of the underlying Si substrate. A stress
relaxation simulation is performed in order to determine the stress profile of this structure
before solving for eigenmodes. (c) Visualization of acoustic waves propagating into the
Si substrate and being absorbed by PML. The amplitude of the mechanical strain field is
illustrated by logarithmic color-coding.

The radiation loss model ((blue solid line in figure 1.54)) was obtained by computing the

complex eigenfrequency spectrum of the mechanical structure surrounded by numerically

implemented PML (perfectly matched layer, corresponding to a perfectly impedance matched

and absorbing boundary). We used the COMSOL Structural Mechanics Finite Element Analysis

software package for this simulation. The modeled structure is shown in gray in figure 1.56.a,

and includes the SiN defect beam, SiN support pads, the Si pillars beneath the pads, a half-

spherical transect of the Si substrate and finally the blue shell in figure 1.56.a corresponds to

the PML layer. By placing the PML far from the nanobeam, we ensure that reflection of acoustic

waves from the supports is accounted for in the simulation. We also ensure that the size of the

PML is large enough that its own reflection coefficient is negligible. Visualization of acoustic

radiation into the PML is shown in figure 1.56.c. Radiation loss manifests as an imaginary

component of each numerically computed eigenfrequency, Ωm. The eigenfrequency of the

defect mode is identified based on its mode shape. Radiation-loss-limited Q-factors (blue

curve in figure 1.54 ) are obtained from the formula:

Qrad = Re[Ωm]

2 · Im[Ωm]
. (1.138)

The location of the knee point in the model of Qrad versus f in figure 1.54 depends on the

dimensions of the extended mechanical structure, in particular that of Si pillars and the
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clamping structures and shape of the pads. The blue curve shown in figure 4 of the main text

employs dimensions obtained from SEM imaging and uses no fit parameters. Amazingly our

free-fitting-parameter FEM model for radiation losses has an excellent agreement with the

measured Q factors in figure 1.54.

a

b

c

 

Figure 1.57 – A nanobeam embedded in a 1D phononic crystal. SEM images of the de-
vice. False-coloring is used to distinguish the Si substrate (green), the micro-patterned SiN
nanobeam (red) and a SiN microdisk (blue). The microdisk is used to optically probe the
beam’s displacement [122].

Having established the effect of radiation losses for mechanical frequencies above 50 MHz, the

next question is how to shied our resonators against this type of losses. It has been suggested by

many groups that a phononic crystal shield can significantly improve the quality factor of the

mechanical resonators in VHF and UHF frequencies [191][192][193][194][137][136][195][134][175].

In fact, one of to most monumental optomechanical system (phoxonic crystals from the grou

pf Dr. Painter) were made possible using 2D PnC shields at 3.6 GHz [167] [196]. To this end

we employed 1D phononic crystals in order to shield our resonators against radiation losses.

Figure 1.57 shows the SEM image of our corrugated beams. Here a high-stress Si3N4 thin film

has been patterned into a 1D PnC with a beam-like defect at its center. From the standpoint

of the beam, the crystal acts like a radiation shield, the performance of which is determined

by the band structure of the box-shaped unit cell. As discussed in the soft-clamped beams,

our application of phononic crystals here is different to their use in the soft-clamped beams.

In the frequency regime that we are interested to use this shields, the dissipation dilution is

negligible and Therefore, the curvature of the modes shape is not important. However, the

shielding efficiency (reflection from each unitcell) of these PnCs is determined by the mass

ratio of each unitcell. Therefore in this experiment, unlike the soft-clamped beams where
wmax
wmin

2−2.3 was used, here the width ratio of 15 is chosen. With this ratio, only few unitcells are
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Figure 1.58 – Simulation of defect modes and the phononic crystal bandgap. (a) Schematic
diagram of the device (top view), consisting of a nanobeam (green) patterned as a defect in a
1D phononic crystal (pink). Unit cell dimensions used in this work are (h1,L1)=(100 nm,3 μm)
for the short segment and (h2,L2)=(1.5 μm,3 μm) for the long segment. The SiN thickness of all
devices is 400 nm. (b) Simulated fundamental eigenfrequency of a defect beam with in-plane
thickness h = 100 nm and length L = 2−16μm. Gray regions indicate bandgaps for in-plane
flexural modes. Six representative modes are highlighted; their FEM-simulated modeshapes
are plotted on the left. (c) Dispersion diagram of the phononic crystal. Curves represent
different modes of the unit cell, color-coded according to symmetry (red, blue, green, and
orange correspond to in-plane, out-of-plane, breathing, and torsional modes, respectively).
Gray regions correspond to pseudo-bandgaps for in-plane modes.

required to stop the ration losses of the defect resonator.

A simulation of the dispersion diagram of the unit cell is shown in figure 1.58.c, with lines of

different color corresponding to modes of the cell with different symmetries. In this work,

we consider only in-plane flexural modes because of their compatibility with displacement

readout (using the microcavity-based sensor shown in blue in figure 1.57). Pseudo-bandgaps

for in-plane symmetry are indicated by gray shading in figure 1.58c. The presence of a bandgap

implies strong reflection of waves from the PnC. It also implies the support of localized defect

modes. To illustrate this concept, a simulation of the fundamental flexural mode of a beam

embedded in a 14-element PnC is shown in figure 1.58b. Dimensions of the beam and unit

cell are given in the caption. The beam’s length is varied to span the frequency range of

the three bandgaps shown in figure 1.58c. Qualitatively, it is evident that modes which are

well-centered in a bandgap (1,3,5) exhibit strong confinement. Conversely, modes near the

edge of a bandgap (2,4,6) penetrate deeply into the PnC. This is because the defect modes

start to hybridize with the in-plane modes of the unit cell, shown as red curves in figure 1.58c.

Our central claim is that localized defect modes will exhibit reduced radiation loss and similar

effective mass relative to unshielded beams.
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Figure 1.59 – Optical Q of the elliptical microdisk cavities. Measured WGM linewidth for
microdisks with a fixed circumference of 31 μm and ellipticity (ratio of the major and minor
radii) varying from 1 to 4. WGMs of different polarization and radial order were measured,
giving rise observed variation in optical loss for each ellipticity.

Before we present the experimental results in regard with the shielded nano-beams, it is worth

mentioning that due to small form factors of these defect nano-beams (Ldefect = 12.2−4.1 μm),

we had to use elliptical micro disks in order to fit to the small dimensions of our resonator

and achieve closes proximity needed to create a ∼ KHz g0 needed to make measurements at

VHF frequencies. For this purpose a new amorphous silicon hard-mask process follow was

developed and optimized with two goals in mind: (1) to minimize the in-plane gap (xgap)

between the nanobeam and the microdisk and (2) to minimize the sidewall roughness of

the microdisk. Small xgap is desirable as it gives rise to a large parametric (optomechanical)

coupling G . We also realized that the optical quality factor of the elliptical disks are a function

of their ellipticity. This is illustrated in our measurements of optical quality in factor in figure

1.59. We discovered for ellipticity ratio larger than 3, the optical linewidth exponentially

increases due to share bending curvature at the two ends of the ellipse where the Si3N4

refractive index is not large enough to confine optical light in such a sharp bending.

The next step is the measurement of these PnC beams. As a demonstration of spatial mode

confinement, the thermal displacement noise spectrum of a 5 μm-long defect embedded in a

100 μm-long, 14-cell PnC is presented in figure 1.60. The fundamental in-plane mode of the

defect appears at 74 MHz, situated within a large, spectrally quiet window coinciding with the

pseudo-bandgap of the PnC. The small effective mass of the defect mode manifests in the rela-

tively large area beneath the thermal noise peak 〈x2〉 ≈ kB T /(4mπ2 f 2). Comparing (〈x2〉 f 2)−1

for the defect mode to that of adjacent peaks (green points) reveals a 1000-fold decrease in m

relative to the fundamental in-plane mode of the extended structure. Quantitative agreement

of this scaling with an FEM simulation (red points, assuming a point-like probed at the mid-

point of the defect) corroborates an estimated effective mass of m = 0.3 pg for the localized

mode. The corresponding fitted mechanical linewidth is γ/2π= 5.1 kHz (Q ≡ f /γ= 1.4 ·104),
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Figure 1.60 – Broadband displacement spectrum of a PnC-shielded nanobeam. A beam
length of 8.25 μm is shown. FEM-simulations of four representative mode shapes are plotted
below. Green points above selected peaks indicate the inferred effective mass. Red points are
obtained from an FEM model. The absolute magnitude of the displacement spectrum and the
effective mass is estimated by bootstrapping the latter to an FEM model (red points) of the
effective mass for mode #1. Shaded regions correspond to the PnC bandgaps in figure 1.58.
Inset: Magnified displacement spectrum of the localized (defect) mode, fitted to a Lorentzian.

giving access to a low thermal-noise-limited force sensitivity of 8πkB Tmγ= (0.38fN/
�

Hz)2.

This value is within a factor of 10 of state-of-the-art VHF nanomechanical oscillators at room

temperature [176].

The results of the Q measurement of the localized shielded mode are presented as the grren

data points in figure 1.61. Remarkably, the Q of shielded beams (green points) recovers to the

expected internal loss scaling for f ∼ 50−200 MHz (L ∼ 4−12μm), suggesting that with this

technique we suppressed the radiation losses.

In summery, in this section we present an alternative channel for the mechanical losses which

in contrast to material losses is dominant at higher frequencies. Then we experimentally

studied the scaling law of the dissipation dilution theorem where we observe a sharp deviation

for frequencies above 50-100 MHz corresponding to length of lbeam < 10μm. We observe such

a deviation follows the predictions of a finite element model for acoustic radiation. In the last

part of this section, we observe that by encapsulating the resonator at the center of a phononic

crystal shield, we can stop the radiations and recover the quality factor to the level expected

from internal material losses. In this study we unambiguously the effects of radiation losses.

Our shielding method could be used as a platform for ultra small mass-high Q resonators

operating in VHF-UHF regime.
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Figure 1.61 – Quality factor of nanobeams with and without PnC shield. Q versus f for the
fundamental mode of nanobeams of various lengths (L ≈ 5−1000μm). Green (red) points
correspond to beams with (without) a PnC shield. Solid black lines are a single parameter fit
to the internal loss model in (1.70), using Qint as the fit parameter. Dashed black lines indicate
constant Q · f . The solid blue line is an FEM simulation of radiation loss for the unshielded
beams. Shaded regions correspond to the PnC bandgaps in figure 1.58. The inset shows a
sample chip containing a typical set of devices with different beam length, in this case without
a PnC.
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2 Fabrication

“[· · · ] There’s plenty of room at the bottom ”

R.P. Feynman, APS meeting 1959[197]

Indeed there is plenty of the room when we enter the wonders of nano-world. The “room” that

Feynman had envisioned is much bigger than just ability to fit more transistors into an smaller

area. Of course, the main the driving force behind success of the nano-technology and micro-

electronics of the past 40 years was to shrink the size of the transistors where could fit more

of them into an small area an achieve higher computational performance. But beyond the

mundane geometric scaling, going smaller bring new physical phenomena and possibilities

into the games. One these “new kinds of effects” is the fact that “smaller is stronger”[198].

Generally the stiffness of mechanical object increases as we scale down the size. This means

miniaturized delicate mechanical oscillator can be used in our daily life as building block of

our smartphones and other consumer electronic devices without the risk of breaking under

even large shock forces such as falling on the ground. In addition, “smaller is stronger” also

means that nanomaterials can experience much larger stress than a traditional material [145].

This become a key for engineering mechanical oscillators with unprecedented quality factor

as we show in chapter 1. In the previous chapter we experimentally observed that a 20 nm

thick Si3N4 can systematically experience up to εyield ≈ 2.5% strain before it reaches the unset

of fracturing. In comparison, traditional macroscopic materials usually cannot sustain tensile

strain exceeding 0.2−0.3% before inelastic relaxations (fracture for example) sets in. [145]

Another important consequence of working at micro/nano scale is the ability to engineer

extremely high aspect ratios. In chapter 1 we studied the dissipation mechanism in high

Q mechanical oscillators. We observed that through a pure geometrical process known as
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dissipation dilution [199], the quality factor of mechanical oscillators under tensile stress

experience an enhancement compare to their intrinsic quality factor. We then studied different

aspect of dissipation dilution and its scaling laws with the geometry. An important out come

of our analysis was the fact that in order to achieve higher quality factors, we have to fabricate

higher aspect ratio devices. We show case our method by achieving a quality factor near 1

billion on a Ω/2π∼ 1MHz Si3N4 resonator with thickness of 20 nm and length of 7 mm. This is

equivalent of and aspect ratio of l
h ∼ 3.5×105. We have even successfully fabricated devices as

long as 10 mm (although the Q factor of these devices were not high due to contamination

issue) with equivalent aspect ratio of 3.5×105. This a aspect ratio is among the highest man-

made object of any size and any type, even compare to high aspect ratio carbon nano-tubes

[140]. If we try to scale up this aspect ratio to our humane scales to better understand its

implications, a bridge of the size of Golden Gate bridge in San Francisco[200] would have the

length of approximately 5000 km to achieve an aspect ratio equivalent of ∼ 5×105. That is

roughly the distance between the New York city and London. In addition, such bridge had to

be hold with noting but its to ends.

It seems that we can only achieve such an extreme aspect ratio in mico/nano scale and we

are unable to achieve it in smaller (atomic scale) or larger (macroscopic scale) dimensions

Although we still do not completely understand what fundamentally makes micro/nano scales

so unique among all other physical scales, it is probably because in ultra small dimensions

(atomic scale for example for carbon nano-tubes), the electromagnetic force are too strong

to be reliably controlled. Manipulating dimensions of a suspended nano-structure in atomic

scale dimensions becomes an extremely challenging task. In macroscopic scale on the other

hand, the elctromagnetic forces cancel out in massive scales and gravity becomes a new

challenge. In micro-nano scale however, devices are small enough that gravitational forces

are negligible but large enough that we can still control the electromagnetic force. This is

combined with unique lithography techniques developed for these scales that allows us to

control the dimensions and shapes with an unprecedented precision compare to other scales.

Having said that, still making micro mechanical resonators with this aspect ratio is a difficult

challenge that required years of process development and experimentation.

In the following section, we review the details of our developed fabrication process to fabricate

high aspect ratio devices made from high stress LPCVD Si3N4 thin films.

2.1 High level over view of the process flow and its challenges

Figure 2.1 shows a highly condensed process flow we used to fabricate these high aspect ratio

beams. Before we start by reviewing the details of the step by step process flow, I believe it

is important and useful to first discuss at high level, the logic behind such a specific process

flow. The first ingredient we need to have to create dissipation dilution is a high tensile stress

material. Although there are number of tensile-stressed crystalline thin films available in the

market such as strained silicon [79], strained germanium [80] and strained InGaP [81] , to the
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1 2

3 4

5 6

Figure 2.1 – Schematic of fabrication process flow. Summary of the main steps of the fabrica-
tion process of high aspect ratio Si3N4. Layers: Si (gray), Si3N4 (orange), HSQ 1layer (blue) for
the main mask, the FOX2layer (green) for up-scaled mask.

best of our knowledge none of these materials have been extensively studied as a platform

for making ultra high Q mechanical resonators. On other hand, stoichiometric high stress

Si3N4 since 2006 [78], has been the major driving force behind the success of strained micro-

mechanical oscillators. Although Si3N4 is an amorphous material, its standard low pressure

chemical vapor deposition (LPCVD) recipe (developed initially for the CMOS industry), offers

a reliable and deterministic tensile stress of σfilm ≈ 1.2 GPa (or εfilm ≈ 0.5%) when deposited

on a silicon wafer at ∼ 800 ◦C. Because of its reliability and our previous experience with

fabrication of Si3N4, it will be our material of choice for this project. As an extra bonus, Si3N4 is

a low loss dielectric [201][202][203] that can be also used in optical circuits, which is beneficial

for future integration of an optomechanical systems[123]. Fixing the thin film material would

automatically set the chemistries that we can use for etching and determines majority of our

strategy for fabrication. Among the different steps of fabrication summarized in figure 2.1,

most challenging for us is the undercut step (step 6 in fig 2.1). So our strategy for fabrication

of these resonators is tailored in a way to make sure that we will have a successful release

of the structures at the end of the process with as little as possible sample contamination.

As we will see, we have to perform few extra steps ahead, to make sure that samples won’t

collapse during the undercut and drying procedure afterward (steps 4,5 in figure 2.1). For

1Hydrogen Silsesquioxane
2Flowable oxide: an beam resist. It is the non-diluted version of HSQ
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Si3N4 deposition we have two general options as illustrated in figure 2.2. I) Directly depositing

Si3N4 layer on silicon or II) deposition Si3N4 layer on a SiO2 buffer layer so we can undercut

using HF3 chemistry.

Si3N4

Si substrate

Si3N4

Si substrate

SiO2 buffer layer

Dry undercut wet undercut

Process Selectivity (Si : Si3N4) Isotropic 

XeF2 ~100:1

RIE enhanced
isotropic SF6

yes

~400:1 yes

Process Selectivity (Si : Si3N4) Isotropic 

KOH ~∞ No

TMAH ~1000:1 No

Dry undercut wet undercut

Process Selectivity (SiO2 : Si3N4) Isotropic 

Vapor HF ~10:1 yes

Process Selectivity (SiO2 : Si3N4) Isotropic 

BHF ~100:1 yes

Figure 2.2 – Si3N4 deposition strategies and selectivity of different undercut options. Left:
Direct LPCVD disposition on silicon substrate. Dry Si undercut options: XeF2 or SF6. Wet Si
undercut options: TMAH4or KOH. Right deposition on a buffer oxide layer to use: vapor HF
(dry) or BHF5(wet) for undercutting. Only KOH has the selectivity required for this project.

Choosing between the options in figure2.2, depends on the selectivity that we need in the

undercut process. To determine the selectivity, we need some information about the geometry.

In chapter 1 we observe that Q ∝ 1
h for the localized modes. Therefore to achieve the highest

quality factor, we try to work with the thinnest possible Si3N4 layer that we can still comfortably

fabricate and control. After few experimentation and release tests, we choose h = 20 nm for

the thickness of our devices. Thickness below 20 nm becomes too fragile to survive the release

and drying process (we tested 10 nm samples but achieved disappoint low yields of survival).

On the other hand, the width of our tapered localized mode at its thinnest part in the center is

300 nm and increases via a Gaussian envelope to ∼ 5 μm for the largest piece. Measurements

of samples below the width of 300 nm with our fiber interferometer becomes challenging as

the reflected light off the surface of the beam reduces dramatically. In summary, with our

undercut chemistry, we have to be able to etch silicon below a 5μm × 20 nm Si3N4 beam. That

means we have to etch stripes with vertical aspect ratio of ∼ 250. The rule of thump for the

undercut is to have selectivity at least ∼ 10−100 time better than the aspect ratio we are going

to release. In this way we consume the underneath substrate without damaging our active

layer. Therefore, we have to choose the deposition strategy that will eventually enables us to

achieve an etching selectivity better than 1 : 10,000 between Si3N4 : Si in order to successfully

release the structures without damaging the nitrite layer. Figure 2.2 shows two deposition

strategies, our options for undercut chemistry and our calibrated selectivity. Unfortunately

dry undercut chemistries for Si etching(such as SF6
6 or XeF2

7) or for SiO2 etching (such as

3Hydrofluoric Acid
4Tetramethylammonium Hydroxide
5Buffered Hydrofluoric Acid
6Sulfur Hexafluoride
7Xenon Difluoride
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2 m
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Figure 2.3 – Examples of SEM images of collapsed Si3N4 beams. If the CPD is not used (or
CPD process does not reach critical point) beams would collapse to the underneath substrate
due to the surface tension of the water droplets underneath that pulls the beams down as they
evaporate.

vapor HF) are not suitable as they all have selectivity lower that 1 : 1000 and nitride layer will

be consumed if any of these techniques are used.

The only reliable solution that is accessible in our fabrication facility is Potassium hydroxide

(KOH) solution which has near infinite selectivity between Si3N4 and Si (Silicon etch rate

depends on the temperature of the bath, KOH concentration and its density but the etch

rate of Si3N4 in KOH bath is so small that is practically unmeasurable!). For example we

have tested backside release of 20 nm Si3N4 membranes by etching ∼ 700μm of underlying Si

without any measurable thickness change in the nitride layer. For this project we undercut our

samples using 40% concentrated (weight concentration) VLSI grade KOH at 60◦ degree while

we maintain the bath density at 1.37. KOH bath. This solves the selectivity issue and allows us

to work with the thinnest possible Si3N4 layers, but it comes at cost of few major challenges in

the process. In the following we briefly review these challenges that determine many aspect of

our process flow:

Drying issue with liquid undercut techniques.

Using a liquid undercut step requires delicate drying procedure especially when dealing with

extreme aspect ratios presented in this work. Because of the extreme aspect ratios of our

samples, drying in the open air would result in either breaking or collapsing of the structures.

Figure 2.3 illustrates SEM8 image of a few such a collapsed structures. This is due to the strong

surface tension of water, while the water droplets under the suspended beam are shrinking

due to evaporation, they pull the beams down with them. On the other hand, since our beams

are very long and thin at the same time, they are very soft springs that can easily be bent with

smallest forces.

8Scanning electron microscope
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P(psi)

T(oC)

solid liquid

gas

Super-critical
phase

Tc=31

Pc=1072

Critical Point Drying
(CPD) path

Figure 2.4 – Schematic plot of critical point drying. With CPD technique, we dry the samples
without passing trough the phase transition surface (red curve) by going around the critical
point (cyan circle) though the super-critical phase (hashed region). The path for CPD is
illustrated with the dashed lines.

This problem happens at the surface of two the phases (surface of the gas and liquid) and the

solution is to avoid going through a phase transition surface. In other words, to dry our objects,

we have to bring our samples from water to air without actually going though the surface of

the water. Such a seemingly impossible task is done via a process called critical point drying

(CPD) [141]. Figure 2.4 illustrates the concept of critical point drying. We avoid the surface

transition by going around the critical point (cyan circle) of the material and through the

“super-critical phase” 9. For our purposes, usually the critical point of CO2 is used as it is a

non-polarized molecule with low surface tension. In addition it has relatively low temperature

critical point at at T31◦ degree and P= 1072 psi. The CPD procedure is illustrated in figure 2.4

by dashed lines. First we increase the pressure in a high pressure chamber, then we increase

the temperature to go to super-critical phase and slowly vent the chamber at 40◦ to go back to

the gas phase.

It should be emphasized that the liquid undercut and drying process turned out to be the

most challenging part of the fabrication process for which we had an extremely low yield at the

beginning. However, over time we learned how to carefully handle our samples in liquid and

control the CPD parameters and gas flows in order to achieve better than 95% yield at the end.

One important consideration is that since the water has the highest surface tension, any water

droplets left in the chamber could prevent the system from properly reaching the critical point.

Therefore, we used 99% pure VLSI grade ethanol as a intermediate liquid (ethanol has the an

9In this phase and high pressure and high temperature, the liquid, the evaporation and condensation are
happening instantly at the same time at every point of the material. In other words, liquid and gas are converting
back and forth at every location. Therefore the gas and liquid are indistinguishable via a border surface.
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Silicon isotropic 
etching (XeF2 or SF6)

<100>  (fast)

<111>   (slow)

Silicon anisotropic 
etching (XeF2 or SF6)

Figure 2.5 – Isotropic versus an anisotropic silicon undercut. In isotropic etching, substrate
is etch with relatively similar rate in all direction. For the anisotropic etch different crystalline
angles etch with different rate. For KOH etching of silicon, <111> planes are etched ∼200
times slower than <100> planes[142]. After several minutes, the <100> planes will be etched
away and we left with triangular shape structures under Si3N4 beams.

extremely small surface tension)10. Then ethanol was purged for 15 minutes with CO2 until no

ethanol was left in the charmer. Another important point is that because of the extreme aspect

ratios of our devices, they are very fragile structures and turbulence in the liquid can cause

them to break (figure 2.9) or collapse. Therefore the CO2 flow was kept at minimum during

the filling and purge steps to avoid strong turbulence in the liquid in high pressure chamber.

Anisotropicity of silicon etching in KOH and undercut using KOH

The second major problem of KOH undercut is the anisotropicity of silicon etching in a KOH

bath as illustrated in figure 2.5. Different crystalline surfaces etch with different speeds in KOH

solution. For example, <111> planes are etched ∼200 times slower than <100> planes[142]. if

we attempt to undercut Si3N4 beams directly with KOH, immediately etching Si3N4 layer, we

will produce a “pyramid” shape structure under the beams (see figure 2.6.A and 2.6.B) and it

will take a very long time to etch and release the beams. We performed an experimental test

for KOH undercut as illustrated in figure 2.6. Arrays for 50 nm Si3N4 beams where fabricated

on a standard silicon wafer where we sweep the width of the beams from 100 nm to 5 μm. The

wafer was cleaved from the center in-order to view the cross section of the beams. In fig. 2.6.A

step by step increase the wafer exposure time to KOH. This experiment was performed using

40% concentrated (weight concentration) VLSI grade KOH at 60◦ degree while we maintain

10In summary the drying process is:

water→ ethanol→CO2 (liquid)
CPD−−→ air (2.1)
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Figure 2.6 – Experimental demonstration of anisotropicity KOH etching. A) Shows the cross
sectional SEM image of arrays of Si3N4 beams on silicon exposed to different KOH etching
time. The formation of triangular shape structures in silicon due to slower etching speed
of <111> planes is clear. B) The SEM image a beam and its anchor pars after 30 min KOH
etching. If the process continues, the pads will be released before the silicon under the beams
is consumed. C) SEM of the beam section in B from the top view.

the bath density at 1.37. We experimentally observe the formation of triangular structures that

are extremely slow to etch. It will be matter of hours to be able to fetch those <111> planes

and consume the silicon underneath the beams. The main problem however, is not just the

length of the process. More importantly, the fact that the silicon underneath the clamping

pads would get etched away before we consume all the silicon material underneath the beams.

This is illustrated in figure 2.6. This is because of the asymmetric geometry of width respect to

crystalline planes, where KOH and always find fast angles for different locations.
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exposing fast 
angles

exposing fast 
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etching on 
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Figure 2.7 – KOH undercut by via etching from the sides. In order to undercut Si3N4 beams
via KOH, we first create an upscale version of the mask and etch deep into silicon via the Bosch
process to expose the fast etching surfaces from the side. The depth of the silicon groove is
equal has to be ∼ 1.5 times deeper than the width of the beam.

Our idea to solve this problem is to go deep in silicon and attack from the sides by exposing the

fast angles as illustrated in figure 2.7. For this, an up-scaled version of the beams was patterned

using e-beam lithography and etched deep in a silicon substrate (depth of 10−30μm) using

the Bosch process . Since the angle between the slow surface ( <111>) and the fast surface (

<100>) in a silicon crystal is θ = 54.74 degree, the minimum depth for the Si etching should

be a bit longer than wmax · tanθ ≈ 1.5×wmax where wmax is the maximum width in our design.

Another positive advantage of introducing the Si etching step is that we can independently

control the distance between the Si3N4 layer and the surface of the substrate. For the extreme

aspect ratios reported in this thesis, by experience we realized that a gap of 10-30 μm between

the surface of Si3N4 and silicon substrate is required to avoid the structural collapse during

the CPD drying. We have experimentally tested this idea. Figure 2.8 shows the results of our

method for KOH undercut. In left-top we can see the silicon grooves before etching where

an up-scaled version of the beam mask is etch ∼ 10 μm into silicon. The 50 nm Si3N4 layer is

clear in the top-right zoomed version. Similar to our experiment in 2.6, here we sweep the

time we exposed the chips to KOH and imaged the cleaved chips from the side. In a strong

contrast to direct KOH undercut (fig. 2.6), the silicon underneath the Si3N4 beams layered is

almost consumed in only 5 min. Panel right-down shows that few narrower beams are already

113



Chapter 2. Fabrication

released after only 5 min. With this method, not only we significantly reduce the etching time,

but also make sure the pads are not etched and we won’t suffer from over-hanging.

2 m

2 m

2 m

2 m

10 m

200nm

Figure 2.8 – Experimental demonstration of KOH undercut via etching from the sides. On
the left: Shows the cross sectional SEM image of up-scaled ∼ 10 μm silicon grooved etched via
the Bosch process, exposed to different KOH etching time. After only 5 minutes, underneath
silicon is almost completely consumed. In the top right, show the zoomed view before KOH
undercut where the 50 nm Si3N4 beam on top is clear. Bottom right SEM shows that few Si3N4

beams are already released (since we cleaved through the beams, we lose the beams after their
release.)

Another positive advantage of introducing the Si etching step is that we can independently

control the distance between the Si3N4 layer and the surface of the substrate. With an extreme

aspect ratios reported in this thesis, by experience we realized that a gap of 10-30 μm between

the surface of Si3N4 and silicon substrate is required to avoid the structural collapse during

the CPD drying.

Handling of chips in liquid bath

We process almost all of our fabrication recipe on a wafer scale and rarely we perform a chip

scaled processing. Even if our active area is less that 1% of the entire silicon area. The reason

behind this is that is since we use standard cheap silicon substrates, material cost for our
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structures are completely negligible (1-5% of total cost) compare to the processing cost (95-99%

of total cost). Working with wafer scale however, come with advantage of using commercial

reliable solutions for wafer handling and waver carriage. Most machines (automatic coaters,

mask aligners, dry and wet etchers and etc.) in at EPFL fabrication facility are compatible with

100 mm wafers. This makes the fabrication process very reliable and repeatable. On exception

to this is the KOH undercut. We perform only this step in the chip scale instead of wafer scale.

In other words, we first dice the wafers into the 12 mm × 5 mm chips and then proceed with

releasing the beams in the KOH solution. The logic behind this order is that after undercut, the

beams are extremely fragile and would break during any harsh post processing such dicing. In

our previous generation of devices in our group [204][205], we used to dice the wafers halfway

through and create cleaving trenches 200-300 μm deep (similar to a chocolate bar). In this

method, the KOH undercut was perform in wafer scale where there are commercial reliable

solutions to handle the wafers in liquid, and then the wafer was manually broke into little

chips in through the cleaving trenches. However, such a breaking process creates thousands

of silicon particles that could randomly land on our ultra-high Q beams and lead to significant

reduction of the quality factor. Our solutions to this problem was to reverse the order and

first dice the wafer into small chips and perform the KOH undercut on chip scale. The issue

main issue with chip processing in KOH however, is their handling in liquid as they will fly off

because of liquid current. So we have to clamped the beams in a chip holder.

100 m

Figure 2.9 – SEM image of few broken beams due to liquid turbulence. One of the major
difficulties in the fabrication is that if one of the beams break during undercut process, because
of their long length, they can strangle to neighboring beams and cause them to also break.

Another difficulty of working with KOH undercut step is the issue of handling these fragile

structures in liquid medium. These high aspect ratio beams acts like an efficient sail’s boat in

liquid and could be dragged and often break because of the turbulence in the water. Figure 2.9
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shows an example of several broken beams that are tangled to each other. It is important to

note here that one of the major difficulties we faced in the fabrication is that if one of these

beams breaks during undercut process, because of their long length, they can strangle to

neighboring beams and cause them to also break.

A B

Figure 2.10 – 3D rendering of Teflon chip holders for KOH etching. (A) Shows the 3D ren-
dering of the bottom piece of the chip holder (green) where 64 slots are available to host our
12 mm × 5 mm chips (red). Chips are mounted horizontally (face up) in-order to keep the
water on the surface of the chips and keep the samples in liquid during bath transfer. (B) Blue
illustrates the top cap on the chip holder which prevents the chips from flying away during
to liquid current normally coming from the bottom. The wall of the chip holder protects the
beam from strong turbulence in the liquid.

To answer this challenge, an especial chip holder was designed and made of Teflon (it was

fabricated by milling on a 1 cm thick Teflon plate). Figure 2.10 shows the 3D rendering of the

chip holder. It is designed to solidly clamps our chip while keeping them in the horizontal

position . It is important that we let water remains on surface of the chips while transferring

them from one bath to the next (for example from KOH to water or water to ethanol). This

ensure that the high aspect ratio beams will remain submerged in liquid during entire process

before CPD. In our experience, careful handling of the chips in the liquid and especially during

the bath transfer is the most crucial step of the fabrication that may lead to extremely low yield

if this is not done properly.

General overview of the process flow

Based on our discussion regarding the choice of chemistry for the undercut and our etching

method, we can now briefly review the summarized process flow (fig. 2.1) before going into the

details of each step. The fabrication process starts with LPCVD deposition of stoichiometric

Si3N4 on a Si substrate (fig. 2.1.1). The main processing steps are as follows: first, patterning

the beams atop the Si3N4 layer using electron beam (e-beam) lithography on a HSQ006

(6% HSQ) resist (fig. 2.1.2), second, transferring the patterns to the Si3N4 layer by reactive

ion etching (RIE) using fluorine chemistry (fig. 2.1.3) and third, releasing beams from the

underlying Si substrate in KOH bath (fig. 2.1.6). Intermediate steps relates mainly to the

challenge of preventing released nanobeams from collapsing due to their extreme aspect
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ratios. The most important step, carried out prior to undercut step, involves recessing the

Si substrate by ∼10-30 μm from the Si3N4 layer using the Bosch process(fig. 2.1.5). During

the Bosch process, beams are protected using an upscaled version of the first e-beam mask

(fig. 2.1.4) patterned on a thicker (∼ 800nm) FOX-16®resist. The final step is also crucial, in

which critical point drying (CPD) is used to avoid structural collapse due to surface tension in

the process of drying the released structures. Undercut takes place on individual 5×12mm2

sample chips diced from 700μm double sided polished Si wafer after step (fig. 2.1.5). The

wafer is coated with a protective photoresist before dicing, and to remove this protective layer

and other organic contaminants prior to undercut, sample chips are cleaned by NMP 11 and a

piranha bath.

2.2 Details of the fabrication process flow and related mask designs

In the following section, we will review the details of each of these process steps as well as the

masks designs.

Wafer preparation and alignment marks

Silicon substrate is used for this process are 100 mm (diameter) wafers cut from a Cz grown

silicon ingot in thickness of 700±25 μm. These wafers were purchased from SVM Co.[206]

with the following specs:

• TTV12: <5 μm

• Bow < 30 μm

• P-doped (Boron)

• Resistivity: 1-100 ohm-cm

• Orientation: <100>

• Double-side polished

The first processing step we perform on these wafers is the alignment mark definition. In our

fabrication method, we align all the other masks to the alignment master mask (figure 2.11)

that contains many alignment for different lithography techniques.

• Electron beam lithography global alignment mark (pre-alignment mark)

• Electron beam lithography chip alignment mark

111-methyl-2-pyrrolidon
12Total Thickness Variations
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Dicing Alignment
Mark

Ebeam Alignment
Mark

Ebeam pre-Alignment
Mark

Photo Alignment
Mark

Figure 2.11 – Alignment mark master mask Different alignment marks are patterned on the
silicon wafer and all other layers are aligned to this mask. The orange shape determine the
borders of 100 mm wafer and purple square determines the borders of a 5" chrome mask.

• Photo lithography alignment marks

• Dicing alignment marks

The ebeam alignment in this process is the most crucial alignment which we implement

it in 3 stages for maximum accuracy: I) First stage is to find the coordinates of a reference

point on the wafer with regards to the wafer holder (usually the Faraday cup). The center

of pre-alignment markers (see figure 2.11) are used for this task. The pre-alignment marks

consist of 27×27 squares with dimension of 10 μm × 10 μm. The spacing between the squares

is increased from the center to the edge: (xi , y j ) = ([75+ i ]∗ i , [75+ j ]∗ j where (x0, y0) is the

coordinates of the central square. We can program the ebeam tool (Vistec EBPG5000 100 keV

electron lithography machine) to search and find the center of this pattern irrespective of

where it lands initially. This reduces the chance of not finding the first alignment mark (the

scan range of ebeam machine is a radius of 30 μm. Without the pre-alignment mark pattern,

we are forced to measure the position of the first marker with resolution better than 30μm.

Any inaccuracy larger than that, would cause alignment procedure fails and wafer had to be

unloaded and re-aligned). II)The second stage is to find 5 more points across the wafer to

globally align the axis parameters ( (x,y) offsets, rotation, non-orthogonality and scaling of

each axis). At this stage we reach alignment accuracy better than 50 nm. III) In the 3rd stage,

before writing each chip, the ebeam tool locally re-aligns again to the 4 chip alignment markers

next to each chip. This procedure repeats for every 65 chips. With this 3 stage alignment mark
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Figure 2.12 – Ebeam and dicing alignment marks Alignment ebeam alignment marks are 10
μm × 10 μm squares that have to be etched at least 2 μm into silicon substrate to create a
visible contrast.

procedure, we reliably achieve alignment accuracy below <10 nm.

The ebeam alignment marks are 10 μm × 10 μm squares etched 3 μm into silicon substrate

(see figure 2.12). One important design considerations we applied to the alignment mask

in figure 2.11 is that we remove the “cross pattern” alignment mark from the central regions

of the wafer. This is because these cross shapes (used to align the dicing step) are massive

structures that creates large topography on the surface. This results in a shadowing effect in

the spin coating of ebeam resist. Therefore, the crosses removed from the center parts (active

region of the wafer) to allow a smooth and uniform coating in these regions.

The alignment marks are patterned and etched into the Si substrate using photo-lithography

and RIE etching. Wafers are coated with 2 μm AZ1512 photo-resist using ACS200 GEN3

automatic coater (an HMDS13 layer is first applied to increase the adhesion of the resist to

the silicon substrate.). The alignment mark/mask is exposed with Suss MA6-Gen3, double

side mask aligner with 70 mJ/cm2 of i-Line UV light spectrum exposure. The wafers are then

developed using ACS 200. In the next step the alignment pattern is then etched into the Si

wafer using Florine chemistry with high verticality. For the this Si-Opto recipe on Alcatel

AMS 200 SE, dry etcher, was used with etching time of 3 minutes. This recipe is used because

of its slow and accurate etching with smooth sidewalls. It offers the selectivity of ∼1:10 for

photo-resist. The photo resist is then stripped using a 5min oxygen plasma perform via the

“resist high strip” recipe on Tepla GiGAbatch dry etcher.

Thin film deposition

Before deposition, wafers are cleaned using the standard RCA process[207]. In the RCA

cleaning procedure is used to clean the wafer from organic contaminant, thin oxide layer and

ionic contamination. In this process the surface of the wafer is oxidized (few nano-meter) and

the thin oxide layer is then removed using HF to etch and undercut any possible particles on

13Hexamethyldisilazane
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Stripping Si3N4 from one side 
leads to bow of Si wafer

Figure 2.13 – Stress measurements via the induced bow of the wafer. Removing the Si3N4

layer (red) from one side of the silicon wafer (gray) causes the bending of the wafer due
to tensile stress in the film (exaggerated view and dimensions are not to scale). By laser
interferometric measurement of the bow of the wafer before and after the deposition, we can
measure the deposition stress in Si3N4 layer.

the wafer in order to have a clean wafer before entering the deposition furnace.

Wafers are then put in low pressure chemical vapor deposition (LPCVD) furnace and the

deposition happens at very high temperature. The reaction initiates with the thermal decom-

position of dichlorosilane (SiH2Cl2) reacting with ammonia (NH3) in the temperature of ∼800

degrees centigrade. This leads to high stress stoichiometric silicon nitride with the following

chemical reaction:

3SiH2Cl2 +4NH3
700o C - 840o C−−−−−−−→ Si3N4+6HCl+6H2 (2.2)

The thickness the thin film (usually 20 nm for this process) is then measured using a Sopra

GES 5E, spectroscopic ellipsometer. The next step is the measurement of the film stress. The

film stress (σfilm) is measured via measuring the bowing induced in the wafer because of the

nitride layer before and after the deposition. Wafer’s bow is measured by laser interferometry

(via Toho Technology FLX 2320-S - Thin Film Stress Measurement tool). With this technique

we measured the film stress to be about σfilm ≈ 1.1 GPa.

Electron beam lithography

The first major of the fabrication starts with the patterning the geometry of the beam. In

chapter 1, we show that the dissipation dilution is independent of the width of the mechanical

oscillator. Therefore, the minimum feature size of our structures can be selected independently.

However, the wider the structure become, it is more difficult to undercut the structure. We

choose 400 nm for the minimum width of our structure at the center of the tapered region (it

means the widest part of our beam will around 6.1 μm). Also we observe that the localized

mode design is very robust against roughness and geometrical changes. Therefore these

beams can be written with photo-lithography as well. But for this project we write all masks

using ebeam-lithography. This is not only to achieve nano-meter resolution and alignment
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Horizontal oriantaion
lbeam<5 m

Vertical oriantaion
5 m<lbeam<12 m

Chip identifiers

Figure 2.14 – First ebeam mask: definition of beam geometry. The orientation of the beams
could be vertical or horizontal depending on the beam length is longer or shorter than 5 mm.
The wafer can host up to 65 chips (13 columns and 5 rows) with dimensions of 12 mm× 5
mm. We normally sweep the length of the defect across the samples of each chip and other
parameters are swept between the chips (such as number of unitcells and the length of the
beam). Each chip also contains a unique identifier that helps to find the parameters of the
chip during the measurement. The entire mask is generated via a C++ code.

accuracy but also the flexibility and fast prototyping capability we can achieve with ebeam. In

addition, by experience, we realized our beams are very sensitive to organic contamination

are burnt photo-resist residues were a major problem for us. Using ebeam, we can rely on

non-organic resist such as HSQ and its non-diluted versions such as FOX.

An example of the fist ebeam mask is illustrated in figure 2.14. It this mask we observe 65 chips

with different beam lengths and different designs were many sweeps were implemented to

experimentally observe the behavior of the quality factor (for example changing the position

of the localized mode with respect to the bandgap by sweeping the length of the defect.).

Since the dimensions of our chips are fixed at 5 mm × 12 mm, as illustrated in figure 2.14, the

orientation of the beams could be vertical or horizontal if the beam length is longer or shorter

than 5mm. It is important to note that we generate all the masks for this project via c C++ code

that automatically draws the geometry and all the sweeps. The code is compiled in L-edit

mask drawing software[208].

The wafer is coated with HSQ using the manual coater. Prior to the coating there is a pre-bake

step for 5 minutes at 180oC to dehydrate the surface from possible water molecules on the

surface, followed by a nitrogen air flow. Dehydration is required for the adhesion of the resist

to silicon substrate. After resting on a clean cloth tissue for 10 seconds to cool down, the
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Figure 2.15 – Proximity correction. The proximity factor is color coded in the design. The
region illustrated by red will receive an enhancement in the doze because of their sparse
surrounding but the blue regions experience a reduction of the doze due to back scattering of
the electrons from the surrounding pattern. These proximity corrections are calculated using
proximity factor of η= 1.7.

ebeam resist layer is spin coated using 2000 rpm speed for 1 minute with dispensing of 2ml

of HSQ06 (6% HSQ) solution. With the recipe will coat about 200 nm of ebeam resist atop

of silicon nitride film. The wafer is then placed on the ebeam holder. First we perform a

height measurement on the entire wafer using a laser interferometer to check the height.

The magnetic lenses on the beam machine can adjust the focus in the range of 0-50 μm and

therefore height of the wafer has to be in this range. At this stage we use two distant alignment

marks on two distant edges of the wafer to manually align the rotation of the wafer by adjusting

the adjustment screws on the holder. This step is carried out in multiple iteration steps by

fixing the position on one side and compensating for the possible rotation misalignment on

the other side of the wafer until the rotation of the wafer is minimized.

After this alignment, we set the reference position of the holder to zero at the Faraday cup

that is located on the corner of the holder. This is the zero point of the coordinate system

used by ebeam tool. We then measure the position of the center of the pre-alignment mark

pattern with respect the Faraday cup and use it to start our alignment procedure as explained

in previous section.The wafer is then loaded into the ebeam load-lock and transferred to the

main stage after pumping to high-vacuum (5×10−5 mbar). For this project we use automatic

alignment procedure as it offer high alignment accuracy compared to manual alignment.

To achieve minimum fillets and the corners, we perform a proximity correction [209] to cal-

culate a non-uniform doze across the pattern. Near the regions with high a dense structures

in the surrounding, we reduce the doze to account for the background doze coming from

the back reflected electrons and enhances the doze the region with no surrounding struc-

tures and therefore no back-scattered electrons. Figure 2.15 shows an example of proximity

correction calculations perform using GenISys layout beamer [210] where the value for the

doze correction is color coded at each point (red means doze adjustment factor higher than

one and blue beam lower than one). At the center of the beam the doze has to be enhanced
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Figure 2.16 – Optical image of the 1st ebeam mask. On the left is the bright field and on the
right is the dark field image of the tapered corrugated beams in different zooms.

because of their sparse surrounding and in the middle of the pads, doze has to be reduced due

to surrounding of each point. Through an independent test, we have calibrated the proximity

parameter to be η= 1.7 and the base doze of 1500 μC/cm2. As we do not have round structures

in this mask and are not sensitive to roughness, we choose the grid resolution of 30 nm for

our ebeam fracturing and the electron current of 200 mA. This gives us the maximum writing

time. With these settings, normally it would take about 4-5 hours to write a similar mask to

the one presented at figure 2.14. To reduce sidewall roughness with no additional costs, we

perform a double path writing in which we write every part of the mask two times with half

the doze. The random drifts because between the two paths would lead to reduction of the

sidewall roughness.

Finally after ebeam writing, the samples are developed in 25% TMAH solution for 2 minutes

and rinsed in DI water14 until the resistivity of the bath is above 15 MΩ. The samples are then

air dried using the nitrogen gun and inspected under optical microscope (see figure 2.16).

Pattern transfer to Si3N4 using RIE etching

The ebeam pattern is transferred into the Si3N4 layer via ICP-RIE15 etching. In order to achieve

selective etching of Si3N4 used fluorine chemistry dry etching with a mixture of CHF3/SF6

gases. This mixture is used in "Si3N4 Smooth" recipe in SPTS APS Dielectric Etcher. We have

calibrated the etch rate of Si3N4 to be around ∼200 nm/min which is pattern dependent.

14Deionized water
15Inductively Coupled Plasma - Reactive Ion Etching
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We normally use 15 seconds of etching for 20 nm thin films that account also for ∼ 10 sec

over etching. Over etching helps in the undercut process as it exposes the sidewall of silicon

underneath the Si3N4 layer. Since the selectivity between Si3N4 and HSQ is about 1:1, the over

etching process results in etching of 50 nm of 200 nm resist. Also over etching helps to avoid

any uneven etching of the top film. Figure 2.17 shows the false colored SEM image after the

pattern transfer to Si3N4.

1 m

Figure 2.17 – False color SEM image of Si3N4 etching. Blue is the HSQ ebeam mask, red is the
Si3N4 layer and green is the silicon substrate.

We do not remove the HSQ resist atop of the Si3N4 until the end our process. This is because

this non-organic resist layer will protect the surface of the nitride beams through the remaining

of the aggressive processing steps such as deep Si etching, photo-resist coating, and dicing.

This HSQ layer will be only removed in BHF, right before the KOH undercut step. Also KOH

dissolves HSQ and FOX layers. Therefore if any resist is left over the beams, they will be etched

in the final KOH undercutting step.

E-beam lithography of up-scaled mask for deep Si etching

Based on our discussion in previous section in regard to our strategy for KOH etching, the next

step is to pattern an-upscale version of the beam layer for the deep Si etching to expose the

fast angles on the side. The reason that we are using the up-scaled version of the beam instead

of using the same mask is that because Bosch process for Si etch is an aggressive etching

process that creates a lot of sidewall roughness. If the same mask is used, Si3N4 beams will be

damaged by the Bosch process. Therefore an upscale masked is designed to encapsulate the

beams and protect them in the next processing steps.

The 2nd up-scaled mask is illustrated in figure 2.18.B where a uniform increase of 1.5 μm from

each side is implemented in this mask. The patterning procedure for this mask is very similar
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10 m

1 m

Figure 2.18 – The upscale mask used to protect the Si3N4 for deep Si etching. (A,C) The SEM
image of the 2nd beam mask (FOX) after development. The effect of the 1st mask is clear in
the topography of the 2nd mask. B) The upscale second mask where the mask is increased by
1.5μm from each side.

to the first mask. With the difference that here we use FOX-16®resist spin coated with 4000

rpm for 1 minutes. This creates a FOX-16®layer with thickness of about 600 nm. We choose a

thick resist to completely encapsulate the first layer and protect it throughout the rest of the

processing steps. The pre-backing recipe, the alignment procedure and ebeam parameters

(base doze, proximity correction, grid resolution, the beam current and the development

recipe and time are all similar to what we described for the 1st mask.). SEM images of the 2nd

mask after development can be found in figure 2.18. In figure 2.18 first we observe the perfect

alignment between the two layers and second striking feature is that effect of the first mask

(which we did not striped) on the topography of the 2nd mask.

Deep etching of up-scaled mask into silicon substrate

As discussed in previous section, our strategy for KOH undercut is to expose the fast angles

from the side by etching deep into the silicon substrate. As mentioned before, another advan-

tage of this deeps Si etching steps is that we can independently determine the gap between

the Si substrate and Si3N4 beam. Depending on the design and length of the beams, this gap

can be between 10-30 μm. Therefore the etching time of the for this step could be varied

depending on the target gap.

To perform the deep etching step, we used the Bosch process, in which, by applying pulses

of SF6 followed by passionating pulses of C4F8 that creates a polymer thin coating on the

side walls of the structures to enable deep and high aspect ratio etching with more that 1:100

selectivity between Si and HSQ [211]. This etching was perform on Alcatel AMS 200 SE, dry

etcher. For this process we used the recipe of SOI accurate for usually 12 minutes (associated

with ∼ 20μm depth).
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Figure 2.19 – Few SEM images after the Bosch process. The tapering of the width of the
resonator is illustrated in top-left image.

Figure 2.19 shows the SEM image of several samples after 12 minutes of Bosch process. An

interesting feature in the top-left corner figure is that the tapering of the resonator is visually

observable in the silicon shadow of the beams.

Removing the passivation polymers using O2 plasma

One important step after the Bosch process is to strip the passivation polymer using O2 plasma.

We observed by experience that this passivation layer does not remove in our cleaning steps

such as acetone bath, IPA bath, Piranha bath or BHF. It only goes away in O2 plasma and if it

is not removed at this stage, will be left on Si3N4 beams and leads to dramatic reduction of
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2 m
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Figure 2.20 – Contamination regarding the passivation polymer during the Bosch process.
This polymer layer can only be removed by O2 plasma and has survived Piranha, BHF, IPA and
acetone bathes, KOH and HCLbathes. This layer leads to significant reduction of Q if the O2

plasma cleaning after Bosch process is not performed.

the quality factor. Figure 2.20 shows the SEM images of such a polymer contamination which

does not dissolve in either of our cleaning bathes.

For this stripping we performed 5 min oxygen plasma “resist high strip” recipe on Tepla

GiGAbatch dry etcher.

Thick photo-resist coating for protection during dicing step

Since the dicing process creates enormous amount of contamination (silicon particles and

organic oil from the sawing and others) and it is even performed outside of the cleanroom we

coat our wafers with a thick (100>μm) photo-resist to protect and cover our structures. The

photo-resist will later be striped in the cleaning stages. For this protective layer, the wafer is

coated by a thick layer of AZ9260 photo resist. Before the coating, wafer is dehydrated using

a baking step at ambient pressure at 105 degrees temperature hot plate for 5 minutes. The

coating is done using a manual coater by dispensing photo resist all over the wafer manually

and spinning for 1 min using 500 rpm speed to make the coating uniform. After the coating is

done the wafer is transferred to a hot plate at the temperature of 105 degrees for a post bake to

solidify the resist. This procedure lasts for 3 minutes. After this stage wafers are transferred to

the dicing tool for dicing.

Dicing the wafers into 5 mm × 12 mm chips

Dicing is performed using a Disco DAD321, automatic dicing saw. For this dicing, we use

"Nickel 100" dicing blade with 30000 rpm spindle speed. This blade has a thickness of 120μm.

The alignment is done using dicing alignment marks (see figure 2.11). The wafer is taped to a

UV sensitive tape on to a dicing chuck. The wafer is diced into 65 individual chips. The dicing

is performed all the way through the wafer and even for 100 μm into the tape to make sure
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A B

Figure 2.21 – 5 mm × 12 mm chips after dicing A) shows the optical image of the chip after
dicing and cleaning on 5 cent Swiss coin as the size reference. B) the same chip of a 50
cent Euro coin. The sweep of the central defect is clear in (A). Both of these images are a
super-imposed combination 35 images with different depth of field to create a sharp image.

all the chips are properly released. The height of the blade is 0.8 um from the reference tape

thickness which makes the cuts through the wafer. After the dicing, the UV tape is exposed

with a UV lamp for 5min. This helps the tape to loses its adhesion and the chips are removed

from the tape using a tweezer.

Figure 2.21 shows the optical image of the diced chips (after cleaning). They are imaged on

top of 5 cent Swiss and 50 cent Euro coins for the sense of the scale.

Cleaning procedure before undercut

One of the major obstacles we experimentally observe is that since our UHQ resonators are very

thin and surface losses are dominant, they are extremely sensitive to contamination. Specially

we observe that they are very sensitive to organic contamination. Figure 2.22 shows false

color SEM image of few examples of organic contamination on the beams. We experimentally

observed that the a reduction of one order magnitude (from expected Q of ∼1 billion to

measured value of ∼100 million) in quality factor could be expected if the sample is not

properly cleaned.

Chips are transferred from the dicing tape into a our custom design chip holder that we

described in previous Section. We have made the chip holder from Teflon because Teflon is

among the few materials that does not interact with neither the bases nor acids that we will

use to clean our sample. Therefore we can use the same holder for all the following cleaning

steps. At this stage the main contamination sources and their cleaning bath are:

• Si particles (from dicing): Cleaned in KOH during the final Si undercut
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Figure 2.22 – False color SEM image of organic contamination of the corrugated beams Red
: Si3N4 beam, green : Si substrate and Blue is the organic contamination. The UHQ beams are
extremely sensitive to contamination and establishing a rigorous cleaning procedure was the
key to achieve Q factors as high as 800 million.

• Photo-resist: Cleaned using NMP (Shipley 1615) resist stripper

• Organic contamination from photo resist or oil in the dicing process and other unknown

sources: Cleaned using Piranha solution

• HSQ and FOX resist and silica particles: Removed via a 15 sec dip into BHF.

The samples are cleaned in a high temperature photo resist stripping solution at 70 degrees

using NMP (Shipley 1615) for two cycles of 5 min. In the first cycle the overall photo resist will

be removed in a not-clean bath and then the patterned details would be removed using second

cycle in a clean solution. Next step would be cleaning the samples in the Piranha solution at

100 degrees. This happens for two cycles of 10 minutes at high temperature. Piranha solution

consist of 95% sulfuric acid (H2SO4) that is activated by 100 ml H2O2 at 100 o C. This is a very

strong acid that dissolve most of the organic chemistry.

The last step is to clean the original ebeam resists (HSQ and FOX) with BHF in order to clean

the surface of the beams as well as stripping the ebeam resist. Another advantage of BHF dip

is to remove the oxynitride layer that form in the oxidation steps in the past (Piranha and O2

plasma) that has been observe to reduce the stress and thus the Q factor f the oscillator [212].

We use buffered HF for 30 seconds to remove the FOX and oxynitrid layer.

Figure 2.23 shows several SEM images after described cleaning procedure. As we can see

the Si3N4 samples look visually very clean (no organic or polymer contamination and the

HSQ-FOX resist are dissolved in BHF) before we enter the KOH undercut process. However it

should be noted that other contamination could come in the next stages for example from a

contaminated KOH bath or contaminated CPD chamber. The reason we did not performed
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Figure 2.23 – Few selected SEM image of devices after the decontamination phase. After
dicing, samples are cleaned in NMP resist striping bath, Piranha solution and BHF dip for 30
second. The images show that the samples as visually clean before the undercut process.

out cleaning procedure after the undercut process is that after KOH undercut, the samples are

released and therefore very fragile. Changing these many bathes with a released beam, would

significantly increase the risk that the samples get broken during bath transfers. Therefore, as

we will discuss, we try to minimize the risk of contamination in the next steps by working with

a costume made KOH and HCL bath and a cleaning the chamber of CPD before every run.
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KOH silicon undercut

In the previous section, we discussed different methods of undercut and concluded that the

KOH is the only solution for this project as it has the etching selectivity that is required from

this undercut step. The we reviewed the challenges of silicon undercut with KOH such as the

anisotropicity of the etching and the drying issue. However, as we discussed, solution were put

in place in advance (such as the deep Si etching and chip holder design) to assist the undercut

process. KOH undercut reaction is as the following:

Si+2OH−+2H2O
60o C−−→ SiO2(OH)2−

2 +2H2 (2.3)

This shows that the hydroxide ions are the main etcher of Si and not the potassium. In

fact removing the potassium salts that automatically will be deposited on the surface of the

resonators is one of the other challenges of KOH etching. In the next section we will discuss

about how to neutralize the potassium leftovers in a HCL bath . One of the main important

features of the KOH etching step is the release of the H2 bubbles from the surface. Therefore,

an important consideration during the design of the chip holder as to create as much as open

space for the bubbles to come out of the medium. One experience we observed in the previous

generations of our chip holders is that the small opening if Teflon tends to be hydrophobic

and leads to accumulation of the air bubbles. If the opening is the chip holder are not wide

enough, the air can be trapped in different parts of the chip holder and could leads to the

breaking of the beams due to surface tension of the air bubble that is formed on top of the

chips. Therefore the chip holder is re-designed to accommodates a lot of openings for the air

bubbles to escape and each the surface of KOH bath.

It should be emphasized that KOH is an aggressive substance that attacks many materials and

most of the organic and non-organic contamination can not survive in KOH. However, there

are still few exceptional polymers such micro structures of Teflon that can survive in a KOH

solution. Since our UHQ beams are extremely sensitive to contamination, by experience we

observed that the shared KOH bath at EPFL cleanroom facility is contaminated which leads

to lower Q oscillators. Therefore, the key to achieve clean samples with quality factors near 1

billion was to perform the KOH undercut in a costume bath in a beaker. For this we used a

VLSI grade 40% concentration (weight concentration) KOH and the temperature of the bath

was actively kept at 60 degrees Celsius. This was done via a thermometer and a heater with

PID controller. As the silicon etch rate is a function of the density of the bath, in order to have

a stable and repeatable process, density of the bath was kept at 1.37 gr/cm3. This was done

by floating a density meter in the KOH bath and adding water to the bath until we reach the

proper density.

We calibrated the etch rate of the fast planes of silicon to be ∼ 25 μm/hr at this temperature and

density. We also calibrated that we need 25 minutes consume all the silicon underneath Si3N4

beams. The KOH timing has to calibrated for different designs depending on the maximum
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Figure 2.24 – Few selected SEM image of released devices. The pictures on the bottom are
taken from a 70 degree angle and shows the shape of the silicon pillar under the clamping
pads. If the etching time is too long, the pillars will be undercut. We optimize the etching time
to be 25 minutes for the maximum beam width of ∼ 6.5μm. The middle left picture illustrates
the tapering of the width of the beam that leads to co-localization of the mode shape and the
region of enhanced stress.

width of the structure. Too short KOH etching time, will case that we will have silicon pieces

still attached to the baems. To long etching time, will leads to undercutting the silicon pillars

at each opposite end (under the pads) and overhanging near the clamping points. The bath

should have a low level of turbulence in order to avoid dragging of the high aspect ratio beams,

but the liquid still have to be mixed up in order to allow fresh KOH to reach to the chips.

Therefore, we used a Teflon magnetic Spin bar to mix the solution at 150-200rpm. After 25min

132



2.2. Details of the fabrication process flow and related mask designs

KOH, the samples are then rinsed in the water bath. We monitor the pH of the running water

bath until the pH reaches bellow 8.

Figure 2.24 shows the SEM image of few exampled structures after KOH undercut (also after

CPD drying). If the cleaning procedure is followed properly and a clean KOH bath is used, the

final samples look very clean and will have ultra high quality resonances.

Neutralization of the potassium in HCL bath

One major difficulty of KOH etching is the potassium deposition on the surface of the struc-

tures. If the samples are dried immediately after KOH undercut, a white salt will appear on top

of the chips that has contaminated all the beams. This white powder is the potassium salt left

by evaporation of KOH. To neutralize and dissolve the potassium salt, chips are transferred

into a costume made HCL bath with 37% concentration. Samples are left in the acid for 2

hours while the solution is slowly mixed using a Teflon magnetic Spin bar rotating at 150-200

rmp . After 2 hours, the samples are again rinsed by water until the pH of the water bath is

reaches above 6. It is important that we keep the flow of the water to the minimum to avoid

any turbulence in the water bath. Finally, the samples are transferred to the CPD machine

while submerged in a beaker full of water.

CPD drying

Figure 2.25 – The CPD machine at EPFL fabrication facility. For this project we use
Automegasamdri®-915B critical point drier machine.

The last and most crucial step of the process is the drying process. Statistically we lost most
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of our samples during this step because either the CPD machine did not reach the critical

point or strong turbulence in the liquid specially during the first few seconds of filling cycle or

just because of contamination exists in the CPD machine. By experience, we learn that CPD

machine accumulates a certain type of dust if it is not used regularly. The source of which it

is still unknown for us. If the CPD machine is contaminated, the said dust particles will be

deposited on the structures and make them unusable. Therefore, before the start of the CPD

process, we first proceed with the cleaning of the CPD machine. The CPD chamber (see figure

2.25) is first cleaned by acetone, IPA and ethanol using a cleanroom tissue followed by drying

with nitrogen gun. Then depending on the frequency of the usage of the machine in the past,

we run 1 or 2 empty cycles with the machine by loading a dummy silicon wafer instead of our

chips (the silicon wafer helps to see the dust after the CPD process is finished). We continue

the empty runs until now dust particles is observed at the end of the CPD process.

As we explained before, it is important that we have no water droplets in the CPD chamber

(too much of water in the CPD chamber prevents the machine to reach the critical point).

Therefore, before loading the chip holder into the CPD chamber, we first switch the bath from

the water (samples were kept submerged in the water during the transfer from the HCL bath

to CPD machine) ethanol and leave the sample in ethanol bath for few minutes. Then the

samples are transferred in to the CPD chamber and the chamber lid is carefully tightened to

allow no leakage once pressure increase. The proper tightening of the lit is crustal to maintain

the pressure and reach the super critical stage. Then the machined is first cooled down before

starting to fill the chamber with liquid CO2. It is important that we let the system to cool to

temperature of at least 10oC before starting the process. Otherwise we risk the chance of not

achieving the critical point. The other important point while working with CPD machine is that

if the valves are fully opened, a strong turbulence is generated in the first few second where the

machine is filling the chamber with liquid CO2 (this is because of the high pressure tank of CO2

that rushes the CO2 into the chamber). This could lead to breaking of our fragile high aspect

ratio samples. Therefore our best practice is to close the filling valve at the beginning of the

process and slowly open it to avoid strong turbulence in the liquid. The rest of the CPD process

is fully automatic. We normally purge the chamber for 12-15 minutes with CO2 in-order to

make sure no ethanol is left in the chamber. Then machine increases the temperature and

pressure until it reaches the super critical phase at ∼1250 psi at 36 o C. Once the critical point

is achieved, the system automatically switch to venting mode were is slowly vent the chamber

from the super critical phase in to the gas phase.

One the CPD process is finished, the samples are collected and load into gel packs and

transferred to the lab for the measurement. We normally inspect the sample at this stage via

the optical microscope and SEM in order to make sure no contamination is visually observe

of the samples and to make sure which beams are broken or collapsed and which ones are

properly released. I would like to finish this chapter by showing the SEM image of a full

corrugated (3 mm in total length and 58 unitcells):
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2.2. Details of the fabrication process flow and related mask designs
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3 Outlook

3.1 Quantum optomechanics at room temperature and its challenges

Since the birth of the field of cavity opto-mechanics, the idea of “putting mechanics into

quantum mechanics”[8] and observing the quantum effects of massive classical oscillators

became one of the most important goals for this field. Using quantum limited sources (laser

light) and high finesse micro-cavities[213][214] strongly in interacts with a high Q micro/nano

mechanical objects [7][215][216][217], seems a right approach to achieve this goal. However,

it should be emphasized that observing quantum effects of macroscopic objects is incredibly

challenging. Besides numerous technical challenges (which are mostly system specific) of

dealing with various noise sources (such thermo-refractive noise [121], laser classical noise

[120]) and other technical issues such heading[10], absorption [167] and etc., there are two

fundamental challenges in regards to observing the quantum effects of the macroscopic

objects:

• Their low frequency

• Their large mass

For the first challenge, if we are interested to observe the quantum behavior of macroscopic

mechanical oscillators, we have to observe them at the relevant energy scale: the ground state

(GS) of mechanical oscillator, EGS = �Ωm . However, the enemy other quantum optomechanic

experiments is the random classical Brownian motion of the oscillator and because of the low

frequency of mirco/mechanical oscillators, their thermal energy — Eth = kB T is significantly

larger than their ground energy, n̄th = kB T
�Ωm

� 1. In other words, the the quantum effects that

we are trying to observe are completely masked by the much larger thermal motion of the

oscillator. For a ∼ 1 MHz oscillator, even at the lowest cryogenic temperature at state of the art

dilution refrigerators, Tmin ≈ 10mK, still the thermal occupation is n̄th(T = 10 mK) ≈ 200. This

is contrast with atoms and molecules and other “traditional” quantum object that because of

their high frequency, their ground state energy is significantly larger than their thermal motion
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even at room temperature, �ωoptical photon � kB T . In other words, systems with resonance

frequency bellow ωGS stability = kB T
�

= 6.2 THz at room temperature (T = 300 K), statistically

don’t have a stable ground state when they in contact with their thermal environments. Even if

we could prepare them at their ground state (by methods such as sideband cooling [167],[170],

[218], [219],[172] or feedback cooling [11], [10]), every thermal phonon in the environment is

energetic enough on average to excite mechanical oscillator to a random thermal state and

destroy the our quantum coherent state. This represent the first fundamental challenge in

regards with observing the quantum behavior of the mechanical oscillators.

The solution to this challenge is “isolation”. Although in a non-zero thermal bath, every phonon

(on average) is energetic enough to randomly interact with our resonator and destroy its

quantum coherent state, if we manage to isolate our mechanical oscillator from this “phonon

bath”, the average time that it take for the first phonon to enter on system will increase. We may

hope to observe the quantum behaviors of the mechanical oscillator in this short time scale. In

other words, although the life time of the ground state in mechanical oscillators is not infinite, if

we manage to increase its lifetime beyond a threshold, we can practically observe the quantum

behaviors in this short lifetime. Based on the fluctuation-dissipation theorem[220][221][222],

a mechanical oscillator absorbs fluctuations from the thermal environment with the same rate

that it dissipate its energy in it. Therefore, isolating a mechanical oscillator from its thermal

environment (lower fluctuation) means to reduce its energy dissipation and increase it quality

factor.

Quantitatively speaking, it can be shown that the average rate that mechanical oscillator

exchange phonons with its thermal environment is given by[9]:

Γdecoherence = n̄thΓm (3.1)

whereΓm is the energy decay rate of the mechanical oscillator. Γdecoherence is commonly known

as thermal decoehernce rate and represent the lifetime of the ground state of a quantum of a

oscillator with �Ωm 
 kB T . The threshold at which the quantum effects of the mechanical

oscillator (in principle) can be observe is that the mechanical oscillator can at least perform

one coherent oscillation before its decoherence to the thermal bath. This means:

Ωm > Γdecoherence =⇒ Ωm > Γm
kB T

h f
=⇒ Q · f > kB T

h
(3.2)

where f = Ωm/2π is the mechanical resonance frequency in Hertz unit and Q = Ωm/Γm .

Isolating the mechanical oscillator means reducing the Γdecoherence. A traditional approach

that nearly all quantum opto-mechanical experiments have token, was to reducing the de-

coherence rate by operating the system at lower temperature (lower n̄th) using expensive

cryogenic coolers [223][224][225]. However, we are interested to design a system, capable

of observing the quantum effects of the mechanical oscillators at room temperature. Our
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3.1. Quantum optomechanics at room temperature and its challenges

motivation behind this goal is that, if the ground state can be achieved at room temperature, it

would be a technological breakthrough in the field of quantum opto-mechanics and quantum

information. In this scenario, the quantum experiments can be done at any lab in the world

without the need of expensive cryogenic systems. Also it could reform the field of quantum

computing as the size of the system significantly can be reduced by removing the cryogenic

systems. Therefore in this thesis, our approach to reduce the decoherence is via reducing the

mechanical damping rate by designing ultra high Q mechanical oscillator. Equation (3.2) at

room temperature, reduces to:

Q × f > 6.2×1012 Hz (3.3)

an oscillator which satisfies equation (3.3) is known as “quantum-enabled” at room temperature[12].

In this, we presented mechanical oscillators with record breaking Q × f > 1015 Hz. Such a

resonator is extremely isolated from its environment, that it can go through 100s of coherent

oscillation before the first thermal phonon can interact with it. In chapter 1, we observed that

by taking advantage of dissipation dilution and incorporating a non-uniform phononic crystal,

to co-localize the mode shape and regions of high stress, we can engineer mechanical oscil-

lators with unprecedented Q and Q × f . Therefore, with these new ultra high Q mechanical

oscillators, the first fundamental challenge in regards with observing the quantum behavior

of micro-mechanical resonators at room temperature is solved. The second fundamental

challenge however, still is the on the way to achieve this long standing dream. In the following,

we will discuss about how we can quantify it and will observe how our ultra high Q mechanical

oscillator with their favorably Q/m scaling can help to create opto-mechanical system that

are capable of reaching the ground state at room temperature. Then in the next section, we

briefly present our ideas on how to integrate these ultra high Q beams in a new class of near

field opto-mechanical system that could reach unprecedented performance.

The second obstacle in observing the quantum effect of macroscopic mechanical oscillators is

their large mass. Having such a large mass, mean the zero point motion (zpm) — the RMS1

displacement of the oscillator at the ground state— is indescribably small:,

xzpm =
√

�

2meffΩm
(3.4)

where meff is the effective mass of the oscillator. Zero point motion, determines the length

scale at which we are expecting to observe the quantum effects of the mechanical oscillators.

For our nano-mechanical oscillator with meff ∼ 1pg and Ωm ∼ 1 MHz, the zero point motion is

xzpm ∼ 200 fm. This means that in order to observe quantum effect of macroscopic objects, we

have to perform measurements of dimensions more than 1000 times smaller than the radius

of atoms. Achieving such an imprecision is incredibly difficult technical challenge. There are

different ways to quantify this issue , but here we decide to quantify it using the the language

of rates as enables us to connect it with our first argument regarding Q × f . The problem of

observing the quantum behavior of macroscopic objects can be regarded as the completion

1Route Mean Square
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of two rates: measurement rate and thermal decoherence rate. As we mentioned before,

thermal decoherence determines the lifetime of a quantum coherent state of a mechanical

oscillator. If we are interested to detect these quantum effects, we have to measure and interact

with the oscillator during this lifetime. In other words, the measurement rate has to faster

than the decoherence rate of the mechanical oscillator Γmeasurement > Γdecoherence [10]. The

measurement rate in a cavity opto-mechanical system in non-resolved side-band regime2 is

given by[9]:

Γmeasurement = ncav
4g 2

0

κ
(3.5)

where ncav is the circulating photons in the cavity and g0 is the vacuum optomechanical

coupling rate [226] is the amount of cavity frequency shift for every quanta of mechanical

energy in the resonator and is equal to:

g0 = xzpmG , G =−∂ω

∂x
(3.6)

where G is the frequency pulling factor and is equal to the amount frequency mechanical

induced frequency shift in the optical cavity (ω) per unit of mechanical displacement (x). G

depends on the design of the opto-mechanical system and we will revisit it in the next section.

Now if we apply our condition to have measurement rates faster than the thermal decoherence

rate, we will have:

Γmeasurement > Γdecoherence =⇒ ncav
4g 2

0

κ
> n̄thΓm =⇒ ncavC0

n̄th
> 1 (3.7)

where C0 = 4g 2
0

κΓm
is known as the single photon cooperativity[227][114]. Achieving the condition

represented in equation 3.7 is equivalent to the condition for ground state cooling [167],[215],

[218],[172] or observing the mechanical oscillator with standard quantum limit (SQL) of

imprecision[228][229][122][11], [10]. In fact, in can be shown that 1
n f

= ncavC0
n̄th

, where n f is the

final thermal occupation in the mechanical oscillator in a laser cooling experiment if ncav

photons are pumped into the optical cavity or it is the final imprecision if the mechanical

oscillator is measured by ncav circulating photons in the cavity.

Starting from cryogenic temperatures and reduced n̄th, many groups were able to achieve the

condition in equation (3.7). However, no group has ever been able to achieve the condition

of (3.7) at room temperature3. One solution to achieve this condition, is to increase ncav by

pumping more photons into the cavity. However, many different technical obstacles would

limit how many photons that can be poured into an opto-mechanical system. A full review of

these technical challenges is outside the scope of this thesis but issues such as two photon

2Ωm < κ/2 where κ is the optical cavity’s linewidth[170][171]
3maybe with the exception of[230] which the results still hasn’t been peer reviewed at the time of writing this

thesis.
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3.1. Quantum optomechanics at room temperature and its challenges

absorption [231], Ohmic heating due to absorption [10], thermo refractive noise [121] and

optical non-linearities are among the few examples of such a technical limitation on the

maximum circulating power of that can be pumped into the cavity.

Our alternative approach to ground state cooling at room temperature is to design a system

with much larger single photon cooperativity. First we observe that how the ultra-high Q

mechanical oscillators described in this thesis, would directly benefit the single photon coop-

erativity, and in the next section, we will present our ideas on how to engineer an new class of

optomechanical system based on the near field interactions [123], [125], [126][122], [232] to

increase optomechanical coupling strength (G) and achieve single photon cooperativity in the

range of C0 ∼ 104 −105 at room temperature. With these results, quantum optomechanics at

room temperature is within the reach.

We start our analysis by observing the scaling of the quantum cooperativity — C =C0/n̄th —

to the parameters of the mechanical and optical resonator:

C0 =
4g 2

0

κΓm

g0 = xzpmG

xzpm =
√

�

2meffΩm

n̄th = kB T

�Ωm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=⇒ C = C0

n̄th
∝ Q

meffΩm
(3.8)

Equation (3.8) is an extremely insightful important in regards to designing the high cooperativ-

ity systems for quantum optomechanics at room temperature with regards to the mechanical

oscillator. It shows that the key to achieve higher cooperativity system is to (a) operate at

lower frequency (although we argued that working at frequencies lower than ∼ 1 MHz creates

other technical issue such as dealing with low frequency classical noises and thermo-refractive

noise); (b) increase the Q
meff

ratio of the oscillator4. In chapter 1, we showed that one the

striking and unusual features of our strained enhanced soft-clamped beams is that not only

they have increased the Q and Q × f , but also the Q/m of the oscillator (equations (1.131) and

(1.120)) is significantly enhanced with our methods. In fact, to the best of our knowledge, our

mechanical oscillators have the highest Q, Q × f and Q/m compare to any other mechanical

oscillator of any type and any size at room temperature. Due to enhanced Q × f and Q/m our

resonators compare to previous mechanical resonators, their integration with the previous

optomechanical architectures (such as integeration with optical miro-disk resonators [123]

or photonic crystal defect cavities[233]) would already significantly enhance their coopera-

tivity. However, in the next section we briefly present our ideas about a new architecture for

integration of these UHQ beams which offers much larger optomechanical coupling rate (g0).

4This is why we introduced Q/m as one of the two main figures of merit for our mechanical resonators in
chapter 1.
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In summary, the two fundamental challenges for observing the quantum effects of mechanical

oscillators reduces to satisfying these two conditions:

Conditions for ground state cooling

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q × f > kB T
h

ncavC0
n̄th

> 1

(3.9)

It is important to emphasize that the two conditions in equation (3.9) are independent and

both have to be satisfied simultaneously in order to achieve the regime where quantum

effects of the mechanical oscillators are observable. We showed the first condition is purely a

mechanical design. But in addition, having an ultra high Q mechanical resonator also helps

with the second condition if we can improve the Q/m. Therefore the two figures of merit for

our mechanical oscillators are Q × f and Q/m.

3.2 Proposed architecture for ultra high C0 optomechanical system

Near field vs far field

In this section, we briefly review our idea on a new architecture based on the near field

interaction between a cavity and an optomechanical system. But before we present our

architecture, lets briefly compare the near field and far fields approaches for detection of

mechanical motions via optical light. We start by a simple scenario of a non-resonant detection

where there are no resonant structure (cavity). Figure 3.1 shows the example of a canonical far

field detection scheme where a laser light is reflected of the mechanical object. In fact example

closely resemble our actually fiber intereferometery that we used in chapter 1 to characterize

our ultra high Q beams.

δx

δφ = 4πδx
λ

m

m

Figure 3.1 – Canonical example of a far field optical detection of motion. An optical beam is
reflected reflected from the mechanical resonator. When mechanical oscillator moves, the
laser light has to travel 2δx longer and during this process, it accumulates a phase of δφ= 4δx

λ

In this canonical far field technique to measure the motion of the mechanical resonator, the

physical optical path length is modulated by the motion of the mechanical oscillator (because

the light has to travel more (or less) distant depending on the position of the mechanical

resonator). Therefore, the phase shift that gets accumulated by the laser light as a function of
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3.2. Proposed architecture for ultra high C0 optomechanical system

the position of the mechanical resonator is given by:

δφfar = 4π
δx

λ
(3.10)

In an optical detection schematic the phase of the light is measured via for example a balanced

homodyne detector (or other phase detection schemes) to give us a measure of the mechanical

displacement. Now lets compare the sensitivity of the far field approach to a near field

approach. Figure 3.2 shows an example of a near field detection system where an optical

waveguide is placed at the proximity of a thin nano-beam. Unlike the far field approach, the

physical length of the doesn’t change because of the motion of the mechanical resonator.

Instead, the motion of the mechanical resonator in the evanescent field of the waveguide,

modulates the “effective index” of the waveguide. In order word, the effective index of the

mode is a function of the position of the beam, n(x).

Lwaveguide

δφ = 2π
λ

φ = 2π
λ

Wwaveguide= 700nm

twaveguide= 400nm

Wbeam= 400nm

tbeam= 20nm

δ

Figure 3.2 – An example of a near field optical detection of scheme with an optical waveg-
uide and a nano-beam mechanical resonator. In the near field detection scheme, a nano-
beam is (gray) is place in the evanescent field of the optical waveguide. A simulation of the
cross section (dashed line) of the waveguide-beam system is plotted on the right. The simula-
tion is performed at wavelength of λ= 1550 nm and the dimensions for the waveguide and
the beam are given in the figure.

The optical photons upon transmission through the waveguide-beams system, accumulate

the phase of φ= 2π
n(x)Lwaveguide

λ . Therefore the mechanical induced optical phase modulation

is given by:

φnear = 2π
n(x)Lwaveguide

λ
=⇒ δφnear = 2π

Lwaveguide

λ

dn

d x
(3.11)

Equation (3.11) already shows the strength of the near field approach to the far field approach.

We can indefinitely increase the sensitivity of the near field approach by increasing the length

of the waveguide. In addition, the optical refractive index is extremely sensitive to vibration of

the mechanical oscillator at the evanescent field of the waveguide (large dn
d x ). Figure 3.3 shows

an FEM simulation perform using COMSOL [187], to determine dn
d x for the given geometry in

the inset and wavelength of λ= 1550 nm. This simulated our the our of the plane mechanical

mode and the in-plane polarization of the waveguide. As we can see, for this particular

geometry, dn
d x is zero when beam is placed at the center of the waveguide. This is expected

because of the symmetry of the optical mode. However, an interesting observation (which is
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not obvious) is that dn
d x maximized when the beam is placed exactly at the top or the bottom of

the waveguide. We will revisit this fact in the next section as it has a significant impact in the

fabrication of our proposed architecture.

Figure 3.3 – FEM simulation of dn
d x for a waveguide-beam near field system illustrate in

figure 3.2. dn
d x as a function of vertical position of the beam with respect to the cen-

ter of the waveguide simulated for the wavelength of λ = 1550 nm. Inset: the cross
section of the waveguide-beam (red) system. The dimensions for this simulation are
wwaveguide = 700nm,twaveguide = 400nm,wbeam = 400nm,tbeam = 20nm,gap = 50nm.

In summary, the ratio between the ideal far field and near field sensitivity can be written as:

δφnear

δφfar
= Lwaveguide

2

dn

d x
(3.12)

For the example presented in 3.3, and Lwaveguide = 300 μm (This is roughly the same length as

defect length of our highest Q = 800×106 oscillator in chapter 1), δφnear

δφfar
≈ 5.5. This means that

the near field approach is ∼ 5.5 times more efficient that ideal case of the far field resonator. It

should be noted that the results simulated for in figure 3.3 is for the thinnest beam thickness (20

nm). We can further enhance the δφnear if increase the thickness of the mechanical resonator

(however we saw in equations (1.131) and (1.120) that increasing thickness of mechanical

oscillator would leads to reduction of Q/m and won’t be beneficial at the end.) Another

important note that we have to emphasize is that to derive equation (3.10), we assumed that

100% of the light is reflected back by the mechanical oscillator. However in reality, for a beam

with geometry presented in figure 3.3, we can only recover a small fraction of the transmitted

light 5 Therefore in reality, δφfar 
 4πδx
λ and the ratio between δφfar,δφnear is significantly

larger than 5.5. However it should be noted that the down side of this increased sensitivity

5This is because the width of the resonator is much smaller than the spot size and its extremely thin thickness
causes most of the light to pass through.
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3.2. Proposed architecture for ultra high C0 optomechanical system

is that not we have to fabricate a waveguide, in few 10s of nano-meter from the mechanical

oscillator. Depending on the geometry and the size of the system, this could be an incredibly

difficult engineering task.

Now that we have established the sensitivity of the near-field systems compared to far-field

systems in a simple non-resonant case, lets switch back the resonate case were a cavity is

responsible for interaction between optical and mechanical fields. However it should be

noted that the resonant and non-resonant optical detection schemes are not fundamentally

different. Figure 3.4 shows an example of the canonical Fabry–Pérot optomechanical cavity

(on the right) where one mirror is connected to a mass and spring which can oscillate. This

cavity optomechanics system however is not fundamentally significantly different from the

far field technique on the left. Placing the second mirror in front of the optical path, would

force the laser light to circulate in the cavity and each photon will interact multiple times with

cavity. The number of back is forth reflections that each photon experiences in the cavity is

determined by “optical finesse” (F )of the cavity 6. In other word, instead of sending F number

of photons to interact with the mechanical oscillator in the non-resonant case, we make every

photon interact F times with the mechanical oscillator in the resonant scenario. In summary,

a cavity only enhances the sensitivity my its F factor.

δx

δφ= 4πδx
λ

δx

m

m

δφ= 4πδx
λ

non-resonant detection resonant detection

m

m

Figure 3.4 – Canonical example of resonance vs non-resonant read out architecture. In a
resonant readout technique, by placing a second mirror in front of the optical path, we are
recirculating photons in the cavity and forcing them to interact with the mechanical oscillator
for F times. Therefore, a cavity enhances the sensitivity by the fineness of the cavity.

However, to adapt to the notation of the last section, its more coherent to the story if we look

at the frequency fluctuations of the cavity (G =−∂ω
∂x ) instead of the phase fluctuations ( dφ

d x ).

6It can be shown that optical finesse is given by:

F = ωc

ΔωFSR
= Qo

nmode
(3.13)

where ωc is the resonance frequency of the cavity, ΔωFSR. is the free spectral range of the cavity, Qo is the optical Q
of the cavity and nmode is the optical mode number of the cavity. It can also be shown that F is also equal to the
ratio of the circulating power in the cavity(Pcav) to the input power (Pin) when the light is on resonance with the
cavity:

F = πPcav

2Pin
(3.14)

Therefore, F is also commonly known as the power enhancement factor. In this case the cavity is regarded as an
element that locally store and enhances the power by F .
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5 m

Micro-toroid    C0~10-3 Membrane in the middle     C0~10-2

WGM near-field    C0~2 PnC near-field    C0~3

Foxonic Crystals     C0~0.1

Figure 3.5 – Literature review for most successful optomechanical systems and their cou-
pling mechanism. Coupling via moving boundary is the case where the physical length of
the cavity (L0) is modulated due to mechanical motion. Index modulation is the case where
the effective index (n) is modulated and the combined effect is when both are modulated. A)
Figure and Data taken from[215], B) Figure taken from [234] and data from[235], C) Figure and
data taken from [123], D) Figure and data taken from[232] E) Figure taken from [227] and data
from [167].

In the general case, the optical path in a cavity is given by Loptical-path = nL0 where L0 is the

physical length of the cavity and n is the refractive index of the material that cavity is made of.

In this case, the optical resonance of the cavity is given by:

ωc = cnmode

n(x)L0(x)
(3.15)

where c is the speed of light in vacuum and nmode is the mode number of the cavity as

nmodeλ= n(x) = L0(x). In the most general case, both refractive index and the physical length

can be modulated by motion of the mechanical oscillator. Figure 3.5 shows few examples of

the different OM systems where the coupling mechanism is either via modulation of physical

length of the cavity or refractive index, or both. It is worth noting that the near field (C,D)

systems (coupling via refractive index) have systematically much higher C0 that the moving
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boundary systems (A,B). This to some extend proof our previous argument that the near field

interaction is significantly stronger than the far-field techniques. However it is important to

emphasize that C0 is not the ultimate parameter. The fundamental parameter for quantum

optomechanics is ncavC0
n̄th

which was discussed in equation (3.9). Systems like micro-toroid or

membrane in the middle systems can compensate their weaker C0 by pumping more photons

in the cavity7. We can calculate the frequency puling factor from equation (3.15):

G =−∂ωc

∂x
= ωc

L0

∂L

∂x︸ ︷︷ ︸
coupling due to

moving boundaries

+ ωc

n

∂n

∂x︸ ︷︷ ︸
coupling due to

refractive index modulation

(3.16)

The first term in equation (3.16) represent the coupling mechanism such as (A) , (B) in figure 3.5

where the physical length of the cavity is modulated because of the motion of the mechanical

oscillator. We can show 8 that in these systems, 1 < α = ∂L
∂x < 2π. This type of coupling

closely resembles the far field detection scheme in 3.2. On the other hand, the second term in

equation 3.16 represents the near-field coupling mechanics such as (C) , (D) in figure 3.5 closely

resembles the scheme described in figure 3.2. There are systems such phoxonic crystals [239]

such (E) in figure 3.5 which take advantage of both coupling mechanisms. In these system, the

motion of high frequency defect mode, changes the physical length of the cavity. But also it

changes the refractive index of the silicon through the process of photo-elastic effect[193][240]

in the material. However these systems are not the subject of the discussion in the following

because it is difficult or impossible to scale the geometry of these crystal because of their

specific localized design.

Equation (3.16) already shows why near-field based optomechanical systems are significantly

more interactive that the far-field systems. In far-field type systems (such as toroids and

membrane in the middle) the optomechanical system reduces with the optical length of the

cavity (G ∝ 1
Lcavity

) therefore short cavities are favored in these systems. However, shortening

the length of the cavity reduces the mode volume (and therefore the maximum number of

photons can be pumped) and reduces the optical linewidth. On the other hand, in near field

systems, the optomechanical coupling is not a function of the length of the cavity. In fact

in these systems it is favored to work with longer cavities to increase to mode volume and

increase the linewidth. In fact systems such as (D) in figure 3.5 (near-field photonic crystals)

have too short cavities for no reason and that actually limits their performance because we

can not pump more than few 1000s of photons in these short cavities. In summary if we have

long enough cavities, near field systems will out perform the far-field systems by orders of

magnitudes. This simple fact is the core of our proposed ultra high C0 architecture.

Whispering gallery mode (WGM) based near-field systems have large cavities, but their fun-

7In membrane in the middle system we can pump up to N ∼ 108 photons in the cavity [235], micro-toroids up
to N ∼ 106 [215]. But for photonic crystal systems because of their extremely small mode volume, it is difficult to
pump more that few 1000 photon into the cavity before we reach the unset of the two photon absorption [167].

8For the breathing mode[236][237][238] of toroids, L(x) = 2π(R +x), thus α= 2π. For membrane in the middles,
L(x) = L0 +x, thus α= 1
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damental issue is that only a small portion of the cavity is interacting with the mechanical

oscillator (because of their natural geometry). Therefore by increasing the radius of cavity,

actually the percentage of interacting length reduces and results in G ∝ 1
Lcavity

scaling. We can

derive this scaling by some back of envelope calculation. We can write the average index of

the disk resonator as:

navg = nniLni +ni(x)Li

Ldisk
=⇒ ∂navg

∂x
= ∂ni

∂x
× Li

Ldisk
(3.17)

where nni,Lni are the refractive index and the length of the “non-interactive” region of the

cavity (yellow region if figure 3.6.A) and ni(x),Liare the refractive index and the length of

the “interactive” part of the optical micro-disk (the region under the beam.) and Ldisk =
Li +Lni = 2πR. It can be shown [122] that the interactive part of the beam is almost constant

and accounts for less than 5% of the circumference of a micro-disk with typical radius of

∼ 15−20μm. This percentage actually reduces as we move to larger disks. Therefore in these

systems, G ∝ 1
Ldisk

. This issue is illustrated in figure 3.6.

Most of the cavity (>95%) does 
not interact with the beam

The solution is open-up 
the resonator into a linear 
resonator so all of the 
cavity interact with the beam 

The cavities are too short 
for no reason 

The solution is make the
cavity longer by extending
the distance between the
PC mirorrs

A

B

Figure 3.6 – Fundamental issues with state of the art near-field optomechanical systems. A)
In WGM based near field optomechanical systems, the fundamental issue is that most of the
cavity (yellow) does not interact with the mechanical resonator. Therefore these system can
not enjoy the favorable scaling by fabricating longer cavities. The solution is to open up the
WGM resonator and make is a linear waveguide (yellow line). In this case, the entire length
of the cavity interacts with the mechanical beam. We can form a cavity in this scenario by
placing photonic crystal (PC) mirrors at each end of the waveguide. B) The fundamental
problem of near filed optomechanics system with PC defect mode cavities is that the cavity is
too short for no reason. Unlike the far-field systems, having shorted cavities does not increase
the optomechanical coupling according to equation (3.16). Because of the their short cavities,
the number of the photons we can pump into these systems are very limited which ultimately
limits the performance of these systems. On the other hand, silicon is not the best choice of
material for the mechanical oscillator as it does not have large intrinsic stress and enjoys the
dissipation dilution enhancement.
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In equation (3.16) we established that the near field systems are significantly more interactive

that the far field systems. If we look at the ratio of the two terms in equation (3.16) we observe:

Gnear-field

Gfar-field
= ∂n

∂x
· α

n
L0 (3.18)

where α= ∂L
∂x is a small constant number. Equation (3.18) shows that if we use long cavities,

near-field systems can out perform the far-field systems. In addition, in figure 3.3 we show

that the sensitivity of refractive index to the mechanical motion is extremely high and could

lead to very large interaction strength.

Next we reviewed the two most well known near field optomechanical system in the liter-

ature: WGM based near field systems and photonic crystal (PC) based. We observed that

unfortunately both of these system have fundamental design flaws that let them to take full

advantage of scaling in equation (3.18). This is summarized in figure 3.6. In WGM near-field

optomechanical systems, because of the inherent symmetry difference between the beam and

the disk, the overlap of the two system is only a fraction of each system’s length. That prevents

the system to enjoy favorable scaling of G by going to larger cavities. In PC based systems,

because of the design of the defect cavities, the optical cavity is too short. In contrast to

far-field systems, near-field systems do not benefit from shorter cavities. Shortening the cavity

in this case, only reduces the mode volume and therefore the number of the photons that

could be pumped into the cavity. It also could lead to lower quality factors if the limiting factor

for optical Q is the scattering at the PC mirrors. Another disadvantage of systems presented

in figure 3.5.D is that silicon is used for both optical and mechanical resonator. Although

crystalline silicon is an excellent optical material, but because it does not have large intrinsic

tensile stress, we can not apply the dissipation dilution techniques to increase its quality factor.

Therefore, for room temperature quantum optomechanical system, it is best if we use a hybrid

structure in which we can take advantages of the both worlds.

In the next section we present our architecture for future quantum optomechanical exper-

iments at room temperature. In this system we try to take advantage of our ultra high Q

mechanical oscillators but also by redesigning the optical near-field system, we achieve un-

precedented performance compare to any optomechanical system in the past. We will observe

that our proposed system is not only quantum enabled at room temperature Q × f � kB T
h

tanks to our UHQ resonators, but offer single photon cooprativity of C0×104−105. In addition,

the cavities we used in this system are relativly large and could possible host 100,000 of photon

without running into nonlinearities or optical heating effects.
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3.3 Quantum enabled ultra high C0 optomechanical system

The architecture we are proposing is shockingly simple and very similar to the most canonical

case of near-field system illustrated in figure 3.2. It consist of the interaction between to

straight waveguides. Figure 3.7 shows the 3D rendering of our proposed geometry.

The mechanical element in this optomechanical system consist of a strained enhanced soft-

clamped beam (green) designed to operate at its second mode of the defect. Also we have

anchored the center of the beam in order to make it mechanically stable and allow for inte-

gration of an optical cavity at its few 100 nano-meter proximity without the risk of collapsing.

The cavity is made of 20 nm high stress Si3N4 layer, and could have the length between 3-7

mm (depending on fabrication difficulties. The longer the beam is, the higher its Q × f and

Q/m will be. But it also become more challenging to fabricate). In chapter1 have already

show the preliminary results on the mechanical Q of these anchored beams. Without further

optimization, we have already tested beams with similar dimensions and Q ∼ 150 million at

Ωm/2π∼ 1 MHz.

The interesting part about this system is its, optical cavity and its optical design (red). As we

discussed in previous section, our design for the optical cavity is incredibly simple. The optical

cavity consist of only a straight waveguide placed few hundred nano-meter from the defect

of the mechanical resonator. It has almost the same length of the defect mode (half of the

physical length of the defect as we work with second order defect mode.). To form a cavity,

two optical cavity, we placed two photonic crystal brag mirror reflectors on each end of the

optical waveguide, creating essentially a “Fabry–Pérot on waveguide” micro cavity. The cavity

is also fabricated from a 400nm high stress Si3N4 with the width of the 700nm and designed

to operates at wavelength of λ = 1550 nm. Si3N4 is also used for optical cavity as it offers

extremely low optical losses [203], and relatively high refractive index in order to generate

wide photonic bandgap[242][243]. The motion of the mechanical beam in the evanescent

field of the optical cavity, modulates the effective refractive index of the optical mode and

thus couples the two system. Near 100% overlap of optical field and mechanical field, leads

to a strong optomechanical coupling rate, g0. between the two degrees on freedom. This

combined with the extreme quality factor and small mass of the mechanical oscillator, leads

to an unprecedented single photon cooperativity in the range of C0 ∼ 104 −105.

The optical light is evanescently coupled to the cavity via an optical waveguide with similar

dimensions [244]. A tapered fiber also could be used to couple couple light in/out of the

cavity[245]. However, based on our previous experience regarding the vibrations of the optical

fiber in the experiment, we designed this system with stable and stiff optical waveguide

solution. The disadvantage is that we loose the control over the coupling strength and that

parameter will be fixed during fabrication but we gained stability in the system . The coupling

waveguide is place about ∼ 1μm from the cavity to reach critical coupling condition. The light

is coupled in and out of the cavity using a negative tapered design [241]. The negative tapered

design matches the impedance of the waveguide to the free space mode of the lensed fiber.
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Figure 3.7 – 3D rendering of ultra high C0 optomechanical system. Mechanical element
(green) is consist of a strained enhanced soft-clamped beam with the length of 4-8 mm and
thickness of 20 nm fabricated from high stress Si3N4. In chapter 1 we demonstrate Q ∼ 109,
Q × g ∼ 1015 Hz for the beams with similar dimensions. Here we used 2nd order defect mode
with thin anchored at the center of the beam to allow for near field integration without the risk
of collapsing the beams and waveguide. The optical element (red) consist of a waveguide with
the sample length of the central defect, placed ∼ 100nm from the beam. The optical cavity is
form by placing two photonic crystal mirrors at the two ends, forming a Fabry–Pérot cavity
on the waveguide. The mechanical beam in the evanescent tail of the optical mode of the
waveguide, provide a strong optomechanical coupling between the optical and mechanical
mode. The near 100% overlap of the two fields, ensures a high coupling rate, g0. The cavity is
pumped evanescently using an optical waveguide of the similar dimensions. The optical light
is efficiently coupled from a lensed fiber into the optical waveguide via an inverse-tapered
design at the end of the waveguide[241]. The optical cavity and its coupling waveguide are
made of 400 nm thick Si3N4 layer and have the width of 700 nm. The central part of the
waveguide is slightly tapered to allow larger evanescent field on the beam. The designed
is optimized for 1550 nm. (the figures are not to scale and are horizontally scratched for
perspective.)
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In the following we will briefly review few important aspects and preliminary results on the key

points of the project and will conclude with a road map for future generation of the students

who are interested in implementing this system:

Dimensions of the optical cavity:

The first step of the design, is to select the cross-sectional dimensions of the waveguide. For

this designed we only work with horizontal (in-plane) polarization of the light in the waveguide.

This is because our simulations showed significantly larger g0 for this polarization when it

is coupled to the out of plane mode of the mechanical resonator. The two main criteria for

this selection of cross-sectional dimension of the waveguide is I) Waveguide has to stay single

mode (at least for the in-plane polarization). This is because photonic crystal mirrors are

single mode mirrors and only reflect one mode of the waveguide. II) The waveguide has to

allow for high refractive index contrast between the holes and the filled regions of the crystal.

For the first step of the design, we simulate the mode profile of different cross sections. An

example these simulation is illustrated in figure 3.8. These simulations where performed using

COMSOL mode analysis package. In figure 3.8 we sweep the width of the waveguide while

fixing its thickness. The material refractive index of Si3N4 was set at nSi3N4 = 2 and simulation

were performed at the optical wavelength of 1550nm.

Figure 3.8 – Waveguide mode simulation at 1550 nm. Modes below n = 1 (dashed line) are
not propagative. Inset show the dimensions of the waveguide. The intensity mode shaped
are plotted for the three propagative modes. A 400 nm Si3N4 is single mode for its in-plane
polarization until the width ∼ 800 nm.

Many similar simulations were performed where we varied the thickness of the waveguide

and look a the width that the waveguide is still single mode. Then we have look at the highest
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index that can be achieved while the waveguide is still single mode. For example in 3.8, the

highest single mode effective index is nmax ∼ 1.5. When we drill holes, we alternate between

this index and n ∼ 1. Therefore, the larger the index contrast would be, the larger our bandgap

can become. We choose dimensions of 400 nm and 700 nm for the thickness and width of the

waveguide at the end of this optimization run.

Simulation of g0

One we choose the dimensions for the cross section of the waveguide, we can simulate the

expected g0 and C0 for the system presented in figure 3.7. To calculate g0, first we need to

calculate frequency pulling parameter, G . For this we can use the second term in equation

equation (3.16) as ∂L
∂x = 0 in out system.

G = ωc

n

∂n

∂x
(3.19)

To calculate G , we need to simulate ∂n
∂x . For this stimulation we again used COMSOL mode

analysis package where we sweep the vertical position of the beam and calculate the effective

index of the mode. ∂n
∂x is then calculated by numerical derivative of n(x). An example of

simulations for ∂n
∂x is presented in figure 3.3. To calculate g0 we need to know the zero point

motion of the oscillator. In chapter 1 we calculate the effective mass of the localized modes at

Ωm/2π∼ 1 MHz with the width of 500 nm to be:

meff(wbeam = 500nm) ≈ 15.1 pg
Ωm /2π=1 MHz−−−−−−−−→ xzpm =

√
�

2meffΩm
≈ 140 fm (3.20)

An interesting fact about the zero motion of 1D objects is that it is a frequency independent

parameter. Because in 1D systems, Ω ∝ 1/L , meff ∝ L, thus their product is frequency

independent. The zero point motion of the beam, is only a function of the width and the

thickness of the beam. Because of the mechanical properties of the beam, we have set the

thickness to the thinnest that we can fabricate. However, width is a degree of freedom that

we can optimize by choosing the width that maximizes g0 (the mechanical performance is

independent of the width of the beam). But before we optimize the width, lets look at the

simulation for g0.

g0 as a function of the vertical position of the beam, will follow the same curve as ∂n
∂x illustrated

in figure 3.3. A fortunate non-obvious coincident about the in-plane polarization is that the

maximum of g0 happens when the beam is fabricated either at the bottom or on the top of the

beam. This makes the fabrication of the system significantly easier: First a layer of 20 nm for

beams can be patterned and etched, then a second layer of 400 nm Si3N4 can be deposited on

top where we pattern the optical layer (cavity and its waveguide). We will revisit the proposed

fabrication process at the end of this section.

Figure 3.9 shows the calculated g0 as the function of the gap between the mechanical resonator

153



Chapter 3. Outlook

Figure 3.9 – Simulation of g0 versus the gap between the waveguide and the mechanical
resonator. g0 follows an exponential trend when we increase the gap. This suggests that the
evanescent field of the waveguide drops exponentially in the air. Parameters for this simula-
tion: wwaveguide = 700nm,twaveguide = 400nm, wbeam = 500nm ,tbeam = 20nm , tbeam = 200nm
(means that the beam is placed at the bottom of the cavity.)

and the cavity. The gap is an important engineering parameter in our near-field system and

really the main draw back of the near field systems. As we can see in figure 3.9, the coupling rate

(g0) is an exponential function of the gap. If we could fabricate smaller gaps, we exponentially

improve the performance of the system and if we have to back off from the small gaps (because

of issues such as collapsing), we exponentially worsen the performance of the system. For this

simulation, we first sweep the vertical position to calculate ∂n
∂x and then we repeat this process

for different gaps.

Another important observation from 3.9 is the indescribably high absolute values for g0 which

is on par with the best optomechanical systems in the world [167]. But before we calculate C0

from these values, lets not forget that our dimensions are not yet optimum and there might be

a room for improvement. So far, we have chosen the width and thickness of the waveguide,

the vertical position is also set at the bottom of the wave guide, the thickness of the beam is set

to 20nm (the thinnest we can fabricate) to determine the mechanical properties of the beam

(namely its quality factor). Also figure 3.9 shows that the gap should be as small as we can

fabricate. The only remaining degree of freedom is the width of the resonator. In chapter 1 we

should that the quality factor of the beam is independent of its width. But we can change the

effective mass by tuning the width of the resonator. In one hand, the larger width, increase

G as larger mass falls in the evanescent field of the cavity. However, this process saturates as

the evanescent fields drops exponentially outside of the waveguide. On the other hand, larger
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width results in larger mass and smaller zero point motion. Therefore, we predict that there is

an optimum position which g0 maximizes as the function of width of the resonator.

Figure 3.10 – Optimization of the width of the mechanical oscillator.In this simulation, we
varied the width of the beam (wbeam = 100 nm) at a fixed gap=50 nm. The g0 maximizes at
the width of wbeam ≈ 150 nm with the maximum g0/2π≈ 450 KHz. The rest of dimensions are
similar to figure 3.9.

In figure 3.10 we try to simulate this effect. What we observe conform our hypothesis. g0

maximizes at the width of wbeam ≈ 150 nm with the maximum g0/2π≈ 450 KHz. By finding

the width of the beam, we select all the cross sectional values of the system. The only remain-

ing design parameter are the photonic crystals to determine the optical quality factor. But

before we present the design for the photonic crystal mirrors, lets calculate the single photon

cooperativity of this system. The only unknown parameter for us is the optical linewidth. For

this we can use the experimental values for the similar geometry that was studied by other

groups [246] and achieved κ/2π∼ 1.2 GHz. For our estimation, we will even use lower value of

κ/2π∼ 4 GHz.

g0/2π= 450 kHz

Γm/2π= Ωm/2π

Q
= 106 Hz

100×106 = 10 mHz

κ/2π= 4 GHz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=⇒ C0 =
4g 2

0

κΓm
≈ 2×104 (3.21)

This value is 4 orders of magnitude larger than the previous generation of optomechanical

systems presented in figure 3.5. For completion of this section, let calculate how many intra-

cavity photons we need to reach the ground state at room temperature. For a Ωm/2π= 1 MHz

oscillator, the thermal occupation is :
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n̄th = kB T

�Ωm
= 6.2×106 =⇒ CGS

cav ≈ 300 (3.22)

It means we only need 300 intra-cavity photons to cool this system from room temperature all

the way down to is motional ground state. In other words, a factor 6.2 million times cooling by

only 300 circulating photons!

With this results, the long standing dream of quantum optomechanics at room temperature is

within a reach. However integrating these near field devices are still a technical challenge.

Design of the photonic crystal bandgaps:

The last part of designing this optomechanical system is the design of its optical path, mainly

the photonic crystal mirrors and the coupling waveguide. For a photonic crystal we normally

have 3 degree of freedom. The length of the pitch and dimensions of the elliptical holes (see

inset of figure 3.11). Discussing the details of optimization of the bandgap and geometry of

unitcell is beyond the scope of this outlook chapter. But in figure 3.11 we can find an example

of such 20 THz wide bandgap. It is important that we try to optimize for larger band-gaps at

lower kx vectors.

Lpitch

D
la

rg
e

Dsmall

Figure 3.11 – Example of Si3N4 photonic bandgap. An example of elliptical unit cell pho-
tonic crystal bandgap. Dimension for this simulation are Lpitch = 700nm,Dlarge = 220nm,
Dsmall = 400nm ,wwaveguide = 700nm,twaveguide = 400nm . Gray area show Δω/2π ≈ 20 ThHz
bandgap centered at 1639 nm for in-plane polarization (blue).

Once the design of the band-gap is completed, we can check the reflectivity of the photonic

crystal mirror by performing S parameter simulation. Figure 3.12 shows the example of the

geometry to measure the reflectivity of the mirrors. We performed this simulation in using
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HFSS -Ansys FEM[247] simulator. For this simulation we lunch electromagnetic waves from

one port and look at its reflection and transmission and we repeat the process for the other

port. In this way we can calculate the reflection from each side (S11,S22).

s11 s22

Figure 3.12 – Simulation setup to measure the reflectivity of PC mirrors. We perform reflec-
tion measurement using FEM simulations by la unching wave at 1550 nm wavelength and
observing the reflections from each port, (S-parameters).

In the design of the mirrors, we created a tapered region where the size of the unitcells slowly

increases as we penetrate into the PC. This creates an impedance matching condition between

the waveguide and the PC region. Figure 3.13 shows the difference between the two situations.

Red curve (S22), represents the case where we transit suddenly from the waveguide into the PC

mirror region. Since the impedance of the optical waves are different in these two media, such

a sharp impedance mismatch creates scattering the border of the two regions. Therefore the

reflection of the red curve doesn’t approach to 1. But the blue curve S11 represents the case

where there is taper PC design to creates a smooth transition from the waveguide medium to

the PC medium. Such a tapered structure acts as a phase matching connector between the

two media where the impedance of the wave planes slowly change so they always remained

matched. The longer this transition becomes, the less scattering losses we observe in this

transition. We simulate this effect in the inset of figure 3.13 where we increase the number of

tapered unitcell from 7 to 15 and then to 30. We plotted the optical finesse of the cavity that is

formed by two PC mirrors. Finesse is given by:

F = 1

1− r1r2
(3.23)

where r1 and r2 are the reflectivities of the two mirrors. Here r1 = r2 = S11. Therefore the

parameter plotted in the inset of figure 3.13 is F = 1
1−S2

11
. In figure 3.13 we can achieve

finesses as high as F = 2500. For a cavity with the length of Lcav ∼ 300μm and neff ∼ 1.5, the

corresponding Fabry–Pérot optical Q assuming that the material losses are negligible is given

by:
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Figure 3.13 – Reflection simulations for the geometry in figure 3.12. Red shows the reflec-
tion from the side without the phase matching tapering. Without this smooth transition, a
lot of scattering is created at the transition from the waveguide to PC region and reflectivity
does not approach to 1. Blue shows the case with the tapering structure where a smooth
transition from wavegudie to PC region is created and waveplanes remains impedance match.
With this tapering strategy, the reflectivity approaches to 1 at the center of the bandgap.
Inset shows the optical finesse as the function of number of tapered unitcells. We can
achieve finesses as high few thousands with this mirror design. The simulated parameters are
Lpitch = 700nm,Dlarge = 540nm, Dsmall = 420nm ,wwaveguide = 700nm,twaveguide = 400nm

QFabry–Pérot
o =F Lcav

neffλ
≈ 3.3×105 =⇒ κ/2π≈ 600MHz (3.24)

This is a factor of 6, smaller than the κ we used to estimate the lower bound for equation (3.21).

The last topic that we are going to discuss in this section is the simulation of the input/output

coupling between the coupling waveguide and the cavity. Figure 3.14 shows an example of

input/output coupling simulation between the waveguide and the cavity. In this simulation

we used HFSS -Ansys FEM simulation software to simulate the S12. In simulations presented in

figure 3.14, we lunch waves at the wavelength of 1550 nm at the bent waveguide and monitors

its transmission through the second port at the end of the straight waveguide (cavity). By

changing the gap between the two waveguide we can change the external coupling rate. By

knowing the intrinsic losses in the cavity κ0 we can convert the S12 coefficient to the external

coupling rates κex [128].

However, since the losses and κ0 are still unknown to us, we recommend to the first imple-

mentations of this system, the gap between the two waveguide swept experimentally.
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Figure 3.14 – Example of the FEM input/output simulation. To simulate the coupling rate
between the waveguide and the cavity, a wave is lunched from the curved waveguide and its
transmission through the second waveguide is monitors S12. The mechanism of coupling is
that the evanescent tails of the mode in the waveguide overlaps with the evanescent tails of
the modes in the cavity and an energy transfer bridge is created between the two waveguide.
We can change the coupling rate by changing the distance between the coupling waveguide
and the cavity.

Proposed fabrication process flow for integration

Figure 3.15 shows the simplified process flow for the integration of the waveguide cavity and

UHQ beams. Process starts with LPCVD deposition of the 20 nm high stress Si3N4 to form

the beam layer (1). Then step (2) we pattern the mechanical beams using ebeam lithography

by using HSQ as the resist. Beams are etched in step (3). We have to control the etching

parameters in this step to exactly land on the silicon substrate followed by stripping the HSQ

in BHF. In this step a 10 nm Al2O3 later (light blue) is deposited using atomic layer deposition

on top of the beam to form an etch stop layer between the two nitride layers (step 4) . Then

the second Si3N4 layer is deposited on top using LPCVD deposition (green) with the thickness

of 400 nm .This will be our optical layer where optical cavity and its coupling waveguide

is pattern using ebeam lithography (step 6). Alignment between the two mechanical and

optical masks are the key in this to achieve small gaps. Then the optics layer is etched via
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Figure 3.15 – Proposed process flow for integration of beam and waveguide cavity .

the Florine chemistry until we land on the Al2O3 layer (step 8). The rest of the process from

step 9 to step 12 are similar to fabrication of ultra high Q beams. First an upscaled version of
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3.3. Quantum enabled ultra high C0 optomechanical system

the masked is patterned into a think resist layer and the pattern is then etched deep into the

silicon substrate using Bosch process to expose the fast silicon etching faces for KOH undercut

step. The upscaled masked is striped in BHF before the KOH (step 11). Finally the samples are

released in KOH bath and dried using critical point drier.

We recommend that in the first phase of the implementation, the performance of the cavities

and the coupling mechanism is first tested independently. Only when all the aspect of the op-

tical subsystem is fully understood, then we propose to move forward with the full integration

of both subsystems. In this regard, I would like to finish this chapter by showing few samples

of the waveguide Fabry–Pérot cavities recently fabricate at EPFL as the starting point for the

integration:

2 m

2 m

2 m

10 m

Figure 3.16 – SEM image of few recently fabricated waveguide Fabry–Pérot cavities.
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A.I Appendix I : Theoretical derivations

A.I.1 Classical simple harmonic oscillator

In this section, we analytically analyze a classical simple harmonic oscillator1 and drive the

solutions for its equations of motion in the time domain (ring-down equation) as well as

the frequency domain (mechanical susceptibility), in the most general condition. Next, we

discuss the high quality factor regime where Ωm � Γm , in which the mechanical susceptibility

approaches to a Lorentzian line shape near the resonance frequency. At the end of this section,

we review the effects of frequency dependent damping rate, Γm(Ω), and review different

mechanisms of damping such as structural damping versus viscous damping and study their

effect on the far off-resonance tails of the mechanical susceptibility.

Eq. (A.I.1) shows the equation of the motion for a classical simple harmonic oscillator.

ẍ +Γm ẋ +Ω2
m x2 = Fext

meff
(A.I.1)

where Γm is the energy damping rate and Ωm is the natural resonance frequency of mechani-

cal oscillator, both expressed in angular units [rad/s], and Fext is the external force applied on

the mechanical oscillator. Effective mass (meff) however, has a more complex and ambiguous

definition. It is defined together with the amplitude of the x(t ) based on the potential energy

of the oscillator, U (t) = 1
2 meffΩ

2
m x(t)2. For example, in the canonical mass and mass-less

spring illustrated in figure A.I.1, the effective mass is equal to the physical mass of the object,

meff = m.

Equation (A.I.1) models any linear resonator, whether if it is a distributed object like a beam

1 In this thesis, a classical oscillator is considered an oscillator where its equation of motion is described by
Newton’s second law of mechanics, Eq. (A.I.1); In contrast, a quantum oscillator is an oscillator where its dynamics
is governed by Schrodinger’s equation:

i�
∂

∂t
|Ψ(x, t )〉 = Ĥ |Φ(x, t )〉
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δx

k

m

m
Ωm =

√
k
m

δφ= 4πδx
λ

Figure A.I.1 – A canonical example of a mass (mirror) and spring with resonance frequency of
Ωm where the motion of the mechanical oscillator causes a phase shift in the optical laser light
with wavelength of λ, shined on the mechanical oscillator. Detecting of the phase fluctuations
of reflected light, gives us a measure of mechanical displacement.

or a membrane, or a point shape object like the example in Fig. A.I.1. It can be shown that the

effective mass of a doubly clamped beam is roughly equal to the half of beam’s physical mass,

if the amplitude of the middle part of the beam is chosen for x(t). Therefore, for all intense

and purposes, by understanding equation (A.I.1) can understand many aspects of physics

governing the high Q resonators:

Mechanical susceptibility :

One of the easiest methods to solve the equation (A.I.1) is to solve it in the frequency domain

by taking a Fourier transform from both side of the equation and transform the differential

equations to algebraic equations:

−Ω2x(Ω)+ iΓmΩx(Ω)+Ω2
m x(Ω) = Fext

meff
(A.I.2)

⇒χ(Ω) = x(Ω)

Fext(Ω)
= 1/meff

(Ω2
m −Ω2)+ iΩΓm

(A.I.3)

where χ(Ω) is the susceptibility of the mechanical oscillator and x(Ω), Fext(Ω) are the Fourier

transforms of the displacement and external force respectively, according to our definition in

section A.I.1:

x(Ω) =F
(
x(t )

)
=
∫∞

−∞
x(t )e−iΩt d t (A.I.4)

Fext(Ω) =F
(
Fext(t )

)
=
∫∞

−∞
Fext(t )e−iΩt d t (A.I.5)

Figure A.I.2 show the spectral density of mechanical susceptibility, Sχχ(Ω) =
∣∣∣χ(Ω)

∣∣∣2 (according

to our definition of spectral density in section A.I.1) for different mechanical quality factors

where the quality factor is defined as:

Qm ≡ Ωm

Γm
(A.I.6)
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Figure A.I.2 – Spectral density, Sχχ(Ω) =
∣∣∣χ(Ω)

∣∣∣2 of the mechanical susceptibility in the viscous

damping regime where Γm = Const. displayed for different quality factors.

It should be noted that until now, we assumed Γm is a constant value with no frequency

dependency. This type of damping is known as “viscous damping” where the damping force is

proportional to the velocity of the object, Fdamping =−meffΓm ẋ. The constant damping rate

can be used to model loss mechanisms such as gas damping [248],[15] but it is shown [108] that

it fails to accurately models other damping mechanisms such internal losses (usually caused

by friction). Internal losses of a mechanical oscillators is found to obey a more complicated

equation where a frequency dependent damping term Γm → Γ(Ω) is required to accurately fit

the observed mechanical spectrum in the experiments[39]. We will discuss this point at the

end of this section and will describe alternative models such “structural damping” [249] that

can properly model the internal losses. We will illustrate the effect of frequency dependent

damping rate, Γ(Ω), on the off-resonance tails of the mechanical susceptibility.

Impulse response :

In the next step, we look at the time domain response of the equation (A.I.1) . In order to

properly calculate the time domain response, we have to know the spectrum of the applied

external force, Fext(Ω). However without loosing the generality, we can can calculate the
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“impulse response” of the simple harmonic oscillator2. where:

Fimpulse(t ) =ΔPδ(t ) (A.I.10)

we will observe in the following that a delta Dirac excitation with amplitude of ΔP will transfer

momentum of ΔP to the oscillator at t = 0. Another advantage of studying the impulse

response is that the Fourier transform of the of the delta function is a constant, F
(
δ(t )

)
= 1.3

This simplifies the the frequency response of x(Ω):

ximp(Ω) =ΔPχ(Ω) = ΔP/meff

(Ω2
m −Ω2)+ iΩΓm

(A.I.12)

to calculate the time domain impulse response we need to calculate the inverse Fourier

transform of ximp(Ω):

ximp(t ) =F−1
(
ximp(Ω)

)
= 1

2π

∫∞

−∞
ΔP/meff

(Ω2
m −Ω2)+ iΩΓm

eiΩt dΩ (A.I.13)

calculating the integral in the equation (A.I.13) is a difficult task. Instead we try to simplify

the eq. (A.I.12) and use the Fourier transform of some standard functions with knows reverse

Fourier transform:

ximp(Ω) = ΔP/meff

(Ω2
m −Ω2)+ iΩΓm

= ΔP/meff

Ω2
m −

(Γm

2

)2

︸ ︷︷ ︸
Ω̃2

m

+
(Γm

2

)2 + iΩΓm −Ω2

︸ ︷︷ ︸(
Γm

2 +iΩ
)2

(A.I.14)

= ΔP/meff(Γm
2 + iΩ

)2 + Ω̃2
m

= ΔP

2Ω̃mmeff

[
i

Γm + i (Ω+ Ω̃m)
− i

Γm + i (Ω− Ω̃m)

]
(A.I.15)

2 By knowing the impulse response, Ximp(t) = Ô[δ(t)
]
, of a linear differential equation, Ô[F (t)

]
, we can

calculate the response of the system to any external fores by as shown in the following:

Fext(t ) =
∫∞

−∞
Fext(τ)δ(t −τ)dτ (A.I.7)

The response of the Ô[Fext(t )
]

is the “convolution” of the external force and impulse response of the system:

x(t ) = Ô[Fext(t )
]=∫∞

−∞
Fext(τ)O[δ(t −τ)

]
dτ=

∫∞

−∞
Fext(τ)Ximp(t −τ)dτ= Fext �Ximp (A.I.8)

where � is operator for convolution and is defined as:

f � g =
∫∞

−∞
f (τ)g (t −τ)dτ (A.I.9)

3 This can prove by writing down the Fourier transform equation:

F
(
δ(t )

)
=
∫∞

−∞
δ(t )e−iΩt d t = e−iΩ×0 = 1 (A.I.11)
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it is now much simpler to take the reverse Fourier transform of the last two terms of the

equation (A.I.15) as we know the Fourier transform of a function in this form4. Based on the

equation (A.I.18), the reverse Fourier transform the last two terms of eq. (A.I.15) can be written

as:

F−1
( i

Γm + i (Ω+ Ω̃m)

)
= i e

−Γm
2 t e−iΩ̃m t u(t ) (A.I.19)

F−1
( i

Γm + i (Ω− Ω̃m)

)
= i e

−Γm
2 t eiΩ̃m t u(t ) (A.I.20)

Using eq.(A.I.19) and (A.I.20), and converting the polar form of the complex numbers to their

rectangular form5 we can calculate the time domain impulse response:

ximp(t ) =F−1
(
ximp(Ω)

)
= ΔP

2Ω̃mmeff

[
i e

−Γm
2 t e−iΩ̃m t u(t )− i e

−Γm
2 t eiΩ̃m t u(t )

]
(A.I.22)

= ΔP

2Ω̃mmeff
e

−Γm
2 t
[

i e−iΩ̃m t − i eiΩ̃m t︸ ︷︷ ︸
2sin(Ω̃t)

]
u(t ) (A.I.23)

therefore ximp(t ) simplifies to:

ximp(t ) = ΔP

Ω̃mmeff
e

−Γm
2 t sin

(
Ω̃m t

)
u(t ) , Ω̃m =

√
Ω2

m −
(Γm

2

)2
(A.I.24)

Figure A.I.3 illustrates the time domain impulse reposes a simple harmonic oscillator. We can

see that the delta force gives the oscillator a kick at t = 0 and but the oscillation amplitude

damps with the damping rate of Γm/2 as the time passes (illustrated with the dashed lines as

the envelope in Figure A.I.3 ).

4 To calculate the reverse Fourier transform of eq. (A.I.15) we need the two following Fourier transforms:

1. First the Fourier transform of a decaying exponential:

g (t ) = e−at u(t ) −→ ĝ (Ω) =F
(
g (t )

)
= 1

a + iΩ
(A.I.16)

where u(t ) is the step function with the following definition:

u(t ) =
{

1 if n ≥ 1

0 if n < 0
(A.I.17)

2. Frequency shift in Fourier domain:

g (t ) = eiΩ′t f (t ) −→ ĝ (Ω) =F
(
g (t )

)
= f̂ (Ω−Ω′) (A.I.18)

5 Any complex number, C can be written as the following:

C = Aeiθ = A cos(θ)+ i A sin(θ) (A.I.21)

167



Appendix A.I. Appendix I : Theoretical derivations

x(t) = P

m meff

e
- m

2 t Sin(˜m t) u(t)

e
- m

2 t
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Impulse force, F(t)= p (t)

Figure A.I.3 – Impulse response of a simple harmonic oscillator with Q = 20. Dashed green
lines show the exponential decaying envelope of the damped oscillation. Inset shows the delta
Dirac impulse force applied at t = 0 to the oscillator.

High Q regime and Lorentzian lineshape :

Before going any deeper into the physics of the damped simple harmonic oscillators, it is

insightful to study at the high Q regime where Qm � 1 ⇒Ωm � Γm . This regime is the most

relevant for the mechanical oscillators discussed in this thesis where we can greatly simplify

the time domain solutions as well as the mechanical susceptibility (figure A.I.2) especially

its resonance frequency. First we simplify the power spectral density of the mechanical

susceptibility near its resonance frequency using our derivation in equation (A.I.14):

χ(Ω) = 1/meff

(Ω2
m −Ω2)+ iΩΓm

= 1

meff
× 1

Γm + i (Ω+ Ω̃m)
× 1

Γm + i (Ω− Ω̃m)
(A.I.25)

Sχχ(Ω) =
∣∣∣χ(Ω)

∣∣∣2 = 1

m2
eff

× 1

|Γm + i (Ω+ Ω̃m)|2 × 1

|Γm + i (Ω− Ω̃m)|2 (A.I.26)

where Ω̃m =
√
Ω2

m −
(
Γm
2

)2
. Near the resonance frequency, Ω∼Ωm we can use the following

simplifications:

Ω∼Ωm , Ωm � Γm =⇒
⎧⎨
⎩Ω̃m −→Ωm

|Γm + i (Ω+ Ω̃m)|2 −→ 4Ω2
m

(A.I.27)

with this assumptions, we can simplify the power spectral density to:

Sχχ(Ω) =
∣∣∣χ(Ω)

∣∣∣2 = 1

4m2
effΩ

2
m

× 1

(Ω−Ωm)2 +Γ2
m

= π

2m2
effΩ

2
m
L(Ω−Ωm ,Γm) (A.I.28)
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where L(Ω,Γ) is known as “Lorentzian lineshape" and defined as the following:

L(Ω,Γ) = Γ/2π

(Ω)2 + (Γ/2)2 (A.I.29)

in which: ∫∞

−∞
L(Ω,Γ)dΩ= 1 (A.I.30)

Lorentzian lineshape is very useful is describing the physics of linear cavities. As demonstrated

in eq. (A.I.28), the spectral shape (or the power transfer function) of any linear high Q resonator,

whether it is mechanical, optical or electrical, can be approximated by a Lorentzian lineshape

near its resonance frequency. Figure A.I.4 shows the Lorentzian lineshape for Q = 10.

L(0, )
L(0, )/2

FWHM =
-1.0 -0.5 0.0 0.5 1.0

0.001

0.010

0.100

1

10

- m

m

L(-
m
,
) Qm = 10

Figure A.I.4 – Lorentzian linewidth for the oscillator with Q = 10 plotted in the normalized
frequency. “Full Width Half Maximum” (FWHM) is equal to the oscillator energy damping
rate, Γ.

It should be noted that Γ is usually known as the “Full Width Half Maximum” (FWHM)

especially in the field of optics and microwaves. This is because:

L(±Γ/2,Γ) = 1

2
L(0,Γ) (A.I.31)

as illustrated in figure A.I.4 , the full width where the Lorentzian is equal to the half of its peak

value, is equal to FWHM = Γ.

The consequences of the high Q, illustrated in eq. (A.I.27) also helps to simplify the time

domain impulse response:

Ωm � Γm =⇒ ximp(t ) = ΔP

Ωmmeff
e

−Γm
2 t sin(Ωm t )u(t ) (A.I.32)
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Energy decay rate versus amplitude decay rates:

In the next step, ts it useful to look at the evolution of energy of the oscillator over time and

calculate its decay rate and compare it to the amplitude decay rate we calculate in (A.I.32) to

be Γm/2. For this first we need to calculate the velocity of the oscillator by taking a derivative

of the equation (A.I.32) :

ẋimp(t ) = ΔP

meff
e

−Γm
2 t cos(Ωm t )u(t )− 1

2Qm
× ΔP

meff
e

−Γm
2 t sin(Ωm t )u(t )︸ ︷︷ ︸

≈0 , negotiable compare to first term

(A.I.33)

ẋimp(t ) ≈ ΔP

meff
e

−Γm
2 t cos(Ωm t )u(t ) (A.I.34)

the first observation from equation (A.I.34) is that the momentum at t = 0, is equals to

P (t = 0) = meff · ẋimp(t = 0) =ΔP (A.I.35)

this proves our previous statement that a delta Dirac impulse force with amplitude of Δp acts

as in instant kick to the oscillator and transfers the momentum δP to it at t = 0.

We can calculate the total energy of the oscillator from eq. (A.I.34) and (A.I.32) to be:

Up (t ) = 1

2
meffx(t )2Ω2

m = ΔP 2

2meff
e−Γm t sin2(Ωm t )u(t ) (A.I.36)

Uk (t ) = 1

2
meffẋ(t )2 = ΔP 2

2meff
e−Γm t cos2(Ωm t )u(t ) (A.I.37)

Utot(t ) =Uk (t )+Up (t ) = ΔP 2

2meff
e−Γm t u(t ) (A.I.38)

Equations (A.I.36), (A.I.37), (A.I.38) shows that energy decay as U (t) ∝ e−Γm t and amplitude

as x(t ) ∝ e−
Γm

2 t . In summary:

Energy decay rate−→ Γm

Amplitude decay rate−→ Γm

2

This is a simple but important outcome for experimentalists working with high Q resonators.

As we will see in chapter 1, a common experimental method to measure the mechanical quality

factors of a high Q mechanical oscillator is to drive them using an external drive such as piezo

drive, and by turning off the drive observe the free oscillations of the resonator as it looses the
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A.I.1. Classical simple harmonic oscillator

energy. A method know as “ringdown” method. By fitting the envelope to an exponential, we

can measure the damping rate of the oscillation. However we should be careful if we are fitting

to the amplitude (∝ x(t)) or the energy of the oscillation (∝ x(t)2) as these two lead to two

different damping rates.

Another definition in this regard is the time constant or lifetime of the oscillator defined as the

following:

τ≡ 1Γm (A.I.39)

During the time span of τ, a free oscillating resonator looses 1−e−1 = 63% of its initial energy.

Normally a lifetime of a classical oscillator is consider to be 5τ where in which the oscillator

looses 1− e−5 = 99% of its initial energy. We will observe in chapter 3 that τ is also the time

constant that a classical oscillator exchange fluctuation with it thermal environment.

Driven step response and mechanical ringdown:

Fo completion of this section, lets consider a more physical scenario. It should be noted that in

the real experiments, we do not have access to a delta Dirac excitation force (Fext =ΔPδ(t )). An

ideal ringdown measurement performs as the following: First we drive the mechanical mode

of the interest with an oscillatory force in resonance with the natural resonance frequency of

the mode, Ωm , then turn off the force at t = 0 and observe the decay of the free oscillations of

the mechanical oscillator. Therefore the applied force in a real ringdown experiment illustrate

in figure A.I.5 and has following derivation:

Fringdown(t ) = Γm

√
2meffU0 sin(Ωm t )u(−t ) (A.I.40)

where U0 is the energy of the oscillator during the driving period. We can calculate the step

response of the mechanical oscillator by convolution eq. (A.I.40) and (A.I.32) according to our

derivation at eq. (A.I.9) :

xringdown(t ) =−
√

2U0/meff

Ωm
cos(Ωm t )

(
1+ (e−

Γm
2 t −1)u(t )

)
(A.I.41)

U (t ) =U0

(
1+ (e−Γm t −1)u(t )

)
(A.I.42)

figure A.I.5 shows the ringdown of the oscillator in response to a driving force highlighted in

equation (A.I.40). We can see that for the times t < 0 oscillator follows the driving force with

90 degree phase lag and fort > 0 where the drive is off, resonators starts is free ringdown until

it is completely damped.

For completion of this section, it should be noted that due to technical challenges, the ring-
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x(t) = -x0 Con( m t) (1 + (e -
2
m t - 1)u[t])
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Figure A.I.5 – a) Ringdown of the mechanical oscillator with Q=30 to a sinusoidal force that
turns off at t = 0 (inset). b) The total energy of the oscillator as a function of time. The energy
decay rate Γm is two times the decay rate of the amplitude, Γm/2

down method describe above is not actually the procedure we used in the experiment in

section 1 to measure ultra high mechanical resonators. In the real experiments, when dealing

with mechanical resonators with extreme Q factors (e.g. Q > 108), it is difficult to lock to

the resonance frequency of the resonator and constantly drive it before turning off the drive.

This is because the strong resonance frequency fluctuations of the oscillator which is are

much larger than its linewidth, ΔΩRMS � Γm , for UHQ resonators. The actual measurement

apparatus is described is chapter 1 but in summary, in the actual experiment we sweep the

frequency of the drive around the resonance frequency of the mechanical resonator. For a

brief amount of time, our drive will be on-resonance with the oscillator which is enough to

excite the oscillation to a level where we can detect the amplitude with acceptable signal to

noise. Once the mechanical amplitude reaches a certain threshold, the drive turns off and we

observe the free oscillation of the resonator and determine the Q by fitting and exponential

to its ringdown. In that sense, our experimental approach in closer to a δ excitation and the

impulse response since the resonator and drive are interacting for a very brief time when they

are in-resonance.
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PnC band diagram of a periodic mass and spring:

In this section we will analytically calculate the dispensation diagram of the canonical example

of a phononic crystal where an infinite chain unitcells with two different masses and a identical

strings are connected to each other (see figure A.I.6)

m1 m2
ks

... ...

Figure A.I.6 – A canonical example of a phonoic crystal unitcell with two different masses,
m1,m2 as connected in an infinite chain via the identical spring with the spring constant of kS

The Newtonian equations of motion governing the dynamics of the two masses of the unitcell

is given by:

⎧⎨
⎩m1

n ẍ1
n = ks(x2

n −x1
n)−ks(x1

n −x2
n−1)

m2
n ẍ2

n = ks(x1
n+1 −x2

n)−ks(x2
n −x1

n)
(A.I.43)

We can solve these equations of motion in the Fourier domain (assuming both resonators are

oscillating at the same frequency):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−
(
Ω
Ω1

)2
x1

n = x2
n −2x1

n +x2
n−1

−
(
Ω
Ω2

)2
x2

n = x1
n+1 −2x2

n +x1
n

(A.I.44)

Where Ω2
1 = ks

m1
, Ω2

2 = ks
m2

are the natural resonance frequency of the individual pieces of

the unitcell. Now since we a a periodic condition with transnational symmetry, the Floquet

boundary condition dictates that the displacements are also periodic in x direction as:

⎧⎨
⎩x1

n = A1eiλ(n− 1
2 )

x2
n = A2eiλ(n+ 1

2 )
(A.I.45)

where A1, A2 are the amplitudes of motion for the two oscillator and λ is the special frequency
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motion. Equation (A.I.44) reduces to:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−
(
Ω
Ω1

)2
A1e−

iλ
2 = A2e

iλ
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where α= A2

A1e− iλ
2

. The equation (A.I.46) is a second order equation that can be solved. The

solutions to this equation is:
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√
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[
]

Figure A.I.7 – Dispersion diagram for the cavonical phononic crystals when Ω1/2π= 1 MHz
and Ω2/2π= 1.3 MHz

Figure A.I.7 shows the plot of Ω+ and Ω− for the resonance frequencies of Ω1/2π= 1 MHz and

Ω2/2π= 1.3 MHz.

Now we can calculate the width of the bandgap to be:

ΔΩBG =Ω+(1)−Ω−(1) =�
2|Ω2 −Ω1| (A.I.48)

Therefore the width of the band gap depend on the frequency (mass) difference between the

two pieces of the unitcell.
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A.II.1 Gas damping in high Q mechanical oscillators

One of the major limitations of working with ultra high Q mechanical oscillator is the gas

damping effect [250][251] [252][248][95]. In to supress gas damping, operate our measurement

in an ultra high vacuum (UHQ) chamber. But to design this chamber, we need to at which

pressure our experiments has to operate before we design the vacuum chamber. An analytical

derivation on gas damping can be found at [253]. It can be shown that there are two regimes

with different scaling laws for pressure in the gas damping[254]:

• Free molecular flow (FMF) regime at low pressures (P) where Qgas ∝ 1
P

• Viscose regime at high pressures where Qgas ∝ 1�
P

Since in this thesis we are interested in studying the intrinsic losses of nano-mechanical

resonators in vacuum, the gas FMF is the regime that might concerns us. In this regime, the

gas damping of a doubly clamped beam can be analytically calculated to be[248],[255]:

Qgas-FMF = ν
Ωh

P
(A.II.1)

where Ω is the mechanical frequency, h is the resonator’s thickness, P is the pressure and η is

a constant factor given by:

ν= ρ

√
πRT

32M
≈ 3×105 m/s (A.II.2)

where, ρ is the density resonator (ρSi3N4 ≈ 3200 Kg ·m−3), R = 8.314 J/mol. K is the universal

gas constant, T = 300K is the temperature and M is the molar weight of the gas (M ≈ 28.97

g/mol is the air mixture). We would like to re-arrange the equation A.II.1 in order to find the

best operating pressure for our experiments:
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P = 6×10−8 mbar × 109

Qgas
× Ω/2π

1 MHz
× h

20nm
(A.II.3)

Equation (A.II.3) means that if we operate at the pressure of P = 10−8 mbar, the quality factor

associated with the gas damping is 1 billion. Due the additive nature of the loss mechanisms:

Q−1
measured =Q−1

material +Q−1
gas (A.II.4)

this means that the if we are trying to measure a mechanical Qmaterial of 1 billion, we will

underestimate the quality factor by a factor of 2. Therefore, we have to operate at UHV

pressures below Pchamber < 10−8 mbar in order order to reduce the effect of gas damping below

10% on the measured quality factor if we are trying to measure quality factors as high as 1

billion.

This is more than 1 order of magnitude lower than the lowest pressure of the operational

vacuum chambers in our lab. Therefore, as one the major projects of this thesis, we have

designed and build a UHV vacuum chamber, capable of operating at pressures bellow 10−8

mbar with baking and at 9×10−9 −1×10−8 mbar without baking. In the nend section, we

review the design of this UHV chamber.

A.II.2 Design requirements for the UHV chamber

Now that we established the operating pressure of the chamber (Pchamber < 10−8 mbar), before

presenting the details of the design, lets look at the over all design of the main chamber:

Figure A.II.1 – 3D rendering of the the main chamber. The main chamber consist of a cylinder
with the inner diameter of 200mm and height of 156mm made of 5mm thick stainless steel
shits. Five CF-40 flanges symmetrically welded on the sides of the cylinder to province access
to inside and a CF-63 flange is designed for connection to the ion pump. Two CF-200 flanges
are also designed for the top (view port) and the bottom (blank).
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Figure A.II.1 shows the 3D rendering of the main chamber. For this project, we choose 200mm

as the diameter of the our chamber. Although this size is much bigger than our experiment

(we may be able to fit our experiment in half of this size), but having a bit larger space, makes

the assembly of the parts much easier and would provides the room for future upgrades if

some other parts needed to be installed. The downside of having larger chamber is that more

volume of the chamber means longer pumping time. In addition, it creates larger surface and

thus more out gassing.

Before we continue with the design, it is important to emphasize that since we are targeting

a UHV design, all the flanges and connection in this chamber is chosen to be ConFlat (CF)

Flanges. In CF flanges, seal mechanism is a “knife-edge” (a sharp wedge) that is machined

below the flange’s flat surface. By tightening the bolts, knife edges make annular grooves on

each side of a soft metal gasket (usually a cooper gasket). The extruded metal fills all the

machining marks and surface defects in the flange, yielding a leak-tight. Such a sealing is

compatible with pressures as low as 10−13 mbar and can be baked up to 450 oC[256].

For access to the main chamber, two CF-200 flanges are designed for the top (view port) and

the bottom (blank) and five CF-40 flanges symmetrically on the side of the cylinder and one

CF-63 for the ion pump access. The reason behind choosing a larger flange for ion pump is that

because the air flow conductance scales with the area of the cross section of the flange,C ∝ A

[257]. Therefore, it scales with square of the diameter of the flange. Having a larger flange, for

ion pump, significantly increases the air flow conductance and reduces the pumping time.

The CF-40 flanges are designed to be as close as possible to the top view port. This is because

the focal distance of the microscope objective is limited to few cm and the samples have to

moved up close to view port. So the chamber is designed to have the minimum gap between

the center of the flange the the top of the view port. On the other hand, the ion pump flange

is place on the lower height. This is because ion pumps could deposit contamination on

the faces in front of them and we want to avoid the contamination to be deposited on our

chips. Therefore we placed in the lower height compare to the experiment. The chamber is

manufactured, welded, seal tested and chemically cleaned by Pfeiffer Vacuum.

The main pumping source of the chamber is coming from an ion pump (figure A.II.2). The

ion pump is a great solution for our chamber as it does not have any mechanical parts that

could shake the chamber during the experiment. Ion pumps however are designed to work

at low pressures and can not start from ambient pressure. Therefore, after completion of the

assembly of the chamber, the ion pump and the main chamber were pumped by a turbo pump

for one week to evacuate the gas and contamination from the chamber and the ion pump

before the ion pump was tuned on for the first time. In the normal mode of operation, we

never open the main chamber and the valves that connects the ion pump to the main chamber

is open and ion pump is constantly pumping on the main chamber. Also it is important to

note that it is a good practice to not expose the ion pump to the air for a long time. Therefore,

ion pump was the last item that was installed in the setup and quickly was pumped down to

low pressures. In the events that we have to open the chamber (for example to install new
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main chamber

Ion pump valve

Ion pump

Electric isolator
(ceramic)

Figure A.II.2 – Connection of the ion pump to the main chamber. The ion pump (Model: 45S
from Gamma vacuum with 45l/s pumping power) is connected via a UHV compatible gate
valve (ModelL SVV 063 HF, UHV gate valve from Pfeiffer Vacuum) to the main chamber. In the
normal operating procedure, the gate valve is always kept open and ion pump is constantly
pumping on the chamber. When the chamber has to be opened, the gate valve is closed to
keep the ion pump under vacuum and then the main chamber is vented. Since ion pumps
work with high voltages (7kV here), the ion pump is electrically isolated by via a ceramic
electrical break (UVH compatible 7k CF-63 break from MDC vacuum). This also creates a
thermal isolation from the main chamber the the ion pump and the main chamber could be
baked separately.

equipment for new experiments in future), the ion pump is isolated from the rest of the system

by closing the gate valve and kept under vacuum. It its important to note that we electrically

isolate the ion pump from the main chamber using a ceramic break. This is because the

ion pump operates at high voltages (∼ 7KV). Its leakage to the main chamber could damage

the sensitive electronics inside the chamber. The ceramic break also creates a temperature

isolation from the main chamber and the main chamber and ion pump can separately be

baked without affecting each other.

Now that we have the main parts of the system in-place, lets review the main constrains and

future applications of this vacuum chamber before introducing the other part of the systems.

• Fast sample transfer capability : The most important innovation in this vacuum cham-

ber is its fast loading and unloading capabilities via a small load lock. In the field of

optomechanics we usually change samples with very often (to test different quantities or
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load lock arm

Load lock chamber

Quick acess door

Loading valve

Pumping/Venting
valve

Figure A.II.3 – Fast loading unloading of the chips via a custom made load-lock system.
Instead of venting and opening the entire system for every sample switch, the chips are
transfered in vacuum though a custom made load lock. During the loading phase the small
load lock chamber (CF-40 Cube from Pfeiffer Vacuum) is vented though the venting valve (SVV
040 HA, HV gate valve from Pfeiffer Vacuum). We can access the load lock chamber though a
quick access door (665210 -QuickDoor, 2.75"ClearanceHoles from MDC vacuum). The chips
are mounted on a especially designed chip holder and screwed to the end of the load lock
arm (Magnetically coupled Rotary/Linear Feedthrough MDM from Pfeiffer Vacuum). Then
the load lock chamber is pumped by a turbo pump through the the pumping valve. Since
the load lock chamber is small and is always kept under vacuum, it quickly pumps down to
below 10−5mbar. Below this pressure, it is safe to open the loading valve the push the chip
holder via the load lock arm into the main chamber and load it into its position. Once the
sample is loaded, the load lock arm is unscrewed from the chip holder and retracted to the
initial position. The loading vale is then closed. Also the pumping valve is closed to keep the
load lock chamber at vacuum to avoid dust and contamination accumulation.

look for the sample with the best performance). In our previous generations of vacuum

chamber, the only way to load a new chip was to vent the entire system, open the view

port and load the sample in the sample holder. This made the measurement process

extremely lengthy and inefficient as often we had to wait for several days to reach the

pressures below 10−7. This practice also had a negative effect on the lifetime of the ion

pumps.
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Lensed fiber mounting

vertical translation 
stage

Chip holder assembaly 
(moving part)

Chip holder assembaly 
(fixed part)

XY translation 
stage

Chip holder assembaly
(moving part)

clamps

sample

Figure A.II.4 – UHV compatible XYZ translation stages and chip holder assembly. The XY
stages (two ECSx5050 stages from attocube) are used to navigate the sample under the optical
lenses fiber. The vertical stage is used to bring down the sample from the measurement
position and align it to the load lock arm. Since the distance between the lensed fiber and
load lock are is about 60mm, ECSx3080 linear translation stage was used with the help of a
L-bracket. During the loading, an automated program position the stage in front of the load
lock arm and the moving part of the samples holder is slide on/off the fixed part. The chip is
firmly clamped to the chip holder via the two yellow clamps.

Our solution to this problem was to use the same technique that is used in SEM micro-

scopes to change samples Via a load lock (see figure A.II.3). In this way, samples can be

transferred from ambient pressure to UHV pressure (10−8 mbar), in the mater of less

than 10 minutes. In this system, samples are mounted on an especially design chip

holder, and loaded at the end of a magnetically coupled load-lock arm and transferred

into the main chamber in vacuum.

• 3D translation stage for alignment : In order to navigate the samples during the mea-

surement and bring the chip holder up and down for loading position, we used a3 linear

translation stages and a L-bracket to construct a 3D stage that has the range cover the

distance between the view port and the load lock arm. Also in the design, we placed

room via the bottom holder for additional goniometers and rotation stage for future

upgrades.

• Top view port for alignment with microscope : The next item is the the top view port.

We often have to align the beams with the fiber interferometer. Therefore, we placed a
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A B C D

Figure A.II.5 – Different UHV compatible components in the vacuum chamber. A) CF 200
10" OD glass view port, B) Pirani/Cold Cathode gauge PKR, C)780nm Single mode FC/APC
fiber feedthroughs, D) Grounded SMA feedthroughs

CF 200 view port on top of the main chamber in order to be able to look into the chip via

an optical microscope. For this we used 10"OD, Glass zero profile viewport from MDC

vacuum.

• Pressure readout - vacuum gauges : Two vacuum gauges are used in this project. The

first one used to monitor the pressure of the main chamber and the second one is

connected to the load lock chamber.

• Optical access - fiber feedthrough : The previous method in our group to couple light

in and out of the cavity was to use a costume made Teflon piece which was sealed via a

swagelok and vacuum glue. Although that method was efficient for HV chambers, it is

not compatible with UHV chamber. For our fiber feedthrough, we used UHV compatible

CF40 single mode FC/APC fiber feedthroughs from Vacuum Co. These fiber feed through

have less that 1% insertion loss. Although for fiber interferometery we only need one

feed line, we used a 2 port feed through for possible future applications on transmission

measurements (for example using a tapered optical fiber).

• Electrical access - electrical feedthrough : We have glued a thin piezo drive underneath

the fix part of the chip holder to be able to drive the resonance of our UHQ beam

resonators. The piezo is connected via an SMA feed through. For this we used the 3

port grounded CF 40 SMA feed throughs from Kurt J. Lesker Company. Although for

this experiment we only need one SMA port, we installed a 3 port for future possible

upgrades.

• Control access - control feedthrough : Two 9pin gold plated feed through were installed

using a T-junction. One is used to control the attocube stages and one is reserved for

future usage (for example to control a heater inside the vacuum chamber to bake the

samples in vacuum).

• Thermal and electrical isolation : In order to thermally (for baking purposes) and

electrically isolate the system from the optical table, 16 alumina isolation disks where

used under different part of the setup . The have a diameter of 45mm and thickness

10mm costume made by LSP Industrial Ceramics, Inc.
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Figure A.II.6 – 3D rendering of the UHV chamber The system was design using SolidWork in
which the design files are publicly available (see the Open Science appendix)

• Vibration isolation and mechanical stability : In order to damp the vibrations coming

from the environment, we place Sorbonne pills underneath the alumina disk. This also

helps to level the entire setup if a minor misalignment exist in the final assembly. For

this we used AV6 Sorbothane Feet from Thorlabs.

Below we can see the full 3D rendering of the vacuum chamber. It is important to note to avoid

the weight anchoring effects, several aluminum pieces where fabricated to be place under

some components (such as ion pump and load lock to adjust for the height difference).

A.II.3 Assembly and cleaning procedure

The UHV chamber was assembled over the course several months. The most important

consideration during the assembly is the cleaning of the components. In UHV chambers, if

the sealing are done properly, the final pressure is the determined where the “out gassing”

and pumping rates reach an equilibrium. Any organic contamination such as finger prints

and oil leftovers from the machining will create a significant out gassing for the chamber. So

we took extra measure to be extremely careful with our handling of the equipment during

the assembly phase. For example all the components that where inside the chamber had to
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Figure A.II.7 – Images of the assembled setup. The optical setup underneath the load lock
arm is the balanced homodyne interferometer that used to detect the phase of the reflected
light from the lensed fiber.

be only touched with clean gloves. Also we performed the following cleaning steps for every

component that was installed in the chamber (except from the translation stage as they were

not compatible with the solvent where certified as UHV clean):

• 15min sonication in water and soap mixture at 60 o

• 15min sonication in acetone at 50 o

• 15min sonication in methanol at 50 o
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• 15min sonication in IPA at 50 o

• Drying with clean nitrogen gun

In figure A.II.7, we can find few images of the setup at the end of the assembly phase. After

the end of assembly, we have pumped the ion pump, the load lock and the main chamber via

a turbo pump for 7days though the vent/pumping valve at the load lock. After reaching the

pressure of ∼ 10−6mbar, we perform a Helium leak check to only find the the system has no

major leak. At this point the ion pump was turned on and the system were left the to pump

on its own for few weeks. After few weeks, the pressure of the system was stabilized between

9×10−9−10−8 mbar. This pressure was low enough that we could measure mechanical quality

factors in excess of 800 million. To reach even lower pressure, the chamber has to be baked at

180 oC (that is the maximum recommended temperature for the translation stages) for several

days in order to speed up the out gassing of the trapped molecules on the surfaces.
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Data availability statement

Based on our commitment to the new movement in the scientific community in regards to

“open science”, all the original data and the data analysis codes are publicly available in the

following address:

doi: 10.5281/zenodo.1323821

This includes:

• The Mathematica code that numerically solve Euler Bernoulli equations and we used

for design of the the beams and fitting to the measured data

• COMSOL simulation files for stress relaxation in 3D

• The C++ codes that generate the fabrication masks

• The original GDS and l-edit files associated to the masks that were used to fabricated

corrugated beams

• Original SEM and optical images presented in the thesis

• The figure data for all the simulated or measured figures in this thesis

• The raw data for all the measurements performed in this thesis

• All the original solid-work drawings for the vacuum chamber and the KOH chip holder

• The codes for GUI Matlab data acquisition software that was written to control and

readout the vacuum chamber and other instruments for the measurement (Network

Analyzer, spectrum analyzer, oscilloscope and etc.)
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