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AESUME

Nous explorons quelques structures algébriques et géométriques, a travers certaines questions
posées par la cryptographie moderne. Nous nous attardons sur les logarithmes discrets dans les
corps finis de petite caractéristique, la structure des graphes d’isogénies de variétés abéliennes
ordinaires, et la géométrie des idéaux dans les corps cyclotomiques.

La difficulté présumée de calculer des logarithmes discrets dans certains groupes est essen-
tielle pour la sécurité de bon nombre de protocoles de communication déployés aujourd’hui. L’un
des choix les plus classiques pour le groupe sous-jacent est le groupe multiplicatif d’un corps fini.
Mais ce choix commence a montrer son age, et particulierement lorsque la caractéristique du
corps est petite : de récents algorithmes permettent de calculer des logarithmes efficacement
dans ces groupes. Cependant, ces méthodes souffrent de n’étre qu'heuristiques : elles semblent
toujours fonctionner, mais on ne sait pas le prouver. Dans une premiere partie, nous proposons
d’étudier ces méthodes dans ’espoir d’en gagner une meilleure compréhension, notamment en
révélant les structures géométriques en jeu.

Un choix plus moderne est le groupe des points rationnels d’une courbe elliptique définie
sur un corps fini. La, le probléeme de calculer des logarithmes discrets semble au sommet de sa
difficulté. Plus généralement, le groupe des points rationnels d’une variété abélienne (notamment
la jacobienne d’une courbe de petit genre) pourrait étre approprié. L'un des outils principaux
pour I’étude des logarithmes discrets sur de tels objets est la notion d’isogénie : un morphisme
d’une variété vers une autre, qui permet, entre autres, de transférer le calcul d’un logarithme. La
ou la théorie est déja bien développée pour les courbes elliptiques, peu est connu sur les structures
que forment ces isogénies (les graphes d’isogénies) pour les variétés de dimension supérieure.
Dans une deuxiéme partie, nous étudions la structure de ces graphes d’isogénies pour les variétés
abéliennes ordinaires absolument simples, avec quelques conséquences concernant les logarithmes
discrets sur les jacobiennes de courbes hyperelliptiques de genre 2, 'objet de prédilection de la
cryptographie dite hyperelliptique.

La sécurité de bien des protocoles, notamment ceux reposant sur les logarithmes discrets,
serait nulle face a un adversaire disposant d’un ordinateur quantique. Cette perspective pousse
les cryptologues a étudier des problemes qui résisteraient a une telle prouesse technologique.
L’une des directions majeures est la cryptographie a base de réseaux euclidiens, se reposant
sur la difficulé de trouver des vecteurs courts dans un réseau donné. Pour étre efficace, il est
avantageux de considérer des réseaux munis de plus de structure, tels que les idéaux d’un corps
cyclotomique. Dans une troisiéme partie, nous étudions la géométrie de ces idéaux, et montrons
qu’un ordinateur quantique permet d’y trouver efficacement des vecteurs bien plus courts que
dans des réseaux génériques.

Mots-clefs : cryptanalyse, probleme du logarithme discret, corps fini, variété abélienne, graphe
d’isogénies, volcan d’isogénies, réseau idéal, probleme du vecteur le plus court, corps cyclo-
tomique, idéal de Stickelberger.






ABSTRACT

We explore a few algebraic and geometric structures, through certain questions posed by modern
cryptography. We focus on the cases of discrete logarithms in finite fields of small characteristic,
the structure of isogeny graphs of ordinary abelian varieties, and the geometry of ideals in
cyclotomic rings.

The presumed difficulty of computing discrete logarithms in certain groups is essential for the
security of a number of communication protocols deployed today. One of the most classic choices
for the underlying group is the multiplicative group of a finite field. Yet this choice is showing
its age, and particularly when the characteristic of the field is small: recent algorithms allow to
compute logarithms efficiently in these groups. However, these methods are only heuristic: they
seem to always work, yet we do not know how to prove it. In the first part, we propose to study
these methods in the hope to get a better understanding, notably by revealing the geometric
structures at play.

A more modern choice is the group of rational points of an elliptic curve defined over a
finite field. There, the difficulty of the discrete logarithm problem seems at its peak. More
generally, the group of rational points of an abelian variety (notably the Jacobian of a curve of
small genus) could be appropriate. One of the main tools for studying discrete logarithms on
such objects is the notion of isogeny: a morphism from a variety to another one, which allows,
among other things, to transfer the computation of a logarithm. Whereas the theory for elliptic
curves is already mature, little is known about the structures formed by these isogenies (the
isogeny graphs) for varieties of higher dimension. In the second part, we study the structure of
isogeny graphs of absolutely simple, ordinary abelian varieties, with a few consequences regarding
discrete logarithms on Jacobians of hyperelliptic curves of genus 2, the main object of concern
of so-called hyperelliptic cryptography.

The security of quite a few protocols, notably those relying on discrete logarithms, would
collapse in front of an adversary equipped with a large-scale quantum computer. This perspec-
tive motivates cryptographers to study problems that would resist this technological feat. One of
the major directions is cryptography based on Euclidean lattices, relying on the difficulty to find
short vectors in a given lattice. For efficiency, one benefits from considering lattices endowed
with more structure, such as the ideals of a cyclotomic field. In the third part, we study the
geometry of these ideals, and show that a quantum computer allows to efficiently find much
shorter vectors in these ideals than is currently possible in generic lattices.

Keywords: cryptanalysis, discrete logarithm problem, finite field, abelian variety, isogeny
graph, isogeny volcano, ideal lattice, shortest vector problem, cyclotomic field, Stickelberger
ideal.






CONTENTS

Acknowledgements & remerciements

Résumé

Abstract

Introduction
A Kkey problem . ... ...
Discrete logarithms in finite fields of small characteristic....................
Isogeny graphs of ordinary abelian varieties................... ... ... ...,
Ideal lattices in cyclotomic fields...... ... ..o
Bibliographical note ....... ...
Other contributions. . ... ...

PART I. DISCRETE LOGARITHMS IN FINITE FIELDS OF SMALL

CHARACTERISTIC
Chapter 1. Rigorous and heuristic algorithms
1.1.  Generic algorithms for the discrete logarithm problem ....................
1.1.1. The Pohlig-Hellman method............... ... ... ... ... i,
1.1.2.  Square root algorithms......... ... . .. i
1.2. Index calculus methods....... ... . i
1.2.1. Index calculus algorithms .......... ... ... ...
1.2.2.  Small, medium, and large characteristic................. ... ... . ...
1.3. A rigorous discrete logarithm algorithm in small characteristic............
1.3.1.  The relation collection phase.......... ... ... .,
1.3.2.  The linear algebra phase .......... ... i
1.3.3. Individual logarithm phase........ ... . ... o i i i,
1.3:4. Analysis ..o
1.4. The descent is sufficient ......... ...
1.5. A heuristic quasi-polynomial time algorithm ................ ... ... ... ...
1.5.1.  Constructing smooth polynomials........... ... ... ... ... ... .. ..
1.5.2. A special field representation............ ... i
1.5.3. Thedescent...........oooiiiiiii e
1.5.4. Heuristic quasi-polynomial complexity...............................
Chapter 2. The powers of 2 descent method

2.1. Towards a provable quasi-polynomial time algorithm......................

vii

ix

11
11
11
12
13
13
13
14
14
16
16
16
16
18
18
19
20
22

23
23



vi CONTENTS

2.1.1. Degree 2 elimination ............oouuiiiie e
2.1.2. The zigzag descent ...ttt
2.2. Theaction of PGLoon % —x ........ ... ... .. . . . . .
2.3. The role of traps. .. ..o
2.4. TIrreducible covers of PCIQ ..................................................
2.5.  Counting split polynomials in Pb .........................................

PART II. ISOGENY GRAPHS OF ORDINARY ABELIAN VARIETIES

Chapter 3. Horizontal isogeny graphs

3.1. Isogenies, endomorphism rings, and complex multiplication ...............
3.1.1. Isogeny graphs . .....o..oooi i
3.1.2.  Endomorphism rings of ordinary abelian varieties....................
3.1.3. Action of class groups on abelian varieties...........................
3.1.4. Horizontal isogeny graphs as Cayley graphs .........................
3.1.5. Class groups of orders...... ...

3.2. Complex abelian varieties with complex multiplication....................
32,1, OBy DeS. « ettt
3.2.2. Polarisations and the Shimura class group. .............. ... ... ....
3.2.3. Canonical Lifting ...

3.3. Expander graphs and ray class groups ...
3.3.1. FKigenvalues and Cayley graphs........... .. ... o ..
3.3.2. Cayley graphs of subgroups of ray class groups......................

3.4. Horizontal isogeny graphs rapidly mix random walks......................

3.5. Random walks on isogeny graphs of Jacobians in genus 2 .................
3.5.1. Computing isogenies of small degree................ ... . ... . ... ...
3.5.2.  Navigating in the graph with polarisations ..........................

3.6. Random self-reducibility of the discrete logarithm problem in genus 2. ....

3.7.  Computing an explicit isogeny between two given Jacobians...............

Chapter 4. Small generators for subgroups of class groups

4.1. Ray class characters . ...... ...
4.2.  Small primes for non-trivial characters............. .. .. ... ... ... ...,
4.3. Proof of the main theorem......... .. ... . .. .
4.3.1. Outline of the proof. ... ... .
4.3.2.  Explicit estimates. ...
4.3.3. Proof of Theorem 4.1 .. ... e
4.4, CONSEUUEIICES - .+« o ettt et e et et e e e e e e e et e et e e
4.4.1. Generating subgroups of ray class groups................ ... ...
4.4.2. Multiplicative subgroups of integers modulo m ......................
4.4.3. Connected horizontal isogeny graphs ............. ... ...
Chapter 5. Vertical structure of isogeny graphs
5.1, Isogeny VOICANOEs . . ... ..o
5.1.1.  Volcanoes and endomorphism rings............ ...
5.1.2.  Almost volcanoes in higher dimension ...............................
5.1.3. Levels of real multiplication for abelian surfaces.....................
5.1.4. Previous work. ... ..o
5.1.5.  Proof strategy: f-adic lattices and Tate’s theorem ...................

5.2.  Orders with maximal real multiplication.................. ... ... ........

33

35
37
37
38
39
40
40
41
41
42
44
45
45
46
49
50
50
o1
52
53

95
o6
o7
o8
o8
60
65
66
66
66
67

69
69
70
71
72
72
72
73



CONTENTS

5.3. From abelian varieties to lattices, and vice-versa ..........................

5.5.

5.6.

5.7.

5.8.

5.9.

5.3.1.
5.3.2.

5.4.1.
5.4.2.
5.4.3.

Tate modules and isogenies. . .....

Global and local endomorphism rings.................cooiiiii...
5.4. Graphs of [-isogenies...................
Definition of the graph and statement of results.....................

Lattices with locally maximal real
Graphs of l-isogenies.............

Graphs of [-isogenies with polarisation .

5.5.1.
5.5.2.
5.5.3.

Graphs with polarisation.........
Structure of the S-isogeny graph .
Principally polarisable surfaces. ..

Graphs of (¢, ¢)-isogenies...............
Polarisations and symplectic structures................. ... ...
Levels for the real multiplication in dimension 2 ..........................
Preliminaries on symplectic lattices.......... ... . i

5.6.1.

5.7.1.
5.7.2.
5.7.3.

5.8.1.
5.8.2.

5.9.1.
5.9.2.
5.9.3.

PART III.

(¢, ¢)-neighboring lattices.........

multiplication ....................

Changing the real multiplication with (¢, ¢)-isogenies ................
(¢, ¢)-isogenies preserving the real multiplication ..........................

(¢, ¢)-neighbors and [-neighbors. ..

Locally maximal real multiplication and (¢, ¢)-isogenies..............
Applications to “going up” algorithms .
Motivation for a “going up” algorithm...............................

Largest reachable orders .........
A “going up” algorithm ..........

IDEAL LATTICES IN CYCLOTOMIC FIELDS

Chapter 6. Finding short generators of principal ideals
Computational problems in lattices. ...
Computing in number fields and their class groups........................

6.1.
6.2.

6.3.

6.5.

6.2.1.
6.2.2.

6.4.1.
6.4.2.

6.5.1.
6.5.2.
6.5.3.

Representation of elements of Ok

Quantum algorithms for class groups............ ... ..
Preliminaries on cyclotomic ideal lattices .......... ... ... .o ...
6.4. The geometry of cyclotomic units......
The logarithmic embedding and cyclotomic units....................
Short generating vectors of the cyclotomic units.....................
Short vectors in principal ideals........
Short generators in principal ideals............ ... ... ... ... ...

Numerical stability...............

The approximate short vector problem in principal ideals............

Chapter 7. Mildly short vectors in cyclotomic ideal lattices
The geometry of the Stickelberger ideal

7.1.

7.2.

7.1.1.
7.1.2.
7.1.3.

7.2.1.
7.2.2.

The Stickelberger ideal ...........

Short generating vectors of the Stickelberger lattice..................
Class relations for the relative class group...........................
7.1.4. The close principal multiple problem in a Z[G]-cycle of Cl .........

Finding short vectors in cyclotomic ideals.................................

Random walk to the relative class
Close principal multiple algorithm

BTOUD .« ettt ettt

vii

75
75
76
76
7
78
79
83
84
85
86
87
88
89
89
90
91
92
92
94
98
98
99
100

103

105
107
109
109
110
111
112
112
113
113
113
114
116

119
120
120
121
122
123
124
125
126



viii CONTENTS

7.2.3. Proof of Theorem 7.10 ... ... e 127

7.3. Constructing small factor bases for the relative class group................ 127
Future directions 131
Bibliography 133
Index 141

Curriculum vitae 144



INTRODUCTION

Delving into the most abstract considerations, mathematicians uncover gems that one
would sometimes be surprised to ever see reaching the concrete world. Modern cryptog-
raphy holds serious responsibility for shining the spotlight on once arcane arithmetic and
geometric structures, bringing them into our smartphones or other electronic devices.

A key problem. Classically, cryptography has been concerned with the problem of
transforming a message into an unintelligible text, that only the legitimate recipient can
decipher. There are convenient methods to achieve this, assuming that the sender and
the recipient share a secret: a key (a word, a sequence of symbols, or nowadays a sequence
of bits), that metaphorically allows the sender to lock the message (to encrypt) and the
recipient to unlock it (to decrypt). This approach suffers a major shortcoming: it aims
at communicating a secret message, but assumes that some secret, the key, has already
been exchanged. The necessity for prior exchange of a secret had become accepted
wisdom when Merkle started to challenge this idea in 1974 (published in 1978 [Mer78]).
Two years later, Diffie and Hellman [DHT76| achieved this foreseen paradigm shift by
formalising the notion of public key cryptosystem, and describing an efficient protocol
allowing two parties to exchange a secret key through a public communication channel.

Their protocol is surprisingly simple. Suppose Alice and Bob wish to exchange a
common secret key. They first agree on a cyclic group G (written multiplicatively) and
a generator g of this group. Alice secretly chooses a random integer a, and sends the
group element g to Bob via the public communication channel. On his side, Bob also
chooses a random integer b, and sends g” to Alice. Both of them are now able to compute
the value

(99" = ("),

a shared secret, to be used as a key in subsequent communications. An outsider eaves-
dropping on the public channel knows ¢, g and ¢°. Recovering the shared value ¢® from
that information should be infeasible, and is known as the computational Diffie-Hellman
problem (CDH). The security of this key exchange relies essentially on the difficulty of
the discrete logarithm problem in the group G.

Definition 0.1 (The discrete logarithm problem). Let g be a generator of a finite cyclic
group G. The discrete logarithm problem in base g is the following: given an element h
in G, find an integer n such that h = ¢g".

This integer n is called a discrete logarithm of A in base g, written logg(h), and
is unique modulo the order of the group. Diffie and Hellman suggested to choose for
group G the multiplicative group of a finite field, as the discrete logarithm problem in
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these groups was suspected to be hard. Cryptography had met computational number
theory, and this union has since proven itself exceedingly fruitful.

Discrete logarithms in finite fields of small characteristic. The Diffie-Hellman
key exchange not only remains to this day one of the most commonly used cryptographic
protocols over the Internet, but it also sparked a long series of cryptosystems whose
security relies on the difficulty of computing discrete logarithms. The choice of the
underlying group is of course critical for the security. Diffie and Hellman first proposed
to use the multiplicative group of a field of prime order, i.e., a group (Z/pZ)* where p
is a large prime number, and it was quickly suggested that arbitrary finite fields should
be equally appropriate.

With this newly found motivation of breaking cryptographic schemes, new algo-
rithms were developed to compute logarithms in such groups. Since the outcome of a
discrete logarithm computation can easily be verified, one can effectively benefit from
algorithms that have not been rigorously analysed. Not that there was a lack of inter-
est for rigorous algorithms, but the methods employed proved very difficult to analyse,
resulting in a long series of increasingly fast heuristic algorithms, with very few prov-
able results. Today, a large gap separates the best known rigorous algorithms from the
fastest heuristic ones, and this gap is the largest for fields of fixed characteristic (such
as binary fields of order 2™), for which heuristic quasi-polynomial time methods have
recently been discovered.

The first part of this thesis is concerned with these questions of provability and
heuristics in small characteristic. In Chapter 1, we explore the present situation and
review the fastest known rigorous algorithm, analysed by Pomerance in 1987 [Pom87],
and the first heuristic quasi-polynomial time algorithm, introduced by Barbulescu et al.
in 2013 [BGJT14]. A second quasi-polynomial algorithm quickly followed, introduced
by Granger et al. in 2014 [GKZ18]. More than just an alternative, it has the advantage
of being provable for fields admitting a suitable model. In practice, such a model can
be found very easily, yet a proof that it always exists seems out of reach. Another ap-
proach towards a fully provable algorithm would be to extend the methods of [GKZ18]
to other models, yet that would require in the first place a better understanding of these
methods. Chapter 2 is based on the article

T. Kleinjung and B. Wesolowski, A new perspective on the powers of two de-
scent for discrete logarithms in finite fields, Thirteenth Algorithmic Number
Theory Symposium — ANTS-XIII, 2018, proceedings to appear in the Open
Book Series, Mathematical Sciences Publishers.

[KW18]

We revisit the algorithm of [GKZ18], and provide much simpler proofs, highlighting
the geometric structures at play, and hopefully enlightening our understanding of the
quasi-polynomial methods.

Isogeny graphs of ordinary abelian varieties. Facing the rapid progress of algo-
rithms for computing discrete logarithms in the multiplicative group of finite fields,
Miller [Mil86a] and Koblitz [Kob87] independently observed that the discrete logarithm
problem can very well be instantiated on other groups, and suggested the use of the
group of rational points of an elliptic curve over a finite field. More generally, the group
of rational points of any abelian variety over a finite field could be appropriate, and this
led to hyperelliptic curve cryptography, which considers Jacobians of certain algebraic
curves.
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An isogeny is a morphism between two abelian varieties. As group homomophisms,
they can naturally be used to transfer an instance of the discrete logarithm problem
from the source abelian variety to the target. Graphs of isogenies are thereby a useful
tool in the study of the discrete logarithm problem: these are graphs whose vertices are
abelian varieties and edges are isogenies between them. Most notably, isogeny graphs
of (ordinary) elliptic curves were used by Galbraith, Hess and Smart in 2002 [GHS02]
to heuristically extend the GHS Weil descent attack (which allows to compute discrete
logarithms on certain elliptic curves) to a much larger class of elliptic curves. Three years
later, Jao, Miller and Venkatesan [JMVO05] exploited the structure of these graphs to
show (assuming the extended Riemann hypothesis) that the discrete logarithm problem
on a given elliptic curve cannot be hard if this curve is isogenous to sufficiently many
elliptic curves where the problem is easy: we say that the discrete logarithm problem is
randomly self-reducible over the isogeny class.

Isogeny graphs of elliptic curves are quite well understood, and have led to a wide va-
riety of applications beyond discrete logarithms. The case of abelian varieties of higher
dimension, however, has not been studied as much. Smith [Smi0O8] used isogenies to
tackle the discrete logarithm problem on Jacobians of genus 3 hyperelliptic curves. Two
constraints lessened the potential impact of his approach: not only the structure of the
isogeny graph was not well understood, but at any rate, very few isogenies were actually
computable. In recent years, the toolset for computing isogenies has considerably im-
proved, and it has become worth developing a better understanding of the corresponding
graphs.

The second part of this thesis studies the structure of isogeny graphs of absolutely
simple, ordinary abelian varieties. We start in Chapter 3 by studying horizontal isogeny
graphs. Roughly speaking, an isogeny is horizontal if the source and the target have the
same endomorphism ring. The vertices of a horizontal isogeny graph represent isogenous
abelian varieties that all have the same endomorphism ring. Chapter 3 is mostly based
on the article

D. Jetchev and B. Wesolowski, Horizontal isogeny graphs of ordinary abelian
[JW18]  warieties and the discrete logarithm problem, Acta Arithmetica (2018), in
press.

Generalising the results of [JMV05], we prove that horizontal isogeny graphs with iso-
genies of bounded prime degree rapidly mix random walks: they are expander graphs.
Moreover, this property is still true when restricting to the principally polarisable abelian
varieties, in which case the isogenies can actually be computed. This proves in particular
the “horizontal” random-self reducibility of the discrete logarithm problem for Jacobians
of genus two curves (the main object of interest of hyperelliptic curve cryptography).
These bounds on the degrees of isogenies yield expander graphs, and in particular, they
are connected. But if one is only interested in the connectivity, these bounds are cer-
tainly not optimal. In the case of elliptic curves, good explicit bounds can be derived
from Bach’s work [Bac90], but these are not sufficient in higher dimension. We tackle
this issue in Chapter 4, which is based on the article

B. Wesolowski, Generating subgroups of ray class groups with small prime
ideals, Thirteenth Algorithmic Number Theory Symposium — ANTS-XIII,
2018, proceedings to appear in the Open Book Series, Mathematical Sciences
Publishers.

[Wes18b]
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We generalise Bach’s bounds to arbitrary subgroups of ray class groups, and derive
bounds to obtain connected isogeny graphs of principally polarised abelian varieties of
higher dimension.

To go beyond horizontal isogeny graphs, one must investigate how isogenies can
change the endomorphism ring. This wvertical structure of isogeny graphs is the object
of Chapter 5, based on the article

E. H. Brooks, D. Jetchev, and B. Wesolowski, Isogeny graphs of ordinary

[BIW17] abelian varieties, Research in Number Theory 3 (2017), no. 1, 28.

There again, the case of elliptic curves is well understood, thanks to Kohel’s the-
sis [Koh96]: fixing a prime number ¢, graphs of isogenies of degree ¢ (or f-isogenies)
form so-called volcanoes. These volcanoes are organised in levels, where the top-level
(or crater, to sustain the geological metaphor) contains elliptic curves with maximal
endomorphism ring (locally at ¢), and the lower the level, the smaller the endomorphism
ring. The real part of the endomorphism ring of an elliptic curve is always the ring of
integers Z, which is integrally closed (so maximal). The situation is more complicated
in higher dimension, as the real part of the endomorphism ring is no longer necessarily
maximal. It turns out that this maximality is crucial to obtain “volcano-like” structures:
we fully describe isogeny graphs of I-isogenies (a generalisation of (-isogenies to higher
dimensions) for abelian varieties whose real part of the endomorphism ring is maximal.
These graphs are volcanoes when certain number-theoretic conditions are met.

The key of this result is a new classification of orders in quadratic extensions, con-
taining the maximal suborder. The lack of a complete classification of arbitrary orders
makes it hard to study the full isogeny graph. However, in dimension two, we provide
a local description of isogeny graphs of (¢, ¢)-isogenies (an important class of isogenies
that preserve principal polarisations), and analyse how such isogenies modify the real
part of the endomorphism ring. These results allow us in particular to derive a “going
up” algorithm, which finds a path of computable isogenies from an arbitrary abelian
surface to one with maximal endomorphism ring.

Ideal lattices in cyclotomic fields. Together with the integer factorisation problem,
the discrete logarithm problem is the foundation of the vast majority of today’s deployed
public key cryptosystems. However, in 1994, Shor [Sho97] discovered a fast algorithm
to solve both of these problems on a hypothetical quantum computer. Over two decades
later, it is still unclear when, if ever, a quantum computer of sufficient scale will be
capable of executing Shor’s algorithm. It is nevertheless considered a serious threat,
especially in the recent years where research towards the construction of quantum com-
puters has been fuelled by the promise of significant industrial applications. This has
led cryptographers to investigate mathematical problems that would resist the charge
of an adversary equipped with a quantum computer.

The problem of finding short vectors in a Euclidean vector space of high dimension
soon proved to be a serious candidate. The private key would be a “good” basis of a
lattice A in R, consisting in n short vectors, while the public key would be a “bad”
basis of the same lattice A, consisting in n much longer vectors. The bad, public basis is
sufficient to perform simple operations like choosing a random lattice point, or encoding
a message as a lattice point P € A. If one adds a small “error” ¢ to this lattice point (i.e.,
shifting it slightly to get a close, non-lattice point), only the secret good basis allows to
recover the original P from the noisy P + €.
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The main inconvenience of such plain lattice-based cryptosystems is their heavy
memory and bandwidth footprint: the public and secret keys are both an n x n matrix
where the dimension n is in the order of hundreds. This issue can be addressed by us-
ing lattices with more structure. An interesting choice are ideals in cyclotomic number
fields, seen as lattices via the Minkowski embedding. There is however a risk that this
extra structure allows for more efficient methods to solve supposedly hard problems in
these lattices. And indeed, a series of results have led to new, fast quantum algorithms
to solve certain lattice problems in principal ideals in cyclotomic fields of prime-power
conductor. More precisely, following ideas outlined in [CGS14], it was shown how to
find a generator of a principal ideal in quantum polynomial time [BS16], and how to
transform a generator into a short generator by exploiting the geometry of cyclotomic
units [CDPR16]. This short generator provides a much shorter lattice vector than what
can normally be hoped for in polynomial time, in generic lattices. The third (and last)
part of this thesis is mostly based on the article

R. Cramer, L. Ducas, and B. Wesolowski, Short Stickelberger class relations
and application to Ideal-SVP, Advances in Cryptology — EUROCRYPT 2017
(J. Coron and J. B. Nielsen, eds.), Lecture Notes in Computer Science, vol.
10210, Springer, 2017, pp. 324-348.

[CDW17]

More precisely, it is based on an ongoing collaboration with Ronald Cramer and Léo
Ducas which aims at extending these results to arbitrary ideals (rather than principal) in
arbitrary cyclotomic fields (rather than those of prime-power conductor). The outcome
of this collaboration is split into two chapters. First, in Chapter 6, we present the
method of [CDPR16], and extend upon their results by providing a full analysis of the
numerical stability of the algorithm, and generalising it to cyclotomic fields of arbitrary
conductor. Second, we show in Chapter 7 how to extend these results to arbitrary,
non-principal ideals. The methods at play, based on the geometry of the Stickelberger
ideal, were introduced in the article [CDW17], and we present them in the more general
setting of cyclotomic fields of arbitrary conductor.

Bibliographical note. Most chapters of this manuscript are based on published arti-
cles, as indicated by a note at the beginning of each concerned chapter. Such chapters
are mostly a reproduction (with authorisation) of the corresponding articles, with mod-
ifications, sometimes substantial, made in an attempt to form a coherent narrative.

Other contributions. The great freedom I enjoyed as a doctoral candidate allowed
me to work on a number of other projects that, mostly for the sake of the narrative, did
not find their way in the present manuscript.

The following article shares ties with the second and third parts of this thesis, as it
deals with isogeny graphs, and quantum-resistant cryptography:

A. Gélin and B. Wesolowski, Loop-abort faults on supersingular isogeny
[GW17]  cryptosystems, International Workshop on Post-Quantum Cryptography —
PQCrypto 2017 (T. Lange and T. Takagi, eds.), Springer, 2017, pp. 93-106.

We show that in a context prone to side-channel attacks, cryptosystems based on isogeny
graphs of supersingular elliptic curves [JD11] should be implemented with particular care
as they are very susceptible to inexpensive fault attacks.
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While the article [GW17] still deals with “algebraic and geometric structures in cryp-
tography”, the following articles are much more alien to this manuscript.

Randomness is a critical component of cryptography. Good sources of randomness
are often supposed to operate in a concealed environment, generating bits that are meant
to be kept secret. However, a number of applications require some form of publicly
available randomness that cannot be predicted or manipulated. One would immediately
think of national lotteries or sporting event draws, but trustworthy public sources of
randomness also appear in more technical, cryptographic settings. Yet the problem of
publicly generating randomness with a strong incorruptibility guarantee is a challenging
one, as it is hard for someone to flip a coin and convince their peers that the outcome
was not rigged. Methods using real-world entropy such as stock market prices [CH10]
do not provide any formal security, and classic “commit-then-reveal” protocols do not
scale. We address this problem in the article

A. K. Lenstra and B. Wesolowski, Trustworthy public randomness with sloth,
[LW17]  wnicorn, and trz, International Journal of Applied Cryptography 3 (2017),
no. 4, 330-343.

We describe a way to construct a source of randomness that takes as input random bits
sent by any willing participant, and produces an output which any honest participant
can verify to be unbiased and unpredictable, even if everyone else is controlled by an
adversary. Nothing but random bits are requested from the contributers, so participating
is very easy (as suggested in [LW17], it could be as simple as publishing a random tweet
with some specified hashtag), and the communication complexity scales linearly in the
number of contributors.

Other methods have been suggested, which do not provide such strong security guar-
antees. Notably, the inherent unpredictability of blockchains (in particular the Bitcoin
blockchain [Nak09]) has been used to run lotteries, yet this method clearly assumes that
a majority of the mining power is held by honest parties. We analyse more precisely
how much an adversary with tighter computational and financial constraints could still
bias this source of randomness in the following article:

C. Pierrot and B. Wesolowski, Malleability of the blockchain’s entropy, Cryp-

[PW1g] tography and Communications 10 (2018), no. 1, 211-233.

As a tool for the solution we proposed in [LW17], we constructed what we called
a slow-timed hash function (sloth): a function that takes a specified amount of time A
to evaluate (and extensive parallel power does not allow to go faster, in a way rem-
iniscent of Rivest, Shamir and Wagner’s time lock puzzle [RSW96]: an amount A of
sequential operations are required), but whose result can easily be verified by anyone
(in time a small fraction of A, or even log(A)). Such functions have since then been
formalised and generalised by Boneh et al. [BBBF18] as wverifiable delay functions, and
have found a variety of other applications in decentralised systems. Most notably, they
can be used to design resource-efficient blockchains, eliminating the need for massively
power-consuming mining farms. A few new delay functions are proposed in [BBBF18§],
reaching an exponential gap between the runtime of the evaluation and the verification
(which was not the case for sloth). However, none of the practical constructions proposed
strictly achieves the security or sequentiality requirements of verifiable delay functions.
In the following paper, we propose a new efficient verifiable delay function, based on the
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sequentiality of large exponentiation in finite groups of unknown order (such as RSA
groups (Z/NZ)* where N is a product of two large primes, or class groups of quadratic
imaginary fields):

B. Wesolowski, Efficient verifiable delay functions, IACR Cryptology ePrint
[Wes18a] Archive, Report 2018/623, 2018, https://eprint.iacr.org/2018/623,
submitted for publication.

The evaluation requires an amount A of sequential group squarings, and the output
is a group element, together with a proof of correctness. The proof is short (a single
group element), and allows to verify the correctness very fast, in time independent of A
(essentially two group exponentiations, by exponents of bit-length the bit-security level,
usually 128, 192 or 256).
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Rigorous and heuristic algorithms

When Diffie and Hellman introduced the discrete logarithm problem in cryptography
in 1976, the best known algorithms had complexity essentially the square root of the
size of the group. These methods work in arbitrary groups, but interestingly, it was
already suspected [MW68, Mil75] that the specific structure of finite fields could be ex-
ploited to design better algorithms. The sudden spotlight encouraged research on this
path, and the square root complexity was quickly reduced by algorithms built around
the index calculus method: a method which finds its roots in the early investigations
of Kraitchik [Kra22]. These are notoriously difficult to analyse. However, the result
of a logarithm computation is easily verified, so cryptanalysis can profit from efficient
algorithms that have not been rigorously evaluated. This has led to a long succession
of faster heuristic algorithms, and very few rigorous results. The present chapter re-
views this situation, by first recalling the classical generic methods, then specialising to
finite fields of small characteristic, presenting the fastest known rigorous and heuristic
algorithms to this day.

1.1. Generic algorithms for the discrete logarithm problem

Generic discrete logarithm algorithms assume very little knowledge about the group they
are working with. It is only assumed that some algorithms, treated as black boxes, allow
to compare, multiply, invert, and sample group elements.

1.1.1. The Pohlig-Hellman method. As a first step for the computation of a loga-
rithm, it can be useful to try and split the problem into several simpler instances. This
is the purpose of the Pohlig-Hellman method [PH78], which implies that when the group
order and its factorisation are known, the difficulty of the discrete logarithm problem
depends essentially on the size of the largest prime factor. These assumptions are usually
not an issue in practice, as the groups used in cryptography for the discrete logarithm
problem normally have a known prime order, sometimes with a small cofactor, and are
thereby easy to factor.

Let G be a cyclic group of finite order n, g a generator, and h an arbitrary element
which we want to compute the logarithm of. Suppose that the order of the group
is known and given by n = Hp p®. The Pohlig-Hellman method allows to split the
logarithm computation in G into multiple logarithm computations in subgroups of G of
prime order.
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Consider the computation of z = log,(h). For each prime factor p of the order n,
let n, =n/p®, g, = g"» and hy, = h"». Then each h, belongs to the subgroup G), of G
of order p° generated by g,. Solving the discrete logarithm problem in these subgroups
would yield
Ty = loggp(hp) =z mod p,

from which a straightforward application of the Chinese remainder theorem allows to
recover x. We have thereby reduced the problem from a group of order n to groups of
prime-power orders p°».

Now, the computation of x, = loggp(hp) can further be reduced to e, logarithm
computations in the subgroup G™? of order p. To simplify the notation, we now as-
sume that G is itself of prime-power order p¢. The idea is to compute sequentially the
coefficients a; such that

r=ag+ap+ ... + ae_1p® ' mod p°.
Observe that WP~ = ¢g®° " = g%P° "' Therefore, one can retrieve the first coefficient ag
as the logarithm of RP""" in the subgroup of order p generated by gpe_l. Now, assuming
that the coefficients ao, ..., a; are known, we have
. . e—j—2
(hg— i W)? g

and one can compute a;41 as the logarithm of the left-hand side element in the same
1

subgroup of order p generated by ¢P .
In conclusion, to compute a logarithm in a finite cyclic group G whose order factors as
n= Hp p, it is sufficient to compute for each prime factor p, a number e, of logarithms

in the subgroup G™P of order p.

1.1.2. Square root algorithms. In a generic finite cyclic group G, logarithms can
be computed in O(\/@ ) group operations. The simplest method to do so is certainly
Shanks’ baby-step giant-step algorithm. Let g be a generator and h be an element
which we want to compute the discrete logarithm x = logg(h) of. Let m be a parameter
between 1 and |G| to be tuned later. One can write x = gm + r with 0 < r < m and
0 < ¢ < |G]/m. Of course, z is not known (yet), so r and ¢ cannot be found by a
Euclidean division. The idea is to proceed the other way around: find r and ¢ such that
h = g% and deduce x. Equivalently, we are looking for ¢ and r such that

(L1) (™) = hg™".

There are only m possible values for the right-hand side. We start by precomputing
them in the following list (the baby steps):

B={(hg™",r)|0<r<m),

at the cost of about m group operations. This list is stored as a hash map keyed by the
first element of each pair. If it contains a pair (1,7’) it can be concluded that x = /. Oth-
erwise, for ¢ = 1,2,...,||G|/m] in succession, the element (¢")? is computed (the giant
steps, corresponding to the left-hand side of Equation (1.1)) and looked up in the hash
table. When a match is found, we get a pair (hg™",7) € B such that hg™" = (¢™)?, which
implies * = gm + r. This method requires at most about m + |G|/m group operations,
which is minimised at m = [1/|G|], and results in a total of at most about 2,/|G| group
operations. Note that it has the great disadvantage of requiring storage of about \/@
group elements.
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Less memory and more scalability. The baby-step giant-step method is only the simplest
of a variety of algorithms requiring O(\/@) group operations. An important variant
is Pollard’s Rho algorithm [Pol78], which requires the storage of only O(1) elements,
whereas the baby-step giant-step requires O(m) For practical purposes it is also
crucial to be able to distribute the computation on any number of parallel processors.
This can be achieved by variations of Pollard’s Rho algorithm using distinguished points
in the group, as described in [VOW99).

1.2. Index calculus methods

While black box groups are a powerful model for the design and analysis of discrete
logarithm algorithms, it does not allow to exploit the particularities of a given group.
Multiplicative groups of finite fields enjoy much more structure than generic groups,
which can be exploited to design faster algorithms.

1.2.1. Index calculus algorithms. Modern methods to compute logarithms in the
multiplicative group of finite fields are all variants of the index calculus method, and
achieve much better performance than generic methods: they have subexponential com-
plexities. Algorithms of this family are characterised by three phases: the relation
collection phase, the linear algebra phase, and the individual logarithm phase. They
work as follows.

Relation collection phase: This phase consists in collecting a large number of mul-
tiplicative relations between elements of a small subset of the group G, the
factor base. Typically, the factor base would be a set of small prime numbers,
or of irreducible polynomials of small degree, depending on the context. Let §
denote this factor base. We want to collect relations of the form

1=y,
€S
where g is the generator, for various integers my and r. Each such relation
implies the following linear relation between the logarithms of the factor base
elements:
me log,(f) =7 mod |G].
feS
The relation collection phase is over when enough relations have been collected,
resulting in a linear system with a unique solution.
Linear algebra phase: This step consists in solving the full-rank linear system built
in the previous phase, thus revealing the values of log,(f) for all the elements
f in the factor base.
Individual logarithm phase: This last phase consists in decomposing an arbitrary
element h into a product of elements of the factor base, and thereby deduce its
logarithm as a linear combination of known logarithms.

1.2.2. Small, medium, and large characteristic. With the development of these
new algorithms, a trichotomy of finite field emerged, according to which variant of the
index calculus method performs best: those of small, medium, or large characteristic.
This classification (as well as the associated complexities) is expressed using the notation

Ly(a, ) = eletoD)(oga) (loglogg) ™=

where a € [0,1] and ¢ > 0, and o(1) tends to zero as ¢ tends to infinity. We also write
Ly(o) = Lg(a,0(1)), and the subscript ¢ is often omitted when there is no ambiguity.
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Consider a family of finite fields of characteristic p and order ¢ = p”, where p = L,(«)
and ¢ tends to infinity. We talk about small characteristic if & < 1/3, medium charac-
teristic if o € [1/3,2/3] and large characteristic if & > 2/3 (leaving an ambiguity at the
boundary cases a = 1/3 and o = 2/3). We also talk about fixed characteristic if p is
constant and only n varies. Matching the intuition, fields of prime order are naturally
of large characteristic, while binary fields (of order 2") are of fixed (and therefore small)
characteristic.

1.3. A rigorous discrete logarithm algorithm in small characteristic

The first subexponential time index calculus algorithm for finite fields was proposed by
Adleman [AdI79] in the late seventies. It was designed for fields of prime cardinality, and
was soon adapted by Hellman and Reyneri [HR82] to finite fields of small characteristic.
In its original form, this algorithm is heuristic, but Pomerance [Pom87] proposed a
rigorous variant which remains to this day the fastest known provable algorithm for
finite fields of small characteristic, with a complexity of L(1/2). This variant and its
analysis are presented below.

A first thing to note when designing an algorithm specialised to finite fields is that
we are essentially free to choose how to represent the field, as long as it is in the form of
a vector space over the prime subfield. Indeed, it is easy to find an isomorphism between
two such representations of the same field [Len91]. Consider a finite field F ., and we can
assume it is represented as the quotient F[x]/(I) where I is some irreducible polynomial
of degree £. Any element of the finite field is represented by its unique representative
in F[z] of degree smaller than ¢ in this quotient structure (the principal representative).
We are given a polynomial g representing a generator of the multiplicative group F;Z, and
a polynomial h representing an element of which we want to compute the logarithm.
Pomerance’s algorithm follows the stereotypical index calculus structure: a relation
collection phase, a linear algebra phase, and an individual logarithm phase.

1.3.1. The relation collection phase. Any polynomial of F,[z| factors in a unique
way into a product of monic, irreducible polynomials, multiplied by a scalar (an element
of Fy). In this context, a natural choice for the factor base is the set of scalars and
monic irreducible polynomials of small degree — say, bounded by a parameter d to be
tuned later. Notice that the scalars can be dealt with separately since g(qe_l)/ (@=1) ig
a generator of F, and this subgroup is small enough to apply the generic methods
from Section 1.1. Therefore we assume that we already know the logarithms of elements
of F*. The factor base is then defined as

§ = {f € Fy[z] | f is monic, irreducible, and of degree at most d}.

The idea behind the relation collection phase is then quite simple. Given an integer r gen-
erated uniformly at random in [1,¢* — 1], the element ¢" is uniformly distributed in que.
The polynomial representing it is said to be d-smooth if it splits as a product of irre-
ducible polynomials of degrees at most d. This smoothness condition is easy to check, as
polynomials can be factored in polynomial time (see for instance the survey [VZGPO01]).
When it is indeed d-smooth, we get a decomposition of the form ¢" = ]| fez f¢ mod I

with a € F, leading to the linear relation

(1.2) Zef logg(f) =r— logg(a) mod (qé —1).
fEF
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A standard heuristic approach at this point would be to say that repeating this pro-
cess O(|F|) times should yield a full rank linear system with overwhelming probability,
concluding the relation collection phase. Instead, to eliminate heuristics, Pomerance
introduced the following lemma.

Lemma 1.1 ([Pom87, Lemma 4.1]). Let V' be a vector space of finite dimension n
over a field k. Let S be a finite set of vectors in V and let by, ..., b, be a basis of V.
Let m = |2logyn| 4+ 3. Let v1,...,Umn, Wi, ..., W, be independently and uniformly
distributed elements of S. Then, the linear subspace spanned by

{v1, Uy ULbj w0 ymgi | i =1,...,m, and j =1,...,n}
is the whole space V' with probability at least 1 —1/(2n).

This lemma provides a method to generate the set of relations with a rigorous,
probabilistic guarantee of success. The vector space V is the space of all possible linear
relations between elements of the factor base, or formally, tuples of the form (ey)feg.
The set S is the set of tuples representing the decomposition of the d-smooth non-
zero polynomials of degree less than £. The basis by,...,b, consists of the canonical
vectors 17, with value 1 at f € §, and 0 everywhere else.

Remark 1.2. Of course, the coefficients of our linear relations live in Z/(¢' — 1)Z,
which is not a field. However, a straightforward application of the Chinese remainder
theorem implies that Lemma 1.1 almost holds when k is replaced by the ring Z /(¢ —1)Z,
and V is a free module of rank n. Instead of 1 — 1/(2n), the final probability becomes
(1-— 1/(2n))“’(qé*1), where w(q? — 1) is the number of distinct prime divisors of ¢ — 1.
Notice that the multiplicity of these prime divisors does not cause trouble: for any prime
number s and positive integer m, given a generating set of vectors in (Z/sZ)", any lift
to (Z/s™Z)" is also a generating set.

Remark 1.3. One might wonder why instead, we do not apply the Pohlig-Hellman
method from the start and present the algorithm in a prime order subgroup of F;}.
That would save us the trouble of doing linear algebra in modules. The reason, again, is
provability. Knowing the number of smooth polynomials of degree smaller than ¢, it is
easy to derive the smoothness probability of a uniformly random element of que. That
probability is not as easy to compute for subgroups.

We have already seen how to collect random vectors playing the role of the vectors v;:
they correspond to the left-hand side of Relation (1.2). For the vectors of the form
bj +w(j_1)m+i, we need to collect a new kind of relation. Fix a factor base element b € §,
and generate a random integer r from [1, gt — 1], until the principal representative of bg"
is d-smooth. The decomposition bg” = a ] fez f¢ mod I yields the relation

(1.3) log,(b) = > _eslog,(f) =log,(a) = r mod (¢ - 1).
fes

The left-hand side corresponds to vectors of the wanted form: a basis vector, plus a
uniformly random vector from the set S.

This proves that with n = |§| and m = |[2logy n| + 3, the relation collection phase
succeeds with overwhelming probability after collecting mn relations of the form (1.2),
and m relations of the form (1.3) for each b € §.
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1.3.2. The linear algebra phase. The relation collection phase returns a full rank
linear system (with overwhelming probability), which can then be solved with Wiede-
mann’s algorithm [Wie86]. Since ¢‘ — 1 is not a prime number in general, one must first
factor it and use the Chinese remainder theorem as well as some Hensel lifting argument
in order to properly use Wiedemann’s algorithm. This seems to require a fast, rigorous
factoring algorithm; such an algorithm is indeed presented in [Pom87]. There is however
a more elementary approach. One can first try their best to factor ¢ — 1. The re-
sulting decomposition consists in prime numbers and possibly a few composite numbers
that seem hard to factor. It is possible to apply Wiedemann’s algorithm modulo these
composite numbers. The only error that can occur is that the algorithm tries to invert
a non-invertible element. This would reveal a non-trivial factor of the modulus, and
Wiedemann’s algorithm could be applied again with the newly discovered factors. This
may happen at most as many times as the number of distinct prime factors of ¢¢ — 1,
which is less than £logy(q). Although it should actually happen much less often, this
rough upper bound will not affect the complexity analysis below.

1.3.3. Individual logarithm phase. After the linear algebra phase, the logarithms
of all the elements of the factor base are known, and we now wish to represent log, (h)
as a linear combination of them. This can be done in a way similar to the collection
of relations. Simply generate a random integer r from [1,q€ — 1] until the principal
representative of hg" is d-smooth. We get a decomposition hg" = o] e f¢ mod I,
which implies

log,(h) = log,(a) + Zef log,(f) =7 mod (q‘/Z —1).
fes
As all the logarithms of the right-hand side are known, this concludes the final stage of
the algorithm.

1.3.4. Analysis. In the first phase, we need to collect O(|F|log|F|) relations. Since
a uniformly random polynomial of degree smaller than ¢ is d-smooth with probability
P = (¢/d)~*/%°() (see [PGF98, Theorem 1]), each relation requires an expected 1/P
number of trials. Since the factor base contains at most ¢ elements the total expected
cost of the first phase is at most

(¢/d)!/d+o) g < gt/ d108,(¢/d)+d)(1+0(1)

Choosing d = L [€1og, (/2] leads to the complexity L(1/2,v/2). Since Wiedemann’s

algorithm has quadratic cost in the dimension of the matrix (which is sparse, since each
relation involves at most ¢ elements of the factor base), the linear algebra phase has the
same complexity. Finally, the last phase has a negligible cost compared to the first, as
it is equivalent to the generation of a single relation. Therefore Pomerance’s algorithm
has a provable expected complexity L(1/2,v/2).

1.4. The descent is sufficient

Pomerance’s algorithm relies on one crucial ingredient: a method to rewrite any ele-
ment f of the group as a product of elements of the factor base (up to considering g and
the scalars F* as part of the factor base). This process of rewriting an arbitrary element
in terms of the factor base is called the descent. Pomerance’s approach actually implies
that given a rigorous descent algorithm, one can automatically devise a full rigorous
index calculus algorithm, with a running time essentially determined by the size of the
factor base and the complexity of the descent. This idea that the descent is sufficient
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has been reworked in [EGO02], then in [Diell] and [GKZ18]. The latest iterations enjoy
a very neat analysis, which we present in a more abstract setting (by considering an
arbitrary finite cyclic group) in the following theorem.

Theorem 1.4. Consider a finite cyclic group G of order n, and two elements g € G
and h € (g). Assume we are given a factor base § = {f1,...,fm} C G, for some
integer m, and an algorithm DESCENT that on input f € G outputs a sequence (ej)?ll
such that [ = H;nzl fje] Then, there is a probabilistic algorithm (Algorithm 1.1) that
computes discrete logarithms in G at the expected cost of O(mloglogn) calls to the

descent procedure DESCENT, and an additional O(m3loglogn) operations in Z/nZ.

Algorithm 1.1 A full discrete logarithm algorithm from a descent algorithm.

Require: A finite cyclic group G of order n, two elements g € G and h € (g).
We assume there is a descent algorithm for G: we are given a factor base § =
{fi,-..,fm} C G, and an algorithm DESCENT that on input f € G outputs a
sequence (e;)"; such that f =[], fjej.
Ensure: An integer x such that ¢* = h.
1: repeat
2:  {Construct a matrix R = (r; ;) € (Z/nZ)"™)*™ and two column vectors a, 3 €
(Z/nZ)" Y as follows}

3: fori=1,2,....,m+1do

4: Choose «;, f; € Z/nZ uniformly and independently at random;

5: (rij)ie, < DESCENT(g*hP);

6: end for

7. Compute a row echelon form R’ of R with invertible row transformations;
8:  Apply these transformations to v and 3, resulting in o/ and J’;

9: until ged(f],,,,n) =1
10: return —aj,_ /By, ., mod n.

Remark 1.5. Algorithm 1.1 does not follow the traditional structure of an index cal-
culus algorithm as it does not have distinguished relation collection and individual log-
arithm phases. It directly constructs relations involving the target h € (g). This allows
for a simpler, more straightforward analysis of the algorithm.

Proof. Note that for each row (r; ;)7L of the matrix R, we have
m
aipBi Ti,j
grihet = H fj .
j=1

Adding the fact that all the entries of the last row of the row echelon form R’ vanish,
we deduce that we have ga;n+1 hPmi1 =1 at the end of each execution of the main loop.
Therefore, if ), ; is invertible modulo 7, then g Omt1/ Brnr1 modn _ p Thig proves the
correctness of the algorithm.

Concerning the running time, observe that the costly operations of the main loop are
the m+1 calls to the algorithm DESCENT, and the computation of the row echelon form
of R (which can be performed by a modification of the Gaussian elimination algorithm,
with a cost of O(m?3) operations in Z/nZ). It only remains to estimate the number
of times the main loop must be repeated. The key observation there is that 3/, 11
is uniformly distributed in Z/nZ — assuming that the randomness used to generate «
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and S is independent from all the random choices potentially made by DESCENT. Indeed,
for each i, a; and B; are uniform and independent, so §; is independent from ¢®h% and
thereby also from the row (r; ;)7 ;. Then, 8 is also independent from the (invertible)
transformation matrix U resulting in the row echelon form, and therefore 5’ = Up is
uniformly distributed over (Z/nZ)™*+1 since 3 is. We deduce that the main loop needs
to be executed an expected number of times n/¢(n), where ¢ is Euler’s totient function.
We get the final cost from the estimate n/¢(n) = O(loglogn), found in [RS62]. O

1.5. A heuristic quasi-polynomial time algorithm

With a complexity of L(1/2), Pomerance’s variant of the Hellman-Reyneri algorithm
remains the fastest rigorous algorithm to solve the discrete logarithm problem in finite
fields of small characteristic. However, heuristic approaches have led to much more ef-
ficient algorithms. In fact, faster heuristic algorithms were already known at the time
of Pomerance’s work: Coppersmith proposed a heuristic algorithm [Cop84] of complex-
ity L(1/3) as early as 1984. Numerous improvements followed, notably including the
function field sieve [AH99], yet the complexities remained in L(1/3) for decades. That
is until 2013, when it was reduced to a heuristic L(1/4 + o(1)) by Joux [Joul3], quickly
followed by a heuristic quasi-polynomial time algorithm [BGJT14] for fields of fixed char-
acteristic, of expected running time 5180 where b is the bit-size of the cardinality of
the finite field.

This section reviews the ideas of [BGJT14], which set the current bar for the heuris-
tic complexity of the discrete logarithm problem in finite fields of small characteristic.
Instead of presenting the exact same algorithm as described in [BGJT14], we focus on
the descent procedure, which is sufficient to deduce a full discrete logarithm algorithm
thanks to Theorem 1.4. This approach has two advantages. First, it simplifies the pre-
sentation, allowing to focus on the core ideas leading to the quasi-polynomial complexity.
Second, it allows to effectively reduce the number of heuristics, by obviating the need
for [BGJT14, Heuristic 8]. A practitioner may not appreciate this approach as much:
the algorithm built from Theorem 1.4 performs multiple descents, while [BGJT14] re-
quires only one (for the individual logarithm phase), and computes the logarithms of
the factor base in polynomial time. An orthogonal approach is taken in [Piel6], which
focusses on computing as fast as possible the logarithms of factor base elements.

1.5.1. Constructing smooth polynomials. To generate relations between polyno-
mials of the factor base, Hellman-Reyneri, as well as most of its successors for decades,
generates “easy” relations between random (or random looking) polynomials of a rather
large degree until, by chance, these polynomials split into sufficiently small irreducibles.
This paradigm led to algorithms of complexity L(1/3), first reached in [Cop84]. To
break this complexity barrier, a new approach was necessary. Instead of relying on the
(very low) probability of random polynomials of large degree to be smooth, one could
construct large degree polynomials in a way that ensures their smoothness. This idea
first appeared in [GGMZ13], yet that algorithm was still in L(1/3).

Consider a finite field F;. The key to the construction of smooth, large degree

polynomials is the identity
xl—x = H (x — ).

acF,

It leads to a whole family of identities, as any polynomial or rational fraction can be
substituted for z. Given two non-zero polynomials F' and GG with coefficients in the
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algebraic closure of Fy, substituting F'/G for x leads to the identity
F(2)1G(x) - F(2)G(2)! = G(z) [] (F(x) - aG(x)).

acF,

Although F1G — FGY has a rather large degree, it is guaranteed to split into polynomials
of degrees at most d = max(deg F,deg G). To construct a relation involving this poly-
nomial, observe that FIG — FGY = F\9 (29)G(z) — F(z)G9 (27), where F( and G@
are respectively F' and G with coefficients raised to the power ¢q. Now, suppose we
want to compute logarithms in a field F ¢ represented as F,[x]/(I), for some irreducible
polynomial I. Let h be the reduction of ¢ modulo I. We get a relation of the form

(1.4) FO(h(2))G(x) - F(z)G9(h(z)) = G(z) [] (F(z) - aG(z)) mod I.
a€cF,

The polynomial on the right-hand side is d-smooth. The left-hand side does not seem
particularly smooth, but observe that it has degree at most d(degh + 1). When h has a
small degree, this polynomial has good chances to also be d-smooth. Luckily, it is easy
to construct a representation of F ¢ with this property, following an idea that dates back
to [Cop84]: generate random small degree polynomials h € Fy[z] until 27 — h has an
irreducible factor I of degree £. Then, F = F[x]/(I), and 29 = h mod I.

With such a field representation, it is not hard to see how to construct a large
number of relations of the form (1.4) between low degree polynomials, defined over a
small extension of Fy (pick at random such polynomials /' and G, and keep the relations
for which the left-hand side is smooth). And this indeed leads to a (heuristic) polynomial
time algorithm for computing the logarithms of elements represented by small degree
polynomials. However, we are mostly interested here in constructing a descent algorithm,
whose input is usually a polynomial of large degree. The key innovation of [BGJT14]
is to use relations of the form (1.4) involving the input polynomial and polynomials of
half the degree, resulting in a “degree halving” procedure. This procedure can then be
used recursively until all the polynomials involved have a very small degree.

1.5.2. A special field representation. Before exploring in more details the degree
halving and the descent, we need to settle on an appropriate field representation, which
allows to construct interesting relations of the form (1.4). We consider the discrete
logarithm problem over a finite field k, and we first require this field to be of a particular
form. We will see later, in Section 1.5.4, how to extend the algorithm to the general case.

Definition 1.6 (Sparse medium subfield representation). Suppose that

(1) the field k has a subfield of ¢? elements for some prime power ¢, i.e., k is
isomorphic to que with ¢ > 1, and

(2) there exist two polynomials hg and h; over F 2 of small degree, such that
hiz% — hy has a degree ¢ irreducible factor I(z).

Then, the quotient F 2[x]/(I) is a sparse medium subfield representation of k.

Here comes already the first obstacle to a rigorous algorithm. We wish that any field
of the form F o with £ < ¢ + 2 has a sparse medium subfield representation. And this
is indeed believable, as such representations are very easy to find in practice, yet there
is no proof to this day that they always exist.

Heuristic 1.7. Any field of the form F ¢ with £ < q + 2 has a sparse medium subfield
representation (where these q and ¢ implicitly play the same role as in Definition 1.6),
with hy and hy of degrees at most 2.
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To get an algorithm of heuristic quasi-polynomial time complexity, this bound of 2
on the degrees of hg and hy could harmlessly be replaced by any other constant. Given

such a representation for F 2¢, we adopt the model F2c = Fpa[z]/([).

1.5.3. The descent. The descent consists in recursively applying a degree halving
procedure on the polynomials of Fg2[x] (representing elements of F ), until all the
polynomials involved are linear. This degree halving is the essential building block, and
its properties are made precise in the following Proposition 1.8.

Proposition 1.8 (Degree halving). Let k = F 2c be a finite field with a sparse medium
subfield representation. Under the heuristic assumption made precise in Heuristic 1.9
below, there exists an algorithm with complexity polynomial in q and ¢ which solves the
following task. Given an element of k represented by a polynomial f € F x| with
2 < deg f < {—1, the algorithm returns an expression of log f as a linear combination
of log hy and at most O({q?) logarithms log f; with deg fi < [deg(f)/2].

It allows us to define the factor base as

§={f €Fplz]|deg(f) <1,f #0}U{hi}.
The descent to § goes as follows. Let f be a polynomial in F 2 [z] of degree at most £—1.
Applying the algorithm of Proposition 1.8 to f yields a relation of the form

log(f) = eolog(h1) + > _ eilog(f;),

where the sum has at most O(g?/) terms, and the polynomials f; have degrees at most
[deg(f)/2]. By recursively applying that algorithm to the polynomials f;, one builds
a tree rooted at f, where the children of any node are the resulting f;-values, and the
leaves are linear polynomials over F 2. The logarithm of each of the nodes of the tree can
then be computed as a linear combination of its children and logh;. Therefore log(f)
can be expressed as a linear combination of logarithms of the factor base: the descent
is complete.

The arity of the tree is O(¢g%(), and its depth is O(log ¢). Therefore it has (¢2¢)©(og?)
nodes, and since any polynomial in ¢ and £ is absorbed in the O in the exponent, we
obtain a running time bounded by max(gq, £)°(°2 for the descent.

Proof of Proposition 1.8. Let f € Fg[z] be a polynomial of degree at most £ — 1.
As discussed in Section 1.5.1, for any polynomials F' and G, we get a relation of the
form (1.4), which with the congruence z? = ho/h; mod I becomes

(15  F@ <Z°> G2) — F(z)GW <h’°> = G() [[ (F@) - aG(z)) mod I.

h
1 ! acFy

The left-hand side is a rational function, whose denominator is a power of h;. We
would like this multiplicative relation to involve f, and polynomials of degrees at most
[deg(f)/2]. As a first try, we could simply let F' = f and G = 1. The numerator of
the left-hand side is of degree at most 2deg(f), and assuming it behaves as a random
polynomial of this size, it has a constant probability of being [deg(f)/2]-smooth. The
right-hand side is the product of the polynomials f — « for all @ in F,. The good news
is that it involves f. The bad news is that it involves a lot of other polynomials of the
same degree (instead of half the degree). The trick is to generate a lot more of these
relations, and then use some linear algebra to eliminate all the factors f — «, for a # 0.

We cannot get more of these relations if we insist on keeping these a-values in F,.
However, we can generate a plethora of relations involving the linear polynomials f — «
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for a in F 2. Consider any four coefficients a,b,c,d € F 2, and substitute F' for af + b
and G for c¢f + d in Relation (1.5). The right-hand side becomes

(cf +d) ] ((af +b) = alef +d)),

acFy

which factors as a product of polynomials f — a for o in Fg2, up to a scalar in F 2. It
induces a vector v = (Ua)aepq2 where v, is the valuation of this expression at x — a.
The left-hand side reads

(wzf(q) (Z?) + bq) (¢f +d) — (af + ) (cqﬂq) (Z?) + de> ,

and its numerator has degree at most 3deg(f). Whenever it is [deg(f)/2]-smooth,
we say that a,b,c,d yield a relation, and we add the vector v as a new row of a large
matrix H(f). Once sufficiently many relations have been found, the matrix H(f) should
have full-rank, so some simple linear algebra allows to eliminate all the factors f — «
for a # 0, resulting in a relation between f and a [deg(f)/2]-smooth polynomial (and hq,
which systematically appears in the denominator of the left-hand side), with at most
O(q? deg(f)) irreducible factors. This describes the degree-halving procedure.

A question remains: is there a good reason to believe that choosing a,b,c and d
in F 2 leads to sufficiently many relations to construct a full rank matrix H(f)? It is
important to note that a lot of these relations are trivial, or redundant. Consider these
coefficients as a matrix

—_— (a b)
c d)’

It is easy to see that when m is not invertible, the resulting relation is trivial: both sides
are zero. It is also clear that the relations we get from m and from «ym are the same for
any v € Fy2. Therefore the interesting relations arise from invertible matrices up to a
scalar, in other words, from PGLy(F2). Now, considering the usual action of PGL2 on
the projective line P!, it appears that the right-hand side can be rewritten as

(cf+d) [] ((af +b) — alef +d)) = 11 Bf — ),

a€cF, (:B)em=1PL(Fy)

for some appropriate choice of representatives for the points (« : ) of Pl(qu). Under
this form, it becomes clear that two matrices m and m in PGLy give the same relation
if and only if m~'PY(F,) = m~'PY(F,), meaning that mm ! € PGLy(F,). Therefore
we should restrict to a single matrix for each coset of

PGLy(F,)\PGLy(F 2).

As a result, we get only ¢® + ¢ potential relations. Recall that we only get a useful
relation when the numerator of the left-hand side is [deg(f)/2]-smooth. Assuming this
numerator behaves like a random polynomial of degree at most 3 deg(f), we should still
get a total of ©(¢?) relations. Considering that H(f) has ¢ columns, it seems like O(¢3)
rows is plenty enough to ensure H(f) has full rank. As often with questions involving
smoothness of “random looking” polynomials, and ranks of “random looking” matrices,
a rigorous answer seems out of reach.

Heuristic 1.9. For any polynomial f, the matriz H(f) obtained after processing all the
¢® + q cosets of PGLy(Fq)\PGLy(F 2) has full rank ¢*.

Under this heuristic assumption, the degree halving procedure succeeds in polyno-
mial time, which concludes the proof of Proposition 1.8. O
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Remark 1.10. The authors of [BGJT14] justify this Heuristic 1.9 by showing that the
matrix H obtained from the ¢* + ¢ cosets of PGLa(F,)\PGLy(F ;2), without restriction
on the smoothness of the left-hand sides, has full rank ¢?. A random submatrix H(f)
containing ©(¢®) rows (assuming we are lucky enough with questions of smoothness),
should have full rank with overwhelming probability.

1.5.4. Heuristic quasi-polynomial complexity. Consider the discrete logarithm
problem in Fpm, where p is the characteristic of the field, and suppose p = Lym(«),
for some « in the range [0, 1]. If Fym is not itself of a suitable form, one can construct
an extension that has a sparse medium subfield representation as follows. Let ¢ be m
if m is odd, and m/2 if m is even. Then, let ¢ = plogr f1 and work in Fj2¢, which is an
extension of Fym. This field F 2 is of the appropriate form, and satisfies £ = plogp(e) <gq
so we can assume it has a sparse medium subfield representation. As discussed in Sec-
tion 1.5.3, the descent in F 20 (and therefore the discrete logarithm algorithm, thanks
to Theorem 1.4) has complexity

max(%g)O(logZ) — qO(logm) — max(p, m)O(logm)'
Since m = Lym(0), the complexity becomes

me (a)O(log logp™) )

If @ = 0, meaning that p is polynomial in the bit-length of the cardinality of the field,
then the complexity is of the form e@((log 1ogpm)2)’ which is a quasi-polynomial quantity
in the bit length logp™ of the size of the field. In particular, the discrete logarithm
problem in Fam can be solved in time ¢©(1°8™)*)  Also, observe that Lym (r)OUloglogp™)
is smaller than L,m(a’) for any o/ > a. Therefore, for any a < 1/3, the algorithm is

faster than any previously known algorithm.



The powers of 2 descent method

ABSTRACT. This chapter is based on a joint work with Thorsten Kleinjung, presented
at ANTS-XIII, Thirteenth Algorithmic Number Theory Symposium, as

T. Kleinjung and B. Wesolowski, A new perspective on the powers of two
descent for discrete logarithms in finite fields, Thirteenth Algorithmic Num-
ber Theory Symposium — ANTS-XIII, 2018, proceedings to appear in the
Open Book Series, Mathematical Sciences Publishers.

[KW18]

ORIGINAL ABSTRACT. A new proof is given for the correctness of the powers of 2
descent method for computing discrete logarithms. The result is slightly stronger than
the original work, but more importantly we provide a unified geometric argument,
eliminating the need to analyse all possible subgroups of PGL2(F,4). Our approach
sheds new light on the role of PGLz2, in the hope to eventually lead to a complete proof
that discrete logarithms can be computed in quasi-polynomial time in finite fields of
fixed characteristic.

2.1. Towards a provable quasi-polynomial time algorithm

The discrete logarithm problem in finite fields of small characteristic finds itself in an
uncomfortable situation: a large gap separates what is provably feasible (an algorithm
of complexity L(1/2)) and what seems to be feasible (a heuristic algorithm of quasi-
polynomial complexity). Soon after the first heuristic quasi-polynomial algorithm was
introduced, a second one was proposed in [GKZ18] with the promise to get a bit closer
to a provable algorithm. The authors of [GKZ18| provide a rigorous analysis under the
sole assumption that the field admits a suitable representation. This chapter explores
this algorithm through a new proof of the following theorem.

Theorem 2.1. Given a prime power q, a positive integer d, coprime polynomials hg and
hy in F a[z] of degree at most 2, and an irreducible degree £ factor I of hyx? — hy, the
+0(d).

discrete logarithm problem in ¥ ae = F a[x]/(I) can be solved in expected time qlos2

The integers ¢, d and ¢, and the polynomials hg, hy and I are defined as in the above
theorem for the rest of the chapter. It was originally proven in [GKZ18] when ¢ > 61, ¢
is not a power of 4, and d > 18. Even though we eliminate these technical conditions, the
main contribution is the new approach to the proof — more geometric, and, hopefully,
more insightful. The obstacle separating Theorem 2.1 from a fully provable algorithm
for the discrete logarithm problem is the question of the existence of a good field repre-
sentation: polynomials hg, h1 and I for a small d. A direction towards a fully provable
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algorithm would be to find analogues of this theorem for other field representations, but
this may require in the first place a good understanding of why Theorem 2.1 is true.

That result rests on two ideas. The first was discussed in Section 1.4: to build a full,
rigorous index calculus algorithm, it is sufficient to design a rigorous descent algorithm —
an algorithm which rewrites an arbitrary element of the group as a product of elements
of the factor base. The second observation, new in [GKZ18], is that to build a descent
algorithm, it is sufficient to design a degree 2 elimination algorithm — an algorithm which
rewrites an irreducible polynomial in F [z] of degree 2m as an equivalent product of
irreducible polynomials of degrees dividing m. This degree 2 elimination is the true
core of the result, and there resides the main difficulty. We present it in more detail in
Section 2.1.1, before describing precisely how it leads, thanks to the above ideas, to a
full index calculus algorithm in Section 2.1.2. The rest of the chapter is dedicated to
the rigorous analysis of the degree 2 elimination algorithm.

2.1.1. Degree 2 elimination. Proposition 2.3 below essentially states that elements
of F,a represented by a good irreducible polynomial in Fa[z] of degree 2m can be
rewritten as a product of good irreducible polynomials of degrees dividing m. This
process, the degree 2 elimination, was first introduced for m = 1 in [GGMZ13] and
generalised in [GKZ18].

Definition 2.2 (Traps and good polynomials). An element 7 € F, for which [F (1) :

F 4] is an even number 2m and hy(7) # 0 is called

(1) a degenerate trap root if Z—?(T) € F jim,

2) a trap root of level 0 if it is a root of hix? — hg, or

(2) p f :

dm-+1 . hO

Analogously, a polynomial in F,[z] that has a trap root is called a trap. A polynomial
is good if it is not a trap.

(3) a trap root of level dm if it is a root of hjx?

Proposition 2.3 (Degree 2 elimination). Given an extension k/F of degree m such
that dm > 23, and a good irreducible quadratic polynomial Q € kx|, there is an algorithm
which finds a list of good linear polynomials (Lo, ..., Ly) in kx| such thatn < ¢+ 1 and

n
Q=mL;" - [[Li modl,
i=1

and that runs in expected polynomial time in q, d and m.

The main contribution of this chapter is a new proof of Proposition 2.3, which hope-
fully provides a better understanding of the degree 2 elimination method, the underlying
geometry, and the role of traps. The action of PGLs on the polynomial x? — x became
a crucial ingredient in the recent progress on the discrete logarithm problem for fields
of small characteristic, since [Joul3] (and implicitly in [GGMZ13]). While the proof
in [GKZ18] resorted to an intricate case by case analysis enumerating all possible sub-
groups of PGLy(F,), we provide a unified geometric argument, shedding new light on
the role of PGLs.

Overview of the algorithm. Let  be as in Proposition 2.3. The key observation allowing
degree 2 elimination is that a polynomial of the form az?t! + 29 + vz + ¢ has a
high chance to split completely over its field of definition. Furthermore, we have the
congruence

(2.1) ax®™ 4 Bx? 4+ yx + 8 = hy Yaxh + Bho + yzhy + 6hy) mod I,
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and the numerator of the right-hand side has degree at most 3. Consider the F,-vector
space V spanned by 29! 29, and 1 in F,[z], and the linear subspace

(2.2) Vo = {ax?™ + Brl+ vz + 06 € V | axhg + Bho +yrh1 + 6h1 =0 mod Q}.

As long as @ is a good irreducible polynomial, Vj is of dimension two. The algorithm
simply consists in sampling uniformly at random elements f € Vi(k) (or equivalently in
its projectivisation Pég(k:)) until f splits completely over k into good linear polynomials
(L1, ..., Laeg f)- Since f € Vi, the polynomial ) divides the numerator of the right-hand
side of (2.1), and the quotient is a polynomial Ly of degree at most 1. The algorithm
returns (Lo, ... y Laeg #). This procedure is summarised in Algorithm 2.1.

Algorithm 2.1 Degree 2 elimination

Require: An extension k/F of degree m such that dm > 23, and a good irreducible
quadratic polynomial @ € k[x].
Ensure: A list of good linear polynomials (Lo, ..., Ly) in k[z] such that n < ¢+ 1 and
Q=mLy' T[], L; mod I.
Let V (k) be the k-vector space spanned by 297! 29 z, and 1 in k[z];
Let V(k) C V (k) be the linear subspace defined in Equation (2.2);
repeat
Choose f = az?™! + Bz9 + vz + § uniformly at random in Vg (k);
Let [[;™, L; be the factorisation of f into irreducible polynomials of k[x];
until (Lq,...,L,,) is a list of good linear polynomials in k[x];
Lo < (axhg + Bho + yrhy + 6h1)/Q;
return (Lo, ..., Ly).

To prove that the algorithm terminates in expected polynomial time, we need to
show that a random polynomial in Vi(k) has good chances to split into good linear
polynomials over k. We prove this by constructing a morphism C' — Pb where C' is an
absolutely irreducible curve defined over k, such that the image of any k-rational point
of C'is a polynomial that splits completely over k. This construction is the object of
Section 2.4. The absolute irreducibility implies that C has a lot of k-rational points,
allowing us to deduce that a lot of polynomials in PlQ(k) split over k. This is done in
Section 2.5.

2.1.2. The zigzag descent. We explain in this section how the degree 2 elimination
(Proposition 2.3) allows to construct a full discrete logarithm algorithm, resulting in
Theorem 2.1. From Theorem 1.4, it is sufficient to construct a descent algorithm. Con-
sider the factor base

§={f €Fplz][degf <1 f#0}U{l}.

The following proposition extends the degree 2 elimination to a full descent algorithm
from any polynomial down to the factor base.

Proposition 2.4. Suppose d > 23. Given a polynomial F' € F ju[z], there is an algorithm
that finds integers (ey) ez such that

F= H ¢ mod I,
=

and that runs in expected time ¢'°%2 t+0(d)
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Proof. This is essentially the zigzag descent presented in [GKZ18]. First, one finds a
good irreducible polynomial G € F a[x] of degree 2¢ such that F' = G mod I (this can
be done for e = [logy(4¢ + 1)], see [Wan97, Theorem 5.1] and [GKZ18, Lemma 2]).
Over the extension qu2671 , the polynomial G splits into 267! good irreducible quadratic
polynomials, all conjugate under Gal(qugefl /F,a). Let Q be one of them, and apply
the algorithm of Proposition 2.3 to rewrite @ in terms of linear polynomials (Lo, ..., L)
in qu2571 [z] and h;. For any index i, let L; be the product of all the conjugates of L;
in the extension qu2e—1/qu. Then,

n
F=h"Lg" ][ Li mod I,
=1

and each L; factors into good irreducible polynomials of degree a power of 2 at most 2¢—1,
The descent proceeds by iteratively applying this method to each L; until all the factors
are in the factor base §. ]

Proof of Theorem 2.1. Proposition 2.4 above, together with Theorem 1.4, imply The-
orem 2.1 for any d > 23. To remove this constraint on d, suppose that d < 22, and
let d’ < 44 be the smallest multiple of d larger than 22. Let I’ be an irreducible factor
of I inF o [x]. The discrete logarithm problem can be solved in expected time

q082(deg I +0(d) _  log, £+0(1)

in the field F o [2]/(I), and therefore also in the subfield Fga[z]/(I). O

2.2. The action of PGLy on 27 — x

As already mentioned, the crucial reason why degree 2 elimination works is that a
polynomial of the form az9Tt + Ba? + vz + 6 has a high chance to split completely over
its field of definition. This fact is closely related to the action of 2 x 2 matrices on such
polynomials.

Definition 2.5. We denote by x the action of invertible 2 x 2 matrices on univariate
polynomials defined as follows:

ar +b
<i Z) « f(2) = (ca + d)esS f (Cxid) .

Consider the Fy-vector subspace V spanned by x4+, 29, 2, and 1 in Fy[z]. The above
action induces an action of the group PGLy on the projective space P(V'), which we also
write . Parameterizing the polynomials in P(V) as az9t! + B2 + vz + J, let S be the
quadratic surface in P(V') defined by the equation ad = . This surface is the image
of the morphism

Y :PLx P — P(V): (a,b) — (z —a)(z — b)".
Note that to avoid heavy notation, everything is written affinely, but we naturally have
Y(00,b) = (z — b)4, P(a,00) = x — a and P(oo,00) = 1. More generally, we say that
f(x) € V has a root of degree n at infinity if f is of degree ¢+ 1 —n. Now, the following

lemma shows that apart from the surface S, the polynomials in P(V') form exactly one
orbit for PGLs.

Lemma 2.6. We have P(V)\ S = PGLy * (27 — z).
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Proof. First notice that both S and P(V) \ S are closed under the action of PGLy. In
particular, PGLg * (7 —z) CP(V)\ S. Let f(z) € P(V)\ S. Suppose by contradiction
that f(x) has a double root 7 € P!, and let ¢ € PGLy be a linear transformation
sending 0 to r. The polynomial g x f(z) has a double root at 0, so has no constant
or linear term, and must be of the form az9t! + B2, so it is in S, a contradiction.
Therefore f(x) has ¢+ 1 distinct roots. Let g € PGL3 send 0, 1 and oo to three of these
roots. Then, g« f(z) has a root at 0 and at oo so is of the form fz9 4+ vz, and since it
also has a root at 1, it can only be 27 — x. O

This result implies that most polynomials in P(V') are of the form g % (z? — x), and
thus split completely over the field of definition of the matrix g.

2.3. The role of traps

Consider a finite field extension k/ F,a of degree m. Let @ be an irreducible quadratic
polynomial in k[z] coprime to hi. Let a1 and ag be the roots of @ in F,. The degree 2
elimination aims at expressing () modulo hi1z? — hy as a product of linear polynomials.
To do so, we study a variety Pb C P(V) parameterizing polynomials that can possibly
lead to an elimination of @ (i.e., such that @ divides the right-hand side of (2.1)). In
this section, we define Pb and show how the notions of traps and good polynomials
determine how it intersects the surface S from Lemma 2.6.

Recall that V is the Fy-vector subspace spanned by x9%1 2% z, and 1 in Fy[z].
Consider the linear map

— 1,

_ XT
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l’q+1 — tho/hl.

We want Pb to parameterise the polynomials f € V such that ¢(f) is divisible by Q.
For any P € Fy[z] coprime with hy, write pp = mp o where 7p : Fy[z][h; '] — Fylz]/P
is the canonical projection. We can now define PIQ as

(2.4) Py = P(kerpg).
The variety P}Q is the intersection of the two planes P(ker p,_,) and P(ker v;_q,).

Lemma 2.7. If Q) is not a degenerate trap, then |(Pé2 NS)(F,)| =2, and these two
points are of the form ¢ (a1,b1) and ¥ (az,b2), with a; # as and by # bs.

Proof. For a € {aj,as}, we have

P(kerp,—q) NS =1 ({a} x PY) Uy <P1 X {Zo(a)l/q}) .

1

Since the polynomial @ is irreducible, we have a; # as. Furthermore, assuming that @

is not a degenerate trap, we have Z—?(al) ¢ k, and thereby Z—?(al) # Z—‘;(ag). Therefore

the intersection Pb N .S is equal to

P(ker z—q,) N P(kerpy_q,) NS = {1/, <a1, ZO(QQ)l/q> R0 <a2, Z(l](al)l/q> } )

1
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In particular, when @) is not a degenerate trap, Pb is exactly the line passing through
the two points s; = (a1, b1) and sy = ¥(az,by). We get a k-isomorphism P! — Pb :
« — s1 — aesg. For this reason the two points s; and so play a central role in the rest of
the analysis, and the following proposition shows that they behave nicely when @ is a
good polynomial.

Proposition 2.8. Suppose Q is a good polynomial. Then, (Pég N S)(F,) = {s1,s2},
where s1 = (x —a1)(x —b1)?, and sy = (x — a2)(xz — b2)?, and the roots a1, az, by and by
are all distinct.

Proof. From Lemma 2.7, we can write (PbﬂS)(FQ) = {s1, s2} with a; # as and by # bo.
If a1 = by or ag = by, then Q divides x%hy — hg, a trap of level 0. Now, suppose a; = by
(the case ag = bo is similar). Since a; and ag are the two roots of @, and @ divides
(z —a1)(ho — alhy), then ay is a root of hg — afhi. We get that ho(az) = afhi(az), so as
dm+1

is a root of hiz? — hg, a trap of level dm. O

2.4. Irreducible covers of Pb

In this section we suppose that @ is a good polynomial, and we consider the polynomials
s1=(x —a1)(z —b1)? and sy = (x — az)(x — by)? as defined in Proposition 2.8, where
a1, as, by and by are all distinct. Consider the variety P({? from (2.4).

Recall that our goal is to prove that a significant proportion of the polynomials of
Pb(k) splits completely over k. As mentioned in Section 2.1.1, our method consists in
constructing a morphism C' — Pb where C' is an absolutely irreducible curve defined
over k, such that the image of any k-rational point of C is a polynomial that splits
completely over k. The absolute irreducibility is crucial as it implies that C has a lot of
k-rational points. The idea is to consider the algebraic set

C = {(u,r1,72,7r3) | the r;-values are three distinct roots of u} C PlQ x P! x P! x P!,
and the canonical projection C — Pb.
Proposition 2.9. If (u,r1,r2,73) € C(k), then u splits completely over k.

Proof. Suppose that (u,r1,7r2,73) is a k-rational point of C. From Lemma 2.6, we get
u = g% (x?—x) where g is the matrix g € PGLa(k) sending the three points 1,72 and 3
to 0, 1 and oo. In particular, the set of roots of u is g=1(P!(F,)), a subset of P}(k). O

In the rest of this section, we prove that C'is absolutely irreducible (Proposition 2.14).
The strategy is the following. Instead of considering C' directly, which encodes three roots
for each polynomial of Pé, we start with the variety

X ={(u,r) |u(r) =0} C Pb x P,

where each point encodes a single root. We can then “add” roots by considering fibre
products. Recall that given two covers v: Z — Y and p: Z' — Y, the geometric points
of the fibre product Z xy Z' are pairs (z, 2’) such that v(z) = p(z’). In particular, the
fibre product over the projection X — Pb is

X xpy, X = {((u1,m), (u2,72)) | ui(r1) = 0,ua(r2) = 0,u1 = uz}
= {(u,r1,72) [ u(r1) = 0,u(rz) = 0}.
This product X Xpl, X contains a trivial component, the diagonal, corresponding to

triples (u,r,7). The rest is referred to as the non-trivial part, and we prove that it is
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an absolutely irreducible curve (Corollary 2.11). Iterating this construction, the fibre
product (X Xp, X) xx (X XpL, X) (over the projection X Xpy, X — X to the first
component) encodes quadruples (u,r1,7r2,73). Therefore the curve C naturally embeds
into the non-trivial part of this product. We prove that this non-trivial part is itself an
absolutely irreducible curve (Lemma 2.13).

Instead of the projection X — P}, we work with an isomorphic cover 6. It is
easy to see that the canonical projection X — P! is an isomorphism, with inverse
r + (s2(r)s1 — s1(r)s2, 7). Through the isomorphisms X = P! and Pb =~ P!, this
projection is isomorphic to the cover # in the following commutative diagram (where,
again, the morphisms are written affinely for convenience):

(u,7) ————>u

(u,r) X PlQ 51 — (S
[ ) | |
r P! b P! o

r———>s1(r)/sa(r).

For convenience, consider 6 as a cover X; — X where Xg = X; = P'. As a first step,
we study the induced fibre product X; x x, Xi. It contains the diagonal A;, isomorphic
to X1. We wish to show that Yo = X x x, X1\ A; is absolutely irreducible. The second
step consists in showing that Xo x x, X9\ Ay is also absolutely irreducible, where X» is a
desingularisation of Y5 and A is the diagonal. The following lemma provides a general
method used in both steps.

Lemma 2.10. Let Y and Z be two absolutely irreducible, smooth, complete curves
over k, and consider a cover n: Z — Y. If there exists a point a € Z such that n is not
ramified at a and #(n~1(n(a))) =2, then Z xy Z \ A is absolutely irreducible, where A
1s the diagonal component.

Proof. By contradiction, suppose that Z xy Z \ A is not absolutely irreducible, and can
be decomposed as two components AU B. Let pr: Z Xy Z — Z be the projection on
the first factor. Since Z xy Z is complete, both A and B are complete, so we have
pr(A) = pr(B) = pr(A) = Z. Observe that pr—!(a) consists of #(n~1(n(a))) = 2
points, so one of them must belong to two of the components A, B and A. That point
must therefore be singular in Z xy Z, contradicting the fact that 7 is not ramified at a
(recall that a point (21, 22) € Z Xy Z is singular if and only if n is ramified at both z;
and z9). O

Corollary 2.11. The curve Yo = X1 X x, X1 \ A1 is absolutely irreducible.

Proof. First observe that 6 is ramified only at by and by (as can be verified from the
explicit formula 6(r) = s1(r)/s2(r)). In particular, it is not ramified at a;. Since
#(071(0(ar))) = #{a1,b1} = 2, we apply Lemma 2.10. O

Lemma 2.12. The desingularisation morphism v : Xo — Yo is a bijection between the
geometric points.

Proof. Tt is sufficient to prove that for any singular point P on Ya, and ¢ : Yo — Ys
the blowing-up at P, the preimage ¢~ !(P) consists of a single smooth point. Up to
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a linear transformation of X; = P!, we can assume that s; and sy are of the form
si(z) = (z — 1)x? and sa2(x) = = — a, for some a # 0,1. The intersection A of the
curve Yy with the affine patch A2 € P! x P! can then be defined by the polynomial

r—=y r—y

It remains to blow up A at the singularity (0,0) (which corresponds to (b1, b1) through
the linear transformation), and check the required properties. This is easily done fol-
lowing [Har77, Example 4.9.1], and we include details for the benefit of the reader. Let
Y : Z — A? be the blowing-up of A? at (0,0). The inverse image of A in Z is defined
in A2 x P! by the equations f(x,y) = 0 and ty = 2u (where t and u parameterize the
factor P1). It consists of two irreducible components: the blowing-up A of A at (0,0)
and the exceptional curve 1 ~1(0,0). Suppose t # 0, so we can set ¢t = 1 and use u as
an affine parameter (since f is symmetric, the case u # 0 is similar). We have the affine
equations f(z,y) = 0 and y = zu, and substituting we get f(x,zu) = 0, which factors
as

) = s1(2)s2(y) — s1(y)sa(x) a9z —1)(y —a) — yi(y — 1)(z — a)

x—1)(zu —a) —ul(zu—1)(z — a)‘

1—u

flz,zu) = :1:‘171(

The blowing-up A is defined on t = 1 by the equations g(z,u) = f(x,zu) /29" = 0 and
y = xu. It meets the exceptional line only at the point v = 1, which is non-singular. [

The projection X; xx, X1 — X; on the first component induces another cover
02 : X2 — X1, through which we build the fibre product X2 x x, X2. As above, it contains
a diagonal component As isomorphic to Xs.

Lemma 2.13. The curve Y3 = Xo xx, X2 \ Ag is absolutely irreducible.

Proof. Let v : Xo — Y5 be the bijective morphism from Lemma 2.12. Since 6 is
only ramified at by and b, the cover f is ramified at most at the points v~1(b;, b;)
and v~ 1(a;,b;) (for i € {1,2}). In particular, it is not ramified at v~1(by,a;). Since
#(05 1 (02(v~1(b1,a1)))) = #{v " (b1, a1), v (b1, b1)} = 2, we apply Lemma 2.10. O

Proposition 2.14. The curve C is absolutely irreducible.

Proof. Let v : Xo — Y5 be the morphism from Lemma 2.12. It is an isomorphism away
from the singularities of Y3, so

C —Ys: (ur,r,rs) — (l/_l(T‘l,TQ),V_l(’I“l,T‘g))

is a morphism. It is an embedding, and the result follows from Lemma 2.13. O

2.5. Counting split polynomials in PIQ

Recall that we wish to prove Proposition 2.3 by showing that Pé(kz) contains a lot of
polynomials that split into good polynomials over k. The results of Section 2.4 allow
us to prove in Theorem 2.15 that a lot of polynomials in Pb(k:) do split. We then
show in Proposition 2.16 that all these polynomials are coprime, which implies that bad
polynomials cannot appear too often.

Theorem 2.15. Let k/F a be a field extension of degree m, and Q be a good irreducible

quadratic polynomial in k[z] coprime to hi. If dm > 23, there are at least #k/2¢>
polynomials in Pb that split completely over the field k.
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Proof. Let © : Y3 — Pé be the cover resulting from the composition of the successive
covers of Section 2.4. Let S3 = 9_1(Pé2 N .S). The embedding C' — Y3 from Proposi-
tion 2.14 has image Y3 \ S3. The morphism

p:Y; - Ptx P x PL: (1/*1(7'1,7”2), Vﬁl(T’l,Tg)) — (r1,72,73)

restricts to an embedding of Y3\ S3. Let A be the intersection of p(Y3) with the affine
patch A3. The curve A is a component of the (reducible) curve defined by the equations
0(r1) = 0(ry) and O(r1) = 0(r3). Therefore A is of degree at most 4(q + 1)2. If B is the
closure of A in P3, then [Bac96, Th. 3.1] shows that

[#B(k) — #k — 1] < 16(q + 1)*\/#k.
Since Y3 is complete, p(Y3) is closed, so all the points of B\ A are at infinity, and there
are at most deg(B) < 4(g+1)? of them. Also, at most 2(¢® — ¢) points of B are in 1(S3)
(because #S = 2 and O is of degree ¢ — ¢). Therefore

#C (k) = #(Ys \ S3)(k) > #k + 1 - 16(q + 1) V#k — 4(g + 1) = 2(¢° — q).
Since ¢ > 2 and dm > 23, we get #C(k) > #k/2. From Proposition 2.9, and the fact
that the map O is ¢> — ¢ to one, we get that at least #k/2¢> polynomials in Pb split
completely over k. O

Let ¢ be the morphism defined in (2.3) on page 27.

Proposition 2.16. Suppose Q) is a good polynomial. For any two distinct polynomials
fand g in Pg(Fy), we have ged(f,g) =1 and ged(hip(f), hip(g)) = Q.

Proof. Let s1 and sy be as in Proposition 2.8. They have no common root. Since f and
g are distinct, all the polynomials of Pé are of the form af + B¢ for (o : B) € P!, Then,
if  is a root of f and g, it is a root of all the polynomials of Pb. In particular, it is a
root of both s; and sg, a contradiction. This shows that ged(f, g) = 1.

Similarly, if a polynomial h divides hip(f) and hip(g), it must also divide both
hip(s1) = (x — a1)(ho — b{h1) and hip(s2) = (x — az)(ho — b3hy). Since ho — bih; and
ho — bihy are coprime, h must divide Q. O

Proof of Proposition 2.3 (degree 2 elimination). As discussed in Section 2.1.1, it is
sufficient to prove that a uniformly random element of Pb(k) has a good probability

to lead to an elimination into good polynomials. A polynomial f € Pb(k) leads to
an elimination into good polynomials if f splits completely over k into good linear
polynomials, and ¢(f) is itself a good polynomial.

Let A be the set of polynomials of Pcl;)(k:) that split completely over k. From The-

orem 2.15, A contains at least ¢®™3/2 elements. Trap roots 7 occurring in A or (A)
dn+1

must be roots of hix? — hg, or of hiz? — hg for n | m/2, or satisfy Z—‘;(T) € Fjam2.

There are at most qd7m+3 such trap roots. From Proposition 2.16, any trap root can only
occur once in A and in ¢(A). So there are at most 2qd7m+3 polynomials in A for which
trap roots appear. Therefore the number of elements in A leading to a good reduction

is at least

%qdm—?) g% > % (qdm—3 B 4qdm—8) > iqdm—?)?

using dm > 23. Since PlQ(k) contains ¢ + 1 elements, the probability of a random
element to lead to a good elimination is 1/0(g?). O
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Horizontal isogeny graphs

ABSTRACT. This chapter is based on a joint work with Dimitar Jetchev, to appear in
the journal Acta Arithmetica as

D. Jetchev and B. Wesolowski, Horizontal isogeny graphs of ordinary abelian
[JW18]  warieties and the discrete logarithm problem, Acta Arithmetica (2018), in
press.

It is the natural continuation of my master’s thesis [Wes14] (supervised by Dimitar
Jetchev and Kenneth A. Ribet), which dealt with the simpler case where the abelian
varieties have dimension two, with maximal endomorphism ring whose real part has a
trivial narrow class group.

ORIGINAL ABSTRACT. Fix an ordinary abelian variety defined over a finite field. The
ideal class group of its endomorphism ring acts freely on the set of isogenous varieties
with same endomorphism ring, by complex multiplication. Any subgroup of the class
group, and generating set thereof, induces an isogeny graph on the orbit of the variety
for this subgroup. We compute (under the extended Riemann hypothesis) some bounds
on the norms of prime ideals generating the subgroup, such that the associated graph
has good expansion properties.

We use these graphs, together with a recent algorithm of Dudeanu, Jetchev,
Robert and Vuille for computing explicit isogenies in genus 2, to prove random self-
reducibility of the discrete logarithm problem within the subclasses of principally po-
larisable ordinary abelian surfaces with fixed endomorphism ring. In addition, we
remove the heuristics in the complexity analysis of an algorithm of Galbraith for ex-
plicitly computing isogenies between two elliptic curves in the same isogeny class, and
extend it to a more general setting including genus 2.

Since the seminal work of Miller [Mil86a] and Koblitz [Kob87], elliptic curves have be-
come a central tool to the design of cryptographic protocols. Their popularity is largely
due to the fact that the discrete logarithm problem on elliptic curves has resisted decades
of cryptanalysis. The generic algorithms presented in Section 1.1 do apply, and other
methods successfully attacked certain classes of elliptic curves, but very little has been
discovered beyond that. More generally, if <7 is an abelian variety defined over a finite
field k, one could consider the discrete logarithm problem in the group of rational points

o (k).

Definition 3.1 (Abelian variety). An abelian variety over a field k is a connected,
projective algebraic group over k. In other words, a connected, projective algebraic
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variety endowed with a group structure, such that the multiplication and inversion are
regular maps.

An elliptic curve is an abelian variety of dimension one. Choosing </ to be the
Jacobian of a hyperelliptic curve of genus g leads to what is commonly referred to as
hyperelliptic curve cryptography, and elliptic curve cryptography falls under this umbrella
as the case g = 1. Interestingly, the index calculus method has led to efficient algorithms
for curves of high genus. However, the case ¢ = 2 remains unaffected, and has in
fact been shown to be a promising alternative to elliptic curves, allowing very efficient
arithmetic [Gau07, BCHL16] (and thereby, efficient protocols). Much like elliptic curves,
little is known about the hardness of the corresponding version of the discrete logarithm
problem beyond the generic methods.

Definition 3.2 (Isogeny). An isogeny is a morphism of abelian varieties (a regular
map that is also a group homomorphism) that is surjective and has finite kernel. By
convention, the trivial map (sending each point to zero) is also an isogeny.

Two abelian varieties are said to be isogenous if there exists a non-zero isogeny be-
tween them. The set of all abelian varieties (up to isomorphism) isogenous to &7 is
called the isogeny class of 7. Note that in this thesis, given a finite field k, all varieties
and morphisms are considered over the algebraic closure k, and when we say that an
abelian variety « is defined over k, we always mean that we have implicitly chosen a
model of o7 over k, which endows &/ with an action of the k-Frobenius. An isogeny
p o — A is said to be defined over k if it arises via base change from an isogeny of
the implicitly chosen models; this is equivalent to commuting with the k-Frobenius.

If &7 is an abelian variety over a finite field k, and Z is an isogenous abelian vari-
ety, then the discrete logarithm problem on the group of k-rational points < (k) may
be transferred to a problem on %(k), assuming that one has an efficiently computable
isogeny &/ — 8. There is thus a natural cryptographic interest in understanding the
structure of graphs of isogenies between abelian varieties. These are graphs whose ver-
tices are isomorphism classes of abelian varieties and whose edges are equivalence classes
of isogenies belonging to some particular family, two isogenies being equivalent if they
share a kernel. Isogeny graphs of elliptic curves are well-understood, and have found
a profusion of applications in cryptography and algorithmic number theory. There is
great interest in generalising these results to higher dimensions, which is the object of
the next three chapters.

In this first chapter on isogeny graphs, we focus on so-called horizontal isogenies, and
the problem of transferring discrete logarithm instances will serve as a guiding thread.
We investigate the structure of horizontal isogeny graphs and prove that they rapidly
mix random walks (assuming the extended Riemann hypothesis, henceforth ERH). This
leads to a random self-reducibility theorem: the discrete logarithm problem on a given
abelian variety reduces to the same problem on a uniformly random abelian variety in
the isogeny graph. The case of ordinary elliptic curves was treated by Jao, Miller and
Venkatesan [JMVO05, JMV09], and we generalise it to higher dimensions.

These properties of horizontal isogeny graphs also allow us to tackle the isogeny
path problem: given two abelian varieties in the isogeny graph, find a path between
them (allowing, for instance, to transfer the discrete logarithm problem from one to the
other). Galbraith provides in [Gal99] a heuristic algorithm for this problem on ordinary
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elliptic curves. We construct a rigorous variant (assuming ERH), generalised to higher
dimensions, using again rapid mixing properties.

3.1. Isogenies, endomorphism rings, and complex multiplication

In this section, we review important notions for our study of isogeny graphs. We start
with properties of isogenies and endomorphisms, and the structure of endomorphism
rings. These notions allow to build a relation between some isogeny graphs and class
groups of certain orders in number fields, or subgroups thereof.

3.1.1. Isogeny graphs. Recall that an isogeny is a morphism of abelian varieties that
is surjective and has finite kernel. The degree of a non-zero isogeny ¢ : &/ — % defined
over a field k is the degree of the induced injection of function fields ¢* : k(%) — k(«/),
and the isogeny is separable if this field extension is separable. For separable isogenies,
the degree coincides with the size of the kernel. By convention, a zero isogeny has
degree 0. An endomorphism is an isogeny from an abelian variety to itself. A simple
family of endomorphisms are the multiplication-by-m maps: for any integer m, we denote
by [m] the endomorphism that sends any geometric point P € (k) to mP. The
endomorphism [m] has degree m?3™(¥) "and its kernel is the group «/[m] of m-torsion
points.

We need two important facts about isogenies. First, any isogeny ¢ : &/ — % has a
dual isogeny' ¢ : B — of such that ¢ o ¢ is the multiplication by deg(y) on .27. This
makes the relation “there is an isogeny from .27 to %" an equivalence relation on isomor-
phism classes of abelian varieties, and the equivalence classes are called isogeny classes.
Note that this notion of dual is well-behaved in the case of elliptic curves, where ¢
and ¢ have the same degree, and é = ¢, but in general, ¢ has degree deg(go)Zdim(% )1,
Second, any finite subgroup x of &/ determines a unique separable isogeny (up to an
isomorphism of the target) of kernel s, which is simply the projection &7 — o7 /k.

The vertices of an isogeny graph are usually isomorphism classes of abelian varieties
in a given isogeny class. Sometimes we only consider a subset of the isogeny class. For
instance, we might restrict to varieties with a specified endomorphism ring. An edge be-
tween two vertices in an isogeny graph represents an isogeny between the corresponding
abelian varieties. We do not usually consider every possible isogeny in a single graph
(as there are infinitely many of them between any two isogenous abelian varieties), but
restrict to certain families. For instance, we might consider an isogeny graph containing
all isogenies of a given prime degree ¢ (we call this an ¢-isogeny graph), or all isogenies of
prime degree smaller than a given bound. Therefore, restricting to a family of isogenies,
the graphs can be oriented: if there is an isogeny from & to % in this family, there is
not necessarily an isogeny from % to 7 in that same family. Finally, there is a natural
way to add a multiplicity to each edge. For any two vertices represented by the abelian
varieties &/ and %, the multiplicity of the edge @/ — A is the number of subgroups
of o/ such that &7 /k = % and the isogeny o/ — &7 /k is in the family of interest.

The choice of a subset of the isogeny class for the vertices, and of a family of iso-
genies for the edges, is usually motivated by two aspects: structure, and computability.
Structure, because we want the graphs to be either enlightening (can we read inter-
esting information about the varieties from the structure of the graph?) or convenient
(can we easily move around that graph, take random walks or solve path problems?).
Computability, because we usually want to navigate (algorithmically) in these graphs,

IThis “dual” should not be confused with the isogeny between the dual varieties ¢ : Y — &".
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which requires to compute isogenies corresponding to the edges. Computing isogenies
can be a very difficult problem, the solution of which usually requires more structure
than just an abstract abelian variety. As a result, we often need to restrict to principally
polarisable (or even polarised) abelian varieties, and isogenies of small degree. This is
not an issue for elliptic curves, which are all principally polarised, and isogenies can
be computed with Vélu’s formulas [VéI71] in polynomial time in the degree. The simi-
lar problem in dimension 2 (or higher) is more challenging since, unlike elliptic curves,
abelian surfaces are not a priori principally polarised, yet computing isogenies with the
algorithm of Dudeanu, Jetchev, Robert and Vuille [DJRV16, Dud16] requires a principal
polarisation.

3.1.2. Endomorphism rings of ordinary abelian varieties. Two endomorphisms
of an abelian variety can be added (point-wise) or multiplied (by composing them), thus
endowing the set of endomorphisms with a ring structure. Given an abelian variety o7
defined over a field k, we write Endy (/) for the ring of endomorphisms defined over k.
Unless otherwise specified, we are working over the algebraic closure, with the endo-
morphism ring End(«/) = End; (/). Endomorphism rings play a central role in the
structure of isogeny graphs.

Our study of isogeny graphs is focused on the case of absolutely simple, ordinary
abelian varieties over a finite field. An abelian variety is absolutely simple if it is not
isogenous to a product of abelian varieties of lower dimension. It is ordinary if its p-rank
is equal to its dimension (where p is the characteristic of the finite field). Note that in
this ordinary case, for any finite field F,, we have End(«/) = Endg, («/) = Endp, ()
(see [Wat69, Theorem 7.2.]).

An order in a number field is a full rank Z-lattice which is also a subring. Let .o
be an absolutely simple, ordinary abelian variety of dimension g over a finite field F,.
Its endomorphism ring End (/) is an order in a CM-field K, i.e., in a totally imaginary
quadratic extension K of a totally real number field K™ (CM stands for complex multi-
plication). This CM-field is the endomorphism algebra of <, which can be constructed
as the tensor product K = End(«7) ®z Q. The degree of an endomorphism of </ coin-
cides with its algebraic norm in the field K. The maximal real subfield K is of degree ¢
over Q. If ¢ : o — % is an isogeny, we can construct an embedding

1, : End(#) — K = End(#) ®z Q
ar— (poaocp)®deg(p) .

An immediate consequence is that for any abelian variety % isogenous to <7, we have
End(#)®zQ = K. In fact, this embedding does not depend on a choice of ¢. Therefore,
fixing (arbitrarily) the abelian variety <7 as a “reference” in the isogeny class, we simply
denote by 14 the embedding of End(#) in the CM-field K, and O(#) is the image of
this embedding — an order in K. Note that we will often abuse notation and refer to
the order O(Z) as the endomorphism ring of 4.

Even though isogenies preserve the endomorphism algebra K, they can change the
endomorphism ring (as an order in K). In this chapter and the next, we study horizontal
isogenies, which preserve the endomorphism ring, and in Chapter 5, we study vertical
isogenies, which change the endomorphism ring.

The Frobenius endomorphism 7 of &7 generates the field K = Q(x). The Frobenius
polynomial is the characteristic polynomial of m, and Tate’s isogeny theorem [Tat66]
implies that two abelian varieties defined over F, are isogenous if and only if they have
the same Frobenius polynomial. This element 7 is an algebraic integer with the property
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that for any complex embedding 1 : Q(7) — C, we have |i(7)| = ¢/2. Elements with
this property are called g-Weil numbers. Any ¢-Weil number 7 uniquely determines
an isogeny class of simple abelian varieties over F, with Frobenius 7, and two g-Weil
numbers define the same isogeny class if and only if they are conjugate over Q (see [Tat71,
Théoreme 1)).

3.1.3. Action of class groups on abelian varieties. Consider an absolutely simple,
ordinary abelian variety .« with endomorphism algebra K. There is a natural action of
the class group of the endomorphism ring of &7 on the set of isogenous abelian varieties
(up to isomorphism) with same endomorphism ring. This action has classically been
studied for abelian varieties defined over the field C of complex numbers (as done by
Taniyama and Shimura [ST61], and presented in the upcoming Section 3.2), and the
theory over finite fields can be deduced by canonical lifting. However, the action can
be constructed directly over any field, and modern tools make is quite simple (notably
quotients by finite group schemes in positive characteristic, unavailable to Taniyama
and Shimura). The following construction seems to have first appeared in the work of
Waterhouse [Wat69] as a way to study isogenies over finite fields, where the powerful
machinery of complex lattices is not readily available. Note that the presentation be-
low is a bit simpler, since we focus on the ordinary case: the endomorphism ring is
commutative, so all ideals are “kernel ideals” in the language of Waterhouse.

Definition 3.3 (a-torsion). For any ideal a in the endomorphism ring of <7, the a-torsion
of &7 is the finite subgroup &7 [a] = Naeq ker(a).

Like any finite subgroup of 7, the a-torsion is the kernel of a unique separable

isogeny: the projection
g A — A [a].

This isogeny is the a-multiplication of <f, and its target <7 /<7[a] is the a-transform
of o/ (up to isomorphism). We denote this a-transform by </®. Suppose that o7 is
defined over a finite field k. Then, 2/[a] is also defined over k (using the fact that the
k-Frobenius commutes with all the endomorphisms in a), hence so are the variety «7®
and the isogeny ¢4. Another notable property is that the degree of ¢4 coincides with
the norm of a (this can be deduced from the previously mentioned fact that the degree
of an endomorphism coincides with its algebraic norm).

Lemma 3.4. For any invertible ideal a in the endomorphism ring of o , we have that
o = % if and only if a is principal.

Proof. If a is generated by an endomorphism c«, then /[a] = ker(a), and the first
isomorphism theorem implies that &/ = &7°%. Now, suppose that there is an isomorphism
n: % — /. Then, o = 1oy, is an endomorphism of /. Since ker a = &/[a], any
endomorphism in a factors through «, so a C (). Since these ideals have the same norm
(they correspond to isogenies of same degree), they must be equal, so a is principal. O

Lemma 3.5. For any invertible ideal a in the endomorphism ring of </, we have
O() = O(%). In other words, the a-multiplication is a horizontal isogeny.

Proof. 1t is sufficient to prove that for any ideal a, the order O(</?) contains the or-
der O(&7). For any endomorphism « of ¢/, it is easy to check that .o7[a] C ker(pq o av),
so there is an endomorphism o’ of &7* such that ¢, 0 a = o’ 0 4. Then,

1a(@’) = (Pa0 0 0p) ® deg(ﬁpa)il = (Paopao)® deg(@tl)il =a®l=1y(a),
which proves that 1/ (a) € O(?), so O(«) C O(F*). O
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Therefore, the notion of a-transform defines an action of invertible ideals of O(<7)
on the set of isomorphism classes of abelian varieties isogenous to &/ and with same
endomorphism ring. This action has an identity («°”) = &) and is compatible
(/% = (o7*)® for any two ideals a and b).

The class group Cl(O) of an order O is the quotient .#(0)/P(0O), where .#(O) is the
group of fractional ideals of O, and P(O) the subgroup generated by principal ideals.
Therefore, Lemma 3.4 implies that the action of ideals induces a free action of the class
group Cl(O(«/)) on the set of isomorphism classes of abelian varieties isogenous to &7
and with same endomorphism ring.

3.1.4. Horizontal isogeny graphs as Cayley graphs. Let © be a ¢-Weil number,
and let K = Q(7) be the corresponding CM-field, with KT its maximal real subfield.
Fix an order O in K, and let V; o be the set of all Fj-isomorphism classes of abelian
varieties defined over F, with endomorphism ring O in the isogeny class characterised
by m. We have shown in Section 3.1.3 that the class group Cl(O) acts freely on V; o.
One can choose any reference variety ./ in V; ¢ and any subgroup H in Cl(O), and
consider the orbit H (7).

The action of the class group induces an equivalence of categories between the
category of objects H (<) and morphisms the isogenies between them, and the cate-
gory whose objects are the ideal classes in the subgroup H, and the sets of morphisms
from a € H to b € H are the ideals of O in the class a~'b. Restricting the morphisms
to a finite set of generators, the latter category can be seen as a Cayley (multi)graph.

Definition 3.6 (Cayley graph). Let G be a finite group and S a generating subset of G,
with S = S~1. The Cayley graph Cay(G,S) is the finite |S|-regular undirected graph
with set of vertices GG, and an edge between g and sg for any g € G and s € S.

Remark 3.7. The edges of Cay(G, S) can have multiplicities if S is a multiset. If S is a
set of labels and f : & — S is a surjection, then f naturally induces a Cayley multigraph
for the set of generators S whose edges are labelled by elements of S.

Let S be a set of ideals of O, and S its image in Cl(Q), with f : S — S the induced
surjection. Let Cay(H,S N H) be the induced labelled multigraph. Let T' be the set
of all isogenies between elements of H (&) corresponding to the ideals of S. We build
the graph ¥s with set of vertices H(</) by adding an edge between the vertices %
and ¢ for any isogeny 4 — % in T. Then, the equivalence of categories induces an
isomorphism between the graphs ¢s and Cay(H,S N H). The choice of a subgroup H
and a generating set S usually accounts for constraints on the computability of certain
isogenies. One might for instance want to consider only isogenies between principally
polarisable abelian varieties, as in Example 3.15 below.

3.1.5. Class groups of orders. As reviewed in Section 3.1.3, class groups of orders
in number fields are tightly connected to isogeny graphs. In this section, we recall some
useful results on class groups.

Let K be a number field. Then, .#(K) denotes the group of fractional ideals of Ok.
Fix a modulus m of K (i.e., a formal product of primes in K, finite or infinite). The finite
part is an ideal mg in O, and the infinite part is a subset my, of the real embeddings
of K. Let % (K) be the subgroup generated by ideals coprime to mg. Let Pg | be the
subgroup of %, (K) generated by principal ideals of the form aOg where ordy (v —1) >
ordy(mg) for all primes p dividing mg, and 2(«) > 0 for all + € my,. The ray class group
of K modulo m is the quotient group

Clu(K) = Fu(K)/ PR,
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For any ideal a such that (a,mg) = 1, let [a]y denote its class in Cly(K). The narrow ray
class group modulo the ideal mg is Cly, (K) when my, contains all the real embeddings.

Example 3.8. The subgroup ngf is generated by all the principal ideals, so Clp, (K)
is the usual ideal class group CI(K). Also, the narrow ray class group modulo O is
exactly the narrow class group CIT(K).

Let O be an order in K. The conductor of O, defined as
f={zr e K|z0k C O},

is an invariant of the order. It is the largest subset of K that is simultaneously an
ideal in O and in the maximal order Ox. Any ideal coprime to the conductor f is
invertible in O. Recall that the class group of O is the quotient C1(O) = .#(0)/P(0O),
where .#(0) is the group of fractional ideals of O, and P(Q) the subgroup generated by
principal ideals. This class group can also be expressed as a quotient of #(K’), as follows.
Let P1f<,(') be the subgroup of .#(K') generated by principal ideals aOf where a € O and
aO +§ = O. From [LD15, Theorem 3.8] and [LD15, Theorem 3.11], the map sending
any integral ideal a of O to the ideal aNO of O extends to a surjection .%(K) — Cl(O)

with kernel P[f(yo. Therefore, it induces an isomorphism
ClO) = A(K)/Pj .

From [LD15, Theorem 4.2], there is a unique abelian extension H(O) of K, the ring
class field of O, such that all primes of K ramified in H(O) divide f, and the kernel of
the Artin map

goiq(o) 1k ¢ H(K) = Gal(H(0)/K)

is P[f(,o. This map then induces an isomorphism Cl(O) = Gal(H(O)/K). Similarly,
there is a unique abelian extension H*(Q), the narrow ring class field of O, ramified
only at primes dividing f and at infinite primes, such that Gal(H*(0)/K) is isomorphic
to the narrow class group C17 (), through the Artin map.

3.2. Complex abelian varieties with complex multiplication

A key tool for studying isogeny graphs is the theory of complex multiplication (hence-
forth, CM theory). The main reference for this section is [ST61]. Let @/c = C9/A be an
abelian variety of dimension g over C, where A is a lattice, and suppose its endomor-
phism algebra is a CM-field K (we say that </c has complex multiplication by K) and
let KT be the real subfield of K of degree g.

3.2.1. CM-types. The field K has 2g embeddings in C which we denote ¢1,. .., pa,.
An endomorphism of 27 yields an endomorphism of CY and of A. We get an analytic rep-
resentation p,: End(#c) — Endc(CY) and a rational representation p,: End(</c) —
Endz(A). We have p, @ C ~ p, & p, and at the same time, p, @ C ~ 1 § -+ B paq. It
follows that, up to some reindexing, p, = ¢1@--- @@, where @1, ..., p4 are not pairwise
conjugate. We call (K;{¢1,...,¢4}) the CM-type of @/c. The abelian variety .2/c is
simple if and only if its CM-type is primitive, which means that (K; {¢1,...,¢4}) is not
a lift of a CM-type on a CM-subfield of K (see [ST61, Section 8.2]).

Remark 3.9. If ¢ = 2, the abelian surface @ is simple if and only if the field K
is a primitive CM-field, i.e., K does not have any proper CM-subfield. This follows
from [Str10, Lemma 1.3.4].
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Fix a CM-type ® = {¢1,...,p4} for K. Any abelian variety over C of CM-type
(K; @) is isomorphic to C9/®(m) for some full-rank lattice m in K, where the embedding
¢: K — CYis given by z — (¢1(2),...,94(z)). Let O be the order of K isomorphic to
the endomorphism ring of the variety. Then, the lattice m is an O-submodule of K, and
O coincides with the order O(m) associated to the lattice,

O(m) ={a € K| am C m}.

Given an invertible ideal a in O, the variety C9/®(a"'m) is isogenous to CY/®(m).

This construction actually coincides with the action of ideals presented in Section 3.1.3:
the abelian variety C9/®(a"'m) is the a-transform of CY9/®(m). Again, it induces a
free action of the ideal class group Cl(O) on the set of isomorphism classes of abelian
varieties of CM-type (K;®) with endomorphism ring O.

When the order O is a Gorenstein ring, any lattice m with O(m) = O is an invertible
fractional ideal of O (see for instance [JT15, Theorem 4.3]), which implies that this free
action of Cl(Q) is also transitive.

Definition 3.10 (Gorenstein ring). A commutative Noetherian local ring R is Goren-
stein if it has finite injective dimension as an R-module. A commutative Noetherian
ring is Gorenstein if each localisation at a prime ideal is a Gorenstein local ring.

3.2.2. Polarisations and the Shimura class group. A polarisation on an abelian
variety X over a field k£ is an ample line bundle £Lx on X. Associated to such Lx
is the polarisation isogeny ¢g,: X — XV, where XV is the dual of X. A principal
polarisation is an ample line bundle of degree one (equivalently, the polarisation isogeny
is an isomorphism).

Example 3.11. If @/ is a simple abelian surface, @/ is principally polarisable if and
only if it is the Jacobian of a smooth genus 2 curve (see [DM02, Theorem 4.1}).

In the remainder of this paragraph, we shall restrict to abelian varieties which are
simple, or equivalently, to primitive CM-types (K;®). If X = 4/, a simple complex
abelian variety with endomorphism ring an order O in K, the theory of Taniyama and
Shimura [ST61, Section 14] which we now briefly recall provides an explicit description of
the polarisations on X in terms of the arithmetic of K. Indeed, by the theory of complex
multiplication, there exists a full-rank lattice m in K such that X(C) = CY9/®(m). The
dual abelian variety of C9/®(m) is CY9/®(m*) where

Given a polarisation £ on CY9/®(m) the corresponding polarisation isogeny is the isogeny
or: CI/P(m) — CI/P(m*) given by = — py(&)x for some purely imaginary element
¢ € K that satisfies ®(&£) € (iR>¢)Y. The polarisation is also described by the Riemann
form E(z,y) = Trg;q({7y). The polarisation is principal if and only if ¢c(®(m)) =
®(m*), i.e., if and only if E&m = m*. Thus, the CM-type (K; ®) being fixed, a principally
polarised abelian variety (&g, L) is determined by the associated pair (m,¢), which
satisfies ém = m*. The Shimura class group of O, acts on such pairs. It is defined as

C(0) ={(a,a) | a € F(0) and aa = a0, € K totally positive}/ ~

with componentwise multiplication, where two pairs (a,«) and (b, 5) are equivalent for
the relation ~ if there exists an element u € K™ such that b = ua and 8 = uua. For
any (a,a) € €(O) (up to equivalence), the pair (a~'m, a&) corresponds to a principally
polarised abelian variety isogenous to /¢ and with same endomorphism ring O (and
this action of €(O) is well defined on isomorphism classes). This action of €(QO) is in fact
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free on the set of isomorphism classes of principally polarised abelian varieties isogenous
to @/c with same endomorphism ring [ST61, Section 17]. The structure of €(O) and its
relation to C1(O) is described by the exact sequence

u—(O,u) (a,)—a

(31) 1 — TP(O)/Ng i+ (0) ¢(0) Cl0) KL a0,

where O = ON K™, TP(O) is its multiplicative subgroup of totally positive units, and
CIT(O1) its narrow class group, and N k+ is the norm from K to K. The image of
the projection €(Q) — C1(O), denoted Z(0), is a subgroup of Cl(O) that acts freely on
the set of principally polarisable abelian varieties isogenous to </ with endomorphism
ring O. Notice the crucial distinction between polarised and polarisable. The amount
of information lost with the polarisation is encoded in the group

U(0) = TP(0)/ N /c+ (0%).

Indeed, given a principally polarisable «/x, the set of isomorphism classes of principal
polarisations on 2 is a torsor for the group U(Q). The following lemma recalls some
well-known facts about U(Q). It is originally part of the article [BJW17], which is the
object of Chapter 5, but is relocated here as it is already useful in the present chapter.

Lemma 3.12. The group U(QO) is an Fy-vector space of dimension d, where d < g — 1.
IfOCO and ONK'T =0 'NKT, then the natural map U(O) — U(Q') is surjective.

Proof. We have the following hierarchy, the last containment following because for any
element 3 € ON K+ one has % = N i+ (8):

(3.2) (ONKT)* 2 TP(O) 2 N i+ (0%) 2 (0N K*+)*)?.

By Dirichlet’s unit theorem (and its extension to non-maximal orders), the group of
units (O N K1)* is of the form {£1} x A, where A is a free abelian group of rank g — 1,
so the quotient (O N KT)*/(O N K*)*2 is an Fa-vector space of dimension at most g.
Since —1 is never a totally positive unit, the first claim follows. The second sentence of
the lemma is clear. O

Remark 3.13. The inequalities in the chain (3.2) are in general difficult to control. For
example, if g = 2, the total index in (3.2) is 4. The factor {£1} accounts for a factor 2
of this index, and so exactly one of the other three containments must be non-trivial;
for each containment, one has examples where it is non-strict. In any case, we get that
for orders in quartic CM-fields, U(O) is either trivial, in which case €(O) and Z(0O)
are isomorphic and no information is lost with the polarisation, or it is of order two, in
which case the abelian surfaces encoded in () each have two possible polarisations.

From the exactness of Sequence 3.1, the subgroup #(0) is also the kernel of Ny g+
The following lemma extends the result of [BGL11, Theorem 3.1] to higher dimensions,
and non-maximal orders.

Lemma 3.14. Let K be a CM-field and K™ its maximal real subfield. Let O be an
order in K of conductor f, and O = O N K™*. The image of C1(O) through the norm
map N i+ : Cl(O) — CIT(O7) is of index at most 2 in CI*(OT). If there is a prime
in KT that ramifies in K and does not divide f, the norm map Ni i+ is surjective.

Proof. We use the elements of class field theory recalled in Section 3.1.5. Let H =
H(O) and H" = H*(O"). The compositum KH™* is a subfield of H, so we have a
natural surjection Gal(H/K) — Gal(KH*/K). From Galois theory, Gal(KH*/K)
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is isomorphic to Gal(H*/(K N H')), which in turn is isomorphic to the quotient
Gal(H*+/K+)/ Gal((K N H*)/K*). Let N = Gal((K N H+)/K*). Then,

Y Gal(H/K) — Gal(HY/KT)/N
o0 |g+ mod N

is the composition of these canonical maps, and is therefore a surjection. Through the
Artin map, the norm Ny g+ commutes with ¢). We conclude that the image of C1(O)
through Ny g+ is a subgroup of CIT(O1) of index at most |N| < 2. If there is a prime
in KT that ramifies in K and does not divide f, then K N HT = KT, so |[N| = 1 and
the map Ng/r+ is surjective. O

In particular, this lemma implies that the index [C1(O) : &2(0)] is either the narrow
class number hzg L = |[CIT(O1)], or hzg +/2. Tt is exactly hzf) . whenever there is a prime
in the field K* that ramifies in K and does not divide f. As observed in [BGLI11,
Theorem 3.1], there exists such a prime when O is the maximal order in a primitive

quartic CM-field.

3.2.3. Canonical lifting. Recall that our objects of primary interest are varieties de-
fined over a finite field F,. The theory of canonical lifting of Serre and Tate [ST68]
allows us to lift an ordinary abelian variety <7/ /F, to an abelian variety o over W (F,),
the ring of Witt vectors of Fy in such a way that all endomorphisms of &7 lift to en-
domorphisms of <, and </ +— < is functorial. To obtain lifts from abelian varieties
over F, to abelian varieties over C, we fix an embedding +: W(F,) < C and let @/
be the complex abelian variety &/ ®, C. If T(«/) = Hi(wc,Z) then T(</) is a free
Z-module of rank 2 - dim(<). The correspondence & — T(&) is functorial and any

isogeny ¢: &/ — % over F, gives rise to a short exact sequence

0 — T(7) 29 T(B) — ker(p) — 0.

A theorem of Deligne [Del69, Theorem 7] says that if 7 is the Frobenius endomorphism
of @ over F then the functor &7 — (T'(</), T (7)) is an equivalence of categories between
the category of ordinary abelian varieties over F, and the category of free Z-modules T'
endowed with an endomorphism F' satisfying

(1) F is semi-simple, with eigenvalues of complex absolute value /g,

(2) at least half the roots in Qp of the characteristic polynomial of F' are p-adic

units, and
(3) there is an endomorphism V' of T" such that F'V = q.

As discussed in [Del69, Section 8|, any such (7, F') that is the image of a variety <
through this functor determines the complex abelian variety ¢ up to isomorphism
as ¢ = (T ® R)/T (with a complex structure on 7' ® R such that F' is C-linear;
the existence and uniqueness of the appropriate complex structure is established by a
theorem of Serre [Del69, Section 8]). This means that up to isomorphism, we can write
g = CI/A, for a lattice A in CY9 and since lifting preserves the endomorphism ring
O = End(</), we even have @/c = CY9/®(m) for some full-rank lattice m in K with
order O(m) = O, where, as above, the map ®: K — CY is the CM-type of #/c. From
the canonical identification between ®(m) and H; (¢, Z) (see [BL04, Section 1.1]), the
functor can be interpreted as & +— (®(m), p,(7)). This establishes a functorial map
from the abelian varieties over F, of fixed endomorphism ring O to the complex abelian
varieties CY9/®(m) where m are lattices in K with order O(m) = O. Conversely, Deligne’s
theorem shows that any such CY9/®(m) is the lift of an abelian variety over F, with
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endomorphism ring O: the variety corresponding to the pair (®(m), p,(7)), where p, ()
is the rational representation of . Moreover, from [Del69, Section 3], the polarisations
also lift properly. In particular <7 is principally polarisable if and only if @7 is, and the
Shimura class group €(O) acts on varieties over F, just as it acts on varieties over C.
See [How95] for a more detailed treatment of polarisations through Deligne’s equivalence.

Example 3.15 (Horizontal isogeny graph of principally polarisable abelian varieties
over a finite field). If 7 is a principally polarisable abelian variety over a finite field,
and H = Z(0), the orbit H(/) (in this case also denoted (7)) is a set of isomor-
phism classes of principally polarisable abelian varieties isogenous to &/ and with same
endomorphism ring. Via the construction described above, any choice of a generating
set of 2(0) yields a graph of the set of vertices #(«7). Whenever 7 has maximal real
multiplication (i.e., O+ C O), the endomorphism ring O is Gorenstein, so the action
of Cl(O) is transitive on the set of all abelian varieties isogenous to ./ and with same
endomorphism ring. We can conclude via [ST61, Section 17] that when « has maxi-
mal real multiplication, the orbit & (/) is exactly the set of all isomorphism classes of
principally polarisable abelian varieties isogenous to &/ and with same endomorphism
ring.

3.3. Expander graphs and ray class groups

We have seen that horizontal isogeny graphs are isomorphic to certain Cayley graphs of
class groups of orders in number fields, or subgroups thereof. In this section, we shift
our attention to these Cayley graphs, and show that they are expander graphs, i.e., they
are strongly connected, and rapidly mix random walks.

3.3.1. Eigenvalues and Cayley graphs. Let ¢4 be an undirected (multi)graph with
set of vertices V and set of edges £. Suppose ¥ is finite and k-regular, i.e., each vertex
has k incident edges. The adjacency operator A of & is the operator defined for any
function f from V to C by

Af(z) = > fl),
yENy (2)
for any x € V, where Ny (z) denotes the (multi)set of neighbors of z in ¢. This operator
is represented by the adjacency matrix of ¢ with respect to the basis {l{x} cx € VY,
where 1g denotes the characteristic function of a set S. It is a real symmetric matrix,
so by the spectral theorem, A has n = |V| real eigenvalues Ay > Ay > ... > \,,. Since the
graph is k-regular, the constant function 1y, : x +— 1 is an eigenvector with eigenvalue k.
We call k the trivial eigenvalue, and denote it by Ayiv. This Ay is the largest eigenvalue

in absolute value, i.e., A\ = k, and its multiplicity is the number of connected components
of 4.

Definition 3.16 (Expander graph). Let § > 0. The k-regular graph ¢ is (one-sided)
d-expander if Ao < (1 — §)Agiv- It is a two-sided d-expander if the stronger bound
|>\2| S (1 — 5)>\triv holds.

Observe that such a graph is connected whenever § > 0. The main reason for our
interest in expander graphs is that they rapidly mix random walks. The following lemma
is a classical result on expander graphs and can be found in, e.g., [JMV09].

Lemma 3.17. Let ¥ be a finite k-regular graph. Suppose the trivial eigenvalue has
multiplicity one and the non-trivial eigenvalues A of the adjacency operator A satisfy
the bound |\ < ¢, for some ¢ < k. Let S be a subset of the vertices of 4, and v a
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vertex of 4. Any random walk from v of length at least % will end in S with

probability between %% and %%
For any finite group G and generating set S with S = S~!, observe that a character

X : G — C* is an eigenvector for the adjacency operator A on Cay(G, S). Indeed,

Ax(z) =) " x(sz) = x(s)x(x) = Ayx(x), where Ay =Y " x(s).

ses ses ses

If G is abelian, these characters form a basis of the C-vector space of functions
of G. In particular, any eigenvalue is of the form A, for some character x. The trivial
eigenvalue corresponds to the trivial character 1.

3.3.2. Cayley graphs of subgroups of ray class groups. We prove in this section
that Cayley graphs of subgroups of narrow ray class groups, with generators the classes
of ideals of bounded prime norm, are expander graphs. We start by giving bounds on
the eigenvalues of the graph, in Theorem 3.18. Note that a similar result is proven
in [JMV09] for the full narrow ray class group, rather than a subgroup. It was sufficient
for studying isogeny graphs of elliptic curves, which can be represented as Cayley graphs
of class groups in imaginary quadratic fields. However, that result is not strong enough
for higher dimensions, where one might need to work on subgroups to account for the
extra condition of principal polarisability. Since properties of expander graphs do not
transfer nicely to subgraphs in general, the refinement provided by Theorem 3.18 is
crucial.

Theorem 3.18. Consider a number field K of degree n and discriminant dg, and an
integral ideal m of O . Let G be the narrow ray class group of K modulo m, and consider
a subgroup H of G. For any ideal | of Ok coprime to m, let [[| denote its image in G.
Let

Tm(B) = {prime ideals | of Ok | (I, m) =1, N(I) < B is prime and [I] € H}.

Let Ty m(B) be the multiset of the projection of Tam(B) in G. Let 9p be the graph
whose vertices are the elements of H and whose non-oriented edges are precisely (h, sh)
for any h € H and s € Ty w(B). Assuming the extended Riemann hypothesis, for any
character x of H, the corresponding eigenvalue N, of the Cayley graph 9p satisfies

26(x)
G : H|

Ay = li(B) + O (nBl/2 log(BdKN(m))> ,

where §(x) is 1 if x is trivial, and 0 otherwise, and li denotes the logarithmic integral.
The implied constants are absolute.

Proof. Since G is abelian, any character x of H can be extended to a character of G.
Take any such extension and, by abuse of notation, also denote it by x. Note that for
any ideal [ of Ok coprime to m, we have

5 9([[]H):{[G:H] if [(] € H,

— 0 otherwise,
0eG/H



3.3. EXPANDER GRAPHS AND RAY CLASS GROUPS 47

where CT/?{ = Hom(G/H,C*) is the character group of the quotient G/H. Therefore
this sum can be used to filter the condition that [I] € H, and we can rewrite

A= > (D +x)

[€TH,m(B)

_ [G?H]%e S Y eu

(é)[<]j3 prime 96@?{

2
S I ST SR
’ QGG/H[N([)<B prime
(Im)=1
We are then left with estimating a character sum ) x([l])0([[|H). Each of the summands
of the latter defines a multiplicative function

Uyo: () — C* : L— x([I)O([[| H)
where .7, (K) is the group of fractional ideals of K coprime to m. It extends to a function
of Z(K), the group of all the fractional ideals of K, by setting v, ¢([) = 0 for all prime

divisors [ of m (notice that it might not be the unique way to extend it, but this is not an
issue: we do not require the characters to be primitive). The expression of A, becomes

2
(3.3) )\X:[G: H]me > > el

GGG//T-I [:N([)<B prime

From the classical estimate that can be found in [IK04, Theorem 5.15], the extended
Riemann hypothesis implies that

Z A(a)vy p(a) = 6(vy9)B + O (nBl/2 log(B) log(BdKN(m))> ,
a:N(a)<B

where A is the von Mangoldt function (i.e., A(a) is log(N(l)) if a is a power of a prime
ideal [, and 0 otherwise), and 6(v, ) is 1 if v, g is principal, and 0 otherwise (a principal
character is a character that only takes the values 1 or 0). Observe that if v, g is
principal, then x must be the trivial character, so that 0(vy¢) = 0(x)d6(#). Indeed,
suppose that v, ¢ is principal, and let [[] € H, for a prime [ coprime to m. Then,

L=wvyo() = x((MO(H) = x([NO(La/u) = x([10),
so x must be the trivial character of H.
We now want to replace each instance of A(a) in the above sum by P(a), where

Pla) = log(N(a)) if N(a)‘ is prime,
0 otherwise.
To do so, it is sufficient to prove that
(3.4) Y M@l — > Pla)rgg(a) =0 (nB1/2> .
a:N(a)<B a:N(a)<B

The non-zero terms (A(a) — P(a))vy g(a) correspond to ideals a which are powers of a
prime ideal [, and N(a) = N(I)* is not a prime number — but it is a power of a prime .
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Since K is of degree n, there are at most n different prime ideals [ above any given prime
number ¢. Therefore the difference (3.4) is bounded in absolute value by

n > log)=n Y logt)<n Y log(0) g(B) _ (BY2)10g(B),

log(¢)
€Z<B (<BY/2 1<B1/?
>2 log(B)
25k <Tox®

which, by the Prime Number Theorem, is O(nB'/?). Therefore,
> Pla)yola) = 8(vy0) B + O (nB?1og(B) log(BdicN (m)) ) .
a:N(a)<B
Applying the Abel partial summation formula, we derive that
> voll) = 8(no)li(B) + O (nBY2 log(Bdi N(m)))
[:N([)<B prime
Replacing this into the expression (3.3) of A, we finally obtain

26(x)
G : H]

which proves the theorem. ]

A = o gli(B) + O (nBY2log(Bdic N (m) )

Consider a number field K of degree n, an order O of conductor § in K, and any
subgroup H of C1(O). Let B > 0, and a an integral ideal of O, and define the following
set of ideals of O,

Sp ={l| N(I) < B is prime, ([,fa) = 1, and [N O] € H},

where [[ N O] is the class in C1(O). Let Sp be the multiset of the image of Sp in the
class group, plus the inverses. Using Theorem 3.18, one can bound the spectral gap of
543 = Ca‘y(Hv SB)

Theorem 3.19. For any character x of H,the corresponding eigenvalue of ¥ is

26(x)
[CL(O) : H]
where §(x) if 1 if x is trivial, and 0 otherwise.

Ay = li(B) + O(nB"/? log(Bdic N (fa))),

Proof. Using the notations from Section 3.1.5, the group P[f(1 is a subgroup of P[f(o,

so there is a natural surjection Clj(K) — Cl(O). Furthermore, the canonical injection
of #(K) in #(K) induces a surjection from Clio(K) to Clj(K). Therefore we have a
natural surjection 7 : G — Cl(O), where G is the narrow ray class group of K modulo
fa, which sends the class of any integral ideal b of Ok to the class of b N O. Consider
the subgroup H = 7~ *(H) of G, and its Cayley graph Gp = Cay(ﬁ,Tﬁ,fa(B)) where
Tﬁ,fa(B ) is the multiset defined in the statement of Theorem 3.18. The Cayley graph ¥p
on H is the image of the Cayley graph % on H via the projection 7, taking into account
the multiplicity of the edges. The eigenvalues of ¥ are exactly the eigenvalues A\g of QB

corresponding to characters ¢ of H that are trivial on the kernel of 7|5 : H — H. The
result follows by applying Theorem 3.18 to ¥p. ([l

Corollary 3.20. For any 0 < d < 1 and € > 0, there is a function
By (H,a) = O ((n[C1(O) : H]log(dicN (ja))* ) .

such that 9p; (. i a two-sided d-expander.
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Proof. Let x > 0, and write k& = [C1(O) : H]. The graph ¥, is a two-sided J-expander
if |Ay| < (1 — 0)Agwiv for any non-trivial character . From Theorem 3.19, and the fact
that li(z) ~ z/log(z) and li(x) > z/log(z) for any = > 4, there are absolute constants
C and D such that for any x > C, we have
2z
A riv = T
¢ log(x)k

and |\| < Dnz'/?log(zdg N (fa)). So

Auriv da!/?
Al — (logz)2Dkn(log(dk N (fa)) + 1)

— Dnaz'/?log(zdg N (fa)),

We have that /(%2 = O(2'/2 /(log x)?) for any ¢ > 0, so considering larger constants C
and D if necessary, we have the inequality

)\triv 4x1/(2+€)
Al — Dkn(log(dg N (fa)) + 1)

The constants C' and D are not absolute anymore but they only depend on . Let

— 1.

Bs<(H,a) = max (C, <; (1; + 1> Dkn(log(dxg N (fa)) + 1))2+E) .

Then, for x = Bs.(H,a), we have /\lt/{i‘v > 1—£5, S0 9, is d-expander. O

3.4. Horizontal isogeny graphs rapidly mix random walks

The two previous sections lead us to the main result of this chapter: horizontal isogeny
graphs are expander graphs. More precisely, fix an absolutely simple, ordinary abelian
variety 7 of dimension g over a finite field, and let K = End(%) ® Q be the cor-
responding CM-field. The endomorphism ring End (<) is isomorphic to an order O of
conductor f in K. The ideal class group Cl(O) acts freely on the set of varieties isogenous
to &7 with same endomorphism ring O. Let H C CI1(O) be any subgroup and let H (/)
be the H-orbit of /. The choice of a set S of invertible ideals in O generating H in-
duces a graph whose set of vertices is H (/) and whose edges are labelled with isogenies
between these abelian varieties. The norms of the ideals in § are exactly the degrees of
the induced isogenies. For any B > 0 and ideal m in O, let Sp be the set of ideals in O
of prime norm and coprime to fm. Let ¥p be the induced isogeny graph, where all the
degrees are bounded by B.

Theorem 3.21 (Rapid mixing for H(<7)). Assuming the extended Riemann hypothesis,
for any € > 0, there exists a bound

B=0 ((g[Cl(O) : H]log(dx N (fm)))M) :

such that for any subset W of H(</), any random walk in the graph 9¥p of length
at least log(2|H|/|W|'/?) starting from a given vertex will end in W with probability
between |W|/(2|H|) and 3|W|/(2|H|). In particular, the reqular graph ¥p is connected
and rapidly mizes random walks.

Proof. Theorem 3.21 is an easy combination of the graph isomorphism expounded in
Section 3.1.4, together with Corollary 3.20 establishing that these graphs are expanders,
and Lemma 3.17 on random walks on such graphs. O
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Remark 3.22. It is worth noting that even the connectivity of the graph is new: the
classical bounds for connectivity are derived from Bach’s bounds [Bac90], which can
only be applied when H is the full class group ClI(O). However, the new bounds provide
much more than connectivity, so one might wonder if better bounds can be obtained.
In chapter 4, we generalise Bach’s work to subgroups of ray class groups, resulting in
tighter, explicit bounds for the connectivity of horizontal isogeny graphs.

3.5. Random walks on isogeny graphs of Jacobians in genus 2

Throughout this section, we will restrict to ordinary abelian surfaces that are Jacobians
of genus 2 hyperelliptic curves over a finite field F,, (the main object of interest of hyper-
elliptic cryptography). Let # = Jac(%') be such a Jacobian with endomorphism algebra
K and whose endomorphism ring is isomorphic to an order O in K. Let Ot = ON K™
where K is the real subfield of K. Let <7 be the isomorphism class of ¢ as an abelian
variety.

As explained in Section 3.2.2, the orbit Z (/) of the CM-action of Z(0) on & is a
set of Fy-isomorphism classes of principally polarisable abelian surfaces isogenous to </
and with same endomorphism ring O. This orbit contains all such isomorphism classes
when the CM-action is transitive, for instance when O has maximal real multiplication
(i.e., O+ C O). The choice of any set of ideals generating Z(0O) yields an isogeny
graph on the set of vertices (<7, as described in Example 3.15. Now, Theorem 3.21
provides generating sets S with very convenient properties: (i) the corresponding isogeny
graph rapidly mixes random walks, and (ii) every edge is an isogeny of small prime
degree. In fact, all the occurring isogenies are computable in polynomial time by a
recent algorithm of Dudeanu, Jetchev, Robert and Vuille [DJRV16, Dud16] (henceforth,
the DJRV algorithm).

3.5.1. Computing isogenies of small degree. More precisely, the DJRV algorithm
allows to compute any isogeny from _#, defined over F, and of odd prime degree ¢ (i.e.,
given a generator of the kernel, it finds an equation of a hyperelliptic curve ¢’ such that
the target Jacobian is isomorphic to Jac(%¢”)) under the following conditions:

(1) _# has maximal real multiplication, i.e., OF is the maximal order of K,

(2) the index [O : Z[r, 7] is prime to 2¢, and

(3) there exists a totally positive element 8 € O of norm ¢ which annihilates
the kernel of the isogeny (the isogeny is called B-cyclic, and the polarisation
computed on the target curve depends on the choice of this (3).

The cost of the algorithm is O(¢?) operations in F,, assuming some precomputations of
polynomial time in log(gq) and ¢ (see [Dud16, Theorem 4.8.2]).

Observe that Condition (3) exactly means that the isogeny corresponds to an ideal in
the kernel #(0O) of the map Ng i+ : CI(O) — CIT(O1). Therefore this condition is, by
construction, satisfied by all the isogenies of the graph. Also, we can choose the gener-
ating set S so that it does not contain any ideal of norm dividing the index [O : Z[r, 7]],
so the isogenies of the graph all satisfy Condition (2) if and only if [O : Z[r,7]] is odd.
Therefore, the conditions

(1) _# has maximal real multiplication, and

(2) the index [O : Z[m, 7] is odd,
are sufficient for constructing a graph whose edges can all be computed by the DJRV
algorithm. Before the work of Dudeanu et al., one was only able to compute (¢,7¢)-
isogenies [CR15], which are not sufficient to obtain a connected graph.
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For the same computational cost, the DJRV algorithm can compute the image of
a point of order coprime to 2¢[O : Z[m,7]|, given some additional precomputations of
polynomial cost in log(q). This cost, as expressed in [DJRV16, Theorem 1.3], relies
on the existence of an efficient algorithm RM(«,y) to compute the action of a real
endomorphism y on a 4-torsion point « (see [DJRV16, Hypothesis H.4]); this hypothesis
is satisfied in dimension 2, thanks to Mumford coordinates.

Remark 3.23. Recall that we want an undirected graph, meaning that S = S~!. This
is already the case for the subgroup &2(0O) and the set S of ideals of small prime norm,
because S is closed for complex conjugation, and the complex conjugate of an ideal
class in Z(0) is also its inverse. However, it is worth noting that even in a more
general situation, inverses can easily be added to § while still giving rise to a graph of
computable isogenies. Indeed, let a € S, and suppose that the isogenies corresponding
to the Galois conjugates of a can all be computed efficiently. Then, the ideal

NK/Q(a)cL_1 = H a’
o€Gal(K/Q)\{idk }

is a class inverse for a, which induces the dual of the isogeny induced by a, and can be
computed as a sequence of 2g — 1 computable isogenies.

3.5.2. Navigating in the graph with polarisations. The vertices of the graph rep-
resent principally polarisable (as opposed to polarised) abelian surfaces. As a conse-
quence, two distinct Jacobians can represent the same vertex if they are isomorphic as
abelian varieties, but have non-isomorphic polarisations. For computations, it is impor-
tant to be able to determine whether two vertices of the graph are distinct or not, and
to this end, the way the vertices are represented is crucial.

As explained in [CR15] and [DJRV16], it is possible to distinguish between isomor-
phism classes of Jacobians as principally polarised abelian varieties by simply comparing
the Rosenhain invariants?. The DJRV algorithm computes these explicitly for the target
curve of an isogeny. Therefore, if U(O) = TP(O)/Ng k+(0) is trivial, as discussed
in Section 3.2.2, the map €(0) — Z(0O) forgetting the polarisation is an isomorphism
so the vertices of the graph can simply be represented as Jacobians, or their Rosenhain
invariants.

But if U(O) is of order 2, more work is required. In this case, for any Jacobian _#7,
there exists another Jacobian ¢5 which is isomorphic as a non-polarised abelian variety
(and thus represents the same vertex in the graph), but not as a principally polarised
abelian variety. To solve this issue, one can simply represent the vertices of the graph
as pairs of Jacobians, isomorphic as abelian varieties, but with non-isomorphic polari-
sations. It is still possible to use the DJRV algorithm to navigate in this graph. Indeed,
let u € TP(O) be a generator of U(O). Starting from _#, given an appropriate kernel,
the DJRV algorithm chooses a 5 and computes the isogeny as a S-isogeny, resulting in a
target Jacobian #1. If 8 is replaced by uf3, the DJRV algorithm finds the Jacobian _¢#5
which is isomorphic to ¢; as an abelian variety, but with a different polarisation.
Therefore the representation of the vertex {_#i, #2} can be fully computed.

A last point must be addressed: given a Jacobian _# and a prime ¢, the DJRV
algorithm allows to find isogenies of degree ¢ from that Jacobian, but it is unclear
a priori which of these isogenies remain within the graph we constructed. Indeed, it
could well be that some of these isogenies change the endomorphism order O. Luckily,

2Since the varieties are absolutely simple, ordinary, and over Fq, two of them are F4-isomorphic if
and only if they are Fg-isomorphic (a consequence of [Wat69, Theorem 7.2]).
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this is not a concern if only primes ¢ that cannot change the endomorphism order are
picked. An isogeny over F, of degree ¢ can change the order only if ¢ divides the index
[Ok : Z[r, 7]] (such isogenies are studied in Chapter 5; see Proposition 5.10). Therefore,
in the generating set S, we avoid the prime ideals dividing that index.

3.6. Random self-reducibility of the discrete logarithm problem in genus 2.

The rapid mixing properties of isogeny graphs allow to prove that the discrete logarithm
problem in genus 2 is random self-reducible in isogeny subclasses of ordinary Jacobians
of genus 2 curves over a finite field, thus extending the similar result for elliptic curves
proved in [JMV09, Theorem 1.6].

Theorem 3.24 (Random self-reducibility in genus 2). Let K be a primitive quartic CM-
field, K™ its mazimal real subfield, and O an order in K. Let # be a Jacobian defined
over Fy of endomorphism ring isomorphic to O. Let V be the set of all F 4-isomorphism
classes of Jacobians defined over F,, isogenous to ¢ and with endomorphism ring
isomorphic to O. Let G be a subgroup of ¥ (Fg) of order Q. Suppose that

(1) there is an algorithm A that solves the DLP in time f(q) for a proportion > 0
of the Jacobians in V, the “weak” Jacobians,
(2) there is an algorithm B that can decide in time g(q) whether a Jacobian belongs
to this “weak” family, and
(3) ON KT is the ring of integers of KT, and [O : Z[r, 7| is coprime to 2Q.
Then, assuming the extended Riemann hypothesis, there is an absolute polynomial P
in two variables such that the DLP can be solved in G by a probabilistic algorithm of
expected Tuntime

P(log(q), h) + 29(q) i)
M )

where hg+ is the narrow class number of the order Ot = ONKT.

Remark 3.25. It is worth explaining the formal description of what input data the
algorithm A takes. It is well known that in any cryptographically meaningful context,
the points of the Jacobian are represented as divisor classes of degree zero. The latter are
more compactly represented by reduced divisors leading to points being represented by
the so-called Mumford coordinates. Thus, the input to the algorithm is a hyperelliptic
curve of genus 2 together with an instance of the discrete logarithm problem (in Mumford
coordinates). The above theorem uses the DJRV algorithm, which takes the input
points as well as the Jacobian in theta coordinates (see [DJRV16, Theorem 1.1]). The
conversion between Mumford coordinates and theta coordinates is well known and has
been used in a number of prior works on isogeny computations [Rob10, Cos11, CR15].

Remark 3.26. The conditions that ON K™ is the ring of integers of K, and the index
[O : Z[r, 7] is coprime to 2Q) appear because they are required by the DJRV algorithm.
Assuming that one has an algorithm that does not suffer these restrictions, one could
replace these two conditions by O being Gorenstein (required for the action of Z2(Q) to
be transitive).

Proof. Let W C V be the subset of all isomorphism classes for which the algorithm .4
applies (the “weak” Jacobians). For any two polarised abelian varieties <7 and 24, write
o ~ A if they are isomorphic as non-polarised abelian varieties. Recall that as discussed
in Section 3.5.2, if A can solve the discrete logarithm problem in one Jacobian # € W,
then it can solve the discrete logarithm problem in the other Jacobians ¢’ ~ #. Let
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V=V/~and W =W/ ~. Let m be a ¢-Weil number characterising the fixed isogeny
class. From Example 3.15, the set V is naturally in bijection with &?(<7), the orbit for
the CM-action of Z(0). We can therefore apply Theorem 3.21 on the graph with set
of vertices V' induced by the set of invertible ideals in O, coprime to 2[O : Z[r, 7], of
prime norm bounded by

B.(0)=0 ((hg+ log (dx N (§)[Ox : Z[w,ﬁ]}))“)
= 0 (- 1og(@)™).

where f is the conductor of ©. Any path of length at least log(2|V|/|W|['/?) < log(2ho)
starting from any vertex will end in W with probability between 1/2 and 3u/2. So the
strategy to solve the discrete logarithm problem on & € V is to build random paths
from o/ in ¥p of length log(2h) until one of them ends in W. This membership in W
can be verified in time g(g) with the algorithm B, and happens with probability higher
than /2, so after an expected number of independent trials smaller than 2/u. The
length of each path is polynomial in log(he), and the degree of each isogeny on the path
is bounded by B:(O). So the algorithm computes a polynomial (in log(g)) number of
isogenies, and each of them can be computed in polynomial time (in log(q) and hJ(g+) by
the DJRV algorithm. O

3.7. Computing an explicit isogeny between two given Jacobians

In [Gal99], Galbraith considers the problem of computing an explicit isogeny between
two isogenous ordinary elliptic curves E7 and Es over F,. His approach is based on
considering isogeny graphs and growing trees rooted at both F; and Fsy of small-degree
computable isogenies until a collision is found. Galbraith’s original algorithm is proven
to finish in probabilistic polynomial time (in log(q)), finding a path of length O(log(hg))
from Fq to Eo, under ERH and a heuristic assumption claiming that the distribution of
the new random points found in the process of growing the trees is close to uniform. In
this section, the expander properties of horizontal isogeny graphs are used to construct
and analyse an algorithm similar to the one from [Gal99]. The contribution of this new
algorithm is two-fold. First, using expander properties of these graphs, our analysis
relies solely on ERH, without heuristics. Second, while Galbraith’s algorithm constructs
isogenies between elliptic curves, we provide a more general framework for large families
of horizontal isogeny graphs. Precisely, we require:

(1) An order O of conductor f in a CM-field K, and two isogenous abelian vari-
eties &/ and % over a finite field Fy, with endomorphism ring O;

(2) A set S of ideals in O generating a subgroup H of the class group Cl(O), such
that the orbits H(«/) and H (%) coincide;

(3) The isogeny graph ¢ induced by the action of H on H (/) has the rapid mixing
property, as described in Theorem 3.21;

(4) The isogenies corresponding to the edges of the graph can be computed in time
bounded by some tg > 0.

For elliptic curves, one can choose H = Cl(O), and S the set of all ideals of prime
norm bounded by a bound B = O(log(dx N (§))%¢) = O((log ¢)**). All these isogenies
can be computed in time ¢z polynomial in logq, and Theorem 3.21, or even the less
general results of [JMV05, JMV09], shows that ¢ has the rapid mixing property. The
smaller bound O(log(dgx N (f))?) was used in Galbraith’s approach; the induced graph
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is then connected, but is not an expander, therefore some heuristic assumptions were
required for the analysis.

For Jacobians of genus 2 curves, one can choose H = Z(0), and S to be a gen-
erating set of ideals of prime norms bounded by a bound O ((hz . log(q))**¢), where
Ot =ONKT. As seen in Section 3.5.1, the corresponding isogenies can then be com-
puted using the DJRV algorithm when O7 is maximal and [O : Z[r, 7]] is odd.

Write h = |H|. The idea is to find h'/? varieties “close” to & (in the sense that we
know a path of polynomial length from these to <7), and then to build paths out of %
until one of the neighbors of & is reached. In practice one could simply use the same
tree-growing strategy as Galbraith [Gal99], but the analysis of our algorithm requires the
various random paths to be independent in order to use the expanding properties (this
independence misses in the “tree” approach). The algorithm goes as follows, presented
in the most general setting.

Step 1 Build independent random paths in ¢ of length log(2h) from 7 until hl/2
vertices are reached. Those are the neighbors of <.

Step 2 Build independent random paths of length log(2h) from % until a neighbor of
&/ is reached. There is now a short path between .« and 4.

Now, let us prove that the number of paths considered at each step is on average
O(h'/?). Let Y be a subset of the vertices of ¢, smaller than 2h/3. By a trial, we mean
the computation of a random path of length log(2h) from of A, and a trial is a success if
the path ends outside Y. Let us estimate the number Ny of independent trials we need
to obtain a success,

I

I
—

E[Ny] =) iPr[i — 1 failures and 1 success]

1

1 9y
; 2h
1

2

e

and from the generating function (1 —z)™2 = 322 (i + 1)z’, we obtain the inequality

VN2 an?
2h ~(2h =3y )%
Now consider the experiment consisting in a sequence of independent trials, and let Y,

be the first n distinct points obtained from the first experiments. The number M,, of
trials required to find n distinct points can be estimated as

E[Ny] < <1 -

"i 4h2 Anh?
(

BM] = E_; BT <2 n =32 = @h—snp

i=1
In particular, to find h'/2 neighbors of &7, the expected number of trials E[M,,2] is at
most 4h'/2, assuming that h is at least 9. Of course, in practice, we expect to need much
fewer trials since we count here only the end point of each path. This proves that the
expected number of paths we have to compute in Step 1 is O (h1/2).

The expected number of paths considered in Step 2 can be found to be O (hl/ 2) in a
similar fashion. In total, we build O (h1/2) paths of length O(log(h)). So the algorithm

needs to compute O (hl/ 2 log(h)) isogenies, each of them being computable in time ¢,
and finds a path of length O(log(h)) between & and 2.
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ABSTRACT. This chapter is based on an article presented at the Thirteenth Algorith-
mic Number Theory Symposium, ANTS-XIII, as

B. Wesolowski, Generating subgroups of ray class groups with small prime
ideals, Thirteenth Algorithmic Number Theory Symposium — ANTS-XIII,
2018, proceedings to appear in the Open Book Series, Mathematical Sci-
ences Publishers.

[Wes18D]

ORIGINAL ABSTRACT. Explicit bounds are given on the norms of prime ideals gener-
ating arbitrary subgroups of ray class groups of number fields, assuming the extended
Riemann hypothesis. These are the first explicit bounds for this problem, and are
significantly better than previously known asymptotic bounds. Applied to the inte-
gers, they express that any subgroup of index ¢ of the multiplicative group of integers
modulo m is generated by prime numbers smaller than 16(ilogm)?, subject to the
generalised Riemann hypothesis. Two particular consequences relate to mathematical
cryptology. Applied to cyclotomic fields, they provide explicit bounds on generators of
the relative class group, needed in some previous work on the shortest vector problem
on ideal lattices. Applied to Jacobians of hyperelliptic curves, they allow one to derive
bounds on the degrees of isogenies required to make their horizontal isogeny graphs
connected. Such isogeny graphs are used to study the discrete logarithm problem on
said Jacobians.

Consider a number field K, and an order O in this field. Let A be the absolute value of
the discriminant of K, and let § be the conductor of O. Assuming the extended Riemann
hypothesis (henceforth, ERH), the class group of the order O is generated by the classes
of invertible prime ideals of prime norm smaller than

181og(AZN(§))2.

This bound was computed by Bach in 1990 [Bac90]. In particular, when O is the endo-
morphism ring of an abelian variety, it implies that the corresponding horizontal isogeny
graphs with isogenies of prime degrees bounded by 181log(A?N(f))? is connected. Bach’s
bounds made explicit the earlier work of Lagarias, Montgomery and Odlyzko [LMOT9],
and have proved to be a crucial tool in the design and analysis of many number theo-
retic algorithms. However, these bounds do not tell anything about the norms of prime
ideals generating any particular subgroup of the class group. Indeed, a generating set
for the full group might not contain any element of the subgroup. In particular, they
do not allow to construct connected isogeny graphs of principally polarisable abelian
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varieties. In this chapter, we generalise Bach’s explicit bounds to arbitrary subgroups
of ray class groups (Theorem 4.1 for characters, and Theorem 4.16 for generating sets),
with implications not only for isogeny graphs, but also for the third part of this thesis on
ideal lattices in cyclotomic fields (this however is left to be discussed later, in Chapter 7).

With K a number field of degree n, and A the absolute value of its discriminant,
the results of [LMOT79] show that the class group Cl(K) is generated by prime ideals
of norm bounded by O((logA)?). Now, let H be an arbitrary subgroup of the class
group CI(K'). Some asymptotic bounds on the norm of prime ideals generating H have
already been computed in Chapter 3 by analysing spectral properties of the underlying
Cayley graphs. They are of the form O((n[Cl(K) : H]log A)?T¢), for an arbitrary € > 0.
Taking H to be the full class group reveals a clear gap with the bounds of [LMO79].
The new explicit bounds provided in the present chapter eliminate this gap, as they are
asymptotically O(([CI(K) : H]log A)?).

4.1. Ray class characters

This section summarises the definitions, notation and facts related to ray class characters
that will be used in the rest of the chapter. We assume the terminology and notation
introduced in Section 3.1.5 for ray class groups.

Throughout this chapter, K denotes a number field of degree n, with r; embed-
dings into R and 2ry embeddings into C. Our main tools in what follows are ray
class characters. We call a ray class character modulo m what Neukirch [NS99, Defini-
tion VIIL.6.8] calls a (generalised) Dirichlet character modulo m, that is a GroBencharakter
X @ Im(K) — C* that factors through the ray class group Cly(K) via the canonical
projection. A character is principal if it takes only the value 1. Let d(x) be 1 if x is
principal and 0 otherwise. A ray class character is primitive modulo m if it does not
factor through Cly (K) for any modulus m’ smaller! than m. The conductor fy of x is
the smallest modulus f such that x is the restriction of a ray class character modulo f.
Let By = |fso| be the number of infinite places in the conductor f. From [NS99, Propo-
sition 6.9], any ray class character x is the restriction of a primitive ray class character
of modulus f,, which is also primitive as a GroBencharakter.

The Hecke L-function associated to a character x modulo m is defined as

LX(S) - Z ]\>/§((cc:))s’

for PRe(s) > 1, where the sum is taken over all ideals of O. Note that x is implicitly
extended to all ideals by defining x(a) = 0 whenever (a,mg) # 1. When y is the trivial
character on .#(K), we obtain the Dedekind zeta function of K, (x(s) = >, N(a)™*.
These L-functions are extended meromorphically on the complex plane with at most a
simple pole at s = 1, which occurs if and only if x is principal. Let R, be the set of zeros
of L, on the critical strip 0 < Re(s) < 1. The ERH states that for all Hecke L-functions
the zeros on the critical strip satisfy Re(s) = 1/2.

We will make an extensive use of the logarithmic derivatives L} /L. For any s such
that Re(s) > 1, they admit the absolutely convergent representation

L/
LY Ny

(4.1)

LA modulus m’ is (strictly) smaller than m if m) | mg, m’ C Mmoo and m’ # m.
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TABLE 4.1. Residues of the logarithmic derivative of Hecke L-functions,
when y is a primitive ray class character ([Bac90, p. 361]).

place residue of (i /(x residue of L' /L,
1 -1 0
p e Ry 1 0if p & Ry, 1 otherwise
pER, 0if p ¢ Ry, 1 otherwise 1
0 rn+rg—1 ri+ 1o — By
—2n+1,n € Nyg 9 ro + By
—2n,n € Nyg 1+ 79 ri+1ro — By

where A is the von Mangoldt function (i.e., A(a) = log N(p) if a is a power of a prime
ideal p, and 0 otherwise). The residues of L;( /Ly when x is primitive modulo m are
summarised in Table 4.1, which comes from [Bac90, p. 361] (with the observation
that § in [Bac90] coincides with 8, = |my| for characters x which are primitive modulo
m).

Let 1 be the logarithmic derivative of the gamma function, and for any ray class
character xy on K, define

— 1
(4.2) o (s) = L2 = Pxy, (;)+r2;ﬁxw(8+1> _nlogr

2 2 2

The main reason to introduce these functions is the following formula: for any complex
number s, if x is primitive then

(43) = ReFX(6) = S loANG) + 3% (300 (4 517 ) = T h + o

s s—1 s —
X pPERy P

A proof can be found in [LO77, Lemma 5.1].

4.2. Small primes for non-trivial characters

Let K be a number field of degree n, and m a modulus of K. Consider any subgroup H
of the ray class group Cly(K), and any character x that is not trivial on that subgroup.
The main theorem of this chapter generalises [Bac90] by providing explicit bounds on
the smallest prime ideal p whose class is in H and such that y(p) # 1. Note that all
statements containing the mention (ERH) assume the extended Riemann hypothesis.

Theorem 4.1 (ERH). Let K be any number field, and A the absolute value of the
discriminant of K. Let m be a modulus of K, with finite part mg and infinite part M.
Let H be any subgroup of the ray class group Cln(K). Let x be a ray class character
modulo m that is not trivial on H. Then there is a prime ideal p such that (p,mg) = 1,
the class of p in Cly(K) is in the subgroup H, x(p) # 1, deg(p) =1 and

N(p) < ([Clu(K) : H] (2.7110g(AN (mg)) + 1.29|mso| + 1.38w(mg)) + 4.13)?,
where w(mg) denotes the number of distinct prime ideals dividing my.

The proof of this theorem is the object of Section 4.3, and its consequences are
discussed in Section 4.4.

Remark 4.2. When H is the full group and n > 2, the above bound can be compared
to Bach’s bound N (p) < 18(log(A2N(my)))? given by [Bac90, Theorem 4]. Let us put
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the expression of Theorem 4.1 in a comparable form. From [Bac90, Lemma 7.1], we have

| < < DBAN(m)) +3/2

log(2m) — 9(2)
where 1 is the logarithmic derivative of the gamma function. Moreover, we have the
bound w(mgy) < log(AN(mg))/log(2). The bound of Theorem 4.1 becomes N(p) <
(5.621og(AN (mg)) + 5.52)% . Whenever AN (mg) < 12, the corresponding ray class group
is trivial, so we can suppose that log(AN(mg)) > log(12) > 2.48. These estimates lead
to

(4.4) N(p) < (5.62 + 5.52/2.48)* (log(AN (mg)))? < 62(log(AN (mg)))2.

< 0.71log(AN (mg)) + 1.07,

Even in this form, direct comparison with [Bac90, Lemma 7.1] is not obvious. With the
unrefined estimate A2N(mg) < (AN(mgp))?, Bach’s bound becomes

N(p) < 72(log(AN(mo)))?.

The constant factor is slightly worse than in the bound (4.4), but this comparison does
not do justice to either theorem.

4.3. Proof of the main theorem

In this section, we prove Theorem 4.1. Throughout, we consider a ray class character x
modulo m that is not trivial on a given subgroup H of G = Cl,(K). Recall that K
is a number field of degree n, with r; embeddings into R and 2ry embeddings into C.
An inequality such as z < y between complex numbers means that the relation holds
between the real parts.

4.3.1. Outline of the proof. For any 0 < a < 1, z > 0, and ideal a, let

P(a,z) = A(a) (Nia)y log (N"éa)) .

Let us start by recalling a lemma that is the starting point of the original proof of Bach’s
bounds.

Lemma 4.3 ([Bac90, Lem. 4.2]). For 0 < a <1 and any character n,

Z 1 2-+i00 s L;]
P = o [ s
N(a)<x 271 2 0o (5 =+ (I) L77

Bach then considers the difference between two instances of this equality at n = 1
and at n = x, and proves the bounds by estimating the right-hand side as x + O(y/x),
while the left-hand side is zero if the character is trivial on all prime ideals of norm
smaller than x; therefore such an x cannot be too large.

The proof of Theorem 4.1 follows the same strategy. It exploits the series of lemmata
provided in [Bac90, Section 5|, interlacing them with a game of characters of G/H in
order to account for the new condition [a]y, € H. Consider the group of characters of the
quotient G/H, namely CT/?—I = Hom(G/H,C*). Given any character 6 € CT/?{, let 6*
be the primitive ray class character such that 6*(a) = 6([a|mwH) whenever (a,mp) = 1.

For any § € G/H, write Ly for the L-function of 6*. For any ray class character n and
any 0 € G/H, let g denote the primitive character inducing the product n6*.
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Lemma 4.4. Let a be any ideal in K. Let ng be the largest divisor of mg coprime to a,
and n = ngmeo. Let m: Cly(K) — Cly(K) be the natural projection. Then,

DA {[Cl( ):w(H)] if [l € 7(H),

otherwise.
0cG/H

Proof. Let ©, = {0 € CT/]\J | 6%(a) # 0} = {0 € CT/?—I | (fox,a) = 1}. This set is
naturally in bijection with the group X of characters of Cl,(K)/7(H). We obtain

S 0@ = 3 00 = 3 (el — {([)cwo sn(H)]if [alo € 7(H),

oeGiE 6co, bt otherwise.
O
Lemma 4.5. For any 0 < a < 1, we have
A 8 =
0cG/H
where
Fu(e)= Y (1-x() P(a,2),
N(a)<z
[a]mEH
Fulz) = il H > N%: (0*(a (a)) P(a,2), and
0cG/H R
1 24100 5 L L
I(2,0) = — —0 X0 ) (s)ds.
(0= 5 /Hoo (s +a)p (Le Lx) o)
Proof. From Lemma 4.4, for any ray class character n, we have
> pecrn (@)
> P = Y = —n()P(a,)
G : H]
N(a)<z N(a)<z
[a]m€H (a, m) 1
el H Z > mla
9cG/H N(0)<z
am)fl
Subtracting two instances of this equality, for n = 1 and 1 = y, we get
Iu@) = 2 2 (070 = @) Pla.x) - Fuo)
0cG/H N(0)<z
and conclude by applying Lemma 4.3. U

Lemma 4.6. For 0 < a < 1, and with the notation from Lemma 4.5,

G f1)2 = (G : H)(Su(2) + Su(@) + Y (12,0 + Io(a,0) + I_(x,06))
0eG/H
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where

P zP
@0 = 2 Giap ~ 2 e

pERy pta PERy,
log(a) (Ly I, L(Ly Ly
o= 2 (5 ) o (5 1) 9
1 1 o0
+ (Bxe — Bo) <aQ T (e = 1)2) B c(z2)’ and
= (-1
I_(2,0) = (By, — Ba)Zm'
k=2

Recall that for any character n, we denote by R, the set of zeros of L, on the strip
0 < Re(s) < 1.

Proof. This lemma is an analogue of [Bac90, Lemma 4.4]. Evaluating each integral
I(z,0) by residue using Table 4.1 yields

0(0)x
I(x,0) = I, /5(%,0) + Io(z,0) + [ (x,0) — a+1)
The residue calculations can be justified as in the proof of [LO77, Theorem 28]. The
result follows from Lemma 4.5. O

4.3.2. Explicit estimates. This section adopts the notation from Lemma 4.5 and
Lemma 4.6. The remainder of the proof consists in evaluating each term in the formula
of Lemma 4.6. More precisely, we bound the quantities

(1) I /5 in Lemma 4.9,

(2) Ip in Lemma 4.11,

(3) Sm in Lemma 4.12,

(4) g in Lemma 4.14.

Remains the quantity I_, which is easy to bound thanks to [Bac90, Lemma 5.1]. All
these estimates are combined in Lemma 4.13. Let

1 1
#e= 2\ et 2 P

eeG//T{ PERy PERy,
We bound that quantity in Lemma 4.8, but first, we need the following lemma.
Lemma 4.7. For Re(s) > 1, we have
Ly Ly
96%/;7{ (Lg + Lm) (s) <0.
Proof. Equation (4.1) on page 56 yields

Ly LY, A(a)(6*
3 <LZ+L;> =- S % (a)( ]\(;E)O;X(a(a))

—

0cG/H 9cG/H °

—- Y vk L 0@+ ).
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Fix an ideal a. If xg(a) = 0 for all §, Lemma 4.4 implies that

> (07(a) + x0(a)) > 0.

0cG/H

Now suppose that there exists an n € CT/?—I such that x,(a) # 0. The fact that any given
character is induced by a unique primitive character implies that for any 0 € CT/TJ , wWe
have xg(a) = x5 (a) (0771)" (a). Indeed, if (0~1)" (a) # 0, the equality follows from the
fact that g is the primitive character inducing x, - (07]_1)*, and if (97]_1)* (a) = 0, then
one must have yg(a) = 0 because (077_1)* is the primitive character inducing xg/x,. We
deduce that

> e@ru@ - X r@ru@ L (2 ©

—_ —_\7
0cG/H 9cG/H 0cG/H
= (1+xy(@) D 6*(a),
0cG/H
whose real part is non-negative (using again Lemma 4.4). O

Lemma 4.8 (ERH). Let 0 < a < 1. The sum Z%(a,X) is at most

2[G : H|

Eren <log(AN(mo)) +n(y(a+1) —log(2m))

) o (5) s

Proof. Writing o = 1+ a, we have 241 = 11 U%ﬁ for any Re(p) = 1/2 (as observed

lptal> = o—p
in [Bac90, Lemma 5.5]), so for any ray class character n

> = >
]p+a\2_2a+1 o—p o—p)

pER,

As in [LO77, Lemma 5.1], we get from Equation (4.3) that

5 ( LI, ) _25)%?7(0)+log(AN(fn))+25(n) (i n 1) + 20 (0).

s o—p oT—p n o—1

Then, Z(a,n) is at most

! L/
45 gy X (e (e 1) ) o2 f)
0cG/H
+260) (£ + 1) +200(0) + (o)) ).
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/ L
From Lemma 4.7, we have 2065/71 (i—z + Liig) (o) < 0, and the corresponding term
0

can be discarded from the expression in (4.5). Also, with ay, =71 — SBy,,

2 (6 (0) + thry (7)) = (n + vy — Bo) (“; 1) (0=, + Bo)b ( ) ~onlogr

=2n(¢y(a+ 1) —log(2m)) + (ay, — Bp) <¢ <a; 1) —Y (a—;z))

< 2n(vla-+ 1) - og(zn)) - el (0 (“37) =0 (“32) ).

a+2

where the first equality uses the expression (4.2) and the second one follows from the
duplication formula (1(2/2) + ¥ ((z +1)/2) = 2((2) — log(2))). O

Lemma 4.9 (ERH). For0 <a <1 andz > 1, 2965/7[ Iy jo(,0)| < - Z(a, x).

Proof. From the ERH, for any ray class character 7, and any zero p € R, of L, on the
critical strip, we have Re(p) < 1/2. Therefore |2°| = |z|™(¢) < \/z. O

Lemma 4.10. For any s,

(Lo 5 (Fe)-

and

(o) v (5)

ﬁx@—ﬂa 1 1
0 ()

Proof. This is essentially the same proof as [Bac90, Lemma 5.2], with an additional use
of the recurrence relations ¢ (z) = 1(z + 1) — 1/z and ¢'(2) = ¢'(z + 1) + 1/22. O

Lemma 4.11 (ERH). Let0<a <1 and x > 1. Then,

(2+a)log(z)+1  Blarx) + G H|me| 1

@ a? a

G en) e (@ )
O

T (1-a)? (a—1)azo ! (a—1)2z01

Z I()(JJ,(9> S

0cG/H
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Proof. For any 0 < a < 1, Lemma 4.10 implies that

L 1, 3 1 Bro = o
0 X0 ) () < . Z 4
> (2-1)ca<era #en gy Sy Punh
0eG/H 0cG/H

and
Ly LY 1 6
v _ _AY — <

0cG/H eeG/H

We used the facts that (77“) — ) (377“) —(1)+9 (%) >0, and ¢/ (7 ) ) (3%) 0,
which are easily derived from the recurrence relations ¢(z) = ¢(z+1) —1/z and ¢'(2) =
Y (z+ 1) + 1/22, and the monotonicity of 1 and 1. From [Bac90, Lemma 5.3], for any

0 <a <1, we have (( log(z) + (a_l)lgl,a_l R — 2> < 0, therefore

a—1)za—1 (1—a)

Bxo — Po log(z) 1 1
Z : x <(a —1)zo-t + (a—1)2z0-1 B (1- a)2>

0cG/H
- (G : H]|ms| 1 log(z) 1

=Ty <(1 a2 (a—Daz* 1 (a— 1)2xa—1> '

The result follows by applying these estimates to Ip(z, 6) (as defined in Lemma 4.6). [

Lemma 4.12. For any 0 < a <1,

2log(x) 2log(x)
Fm(x) < Tw(mo) < m

log(N (mo)),

where w(mg) is the number of distinct prime ideals dividing mg.

Proof. We have

S = L | X @) | Pan< 3 2P@a)

N(a)<z G/H N(a)<z
wmz1 (am)£1
and the result follows from [Bac90, Lemma 5.7]. O

Lemma 4.13 (ERH). For any 0 < a < 1, the fraction \/z/(a + 1)? is at most

G : H] (sl(x) log(AN (myg)) + s5(z)n + sa(x)|meo| + s3(z)w(mg) + y\};;aj)) + so(x),
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where
1(8) = 5t (1 y Eraosn) s 1) |
o) B (Lt L) ()

sa(2) = (a_21)2$5/2 B s1éa:) <¢ (a+ 1) » (a—;2>) - a21/a>:

2
1 1 log(x) 1
M ((1 Y P § T S 1)2;5@—1) !
s5(z) = si(x)(Y(a+ 1) — log(2m)).

Proof. As in [Bac90, Lemma 5.1], we have 0 < > 77, (a(—_kl))zkxk < (a721)212. We de-

duce that I_(z,0) < |(§ 192;5:2' < (al_m;)‘;‘xz. Together with Lemma 4.9, the bound from

Lemma 4.6 becomes

Ve _ [G: Hjmu| T (@) + (@)

—l—%’(a,x)—i—\/lE Z Ip(z,0) + [G : H]

(a+1)2 = (a—2)225/2 — VT
9cG/H
The result then follows from Lemma 4.8, Lemma 4.11 and Lemma 4.12. O

Lemma 4.14. Suppose that x(p) = 1 for all prime ideals p such that N(p) < x, [plm € H,
and deg(p) = 1. Then, for any 0 < a <1,

< 2—2 Z A(m
m<\/z

Proof. We start as in [Bac90, Lemma 5.7] by observing that when ¢ > 1, the function
t~*logt is bounded above by 1/ea. We deduce

2
(4.6) Su(x)= Y (1-x(a)P(a,z) < o > Aa)
N(a)<z
[a}mGH [a]mEH
x(a)#1

Fix a prime ideal p (above a rational prime p) of norm smaller than x and consider the
contribution of its powers to the last sum above. First suppose that deg(p) > 1. Then,

SOAPH < DD deg(p)ARY) < deg(p) > Alp

N(pF)<z N(pF)<z pP<yz
[pk}meH
x(pF)#1

Now suppose that deg(p) = 1, and let ¢ be the smallest integer such that [p‘], € H.

If £ =1, then x(p*) = 1 for any integer k, so the contribution of p is zero. Suppose
that ¢ > 2. Then,

Z A(p* Z A(p*) < deg(p Z A(p
N(pF)<a N(p“)<:c pP<vz
[pk]mEH

x(pF)#£1
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Summing over all rational primes p and ideals p above p, we obtain

SN A <D D deslp) Yo AGH < D Am).

P plp N(p*)<z P oplp pF<\/z m<\z
[Pk]mEH
x(PF)#1
We conclude by applying this inequality to Equation (4.6). O

Lemma 4.15. For any = > 0,

<( 1 log(z) 1 > _ (logz)®

I - -
\a- a)?  (a—1z¢t  (a—1)2z01 2

a—1

Proof. A simple application of 'Ho6pital’s rule yields

Yim ((1 _1@)2 " 1—0%2—1 G —I}l)zxa—1>
() ()

( (log z)? > _ (logz)?
-0\ b2(logx)2 +4blog(z) +2/) 2

O

4.3.3. Proof of Theorem 4.1. Let z be the norm of the smallest prime ideal p such
that [p]m € H, deg(p) = 1 and x(p) # 1. First suppose that < 95, and consider the
quantity

B = (|G : H] (2.711og(AN (mp)) + 1.29|mo | + 1.38w(mp)) + 4.13).

We want to show that z < B.

Suppose n = 1. For the ray class group G not to be trivial, one must have either |mq,| = 1
and N(mg) > 3, in which case

B> (2.71l0g(3) + 1.20 + 1.38 + 4.13)* = 95.59 .. - > «,
or |me| = 0 and N(mg) > 5, in which case

B> (2.7110g(5) + 1.38 + 4.13)> = 97.44 ... > .

Suppose n = 2. Suppose that AN (mp) > 8. Then
B> (2.7110g(8) +4.13)* = 95.36 - -- > .

Now, one must investigate the cases where AN (mp) < 7. All quadratic fields with a
discriminant of absolute value at most 7 have a trivial (narrow) class group. Therefore,
one must have N(mg) > 2. There is only one quadratic field of discriminant of absolute
value at most 3, namely Q(v/—3). It has discriminant of absolute value 3 and no ideal
of norm 2, so the condition AN (mg) < 7 is impossible.
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Suppose n. > 2. From [Bac90, Lemma 7.1], we get
3

log(AN (mg)) > n(log(2m) — $(2)) — 5 > 2.74,

and we deduce
B> (2.71-2.74+4.13)> = 133.52--- > z.

It remains to consider the case x > 95. From Lemma 4.14 and [RS62, Theorem 12],
2n 2nCy/x
5% < — <
H(@) < ea Z Am) < ea
m<\/z

where C' = 1.03883. We now apply Lemma 4.13 with a — 1. From Lemma 4.15 (applied

to the sy-term), and the facts that for x > 95, the value (35(33) + E) is negative, and

s1, 82,83 and s4 are decreasing, we get “
z < 2*([G : H] (51(95)log(AN (mg)) + 54(95)|mao| + 53(95)w(mg)) + 32(95))2
< ([G : H] (2.7110g(AN(mg)) + 1.29|muo| + 1.38w(mg)) + 4.13)°,

which proves the theorem. ]

9

4.4. Consequences

In this section, a series of notable consequences is derived from Theorem 4.1.

4.4.1. Generating subgroups of ray class groups. Foremost, Theorem 4.1 allows
us to obtain sets of small prime ideals generating any given subgroup of a ray class
group. This is made precise in the following theorem.

Theorem 4.16 (ERH). Let K be any number field, and A the absolute value of the
discriminant of K. Let m be a modulus of K, with finite part mg and infinite part M.
Let b be any ideal in K. Let H be a non-trivial subgroup of the ray class group Cly(K).
Then H is generated by the classes of the prime ideals in

{p prime ideal in K | (p,hmg) = 1, [p]m € H,deg(p) =1 and N(p) < B},
where B = ([Clu(K) : H] (2.711og(AN (hmg)) + 1.29|moo| + 1.38w(hmyg)) + 4.13)°.
Proof. With B the bound from the theorem, let

A = {p € Iu(K) | pis prime, (p,h) = 1, [pm € H,deg(p) = 1 and N(p) < B},

and N the subgroup of H generated by .4". By contradiction, suppose N # H. Then,
there is a non-trivial character of H that is trivial on N. Since G is abelian, this character
on H extends to a character on GG, thereby defining a ray class character xy modulo m
that is not trivial on H. From Theorem 4.1, there is a prime ideal p € Fu(K) such
that [plm € H, x(p) # 1, deg(p) = 1 and N(p) < B. All these conditions imply that
p € A C N, whence x(p) =1, a contradiction. O

4.4.2. Multiplicative subgroups of integers modulo m. Applying Theorem 4.1 to
Dirichlet characters, one can obtain new results on subgroups of the multiplicative group
(Z/mZ)*. Let m be a positive integer, and H a non-trivial subgroup of G = (Z/mZ)*.
It is already known that, assuming ERH, H contains a prime number smaller than
O(([G : H]logm)?) (see [BS96, LLS15]). But these bounds do not provide a generating
set for H: they only guarantee the existence of one such prime number. The following
theorem gives a set of generators of H, whose norms are also O(([G : H]logm)?).
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Theorem 4.17 (ERH). Let m be a positive integer, and H a non-trivial subgroup
of G = (Z/mZ)*. Then H is generated by the set of prime numbers p such that
pmod m e H and p <16 (|G : H]logm)®>.

Proof. Let m = mpomy, where mg = mZ and my is the real embedding of Q. Then, the
group Cly(Q) is isomorphic to G = (Z/mZ)*. An isomorphism is given by the map
sending the class of aZ to a mod m. The subgroup H of (Z/mZ)* corresponds to a
subgroup H' of Cly,(Q) through this isomorphism. From Theorem 4.16, H' is generated
by prime numbers smaller than

B = (|G : H|(2.711og(m) + 1.29 + 1.38w(m)) + 4.13),

and so is H. If H is the full group, then the theorem follows from [Bac90, Theorem 3J;
and for m < 11000, the result can be checked by an exhaustive computation. So we can
assume that m/|H| > 2 and m > 11000. From [Bac90, Lemma 6.4],

- li(logm) + 0.12y/logm - li(log 11000) + 0.124/log 11000
logm — logm - log 11000

w(m)

< 0.67,

where i is the logarithmic integral function. We get

1.29 + 4.13/2 2
B < ([G: HII 271+ =2 T 2072 4 1380
< ([G ] og(m)< 71+ log 11000 +1.38 067>) ,

and we conclude by computing the constant. O

4.4.3. Connected horizontal isogeny graphs. Finally, we go back to our original
motivation, and derive bounds on the degrees of cyclic isogenies required to connect all
isogenous principally polarisable abelian varieties over a finite field sharing the same
endomorphism ring.

Theorem 4.18 (ERH). Let o/ be a principally polarised, absolutely simple, ordinary
abelian variety over a finite field ¥, with endomorphism algebra K and endomorphism
ring isomorphic to an order O in K. Let KT be the mazimal real subfield of K, and §
the conductor of O. For any B > 0, let 9 (B) be the isogeny graph whose vertices are the
principally polarisable varieties isogenous to </ and with the same endomorphism ring,
and whose edges are isogenies connecting them, of prime degree smaller than B. Then,
if OT = O N KT is the ring of integers of K+, the graph

2
% (26 (h&. log(AN(§))) )
s connected, with A the absolute value of the discriminant of K, and h(J5+ the narrow
class number of OT.

Remark 4.19. In particular, the above holds in dimension 2, where, as already men-
tioned, principally polarised translates to Jacobian of a genus 2 hyperelliptic curve.

Proof. As explained in Section 3.1.4, the graph ¢(B) is isomorphic to the Cayley graph of
P(0) = ker(Cl(O) — CIT(ONK™))

with set of generators the classes of ideals of prime norm smaller than B. Let g > 2
be the dimension of &7, and n = 2¢g the degree of its endomorphism algebra K. The
natural map 7 : Cli(K) — Cl(O) is a surjection (see Section 3.1.5), so it is sufficient to
find a generating set for H = 7= (#(0)). From Lemma 3.14, we have the inequality

[CH(K) : H] < [CIO) : 2(0)] < b,
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From Theorem 4.16, ¢4(B) is connected for

B w(f) 413 \*, . . 2
67 8= (a7 gy (8 AN

and it remains to show that the constant factor in this expression is at most 26. First,
we need a lower bound on the quantity log(AN(f)). From [Odl90, Table 3|, if n = 4,
log(AN(f)) > 410g(3.263) > 4.73 (this result assumes ERH). For n > 6, [Bac90, Lemma
7.1] implies

log(AN(f)) > n(log(2m) — ¢(2)) — = > 6.99.

Therefore for any degree n > 4, we have log(AN(f)) > 4.73. Now, for n = 2, smaller
values of log(AN(f)) are possible. One can check that the constant factor in the ex-
pression (4.7) is at most 26 for all pairs (A, N(f)) such that log(AN(f)) < 4.73 by an
exhaustive computation. There are however five exceptions: when the field is Q(v/—1)
and N(f) € {1,2}, when the field is Q(v/—3) and N(§) € {1,3}, and when the field
is Q(+v/5) and N(f) = 1. Since § is the conductor of an order in a quadratic field, it is
generated by an integer, so N (f) must be a square. This discards the cases N(f) € {2, 3}.
When N(f) = 1, the order O is the ring of integers, which has a trivial (narrow) class
group for Q(v/~1), Q(v/=3) and Q(v/5).

Then, irrespective of the value of n, we can assume in the rest of the proof that
log(AN(f)) > 4.73. If w(f) < 5, then

w(F)
og(AN()) = 173 = 16

If w(f) > 5, then N(f) >2-3-5-7-11-13*0=5 and
w(f) < w(f) _ 5 N )
log(AN(f)) = log(2-3-5-7-11-13%0=5) ~ log(2-3-5-7-11) ~ log(13)
Then,

Do | o

< 1.06.

1.38 - w(f) 413
log(AN(f)) = log(AN

which concludes the proof. O

2
(2.71 + (f))> < (2.7141.38 - 1.06 + 4.13/4.73)> < 26,



Vertical structure of isogeny graphs

ABSTRACT. This chapter is based on a joint work with Ernest Hunter Brooks and
Dimitar Jetchev, which was published in the journal Research in Number Theory as

E. H. Brooks, D. Jetchev, and B. Wesolowski, Isogeny graphs of ordinary

[BIW17] abelian varieties, Research in Number Theory 3 (2017), no. 1, 28.

ORIGINAL ABSTRACT. Fix a prime number £. Graphs of isogenies of degree a power
of £ are well-understood for elliptic curves, but not for higher-dimensional abelian va-
rieties. We study the case of absolutely simple ordinary abelian varieties over a finite
field. We analyse graphs of so-called [-isogenies, resolving that, in arbitrary dimension,
their structure is similar, but not identical, to the “volcanoes” occurring as graphs of
isogenies of elliptic curves. Specialising to the case of principally polarisable abelian
surfaces, we then exploit this structure to describe graphs of a particular class of iso-
genies known as (¢, £)-isogenies: those whose kernels are maximal isotropic subgroups
of the ¢-torsion for the Weil pairing. We use these two results to write an algorithm
giving a path of computable isogenies from an arbitrary absolutely simple ordinary
abelian surface towards one with maximal endomorphism ring. This has immediate
consequences for the CM-method in genus 2, for computing explicit isogenies, and for
the random self-reducibility of the discrete logarithm problem in genus 2 cryptography.

5.1. Isogeny volcanoes

The previous two chapters have focused on horizontal isogeny graphs, where all the
abelian varieties have the same endomorphism ring. However, two abelian varieties in
the same isogeny class can have different endomorphism rings. There is thus an interest
in understanding the structure of wertical isogenies, which change the endomorphism
ring. To study horizontal graphs, we were looking simultaneously at isogenies of various
degrees, up to some bound. To study the vertical structure, it is more enlightening to
work locally at some fixed prime ¢, and consider graphs where isogenies are of degree a
power of /.

In the case of ordinary elliptic curves, the structure of the f-isogeny graph is well-
understood (the graph containing all isogenies of degree £), thanks to the work of Ko-
hel [Koh96], who showed that such a graph is a volcano (the name and modern definition
first appearing in [FMO02]):
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FiGURE 5.1. Isogeny volcanoes for elliptic curves. The cycle at the top
is the surface (level 0). The points just below the surface are at level 1,
and the leaves are at level 2.

Definition 5.1 (Volcano). Let n be a positive integer. An (infinite) n-volcano ¥ is an
(n 4 1)-regular, connected, undirected graph whose vertices are partitioned into levels

{Vi}iez, such that:

(i) The subgraph %, the surface, is a finite regular graph of degree at most 2,
(ii) For each i > 0, each vertex in ¥; has exactly one neighbor in %;_;, and these
are exactly the edges of the graph that are not on the surface.

For any positive integer h, the corresponding (finite) volcano of height h is the restriction
of 7 to its first h levels.

An example of a volcano constructed out of isogenies of elliptic curves over finite
fields is given in Figure 5.1. This description has seen numerous applications, including
point-counting on elliptic curves [FMO02], random self-reducibility of the elliptic curve
discrete logarithm problem in isogeny classes [JMV05, IMV09], generating elliptic curves
with a prescribed number of points via the CM method [Sut12], and computing modular
polynomials [BLS12].

There is great interest in generalising these results to higher dimension, and that
would require a similar description of isogeny graphs for other ordinary abelian varieties.

5.1.1. Volcanoes and endomorphism rings. At the heart of Kohel’s results for
elliptic curves lies a deep connection between graphs of /-isogenies and endomorphism
rings of elliptic curves. As explained in Chapter 4, the endomorphism ring of an ordinary
elliptic curve over a finite field is isomorphic to an order in an imaginary quadratic field,
the endomorphism algebra of the curve, and the endomorphism rings of two isogenous
ordinary elliptic curves are isomorphic to orders (possibly distinct) in the same imaginary
quadratic field. Orders in imaginary quadratic fields are well-understood: fix such a field
K, and let Ok be its ring of integers. The orders in K are exactly the rings of the form
Z + fOp for positive integers f. For any volcano of f-isogenies with endomorphism
algebra K, there is a unique positive integer f coprime to ¢ such that the endomorphism
ring of any elliptic curve at level i is isomorphic to Z + ¢! fOg. The linear structure
Z+ fOx DZ+1fOg DZ+?fOr O ... corresponds to the levels of the volcano.

As a motivation for our search of similar graph structures in higher dimensions, let us
sketch a simple application of isogeny volcanoes: the computation of the endomorphism
ring of an elliptic curve E defined over a finite field £ = F,. First, one can find the
endomorphism algebra K = Q(7) by computing the characteristic polynomial of the
Frobenius endomorphism 7. This polynomial is of the form X? — tX + ¢, where ¢ is
called the trace of Frobenius. This trace is related to the number of rational points of
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the curve by the equation |E(F,)| = ¢ + 1 — ¢, and there are efficient methods to count
rational points in elliptic curves (notably the Schoof-Elkies-Atkin algorithm [Sch95] in
large characteristic, and p-adic methods [Sat00] in small characteristic). Once K is
known, it remains to determine which order O corresponds to the endomorphism ring.
Due to the classification of orders in quadratic fields, it is sufficient to retrieve the
conductor f € Z of the order. First, we know that this order contains the Frobenius
endomorphism 7. The discriminant of Z[r] is d, = t* — 4q, and its conductor f, is the
largest integer such that f2 divides d, and d,/f? =0 or 1 mod 4. For ordinary elliptic
curves, fr is not divisible by the characteristic of k. Since O contains Z[r|, we deduce
that f divides fr. For each prime divisor £ of f;, it remains to determine the valuation
of f at £. As already mentioned, this valuation at ¢ coincides with the level of our elliptic
curve F in the isogeny volcano. And in fact, the level of E can easily be determined by
computing a few isogenies of degree ¢. If there is only one isogeny out of E (over the
field k), then E is at the bottom of the volcano, and the valuation of f at ¢ equals the
valuation of f; at £. Otherwise, there are at least three outgoing isogenies, so construct
three distinct, non-backtracking paths of f-isogenies from E until one of them reaches
a dead-end. This path must have reached the bottom of the volcano, and since it was
non-backtracking and the shortest of three, it must be a straight path down, so that its
length is exactly the distance from E to the bottom. We know that the bottom level is
the valuation of f, at £, and we can deduce the valuation of f at /.

5.1.2. Almost volcanoes in higher dimension. For higher-dimensional ordinary
abelian varieties, graph descriptions are largely unknown. The role played by imaginary
quadratic fields for elliptic curves is now played by CM-fields of higher degree. The key
obstruction to generalising Kohel’s results to higher dimension is the relative complexity
of the set of orders in CM-fields of arbitrary degree. The case of elliptic curves and
imaginary quadratic fields enjoys a complete and simple classification, but even for
quartic CM-fields, the orders are not easy to classify.

The real endomorphism ring of an absolutely simple ordinary abelian variety is the
ring of totally real elements in its endomorphism ring. We say that the real endomor-
phism ring is maximal if it is integrally closed in its field of fractions. The real endomor-
phism ring of an ordinary elliptic curve is Z, so it is always maximal. Isogeny volcanoes
of elliptic curves are therefore naturally isogeny graphs of abelian varieties with maxi-
mal real endomorphism ring. This maximality condition, which becomes non-trivial in
higher dimension, turns out to be crucial to obtain “volcano-like” structures.

In higher dimension, the family of /-isogenies (giving rise to the ¢-isogeny volcanoes
for elliptic curves) does not seem to be a pertinent choice, either practically or theo-
retically: not all f-isogenies are efficiently computable, and at any rate, they do not
provide the most enlightening graph structures. Theorem 5.13 provides a full descrip-
tion of graphs for a key family of isogenies called [-isogenies, in any dimension, and a
number-theoretic condition is derived for determining when these graphs are volcanoes.
These l-isogenies are isogenies whose kernels are proper subgroups of the [-torsion of
ordinary abelian varieties, where [ is a fixed ideal in their real endomorphism ring that
is assumed locally maximal (see Definition 5.11).

Thanks to this assumption, the proof of Theorem 5.13 avoids the difficult problem
of classifying arbitrary orders in a CM-field by working with a well-behaved class: those
whose intersection with the totally real subfield is maximal. This classification, which is
Theorem 5.2, is a result in pure commutative algebra, which does not need any results
about abelian varieties, or even about CM-fields.
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5.1.3. Levels of real multiplication for abelian surfaces. Our next results spe-
cialise to the case of dimension 2. Using Theorem 5.13, we describe graphs of a second
important family of isogenies, known as (¢, f)-isogenies. These isogenies are isogenies
of polarised abelian varieties whose kernels are maximal isotropic with respect to the
Weil pairing; see Section 5.6 for the precise definition. The (¢, £)-isogenies are important
for the following reason: algorithms for computing isogenies of elliptic curves from a
given kernel (such as Vélu's formulae [VéI71]) are difficult to generalise in higher di-
mension, as cyclic isogenies do not preserve the property of being principally polarisable
in genus 2. The known methods such as [Ric37], [DLO08], [Rob10], [LR12b], [Smil2],
[BFT14], [Fly15], [CE15], [CR15] apply only to (¢, f)-isogenies. Only the very recent
method of [DJRV16] allows to compute isogenies of certain cyclic kernels. The interest
in (¢, ¢)-isogenies stems from the fact that they preserve principal polarisability, and are
computable with the algorithms of [CR15].

We provide two structural results on (¢, ¢)-isogenies. First, Theorem 5.36 gives a
local description of the graph of all (¢, ¢)-isogenies by analysing how these isogenies can
change the real endomorphism ring. Second, we provide in Proposition 5.63 a complete
description of the subgraph of (¢, £)-isogenies which preserve maximal real multiplication,
the key input to which is Theorem 5.37, describing the local structure of this graph.

These structures lead to a “going up” algorithm (Algorithm 5.1). This algorithm,
given as input a principally polarised abelian surface and a prime /¢, finds a path of
computable isogenies leading to an abelian surface whose endomorphism ring is maximal
at ¢, when it exists (our result also precisely characterises when it does not exist). It
has various applications, in particular in generating curves of genus 2 over finite fields
with suitable security parameters via the CM method, in extending results about the
random self-reducibility of the discrete logarithm problem in genus 2 cryptography, or in
finding explicit isogenies between two isogenous principally polarised abelian surfaces.
Applications are discussed in more detail in Section 5.9.1.

5.1.4. Previous work. Before describing the proofs of these results, we mention some
previous work. Following Kohel’s techniques, Bisson [Bisl5, Chapter 5] sketched the
relation between isogeny graphs and the lattice of orders in the endomorphism algebra
for abelian varieties of higher dimension. This provides a first approximation of the
global structure of the graphs, but allows no fine-grained analysis.

Ionica and Thomé [IT14] observed that the graph of (¢, £)-isogenies, when restricted
to surfaces with maximal real endomorphism ring, could be studied through what they
called [-isogenies, where [ is a prime ideal above ¢ in the maximal real endomorphism
ring. Even though their definition of l[-isogeny differs from ours, it does coincide in the
particular case they analyse (i.e., in dimension 2, when the real endomorphism ring has
trivial class group, and [ is above a split prime).

Finally, if [ is principal, of prime norm, generated by a real, totally positive en-
domorphism 3, then [-isogenies coincide with the cyclic S-isogenies of [DJRV16] — an
important notion, since these are the cyclic isogenies preserving principal polarisability.
In parallel to the present work, Chloe Martindale has recently announced a similar result
on cyclic B-isogenies, that can be found in her Ph.D. thesis [Mar18].

5.1.5. Proof strategy: (-adic lattices and Tate’s theorem. The results above are
proven using a different approach from the currently available analyses of the structure
of ¢-power isogeny graphs. Rather than working with complex tori via the theory of
canonical lifts (presented in Section 3.2), we attach to an f-isogeny of abelian varieties
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a pair of lattices in an /-adic symplectic space, whose relative position is determined by
the kernel of the isogeny, following the proof of Tate’s isogeny theorem [Tat66].

Inspired by [CV04, Section 6], where the theory of Hecke operators on GLg is used
to understand the CM elliptic curves isogenous to a fixed curve, we analyse the possible
local endomorphism rings (i.e., the tensor products of endomorphism rings with Q) for
an analogous notion of “neighboring” lattices.

This perspective also explains why our most complete results are restricted to abelian
varieties with maximal real endomorphism ring: the techniques of [CV04], which reduce
questions about arbitrary free modules over a ring to sublattices of its field of fractions,
rely on that ring satisfying the Gorenstein property. This property holds for all quadratic
orders and for any order with maximal real suborder (Lemma 5.14), but not for a general
order (even in a quartic field).

5.2. Orders with maximal real multiplication

Before considering any isogeny or abelian variety, we prove a classification theorem for
orders in quadratic extensions. This classification lays the groundwork for our “vertical”
study of isogeny graphs.

Recall that an order in a number field is a full rank Z-lattice which is also a subring.
If ¢ is a prime, and L is a finite extension of Q or a finite product of finite extensions
of Qg, an order in L is a subring of Op that is also a full rank Z,-lattice. If K is a
number field, write K, = K ®q Qq.

Given a number field K and a sequence R(¢) of orders in K, such that R(¢) is
the maximal order in K, for almost all ¢, it is a classical consequence of the strong
approximation theorem for SL, that there exists a unique order O in K such that
O ®z Zy = R(¢) for all £. In fact, O can be recovered as O = [,(R({) N K).

Suppose that KT is a number field or a finite product of extensions of Q, for some
fixed prime ¢, and let K be a quadratic extension of KT (i.e., an algebra of the form
K*[x]/f(z), where f is a separable quadratic polynomial). The non-trivial element of
Aut(K/K™) will be denoted . In the case that K is a CM-field and K™ its maximally
real subfield, Goren and Lauter [GL09] proved that if Kt has a trivial class group, the
orders with maximal real multiplication, i.e., the orders containing O+, are character-
ized by their conductor — under the assumption that ideals of Ok fixed by Gal(K/K™)
are ideals of Op+ augmented to O, which is rather restrictive, since it implies that
no finite prime of K+ ramifies in K. In that case, these orders are exactly the orders
O+ + f+ Ok, for any ideal f+ in Og+. We generalise this result to an arbitrary qua-
dratic extension; abusing language, we will continue to say an order of K has “maximal
real multiplication” if it contains O+ even if the field extension in question is not a
CM extension. Recall the conductor § of an order O in K is defined as

f={re K |z0k C O},
and is the largest subset of K which is an ideal in both Ok and O.

Theorem 5.2. The map f+ — Og+ + [+ Ok is a bijection between the set of ideals in
O+ and the set of orders in K containing Og+. More precisely,
(i) for any ideal f1 in Og+, the conductor of O+ + f+Ok is §+ Ok, and
(ii) for any order O in K with mazimal real multiplication and conductor f, one
has O = O+ + (fﬁ OKJr)OK.

Lemma 5.3. An order O in K is stable under t if and only if ONK* = (O+0ON)NK™.



74 5. VERTICAL STRUCTURE OF ISOGENY GRAPHS

Proof. The direct implication is obvious. For the other direction, suppose that ONK ™ =
(O+0NNK*, and let z € O. Then, x + 27 € (O+ 0NN K+ =0nNK* C O, which
proves that zt € O. O

Lemma 5.4. Let § and g be two ideals in Ok, such that g divides f. Let m : O —
Ok /f be the natural projection. The canonical isomorphism between (Og+ + f)/f and
Ok+/(Og+ NF) induces a bijection between m(Ox+) Nw(g) and (Ox+ Ng)/(Og+ NF).

Proof. Any element in m(Og+) N7(g) can be written as 7(x) = 7(y) for some x € O+
andy €g. Then,z —yefCg,sox=(r—y)+y€Eg So

(@) NT(Og+) =m(g N Ok+) = (8N Ok+)/(FN Ok+),

where the last relation comes from the canonical isomorphism between the rings (Og+ +
f)/f and O+ /(Op+ NF). O

Lemma 5.5. Let O be an order in K of conductor § with maximal real multiplication.
Then, O is stable under t and f comes from an ideal of O+, i.e., f = f+ Ok, where f4
is the Op+-ideal § N O+ .

Proof. From Lemma 5.3, it is obvious that any order with maximal real multiplication
is stable under f. Its conductor § is thereby a f-stable ideal of Ok . For any prime ideal
py in O+, let f, be the part of the factorization of § that consists of prime ideals
above p;. Then, §f = Hp+ fp., and each f,, is f-stable. It is easy to see that each f,,
comes from an ideal of Og+ when p, is inert or splits in Ox. Now suppose it ramifies
as p Ok = p>. Then fp is of the form p®. If o is even, fp, = pi/Z
prove that a cannot be odd.

By contradiction, suppose a = 23+ 1 for some integer 5. Let m : O — Ok /f be the
canonical projection. The ring 7(O) contains 7(O+) = (Og+ + f)/f. Write §f = p°g.
We will show that w(p®~1g) C 7(Ok+). From Lemma 5.4,

m(Or+) Nw(p )| = pla/p ol = N(py) = N(p) = [7(p°"0)],
where N denotes the absolute norm, so 7w(p®~'g) C m1(Ok+) C 7(O). Finally,
Pl =1 (n(pg)) C (1 (0)) = O,
which contradicts the fact that f is the biggest ideal of O contained in O. O

Ok. We now need to

Lemma 5.6. Let i be an ideal in O+, and R = O+ [f+. There is an element o € O
such that Ok /§+Ox = R & Ra.

Proof. The order Ok is a module over O+. It is locally free, and finitely generated,
thus it is projective. Since O+ is a regular ring, the submodule O+ in Ok is a direct
summand, i.e., there is an Oy +-submodule M of O such that O = O+ ® M.
Then, Ok /f+Ox = R®&M /fL M. Let A be Z if K is a number field and Z,, if it is a finite
product of extensions of Q. In the number field case, write n for [K : Q], and in the
local case, write n for the dimension of K, as a Q,-vector space. As modules over A, one
has that Ok is of rank 2n and O+ of rank n, hence M must be of rank n. Therefore,
as an Op+-module, M is isomorphic to an ideal a in O+, so M /f: M = a/fra = R. So
there is an element o € M such that M /f+ M = Ra. O

Proof of Theorem 5.2. For (i), let f+ be an ideal in O+, and write f = f+Ok. Let ¢ be
the conductor of Og+ +§. From Lemma 5.5, ¢ is of the form ¢y Ox where ¢y = O+ Ne.
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Clearly f C ¢, so ¢t | f+ and we can write fy = cygy. Let 7 : Ox — Og/f be the
canonical projection. Since ¢ C O+ + f, we have 7(¢) C m(Og+). From Lemma 5.4,

7(e)] = [7(O+) N (e)] = lex /] = N(gs).

On the other hand, |7(¢)| = |¢/f| = N(g4+Ox) = N(g4)?, so N(gy) = 1, hence ¢ = f.

To prove (ii), let O be an order in K with maximal real multiplication and conductor
f. From Lemma 5.5, O is f-stable and | = §1 Ok, where f+ = N Og+. We claim that
if z € O then x € O+ +f. Let R = O+ /f+. By Lemma 5.6, Ox/f = R ® Ra. The
quotient O/f is an R-submodule of O /.

There are two elements y, z € R such that z + f = y + za. Then, za € O/f, and we
obtain that (zR)a C O/f. There exists an ideal g, dividing f; such that zR = g /5.
Therefore (g4 /f+)a C O/f. Then,

g/f € R+ (g+/f+)a C O/,

where g = g4+Opk, which implies that g C O. But g divides §, and § is the largest
Ok-ideal in O, so g =f. Hence z € f, and z € O+ + . O

5.3. From abelian varieties to lattices, and vice-versa

For the remainder of the chapter, let k£ = F; be a finite field. Fix an ordinary, absolutely
simple abelian variety <7 defined over k. Let K = End(«) ®z Q be its endomorphism
algebra, and let K+ be its maximal totally real subfield. Recall that [KT : Q] = dim(%/)
and [K : KT] = 2. We denote by =+ x' the generator of the Galois group Gal(K /K™*).
We assume the notation introduced in Section 3.1.2, and in particular, the embedding
1 : End(#) — K for any variety % that is isogenous to &7, and its image O(%), the
order in K corresponding to the endomorphism ring of #. Define the real suborder
Ot () = O(«/) N KT. The variety .« is said to have real multiplication (RM) by the
order O ().

Fix once and for all a prime number /¢ different from the characteristic of the finite
field k, and write o(2/) = O(&) ®z Zy, the local order of <7 . 1t is an order in the algebra
K= K®qQq. Also, 0 = Og ®zZy is the maximal order in K. Finally, write o™ (<)
for the local real order O" (/) ®z Zy, which is an order in the algebra K, = KT ®q Qy,
and let o+ = O+ Rz Zy.

For the reader who is frustrated with the excessive notation for orders, the following
general rules may be helpful: orders named with capital letters always live in global
fields, with lowercase letters in (finite products of) local fields; orders in the totally real
field and its completions always take the superscript +.

5.3.1. Tate modules and isogenies. For any positive integer n, the multiplication
by ¢ induces a natural morphism .o [("*1] — 7[¢"]. The inverse limit of the sequence
of groups &7 [¢"] with respect to these maps is the f-adic Tate module

Tysf = lim o/ ("),

Let T' = T/ be the Tate module of &7, and let V' be the Q, vector space T' ®z, Q.
Then V is a 2g-dimensional Qg-vector space with an action of the algebra K, over
which it has rank one, and 7" is similarly of rank one over the ring o(/) = O(«) @z Z;.
Write 7 for the Frobenius endomorphism of .7, viewed as an element of O(<).

The elements of T are the sequences (Qn)n>0 with @, € &Z[¢"], such that (Q,, =
Qn—1 for all m > 1. An element of V identifies with a sequence (P,),>0 with P,, € &/ [(*]
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and (P, = P,_1 for n > 1 as follows:

(Qn)TLZO LT — (Qn-i-m)nZOa

and under this identification, T is the subgroup of V where Py = 0 € &/[(*°]. The
projection to the zeroth coordinate then yields a canonical identification

(5.1) VT =5 o [1°)(R),

under which the action of m on the left-hand side corresponds to the action of the
arithmetic Frobenius element in Gal(k/k) on the right-hand side.

The main correspondence between lattices in V' containing the Tate module T" and
{-power isogenies from &7 is given by the following proposition which is essentially Tate’s
isogeny theorem (see, e.g., [Wat69, Section 3]):

Proposition 5.7. There is a one-to-one correspondence
{lattices in V' containing T} = {finite subgroups of <7 [(>]},

where a lattice T is sent to the subgroup T'/T, through the identification (5.1). Under
this correspondence,

(i) a lattice is stable under ™ if and only if the corresponding subgroup is defined
over the degree n extension Fyn of k, and

(i) if a subgroup k C A/ [{>] corresponds to a lattice I', then the order of K; of
elements stabilising I' is o( /K).

Remark 5.8. For a finite subgroup x C &7 [(*°], any two isogenies of kernel x differ by
an isomorphism of the targets and hence, if p : & — Z is any isogeny of kernel x, then
o(/k) = 0(AB).

Remark 5.9. All varieties and morphisms are a priori considered over k. Since we are
also interested in the structures arising from varieties and morphisms defined over k, we
note that if a simple, ordinary abelian variety 4 is k-isogenous to <7, then any isogeny
o/ — A is defined over k (this is an easy consequence of [Wat69, Theorem 7.2.]). By
Proposition 5.7(ii), if 7 € 0(%7/k), then k is defined over k, and is thereby the kernel of
a k-isogeny!, so subgroups x defined over k correspond to lattices I' stable under 7.

5.3.2. Global and local endomorphism rings. The following proposition justifies
the strategy of working locally at ¢, as it guarantees that ¢-power isogenies do not affect
endomorphism rings at primes ¢ # /.

Proposition 5.10. Let ¢ : o — B be an isogeny of abelian varieties of £-power degree.
Then for any prime ¢’ # £ of <, one has O(AH) @z Ly = O(B) Rz Ly .

Proof. Let Cp be the category whose objects are abelian varieties over k and whose
morphisms are Homg,, (#, &%) = Hom(eA, %) ®z Zy. There exists an isogeny ¢ :
PB — of such that ¢ o p = [("], so ¢ induces an isomorphism in Cyp; it follows that the
endomorphism rings of & and 4 in this category are identified. O

5.4. Graphs of [-isogenies

In this section we study [-isogenies through the lens of lattices in an ¢-adic vector space,
endowed with an action of the algebra K.

INote that in general, if 8 is k-isogenous to &/ and m € O(%), then 7 does not necessarily correspond
to the k-Frobenius of Z unless Z is actually k-isogenous to <.
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5.4.1. Definition of the graph and statement of results. To state the result, we
review the definitions of [-isogenies and the associated graph.

Definition 5.11 (l-isogeny). Let [ be a prime above ¢ in K, and & a variety in the
fixed isogeny class. Suppose [ is coprime to the conductor of OT (7). An [-isogeny
from o7 is an isogeny whose kernel is a proper, O (7)-stable subgroup of? &/[l]. Note
that the degree of an [-isogeny is N([) (the norm of I).

The graph 7 is defined precisely as follows: its vertices are the isomorphism classes
of abelian varieties & in the fixed isogeny class, which have maximal real multiplication
locally at ¢ (i.e., o+ C 0(7)), and there is a directed edge of multiplicity m from such
a vertex with representative &7 to a vertex 4 if there are m distinct subgroups xk C &7

that are kernels of [-isogenies such that o/ /xk =2 % (of course, the multiplicity m does
not depend on the choice of the representative 7).

Remark 5.12. When [ is trivial in the narrow class group of K, then [-isogenies
preserve principal polarisability. The graph #{ does not account for polarisations, but
it is actually easy to add polarisations back to graphs of unpolarised varieties, as will be
discussed in Section 5.5.

Each vertex o of this graph #{ has a level given by the valuation vi(2) at [ of the
conductor of O(«7). Theorem 5.13 completely describes the structure of the connected
components of %, which turns out to be closely related to the volcanoes observed for
cyclic isogenies of elliptic curves. The rest of this section is dedicated to the proof of
this theorem.

Theorem 5.13. Let ¥V be any connected component of the levelled -isogeny graph
(M,v1). For each i >0, let ¥; be the subgraph of ¥ at level i. We have:

(i) For each i > 0, the varieties in ¥; share a common endomorphism ring O;. The
order Oy can be any order with locally maximal real multiplication at £, whose
conductor is not divisible by |;

(ii) The level ¥y is isomorphic to the Cayley graph of the subgroup of Cl(QOq) with
generators the prime ideals above |; fizing a vertex &7 of ¥y, an isomorphism is
given by sending any ideal class [a] to the isomorphism class of </ /< [a];

(iii) For any o/ € ¥, there are (N(I) — (£)) /[OF = O] edges of multiplicity
(OF = OF] from < to distinct vertices of ¥; (where (%) is —1, 0 or 1 4f [ is
inert, ramified, or split in K ); these edges, plus the ones in ¥y, are all the edges

from o ;

(iv) For eachi >0, and any </ € ¥;, there is one simple edge from </ to a vertex of
Yie1, and N(1)/[O; : O] edges of multiplicity [O;° : O] to distinct vertices
of Vix1, and there is no other edge from o7 ;

(v) For each path of — % — € where &/ and € are at some level i, and A at level
i+ 1, we have € = o | |I];

(vi) For each edge 8 — € where B is at some level i and € is at level i — 1, there
is an edge € — B/ B, and B/ B[] is at level i.

In particular, the graph ¥ is an N(I)-volcano if and only if OF C K+ and [ is principal
mn OgN K+.

Also, if V' contains a variety defined over the finite field k, the subgraph containing

only the varieties defined over k consists of the subgraph of the first v levels, where v is
the wvaluation at | of the conductor of O+ [r] = Oy [mr, 7l].

2By abuse of notation, we write </[[] in place of &[N O(<7)].
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5.4.2. Lattices with locally maximal real multiplication. Throughout this sub-
section, V is a Qg-vector space of dimension 2g, where ¢ is a fixed prime number, and
K is a degree 29 CM-field, with K its maximal real subfield. The algebra K, is a
Q-algebra of dimension 2g. Suppose that it acts (Qg-linearly) on V. Define the order
of a full-rank Z,-lattice A C V as

o(A) ={x € K, | zA C A}.

For any order o in Ky, say that A is an o-lattice if o(A) = 0. Fix a lattice A and
suppose that o(A) has maximal real multiplication, i.e., that o(A) contains the maximal
order o+ of KZF = KT ®q Qu. We now need some results on Gorenstein rings (see
Definition 3.10).

Lemma 5.14. Let A be a Dedekind domain with field of fractions F, and let L be a
quadratic extension of F. If O is any A-subalgebra of the integral closure of A in L,
with O @ K = L, then O is Gorenstein.

Proof. The hypotheses and result are local on SpecA, so we may take A a principal ideal
domain. Then O is a free A-module, which must be 2-dimensional. The element 1 € O
is not an A-multiple of any element of O, so there is a basis {1, a} for O as an A-module;
clearly O = Ala] as A-algebras. The result then follows from [BL94, Example 2.8]. [

By Lemma 5.14, the order o(A), which has maximal real multiplication, is a Goren-
stein ring and A is a free o(A)-module of rank 1. Recall the notation ox = O ®z Zy
and o+ = O+ ®z Zy. For any ideal f in ox+, let 0f = 0x+ + fox. From Theorem 5.2,
all the orders containing o+ are of this form.

Definition 5.15 ([-neighbors). Let A be a lattice with maximal real multiplication, and
let [ be a prime ideal in 0x+. The set Z(A) of [-neighbors of A consists of all the lattices
I" such that A C T' C A, and T'/IA = o+ /1, i.e., T/IA € PY(A/IA).

Using Proposition 5.7, we easily obtain the following proposition:

Proposition 5.16. With T = T;</, the l-isogenies &/ — 9B correspond, under the
correspondence in Proposition 5.7, to the lattices T with T C T' C [7'T and T'/T is an
ox+ /l-subspace of dimension one of (I"'T)/T.

The following lemma is key to understanding [-neighbors. It arises from the technique
employed by Cornut and Vatsal [CV04, Section 6] to study the action of a certain Hecke
algebra on quadratic CM-lattices.

Lemma 5.17. Let K be a CM-field, and KT its maximal real subfield. Let | be a prime
ideal in o+, and F = o+ /1. Let | be an ideal in o+ and o; = o+ + fox. The action
of ofX on the set of F-lines P!(o;/l0;) factors through ofx/o[? Let £ be a prime in o
above I. The fized points are
y 0 if 11§ and loj = £,
Pl(0;/10;)° = ¢ {€/los, £ /los} if [{] and lo; = £L£F,
{(tog-13) /los}  if L] 7.

The remaining points are permuted simply transitively by ofX / 0[?.

Proof. The ring oé acts trivially on P! (o5/lo;), which proves the first statement. Observe
that the projection oj — o;/05 induces a canonical isomorphism between 0;/ 0[? and

(0j/los)* /F*. Suppose that [ divides f. Then, there exists an element € € o;/lo; such
that o5/lo; = Fle] and €2 = 0. But the only F-line in F[¢] fixed by the action of Fle]* is
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€F = (lor-1;)/loj, and this action is transitive on the ¢ other lines. Therefore the action
of Fle]* /F* = (05/lo;)* /F* on these £ lines is simply transitive.

Now, suppose that [ does not divide f. If [ is inert in oj, then o5/lo; = K is a quadratic
field extension of F, and K*/F* acts simply transitively on the F-lines P*(K). The
statement follows from the isomorphism between K* /F* and ofX / 0[?. The cases where

[ splits or ramifies in K are treated similarly, with oj/loj = F? in the first case, and
o;/lo; = F[X]/(X?) in the second case. O

Proposition 5.18 (Structure of Z(A)). Suppose A is an oj-lattice, for some o g+-ideal
f, and let | be a prime ideal in 0g+. The number of l-neighbors of A is N(I) + 1. The
[-neighbors that have order oy are permuted simply transitively by (o5/oi)*. The other
[-neighbors have order oi-1; if | divides §, or o otherwise.
More explicitly, if | divides §, there is one l-neighbor of order o(-1;, namely loi-1;A,
and N(l) of order o. If | does not divide f, we have:
(i) If Uis inert in K, all N(I) 4+ 1 lattices of L(A) have order oy;
(ii) If U splits in K into prime ideals £1 and Lo, then L (A) consists of two lattices
of order o, namely £1A and £2A, and N(I) — 1 lattices of order oy;
(iii) If [ ramifies in K as £2, then () consists of one lattice of order ox, namely
LA, and N(I) lattices of order oy.

Proof. This is a direct consequence of Lemma 5.17, together with the fact that A is a
free oj-module of rank 1. O

5.4.3. Graphs of l-isogenies. Fix again an absolutely simple ordinary abelian variety
o/ of dimension g over k, with endomorphism algebra K. Suppose that < has locally
maximal real multiplication at ¢ (i.e., ox+ C o(%/)). The [-neighbors correspond to
[-isogenies in the world of varieties (see Proposition 5.16).

Definition 5.19. Suppose 7 has local order oj, for some o0 +-ideal f and let [ be a prime
ideal in 0g+. An lsogeny ¢ : & — Z is l-ascending if o(%#) = o015, it is [-descending
if o(#) = oy, and it is [-horizontal if o(#) = o;.

Proposition 5.20. Suppose o/ has local order o; for some o0+ -ideal § and let [ be a
prime ideal in og+. There are N(I) + 1 kernels of [-isogenies from </. The kernels of
the l-descending [-isogenies are permuted simply transitively by the action of (oj/0)*.
The other [-isogenies are l-ascending if | divides f, and [-horizontal otherwise.
More explicitly, if | divides §, there is a unique l-ascending l-kernel from <, and
N(I) that are I-descending. If | does not divide §, we have:
(i) If Uis inert in K, all N(I) + 1 of the [-kernels are [-descending;
(ii) If U splits in K into two prime ideals £1 and £o, there are two [-horizontal
[-kernels, namely <7[£1] and </ [Ls], and N(I) — 1 that are [-descending;
(iii) If | ramifies in K as £2, there is one [-horizontal I-kernel, namely <7[£], and
N(I) that are I-descending.

Proof. This proposition follows from Proposition 5.18 together with Proposition 5.16.
O

Definition 5.21 (I-predecessor). When it exists, let £ be the unique l-ascending kernel
of Proposition 5.20. We call pr(</) = o/ /k the [-predecessor of <, and denote by
up', : & — pr(«/) the canonical projection.

Let [ be a prime of K+ above £. Consider the [-isogeny graph #;. Note that it is
a directed multigraph; we say that such a graph is undirected if for any vertices u and
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v, the multiplicity of the edge from w to v is the same as the multiplicity from v to u.
The remainder of this section is a proof of Theorem 5.13, which provides a complete
description of the structure of the levelled Il-isogeny graph (#4,v(), closely related to
volcanoes.

Lemma 5.22. Suppose that O(B) C O(). If there exists an l-isogeny ¢ : o — B,
then there are at least [O(/)* : O(A)*] pairwise distinct kernels of l-isogenies from o/
to A.

Proof. The elements a € O(.«7) act on the subgroups of .27 via the isomorphism O(&) =
End(«), and we denote this action k — k®. Let k = ker p. If u € O(«7)* is a unit, then
k" is also the kernel of an [-isogeny. Furthermore, u canonically induces an isomorphism
o [k — o [k", so k" is the kernel of an [-isogeny with target Z.

It only remains to prove that the orbit of k for the action of O(47)* contains at least
[O()* : O(F)*] distinct kernels. It suffices to show that if K% = k, then u € O(%)*.
Let u € O(«7)* such that k" = k. Recall that for any variety € in our isogeny class,
we have fixed an isomorphism 4 : End(%) — O(%), and that these isomorphisms are
all compatible in the sense that for any isogeny ¢ : 4 — 2, and v € End(%), we have
15(7) = 19(1hoyorh)/ deg ) (see Section 3.1.2). Let u,, € End(«/) be the endomorphism
of o/ corresponding to w. It induces an isomorphism ., : &//k — </ /K", which is
actually an automorphism of &7 /k since k" = k. Let ¢ : &/ — &/ /K be the natural
projection. We obtain the following commutative diagram:

o ;z{[degﬂg{
| A

. @
A |k —Z> df [k

Finally, we obtain

u=14([degplouy)/degp = 1(P oty op)/degy =15(ly) € O(H).
O

Lemma 5.23. Let K be a CM-field and K™ its maximal real subfield. Let O be an
order in K of conductor § such that o+ C O Qg Zy. Let O be the order such that
O' @z Zp = O Rz Zy for all prime €' # L, and O' @z Zyp = o+ + lfor. Then,

(O @z Zy)* : (O @z Zy)*]

o) = o o

ICLO)].

Proof. First, for any order O in K of conductor f we have the classical formula (see [NS99,
Theorem 12.12 and Proposition 12.11])

__ hx O/
hi

T (0509 [ Ok ©2Ze)* : (O ©7 Z)*).

¢’ prime
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Now, consider O and @’ as in the statement of the lemma. We obtain

CIO| _ [0 0] O ey 7
C0)] ~ (0% 0] (@ ®2 20" (0 ©2.20)
(O ®zZy)" : (O @z Zg)x].

0% : 0]

U
Remark 5.24. If one supposes that O = Oy, then [0* : O'"] is always 1 in the

above lemma. Indeed, one has O* C O, C 0y, C (0’ ®z Z;)*, and therefore, since
O and @’ coincide at every other prime, we obtain O* C O'*, hence O* = O'*.

Remark 5.25. For g = 2, the field K is a primitive quartic CM-field. Then, the
condition Oy = Oy, is simply equivalent to K # Q((5) by [Str10, Lemma I1.3.3]. So

in dimension 2, if K # Q((s), one always has [0* : 0] = 1 in the above lemma. For
K = Q((5), we have [Of : O ] =5, and since Ok is the only order in K containing

complex units, we get
0~ :(’)'X]: 5if O = O,
1 otherwise.

This pathological case is illustrated in Example 5.27.

Proof of Theorem 5.13. Let ¥ be any of connected component of #{. First, it follows
from Proposition 5.10 that locally at any prime other than ¢, the endomorphism rings
occurring in ¥ all coincide. Also, locally at ¢, Proposition 5.20 implies that an [-
isogeny can only change the valuation at [ of the conductor. Therefore within 7/, the
endomorphism ring of a variety ./ is uniquely determined by its level v(<7). Let O;
be the endomorphism of any (and therefore every) variety <7 in ¥ at level v((o/) = i.
Write ¥; for the corresponding subset of #". Proposition 5.20 implies that, except at the
surface, all the edges connect consecutive levels of the graph, and each vertex at level i
has exactly one edge to the level ¢ — 1.

The structure of the connected components of the level % is already a consequence
of the well-known free CM-action of C1(Op) on ordinary abelian varieties with endomor-
phism ring Opy. Note that if ¢ : & — A is a descending [-isogeny within ¥, then the
unique ascending [-isogeny from 4 is up'y : & — pr(%), and we have pr(%) = o | l];
also, we have pr((B/AB[l]) = pr(B)/pr((A)[l]. These facts easily follow from the lattice
point of view (see Proposition 5.18, and observe that if I' € Z(A), then [[' € A(IA)).
We can deduce in particular that ¥{ is connected: a path from &7 € %, to another vertex
of 7 containing only vertical isogenies can only end at a vertex .o/ /./[[!], which can
also be reached within %;.

We now need to look at a bigger graph. For each i > 0, let %; be the orbit of the
level ¥; for the CM-action of C1(O;). The action is transitive on %4 since the connected
graph % is in a single orbit of the action of C1(Op). Let us show by induction that each
;11 consists of a single orbit, and that each vertex of %;,1 is reachable by an edge from
;. First, %; 1 is non-empty because, by induction, %; is non-empty, and each vertex
in 7%; has neighbors in %;+1. Choose any isogeny ¢ : &/’ — & from % to %1. For
any vertex 4 in the orbit of 7, there is an isogeny ¢ : &/ — % of degree coprime to
¢. The isogeny 1) o ¢ factors through a variety %’ via an isogeny v’ : &/’ — %' of the
same degree as v, and an isogeny v : ' — A of kernel 1)/ (ker ). In particular, v is an
[-isogeny, and %’ is in the orbit of &/’ for the CM-action, so it is in %4;. This proves that
any vertex in the orbit of & is reachable by an isogeny down from %;.
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Let &; be the set of all edges (counted with multiplicities) from %; to %;+1. From
Proposition 5.20, we have

(5.2) 6| = [(O: @2 Z¢)* : (Oiy1 ®7 Z0) "] - | %)
For any # € %11, let d(#) be the number of edges in &; targeting A (with multiplici-

ties). We have seen that any % is reachable from %;, therefore d(%) > 1, and we deduce
from Lemma 5.22 that d(%#) > [0 : O} ,]. We deduce

El= > dB) > [0] 07, Ul
,5/36%7;_‘.1

Together with Equation (5.2), we obtain the inequality

(05 @7 Z¢)* : (0ip1 ®7 Zy) ]
(07 07]

Since the CM-action of the class group of O; is free, we obtain from Lemma 5.23 that

the right-hand side of Equation (5.3) is exactly the size of the orbit of any vertex in

Ui+1. SO %41 contains at most one orbit, and thereby contains exactly one, turning

Equation (5.3) into an equality. In particular, all the edges in &; must have multiplicity

(O : 0],]. This concludes the recursion.

Note that with all these properties, the graph is a volcano if and only if it is
undirected and all the vertical multiplicities are 1. The latter is true if and only if
(O : O7,] =1 for any i, i.e., if Of C K. For the following, suppose this is the case;
it remains to decide when the graph is undirected. If [ is principal in Oy N K, the
surface ¥( is undirected because the primes above [ in Oy are inverses of each other. If
@ o — A is a descending [-isogeny within ¥, then the unique ascending [-isogeny from
2 points to o/ /o7 [l], which is isomorphic to &7 if and only if [ is principal in O(<7). So
for each descending edge o/ — 9 there is an ascending edge # — &7, and since we have
proven above that each vertical edge has multiplicity 1, we conclude that the graph is
undirected (so is a volcano) if and only if [ is principal in Og N K (if [ is not principal
in Oy N K™, there is a level ¢ where [ is not principal in O;).

For Point (vi), choose a descending edge o7 — Z. We get that € = o7 /</[l]. Tt is
then easy to see that the isogeny &/ — 2 induces an isogeny ¢ — %A/ 2A]l). O

(5.3) % | < ).

Theorem 5.13 gives a complete description of the graph: it allows one to construct

an abstract model of any connected component corresponding to an order Qg from the
knowledge of the norm of [, of the (labelled) Cayley graph of the subgroup of Cl(Qy)
with generators the prime ideals in Og above [, of the order of [ in each class group
C1(0O;), and of the indices [O; : O] ,].
Example 5.26. For instance, suppose that ¢ = 2 ramifies in K as (2, and [ is principal
in Ok, but is of order 2 in both Cl(Of+ +10k) and Cl(Og++2Of), and that O C K.
Then the first four levels of any connected component of the l-isogeny graph for which
the largest order is O are isomorphic to the graph of Figure 5.2. It is not a volcano
since [ is not principal in every order O+ + Ok

Example 5.27. When K is a primitive quartic CM-field, we have seen in Remark 5.25
that the multiplicities [O; : O] are always one, except maybe if K = Q((5). Actually,
even for K = Q((5), only the maximal order Ok has units that are not in K. We give
in Figure 5.3 examples of [-isogeny graphs when the order at the surface is Ox = Z[(5]
(which is a principal ideal domain). The primes 2 and 3 are inert in K, so we consider
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AN

PN PN

FIGURE 5.2. An example of an [-isogeny graph which is not a volcano,
because the ideal [ is not principal. The vertical direction represents

7 N
AN IS AN

FIGURE 5.3. Some [-isogeny graphs for K = Q((5), when the endomor-
phism ring at the surface is the maximal order Z[(5]. All edges are simple
except the thick ones, of multiplicity 5. The undirected edges are actually
directed in both directions. The vertical direction represents levels.

[ =20+ and [ = 30+, and the prime number 5 is ramified in K+ so [? = 50+ (and
[ is also ramified in K, explaining the self-loop at the surface of the last graph).

5.5. Graphs of [-isogenies with polarisation

When [ is trivial in the narrow class group of KT, then [-isogenies preserve principal
polarisability. The graphs of [-isogenies studied in Section 5.4.3 do not account for po-
larisations. The present section fills this gap, by considering graphs of g-isogenies which
take polarisations into account, where 3 € K is a totally positive generator of I. A f3-
isogeny is simply an [-isogeny, but the choice of the generator § carries more information
than the ideal [ (see Proposition 5.28). The main result of this section is Theorem 5.31
which essentially states that the connected components of polarised isogeny graphs are
either isomorphic to the corresponding components of the non-polarised isogeny graphs,
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or non-trivial double-covers thereof. The precise statement is more complicated due to
problems arising when the various abelian varieties occurring in a connected component
have different automorphism groups.

5.5.1. Graphs with polarisation. Before defining the graph, we record the following
proposition, which implies that one vertex of a fixed connected component of (#3,vg)
is principally polarisable if and only if all of them are. Given an isogeny ¢ : &/ — A
and a polarisation £z on %, we denote by ¢*{5 the pullback of {5 by ¢ (that is the
polarisation on & with polarisation isogeny ¢Y o ¢¢, 0 ¢ : & — &V, where ¢, is
the polarisation isogeny of (%,£%) and ¢¥ : Y — &V is the dual of ¢). Also, given
a polarisation £, (with polarisation isogeny ¢¢ ) and an endomorphism « of o7, we
denote by £7, the polarisation corresponding to the polarisation isogeny ¢ , o a.

Proposition 5.28. If ¢ : &/ — A is a B-isogeny, then given a principal polarisation &,
on &, there is a unique principal polarisation £ on B satisfying

0*En =&
Proof. Denoting by ¢¢_, the polarisation isogeny, ker(yp) C ker(goég ) is a maximal
of

isotropic subgroup for the commutator pairing and hence by Grothendieck descent
(see [Robl0, Lemma 2.4.7]; the proof there is in characteristic 0, but it extends to
ordinary abelian varieties in characteristic p via canonical lifts), it follows that {f{ is
a pullback of a principal polarisation £ on %. For uniqueness, note that ¢* defines
a homomorphism between the Néron-Severi groups NS(#) and NS(/) (free abelian
groups of the same rank), which becomes an isomorphism after tensoring with Q, hence
it is injective. O

We define the principally polarised, levelled, $-isogeny graph (%pp,vg) as follows.
Recall that two polarisations £, and ¢, on & are isomorphic if and only if there is a
unit v € O(«7)* such that £, = u*€,. A vertex of the graph is an isomorphism class of
pairs (&7, {.), where &7 is a principally polarisable abelian variety occurring in (#3,v3),
and &, is a principal polarisation on /. There is an edge of multiplicity m from the
isomorphism class of (<7, £,/) to the isomorphism class of (£, {5) if there are m distinct
subgroups of & that are kernels of -isogenies ¢ : &/ — % such that p*¢’, is isomorphic

to 55{, for some polarisation &/, isomorphic to {z. The graph %pp admits a forgetful
map to #j, and in particular inherits the structure of a levelled graph (V/Bpp, vg).

Remark 5.29. It can be the case that there is no S-isogeny ¢ : & — A such that
Py = fé, but that there is nonetheless an edge (because there is a map with this
property for some other polarisation £/,, isomorphic to £z). This can happen because
pullbacks of isomorphic polarisations are not necessarily isomorphic, when &/ and %A
have different automorphism groups.

We note that this graph is undirected:

Proposition 5.30. If ¢ : & — % is a P-isogeny, then there is a unique (B-isogeny
P B — o satisfying pp = B, called the B-dual of p.

Proof. Let r be the kernel of ¢. The group &/[3] is an O («)/(B)-vector space of
dimension 2, of which the kernel x is a vector subspace of dimension 1. Therefore there
is another vector subspace ' such that &[] = k @ r/, and ¢(x) is the kernel of a
B-isogeny 1 : B — €. Then, the kernel of the composition v o ¢ is &7[f] so there is an
isomorphism u : ¥ — &/ such that uw o1 o = 8. The isogeny u o v is the S-dual of ¢
(which is trivially unique). O



5.5. GRAPHS OF [FISOGENIES WITH POLARISATION 85

5.5.2. Structure of the (-isogeny graph. Recall from Section 3.2 that if </ is a
simple ordinary principally polarisable abelian variety with endomorphism ring O, then
the set of isomorphism classes of principal polarisations on &7 is a torsor for the group
U(O) = TP(O)/Ng k+(0O*). Also, the Shimura class group €(0) acts freely on the set
of isomorphism classes of principally polarised abelian varieties whose endomorphism
ring is O. If 8 is coprime to the conductor of O, then an element of €(Q) acts by a
B-isogeny if and only if it is of the form (£, 3), for some prime ideal £ of O dividing ().

Theorem 5.31. Let 7PP be any connected component of the levelled B-isogeny graph
(V/ﬂpp, vg). For each i >0, let ¥"P be the subgraph of VPP at level i. We have:

(i) For each i > 0, the varieties in %pp share a common endomorphism ring O;.
The order Oy can be any order with locally maximal real multiplication at ¢,
whose conductor is not divisible by 5;

(ii) The level Y is isomorphic to the Cayley graph of the subgroup of €(Oy) with
generators (£;, 5) where £; are the prime ideals in Oy above [3;

(iii) For any x € ¥§*, there are

NO - (%) juon)
05 07 10(0y)]

edges of multiplicity [OF : O] from x to distinct vertices of V¥ (where (%)

is —1, 0 or 1 if B is inert, ramified, or split in K ); these edges, plus the ones
in VPP, are all the edges from x;
(iv) For each i > 0, and any x € ¥°°, there is one simple edge from x to a vertex
in V™, and
N  |U(Oit1)|

07 : 07, U0

edges of multiplicity [O] : O;_l] to distinct vertices of ”//Zﬁpl; these are all the
edges from x;
(v) For each edge x — vy, there is an edge y — x.
In particular, the graph PP is an N(B)-volcano if and only if Of C K*. Also, if
VPP contains a variety defined over the finite field k, the subgraph containing only the
varieties defined over k consists of the subgraph of the first v levels, where v is the
valuation at B3 of the conductor of O+ [r] = O+ [m, 7).

The proof relies on some preliminary results.

Lemma 5.32. Let ¢ : &f — P be a [-isogeny, and let £ be a principal polarisation
on /. We have:
(i) If ¢ is [f-ascending, there is, up to isomorphism, a unique polarisation {5z on
B such that ©*Ex is isomorphic to 5? ;
(ii) If ¢ is f-descending, there are, up to isomorphism, exactly
U(O0(%))]
U(O(«))]

distinct polarisations £z on B such that p*Eg is isomorphic to 55{.

Proof. Let us first prove (i). From Proposition 5.28, there exists a polarisation {4 on %
such that p*¢é4 = ff;. Suppose £, is a polarisation such that p*&l, = fff. Then there
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is a unit u € O(&)* such that p*¢, = u*{{ff But ¢ is ascending, so u € O(%A)* and
therefore

Py = uel, = u(p*Eq) = ¢ (W ).

From the uniqueness in Proposition 5.28, we obtain £/, = u*{z, so £z and &/, are two
isomorphic polarisations.

For (ii), again apply Proposition 5.28, and observe that the kernel of the surjection
U(O(RB)) - U(O()) of Lemma 3.12 acts simply transitively on the set of isomorphism

classes of polarisations £5 on A satisfying ¢*€p = 55{. O

Proof of Theorem 5.31. First observe that (i) is immediate from Theorem 5.13(i), since
the leveling on #PP is induced from that of #. Also, (v) is a direct consequence of the
existence of [-duals, established in Proposition 5.30. Now, let us prove that for any
class (&,&.) at a level i > 0, there is a unique edge to level i — 1. From Theorem 5.13,
there exists an ascending isogeny ¢ : &/ — % (unique up to isomorphism of %), and
from Lemma 5.32(i), there is a unique polarisation £z on % (up to isomorphism) such
that (o,€y) — (#,£%) is an edge in VPP,

These results, and the fact that % is connected, imply that ¥"" is connected. We
can then deduce (ii) from the action of the Shimura class group €(Oy).

Now, (iii) (respectively, (iv)) is a consequence of Theorem 5.13(iii) (respectively,
Theorem 5.13(iv)) together with Lemma 5.32. The statement on multiplicities of the
edges also uses the fact that if ¢, : o — % are two -isogenies with the same kernel,
and &, is a principal polarisation on .7, then the two principal polarisations on %
induced via ¢ and ¢ are isomorphic.

The volcano property follows from the corresponding phrase in the statement of The-
orem 5.13, and the statement on fields of definition follows from Remark 5.9, which shows
that the isomorphism from a principally polarised absolutely simple ordinary abelian va-
riety to its dual, and hence the polarisation, is defined over the field of definition of the
variety. 0

5.5.3. Principally polarisable surfaces. The result of Theorem 5.31 for abelian sur-
faces (still absolutely simple, ordinary) is a bit simpler than the general case, thanks to
the following lemma.

Lemma 5.33. Suppose g = 2. With all notation as in Theorem 5.31, we have U(O;) =
U(Oy) for any non-negative integer i.

Proof. In these cases, one has O = Oy, except in the case K = Q((5) (see Remark
5.25); but even when K = Q((5) the equality is true up to units of norm 1. Therefore
for any order O in K, one has Ny i+ (O*) = N i+ ((ONK*)*). Thus, none of the
groups U(0O;) actually depend on 1. O

Therefore, the factors |U(O;41)|/|U(O;)| disappear when g = 2. It follows that each
component #'PP is either isomorphic to its image in (#j,vg), or is isomorphic to the
natural double cover of this image constructed by doubling the length of the cycle %
(as illustrated in Figure 5.4). The first case occurs when (f3) is inert in K /K™, or when
the order of (£, ) in €(Op) equals the order of £ in Cl(Op) (where £ is a prime ideal
of Oy above (f)). The second case occurs when the order of (£, 3) is twice that of £.
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\. .\. ./.—

FIGURE 5.4. An example of how adding the polarisation data to a
volcano of S-isogenies can double the length of the cycle. The volcanoes
are depicted “from above”.

5.6. Graphs of (¢, /)-isogenies

We now specialise to the case g = 2, and the key family of (¢, £)-isogenies. Then, <
is an absolutely simple, ordinary, principally polarisable abelian variety of dimension 2,
and K is a primitive quartic CM-field. The subfield K is a real quadratic number field.

Definition 5.34 ((¢, ¢)-isogeny). Let (<7, £,) be a principally polarised abelian surface.
We call an isogeny ¢: &/ — A an ({,{)-isogeny (with respect to &) if ker(y) is a
maximal isotropic subgroup of «/[¢] with respect to the Weil pairing on &[] induced
by the polarisation isomorphism corresponding to &, .

First, note that since g = 2, even though the lattice of orders in K is much more
intricate than in the quadratic case, there still is some linearity when looking at the
suborders OT (&) = O(«/)N K™, since KT is a quadratic number field. For any variety
</ in the fixed isogeny class, there is an integer f, the conductor of OF (&), such that
Ot () =Z + fOp+. The local order o7 (&) is exactly the order o0, = Zy + ("o + in
K j , where n. = vy(f) is the valuation of f at the prime ¢. The next result describes how
(¢, £)-isogenies can navigate between these “levels” of real multiplication.

Definition 5.35. Let ¢ : & — 2 be an isogeny. If o7 (&) C 01 (%) we say that ¢
is an RM-ascending isogeny, if o™ (%) C ot (&) we say it is RM-descending, otherwise
ot (&) = 0" (A) and it is RM-horizontal.

Theorem 5.36. Suppose ot (/) = 0, with n > 0. For any principal polarisation & on
of , the kernels of (£,€)-isogenies from (<7, &) are:

(i) A unique RM-ascending one, whose target has local order 0,1 - 0(</) (in par-
ticular, the local real order of the target is 0,1, and the kernel is defined over
the same field as </ );

(ii) £? + ¢ RM-horizontal ones;

(iii) ¢3 RM-descending isogenies, whose targets have local real order 0, 1.
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The above theorem is proven in Section 5.7. Note that we start by considering (¢, ¢)-
isogenies defined over the algebraic closure of the finite field k; in virtue of Remark 5.9,
it is then easy to deduce the results on isogenies defined over k.

Second, we focus our attention to abelian surfaces with maximal real multiplication
at ¢ (i.e., the case n = 0 above). The description of [-isogeny graphs provided by
Theorem 5.13 leads to a complete understanding of graphs of (¢, £)-isogenies preserving
the maximal real order locally at ¢, via the next theorem. More precisely, we study
the structure of the graph %, whose vertices are the isomorphism classes of principally
polarisable surfaces &7 in the fixed isogeny class, which have maximal real multiplication
locally at ¢ (i.e., o+ C 0(/)), with an edge of multiplicity m from such a vertex < to
a vertex A if there are m distinct subgroups x C o7 that are kernels of (¢, £)-isogenies
such that o/ /k = 2. This definition will be justified by the fact that the kernels of
(¢, £)-isogenies preserving the maximal real multiplication locally at ¢ do not depend on
the choice of a principal polarisation on the source (see Remark 5.58). The following
theorem is proven in Section 5.8, where its consequences are discussed in detail.

Theorem 5.37. Suppose that o/ has maximal real multiplication locally at £. Let & be
any principal polarisation on <. There is a total of £3 + 2 + ¢ + 1 kernels of (¢,¢)-
isogenies from «f with respect to £&. Among these, the kernels whose target also has
mazimal local real order do not depend on &, and are:

(i) the £? + 1 kernels of O+ -isogenies if £ is inert in K7 ;
(ii) the 2 + 2 + 1 kernels of compositions of an ly-isogeny with an la-isogeny if £
splits as lily in KT;
(iii) the £ + € + 1 kernels of compositions of two l-isogenies if £ ramifies as I? in
K.

The other (¢, ¢)-isogenies have targets with real multiplication by Zyg + €0 g+ .

5.6.1. Polarisations and symplectic structures. One knows that if p: & — %
is an (¢, {)-isogeny with respect to a principal polarisation £, on ., then there is a
unique principal polarisation £ on % such that ¢*é4 = 55} (this is a consequence of
Grothendieck descent [Mum66, pp. 290-291]; see also [Rob10, Proposition 2.4.7]). This
allows us to view an isogeny of a priori non-polarised abelian varieties ¢ as an isogeny
of polarised abelian varieties : (o,£%)) — (%, &)

Let T =Ty, and V =T ®z, Q. As for l-isogenies, we are studying (¢, £)-isogenies
through the lens of lattices in V. The polarisation data, preserved by (¢, ¢)-isogenies,
translates nicely in the world of lattices by endowing V' with a symplectic structure. Fix
a polarisation &, of /. It induces a polarisation isogeny A : @/ — /", which in turn
gives a map T' — Ty(«7"). Therefore the Weil pairing equips 7' with a natural Z,-linear
pairing (—, —), which extends to a pairing on V. The pairing (—, —) is symplectic, and it
satisfies (ax,y) = (x,aly) for any a € K (see [Mil86b, Lemma 16.2e, and Section 167]).
For I' a lattice in V, write

I"={aeV|(al)CZ}
for the dual lattice of I'. Then 7" C T™, and the quotient is isomorphic to (ker A)[¢°].

In particular, T is self-dual if and only if the degree of A is coprime to £. Therefore T is
a self-dual lattice when £, is a principal polarisation.
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5.7. Levels for the real multiplication in dimension 2

Again, fix an absolutely simple, ordinary, principally polarisable abelian variety .o/ of
dimension 2. Then K is a primitive quartic CM-field, and the subfield KT is a real
quadratic number field. The orders in K ; are linearly ordered, since they are all of the
form o0, = Zy+0"0+. These integers n can be seen as “levels” of real multiplication. The
goal of this section is to take advantage of this linear structure to prove Theorem 5.36.

5.7.1. Preliminaries on symplectic lattices. Let F; be the finite field with ¢ ele-
ments.

Lemma 5.38. Let W be a symplectic Fy-vector space of dimension 4. It contains exactly
03 + 02 + 0 + 1 mazimal isotropic subspaces.

Proof. In the following, a line or a plane means a dimension 1 or 2 subspace of a vector
space (i.e., they contain the origin of the vector space). Fix any line L in W. We will
count the number of maximal isotropic subspaces of W containing L. The line L is itself
isotropic (yet not maximal), so L C L*. Also, dim L + dim L+ =4, sodimLt = 3.
Since any maximal isotropic subspace of W is of dimension 2, it is easy to see that
those containing L are exactly the planes in L' containing L. There are ¢ + 1 such
planes, because they are in natural correspondence with the lines in the dimension 2
vector space L/L. Tt follows that there are ¢ + 1 maximal isotropic subspaces of W
containing L. Because there are £3 +¢? +¢+1 lines L in W, and each maximal isotropic
subspace of W contains £ + 1 lines, we conclude that there are 3 + ¢? + ¢ 4+ 1 maximal
isotropic subspaces. O

Lemma 5.39. Let V' be a symplectic Qg-vector space of dimension 4. Let A CV be a
lattice in V' such that A* = A. Then A/CA is a symplectic Fy-vector space of dimension
4 for the symplectic form

AN+ LA 4+ LAY = (A, ) mod .

Proof. The fact that the form (—,—), is bilinear and alternating easily follows from
the fact that the form (—,—) is symplectic. It only remains to prove that it is non-
degenerate. Let A € A, and suppose that (A + (A, u+ ¢A)y = 0 for any p € A. We now
prove that A € /A. For any u € A, we have (\, u) € ¢Z,, and therefore ({=\ u) € Z,.
So /') € A* = A, whence \ € /A, concluding the proof. O

Lemma 5.40. Let V be a symplectic Qy-vector space of dimension 4, and A a self-dual
lattice in V. Let (A C T' C A be an intermediate lattice. Then T'/(A is mazimal isotropic
in AJCA if and only if T* = ¢~1T.

Proof. First, suppose that I'/¢A is maximal isotropic. Fix v € I'. For any 6 € T, since
I'/¢A is isotropic, we have (v, 68) € £Zy, so ((~1v,68) € Zy and therefore £~1+ € T'*. This
proves that £~'T" C T'*. Now, let o € T'*. Observe that (fa,v) = ¢{a, ) € ¢Z, for any
v € I'. This implies that /~'a must be in I', because I'/¢/A is maximally isotropic. This
proves that 1T C T,

Now, suppose that I'* = ¢~'TI". Then, (¢(~'T\T) C Z;, so (I',I') € ¢Z,, and T'/{A
is isotropic. Let A € A such that (A + ¢A,T'/¢A), = {0}. Then, ((~'\,T) C (Zy, so
(=X € I'* = /~'T", which implies that A\ € I'. So I'/¢A is maximal isotropic. O

Definition 5.41 ((¢,¢)-neighbors). The set .Z(A) of (¢,¢)-neighbors of A is the set of
lattices I' such that /A C I' C A, and I'/¢A is maximal isotropic in A/¢A.

Again, using Proposition 5.7, we obtain:
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Proposition 5.42. With T = Ty<f, the ({,{)-isogenies of — B correspond, under
Proposition 5.7, to the lattices I' with T C I' C %T and I'/T a mazximal isotropic
subspace of %T/T, i.e., to (£,0)-neighbors of T rescaled by a factor £71.

5.7.2. ({,¢)-neighboring lattices. Throughout this section, V' is a symplectic Q-
vector space of dimension 4. Again, we consider a prime number ¢, a quartic CM-field
K, with KT its quadratic real subfield. The algebra K, = K ®q Q¢ is a Qg-algebra
of dimension 4, with an involution = — z! fixing K Z induced by the generator of
Gal(K/K™). Suppose that K; acts (Qg-linearly) on V, and that for any = € Ky,
u,v € V, we have (zu,v) = (u,zfv). For any lattice A in V, the real order of A is the
order in K; = K1 ®q Q defined as

ot(A) ={z € K | zA C A}

Any order in Kzr is of the form o0, = Zy + "0+, for some non-negative integer n, with
o+ the maximal order of K,”. We say that A is an o,-lattice if 0(A) = 0,,. The goal of
this section is to prove the following lattice counterpart of Theorem 5.36.

Proposition 5.43. Let A be a self-dual o, -lattice, with n > 0. The set L(A) of its
(£, £)-neighbors contains exactly one o,_1-lattice, namely lo,_1 A, as well as 244 lattices
of real order o,, and (3 lattices of real order 0, 1.

Lemma 5.44. Let A be a self-dual o,-lattice in V, for some non-negative integer n.
Then, A is a free 0,-module of rank 2.

Proof. By Lemma 5.14, the order o, is a Gorenstein ring of dimension 1, and it follows
from [Bas63, Theorem 6.2] that A is a reflexive o0,-module. From [Bas63, Proposi-
tion 7.2], A has a projective direct summand, so A = 0,,e; & M for some e; € A, and M
an o0,-submodule. This M is still reflexive (any direct summand of a reflexive module is
reflexive). So applying [Bas63, Proposition 7.2] again to M, together with the fact that
it has Zy-rank 2, there is a non-negative integer m < n and an element eo € A such that
M = o,,e2. We shall prove that m = n. By contradiction, assume m < n. We have
AJCA = (one1/00,) @ (0me2/00y,). Observe that o,,e2/l0,, is maximal isotropic. Indeed,
it is of dimension 2, and for any =,y € 0., (zes,yes) = —(yea,xes) because the form
is alternating, and (wes,yes) = (yes,xes) because it is K T-bilinear, so (zes,yes) = 0.
Also, we have 0,,_1 C 0,y, SO

<£0n,161, 0m62> = <f€1, Un,10m62> = €<61, 0m62> C 7.
This proves that fo,,_1e1/0o, C (0mea/lom)t = 0,e2/00,,, a contradiction. O

Using a standard abuse of notation, write Fy[e| for the ring of dual numbers, i.e., an
F-algebra isomorphic to Fy[X]/X? via an isomorphism sending € to X.

Lemma 5.45. Let R = Fy[e]fi1 & Fyle]fa be a free Fyle]-module of rank 2. The Fyle-
submodules of R of Fy-dimension 2 are exactly the (> + ¢ + 1 modules €R, and Fyle] - g
for any g & €eR. A complete list of these orbits Fyle| - g is given by Fyle] - (bef1 + f2) for
any b € Fy, and Fyle] - (f1 + afe + Befa), for any o, 5 € Fy.

Proof. Let H C R be a subspace of dimension 2, stable under the action of Fy[e]. For
any g € H, write g = ayf1 + bgef1 + cgfo + dgefa € H for ay,by,cq,dg € Fy. Since H is
F[e]-stable, for any g € H, the element ge = agefi + cqefo is also in H.

First suppose ay = 0 and ¢4, = 0 for any g € H. Then, as H = €R, it is indeed an
F[e]-submodule and has F,-dimension 2. Now, suppose a, = 0 for any g € H, but H
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contains an element g such that ¢, # 0. Then, H contains both bye fi 4 ¢4 fo +dge f2, and
cg€fa, so H is the Fy-vector space spanned by €fs and bye f1 + ¢4 f2. There are £+ 1 such
subspaces H (one for each possible (b, : ¢;) € P}(Fy)), and all of them are of dimension
2 and R-stable.

Finally, suppose there exists g € H such that a;, # 0. Then, it is spanned as an
F-vector spaces by a pair {f1 + a.fo + Befo, ef1 + aefa}, with a, 8 € Fy, and any of the
% subspaces of this form are F[¢]-submodules. O

Lemma 5.46. Let A be an o,-lattice, for some non-negative integer n. For any element
g € NJLA, the orbit o, - g is an isotropic subspace of AJIA.

Proof. Let A\ € A such that g = A+/A. For any «, 8 € 0,,, we have (a\, BA) = — (B, a))
because the symplectic form on V is alternating, and (aX, SA) = (BA, a\) because it is
K *-bilinear. So (ag, Bg)¢ = 0, and the orbit of g is isotropic. O

Proof of Proposition 5./3. From Lemma 5.44, A splits as e10,, ®es0,, for some e, es € A.
Observe that there is an element € € o,, such that 0,,/f0,, = F/[¢] = F¢[X]/(X?), via the
isomorphism sending € to X. The quotient R = A//A is a free Fy[e]-module of rank 2.
Let m : A — R be the canonical projection. The set {f1,€f1, f2,€fo} forms an Fy-basis
of R, where f; = m(e;).

From Lemma 5.45, R contains £2+/¢+1 subspaces of dimension 2 that are F[e]-stable.
The subspace eR = Fefi @ Fefs is isotropic because

(efrrefa)e = (f1,€2 fa)e = 0.

Together with Lemma 5.46, we conclude that all /2 + ¢ + 1 of these F[¢]-stable sub-
spaces are maximal isotropic. From Lemma 5.38, R contains a total of £3 + (2 + /¢ + 1
maximal isotropic subspaces. Thus, the (¢, ¢)-neighbors corresponding to the remaining
/3 subspaces are not stable for the action of 0,,. They are however stable for the action
of 0,41, so those are 0,;-lattices.

It remains to prove that among the ¢2 + ¢ + 1 neighbors that are o,-stable, only
the lattice fo,—1A (which corresponds to the subspace €R) is 0,,_1-stable, and that it is
not o,_o-stable. This would prove that fo,,_;A is an o,_-lattice, and the ¢? + ¢ other
lattices have order o,,.

Write I' = fo,,_1A. Then n(I') = eR is maximal isotropic and Fy[e]-stable. Sup-
pose by contradiction that we have o0, o' C I'. Then, fo, oA C 0, o' C ' C A,
so Lo, oA C A. But lo,_o ¢ 0,, which contradicts the fact that A is an o,-lattice.
Therefore I' is an o,,_1-lattice.

Let H C R be another maximal isotropic subspace, and suppose that 7—!(H) is
0n_1-stable. Let A = eq(a+"z) +ea(b+"y) € 71 (H), with a,b € Zy and x,y € 0g+,
and let z € 0,_1. A simple computation yields

A =2)+ A = zaey + zbeg + A.

Therefore, both za and zb must be in o, for any z € 0,_1. It follows that a and b must
be in ¢Z;, whence A € I'. So 7~ !(H) C TI', and we conclude that H = ¢R from the
fact that both are maximal isotropic. This proves that no (¢, ¢)-neighbor other that I
is 0,,_1-stable. O

5.7.3. Changing the real multiplication with (¢, /)-isogenies. The results for lat-
tices are now ready to be applied to analyse how (¢, ¢)-isogenies can change the real
multiplication. Fix a principally polarisable absolutely simple ordinary abelian surface
o over k = F,. As usual, K is its endomorphism algebra, and K* the maximal real
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subfield of K. The local real order o™ (&) of & is of the form o,, = Z; + ("0 -+ for some
non-negative integer n.

Proof of Theorem 5.36. 1t follows from Proposition 5.43 together with Proposition 5.42,
and the observation that the o0,,_1-lattice f0,,_1A has order 0,1 - 0(A). O

In the following, we show that some structure of the graphs of horizontal isogenies
at any level (of real multiplication) can be inferred from the structure at the maximal
level: indeed, there is a graph homomorphism from any non-maximal level to the level
above.

Definition 5.47 (RM-predecessor). Suppose ot (&) = 0,, with n > 0. Note that the
kernel k of the unique RM-ascending isogeny of Proposition 5.36 is given by the quotient
(0p-1Tpe?)/Ty</ (via Proposition 5.7) and does not depend on the polarisation. The
RM-predecessor of < is the variety pr(«/) = </ /k, and we denote by up,, : & — o /K
the canonical projection. If £ is a principal polarisation on &7, let pr(§) be the unique
principal polarisation induced by & via up,,.

Proposition 5.48. Suppose n > 0. For any principal polarisation & on <7, and any
RM-horizontal (£,0)-isogeny ¢ : o/ — B with respect to &, there is an (¢,0)-isogeny
@ :pr(e/) — pr(AB) with respect to pr(§) such that the following diagram commutes:

pr(e/) — = pr(2)

upm«T Tup@

oS B
Proof. This follows from the fact that if A is an o,-lattice and T' € Z(A) is an (¢, {)-
neighbor of A, then fo,, 1" € £ (lo,_1A). O

5.8. (¢,/)-isogenies preserving the real multiplication

In this section, we prove Theorem 5.37 by analysing the relationship between [-isogenies
and (¢, £)-isogenies preserving the maximal real multiplication.

5.8.1. (¢,¢)-neighbors and [-neighbors. Let £ (A) be the set of (¢, ¢)-neighbors of
the lattice A with maximal real multiplication. These neighbors will be analysed through
[-neighbors, for [ a prime ideal in 0 +. This will allow us to account for the possible
splitting behaviors of . The relation between the set £ (A) and the sets Z(A) is
given by the following proposition proved case-by-case in the following three sections, as
Propositions 5.50, 5.54 and 5.56:

Proposition 5.49. Let A be a lattice with maximal real multiplication. The set of
(£, 0)-neighbors with mazximal real multiplication is

Lo, (N) if £ is inert in KT,
LN = A4, N)] = L[4, (N)] if € splits as 11 in KT,
RARANN] if £ ramifies as 17 in KT,

5.8.1.1. The inert case. Suppose that £ is inert in K+. Then, /O~ is the unique prime
ideal of K+ above £. The orders in K, with maximal real multiplication are exactly the
orders oj with f = {"ox+, i.e., the orders ox+ + ("o with n > 0.
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Proposition 5.50. Let A be a lattice with mazximal real multiplication. If ¢ is inert in
K™, the set of (£,£)-neighbors with maximal real multiplication is

L) = Lio,, ().

Proof. Since 0+ /loy+ = Fp2, AJlA is a free 0(A) /fo(A)-module of rank 1. In particular,
it is a vector space over Fy2 of dimension 2, and thereby the o j+-stable maximal isotropic
subspaces of A/¢A are Fj-lines. Since any F2-line is isotropic, Lo, (M) is precisely
the set of (¢, ¢)-neighbors preserving the maximal real multiplication. O

Remark 5.51. The structure of Z*(A) is then fully described by Proposition 5.18,
with [ = fog+, and NI = (2. In particular, .Z(A) consists of £? + 1 neighbors with
maximal real multiplication, and ¢3 + ¢ with real multiplication by 01 = Z + fo+.

The split case. Suppose that £ splits in KT as O+ = [1lo. The orders in K, with
maximal real multiplication are exactly the orders o; = o+ + fox, where f = ["[5 for
any non-negative integers m and n.

Lemma 5.52. Suppose A has maximal real multiplication. Then, we have the orthogonal
decomposition AJOA = (WA/CA) L (A/EA).

Proof. Let o = o(A). Since [; and [y are coprime and [;ly = log+, the quotient o/lo
splits as lo/lo @ lp0/lo. Tt follows that A/¢A = (LA/CA) @ ([eA/¢A). Furthermore,
(LA, A) = (A, [1IbA) = (A LA) C €Zy, so LA/EA C (IA/¢A)*. The last inclusion is
also an equality because both [ A/¢A and [;A/¢A have dimension 2. O

Lemma 5.53. Suppose A has mazimal real multiplication. An (¢,0)-neighbor I' € Z(A)
has mazimal real multiplication if and only if there exist I'y € A, (A) and I'y € £, (A)
such that I' = [bI'y + [ Ts.

Proof. First, let I' € Z(A) be an (¢, £)-neighbor with maximal real multiplication. Defin-
ing I'; ="' + [;A, we then have

[bI' + 1Ty = ([1 + IQ)F + /A = o+l + /A =T.

By contradiction, suppose I'; ¢ Z;(A). Then, I'; is either A or [;A. Suppose first that
[; = A. Then I' C [;A, and even I' = [;A since [A : T'] = [A : [;A] = ¢2. But the orthogo-
nal decomposition of Lemma 5.52 implies that [;A/A is not isotropic, contradicting the
fact that I' € Z(A).

For the converse, suppose I' = [bI'; + [1T'9 for some I'; € 4, (A) and 'y € 4, (A).
Then I'/¢A is of dimension 2, so it suffices to prove that it is isotropic. Each summand
I;I'; is isotropic, because it is of dimension 1, and Lemma 5.52 implies that [oI'; and ;T
are orthogonal, so their sum I is isotropic. ]

Proposition 5.54. Suppose A has mazximal real multiplication. If ¢ splits in KT as
loge+ = lila, the set of (£,€)-neighbors of A with mazimal real multiplication is

"?JF(A) = 'i/ﬂ[l [ﬂz (A)] = ﬁz [”%1 (A)]

Proof. For any I'1 € 4, (A) and I'y € 4, (A), we have that [bI'1 + 1Ty € 4, (T'1) and
LI + 1Ty € £, (). This proposition is thus a consequence of Lemma 5.53. O

Remark 5.55. When / splits in K, #%(A) is then of size 2 + 2/ + 1, and the £3 — ¢
other (¢, ¢)-neighbors have real order o;.
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The ramified case. Suppose that ¢ ramifies in Kt as fOp+ = [?. Then, the quotient
og+/log+ is isomorphic to Fyle] with €2 = 0. The orders in K, with maximal real
multiplication are exactly the orders opn = og+ + ["og, with n > 0.

Proposition 5.56. Suppose A has maximal real multiplication. If ¢ splits in KT as
log+ = 2, the set of (£, /)-neighbors of A with mazimal real multiplication is

LE(N) = L4lAN).

Proof. Let T' € Z*(A). First, if I' = [A, observe that for any II € 4(A), we have
IA € A(A), and therefore I' € L[ Z(A)]. We can now safely suppose I' # [A. Let
IT =T + [A. We have the sequence of inclusions

(ACIcT' CIICA.

By contradiction, suppose II = A. Then, I'N[A = /A. Since II' C T'NI[A = /A, it follows
that [A = [II = I[I' + /A C (A, a contradiction. Therefore I' C IT C A, and each inclusion
must be of index ¢. Then, I' € A(II) C A[-A(A)].

Let us now prove that A[A(A)] € LT (A). Let I € A(A) and T € A(IT). We
have the sequence of inclusions

A = [([A) CelMICp D Cp I Cp A,

where Cy; means that the first lattice is of index £ in the second. Therefore /A C T C A,
and I'/¢A is of dimension 2 over Fy. Since I'/[A is a line, there is an element 7 € II such
that IT = Zym + [A. Similarly, IT/IT" is a line, so there is an element v € I" such that
I' = Zyy + lr + (A. Therefore, writing x = v+ ¢A and y = 7 + (A, the quotient I'//A is
generated as an Fy-vector space by x and ey. Since v € I' C Il = Zyw + [A, there exist
a € Zy and z € A/CA such that z = ay + ez. Then,

(z,ey)e = (ay, ey)e + (€2, €y)e = aly, ey)e + (2, €y)e = 0,

where the last equality uses Lemma 5.46, and the fact that €2 = 0. So I'//A is maximal
isotropic, and I' € Z(A). Furthermore ex = aey, and ey = 0 are both in I'/¢A, so the
latter is Fy[e]-stable, so I' is 0x+-stable. This proves that I' € ZT(A). O

Remark 5.57. For any two distinct lattices 11,1l € 4(A), we have a non-empty
intersection Z(I11;) N A(1l2) = {IA}.

5.8.2. Locally maximal real multiplication and (¢, /)-isogenies. Fix again a prin-
cipally polarisable, absolutely simple, ordinary abelian surface </ over k = F,, with en-
domorphism algebra K, and K the maximal real subfield of K. Now suppose that .o/
has locally maximal real multiplication at ¢. Recall from Theorem 5.2 that any such
locally maximal real order is of the form o; = ox+ + fog, for some og+-ideal f. The
structure of [-isogeny graphs as described by Theorem 5.13 can be used to describe
graphs of (¢, ¢)-isogenies preserving the real multiplication, via Theorem 5.37.

Proof of Theorem 5.37. This theorem is a direct consequence of Proposition 5.49 trans-
lated to the world of isogenies via Proposition 5.42. U

Remark 5.58. Note that in particular, Theorem 5.37 implies that the kernels of the
(¢, 0)-isogenies &7 — A preserving the real multiplication do not depend on the choice
of a polarisation £ on <.

To describe graphs of (¢, £)-isogenies with maximal local real multiplication, we com-
bine Theorem 5.13 and Theorem 5.37. To do so, the following notation is useful.
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Notation 5.59. Let O be any order in K with locally maximal real multiplication
at ¢, whose conductor is not divisible by [. We denote by #/(O) the connected graph 7
described in Theorem 5.13. If [ does divide the conductor of O, let O’ be the smallest
order containing O, whose conductor is not divisible by [. Then, we also write #{(O) for
the graph #{(O’).

The inert and ramified cases. Combining Theorem 5.13 and Theorem 5.37 allows us to
describe the graph of (¢, /)-isogenies with maximal local real multiplication at ¢. To
simplify the exposition, we assume from now on that the primitive quartic CM-field K
is different from Q((5), but the structure for Q(¢s) can be deduced in the same way
(bearing in mind that in that case, (’)IX<+ is of index 5 in O ). Let &/ be any principally
polarisable abelian variety with order O, with maximal real multiplication locally at £.
When / is inert in KT, the connected component of & in the (¢, )-isogeny graph (again,
for maximal local real multiplication) is exactly the volcano #{(O) (see Notation 5.59).
When ¢ ramifies as [> in KT, the connected component of .7 in the graph of l-isogenies
is isomorphic to the graph #{(O), and the graph of (¢, ¢)-isogenies can be constructed
from it as follows: to the same set of vertices, add an edge in the (¢, £)-graph between %
and € for each path of length 2 between % and % in the [-volcano; each vertex % has
now /2 + 2¢ + 1 outgoing edges, while there are only ¢? 4+ ¢ + 1 possible kernels of RM-
preserving (¢, £)-isogenies (see Remark 5.57). This is because the edge corresponding to
the canonical projection & — 2/ %][l] has been accounted for ¢ + 1 times. Remove ¢ of
these copies, and the result is exactly the graph of (¢, £)-isogenies.

Example 5.60. Suppose ¢ = 2 ramifies in KT as [2, and [ is principal in O+. Suppose
further that [ splits in K into two prime ideals of order 4 in Cl(Og). Then, the first four
levels of any connected component of the (¢, £)-isogeny graph for which the largest order
is Ok are isomorphic to the graph of Figure 5.5. The underlying [-isogeny volcano is
represented with dotted nodes and edges. Since [ is principal in O+, it is an undirected
graph, and we represent it as such. The level 0, i.e., the surface of the volcano, is the
dotted cycle of length 4 at the center. The circles have order Ok, the squares have order
Ok+ + 0k, the diamonds O+ + (O, and the triangles O+ + PO.

The split case. For simplicity, suppose again that the primitive quartic CM-field K is
different from Q(¢5). Let o/ be any principally polarisable abelian variety with order O,
with maximal real multiplication locally at . The situation when £ splits as [1[s in KT
(with [; and [5 principal in O N K1) is a bit more delicate because the I} and [y-isogeny
graphs need to be carefully pasted together. Let ¢, |, (/) be the connected component
of o/ in the labelled isogeny graphs whose edges are [j-isogenies (labelled [1) and (-
isogenies (labelled [). The graph of (¢, ¢)-isogenies is the graph on the same set of
vertices, such that the number of edges between two vertices 4 and % is exactly the
number of paths of length 2 from % to ¥, whose first edge is labelled [y and second edge
is labelled [p. It remains to fully understand the structure of the graph ¢, |, (7). Similar
to the cases where / is inert or ramified in K, we would like a complete characterization
of the structure of the isogeny graph, i.e., a description that is sufficient to construct an
explicit model of the abstract graph.

Without loss of generality, suppose O is locally maximal at ¢. Then, the endomor-
phism ring of any variety in ¢, ,(7) is characterized by the conductor [{*[5 at ¢, and
we denote by Oy, , the corresponding order. The graph ¢, |,(</) only depends on the
order, so we also denote it by 4, 1,(O). For simplicity of exposition, let us assume that
[, and Iy are principal in O N K™, so that the [;-isogeny graphs are volcanoes.
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FIGURE 5.5. An example of an (¢, £)-isogeny graph, when ¢ ramifies in K.

Definition 5.61 (Cyclic homomorphism). Let 2  and % be two graphs. A graph
homomorphism ¢ : 2" — % is a cyclic homomorphism if each edge of 2" and # can be
directed in such a way that 1 becomes a homomorphism of directed graphs, and each
undirected cycle in 2~ becomes a directed cycle.

Lemma 5.62. Let 2°, % and %' be connected, d-reqular graphs, with d < 2, such
that % and %" are isomorphic. If ¢ : % — 2 and ¢ : %' — 2 are two cyclic
homomorphisms, there is an isomorphism ) : % — %" such that o = ¢’ o).

Proof. The statement is trivial if d is 0 or 1. Suppose d = 2, i.e., 2, % and %’ are
cycles. Let 2 be the cycle xg — 1 — - - - — &y, wWith z,, = xg. Similarly, % is the cycle
Yo — Y1 — -+ — Yn, With y, = yo. Without loss of generality, p(yo) = xo and ¢(y1) = z1.
There is a direction on the edges of 2" and % such that ¢ becomes a homomorphism
of directed graphs, and % becomes a directed cycle. Without loss of generality, the
direction of % is given by y; — yi+1. Since yo — y1, we have p(yo) — ¢(y1), hence
xo — x1. Since y1 — ya, we must also have x; — ¢(y2), so p(y2) # xo and therefore
©(y2) = x2, and as a consequence 1 — 3. Repeating inductively, we obtain z; — ;41
for all i < m, and ©(y;) = %; mod m for all i < n.

Similarly, any direction on 2" and %' such that %’ is a directed cycle and ¢’
becomes a homomorphism of directed graphs turns 2 into a directed cycle. Without
loss of generality, it is exactly the directed cycle zg — x1 — - -+ — xy, (if it is the other
direction, simply invert the directions of #). There is then an enumeration {y;}7 of
%" such that ¢'(y;) = x;, and y; — y;,; for each i. The isomorphism 1 is then simply
given by ¥(y;) = y;. O
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Proposition 5.63. The graph 4, 1,(O), with edges labelled by Iy and ly, and bi-levelled
by (viy, vy, ), is isomorphic to the unique (up to isomorphism) graph & with edges labelled
by l1 and lz, and bi-levelled by a pair (vi,v2), satisfying:
(i) For i = 1,2, the subgraph of & containing only the edges labelled by l; is a
disjoint union of £-volcanoes, levelled by v;;
(it) For i # j, if u and v are connected by an l;-edge, then v;j(u) = vj(v);
(iii) For any non-negative integers m, and n, let Gy, n be the subgraph induced by
the vertices v such that (vi(v),v2(v)) = (m,n). Then,

(i) %, is isomorphic to the Cayley graph 6o of the subgroup of C1(O) with
generators the invertible ideals of the order O above £, naturally labelled
by 1 and ly;

(ii) each connected component of 9y, r, is isomorphic to the Cayley graph €, n,
of the subgroup of Cl(Oy, ) with generators the invertible ideals of the
order Oy, n, above £, naturally labelled by l; and (5.

w) For any two vertices w and v in &, there is a path of the form u-w-2v if and
Yy

only if there is a path of the form u-2w't-v (where i denotes an edge labelled

Proof. First, it is not hard to see that ¢, ,(O) satisfies all these properties. Properties (i)
and (ii) follow from Proposition 5.20 and Theorem 5.13. Property (iii) follows from the
free CM-action of Cl(O,,,,) on the corresponding isomorphism classes. Property (iv)
follows from the fact that <7[l;] ® <7[l5] is a direct sum.

Let 4 and ¢4’ be two graphs with these properties. For i = 1,2, let pr; (respec-
tively, pr;) be the predecessor map induced by the volcano structure of the [;-edges on ¢
(respectively, on ¢’). We will construct an isomorphism ¥ : ¢4 — ¢’ by starting with
the isomorphism between %o and %,0 and extending it on the blocks %, , and Eﬂln
one at a time. Let n > 0, and suppose, by induction, that ¥ has been defined exactly
on the blocks ¥%; ; for i 4+ j < n. Let us extend ¥ to the blocks ¥, ,—, for m =0,...,n
in succession.

Both % ,, and f%m have the same number of vertices, and their connected compo-
nents are all isomorphic %y, which are of degree d at most 2. We have the graph
homomorphism pry : %, = % n—1. Let S be the set of connected components of ¥ ,.
Define the equivalence relation on S

A ~ B <= pry(A) = pry(B).

Similarly define the equivalence relation ~' on the set S’ of connected components of g(;,n‘
Observe that each equivalence class for either ~ or ~' has same cardinality, so one can
choose a bijection © : S — S’ such that for any A € S, we have U(pry(A4)) = pri(O(A)).
It is not hard to check that pry and pr), are cyclic homomorphisms, using Property (iv).
From Lemma 5.62, for each A € S, there is a graph isomorphism ¢4 : A — ©(A) such
that for any = € A, it is the case that prh(ia(x)) = ¥(pry(z)). Let ¥ be the map
extending ¥ by sending any = € %, to 1 4(z), where A is the connected component
of  in % ,. We need to show that it is a graph isomorphism. Write 2 and 2’ for
the domain and codomain of W. The map \il, restricted and corestricted to 2 and 2’ is
exactly ¥, so is an isomorphism. Also, the restriction and corestriction to % ,, and %67,1 is
an isomorphism, by construction. Only the edges between % ,, and Z (respectively gO/,n
and 2') might cause trouble. The only edges between % ,, and Z are actually between
“%on and 9 1, and are of the form (x,pry(z)). But ¥ was precisely constructed so
that W(pry(x)) = pry(¥(z)), so ¥ is indeed an isomorphism.
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Now, let 0 < m < n and suppose that ¥ has been extended to the components ¥; ,,_;
for each ¢ < m. Let us extend it to %, ,—m. Since m > 0 and n —m > 0, the graph
Cmn—m is a single point, with no edge. Let us now prove that for any pair (z1,x2),
where z1 is a vertex in ¥, _1 —m and x2 in %, ,—ym—1 such that pry(z1) = pry(z2),
there is a unique vertex x in ¥, ,—, such that (z1,22) = (pri(z),pry(x)). First, we
show that for any vertex x € ¢, ,—,, we have

pry (pry(2)) Npry (pra (@) = {z}.

Let z = pry(pry(z)). Let X = pry'(pry(z)) and Y = pr{*(z). From Property (ii), 2
and pry(z) are at the same vi-level, so from Property (i), we have |X| = |Y|. For any
y € Y, we have prl(x)[izr—ly, so there is a vertex x’ such that pry (x)[—la:’[iy. Then,
vi(2’) = v1(y) = vi(pry(z)) — 1, and therefore 2’ € X. This implies that pry induces a
surjection pry : X — Y (this is pry restricted to X and corestricted to Y'), which is a
bijection since | X| = |Y|. So
X Npry(pra(z)) = X Npry  (pry(a)) = {a}.

Now, an elementary counting argument shows that = — (pr;(z), pry(x)) is a bijection

between the vertices of ¥, ,—n, and the pairs (1, z2), where z1 is a vertex in 4,1 p—m
and @2 in 9, p—m—1 such that pry(z1) = pr(x2). This property also holds in ¢’, and

we can thereby define v : % nm — 9, _pm as the bijection sending any vertex x in
Gm,n—m to the unique vertex z’ in 4, , . such that

(pry(2'), pry(z’)) = (¥ (pry(2)), ¥(pra(2))).
It is then easy to check that the extension of ¥ induced by 1 is an isomorphism. The
final step, extending on ¥, ¢, is similar to the case of % ,,. This concludes the induction,
and proves that ¢ and ¢’ are isomorphic. O

5.9. Applications to “going up” algorithms

5.9.1. Motivation for a “going up” algorithm. Although our Theorem 5.36 does
not determine the global structure of the graph of (¢, ¢)-isogenies, it is enough to prove
our final result: a “going up” algorithm. This algorithm, given as input a principally
polarised abelian surface, finds a path of computable isogenies leading to an abelian
surface with maximal endomorphism ring, when this is possible.

A first application of the “going up” algorithm is in generating (hyperelliptic) curves
of genus 2 over finite fields with suitable security parameters via the CM method. The
method is based on first computing invariants for the curve (Igusa invariants) and then
using a method of Mestre [Mes91] (see also [CQO5]) to construct the equation of the
curve. There are three different ways to compute the minimal polynomials of these
invariants (the Igusa class polynomials):

(1) Complex analytic techniques [vW99, Wen03, Str10, ET14];

(2) p-adic lifting techniques [CKLO08, GHK'06];

(3) A technique based on the Chinese remainder theorem [EL10, FLO8, BGL11]
(the CRT method).

Although 3), which requires a “going up” algorithm, is currently the least efficient
method, it is also the least understood and deserves more attention: its analogue for
elliptic curves holds the records for time and space complexity and for the size of the
computed examples [ES10, Sut11]. The work of [LR12a] aims at generalising (to genus
2) the method of Sutherland [Sut11] for elliptic curves. Based on (¢, £)-isogenies that do
not require the endomorphism ring to be maximal, it yields a probabilistic algorithm for
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“going up” to an abelian surface with maximal endomorphism ring, and, although the
authors cannot prove that the “going up” algorithm succeeds with any fixed probability,
the improvement is practical and, heuristically, it significantly reduces the running time
of the previous results (the CRT method of [BGL11]) in genus 2.

Our Algorithm 5.1 answers a question of [LR12a] by providing a deterministic
method and removing the heuristics from the complexity analysis.

A second application is in the computation of an explicit isogeny between any two
given principally polarised abelian surfaces in the same isogeny class. We explored in
Chapter 3 how to find an isogeny between two such surfaces with the same endomorphism
ring. This can be extended to other pairs of isogenous principally polarised abelian
surfaces, by first computing paths of isogenies to reach the maximal endomorphism
ring, then applying the method of Section 3.7.

Similarly, the “going up” algorithm can also extend results about the random self-
reducibility of the discrete logarithm problem in genus 2 cryptography. The results
of Chapter 3 imply that if the discrete logarithm problem is efficiently solvable on a
non-negligible proportion of the Jacobians with maximal endomorphism ring within an
isogeny class, then it is efficiently solvable for all isogenous Jacobians with maximal
endomorphism ring. For this to hold on any other Jacobian in the isogeny class, it only
remains to compute a path of isogenies reaching the level of the maximal endomorphism
ring.

5.9.2. Largest reachable orders. The results from Section 5.7.3 and Section 5.8.2 on
the structure of the graph of (¢, ¢)-isogenies allow us to determine exactly when there
exists a sequence of (¢, ¢)-isogenies leading to a surface with maximal local order at /.
When there is no such path, one can still determine the largest reachable orders. Recall
the notation o; = o+ + fox where § is an ideal of ox+.

Proposition 5.64. Suppose o/ has mazximal local real order, and o(2/) = o;.

(i) If £ divides §, there is a unique (¢, £)-isogeny to a surface with order oy-1;.

(ii) If £ ramifies in KT as 1> and § = |, then there exists an ({,{)-isogeny to a
surface with maximal local order if and only if U is not inert in K. It is unique
if U is ramified, and there are two if it splits.

(ii3) If € splits in K as lily, and f = [} for some i > 0, then there exists an (¢, {)-
isogeny to a surface with local order 01 if and only if lo is not inert in K.
It is unique if ly is ramified, and there are two if it splits. Also, there always
exists an (¢,0)-isogeny to a surface with local order 01y,

Proof. This is a straightforward case-by-case analysis of Proposition 5.20 and Theo-
rem 5.37. O

Definition 5.65 (Parity of /). Suppose & has real order ot (&) = Z; + ("og+.
Construct an isogenous # by taking the RM-predecessor n times starting from <7, i.e.,
B = pr(pr(...pr(&)...)) is the (iterated) RM-predecessor of o7 that has maximal real
local order. Let f be the conductor of 0(#). The parity of o7 is 0 if N(f N og+) is a
square, and 1 otherwise.

Remark 5.66. The parity is always 0 if £ is inert in K.

Theorem 5.67. For any <, there exists a sequence of (¢,)-isogenies starting from <
and ending at a variety with maximal local order, except in the following two cases:

(i) </ has parity 1, the prime £ splits in K™ as 1, and both Iy and ly are inert in K

in which case the largest reachable local orders are o+ + lox and 0+ + 20k ;
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(ii) </ has parity 1, the prime £ ramifies in K+ as 12, and | is inert in K, in which
case the largest reachable local order is oy + + log.

Proof. First, from Propositon 5.48, there is a sequence of (¢, £)-isogenies starting from .o
and ending at a variety with maximal local order if and only if there is such a path
that starts by a sequence of isogenies up to % = pr(pr(...pr(<)...)), and then only
consists of (¢, £)-isogenies preserving the maximality of the local real order. It is therefore
sufficient to look at sequences of RM-preserving (¢, ¢)-isogenies from 2, which has by
construction the same parity s as .

From Proposition 5.64, there is a path from % to a surface ¥ with local order
0(%) = 01 where [ is a prime ideal of 0+ above ¢, and s is the parity of «#. We are done
if the parity is 0. Suppose the parity is 1. From Propositions 5.20 and Theorem 5.37,
one can see that there exists a sequence of RM-preserving (¢, £)-isogenies from ¢ which
changes the parity to 0 if and only if ¢ ramifies in Kt as [ and [ is not inert in K, or £
splits in KT as [;[y and either [; or [5 is not inert in K. This concludes the proof. [

5.9.3. A “going up” algorithm. In many applications (in particular, the CM method
in genus 2 based on the CRT) it is useful to find a chain of isogenies to a principally
polarised abelian surface with maximal endomorphism ring starting from any curve
whose Jacobian is in the given isogeny class. Lauter and Robert [LR12a, Section 5]
propose a probabilistic algorithm to construct a principally polarised abelian variety
whose endomorphism ring is maximal. That algorithm is heuristic, and the probability
of failure is difficult to analyse. We now apply our structural results from Subsection 5.8.2
to some of their ideas to give a provable algorithm.

5.9.3.1. Prior work of Lauter—Robert. Given a prime ¢ for which we would like to find
an isogenous abelian surface over £ = F, with maximal local endomorphism ring at ¢,
suppose that a = ¢¢a’ for some o/ € Ok and some e > 0. To find a surface &’ /k for
which «/¢¢ € End(&/"), Lauter and Robert [LR12a, Section 5] use (¢, )-isogenies and a
way to test whether «/¢¢ € End(&’). In fact, a/¢¢ € End(&’) is equivalent to testing
that a(2/'[¢¢]) = 0, i.e., a is trivial on the ¢*-torsion of 7. To guarantee that, one
defines an “obstruction” N, = #a(</[¢¢]) that measures the failure of a/¢¢ to be an
endomorphism of &7’. To construct an abelian surface that contains the element «/¢¢
as endomorphism, one uses (¢, £)-isogenies iteratively in order to decrease the associated
obstruction N, (this is in essence the idea of [LR12a, Algorithm 21}).

To reach an abelian surface with maximal local endomorphism ring at ¢, Lauter and
Robert look at the structure of End(%/) ®z Z, as a Z,-module and define an obstruction
via a particular choice of a Z,-basis [LR12a, Algorithm 23].

5.9.3.2. Refined obstructions and provable algorithm. Theorem 5.67 above gives a prov-
able “going up” algorithm that runs in three main steps: 1) it uses (¢, £)-isogenies to
reach a surface with maximal local real endomorphism ring at ¢; 2) it reaches the largest
possible order via (¢, £)-isogenies as in Theorem 5.67; 3) if needed, it makes a last step
to reach the maximal local endomorphism ring via a cyclic isogeny. To implement 1)
and 2), one uses refined obstructions, which we now describe in detail.

5.9.3.3. “Going up” to mazimal real multiplication. Considering the local orders op+ =
O+ ®z Zy and Z,[r + 7], choose a Z,-basis {1, 3/£¢} for o+ such that g € Z[r + 7]
and apply a “real-multiplication” modification of [LR12a, Algorithm 21] to 8. Thus,
given an abelian surface &/ with endomorphism algebra isomorphic to K, define the
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obstruction for ./ to have maximal real multiplication at ¢ as
Nt () = e — max{e: B(F[¢]) = 0}.

Clearly, &/ will have maximal real endomorphism ring at ¢ if and only if N (&) = 0.
The following simple lemma characterizes the obstruction:

Lemma 5.68. The obstruction Nt (/) is equal to the valuation at ¢ of the conductor
of the real multiplication OF (/) C O+ .

Proof. Using the definition of N (%) and the fact that 3/¢¢ € O(«&) if and only if
B(e/[€]) = 0, it follows that
Zo+ B/t 2y C ot () C 2yt p/TNT T,

Since all orders of O+ are of the form Z 4 cOg+ for some ¢ € Z~q, by localisation at £
one sees that

o () = Lo+ BN DLy = T 4 4N Do,
i.e., the valuation at £ of the conductor of OF (&) is N*(&). O

The lemma proves that the following algorithm works (i.e., that there always exists
a neighbor decreasing the obstruction NT):

Algorithm 5.1 Going up to the maximal real endomorphism ring

Require: An abelian surface 7 /k with endomorphism algebra K = End(«/) ® Q, and
a prime number /.
Ensure: An isogenous abelian surface o7’ /k with ot (') = o+ .

1. B < an element 3 € Z[r + 7| such that {1, 3/} is a Zs-basis for op+.
2: Compute N (/) = e — max{e: B(/[(°]) = 0}

3. if N*(&/) =0 then

4:  return .o

5. end if

6: L « list of maximal isotropic k& C &[] with kN B/ [(eN (1)) £ ()
7. for Kk € £ do

8:  Compute N* (o /k) = e — max{e: B((A/r)[¢]) = 0}

9:  if NT(o//K,e) < NT (<€) then

10: o < o/ /k and go to Step 3

11:  end if

12: end for

5.9.3.4. Almost mazximal order with (¢, )-isogenies. For each prime ¢, use the “going up”
algorithm (Algorithm 5.1), until O" (&) = Op+. Let £ be any prime and let [ C O+
be a prime ideal above £. Let 0 | = O+ [ be the completion at [ of Of+. Consider the
suborder o ([m + 7] of the maximal local (at [) order Ok ®0,., 041 Now write

04 u[m + 7] =04 +704, and

OK ®0K+ 041 =04 + /y/wflo-‘r,[v

for some endomorphism . Here, w is a uniformiser for the local order o4 and f{ > 0
is some integer. To define a similar obstruction to NT (&7, ¢), but at [, let

Ni() = fi —max{d: y(Z[°]) = 0}.
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To compute these obstructions, we compute v on the [-power torsion of /. The idea is
similar to Algorithm 5.1, except that in the split case, one must test the obstructions
Ni(< , €) for both prime ideals [ C O+ above £ at the same time. We now show that one
can reach the maximal possible “reachable” (in the sense of Theorem 5.67) local order
at ¢ starting from </ and using only (¢, ¢)-isogenies. When ¢ is either inert or ramified
in KT, there is only one obstruction N;(«), and one can ensure that it decreases at
each step via the obvious modification of Algorithm 5.1.

Suppose now that (Oy+ = [1ly is split. Let § = [{'[;? be the conductor of &/ and
suppose, without loss of generality, that i1 > i5. To first ensure that one can reach
an abelian surface o7 for which 0 < ¢; — iy < 1, we relate the conductor § to the two
obstructions at [; and [o.

Lemma 5.69. Let &7 be an abelian surface with maximal local real endomorphism ring
at £ and let o(&/) = o+ + fox where | is the conductor. Then

oy (f) = N () and  vy(f) = Ny (o).
Proof. The proof is the same as the one of Lemma 5.68. U

Using the lemma, and assuming Ny, (27) — Ny, (/) > 1, one repeatedly looks for an
(¢, 0)-isogeny at each step that will decrease Ny, (/) by 1 and increase N, (<) by 1.
Such an isogeny exists by Proposition 5.64(iii). One repeats this process until

0 < Ny, () — Ny () < 1.

If at this stage Ny, (/) > 0, this means that ¢ | f and hence, by Proposition 5.64(i), there
exists a unique (¢, £)-isogeny decreasing both obstructions. One searches for that (¢, ¢)-
isogeny by testing whether the two obstructions decrease simultaneously, and repeats
until Ny, (<) = 0.

If N, (&) = 0, then the maximal local order at ¢ has been reached. If Nj (&) =1
then Proposition 5.64(iii) implies that, if [ is not inert in K, then there exists an (¢, ¢)-
isogeny that decreases Ny, (27) to 0 and keeps Ny, (&) at zero.

5.9.3.5. Final step via a cyclic isogeny. In the exceptional cases of Theorem 5.67, it may
happen that one needs to do an extra step via a cyclic isogeny to reach the maximal local
endomorphism ring at £. Whenever this cyclic [-isogeny is computable via the DJRV
algorithm, one can always reach maximal local endomorphism ring at £. But [-isogenies
are computable if and only if [ is trivial in the narrow class group of K. We thus
distinguish the following two cases:

(1) If lisogenies are computable by the DJRV algorithm then one can always reach
maximal local endomorphism ring at /.

(2) If l-isogenies are not computable by the DJRV algorithm, one can only use
(¢, ¢)-isogenies, so Theorem 5.67 tells us what the largest order that we can
reach is.
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Finding short generators of principal ideals

ABSTRACT. This chapter and the next are based on an ongoing project with Ronald
Cramer and Léo Ducas, which is essentially an extension of our collaboration presented
at EUROCRYPT 2017 and published as

R. Cramer, L. Ducas, and B. Wesolowski, Short Stickelberger class relations
and application to Ideal-SVP, Advances in Cryptology — EUROCRYPT
2017 (J. Coron and J. B. Nielsen, eds.), Lecture Notes in Computer Science,
vol. 10210, Springer, 2017, pp. 324-348.

[CDW17]

The first part of this project, presented in this chapter, is mostly concerned with
extending the results of [CDPR16], notably by providing a full proof of the numerical
stability of their method to find short generators of principal ideals in cyclotomic fields,
and by extending the results to cyclotomic fields of arbitrary conductor (rather than
prime powers). The core of [CDW17] is the object of Chapter 7, yet relevant pieces of
that article are already introduced in the present chapter.

Fix an integer m > 2 and a primitive m-th root of unity ¢, € C. Let K = Q((,,) be the
cyclotomic field of conductor m. By the cyclotomic ring of conductor m, we shall mean
Ok = Z[(n], the ring of integers of K. The trace Tr : K — Q induces an inner product
on K as (a,b) = Tr(ab™), where 7 is complex conjugation. The field K is then a Her-
mitian vector space of dimension ¢(m) (where ¢ is Euler’s totient function), and ideals
in O are Euclidean lattices, which are referred to as cyclotomic ideal lattices. This
chapter and the next explore the following question: what is the shortest vector that
we can find in such a lattice, in polynomial time, given the help of a quantum computer?

The problem of finding short vectors of a Euclidean lattice (the shortest vector
problem, SVP, or its approximated version, approx-SVP) is a central hard problem in
complexity theory. It has become the theoretical foundation for many cryptographic
constructions thanks to the average-case to worst-case reductions of Ajtai [Ajt99] and
Regev [Reg09]: the resulting cryptosystems are secure as long as there exists a lattice
where finding short vectors is hard. Instantiations of these problems over ideal lat-
tices have attracted particular attention, as they allow very efficient implementations,
and much smaller keys than generic lattices. The Ring-SIS [Mic07, LM06, PR06] and
Ring-LWE [SSTX09, LPR13] problems were introduced, and shown to be at least as
hard as worst-case instances of Ideal-SVP (the specialisation of approx-SVP to ideal lat-
tices). Both problems Ring-SIS and Ring-LWE have shown very versatile problems for
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building efficient cryptographic schemes. Typically, Ring-SIS, Ring-LWE and Ideal-SVP
are instantiated over cyclotomic rings — a choice which further ensures the hardness
of the decisional version of Ring-LWE under the same worst-case Ideal-SVP hardness
assumption [LPR13].

For some time, it seemed plausible that the ideal versions of lattice problems should
be just as hard to solve as the unstructured ones: only some (almost) linear-time ad-
vantages were known. This was challenged by a series of works, initiated by Campbell
et al. [CGS14], and followed by [BS16] and [CDPR16]. They show that in a cyclotomic
ring of prime-power conductor, given a principal ideal that is guaranteed to have a “very
short” generator, one can retrieve such a “very short” generator in quantum polynomial
time. As a consequence, some cryptographic schemes were broken, but it had a very
limited impact on the more general Ideal-SVP since ideals with a “very short” generator
are rare. A step towards the general case is already taken in [CDPR16]: they show that,
still in a cyclotomic ring of prime-power conductor, one can find a short generator of any
given principal ideal in quantum polynomial time. While not “very short”, this genera-
tor does provide an unexpectedly good approximation of the shortest vector of the ideal.

In this chapter and the next, we are interested in the general case of Ideal-SVP,
for arbitrary ideal lattices in any cyclotomic ring. Studying the geometry of units and
ideals of cyclotomic rings, we devise a quantum algorithm that given an ideal lattice of
the cyclotomic ring of conductor m, finds an approximation of the shortest vector by
a factor exp(O(y/m)). Under some plausible (and carefully justified) number-theoretic
assumptions, the algorithm runs in polynomial time. This is the main result of this part
of the manuscript, formalised as Theorem 7.10. In contrast, the best known polynomial
time generic lattice algorithms can only reach an approximation factor exp(O(m)). This
unexpected hardness gap between approx-SVP in generic lattices and in cyclotomic ideal
lattices is illustrated in Figure 6.1.

To the best of our knowledge, this result does not immediately lead to an attack on
any proposed scheme based on Ring-LWE, for two reasons. First, the approximation
factor v = exp(O(y/m)) in the worst-case is asymptotically too large to affect any actual
Ring-LWE based schemes even for advanced cryptosystems such as the state of the
art fully homomorphic encryption schemes (see [BV11, DM15]). Second, Ring-LWE is
known to be at least as hard as Ideal-SVP but not known to be equivalent.

Despite those two serious obstacles, it seems a reasonable precaution to consider
weaker structured lattice assumptions, such as Module-LWE [LS15] (i.e., an “unusually-
Short Vector Problem” in a module of larger rank over a smaller ring), which provides

an intermediate problem between Ring-LWE and general LWE.

Approx-SVP for principal ideals. Our method is divided into two main steps. First, in
this chapter, we show how to find a short vector in the case where the ideal is principal;
then, in the next chapter, we show how to reduce the general case to the principal case.

The principal case is dealt with via a study of the geometry of cyclotomic units. The
methods involved were introduced in [CDPR16], and we extend their results by providing
a full analysis of the numerical stability, and generalising the methods to cyclotomic fields
of arbitrary conductor. Let a be a principal ideal in O . The idea is to find a short
generator of a (rather than just a short element). First, the algorithms of [BS16] allow
to find an arbitrary generator g of a in quantum polynomial time. Then, gOj is the
set of all generators of a. We are looking for a short element of gOj. The logarithmic
embedding (see Definition 6.10) allows to transform this into a lattice problem: the
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FIGURE 6.1. Best known (quantum) time-approximation factor trade-
offs to solve approx-SVP in arbitrary lattices (on the left) and in cyclo-
tomic ideal lattices (on the right), in the worst case. The integer n is
the dimension of the lattice; for a cyclotomic field of conductor m, this
dimension is n = ¢(m). The approximation factors upon which the se-
curity of cryptographic schemes relies are typically between polynomial
poly(n) and quasi-polynomial exp(polylog(n)) (represented as the grey
area).

image Log(Oj) is a lattice of dimension ¢(m) — 1, and the logarithmic embedding
of gOj; is the translation

Log(g) + Log(Oj)

of this lattice. We exhibit a full-rank set of short elements in Log(O} ), which can be used
to find a short vector in Log(g) + Log(OJ ), giving rise to a short element of gOj, i.e., a
short generator. We show in Theorem 6.18 that this method allows to find in quantum
polynomial time an approximation of the shortest vector of a for the subexponential

approximation factor exp(O(y/m)).

6.1. Computational problems in lattices

Recall that a Euclidean lattice is a discrete subgroup of the vector space R", with the
canonical Euclidean norm denoted || - ||. The length of the shortest non-zero vector of a
lattice A is called the minimal distance, and denoted A;(A). The main problem we are
trying to solve is the following.

Definition 6.1 (approx-SVP). The short vector problem with approximation factor «
(or a-SVP) is the following: given a basis of a lattice A C R", find a vector v € A\ {0}
such that ||v|| < aAi(A).

This problem is closely related to the close vector problem.
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Definition 6.2 (approx-CVP). The close vector problem up to distance 6 (or 6-CVP)
is the following: given a basis of a lattice A C R"™ and a target ¢ € R", find a vector
v € A such that |jv —¢t|| < 6.

Given a short basis of the lattice A (i.e., a basis consisting of short vectors), one can
find good solutions of the close vector problem, as exposed in the rest of this section.
However, if only a “bad” basis is known (i.e., with long vectors), then both above prob-
lems are believed to be hard. This gap between what is feasible with a good or a bad
basis is at the heart of lattice-based public key cryptography: a bad basis can serve as a
public key (and enables a few simple tasks, like generating random lattice points), while
a good basis of the same lattice can serve as secret key (and allows to solve otherwise
difficult problems, like finding lattice points close to a given target).

In the rest of this section, we present algorithms to solve approx-CVP given a short
basis (which will prove very useful in the design of algorithms to solve approx-SVP in
ideal lattices). If B = [by,...,b;] € R"** is a matrix composed of linearly independent
column vectors b; € R", we denote by B = [51,...,5;3} e R™* its Gram-Schmidt

orthogonalisation. Moreover, we denote by P(B) the centered parallelepiped spanned
by B, defined as

P(B) = B-[1/2,1/2)F = {inbi wi € [1)2, 1/2)} .

If B is the basis of a full-rank lattice A € R, both P(B) and P(B) are fundamental
domains for A on R". These fundamental domains admit polynomial-time reduction

algorithms. For the latter fundamental domain P(B), this algorithm is referred to as
size-reduction or as the nearest-plane algorithm [LLL82, Bab86].

Lemma 6.3. There is a classical deterministic polynomial time algorithm NP(B,t),
that given the basis B € Q"*F of a lattice A C R", and a target t € A ® Q, outputs a
pair (v,d) where v € Z¥, d € P(B) and t = Bv + d.

Given a short basis B of a lattice A, the above algorithm can be used to find a
lattice point v close to any target ¢t. In fact, and this will prove very convenient, it is
even sufficient to know a set of short vectors of A that span A ® R.

Corollary 6.4. There is a classical deterministic polynomial time algorithm CV(W,t),
that given a set W of k wvectors of a lattice A C Q™ that spans A ® Q, and a target
t e A® Q, outputs a vector v € Z* such that both

(6.1) |W-v—t|| <1/2-y/n-max |w|, and,
weW
(6.2) W v —t|s <12 -n-max||w].
weW
Proof. First, we construct a set of linearly independent vectors C' C W, which can be

done in deterministic polynomial time in a greedy manner. The set C' generates a full-
rank sub-lattice of A, in particular setting (v/,d) = NP(C,t) it holds that Cv' —t =d €

P(C), and by Euclidean additivity
d* < Ya- 32, @l
< 4 - max;||||?

<1la-n- maxweWHwHQ.
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It remains to pad the vectors v’ to v with appropriately placed zeros to conclude the
proof of (6.1). The proof of (6.2) is simply derived from (6.1) by Cauchy-Schwartz
inequality. O

We also require an algorithm to find a close vector with respect to the f.-norm,
yet in the worst-case the algorithm may not provide a close enough vector. This can be
improved by resorting to a probabilistic approach, thanks to the following proposition.

Proposition 6.5. Ifé e R™* has orthogonal columns, and if x is uniformly distributed
over P(B), then

|#lloo < 7 - max; [bi]

holds except with probability at most 2n - exp(—272).

Proof. First, let us write (E,O) = @D where D is a diagonal matrix with coefficients
(I61], - -, [bxl, 0, ..., 0) and Q is an orthogonal matrix (i.e., QQ"' = Q'Q = I).

We write x = Dy where y is uniform in [-1/2,1/2). In particular, for each j we
have z; = >, Q;:D;;y;. Hoeffding’s bound states that the probability that |z;| > s
is less than 2exp(—2s%/Y(Q;:Di;)?). Note that > .(Q;:D;;)?* < max; | b;||2. Taking
s = 7 - max; ||b;]|, one concludes by the union bound over all j’s. O

Lemma 6.6. There is a classical randomized polynomial time algorithm CV (W, t) that
given a set W of k vectors of a lattice A C R™ that spans A® Q, and a targett € A®Q,
outputs a vector v € ZF such that

(6.3) IW v —t]eo < +/2-log(8n) - max ||w]|
weW
with probability at least /2.

Proof. First, construct a set of linearly independent vectors C' C W, and consider the
lattice A’ generated by C. Sample a uniform p € P(C), compute (v,d) = NP(C,t + p).
Note that |[W - v —t]loc < |[W v — (t 4+ D))||oc + |[P]|sc- Because p is uniform over a

fundamental domain of A’, it is the case that ¢ +p mod A’ is uniform, therefore (W - v —

(t + p)) is uniform over P(C).

Apply Proposition 6.5 to both p (respectively W-v—(t+p)) with 7 = /1/2 - log(8n):
Iplloo (respectively ||W - v — (t + p)|loo) is less than \/1/2 - log(8n) - max,ew ||w]| except
with probability at most 1/4. A union bound allows to conclude. O

6.2. Computing in number fields and their class groups

To find short vectors in ideal lattices, we need to perform computations in a number
field K, in its ring of integers O, and in its class group Clg.

6.2.1. Representation of elements of Op. The standard representation of an ele-
ment o € Ok is the vector @ = (ap,...,an—1) in the standard power Z-basis of O,
i.e., the sequence of coefficients of the polynomial a = >~ a; X* mod ®,,(X) where ®,,
denotes the m-th cyclotomic polynomial. A fractional element o € K is uniquely repre-
sented as % -a' where ¢ is a positive integer coprime to the greatest common divisor of
the coefficients of o'.

Often, algorithms for Ok have to manipulate very large elements, so large that a
standard representation would have an exponential length. It is the case for instance
for the quantum polynomial time algorithms of [BS16]. This issue is resolved by using a
compact representation: a compact representation of an element o € K is a sequence of
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elements in ~1,...,7 € Ok in the standard representation and integers k1, ..., k, such
that a = Hle 'ylkl

If it is guaranteed that o € K is short, one can efficiently recover a standard represen-
tation from a compact one. In [CDPR16], this is dealt with by resorting to floating-point
approximations, yet Biasse [Bial8] suggested to instead perform fast modular exponen-
tiation.

Lemma 6.7 (Formalised from [Bial8]). Given elements vi,...,v € K in standard
representation and integers ki, ..., ke,q, B € Z, assuming that o = Hle 'yfi satisfies
qa € Ok, and the standard representation of « has coefficients with absolute value at
most B, one can compute a in standard representation in polynomial time in the size of
the input.

Proof. Choose ) > 2¢B, and compute ga = ¢ Hle 'yf” mod @ using fast modular expo-
nentiation. Recover ga as a representative of go mod () with coefficients in the interval

[-Q/2,Q/2]. O

6.2.2. Quantum algorithms for class groups. Classically, problems related to class
group computations remain difficult, and the best known classical algorithms for class
group computations run in sub-exponential time (for example, see [BF14, BEF*17]).
Yet, building on the recent advances on quantum algorithms for the hidden subgroup
problem in large dimensions [EHKS14], Biasse and Song [BS16] introduced a quantum
algorithm to perform S-unit group computations. It allows to compute class groups,
and to solve the principal ideal problem (PIP) in quantum polynomial time.

Theorem 6.8 ([BS16, Theorem 1.3]). There is a quantum algorithm for deciding if an
ideal a C O of an order O in a number field K is principal, and for computing o € O in
compact representation such that a = («), in polynomial time in the parameters [K : Q],
log(N(a)) and log(A), where A is the absolute value of the discriminant of O.

The Biasse-Song [BS16] algorithm for S-unit group computation also allows to solve
the class group discrete logarithm problem': given a basis B of ideals generating a
subgroup of the class group Clgx containing the class of a, express the class of a as a
product of ideals in 5.

Proposition 6.9 ([BS16]). Let B be a set of prime ideals generating a subgroup H
of Clg. There exists a quantum algorithm ClDLsg which, when given as input any
ideal a in O such that [a] € H, outputs a vector y € Z® such that [[p% ~ a, and runs
in polynomial time in n = deg(K'), maxycyp log(Np), log(Na), |B| and log(Ak), where
Ag is the absolute value of the discriminant of K.

Proof. Given Theorem 1.1 of [BS16] the proof of this corollary is standard, and recog-
nisable as the linear algebra step of index calculus methods.
The prime factorization a = q{*...q;* can be obtained in polynomial time in n,

log(A ) and log(Na), by Shor’s algorithm [Sho97, EH10]. Let € = BU{q1,...,qx}, and
one can assume without loss of generality that this union is disjoint. Let r = nq+mno—1,

n fact, Proposition 6.9 is a corollary of [BS16, Theorem 1.1]. Even though it is not stated explicitly
in that paper, it must be attributed to that paper nevertheless. Indeed, the implication is straightforward
and its authors have already sketched it in public talks. Our purpose here is merely to include technical
details for completeness.
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where ni is the number of real embeddings of K, and nsy is the number of pairs of
complex embeddings. Consider the homomorphism

v Z® x ZF — Clg

k
((ep)pess, (fir- o fu)) — [ ] p| - [qu] :
=1

peB

As described in [BS16, Section 4], solving the €-unit problem provides a generating
set of size ¢ = r + |B| + k for the kernel L of ¢. From [BS16, Theorem 1.1] such
a generating set {v;}§_; can be found by a quantum algorithm in time polynomial
in n, maxpce{log(Np)}, log(dk) and |€| = O(|B| + log(Na)). For each i, write v; =
((wip)pem, (Vi1,--.,vik)). Since [a] € H and B generates H, the system of equations
{Z§:1 zjvj; = a;}¥_| has a solution z € Z¢ which can be computed in polynomial time.
We obtain

c k
0= ¢ (Z xi”i) — H pZ] TjWip | . [H qZZJ xjvj’i] — H pZ] TjWip | . [a]
=1 peB i=1 peB

Then, the output of ClDLy is y = <— Zj l“jwj,p> % D
pe

6.3. Preliminaries on cyclotomic ideal lattices

An integer m > 2 is fixed for this chapter and the next, as well as a primitive m-
th root of unity (,, € C. The cyclotomic field of conductor m is K = Q((y,), and the
cyclotomic ring of conductor m is O = Z[(,,], the ring of integers of K. The integer Ay
is the absolute value of the discriminant of K. The field KT = Q((y + ¢,!) is the
maximal real subfield of K. As usual, the algebraic norm of an ideal b is denoted N (h).
We denote by 7 € Gal(K/Q) the complex conjugation of K.

Class groups. Let Clg be the class group of Ok. The class of an ideal h is denoted [b],
and if two ideals h and b’ are in the same class, we write h ~ b’. Let Cli+ be the class
group of K. The relative norm map Ny /k+ ¢ Clg — Clg+ on ideal classes (which
sends the class of b to the class of h1*7) is a surjection, and its kernel is the relative
class group Cly.

The Galois group and its group ring. Let G denote the Galois group of the exten-
sion K/Q. It is canonically isomorphic to (Z/mZ)* via the isomorphism a +— oy,
where o, is the automorphism sending ¢, to (% . Naturally, we have 7 = o0_;. Given an
automorphism o € G, and an element a € K or an ideal ) of O, we denote the action
of o by a? or h?. This notation extends to the action of the group ring Z[G]: for any
a=> cq0s0 € ZL[G], we write

oeqG
Ideals as lattices. The field K is a Hermitian vector space over Q for the inner product
(a,b) = Tr(ab™). The corresponding Euclidean norm is denoted ||a||, and coincides with
the fo-norm induced by the Minkowski embedding
K —C?™ g (a%)yeq.

We also denote the ¢1-norm and fs-norm by ||a|l; and ||a|lec. The volume of an ideal
h as a lattice relates to its algebraic norm by Vol(h) = /AxN(h). The length A\;(h) of
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the shortest non-zero vector of h is determined by its algebraic norm up to a polynomial
factor:

(6.4) !

poly(n)
The right inequality is an application of Minkowsky’s second theorem, whereas the left

one follows from the fact that the ideal vOg generated by the shortest vector v of b is
a multiple (a sub-ideal) of b, and that Vol(vOg) < |lv]|™.

N(B)Y™ < Ai(h) < poly(n)N(h)V/".

6.4. The geometry of cyclotomic units

In this section and the next, we study the geometry of cyclotomic units, and as an
application, we provide a quantum algorithm for approx-SVP in principal ideals, Algo-
rithm 6.2. Suppose g is a generator of some principal ideal a. Then, gOj is the set
of all generators of a. Generators of short Fuclidian norm can be studied and found
by investigating the geometry of the unit group O, and more specifically of the lat-
tice Log(O}) obtained via the logarithmic embedding. The main results exploit the
subgroup C' C Oy of cyclotomic units, whose corresponding lattice Log(C) admits an
efficiently computable set of short generators.

6.4.1. The logarithmic embedding and cyclotomic units. Recall that G denotes
the Galois group Gal(K/Q), and 7 € G is complex conjugation.

Definition 6.10 (Logarithmic embedding). The logarithmic embedding of K is
Log: K* — R[G]/(1 —T)
ar— > log(la’])-o".
celG

It is easy to check that this is a morphism of Z[G]-modules. The ring R[G]/(1 —7)
also has a geometric structure: given any set B C G of representatives of G/(7), the
projection of B to R[G]/(1 — 7) forms a basis (which does not actually depend on the
choice of B) and we consider the norms on R[G]/(1 — 7) coming from the induced
isomorphism with R#(™)/2,

The kernel of the logarithmic embedding restricted to O is the subgroup generated
by —1 and (,,. Dirichlet’s unit theorem implies that Log(Oj) is a full-rank lattice in
the linear subspace of R[G]/(1 — 7) orthogonal to s(G) = > ., 0.

Definition 6.11 (Cyclotomic units). Let V' be the multiplicative group generated by
{+¢nyu{l =g, |j=1,...,m—1}.

The group of cyclotomic units of K is the intersection C =V N Of.

Theorem 6.12. The lattice Log(C') has full rank in Log(Oj ).

Proof. From [Sin78], the group C* = C' N KT has finite index in the group of real
units £t = O N K*. Let W be the multiplicative group generated by —1 and (.
From [Was12, Theorem 4.12], the group WE™ has index 1 or 2 in Oj. Since W is the
kernel of Log : O — R[G]/(1 —7), we get

[Log(Of) : Log(C™)] = [Log(O) : Log(E™)][Log(E™) : Log(C™)]
= [0x : WEH[ET : CT],
which is finite. Therefore [Log(Oj ) : Log(C)] is also finite. O
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6.4.2. Short generating vectors of the cyclotomic units. We are interested in
finding short generators of the lattice Log(C). Let m = p{* ... p.* be the prime factor-

ization of m, and for any index i let m; = mp; **. For 0 < j < m, let
1-¢, if for all indices i, we have m; 1 7,
U= 1 Gh
1—¢nt
Theorem 6.13 ([Kuc92, Theorem 4.2]). The lattice Log(C) is generated by the set of
vectors {Log(v;) | 0 < j < m}.

otherwise, for the unique i such that m; | j.

Lemma 6.14. For any integer j not divisible by m, we have || Log(1 — ()| = O(v/m).
Proof. Write j = ab, where a divides m and (b, m/a) = 1.
, 2 ; 2
ILogt =GP = > ogh-¢i) =14 > (logh ¢yl
i€(Z/mZ)% J{+1} i€(Z/mZ)* J{£1}

The natural group homomorphism (Z/mZ)* — (Z/(m/a)Z)* is a surjection, so its
kernel has cardinality ¢(m)/p(m/a), and we obtain

. m . 2
Lozl - GIF =450 % (log 1= Gl)
7 ie(Z/(m]a)2)% /{£1}
_ 4 em) (log |2 sin(mia/m)]|)>
P D) oy 1y
[m/2a]
< 8a Z (log(2 sin(mia/m)))?
=1
|m/2a]

(6.5) = 8a Z f(ia/m),
=1

where f : [0,1/2] — R is defined as f(z) = (log(2sin(mz)))?. Since f(z) < log2
for 1/6 < x < 1/2, the terms in Equation (6.5) coming from ¢ > [m/6a] sum to at
most O(m). It remains to estimate the contribution of the remaining terms. Since
sin(rzx) > 2z for 0 < 2 < 1/2, we have

[m/6a] [m/6al] 1/6
8a Z flia/m) < 8a Z (log(4ia/m))? < 8am/ (log(4z))%dz = O(m),
i=1 i=1 @ Jo
where the last equality follows from [ (logz)?*dz = y((logy)? — 2log(y) + 2). O

6.5. Short vectors in principal ideals

The results from Section 6.4 on the geometry of cyclotomic units can be exploited
to find short vectors in principal ideals.

6.5.1. Short generators in principal ideals.

Theorem 6.15. There is a randomized algorithm SHORTGENERATOR (Algorithm 6.1)
that for any g € Ok (in compact representation), finds an element h € Ok (in compact
representation) such that gOx = hOk and

|h|| = exp (O (W)) - N(g)Yetm),



114 6. FINDING SHORT GENERATORS OF PRINCIPAL IDEALS

and Tuns in polynomial time in the size of the input.

Algorithm 6.1 SHORTGENERATOR(g): finds a short generator of gO-.

Require: An element g € Ok in compact representation (7;, k;)f_;.
Ensure: The compact representation of a short element generating gO .
W = (w1, ..., wn-1) where w; = Log(v;); s(G) = > cq0 € R[G]/(1 —7);
t' = iy ki Log(i);
t" = 1o(m) - log(N(g)) - s(G);
t+t' —t" € Log(Of) ® R;
repeat
x < CV(W,t); {randomized, see Lemma 6.6}
until |[W -z — t]ec < /2 log(4dp(m)) - max,ew ||w||

return concatenation of ('yi,ki)le and (vi,—xi);i_ll.

Proof. A technical hurdle for this algorithm is the need to resort to approximate compu-
tations. We sketch here the proof ignoring this issue, by assuming that all operations on
R can be performed in polynomial time. The full proof accounting for precision issues
is deferred to Section 6.5.2.

Recall that ¢ is given in compact representation (%’,ki)le, where g = Hle fyzkl
The element ¢ is the orthogonal projection of ¢ on the subspace Log(Ox) ® R. Let
W = (wi,...,wn—1) where w; = Log(v;). From Theorem 6.13, W is a set of gener-
ators of Log(C'), and by Lemma 6.14, we have max,ew ||[w] = O(y/m). Calls to the
randomized algorithm CV (W, ) are repeated until the output x satisfies

IW -2 — t]loe < /2 - log{dp(m)) - max [uw].
weW

According to Lemma 6.6, this procedure terminates in average polynomial time. Let h
be the element with compact representation (i, k:)f_; ~ (vi, —2;)7,' (where ~ denotes
the concatenation of sequences). We have
[h]loc < exp([| Log(g) =W - zloc)
<exp(|t+t" =W z|x)
< exp([[t"[los) - exp(|lt = W - z|)

< cxp (¥t 08N (9)) (G ) - xp V2 Tog(BaCm) - mas )
< N(g)"/#(™ . exp (0 (W)) :

We conclude from the inequality ||A]| < v/ (m)||h||so- O

6.5.2. Numerical stability. In this section, we prove that we can round all the log-
arithms Log(v;) and Log(v;) to Q with polynomially many bits of precision and still
obtain a small generator h. Set p = logy(max¥_ k;[[|7ill]) and note that p is polyno-
mial in the size of the input. Let n = ¢(m)/2 and suppose without loss of generality
that the first n — 1 vectors wy,...,w,_1 are linearly independent.
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The algorithm. Fix a set of n representatives of the cosets G/(7); they form a basis for
Z[G]/(1 — 7). In this basis, consider the matrices

L = (Log(7i))i=1, and
W = (wi)i5 = (Log(vi))i-
Let ¢ = 2*(p+m2), and compute an approximation L with coefficients in €Z such that

|L — L|joo < &. Now, we want an approximation W of W with coefficients in eZ such
that ||[W — W||» < e and each vector w; still lies in Log(Ox) ® R. To do so, find some

approximation W such that |[W — V[N/Hoo < ¢e/2, and let

1 n
W; = W; — ——— @L‘SG € Log (@) ® R,

which satisfies |W — WHOO <e/2.

We proceed with the same computation as in the proof of Theorem 6.15, using these
approximate values. Compute ' =1T- k, and project 7 orthogonally to s(G), that is
decompose ¥ =7+ such that f € Log(O}) @ R and T € s(G) - R. Repeatedly call the
randomized algorithm Z < CV (W, %) until the output T satisfies

(6.6) [W -7 = T < /2 Tog(Sn) - max @]
we

According to Lemma 6.6, this procedure terminates in average polynomial time. We
output the compact representation (v;, ki)fZIA (vi, —Ti);‘:_f of h.

Analysis. We now prove that the output A is short. We have
[Plloo < exp([|L -k =W - Z([)
< exp([[t' =W -Zloo) - exp([(L = L) - klloo + [|(W = W) - F|x)

From Lemma 6.14, we have maxy,cw |[w| < O(v/m) + /ne < O(y/m), and together
with (6.6) we can bound the first factor as

exp([[f' =W Z|o) < exp([[”]s0) - exp(O(y/mlogm)).

Secondly, since ¢, are respectively the projection of ' = Lk and ¢’ = Lk, it holds
'|lso < nllt" — 7 |oo. So we get that ||h||o is at most

that ||t/ — 1
N(g)"/#t™) - exp(O(y/mlogm)) - exp((n + DII(L = L) - kl|oo + [(W = W) - Z]|oc)-
Next, note that we have |[(L — L) - kfloc < 1+ [|]|oo - € < 27 F0(m)  50:

(6.7)  [[Alloe < N(g)"/# - exp(O(y/mlogm)) - exp(2~™ M) 4 [|(W — W) - T|oc).

It remains to bound ||Z|. For any matrix A, write A" for its pseudoinverse. We have
that

_ 1T - T (1T = T Z
(6.8) [zl < Wl -z < (W (1W -2 =2+ 12]]) -
Lemma 6.16. We have |[W|| < 5. ||[W||#(m)=3,

Proof. The elements wy, ..., w,_1 generate a sublattice of Log((’)lx(), SO

det(W'W) > det(Log(O})) = Riv/n,



116 6. FINDING SHORT GENERATORS OF PRINCIPAL IDEALS

where Ry denotes the regulator of the field K. Writing A\ < --- < \,,_1 the eigenvalues
of W'W, we have

ST SR § D VI 14
jovtwy = = Lo A AW
)\1 det(W W) RK\/ﬁ
From [Fri89, Theorem B], we have Rx > lem(2,m)/10 (except for m = 10, for which

we have R > 0.96). Since W has full column rank, W+ = (W!W)=1W*. We conclude
that

‘2n—3

5|[W
) < oty < VI g e,
Jn

Lemma 6.17. We have |[W | < 4||W+].

Proof. Let E = W —W. First observe that W' = (I+EW)+*W+. Let A= I+EWT.
Since ||I — A*A|| < 1/2, the generalisation of the Neumann series for the Moore-Penrose

inverse gives
[e.9]

AT =3 (T - APA) A
=0
Therefore,
T+
W < JATIIW < 2| AW < 4w
]

It follows from the two above lemmata that |[W*| < 290" Since we have that
W -Z —#|| < 2°0™) and ||| < 2P0 we deduce from (6.8) that [|Z|| < 2PTO0™) and

therefore [[(W — W) - T||o < 9-m*+0(m) - Applying this inequality to (6.7), we conclude
that

1h]lso < N (g)/#™) - exp(O(y/mlogm)) - exp(27™+0m)
< N(g)V/#™ . exp(O(y/mlogm)).

6.5.3. The approximate short vector problem in principal ideals.

Theorem 6.18 (Approx-SVP for cyclotomic, principal ideals). There is a quantum
algorithm PRINCIPALIDEALSVP (Algorithm 6.2) that, when given a principal ideal a in
the cyclotomic ring of conductor m, finds a generator of Fuclidean norm

exp(O (v/mlogm)) - N(a) /),

in expected polynomial time in m and log N(a). This generator approximates SVP in
the lattice a with an approximation factor exp( (s/mlog m))

Algorithm 6.2 PRINCIPALIDEALSVP(a): solves Approx-SVP in a principal ideal a.

Require: A principal ideal a of O.

Ensure: The compact representation of a short generator of a.
1: g < PIP(a); {PIP algorithm [BS16, Theorem 1.3]}
2: h < SHORTGENERATOR(g); {Algorithm 6.1}
3: return h.
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Proof. First apply the quantum algorithm of [BS16, Theorem 1.3] on a. Since a is
principal, it returns an element g € Ok in compact representation such that a = gOg,
in polynomial time in log(/N(a)) and m. From Theorem 6.15, Algorithm 6.1 returns
another generator h of a such that

|Ih|| = exp (O <\/m10gm)> - N (a)t/em),
also in polynomial time. It follows from (6.4) that h approximates SVP in a with an
approximation factor exp(O (\/mlog m)) O
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Mildly short vectors in cyclotomic ideal lattices

ABSTRACT. This chapter is primarily based on a joint work with Ronald Cramer and
Léo Ducas, presented at EUROCRYPT 2017 and published as

R. Cramer, L. Ducas, and B. Wesolowski, Short Stickelberger class relations
and application to Ideal-SVP, Advances in Cryptology — EUROCRYPT
2017 (J. Coron and J. B. Nielsen, eds.), Lecture Notes in Computer Science,
vol. 10210, Springer, 2017, pp. 324-348.

[CDW17]

This chapter actually extends this work: it is, as the previous chapter, part of an
ongoing collaboration with Ronald Cramer and Léo Ducas. Notably, this second part of
the project extends the results of [CDW17] to cyclotomic fields of arbitrary conductor.

In the previous chapter, we have seen how to find a (mildly) short vector in a principal
ideal of a cyclotomic ring in quantum polynomial time. In this chapter, we show how to
deal with non-principal ideals, by reducing to the principal case. We keep the notation
introduced in Section 6.3.

The close principal multiple problem. To reduce the problem from arbitrary ideals to
principal ideals, we introduce the close principal multiple problem (or CPM): given an
arbitrary ideal a, find an integral ideal b such that ab is principal, and N(b) is small.
Suppose one can solve CPM with N (b) < exp(O(m!*¢)), for some constant ¢ > 0. Then,
one can apply the results from the previous chapter, Theorem 6.18, to find a generator g
of the principal ideal ab such that

lgll < N(ab)/#0 exp (O (vim) ) < N(@)!/#0" exp (O (mmxt/29)) ).

Since ¢ € ab C a, one has found an approximation of the shortest vector of a for
an approximation factor exp(O(m™*<(1/2))) " This is asymptotically as good as the
principal case when ¢ = 1/2; and better than can be guaranteed by LLL, the basis
reduction algorithm from [LLL82], for any ¢ < 1.

Using the Stickelberger ideal. We study in Section 7.1 the geometry of the Stickelberger
ideal (see Definition 7.1), and show how it can be used to solve some version of CPM.
The Stickelberger ideal is an ideal S in the group ring Z[G] that annihilates the class
group: for any ideal h in Ok and any s € S, the ideal h® is principal. Notice that the
group ring Z[G] is naturally isomorphic to Z2(M) o it can be seen as a lattice in R#(™).
The norms || - || and || - ||; denote the usual ¢, (Euclidean) and ¢; norms over R#("™).
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The ¢1-norm is particularly interesting since for any ideal h and any « € Z[G], we have
N(b) = N(p)lel.

For the moment, suppose that a is an ideal of the form p® for some o € Z[G]. Now,
suppose we can find a vector v in the sub-lattice .S that is close to « for the ¢1-norm.
This means that ||y — «|; is small, and so is N(p7~%). Choosing b = p7~%, we have
that ab is principal. Up to some technicalities (b is not necessarily integral), this solves
CPM for a.

As in the principal case, we have reduced the original problem to a lattice problem:
given a vector a € Z[G], find a close vector in the sub-lattice S. However, the lattice
S does not have full rank in Z[G], so we cannot directly solve the close vector problem
here. Instead, we work with a quotient of Z[G], and solve CPM for ideals in the relative
class group Cly (i.e., when aa” is principal). This is the object of Theorem 7.8: we show
that given an element a € Z[G], and an ideal p whose class is in the relative class group,

one can solve CPM for a = p® with N(b) < N(p)é(mHl/z) in classical polynomial time.

Approx-SVP for any cyclotomic ideal. These conditions on the above algorithm to solve
CPM seem rather restrictive, but we show in Section 7.2 that under some plausible
number-theoretic assumptions, they do not cause any trouble. This leads us to a more
general CPM algorithm for arbitrary ideals a, Theorem 7.16. It is not straightforward to
formally derive the best c-value that can be achieved by the general CPM algorithm, as it
relies on the structure of the class group Clg as a Z[G]-module. Based on computations
of the class group structure by Schoof [Sch98] and a heuristic argument, we strongly
believe it is plausible that ¢ = 1/2 is reachable at least for a dense family of conductors m,
if not all. This leads to the main result of this chapter: Approx-SVP in arbitrary ideals,
Theorem 7.10.

7.1. The geometry of the Stickelberger ideal

In this section, we study the geometry of the Stickelberger ideal, and as an application,
we provide a quantum algorithm for the close principal multiple problem in any Z[G]-
cycle of the relative class group Cl, Theorem 7.8.

For any ideals a,b of Ok and any element o € Z[G], if a ~ b, then a® ~ b®, so the
action of Z[G] on ideals induces an action of Z[G] on the class group Clg. As sketched
above, we are interested in building a lattice A of full rank in Z[G] with a good basis,
such that for any ideal b, and any A € A, the ideal b is principal (we say that A is a
lattice of class relations).

7.1.1. The Stickelberger ideal. Recall that the Galois group G is canonically iso-
morphic to (Z/mZ)* via a — o4, where 0, is the automorphism sending ¢, to ¢%,. The
fractional part of a rational z € Q is denoted {x}, and is defined as the unique rational
in the interval [0,1) such that {z} =« mod Z; equivalently, {z} =z — [z].

Definition 7.1 (The Stickelberger ideal). For any integer a € Z, let
ab
0(a) = —— ot .
W= ¥ {-Sacqa
be(Z/mZ)*

Let S’ be the Z-module generated by {f(a) | a € Z} in Q[G]. The Stickelberger ideal is
defined as S = Z[G] N S’. It is an ideal in Z[G], and we will refer to the Stickelberger
lattice when S is considered as a Z-module.
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This is the definition from [Sin78], while some references (such as [Was12]) use the
term Stickelberger ideal to refer to the smaller ideal Z[G] N #(1)Z[G]. Note that the
definitions coincide when m is a power of a prime number. The Stickelberger ideal
provides some class relations, thanks to the following theorem. A proof can be found
in [Wei74].

Theorem 7.2 (Stickelberger’s theorem). The Stickelberger ideal annihilates the ideal
class group of K. In other words, for any ideal b of Ox and any s € S, the ideal h* is
principal.

7.1.2. Short generating vectors of the Stickelberger lattice. For any integer a,
let v, = af(1) — 0(a) € Q[G].

Lemma 7.3. The set {v, | a =2,...,m} generates the Stickelberger lattice.

Proof. Let L be the lattice generated by {v, | a =2,...,m} in Q[G]. A simple calcula-
tion shows that v, € Z[G] for any integer a, so L C S. Let 7 be an arbitrary element
of S. Since #(0) = 0, and 0(a) = 0(b) for any integers a and b such that a =b mod m,
we can write y = ZZ;I x40(a) where the x,’s are integers. Now,

m—1 m—1 ab

=Yoo= ¥ {2
a=1 a=1 be(Z/mZ)*

m—1 ab .
-y (Ba{)a

m

be(Z/mZ)* \a=1
Therefore, the coefficient of o, Lin v is ZZI:_ll Tq {—%’}, and it is an integer since 7 is

in the group ring Z[G], so the sum 22211 zqa is divisible by m. Let ¢ be the integer
such that S7""' 2,a = gm. We obtain

m—1 m—1 m—1 m—1
v = Z zaf(a) = Z zqaa0(1) + Z za(0(a) —ab(1)) = quy, — Z TaVq € L,
a=1 a=1 a=1 a=2
which concludes the proof. ]

We are now ready to construct our set of short generators for S. Let w, = v, — v4—1
for a € {2,...,m}, and let

W:{wz,...,wm}.

Lemma 7.4. The set W is a set of short generators of S. More precisely,
(1) W generates the Stickelberger lattice S;
(2) For any a € {2,...,m}, Wa = D pe(z/mz)x €ab" oy b, with eqp € {0,1};
(8) For any w € W, we have ||w|| < \/p(m).

The second item essentially generalises [Sch10, Proposition 9.4] from prime conduc-
tors to arbitrary conductors.

Proof. Point 1 is a direct consequence of Lemma 7.3 and the construction of W. Point 3
follows from Point 2, so we focus on proving Point 2. Similarly to the proof of [Was12,
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Lemma 6.9], we have

ve =ab(1l) —0(a) = Z X (a{::z} _ {‘::}) o

be(Z/mZ)

b -1
= g as——r¢l|o, ",
m
be(Z/mZ)*

using the identity x{y} — {zy} = |z{y}| for any integer = and real number y, since this
difference is an integer and the term {zy} is in the range [0,1). It remains to rewrite

—1
Wy = Zbe(Z/mZ)X €a b0y, > Where

b b b
m m m
Therefore €4, € {0,1} for all indices a and b. O

7.1.3. Class relations for the relative class group. We cannot directly use the
Stickelberger ideal S C Z[G] as a lattice of class relations since it does not have full rank
in Z[G] as a Z-module (precisely, its Z-rank is ¢(m)/2 + 1 when m > 2). Indeed, if the
lattice is not full rank, a given vector does not necessarily have a short representative
modulo the lattice. To resolve this issue, we restrict our attention to the subgroup Cl.

Recall that K+ = Q((, + ¢;,,}) is the maximal real subfield of K, with class group
Clg+, and Cly is the relative class group (the kernel of the relative norm map N g+ :
Clg — Clg+). By construction, the element 14 7 € Z[G] annihilates Cl}, so the action
of Z[G] on Cl factors through the quotient ring

R =Z[G]/(1+ 7).

The ring R also has a geometric structure. Let 7 : Z[G] — R be the natural projection.
Let B C G be any set of representatives of G/(7). Then, the projection m(B) forms
a Z-basis of R. The induced isomorphism R = Z#(™)/2 paturally induces an ¢; and
fo-norm on R, and these norms do not actually depend on the choice of B.

Lemma 7.5. The projected Stickelberger lattice w(S) has full rank p(m)/2 in R.

Proof. A generalisation due to Sinnott [Sin78] of a theorem from Iwasawa states that
(1 —7)S is of full rank in (1 — 7)Z[G]. We conclude by noting that the projection of
(1 —7)Z|G] into R is itself of full rank. O

The set of elements w(W) has full rank in R. One can easily deduce from Lemma 7.4
that ||7(w)|| < 24/¢(m) for any w € W, but we can show the following slightly stronger
bound.

Lemma 7.6. For any w € W, we have ||m(w)|| < \/¢(m).

Proof. Using the notation of Lemma 7.4, it is sufficient to show that for any a €
{2,...,m} and b € (Z/mZ)*, we have €5, — €4, € {—1,1}. For a = m, we have
€ab = €q,—b = 1, s0 m(wy,) = 0. Suppose a # m. Then, since ab/m ¢ Z,

) D) e e e )]

Then, €ab — €q,—b = 1-— 26(1,71; S {—1, 1}. ]
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7.1.4. The close principal multiple problem in a Z[G]-cycle of Cl;. We now
show how to exploit the previously constructed set W of short relations to reduce class
representations. More precisely, for any large a € Z[G] we will find a short g € Z[G]
such that C? = C?, for any class C € Clyi. We rely on the following close vector
algorithm.

Theorem 7.7. There is an algorithm REDUCE (Algorithm 7.1), that given o € Z[G],
finds an element € Z|G] such that || 5|1 < 0.5'g0(m)3/2, and C® = CP for any C € Cly,

and runs in polynomial time in m and log(||«||).

Algorithm 7.1 REDUCE(«): finds a reduction of «.

Require: An element a € Z[G].
Ensure: An element 8 € Z[G] such that ||8]]1 < 0.5 ¢(m)*?, and C* = C” for any
C € Cly.

1: Let W be the generating set of S as in Lemma 7.4;

2: v < CV(m(a), m(W)); {close vector algorithm of Corollary 6.4}
3: y < mw(W) - v,

4: Write () — v = ), cp @om(0) using the basis 7(B) of R;

5 B4 D pep o0

6: return f.

Proof. Recall that m : Z[G] — R is the canonical projection, W is the generating
set of S as in Lemma 7.4, and B C G is any set of representatives of G/(r). From
Lemma 7.5, 7(W) has full rank in R. So the close vector algorithm from Corollary 6.4
finds an element v € 7(.S) such that

p(m)
2

3/2

() =7l < - max [[w(w)]| < 0.5 - p(m)

Then, the element 3 returned by Algorithm 7.1 satisfies

18] = (@) =yl < 0.5 p(m)*>.

Furthermore, for any C' € Cl, Stickelberger’s theorem implies that C7 = [Ok], and
therefore C* = CP. ([l

Theorem 7.8 (Close principal multiple algorithm for Z[G]-cycles of Cl). Let p be
an ideal such that [p] € Cl. There is an algorithm CLOSEPRINCIPALMULTIPLE™
(Algorithm 7.2) that given an element o € Z[G], finds an integral ideal b such that p*b
s principal and

N(6) = N(p)2(e0m),
and runs in polynomial time in m, log(N(p)) and log(||c]|).
Remark 7.9. If one is given the ideal a = p® € pZl¢] instead of the element «, one could
try to recover « by solving a discrete logarithm problem in the relative class group. This

is doable in quantum polynomial time (see Proposition 6.9), but we choose to have «
given in Theorem 7.8 to obtain a classical algorithm.
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Algorithm 7.2 CLOSEPRINCIPALMULTIPLE™ (p, «): solves CPM for the ideal p©.

Require: An ideal p such that [p] € Cly, and an element o € Z[G].

Ensure: An integral ideal b such that p“b is principal and N(b) = N (p)0(¢(m)3/2).
: B < REDUCE(«); {Algorithm 7.1}

2: Write B = . bs0;

3: for all 0 € G do

(b0'70) if ba’ > 07

—_

4: b+, by ) +
(b5.55) (0, —by,) otherwise;
5: end for

6: Y < D peq(TVE + b5 )0
7. return b =p7.

Proof. Consider 3, v and b as in Algorithm 7.2. From Theorem 7.7, we have the bound
18]l < 0.5 o(m)*?, and p™ ~ pP. Since [p] € Cly, we have p~1 ~ p7, so

p7 ~ pZGeG(‘rb}L+b;)a - pzaec(fbier;)a ~p,

hence p®b is principal. Since v has only positive coefficients, the ideal b is integral.
Finally, N(b) = N(p)lPl = N (p)Oem™?), 0

7.2. Finding short vectors in cyclotomic ideals

Let a be an arbitrary ideal in the cyclotomic ring Ok of conductor m. In this section,
we prove the following theorem.

Theorem 7.10 (Approx-SVP for cyclotomic ideals). Under the extended Riemann hy-
pothesis (ERH) and Assumption 7.11, there is a quantum algorithm IDEALSVP (Algo-
rithm 7.5) that, when given an ideal a in the cyclotomic ring of conductor m, finds an
element in a of Fuclidean norm

exp (O (\/ﬁ)) - N(a)Y/elm),

and runs in polynomial time in m, h™(m) and log(N(a)). This element approzimates

SVP in a with an approximation factor exp(O (y/m)).

The strategy is the following. Suppose that we have a set {pi,...,pq} of ideals of
norm poly(m) that generate the relative class group Cly as a Z[G]-module.

(1) First, we find an (integral) ideal b of small norm such that the class of ab is in
the relative class group Cly.. This is done via a random walk in the class group
in Section 7.2.1.

(2) Second, we find «v,...,aq € Z[G] such that ab ~ p* ... p5¢, and apply the
results of Section 7.1 to find ideals b; ~ p;®" such that N(b;) = exp(O(m?/?)).
This is done in Section 7.2.2.

(3) Finally, the ideal ¢ = abb; ... by is principal. Applying the results of Section 6.5
allows to find an element g € ¢ C a of norm exp(O(dy/m)). This is done in
Section 7.2.3.

The first step assumes ERH, and the next two work unconditionally. Assumption 7.11 is
a statement on the Galois-module structure of Cl;- which allows to take d = polylog(m),

and obtain the targeted approximation factor exp(O (y/m)).
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Assumption 7.11. There are integers d < polylog(m) and B < poly(m) such that
the following holds. Choose uniformly at random d prime ideals pi,...,pq among the
finitely many ideals p satisfying N(p) < B and [p] € Cl;. Then, the factor basis
B ={p? |ocecCG,i=1,...,d} generates Cl with probability at least 1/2.

This assumption is arguably new, and can be read as a strengthened version of the
results of Chapter 4 on generators of subgroups of class groups. This assumption, and
its justification, is the object of Section 7.3.

Note that for the algorithm of Theorem 7.10 to really be efficient, one would also
require A" (m) to be polynomially bounded in m. This Assumption 7.13 is discussed in
Section 7.2.1.2. Unlike the previous one, this assumption is a well-known question in
algebraic number theory, and is related to important conjectures.

7.2.1. Random walk to the relative class group. As previously, let KT denote the
maximal real subfield of K, and Clg+ the class group of K.

The core of the method to find a close principal multiple of an ideal a works within
the relative class group Cl C Clg. Therefore, as a first step, we need to “send” the
ideal a € Clg into this subgroup. More precisely, we want an integral ideal b of small
norm such that ab € Cl; the rest of the method then works with ab. Let hx = [Clg| be
the class number of K, and hj; = |Cl| its relative class number. The difficulty of this
step is directly related to the index of Cl inside Clg, which is the real class number
hi = |Clg+| of K* (indeed, the relative norm map Ny /p+ : Clg — Cly+ induces the
isomorphism Clg+ = Clg /Cly), and is expected to be very small.

7.2.1.1. The random walk algorithm. For any x > 0, consider the set S, of ideals in O
of prime norm at most z, and let S, be the multiset of its image in Clg. Let ¥, denote
the induced Cayley (multi)graph Cay(Clg,S;). From Corollary 3.20 (under ERH), for
any € > 0 there is a constant C' and a bound

B = O (((m) 1og(Ax))**) = O ((p(m)* log(so(m)))***)

such that any random walk in 5 of length at least C'log(hg)/loglog(Ak), for any
starting point, lands in the subgroup Cly with probability at least 1/(2h};).

A random walk of length ¢ = [Clog(hr)/loglog(Ak)] = O(m) is a sequence
p1,...,pe of ideals chosen independently, uniformly at random in Sp, and their prod-
uct b =[] p; has a norm bounded by

1
N(b) = [[ N(p:) < B = exp(polylog(m) - Olog hx)) = exp(O(m)).
i=1
If [a] is the starting point of the random walk in the graph, the endpoint [ab] falls in Cl};
with probability at least 1/(2h};), and therefore an ideal b such that [ab] € Cly can
be found in probabilistic polynomial time in h';(. Note that the quantum algorithm of
Biasse and Song [BS16] for PIP allows to test the membership [ab] € Cl,, simply by
testing the principality of N/ x+(ab) as an ideal of O

The procedure is summarized as Algorithm 7.3, and the efficiency is stated below.

Under ERH and Assumption 7.13, this procedure runs in polynomial time.

Lemma 7.12. Assuming ERH, the quantum algorithm WALKTOCI™ (Algorithm 7.3)
runs in expected time O(h};) - poly(m,log N(a)) and is correct.
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Algorithm 7.3 WALKTOCI (a): random walk to Cl.

Require: An ideal a in O. .
Ensure: An integral ideal b such that [ab] € Cl}; and N(b) < exp(O(m)).
1: Define the bounds ¢ and B as in Section 7.2.1.1, with £ = O(m) and B = poly(m);
2: repeat

3: fori=1to{do

4 Choose p; uniformly among the prime ideals of norm less than B;

5. end for

6: b« Hf=1 Pi

7: until Ny g+ (ab) is principal; {using the PIP algorithm of [BS16]}

8: return b.

7.2.1.2. The real class number. The time complexity of Algorithm 7.3 has a linear fac-
tor hj: (the class number of the real subfield K ). Assumption 7.13 below ensures that
this factor is not a problem. For any integer m, let h™(m) be the class number of the
maximal totally real subfield of the cyclotomic field of conductor m.

Assumption 7.13. For any integer m, it holds that h*(m) < poly(m).

The literature on h} provides strong theoretical and computational evidence that
it is indeed small enough. First, Buhler, Pomerance, Robertson [BPR04| formulate and
argue in favor of the following conjecture, based on Cohen-Lenstra heuristics.

Conjecture 7.14 (Buhler, Pomerance, Robertson [BPRO4]). For all but finitely many
pairs (£, e), where { is a prime and e is a positive integer, we have h* (£¢T1) = ht(4°).

A stronger version for the case £ = 2 was formulated by Weber.
Conjecture 7.15 (Weber’s class number problem). For any e, h*(2¢) = 1.

A direct consequence of Conjecture 7.14 is that for fixed ¢ and increasing e, the
quantity bt (£¢) is O(1), implying that Assumption 7.13 holds over the class of cyclotomic
fields of conductor a power of /.

But even for increasing primes ¢, the quantity h™*(¢) itself is also small: Schoof [Sch03]
computed all the values of h*(¢) for £ < 10,000 (correct under heuristics of type Cohen-
Lenstra, and Miller proved in [Mill5] its correctness under ERH at least for the primes
¢ < 241). According to this table, for 75.3% of the primes ¢ < 10,000 we have h*(¢) =1
(matching Schoof’s prediction of 71.3% derived from the Cohen-Lenstra heuristics). All
the non-trivial values remain very small, as b (¢) < ¢ for 99.75% of the primes.

7.2.2. Close principal multiple algorithm. Combining the random walk from the
previous section, the close principal multiple algorithm in Clj from Section 7.1.4, and
the quantum algorithms for class group computations discussed in Section 6.2.2, one can
construct an algorithm for the general close principal multiple problem in Og.

Theorem 7.16 (Close principal multiple algorithm). Under ERH and Assumption 7.11,
there is a quantum algorithm CLOSEPRINCIPALMULTIPLE (Algorithm 7.4) that given an
ideal a in the cyclotomic ring of conductor m, finds an integral ideal b such that ab is

principal and
N(b) = exp (O (m3/2)) ,

and runs in polynomial time in m, h*(m) and log(N(a)).
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Algorithm 7.4 CLOSEPRINCIPALMULTIPLE(a): solves CPM for the ideal a.

Require: An ideal a in O.
Ensure: An integral ideal b such that ab is principal and N(b) = exp (O (m3/ 2)>

Consider the two bounds d = polylog(m) and B = poly(m) from Assumption 7.11;
M {p| N(p) < B,[p] € Cl};
Choose p1, ..., pg uniformly at random in 9;
B {pl|loeGi=1,...,d};
b’ <+ WALKTOCI (a); {Algorithm 7.3}
(Yq)qes < CIDLgs(ab’); {Proposition 6.9}
fori=1toddo
i <= D gea Ypo 0 € Z[G];
b; < CLOSEPRINCIPALMULTIPLE ™ (p;, i;); {Algorithm 7.2}
end for
b b TI%, by;
: return b.

—_ = =
M2

Proof. The running time of Algorithm 7.4 follows from Lemma 7.12, Proposition 6.9 and
Theorem 7.8. Note that this algorithm might fail when the chosen 95 does not gener-
ate Cly, but following Assumption 7.11, it will succeed after a constant expected number
of trials. Let us prove that it is correct. The algorithm WALKTOCI™ outputs an integral

ideal b’ such that [ab’] € Cl and N(b) < exp(O(m)). When B generates Cly, algo-

rithm CIDLsgs finds a sequence of elements oy, ..., aq € Z[G] such that ab’ ~ ngl pi.
Now, applying the algorithm from Theorem 7.8 to each p;, we obtain ideals by, ..., by

such that p$'b; is principal and N (b;) = exp (O (m3/2)) forany i =1,...,d. Tt follows
that the output b = b’ H?zl b; has the desired properties. O

7.2.3. Proof of Theorem 7.10. The algorithm is summarized in Algorithm 7.5. The
running time and correctness follow from Theorem 6.18 and Theorem 7.16. U

Algorithm 7.5 IDEALSVP(a): finding mildly short vectors in the ideal a.

Require: An ideal a in O.
Ensure: An element v € a of norm ||v|| < exp (O (\/ﬁ)) - N(a)l/elm),

1: b <~ CLOSEPRINCIPALMULTIPLE(a); {Algorithm 7.4}
2: v < PRINCIPALIDEALSV P (b); {Algorithm 6.2}
3: return wv.

7.3. Constructing small factor bases for the relative class group

To argue for Assumption 7.11, we prove (in Proposition 7.17) that if Cl can be gen-
erated by r ideal classes, then r - polylog(m) uniformly random classes in Cl, will
generate it.

Proposition 7.17. Let K be a cyclotomic field of conductor m, with Galois group G
and relative class group Cly.. Let r be the minimal number of Z|G]-generators of Cly.
Let o > 1 be a parameter, and s be any integer such that

s > r(logy logy (hy) + o)
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(note that logy logy(hy) ~ logy(¢(m))). Let x1,...,xs be s independent uniform ele-
ments of Cly.. The probability that {x1,...,xs} generates Cl as a Z|G]-module is at
least exp (—5) = 1—0(279).

In other words, a set of ©(rlog(¢(m))) random ideal classes in Cl will generate
this Z[G]-module with very good probability. This proposition is proven at the end of
this section.

To justify Assumption 7.11, we first argue that r is as small as polylog(m). For the
case m = 2¢, this can be argued by just looking at the value of h~(2¢) computed up to
e =9 in [Was12, Table 3]. These values are square-free, so Cly; is Z-cyclic and therefore
Z|G]-cyclic; in other words, r = 1. The case of prime conductors was also studied by
Schoof [Sch98]: he proved that Cl, is Z[G]-cyclic for every prime conductor m < 509;
again, » = 1. While it is unclear that this cyclicity should be the typical behavior
asymptotically, it seems reasonable to assume that r remains as small as polylog(m), at
least for a dense class of prime power conductors.

Once it is accepted that r < polylog(m), Assumption 7.11 simply assumes that
Proposition 7.17 remains true when imposing that the random classes g1, . . ., gs are cho-
sen as the classes of random ideals of small norm, i.e. g; = [p;] where N(p;) < poly(m).
This restriction on the norms seems reasonable considering that we have proven in Chap-
ter 4 that prime ideals of norm poly(m) are sufficient to generate Cl, assuming ERH
and Assumption 7.13. More precisely, Theorem 4.16 implies that the relative class group
Cly is generated by ideals of prime norm smaller than (2.71h}; log(Af) + 4.13)2.

We now show a series of results leading to the proof of Proposition 7.17.

Lemma 7.18. Let R be a finite commutative local ring of cardinality €™, for some prime
number £. A set of s independent uniformly random elements in R generates R as an
R-module with probability at least 1 — £7°.

Proof. An element generates R if and only if it is invertible, meaning that it is not
in the maximal ideal of R. This ideal is a fraction at most £~! of R, so an element
does not generate R with probability at most /~!. Among s independent elements, the
probability that none of them is a generator is at most £~°. ]

Lemma 7.19. Let R be a finite commutative local ring of cardinality 0™, for some prime
number €. Let M be a cyclic R-module. A set of s independent uniformly random
elements in M generates M with probability at least 1 — £75.

Proof. Let g be a generator of M, and consider the homomorphism ¢ : R - M : o — ag.
Let x1,...,xs be s independent uniformly random elements in M. For each i, let «; be
a uniformly random element of the coset ¢ ~!(z;). The elements a; are independent and
uniformly distributed in R, so from Lemma 7.18, they generate R with probability at
least 1 — ¢—°. If the a;’s generate R, then the z;’s generate M, and we conclude. O

Lemma 7.20. Let R be a finite commutative local ring of cardinality £, for some prime
number £. Let M be an R-module, and let v be the smallest number of R-generators of M .
A set of s independent uniformly random elements in M generates M with probability
at least (1 — 0~ LS/TJ)T.

Proof. Proceed by induction on r. The case r = 1 is Lemma 7.19. Suppose that for
any R-module M’ generated by r — 1 elements, and any positive s, a set of s’ random
elements in M’ generates M’ with probability at least

(1 N g*LS’/(PDJ)T_l ,
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Choose s independent uniformly random elements z1,...,zs in M, and let t = |s/r].
Let g1,...,9r be a generating set for M. The quotient M /(Rg,) is generated by r — 1
elements, so the first s — ¢t random elements generate it with probability at least

(1 N g—L(s—t)/(r—l)J)’“‘l > (1 N g—LS/TJY_l'

Now assume that these s — ¢ elements indeed generate M /(Rg,). It remains to show
that adding the remaining ¢ random elements allows to generate the full module M with
probability at least 1—¢~15/7) Let N © M be the submodule of M generated by the first
s —t random elements. Observe that the module M /N is generated by g,. Indeed, let
m be an arbitrary element of M. Since M /(Rg,) is generated by N, there is an n € N
such that m+ Rg, = n+ Rg,. This implies that there is an element ag, € Rg, such that
m+ N = ag, + N, proving that M /N is generated by g,. From Lemma 7.19, M /N is
generated by the last ¢ random elements with probability at least 1 — £~ Ls/r]. So M is
generated by x1,...,zs with probability at least (1 -0~ LS/’”J)T. O

Theorem 7.21. Let R be a finite commutative ring, M be a finite R-module of cardinality
m, and r be the minimal number of R-generators of M. A set of s independent uniformly
random elements in M generates M with probability at least (1 — 2_LS/TJ)lOg2m.

Proof. The ring R decomposes as an internal direct sum @,’f:l R; of finite local sub-
rings R;. For each i, define e; € R the idempotent which projects to the unity of R; and
to zero in all other components of the decomposition (then, R; = e;R). In particular,
we have that M = @, e; M, and M; = ;M may be viewed as an R;-module.

Let x1,...,2zs be s independent uniformly random elements in M. They generate M
as an R-module if and only if for any ¢, the projections e;z1, ..., e;zs generate M; as an
R;-module. Let p; be the probability that e;x1, ..., e;xs generate M;, and let r; be the
minimal number of generators of R;. From Lemma 7.20, p; is at least (1 — 27 ls/ ”J)” .

We have the two bounds r; < r and r; <log, |M;|, and we deduce
pi>(1- 2—LS/’"J)log2 e

Therefore 1, ...,z generate M with probability at least

k
(1 _ o—Ls/r] >, logy |M;] (1 o—ls/r] logy m
gpz (1 2 ) (1 9 ) :

concluding the proof. O

Proof of Proposition 7.17. Note that a set of elements in Cly; generates it as a Z[G]-
module if and only if it generates it as a (Z/hZ)[G]-module. We deduce from Theo-

rem 7.21 that xy,...,z, generate Cl, with probability at least (1 — 2_LS/TJ)1°g2(h;<). For
any 0 < z < 1/2, we have log(1 — z) > —(3/2)z. We have 2~15/7] <2712 <1/2, s0

<1 - 2_L8/7~J)log2(hf<) ~exp <10g2(h[_() log <1 _ 2—L5/7‘J>>

> exp <—2 log2(h;()2ts/d> .

With s > r(logy logy(hy) + o), we get [s/7] > logy logy(hy) + o — 1 and

1 h
<1 — 2—LS/TJ> o8alhic) > exp (—;) )
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proving the proposition. O



HUTURE DIRECTIONS

Cryptology remains an inexhaustible source of challenging mathematical questions, and
this thesis by no means closes the chapter on any of the three thematics presented.

Regarding the discrete logarithm problem in finite fields of small characteristic, we
merely claim to have developed a better understanding of the fastest known heuristic
algorithms. The problem of designing a fully provable quasi-polynomial time algorithm
remains open, yet we hope that the new geometric understanding of the heuristic meth-
ods will help towards achieving this goal. Several other directions could as well be
investigated, notably improving the running time of the algorithm: reducing the con-
stants in the exponent, or, more ambitiously, reaching a polynomial complexity.

Mystery lingers around the structure of isogeny graphs in higher dimension, espe-
cially regarding the vertical structure. We managed to fully describe certain interesting
subgraphs, and get sufficient information about local structures to clear the path to some
noteworthy algorithmic applications, yet much remains to be done before we can claim
a full understanding. One of the main obstacles seems to be the complexity of the set
of orders in CM-fields of arbitrary degree, for which we do not know a complete classifi-
cation. Advances in this classification problem would undoubtedly lead to new insights
on isogeny graphs. In the meantime, the answer to certain questions might already be
at closer reach. For instance, we have seen that a short random walk allows to reach a
uniformly random abelian variety in a horizontal isogeny graph, and one can naturally
ask if a similar process allows to uniformly randomise in the full isogeny graph. Such a
process would allow to extend the random self-reducibility theorem from the horizontal
graph to the full isogeny class (as is already known for elliptic curves).

In the third part, we have learnt that a quantum computer allows to find “mildly”
short vectors in cyclotomic ideal lattices, at least heuristically. A few number-theoretic
claims still keep the method from being fully rigorous. However, the extended Riemann
hypothesis, the Galois-module structure of the class group, and the growth of the class
number of totally real fields are notoriously hard problems, reaching far beyond our
ideal lattice problems. Our best chance at eliminating some of the assumptions might
be to adapt parts of the algorithm to circumvent the holes in our knowledge. Another
worthwhile goal would be to improve the approximation factor. The length of the vector
that the algorithm can recover is assuredly much smaller than what can be hoped for
in generic lattices, but still too large for a definitive cryptanalytic impact. Finally, it
should be emphasised that ideal lattices are not the ultimate goal: while an interesting
cryptanalytic target, schemes directly based on the difficulty of Ideal-SVP are rare. The
impact of the new methods on NTRU-type cryptosystems, or on the Ring-LWE problem
remains uncertain.
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Minkowski embedding, 111
Module-LWE, 106
modulus, 40
Moore-Penrose inverse, 116

Néron-Severi group, 84
nearest-plane allgorithm, 108
Neumann series, 116

order, 73
in a number field, 38
local, 75
local real, 75
of a Z,-lattice, 78
of a Z,-lattice (real), 90

Pohlig-Hellman method, 11
polarisation, 42
isogeny, 42
principal, 42, 83
pullback, 84
Pollard’s Rho algorithm, 13

principal ideal problem (PIP), 110

principal representative, 14
quasi-polynomial complexity, 18

random self-reducibility, 52
random walk, 45, 53, 54, 125
ray class character, 56
primitive, 56
principal, 56
ray class group, 40, 46, 66
narrow, 41
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real multiplication (RM), 75
level, 87, 89
maximal, 73
regulator, 116
relation collection, 13, 14
ring class field, 41
Ring-LWE, 106
RM-ascending, 87
RM-descending, 87
RM-horizontal, 87
RM-predecessor, 92
root of unity, 105

Shimura class group, 42, 85

Shor’s algorithm, 110

short basis, 108

short vector problem (SVP, approx-SVP), 107
for cyclotomic ideals, 106, 124

size-reduction, 108

sparse medium subfield representation, 19

standard representation, 109

Stickelberger ideal, 120

Stickelberger lattice, 120

Stickelberger’s theorem, 121

symplectic, 88

Tate module, 75
trap, 24
trivial eigenvalue, 45

von Mangoldt function, 47, 57

Weber’s class number problem, 126
Weil pairing, 88

zigzag descent, 26
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My interests revolve around the various facets of cryptography, with a particular focus on cryptologic
algorithms related to number theory and algebraic geometry. Another aspect of my work relates to
randomness and the blockchain technology.

LDUCATION

PhD in Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Cryptologic Algorithms, Switzerland

» Advisors: Arjen K. Lenstra and Robert Granger
» Thesis title: Arithmetic and geometric structures in cryptography

Master of Science in Mathematics, Minor in Information Security
EPFL, thesis at the University of California, Berkeley, USA

» Thesis advisors: Kenneth A. Ribet (UC Berkeley) and Dimitar Jetchev (EPFL)
» Thesis title: Walking on isogeny graphs of hyperelliptic curves of genus 2
» Best average in this section, 3rd (out of 872) best average for complete Master studies at EPFL, 2014

Bachelor’s degree in Mathematics, EPFL

LXPERIENCE

Teaching assistant, EPFL
» Project supervision (bachelor and master students)

» Managing, designing, supervising exercise sessions for Advanced information, computation, commu-
nication, for Analysis, and for Global issues: communication

Research engineer, Institute for Information and Communication Technologies, HEIG-VD
» Design, proof, and implementation of a new efficient pairing-based broadcast encryption scheme

Visiting student researcher, University of California, Berkeley
» Study of isogeny graphs of abelian surfaces, applications to hyperelliptic curve cryptography

Student assistant, EPFL
» Assistant for exercise sessions in topology, linear algebra, C and C++ programming

Administrative assistant, EPFL

AWARDS

Teaching Assistant Award 2017, EPFL
Doctoral EDIC Fellowship 2014, EPFL

Kudelski Prize 2014, Kudelski Group
“For a Master Project having significantly contributed to the field of cryptography and information sys-
tems security”

Douchet Prize 2014, EPFL
Best Master average in the Mathematics section at EPFL

EPFL Prize 2014, EPFL
3rd (out of 872) best average mark for complete Master studies at EPFL

Undergraduate Awards 2013, Dublin, Ireland
Highly commended for the essay “Lifting braids : from geometric braids to braid groups” (2012)



PUBLICATIONS

9 articles in peer-reviewed journals or international conferences with published proceedings

Horizontal isogeny graphs of ordinary abelian varieties and the discrete logarithm problem
With Dimitar Jetchev
Acta Arithmetica (in press)

A new perspective on the powers of two descent for discrete logarithms in finite fields
With Thorsten Kleinjung
ANTS-XIII, Thirteenth Algorithmic Number Theory Symposium (2018)

Generating subgroups of ray class groups with small prime ideals
ANTS-XIII, Thirteenth Algorithmic Number Theory Symposium (2018)

Isogeny graphs of ordinary abelian varieties
With Ernest Hunter Brooks and Dimitar Jetchev
Research in Number Theory (2017)

Loop-abort faults on supersingular isogeny cryptosystems
With Alexandre Gélin
PQCrypto 2017

Short Stickelberger class relations and application to Ideal-SVP
With Ronald Cramer and Léo Ducas

* Honorable mention

Eurocrypt 2017

Trustworthy public randomness with sloth, unicorn, and trx
With Arjen K. Lenstra
International Journal of Applied Cryptography (2016)

Malleability of the blockchain’s entropy

With Cécile Pierrot

Cryptography and Communications (2018)

Ciphertext-policy attribute-based broadcast encryption with small keys
With Pascal Junod

ICISC 2015

2 articles in international workshops

Trust, and public entropy: a unicorn hunt
NIST Workshop on Random Bit Generation (2016)

A random zoo: sloth, unicorn and trx
NIST Workshop on Elliptic Curve Cryptography Standards (2016)

1 preprint currently under review

Efficient verifiable delay functions
Cryptology ePrint Archive, Report 2018/623 (2018)



SCIENTIFIC COMMUNICATION

10 presentations in conferences and workshops

An efficient verifiable delay function (invited)
Ethereum Foundation and Stanford Center for Blockchain Research workshop at Stanford (USA, 2018)

A new perspective on the powers of two descent for discrete logarithms in finite fields
ANTS-XIII, Thirteenth Algorithmic Number Theory Symposium (USA, 2018)

Generating subgroups of ray class groups with small prime ideals
ANTS-XIII, Thirteenth Algorithmic Number Theory Symposium (USA, 2018)

Short Stickelberger class relations and application to Ideal-SVP
Eurocrypt 2017 (France, 2017)

Isogeny graphs of ordinary abelian varieties (invited)
* Best presentation award
ECC 2017, 21st Workshop on Elliptic Curve Cryptography (The Netherlands, 2017)

Graphes d'isogénies de variétés abéliennes ordinaires
Journées Codage et Cryptographie (France, 2017)

Malleability of the blockchain’s entropy
ArcticCrypt 2016 (Norway, 2016)

Trust, and public entropy: a unicorn hunt
NIST Workshop on Random Bit Generation (USA , 2016)

A random zoo: sloth, unicorn and trx
Journées Codage et Cryptographie (France, 2015)

A random zoo: sloth, unicorn and trx
NIST Workshop on Elliptic Curve Cryptography Standards (USA, 2015)

6 talks at seminars

Horizontal isogeny graphs of ordinary abelian varieties and the discrete logarithm problem
Séminaire de Cryptographie, Rennes (France, 2018)

Mildly short vectors in cyclotomic ideal lattices in quantum polynomial time
CARAMBA seminar, Nancy (France, 2018)

Isogeny graphs of ordinary abelian varieties
LFANT seminar, Bordeaux (France, 2017)

Randomness on the blockchain
RISC seminars, CWI Cryptology Group, Amsterdam (The Netherlands, 2016)

A random zoo: sloth, unicorn and trx
ALMASTY seminars, Université Pierre et Marie Curie, Paris (France, 2015)

Random self-reducibility of the discrete logarithm problem in genus 2
LACAL@RISC Seminar on Cryptologic Algorithms, CWI Amsterdam (The Netherlands, 2015)



COMMUNITY SERVICE

Reviewing for journals and conferences:

» PKC 2018

» Journal of mathematical cryptology (2018)
» Mathcrypt 2018

Asiacrypt 2017

> QCrypt 2017

Eurocrypt 2017

Indocrypt 2016

Financial cryptography 2016

Asiacrypt 2015

SKILLS

Languages: french (native language), english (fluent, TOEIC 945/990)

v

v

v

v

v

Computer languages:
» Daily use: C, Sage (Python), Magma, LaTeX
» Acquainted with: C++, Java, Scala, PHP, HTML/CSS

REFEREES

Prof. Arjen K. Lenstra (PhD director), EPFL
akl@epfl.ch

Dr. Robert Granger (PhD co-director)
robbiegranger@gmail.com

Prof. Ronald Cramer, CWI, Leiden University
cramer@cwi.nl

Prof. Dimitar Jetchev, EPFL
dimitar.jetchev@epfl.ch



