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Abstract

This paper reviews the first challenge on spectral im-

age reconstruction from RGB images, i.e., the recovery

of whole-scene hyperspectral (HS) information from a 3-

channel RGB image. The challenge was divided into 2

tracks: the “Clean” track sought HS recovery from noise-

less RGB images obtained from a known response func-

tion (representing spectrally-calibrated camera) while the

“Real World” track challenged participants to recover HS

cubes from JPEG-compressed RGB images generated by an

unknown response function. To facilitate the challenge, the

BGU Hyperspectral Image Database [4] was extended to

provide participants with 256 natural HS training images,

and 5+10 additional images for validation and testing, re-

spectively. The “Clean” and “Real World” tracks had 73

and 63 registered participants respectively, with 12 teams

competing in the final testing phase. Proposed methods and

their corresponding results are reported in this review.

1. Introduction

Hyperspectral imaging systems (HISs) record the com-

plete spectral signature reflected from each observable point

in a given scene. While HISs have been available since

the 1970s [8], recent technological advances have reduced

their cost and made them accessible to a growing number
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Appendix A contains the authors’ teams and affiliations.
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of researchers and industrialists. Despite their increasingly

lower cost, most HISs still rely on either spatial or spectral

scanning (via push-broom or filter-wheel principles) in or-

der to acquire complete hyperspectral (HS) images. This

inherent limitation of traditional HISs makes them unsuit-

able for rapid acquisition, or acquiring scenes which contain

moving objects. In addition, most HISs are still too physi-

cally large and heavy to fit most portable platforms such as

drones, smartphones, and other hand-held devices.

A number of approaches have been employed in order

to produce “snapshot” or video-capable HISs. They include

computed-tomography imagers [22], mosaic cameras [17],

hybrid RGB-HS systems [16] and others. In this challenge

we focus on one of the more recent approaches: the recov-

ery of visual-spectrum ‘hyperspectral’ images from RGB-

only input.

The benefit of HS-from-RGB systems is twofold: (i) rep-

resenting RGB images by their source HS signals allows

the application of existing HS detection/analysis methods

to data which could not be acquired by a HIS, while (ii)

studying the failure cases of these systems can allow us to

improve the spectral resolution of camera systems via im-

proved design [5].

In natural images, reconstruction of hyperspectral im-

ages from RGB data is often accomplished by the use of

sparse coding, learning via neural networks, or a com-

bination of the two. While earlier methods relied on

PCA basis to recover spectra from RGB or other multi-

spectral data [20, 2], they were quickly outperformed by

methods which leveraged sparse coding [23]. However,

in recent years, natural hyperspectral image databases of

growing size and resolution have become more prevalent

(e.g., 32 images recorded by Yasuma et al. [30], 66 im-
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ages by Nguyen et al. [21], 77 images by Chakrabarti and

Zickler [7], and 256 images recorded by Arad and Ben-

Shahar [4]), thus allowing for trained neural net approaches,

which became more popular.

Initially, shallow neural nets were used, such as the ra-

dial basis function (RBF) approach proposed by Nguyenet

al. [21]. As increasing amounts of training data became

available, much deeper networks were trained such the 18-

layer GAN proposed by Alvarez-Gila et al. [3]. Alongside

pure neural net approaches, sparse coding remains an active

avenue of exploration. Robles-Kelly [25] proposed a hybrid

sparse coding/neural net approach, while Aeschbacher et

al. [1] demonstrated that sparse coding approaches (i.e. ad-

justed anchored neighborhood regression [28]) can achieve

comparable performance to those based on neural nets.

Another notable trend in the previously mentioned works

is a shift from evaluating performance on individual spectra

samples (i.e., Parmar et al. [23]) to evaluating performance

on whole images as well as sets of images (i.e., Arad and

Ben-Shahar [4]). While performance evaluation of hyper-

spectral reconstruction algorithms has clearly become more

comprehensive, performance metrics vary widely between

researchers, in terms of both test data and evaluation met-

rics.

The NTIRE 2018 spectral reconstruction challenge of-

fers the first large-scale, uniform benchmark for HS-from-

RGB systems. Its two tracks aim to simulate HS reconstruc-

tion from a known, spectrally-calibrated system (“Clean”),

as well as HS reconstruction “in the wild” from the pro-

cessed output of an unknown camera saved in a lossy im-

age format (“Real World”). The following sections will

describe the challenge in detail, as well as the results and

various methods used to attain them.

2. NTIRE 2018 Challenge

The objectives of the NTIRE 2018 challenge on spec-

tral reconstruction from RGB images are: (i) to gauge and

push the state-of-the-art in HS reconstruction from RGB;

(ii) to compare different solutions; (iii) to expand the avail-

able databases for training/testing; (iv) to suggest a uniform

method of performance evaluation.

2.1. BGU HS Dataset

The BGU HS dataset is the largest and most detailed nat-

ural hyperspectral image database collected to date. For the

purpose of this challenge, the database has been extended

to include 256 images with 53 new public images, and 15

new unreleased validation/test images. Several test images

can be seen in figure 1.

Recent HS-from-RGB methods are often introduced

with reported results for one or more of the existing

During the challenge, 5 of the validation images were publicly re-

leased - increasing the number of publicly available images to 261.

Figure 1. Test images from the “Clean” track (top row) and “Real

World” track (bottom row). In this figure, image brightness has

been increased for display purposes.

databases: the BGU HS [4] database (203 images), the

Chakrabarti [7] database (77 images), or the much smaller

Yasuma [30] database (32 studio images). This variabil-

ity hampers attempts to quantitatively compare different

approaches, a problem further compounded by the variety

of error metrics used in each evaluation (MRAE, RMSE,

PSNR and others).

This NTIRE 2018 challenge suggests a uniform method

for the evaluation of HS-from-RGB algorithms, providing

the first equal-grounds comparison and overview of state-

of-the-art approaches.

2.2. Tracks

Track 1: “Clean” aimed to simulate recovery of HS

information from a known and calibrated RGB imaging

system. Participants were provided with uncompressed 8-

bit RGB images created by applying the CIE-1964 color-

matching function to ground truth hyperspectral informa-

tion.

Track 1: “Real World” aimed to simulate recovery of

HS information from the processed output of an unknown

camera system. Participants were provided with JPEG-

compressed 8-bit RGB images created by applying an un-

known camera response function to ground truth hyperspec-

tral information.

Competitions A competition on the CodaLab platform

was available for each track of the NTIRE 2018 spectral

reconstruction challenge. Each participant was required to

register in order to access the data and submit their esti-

mated HS images results to the evaluation server.

Challenge phases (1) Development (training) phase:

the participants were provided with both HS and RGB train-

ing images (256 pairs), as well as RGB validation images

(5 images); (2) Validation phase: the participants had the

opportunity to test their solutions on the RGB validation
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Track 1: Clean Track 2: Real World

team user MRAE RMSE MRAE RMSE

VIDAR1 [26] ChangC 0.0137(1) 14.45 0.0310(1) 24.06

VIDAR2 [26] contstriver 0.0139(2) 13.98 0.0320(2) 25.01

HypedPhoti photi 0.0153(4) 16.07 0.0332(3) 27.10

LFB [27] Tasti 0.0152(3) 16.19 0.0335(4) 26.44

IVRL Prime zrfan 0.0155(5) 16.17 0.0358(6) 28.23

sr402 sr402 0.0164(6) 16.92 0.0345(5) 26.97

CVL [6] baran 0.0174(7) 17.27 0.0364(7) 27.09

adv rgb2hs shuffle 0.0218(9) 24.81 0.0396(8) 34.05

CEERI [15] harshakoundinya 0.0181(8) 19.41

prakhar.amba 0.0231(10) 17.70 0.0480(9) 32.63

SPEC RC koushikn 0.0401(11) 24.81 0.0817(10) 49.96

grimVision 0.5772(12) 404.44
Table 1. NTIRE 2018 Spectral Reconstruction Challenge results and final rankings on the BGU HS test data.

images and receive immediate feedback by uploading their

results to the online server. A validation leaderboard was

available as well; (3) Final evaluation (test) phase: HS val-

idation images were released (5 images), alongside RGB

test images (5 different images for each of the two tracks).

Participants were required to submit their HS estimation for

the RGB test images and a description (factsheet) of their

methods before the challenge deadline. One week later the

final results were made available to participants.

Evaluation protocol Mean Relative Absolute Error

(MRAE) computed between the submitted reconstruction

results and the ground truth images was selected as the

quantitative measure for this competition. Root Mean

Square Error (RMSE) was reported as well, but not used to

rank results. MRAE was selected over RMSE as the evalua-

tion metric, in order to avoid overweighting errors in higher

luminance areas of the test images vs. those in lower lumi-

nance areas. MRAE and RMSE are computed as follows:

MRAE =

∑

i,c

|Pgtic
−Precic

|

Pgtic

|Pgt|
, (1)

RMSE =

√

√

√

√

∑

i,c

(

Pgtic
− Precic

)2

|Pgt|
, (2)

where Pgtic and Precic denote the value of the c spectral

channel of the i-th pixel in the ground truth and the re-

constructed image, respectively, and |Pgt| is the size of the

ground truth image (pixel count × number of spectral chan-

nels).

3. Challenge Results

From 73/63 registered participants on the “Clean”/“Real

World” tracks, respectively, 12 teams entered in the final

phase and submitted results, codes/executables, and fact-

sheets. Table 1 reports the final scoring results of the chal-

lenge, Figure 2 shows MRAE heat maps for each solution

on the same sampled test image, and Table 2 reports the

runtimes and the major details for each entry. Section 4 de-

scribes briefly the methods for each team while Appendix A

details team members and affiliations.

Architectures and main ideas All proposed methods re-

lied on some form of convolutional neural network [18],

with 7 entries using deep convolutional neural nets (CNNs),

2 using a generative adversarial network (GAN) [10] ar-

chitecture, and one employing a residual dense concatenate

SE network . Notably absent from the challenge are meth-

ods based on sparse coding, which have been previously

demonstrated as suitable for this task [1, 4].

Runtime / efficiency 10 out of 12 participants reported their

runtimes. When implemented on a GPU, proposed methods

reported runtimes ranging from 0.57 seconds to ∼ 4 sec-

onds. CPU implementations required up to 3 minutes. The

most efficient implementations (HypedPhoti, CVL, LFB,

VIDAR) are also among the top performing; Methods re-

quiring longer runtime did not enjoy any performance ad-

vantage. While time efficiency was not a competition met-

ric, both on CPU and on GPU, none of the methods showed

suitable performance for real-time video applications. The

relatively shallow net of CVL or shallow net versions of

HypedPhoti and VIDAR (at the expense of performance)

are capable of (near) real-time on GPU.

Train data Participants were provided with a total of 256

training images, at 1392 × 1300 resolution for a total of

4.6 · 108 hyperspectral pixels. All participants found the

amount of data sufficient for training their model, though

the HypedPhoti team reported that they would require more

data for a network with more than 42 convolutional layers.

Some teams (CVL, sr402, adv rgb2hs) further augmented

the training data [29] by using rotated patches and/or ran-

Two entrants did not reveal their architecture.
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Reported runtime per image

Team Clean Real World Platform CPU GPU Notes Ensemble/Fusion

VIDAR1 [26] ∼3m ∼3m Tensorflow E5-2650 8× Tesla M40 GPU used only for training Multiple

VIDAR2 [26] 0.96s 0.96s PyTorch GTX 1080Ti Multiple

HypedPhoti 0.66s 0.57s Keras/Tensorflow GTX 1080Ti

LFB [27] 0.71s 0.84s PyTorch E5-2630 GTX 1080Ti

IVRL Prime ∼2.5m / 1.5s ∼2.5m / 1.5s Tensorflow E5-2680 Titan X Timed on CPU/GPU

sr402 11.89s 11.91s PyTorch i7-5930k 4× GTX 1080Ti Flip/Rotation

CVL [6] 0.67s 0.67s Tensorflow Titan X 8×flip/rotation

adv rgb2hs 3.64s 3.64s PyTorch Titan X Pascal

CEERI [15] 2.3s Keras/Tensorflow

SPEC RC ∼8s ∼8s Keras/Tensorflow i7-6700k Titan X

Table 2. Reported runtimes per image on the BGU HS test data and additional details from the factsheets.

Figure 2. MRAE heat maps for all submitted methods relative to a sample image in both the “Clean” (top row) and the “Real World”

(bottom row) tracks. Note that the error heat maps for each track have been scaled for optimal display.

dom crops to train their models.

Conclusions The solutions proposed by challenge competi-

tors have not only improved upon state-of-the-art perfor-

mance, but also present novel approaches which signifi-

cantly expand upon previously published works. The chal-

lenge has succeeded in producing the first large-scale equal

grounds comparison between hyperspectral-from-RGB re-

construction algorithms. And we hope it will serve as the

basis for future comparison.

As the “Real World” track rankings are quite similar to

those of the Clean track - it may be beneficial to simulate

additional forms of camera noise and realistic combinations

(i.e. shot-noise, “salt-and-pepper” noise, etc.) for this track

in future challenges.

4. Challenge Methods and Teams

4.1. VIDAR [26]

4.1.1 Solution 1

An ensemble of three CNNs with densely-connected struc-

tures tailored for spectral reconstruction was used. Specif-

ically, in each dense block, a novel fusion scheme was de-

signed to widen the forward paths for higher capacity. An

example of the network structure is shown in Fig. 3 and a

typical setting of network parameters is listed in Table 3.

The Adam solver was used for optimization with β1 = 0.9

and the coefficient of weight decay (L2 norm) was set as

0.0001. The global basic learning rate was 0.001 with

a polynomial function as the decay policy. Training was

Feature extraction Feature mapping Reconstruction





C(3 × 3 × 16/16)

C(1 × 1 × 16/16)































C(1 × 1 × 64)




C(3 × 3 × 16/16)

C(1 × 1 × 8/8)





C(1 × 1 × 16)



























×38 C(1×1×1)

Table 3. A typical setting of hyper-parameters for the network in

VIDAR1 solution. C(·) stands for the convolution with (kernel

size × kernel size × filter number). [·]× and {·}× stand for con-

catenation operators with certain blocks (×1 is omitted). The sym-

bol “/” denotes the parallel operation for path-widening fusion.

stopped when no notable decay of training loss is observed.

The algorithm proposed by He [12] was adopted for initial-

izing weights and biases in each convolutional layer were

initialized to zero. Training images were partitioned into

sub-image patches with a resolution of 50× 50 and a mini-

batch number of 64 was selected empirically for stochastic

gradient decent. The loss function adopted for training was

MRAE. Training required approximately 38 hours using 8

Tesla M40 GPUs for a network with 38 dense blocks. Dur-

ing testing, a general CPU along with at least 32G memory

is required for inference.

4.1.2 Solution 2

An ensemble of three CNNs with residual blocks tailored

for spectral reconstruction was used. An example of the

network structure is shown in Fig. 3. Typically, the fil-

ter number of each convolutional layer was set to 64. The
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Figure 3. Network structures of the VIDAR team. The C with a rectangular block denotes convolution, and the following 1 and 3 denote

the kernel size. The R represents an ReLU activation function. And the C with a circular block denotes concatenation.

Adam optimizer was used with β1 = 0.9; β2 = 0.999;

and e = 10−8. The initial learning rate was 2 × 10−4

with a polynomial function as the decay policy. Training

was stopped after 1000 epochs. Weight initialization, patch

size, batch size, and loss function were identical to those

used in solution 1. The proposed network was trained on a

single 1080Ti GPU. Approximately 60 hours were required

for training a network with 16 residual blocks. During test-

ing, at least 12G GPU memory is required for inference.

4.1.3 Ensemble

Two types of ensemble methods were adopted in the above

two solutions. The first one is called self-ensemble. Specif-

ically, the input image was flipped left/right to obtain a mir-

rored output. Then, the mirrored output and the original

output were averaged into the target result. The second one

is called model-ensemble, whose result is the linear com-

bination of multiple models (e.g., three in the above two

solutions) with different depths, filter numbers, or initial-

izations. Please refer to [26] for complete technical details.

4.2. HypedPhoti

conv

ResBlock

ReLU

ResBlock

conv

20 times

RGB

Hyperspectral

Input

conv

ResBlock

ReLU

Addition

Output

conv
skip connection

Figure 4. HypedPhoti network (left) and a residual block (right).

The HypedPhoti method consists of a deep, fully convo-

lutional neural network that learns a patch-wise end-to-end

mapping from RGB values to 31 spectral channels.

The network architecture is based on ResNet, but with-

out any spatial striding or pooling. That choice was moti-

vated by the intuition that fine-scale detail may be impor-

tant and should not be lost through pooling. Moreover, for

training 32×32 pixel patches were used, as no evidence was

found to suggest that a larger context beyond a 32×32 spa-

tial neighborhood improves spectral reconstruction. Batch

normalization was not employed, since normalization re-

duces the network’s ability to learn correlations between the

spectral distribution and the local intensities (respectively,

radiance values), potentially reducing its robustness against

variations of individual images’ intensity ranges. This re-

duced range flexibility was also reported in [19]. No data

augmentation was performed. The complexity of the pre-

diction appears to lie in the generalization across different

spectral distributions, for which it is not obvious how to per-

form a synthetic, but nevertheless realistic augmentation.

On the contrary, there seemed to be little use in augment-

ing with the usual spatial transformations, since invariance

against them does not seem to be a limiting factor – and in

fact could be potentially detrimental if there are directional

effects in the spectral reflectance.

The employed network is a variant of the standard

ResNet architecture. An illustration is given in Fig. 4. In

particular, The network used in the final competition had a

total of 42 convolutional layers, 40 of which are grouped

into 20 so-called ResBlocks. Each ResBlock consists of

2 convolutions and a ReLU activation after the last convo-

lution. Experiments with different numbers of ResBlocks

were performed, and found that overfitting occurred when

deeper networks were used. Signficantly shallower designs

with only 6 ResBlocks performed quite well, too, whereas

early stopping well before convergence on the training loss

was necessary to get the best possible validation results with

20 ResBlocks. Hence, the possibility that the selected ver-

sion with 20 ResBlocks is already overfitted to some bias of

our rather small validation set (15 images) cannot be ruled

out.

Different configurations were used for tracks 1 and 2. In

the “Clean” setup all additive biases were removed from the
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convolutions, since the model in forward direction (from

hyperspectral to RGB) is purely multiplicative. However,

in the “Real World” setup additive biases were included to

compensate for compression artifacts.

4.3. LFB [27]

Input Image

32x30x30

Reconstruction

64x28x28

128x26x26

128x24x24

3x32x32

256x26x26

128x28x28

64x30x30

3x32x32

Figure 5. Visualization of the LFB network architecture.

A convolutional neural network is employed to solve the

task of spectral reconstruction. The network architecture is

based on a U-Net, which has been modified to perform a

regression task. All pooling layers were removed and there

is no batch normalization.

Figure 5 visualizes the architecture used for the Clean

track. The red arrows represent a convolutional layer hav-

ing a kernel size of 3, a unity stride and no zero-padding

followed by a ReLU activation. The upward side of the

network consists of corresponding transposed convolutions.

The concatenation of such a transposed convolution and a

ReLU activation is visualized by green arrows. Skip con-

nections are added everywhere but in the uppermost layer

and are visualized by red arrows. The very first applied

convolution takes a three channel image as input, i.e. the

RGB-image, and outputs 32 channels. The subsequent two

convolutional layers each double the channel count up to a

final count of 128. Afterwards, the channel count remains

constant until it is reduced again in the upward path in a

symmetric way to the downward path.

The architectures used for each track are slightly differ-

ent. For the “Clean” track, a total amount of five layers was

used, whereas a layer count of 6 was found to be optimal for

the “Real World” track. In addition, a convolutional layer

with a kernel size of 5 was added at the very start for the

“Real World” track, taking an 3 channel RGB-image as in-

put. This layer was added in order to increase robustness

to noise and compression artifacts. The output of this pre-

processing layer is fed into the actual network.

The final networks were trained from scratch on the en-

tire data set provided within the challenge. A patch size

of 32 and a batch size of 10 were used. All images were

split into patches in a deterministic way, such that neigh-

boring patches are located next to each other. Each model

was trained for 5 epochs using the Adam optimizer with

a learning rate of 0.0001 and, subsequently, for another 5

epochs using SGD with an initial Nesterov momentum of

0.9. The code was written in python using PyTorch.

4.4. IVRL Prime

Figure 6. Illustration of the IVRL Prime GAN framework for spec-

tral reconstruction. Note that the framework contains one gener-

ator network and two discriminator networks which help produce

more realistic spectral reconstructions.

A generative adversarial framework [10] was used for

spectral reconstruction as shown in Figure 6. This frame-

work contained one generator network and two discrimina-

tor networks. 12 residual blocks [12] with increasing num-

ber of filters for the generator network were used to recon-

struct spectral data from RGB images. The first residual

blocks have 64 filters, and the number of filters is dou-

bled after each 4 residual blocks. To help the generator

network produce more realistic spectral reconstructions, 2

additiona discriminator networks were added to the frame-

work. One discriminator network takes in all spectral bands

of the output data and determines if it is realistic, the other

discriminator network only “sees” the last 5 bands (660nm

- 700nm) as these 5 bands are harder to reconstruct. The

DCGAN [24] architecture was used for the discriminator

network. A combination of MRAE and adversarial loss was

used as the overall loss function of the framework. Accord-

ing to our experiments, adding adversarial loss provided 5%

improvements in MRAE comparing to the pure residual net-

work.

In the training dataset, 62 images which have a different

context from that of the testing dataset were manually re-

moved. 64 × 64 overlapping patches were cropped with a

stride of 16 from the selected training dataset. Adam [14]

was used for optimizing the network with β1 = 0.9 and a

learning rate of 1e − 4, the learning rate was halved after

each 5000 batches.

4.5. sr402

To reconstruct the spectral image, a Residual Dense Con-

catenate SE Network was designed ( Fig. 7). Inspired by

DenseNet and SE-Net, the main idea is to collect the middle

feature maps and pass these layers to the final convolution

in order to maximize the amount of information used for re-

construction. Therefore, the model before final convolution

can provide low-to-high feature maps.
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Figure 7. Residual Dense Concatenate SE-Net used by sr402.

Training As shown in the Fig. 7, the model is an end-to-

end Convolution Neural Network. For the challenge only

up to 8 ResSEBlock were explored, and each ResSEBlock

was composed of 7 ResUnits with 64 feature maps. At

training time, 64 × 64 input and target patches were ran-

domly cropped from the training data. During each epoch,

32 patches were randomly cropped from each image. Mini-

batch size was set to 4. Horizontal/vertical flips and 90◦ ro-

tations were randomly used for each path. The model was

trained with MRAE loss using the Adam optimizer with an

initial learning rate of 4 · 10−5. The learning rate decays

by 0.65 after every 50 epochs, for a total of 500 epochs.

The same network was used for each Track. For the Track

1 (Clean), model parameters were randomly initialed using

PyTorch’s default function. After training over Track 1, the

resulting pretrained model was used to learn the Track 2

dataset (Real World).

The network was implemented in Pytorch on 4 NVIDIA

1080Ti (11G) GPUs. The training time for each Track was

12h.

Testing Due to the limitation of GPU memory, the input

images from the validation/test sets were split into small

patches and their output inferred. Finally all patches were

stitched together. The inference-time per image was 11.91s

for both validation data and test data.

4.6. CVL [6]

CVL proposed a moderately deep fully-convolutional

CNN method (FCN) [6] aimed to learn the RGB-to-HS

latent mapping while avoiding overfitting as much as possi-

ble.

Fig. 8 provides a schematic representation of the pro-

posed network. All layers except last one use PReLU as ac-

tivation function and no batch normalization. The 7×7 con-

volutional layer can be considered skip connection and also

learns the basic mapping from RGB input to HS jointly with

the main subnetwork. The main subnetwork first shrinks

Input RGB

Conv 256 5x5

Conv 64 1x1

Res Block 64 3x3

Res Block 64 3x3

Conv 256 1x1

Conv 31 5x5

Output

Conv 31 7x7

Res Block 64 3x3

Res Block 64 3x3

Conv 32 3x3

input

PReLu

Conv 32 3x3

PReLu

output

(a) network (b) residual block
Figure 8. CVL solution: (a) network layout and (b) residual block.

the input then applies residual blocks with skip connections

to then expand back to a 31-band output image added to

the 7 × 7 conv subnet output. CVL used data augmen-

tation [29] through scaling and flips/rotations at training

and enhanced prediction [29] through flips/rotations at test-

ing. The network was optimized for L2 loss. The larger

was set the number of used residual blocks in the proposed

FCN architecture, the better was the performance achieved

but at the expense of slower inference time. More de-

tails are found in [6] where an efficient shallower design

achieved top results on the common HS-from-RGB bench-

marks: ICVL [4], CAVE [30], NUS [21].

4.7. adv rgb2hs

Figure 9. The adv rgb2hs adversarial spatial context-aware spec-

tral image reconstruction model.

Hyperspectral natural image reconstruction was posed as

an image to image mapping learning problem, and a condi-

tional generative adversarial framework (Fig. 9) was ap-

plied to help capture spatial semantics. In particular, [13]

was adapted to this task, as described in [3]. Initially,

the generator was defined as a modified U-net architecture,

comprising eight successive 3 × 3 convolutions with stride

2 and a leaky ReLU after each of them and eight transposed
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convolution blocks successively doubling the activation size

up until the original 256× 256 size, followed by two 1× 1

convolutions in order to get the direct input images ade-

quately combined with the upstream features. However, due

to an empirical finding suggesting that increasing the recep-

tive field over a certain value does not benefit reconstruction

performance, a pruned version of the generator was used in-

stead, with only three branches and a receptive field of 7×7.

As for the discriminator, it was composed of five 3× 3 con-

volutional layers with a stride a of 2. The reader is referred

to [3] for further implementation details.

For this challenge, though, certain elements were mod-

ified as compared to [3]: MRAE was used as the non-

adversarial component of the overall loss function, instead

of L1. Training was performed from scratch over random

256 × 256 crops for 500 epochs, and the test-time recon-

struction was done in a fully-convolutional way. The net-

work was implemented using Pytorch, and a NVIDIA Titan

X Pascal GPU was used for training and inference. Training

required ≈ 16sec/epoch for a batch size of 1. The same ap-

proach was used for both Clean and Real World challenge

branches, although separate models were trained for each of

them.

4.8. CEERI [15]

Figure 10. 2D-CNN model architecture used by the CEERI team.

A 2D convolution neural network based approach was

used for hyperspectral image reconstruction from RGB. A

2D-CNN model primarily focuses on extracting spectral

data by considering only spatial correlation of the chan-

nels in the image. The 2D-CNN model as shown in Figure

10, having 2D kernel extracts the hyperspectral information

available in the spatial domain of the specific channel. The

kernel convolves on individual channels (i.e. R, G, B) and

the average of the values generated for each pixel of these

channels are considered. The architecture is a simple 5 con-

volution layer architecture with 5 × 5 kernel size followed

by ReLU activation. The four initial layers contain 64 fea-

ture maps and the final layer contains 31 feature maps which

correspond to output images spectral channels. Training of

the model was done on the BGU HS dataset. Patches of

size 64 × 64 × 3 were extracted from RGB input images

and patches of size 64 × 64 × 31 were extracted from cor-

responding hyperspectral images. The network was trained

by feeding an RGB patch as input while the correspond-

ing hyperspectral patch was used as ground-truth. A total

of 84021 training patches were extracted from the provided

data.

The 5-layer architecture was trained with learning rate

of 10−4 using the Adam optimizer to minimize the mean

absolute error between the model output and ground truth.

4.9. SPEC RC

Figure 11. SPEC RC’s DenseNet architecture model. DB stands

for Dense Block, TD for Transition Down,TU for Transition Up.

The number of convolutional layers used in each block is shown

within brackets.

Stacked layers of dense blocks were used for RGB to

hyperspectral reconstruction. The DenseNet architectures

have been used for segmentation and hyperspectral recon-

struction previously [9]. In this implemetation each dense

block consisted of four convolutional layers with a growth

factor of 16. The model consisted of 56 convolution lay-

ers with 2,456,512 training parameters (Fig. 11). Six dense

blocks containing [4,4,4,4,4,4] convolution layers are used

for encoding. Each dense block has a growth rate of 16.

Features were downsampled by a factor of 2 after each of

the first five dense blocks using a Transition Down(TD)

block where each TD block contains 1 × 1 convolution

layer followed by a 2 × 2 maxpooling. The transition

Up(TU) block consisted of two convolutional layers and a

subpixel upsampling layer. The decoding part of the net-

work consisted of 5 dense blocks each containing 4 convo-

lution layers preceded by a TU block. The mean squared er-

ror between the predicted result and ground truth data was

used as the loss function. The model was initialized with

HeUniform[11] and trained with the Adam[14] optimizer

(β1=0.9, β2=0.999 and ǫ = 10−8) for 300 epochs with a

learning rate of 0.001 on mini batches of size 20.
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