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A numerically efficient framework that takes into account the effect of the Coulomb collision operator at
arbitrary collisionalities is introduced. Such a model is based on the expansion of the distribution function
on a Hermite-Laguerre polynomial basis to study the effects of collisions on magnetized plasma
instabilities at arbitrary mean-free path. Focusing on the drift-wave instability, we show that our framework
allows retrieving established collisional and collisionless limits. At the intermediate collisionalities relevant
for present and future magnetic nuclear fusion devices, deviations with respect to collision operators used
in state-of-the-art turbulence simulation codes show the need for retaining the full Coulomb operator in
order to obtain both the correct instability growth rate and eigenmode spectrum, which, for example, may
significantly impact quantitative predictions of transport. The exponential convergence of the spectral
representation that we propose makes the representation of the velocity space dependence, including the
full collision operator, more efficient than standard finite difference methods.

DOI: 10.1103/PhysRevLett.121.165001

Drift waves (DW) are low-frequency modes that arise in
a magnetized plasma when a finite pressure gradient is
present, and are driven unstable when electron adiabaticity
is broken, such as in the presence of finite resistivity,
electron inertia or wave particle resonances. Due to the
ubiquitous presence of pressure gradients and adiabaticity-
breaking mechanisms in plasmas, the DW instability plays
a role in many plasma systems [1]. Indeed, DW are known
to regulate plasma transport across the magnetic field in
laboratory plasmas [2–7], and are also thought to be relevant
for the understanding of fundamental transport processes
occurring in active galactic nuclei [8], dense astrophysical
bodies [9], Earth’s magnetosphere [10], and dusty plasmas
[11]. In addition, the understanding of DWis crucial since the
physics underlying a number of important plasmas instabil-
ities, such as the electron- and ion-temperature gradient
modes, resistive modes, and ballooning modes [12], relies
on the same mechanisms at play in DW.
Although DW are the subject of a large number of

previous studies, the effect of collisionality on the linear
properties of thesemodes remains insufficiently understood.
This is particularly worrisome since collisionality has been
found to have both stabilizing [12] and destabilizing effects
[13] on DW. The difficulty associated with an accurate
assessment of collisional effects is related to the integro-
differential character of the Coulomb collision operator,
Cab, describing collisions between species a and b [14].
Indeed, this operator cannot easily be expressed in the
guiding center coordinate system appropriate to describe
magnetized plasmas [15], which often leads to its replace-
ment by approximate, somewhat ad hoc, operators. As a

consequence, while collisional effects on nonmagnetized
plasma waves, such as electron-plasma [16,17] and ion-
acousticwaves [18], have been exhaustively characterized at
arbitrary collisionality, such studies have not been applied to
magnetized plasma instabilities, such as DW, yet. Previous
studies on the DW instability at finite collisionality have
usually relied on simplified collision operators [19], or on
fluid models such as the Hasegawa-Wakatani [20] or the
drift-reduced Braginskii model [21], which assume that the
electron and ion collision frequencies are high enough so
that the particle mean free path stays small when compared
with the mode parallel wavelength, kkλmfp ≪ 1.
This Letter overcomes this long-standing issue and

provides an efficient framework, which can be easily
extended to a large number of instabilities, to properly
study the effect of collisionality in DW at arbitrary mean
free path. Here, we focus on the case where the DW driving
mechanism is provided by the density gradient, usually
referred to as the universal instability [22], in a shearless
slab geometry. The DW growth rate that we evaluate
matches both the collisionless and fluid regimes at low
and high collision frequencies, respectively, and shows
important deviations from the collisional limit already at
kkλmfp ∼ 0.1. Furthermore, at low-to-intermediate colli-
sionality values, the regime of interest for future tokamak
devices such as ITER [23], we show the need to retain the
full Coulomb collision operator. Indeed, the DW growth
rate deviates by factors of order unity from fluid and kinetic
models based on approximate collision operators such as
the Lenard-Bernstein [24] and the Dougherty [25] oper-
ators. These are operators of the Fokker-Planck type that
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obey the H theorem, contain pitch-angle scattering, have
important conservation properties, and, by being imple-
mented in a number of advanced kinetic codes, are used
in recent studies of DW-like turbulence, both in the core
[26–29] and at edge [30,31] regions of tokamak devices.
Since quasilinear transport models estimate the turbulence
drive by evaluating the linear instability growth rate
[32,33], quantitative differences in the growth rate have
a large impact on the prediction of the level of transport, in
particular by affecting the threshold for E × B shear flow
stabilization. Similarly, the linear growth rate, together with
the gradient removal hypothesis [34], is used to predict the
scrape-off layer width, a parameter crucial to the overall
performance of present and future tokamak devices such as
ITER [35]. Therefore, our results can impact ITER oper-
ation and the design of future fusion devices.
In addition to the instability growth rate, the framework

we propose allows the evaluation of the spectrum of the
linear eigenmodes. The spectrum of collisional eigenm-
odes, contrary to the collisionless case, is composed of a
discrete set of roots, as first shown in [36]. Deviations
between the results based on the Coulomb and both the
Lenard-Bernstein and Dougherty collision operators are
particularly evident. The clear differences question our
current understanding of plasma turbulence. In fact, several
DW turbulence studies have shown that subdominant and
stable modes can be nonlinearly excited to finite amplitude
[37–40] and have a major role in nonlinear energy
dissipation and turbulence saturation, affecting structure
formation, as well as heat and particle transport. The
computation of such modes relies on the correct evaluation
of the eigenmode spectrum. As we show, this displays large
changes between the Coulomb and approximate collision
operators.
Under the drift approximation (i.e., spatial scales of the

fluctuations large compared to the ion Larmor radius and
frequencies smaller than the ion gyrofrequency), the
framework to properly treat arbitrary collisionalities is
provided by the drift-kinetic equation,

∂Fa

∂t þ ðvkbþ vEÞ · ∇Fa −∇kϕ
qa
σ2a

∂Fa

∂vk ¼
X
b

hCabi; ð1Þ

where Fa ¼ FaðR; vk; μ; tÞ is the guiding center distribu-
tion function of the species a (a ¼ e, i for electrons and
ions, respectively), which depends on the guiding center
coordinate R, the component of the velocity parallel to the
magnetic field vk, the first adiabatic invariant μ ¼
mav2⊥=2B with ma the mass of the species a and B the
modulus of the magnetic field B, and time t [41]. The
charge qa, the electrostatic potential ϕ, the parallel and
perpendicular scale lengths, vk, and t are normalized to e,

Te0=e, Ln, ρs ¼ cs=Ωi, cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te0=mi

p
, cs=Ln respec-

tively, with e the elementary charge, Te0 a reference
temperature, Ln the background density gradient length,

and Ωi ¼ eB=mi. In addition, vE ¼ ðLn=ρsÞb ×∇ϕ is the
dimensionless E × B velocity, σa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma=mi

p
, hCabi ¼R

2π
0 dθCab=ð2πÞ is the gyroaverage operator with θ the
gyroangle, and the Coulomb collision operator is given by

Cab ¼
νab
N0

∂v · ð
ma

mb
ð∂vHbÞFa − ∂vð∂vGbÞ · ∂vFaÞ ð2Þ

with νab the characteristic collision frequency between species
a and b normalized to cs=Ln, and Hb¼2v3tha

R
Fbðv0Þ=

jv−v0jdv0 and Gb ¼ v3tha
R
Fbðv0Þjv − v0jdv0 the Rosenbluth

potentials [14]. The drift-kinetic equations are coupled to the
quasineutrality condition

P
aqaNað1þ σ2a∇2⊥ϕÞ ¼ 0 [42],

where Na ¼
R
FadvkdμdθB=ðmaN0Þ.

We linearize Eq. (1) by expressing Fa ¼ FaMð1þ fa1Þ
with fa1 ≪ 1 and FaM an isotropic Maxwellian equilib-
rium distribution function of constant temperature Ta0 and
of density N0 that varies perpendicularly to the magnetic
field on the Ln scale. This yields

ðγ þ ikkvkÞfa1 ¼ iðk⊥ − qakkvkÞϕþ
P

bhCabi
FaM

; ð3Þ

where Cab is now the linearized version of the collision
operator in Eq. (2), γ is the growth rate, kk is the wave
number parallel to B, and k⊥ is the wave number along
the direction perpendicular to both B and the direction of
∇N0. In this Letter, we solve Eq. (3) at arbitrary
collisionality by expanding the distribution function
into an orthogonal Hermite-Laguerre polynomial basis,
i.e., fa1 ¼ P

p;jN
pj
a Hpðvkσa=

ffiffiffiffiffiffiffi
2τa

p ÞLjðμB=Ta0Þ=
ffiffiffiffiffiffiffiffiffiffi
2pp!

p
with HpðxÞ¼ð−1Þpexpðx2Þdpx expð−x2Þ the physicists’

Hermite polynomials, LjðxÞ¼expðxÞdjx½expð−xÞxjÞ�=j!
the Laguerre polynomials, and τa ¼ Ta0=Te0. While a
number of previous works show that the use of Hermite
polynomial expansions of the parallel velocity coordinate
vk is advantageous [43,44], both for numerical imple-
mentation [43,45] and to make analytical progress when
the analysis of the Boltzmann equation is very complex
otherwise [46], the use of Laguerre polynomial expan-
sions of the μ coordinate is recent and has only been
applied in the low-collisionality regime [29,47]. By
projecting Eq. (3) into a Hermite-Laguerre basis, an
infinite system of algebraic equations (henceforth called
moment hierarchy) for the evolution of the coefficients of
the expansion of fa1, N

pj
a , is obtained as follows:

γNpj
a ¼ −ikk

ffiffiffiffiffi
τa

p
σa

ð
ffiffiffiffiffiffiffiffiffiffiffiffi
pþ 1

p
Npþ1j

a þ ffiffiffiffi
p

p
Np−1j

a Þ

þ iϕ

�
k⊥δp;0 −

qakkffiffiffiffiffi
τa

p
σa

δp;1

�
δj;0 þ

X
b

Cpj
ab; ð4Þ

with Cpj
ab ¼

R hCabiHpLjdvkdμ2πcsB=ðN0ma
ffiffiffiffiffiffiffiffiffiffi
2pp!

p Þ the
projection of the Coulomb collision operator Cab onto a
Hermite-Laguerre basis.
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The Hermite-Laguerre moments of the linearized collision
operator Cpj

ab are obtained by leveraging the work in [48],
whereCab is projected onto a tensorialHermite and associated
Laguerre basis, plk ¼ PlðcÞLlþ1=2

k ðc2Þ, with the tensorial
Hermite polynomials defined by the recurrence Plþ1ðcÞ¼
cPlðcÞ−c2∂cPlðcÞ=ð2lþ1Þ, being P1ðcÞ¼1 and c¼v=vth,
and the associated Laguerre polynomials Llþ1=2

k ðxÞ ¼
x−l−1=2 expðxÞ∂k

x½expð−xÞxkþlþ1=2=k!�. This leads to
Cab ¼

X
k;l;p

plkðAlpk
ab m

lk
a þ Blpk

ab m
lk
b Þ; ð5Þ

having expanded the distribution function as fa1 ¼P
l;km

lk
a · plk. The expressions for Alpk

ab and Blpk
ab are given

in Ref. [48]. In order to evaluate Cpj
ab, the operator Cab in

Eq. (5) is gyroaveraged. This is done using the gyroaver-
aging identity

R
2π
0 PlðcÞdθ ¼ 2πclPlðvk=vÞPlðbÞ, with

PlðxÞ ¼ ∂l
xðx2 − 1Þl=ð2ll!Þ the Legendre polynomials.

Then, a basis transformation from the tensorial Hermite
and associated Laguerre to the Hermite-Laguerre basis

is performed, clPlðvk=vÞLlþ1=2
k ðc2Þ ¼ Plþ2k

p¼0

Pkþbl=2c
j¼0 ×

Tpj
lk Hpðvkσa=

ffiffiffiffiffiffiffi
2τa

p ÞLjðμB=Ta0Þ, where the expressions

for Tpj
lk are derived in Ref. [42]. This yields

Cpj
ab ¼

X∞
k¼0

Xpþ2j

l¼0

Xjþbp=2c

t¼0

ðT−1Þltpj2lðl!Þ2

ð2lÞ!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pp!αlk

q cs
N0ð2lþ 1Þ

× ðN lk
a Altk

ab þN lk
b B

ltk
abÞ; ð6Þ

having introduced the normalization factor αlk¼l!ðlþkþ
1=2Þ!=ð2lðlþ1=2Þ!k!Þ, the inverse transformation coeffi-
cients ðT−1Þltpj ¼

ffiffiffi
π

p
2pp!ðlþ 1=2Þt!=ðtþ lþ 1=2Þ!Tpj

lt

and the guiding center moments N lk
a ¼ PlðbÞ ·mlkð2lÞ!=

½2lðl!Þ2� ¼ Plþ2k
s¼0

Pkþbl=2c
r¼0 Tsr

lkN
sr
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ss!=αlk

q
. For interspe-

cies collisions, we take advantage of the smallness of the
electron to ion mass ratio σe to derive simpler expressions
for Altk

ab and Bltk
ab (see, e.g., Refs. [14,48]).

A closed form solution for the DW moment-
hierarchy can be given in the collisionless case Cab ¼ 0
by dividing the Boltzmann equation, Eq. (3), by the
resonant γ þ ikkvk factor, multiplying by the Hermite-
Laguerre polynomial basis functions, and integrating over
velocity space, yielding

Npj
a ¼

�
−
qaξa
τa

þ σak⊥
kk

ffiffiffiffiffi
τa

p
� ð−1Þpffiffiffiffiffiffiffiffiffiffi

2pp!
p ZðpÞðξaÞϕδj;0

−
qa
τa

ϕδp;0δj;0; ð7Þ

where ZðpÞðξaÞ is the pth derivative of the plasma dis-
persion function ZðξaÞ ¼ Zð0ÞðξaÞ, defined by ZðpÞðξaÞ ¼
ð−1Þp R∞

−∞ HpðxÞe−x2=ðx − ξaÞdx=
ffiffiffi
π

p
and ξa ¼ ωσa=

ðkk
ffiffiffiffiffiffiffi
2τa

p Þ. Equation (7) generalizes the Hermite spectrum

obtained for plasma waves [49] and extends Hammet-
Perkins-like collisionless closures obtained forN30

a andN40
a

[50] to a moment Npj
a of arbitrary order in a form ready to

be used.
The Chapman-Enskog procedure with truncation of

the moment hierarchy in Eq. (4) at p ¼ 3 and j ¼ 1 can
be used in the high collisionality limit, kkλmfp ≪ 1.
Neglecting sound wave coupling and assuming cold ions,
this yields the continuity and electron temperature equa-
tions, γN ¼ −iðkkV − k⊥ϕÞ and γT¼−ikkcVV−k2kðχkTþ
0.12ΔTÞ=ν, the vorticity equation, k2⊥γϕ ¼ ikkV, Ohm’s
law, σ2eγV ¼ ikkðϕ − N − cTT − 0.90ΔTÞ − νV, and tem-
perature anisotropy variation γΔT ¼ −12.02νΔT=σ2e −
2.71ikkV − k2kð0.55T þ 0.52ΔTÞ=ν with N ¼ N00

e the

electron density normalized to N0, V ¼ N10
e =σe the elec-

tron parallel fluid velocity normalized to cs, T ¼ ð ffiffiffi
2

p
N20

e −
2N01

e Þ=3 the electron temperature normalized to Te0, ΔT ¼ffiffiffi
2

p
N20

e þ N01
e the temperature anisotropy normalized to

Te0, ν the Spitzer resistivity normalized to cs=Ln, and the
coefficients ðcT; cV; χkÞ ¼ ð1.26; 1.88; 0.46Þ. When tem-
perature anisotropy is neglected (i.e., ΔT ¼ 0), the follow-
ing dispersion relation is obtained:

σ2eγ
3 þ νγ2 þ 1þ k2⊥

k2⊥
k2kγ −

ik2k
k⊥

þ
cVcTk2kνγ

2

νγ þ χkk2k
¼ 0; ð8Þ

which reduces to the drift-reduced Braginskii dispersion
relation that has similar coefficients ðcV; cT; χkÞ ¼
ð1.14; 1.71; 1.07Þ [51,52] (we have checked that the values
of the coefficients ðcT; cV; χkÞ approach those computed by
Braginskii as the order of the closure is increased). We also
note that for resistivity driven DW (ν > γme=mi) the peak
growth rate, γ ≃ 0.12, is found at k⊥ ≃ 1.19 and
kk ¼ 1.49

ffiffiffi
ν

p
. If the resistivity ν in Eq. (8) is tuned to values

lower than the ones allowed by the fluid approximation
(ν < γme=mi) an electron-inertia driven DW is obtained
with a peak growth rate γ ≃ 0.29 at k⊥ ≃ 1.00 and
kk ≃ 0.48

ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
.

At intermediate collisionality, the moment hierarchy
equation, Eq. (4), together with Poisson equation have to
be solved numerically. In this case, a criterion to truncate
the moment expansion at a suitable order p ¼ pmax and
j ¼ jmax can be derived by following Ref. [46] where the
Lenard-Bernstein operator case was considered. This oper-
ator can be derived by setting ∂v∂vGb ¼ −Iv2tha=2 and
ðma=mbÞ∂vHb ¼ v in Eq. (2), yielding Cpj

ab ¼ −νabðpþ
2jÞNpj

a [24]. The Dougherty collision operator, on the
other hand, adds the necessary field-particle collisional terms
to Lenard-Bernstein in order to provide momentum and
energy conservation properties, namely it sets ∂v∂vGb ¼
−ITa=ma, with Ta ¼

R
v2FadvkdμdθB=ð3NaÞ, and

ðma=mbÞ∂vHb¼v−u, with u¼R
vFadvkdμdθB=ðmaNaÞ.
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This yields Cpj
ab ¼ −νab½ðpþ 2jÞNpj

a þ N10
a δp;1δj;0þ

Tað
ffiffiffi
2

p
δp;0δj;1 − 2δp;2δj;0Þ� being Ta¼ð ffiffiffi

2
p

N20
a −2N01

a Þ=3
[25,29,53]. To derive the truncation criterion, we introduce
the Fourier harmonics gpj ¼ ipsgnðkkÞpNpj

a , and insert them
in the moment hierarchy equation, Eq. (4), noting that at a
sufficiently high index p, gp can be considered continuous
and differentiable in p, and therefore gp�1 ≃ gp � ∂pgp. By

keeping only the terms proportional to Npj
a in the sum in

Eq. (6), namely approximating Cpj
ab ≃ −νabfpjN

pj
a and

effectively underestimating the collisional damping
contribution of Cpj

ab, we obtain gp ≃ g0 exp½−ð4γ ffiffiffiffi
p

p þ
2
R
p fpjp−1=2Þ=pca�=p1=4 at the lowest order in 1=p, with

pca ¼ 4jkkj ffiffiffiffiffi
τa

p
=ðσaνaiÞ. While for the case of the Lenard-

Bernstein and Dougherty operators, since fpj ¼ pþ 2j
for large p and j, the solution gp ≃ g0 exp½−4ðγ ffiffiffiffi

p
p þ

p3=2=3Þ=pca�=p1=4 can be obtained analytically, the coef-
ficients fpj for the case of Coulomb collisions are found
numerically to follow approximately fpj ≃ A

ffiffiffiffi
p

p
, with

A ≃ 0.5. Such estimate yields

Npj
a ≃

N0ðjÞipsgnkpk
p1=4 exp

�
−
�

p
pγa

�1
2

− 2A
p
pca

�
; ð9Þ

showing that the moment hierarchy can be truncated at
pmax ≃ pca or, if kkλmfpa ≳ 2γ2=A, at pmax ≃ pγa ¼
p2
ca=ð16γ2Þ [43]. This removes the need of ad hoc closures

for the moment hierarchy even at low collisionalities.
Regarding the truncation in j, since the magnetic field is
uniform, no perpendicular phasemixing in Eq. (4) is present,
and j > 0moments are present due to collisional coupling in
Cpj
ab. Therefore, at zero collisionality, the j > 0 moments

vanish [see Eq. (7)]. At high collisionality, the Chapman-
Enskog closure shows that j > 1 moments are collisionally
damped. At intermediate collisionality, numerical tests show
that only moments j ≤ 2 impact the growth rate.

The numerical solution of the moment hierarchy, Eq. (4),
in the cold-ion limit with τi ¼ 0.01 and σe ¼ 0.023 is
shown in Fig. 1, where the maximum growth rate is
computed over the (kk, k⊥, νei) parameter space. The value
of kk at the peak growth rate is seen to increase with νei at
large value of the resistivity, as expected from the resistive
fluid dispersion relation. For small values of resistivity it
converges to kk ≃ 0.0074 ≃ 0.32σe, a value close to the
fluid predictions for electron-inertia driven DW. The peak
growth rate is observed to stay at k⊥ ≃ 1 across all values of
collisionality, as also expected from the fluid theory. By
selecting the kk and k⊥ that yield the largest growth rate γ,
Fig. 2 shows a comparison between the peak growth rate
resulting from the fluid model, Eq. (8), with the Braginskii
values for (cV , cT , χk), the collisionless model, Eq. (7),
and the moment hierarchy using the Lenard-Bernstein,
Dougherty, and the Coulomb collision operator solving for
a different number of moments. The linearized moment
hierarchy model approaches the collisionless and the drift-
reduced Braginskii model limits, at νei ≪ 1 and νei ≫ 1
respectively. Deviations of the peak growth rate of the
moment hierarchy from the drift-reduced Braginskii occur
at values of collisionality νei ≲ 10, and from the collisionless
limit at νei ≳ 2 × 10−2. This corresponds to the range 0.1≲
kkλmfp ≲ 100 (at the kk of the peak growth rate), a range that
overlaps with the regime of operation relevant for present and
future tokamak machines [54]. Deviations of up to 50%with
respect to the Lenard-Bernstein and Dougherty operators
arise on both the peak growth rate and its corresponding kk
and k⊥. We note that convergence is observed for pmax ¼ 15

and jmax ¼ 2 up until νei ∼ 10−1. The observed value ofpmax

is close to the estimate in Eq. (9), which for νei ¼ 10−1 and
kk ≃ 0.32σe yields pmax ≃ pce ≃ 13. We remark that pseu-
dospectral decompositions converge exponentially with the
number of modes used. Therefore, with respect to finite-
difference methods that display algebraic convergence, the
framework proposed here is particularly efficient for numeri-
cal implementation.

FIG. 1. Growth rate of the DW instability obtained from the moment hierarchy, Eq. (4), as a function of (kk, k⊥) and, from left to right,
νei ¼ 0.05, 1, 10, and 500, in the cold-ion limit with σe ¼ 0.023.
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We compare in Fig. 3 the spectra obtained with the
collisionless model, and with the Dougherty and the
Coulomb collision operators in the moment hierarchy at
νei ¼ 0.4 for the values of ðkk; k⊥Þ that yield the largest γ.
Figure 3 shows a clear difference between the eigenmode
spectra of the two operators. While modes with finite
frequency are related to the damping of electron distribu-
tion function, modes at ω ≪ 1 are due to strong collisional
damping of the cold-ion distribution function. The damping
rate of the electron modes decreases with the frequency
when the Coulomb collision operator is considered, con-
trary to the Dougherty case. This is possibly related to the
fact that the collisional drag force decreases with the
particle velocity in the Coulomb collision operator and
increases in the Dougherty one. We note that the eigen-
mode spectrum using the Dougherty collision operator in
Fig. 3 is similar to the one obtained in Ref. [45] using a
Lenard-Bernstein one.

In this Letter, for the first time, Coulomb collisions are
taken into account in the description of magnetized plasma
instabilities at arbitrary collisionalities, focusing on the
linear properties of the DW instability. The analysis we
perform in a relatively simple configuration shows that the
corrections introduced by the full Coulomb collision
operator with respect to simplified collision operators,
presently used in state-of-the-art codes, are qualitatively
and quantitatively significant at the relevant collisionality
regime of operation of future nuclear fusion devices such as
ITER. Our work provides a particularly efficient numerical
framework to treat Coulomb collisions that can easily be
extended to nonlinear simulations and be used to study
other instabilities in magnetized plasmas. By projecting
onto a Hermite-Laguerre basis the drifts that arise in the
Boltzmann equation from possible inhomogeneities of the
magnetic field, instabilities such as the ballooning mode,
can be described within the framework presented here.
A gyrokinetic extension of the framework introduced here
will be the subject of a future work.
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