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Abstract
Cells live in ever-changing environments, thereby facing a variety of dynamic environmental

signals. Environmental stimuli elicit intracellular responses through signaling pathways,

which converge on transcriptional activation or repression of target genes. Despite intensive

research, dissecting the complex interactions between pathway components that modulate

mRNA and protein production still remains a difficult task. To this end, single-cell approaches

provide unique insights into intracellular processes and cell responses to environmental

stimuli, otherwise inaccessible with traditional bulk studies.

Single-cell measurements have revealed that isogenic cells sharing the same environment

display substantial heterogeneity in both transcript and protein level. As the initial step in

gene expression, transcription is an important source of such variability in eukaryotic cells

due to low number of molecules involved, transcription factor dynamics and the discrete

nature of biochemical reactions. Notably, production of mRNA during transcription occurs

in short periods of activity, termed as transcriptional bursts, followed by longer periods

of inactivity. Despite widespread observations of transcriptional dynamics in mammals,

upstream molecular mechanisms shaping the eukaryotic transcription remained elusive. In

this study, we quantitatively linked upstream factors and transcriptional kinetics by developing

an experimental system to temporally monitor, simultaneously, inputs (transcription factors)

and outputs (target gene expression) in mammalian cells, in response to stimulus.

We established two Tet-On inducible stable cell lines each expressing a fusion protein of

a luminescence (Nanoluciferase) reporter to either SMAD4 or SMAD2, the two main transcrip-

tion factors downstream of the TGF-β pathway. These cell lines that also contain a short-lived

firefly luciferase reporter for the expression of the target endogenous connective tissue growth

factor (ctgf ) gene allowed us to quantitatively link nuclear accumulation of SMADs upon

TGF-β stimulation to the target gene expression in real-time single cell measurements. Time-

lapse luminescence microscopy and image analysis with the custom developed CAST (Cell

Automated Segmentation and Tracking platform) platform provided quantitative single-cell

data to link the upstream transcription factor profile to its target gene activity.

The data revealed weak single-cell correlations between translocation level and the target

gene expression response which suggests a mechanism in which the translocation of SMADs

initiates the transcriptional response but affects the response amplitude minimally. However,

SMAD4 expression levels influenced the target gene response dynamics such that cells with

high SMAD4 abundance favored to respond in a more sustained and even oscillatory manner.

This suggests a mechanism consisting of a dynamic interplay between the transcriptional
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Abstract

activators and feedback mechanisms in TGF-β signaling. We explored further the effect of

different factors such as ligand concentration, ligand type on both signaling and target gene

response. Taken together, this study proposes an experimental and quantitative framework

that dissect mechanisms underlying transcriptional response to stimulus.

Key words: Quantitative live-cell imaging, luminescence microscopy, fluorescence mi-

croscopy, single cell dynamics, cellular heterogeneity, signal transduction, transcription fac-

tors, transcriptional bursting
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Résumé
Les cellules vivent dans des environnements en changement permanent et font face à de

multiples signaux environnementaux. Ces stimuli provoquent des réponses intracellulaires

au travers de voies de signalisations, qui permettent l’activation ou la répression de gènes

cibles en aval. Cependant, la complexité des interactions entre les voies de signalisation et

production d’ARNm ou de protéines reste peu comprise. Dans ce but, les approches sur

cellules individuelles permettent de comprendre des processus cellulaires en réponses à des

stimuli qui resteraient inaccessibles au niveau de la population.

Les mesures effectuées sur cellules individuelles ont révélé une importante hétérogénéité

dans les niveaux de transcrits et de protéines dans des cellules isogéniques dans un même

environnement. En tant que première étape dans l’expression des gènes, la transcription

participe activement à cette variabilité chez les cellules eucaryotes, notamment en raison du

faible nombre de molécules impliquées, de la dynamique des facteurs de transcription et de la

nature discrète des réactions biochimiques. Dans cette étude, nous avons lié quantitativement

les facteurs en aval et la cinétique de transcription en développant un système permettant de

mesurer simultanément une cause (facteurs de transcription) et une conséquence (expression

d’un gène cible) dans des cellules mammifères et en réponse à des stimuli.

Premièrement, nous avons établis un système de cellules stables contenant le système

d’induction Tet-On exprimant une protéine fusion entre un reporteur luminescent (Nanoluci-

férase) et SMAD4 ou SMAD2, deux facteurs de transactions en aval de la voie de signalisation

de TGF-β. Ces cellules contiennent également un reporter luciférase à demi-vie réduite pour

le gène cible endogène "connective tissue growth factor" (ctgf ), qui permet un lien entre

l’accumulation nucléaire des SMADs suite aux stimulations de TGF-β et l’expression du gène

cible en temps réel et dans des cellules individuelles. La mesure de signal luminescent par

microscopie et l’analyse des images par la plateforme CAST fournissent des données quantita-

tives pour chaque cellule, et permettant de comprendre le lien entre la présence de facteurs

de transcription et l’activité d’un gène cible.

Nous avons obtenu des mesures temporelles montrant un niveau d’hétérogénéité sub-

stantiel autant dans la translocation de SMAD que dans la réponse du gène cible ctgf. Dans

chaque cellule, le niveau de corrélation entre la magnitude de la translocation et la réponse

du gène cible suggère que la translocation de SMAD initie la réponse transcriptionnelle mais

n’affecte que marginalement son amplitude. Cependant, les niveaux d’expression de SMAD4

influencent la réponse du gène cible de telle sorte que des niveaux élevés de SMAD4 favorisent

une réponse soutenue ou même oscillatoire. Ceci suggère l’existence de mécanismes d’interac-
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tion dynamique entre les activateurs de la transcription, et des rétroactions au sein de la voie

de signalisation de TGF-β. Nous avons également investigué l’impact de différents facteurs

tels que la concentration ou les types de ligand sur la voie de signalisation et la réponse du

gène cible. Nous proposons donc un cadre expérimental quantitatif permettant de disséquer

les mécanismes impliqués dans la réponse transcriptionnelle à un stimulus.

Mots clefs : Imagerie quantitative de cellules vivantes, microscopie à luminescence, dyna-

mique de cellules individuelles, hétérogénéité cellulaire, transduction de signal, facteurs de

transcription, transcription en rafales
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1 Introduction

1.1 Transcription-centered gene expression

Cells live in dynamic environments in which they face a variety of environmental cues that

change with time. All cells respond dynamically and differently to ever-changing environ-

mental stimuli by modulating their gene expression through a series of events [Crick, 1970].

Cellular responses to stimuli encompass several consecutive steps. Figure 1.1 depicts gene

expression from the ligand induction of transcriptional activators to the formation of a mature

protein. Signal propagation from cell membrane to nucleus is initiated by the activation of

transcription factors specific to the ligand. Upon activation, the transcription factor translo-

cates into the nucleus where it binds to gene regulatory elements and, through interactions

with other components of the transcriptional machinery, promote access to DNA and facilitate

the recruitment of the RNA polymerase enzymes to the transcriptional start site. Subsequently,

a gene is transcribed to RNA which needs to be exported from the nucleus to the cytoplasm

where RNAs are translated into proteins. Therefore, together with the dynamic interplay

between chromatin and several other mechanisms, transcription factors shape the response

of cells to stimulus.

In the classical view, gene expression response levels are predominantly regulated by

transcription factors [Spitz and Furlong, 2012]. The end point of many signal transduction

pathways is the activation of transcription factors that bind to short sequence motifs found in

the promoter and enhancer regions of genes. Higher eukaryotes have evolved complex mech-

anisms for controlling the rate of gene transcription through these proteins. Considering the

diversity of physiological signals that regulate gene expression, the activities of transcription

factors are subject to multiple modes of regulation. The activities of many transcription factors

are context dependent and can be modulated by other regulators. One particular transcription

factor can activate transcription of one gene while repressing that of another. Moreover, the

regulatory sequences of most eukaryotic genes contain binding sites for multiple transcription

factors, allowing each gene to respond to multiple signaling pathways and to fine-tune tran-

script levels. Such combinatorial and context-dependent regulation of transcription allows
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Chapter 1. Introduction

higher eukaryotes to respond to a broad array of stimuli using the same factors. In addition, to

respond to changes in stimulus, a cell must be able to inactivate a transcriptional activator as

quickly as it is induced which further requires formation of other mechanisms to ensure stable

responses. While transcriptional control is a simpler task in prokaryotes, higher eukaryotes

have more complex mechanisms for transcriptional regulation. Transcription is controlled

by a variety of transcription factors, cofactors and chromatin regulators [Voss and Hager,

2014, Reiter et al., 2017]. Information flow from DNA to RNA (transcription) and from RNA to

protein (translation) are also spatially separated in eukaryotes by a nuclear membrane that

encompasses the nucleus: transcription occurs in the nucleus.

Figure 1.1 – A traditional and unified view of gene expression. Modified from [Orphanides and Reinberg,
2002].

The complexity of each of the steps in the pathway from activation to protein has required

that they be studied initially in isolation using classical biochemistry. From these earlier

studies, we know that consecutive steps in the pathway are interdependent or are influenced

by one another. Over the past two decades, emerging single-cell methods also revealed that

gene expression exhibits substantial cell-to-cell variability depending on the gene and the

organinsm. Individual cells even in isogenic populations exhibit a unique response due to

inherent stochasticity of biochemical processes, the variability of each component in the

signal transduction pathway, the phenotypic variability of cells [Elowitz et al., 2002, Raj and

van Oudenaarden, 2008], or cell-cycle phase [Zopf et al., 2013, McDavid et al., 2014]. Moreover,

the dynamic interactions within a pathway in which two or more transcription factors co-

regulate the same target gene can tune the cellular response further [Spitz and Furlong, 2012].

Such variations among cells and the dynamic pathway interactions carry valuable information

regarding the mechanisms underlying transcriptional response. Therefore, it is essential
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to decipher how these variations and upstream interactions determine the transcriptional

response of a gene. The quantitative link between transcription factor dynamic profile and the

activity of the regulated gene is still not clear and under investigation in a variety of systems.

1.1.1 Transcription in eukaryotes

DNA carries the hereditary information needed for the existence and development of living

organisms. It contains sparse fragments of functional DNA sequences, termed as genes, that

form the basic unit of genetic information. The encoded information in genes is transcribed

into RNA which further serves as the template for protein synthesis. Therefore, transcription

is the main regulatory stage of gene expression determining which genes are expressed and

when. Moreover, mRNAs exist in much smaller quantities (typically fewer than 100 copies)

than its expressed protein counterparts (103 to 106 copies) due to the sporadic nature of

transcription and amplification from the translation of many protein copies from a single

mRNA [Schwanhäusser et al., 2011]. Therefore, temporal fluctuations in transcribed mRNAs

adds an important source of variability in gene expression. Thus, heterogeneity in protein

expression levels is mainly attributed to variability in transcriptonal dynamics in individual

cells. Transcription itself is also highly sophisticated and tightly regulated process especially

in eukaryotes. The organization of the genome into chromatin structure puts the first layer of

complexity and regulation by preventing DNA from initiating spurious transcription cycles.

Combinatorial molecular interactions at multiple stages of the transcription cycle adds another

layer of regulation [Fuda et al., 2009].

Transcriptional initiation

Eukaryotic transcription requires sequence-specific transcription factors to bind to regulatory

DNA sequences either in close proximity or distal regions of the promoter. These sequence-

specific binding of the activator results in sequential recruitment of general transcription

factors (GTFs) and RNA polymerase II (RNAPII) to assemble the pre-initiation complex (PIC)

on the core promoter which leads to depletion of nucleosomes [Juven-Gershon et al., 2008].

PIC encompasses GTFs such as TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH which contributes

to the formation of a stable PIC complex and recruitment of RNAPII at the transcription start

site (TSS) [Grünberg et al., 2012]. Concurrently, activators recruit the Mediator complex which

further stabilizes the complex. The formation of a stable PIC at the gene promoter may result

in the escape of RNAPII from the promoter and advancing the complex to the next stage in

the transcription, the elongation. Some GTFs appear to remain associated with the promoter

enabling efficient reinitiation for the next transcription cycles [Sainsbury et al., 2015].
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Transcriptional elongation and termination

Initiation step is followed by the promoter escape in which RNAPII loses its contacts with

core promoter elements and concurrently tightens its grip on the nascent RNA [Saunders

et al.]. The initial promoter escape does not guarantee productive transcription since RNAPII

may transiently stop in early transcriptional elongations due to some pause inducing factors

blocking its progression, termed as promoter-proximal pausing. The paused RNAPII still

holds together with nascent RNA but needs further signals to progress elongation. This

pause whose range vary from several minutes up to hours in some cases adds another layer

of transcriptional regulation which may contribute to a synchronized activation in certain

signal response genes [Adelman and Lis, 2012]. After proximal pausing release, the elongation

transcription complex continues to incorporate nucleotides to extend the nascent mRNA

along with co-transcriptional splicing, the mechanism of removing introns from the nascent

pre-mRNA [Martin et al., 2013]. The elongation rate differs for different genes. It also changes

throughout the elongation depending on some features of the regions transcribed such as

GC content, histone organization and splicing. Dissociation of RNAPII from DNA followed by

cleavage and polyadenylation of the 3-end of the nascent transcript marks the transcriptional

termination [Kuehner et al., 2011]. Upon its fall off from the DNA template, RNAPII can still be

recycled for reinitiation of a new transcription cycle either on the same or another promoter.

1.1.2 Multifactorial regulation of transcription

Transcription orchestration depends on various regulatory components and dynamic interac-

tions of those in each stage of the transcription cycle. Firstly, the chromatin organization in the

vicinity of the gene of interest plays a key role in transcription regulation. A nucleosome is a

basic unit of genome organization in eukaryotes, encompassing a 147 base pairs (bp) sequence

of DNA wound around eight histone protein cores, 2 copies from each of the core histones H2A,

H2B, H3, and H4. The linker histone H1, forming the variable length linker regions of nucleo-

somes, stabilizes the structure further [Kouzarides, 2007]. In principle, this compact structure

of nucleosomes in the nucleus restricts DNA accessibility preventing transcription. The com-

pact structure hinders the binding of certain factors to DNA and PolII elongation along the

gene. However, N-terminal regions, termed as histone tails, can be altered post-translationally

through various histone modifications which alters the chromatin compaction [Andrews et al.,

2016].These histone modification are essential for the maintenance of a repressed or activated

status of a gene. Different combinations of histone modifications and the dynamic interplay

between them determine the density of the chromatin environment and its permissiveness

to transcription. Methods such as ChIP-seq shed light on the influence of the histone code

on the transcriptional regulation [Ho et al., 2014]. Histone modifications include acetylation,

methylation, ubiquitination of lysine; methylation of arginine; and phosphorylation of serine

to name a few among many others. For example, acetylation of lysine residues at histone tails

neutralizes the positive charge which leads to chromatin destabilization, thereby marking

transcriptional activation. Therefore, histone acetylation marks are almost always associated
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with active transcription. For example, H3K27ac is found at both the active promoter and

enhancer regions [Creyghton et al., 2010]. H3K9ac also contributes to the decompaction of

chromatin by nucleosome depletion in the close vicinity of the transcription start site [Nishida

et al., 2006]. In addition, H4 histone acetylation also contributes to the activation disrupting

the linking between neighbouring nucleosomes [Shogren-Knaak et al.]. However, methylation

of the lysine residues can be associated with either active or repressive states. Among them,

H3K9me3 and H3K27me3 are marks of heterochromatin, referring to a transcriptionally inac-

tive state of chromatin. H3K9me3 binds heterochromatin protein 1 (HP1) which is responsible

for the formation and maintenance of heterochromatin leading to transcriptional repression

[Hiragami-Hamada et al., 2016]. H3K27me3 interacts with H3K27ac in an antagonistic manner:

it functions via recruiting a polycomb repressive complex (PRC) which contributes to the com-

paction of the chromatin [Di Croce and Helin, 2013]. H3K27me3 and H3K4me3 play key roles

in embryonic stem cells by regulating proper cell differentiation. However, histone methy-

lation can also be associated with an active state of transcription. Among them, H3K36me3

and H3K4me3 are frequently encountered in coding regions of active genes. H3K36me3 con-

tributes to deacetylation of histones along PolII elongation to suppress intragenic transcription

initiation [Carrozza et al., 2005]. H3K4me3 is frequently located either in the promoter or

enhancer regions of genes. The combinatorial diversity of these modifications leads to precise

adjustment of compaction and consequently transcription [Filion et al., 2010]. This complex

histone code also determine accessible genomic regions for transcription factor binding. DNA

regulatory sequences add another layer of regulation for transcription. These sequences can

be subdivided into three classes depending on their proximity to the transcription start site: 1)

the core promoter that encompasses short sequences enclosing the transcription start site.

2) the promoter-proximal region where sequence-specific transcription factors bind, either

activating or repressing the transcription. 3) enhancer and silencer sequences that activate or

suppress their target genes over a greater separation [Sanyal et al., 2012]. The core promoter

region is responsible for the recruitment of transcription preinitiation complex (PIC) while it

further needs proximal-promoter elements to initiate the transcription located in 100-200 bp

proximity of the transcription start site. Enhancers also establish proximity with their target

genes through DNA looping and activate transcription [Plank and Dean, 2014]. The interplay

between these regulatory elements, their target promoters and the chromatin state fine-tune

the transcription and consequently protein expression.

1.1.3 Single-cell measurements of transcription and gene expression to investi-
gate cellular variability

Over the past decades, numerous techniques have been developed allowing quantitative

analysis of gene expression both at mRNA and protein levels including western blots, northern

blots, RNA-seq, flow cytomery and mass spectrometry. Most of these methods are performed

at the population level and provide snapshots of the cellular content at a certain time point.

Therefore, these population-averaged methods obscure details of cellular dynamics and

variability since they require measurements on a large number of cells [Larson et al., 2009]. Yet,
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the copy numbers of mRNAs and proteins change over time and vary from cell to cell even in

isogenic cell populations. Single-cell approaches have recently provided valuable quantitative

information to investigate cellular variability at the single-cell level with high temporal and

spatial resolution [Larson, 2011]. This quantitative view of single-cell gene expression is based

on counting mRNAs in single cells, monitoring transcription in real-time, and monitoring gene

expression with fluorescent protein-based technologies. Here I will review these experimental

approaches that have become essential in understanding the rules governing gene expression

and transcriptional kinetics.

Fluorescence in situ hybridization (FISH) is a method developed to detect and localize

the presence or absence of specific DNA sequences on chromosomes. It uses fluorescently

labeled nucleic acid probes that bind to specific parts of the chromosome. The technique can

also be utilized to detect and localize specific RNA targets. The RNA-FISH method originally

used limited number of probes harboring multiple fluorophores [Femino et al., 1998, Levsky

and Singer, 2003]. With recent advances, the method typically uses 20 to 50 probes of 18-20

nucleotide length for the same transcript. The use of higher number of colocalized probes,

each harboring a single fluorophore, resulted in a diffraction-limited detectable spot, which

prevented the detection of false positives and thereby allowing detection of single molecule

RNA (sm-FISH, Raj et al. [2006, 2008]), Figure 1.2). Therefore, the method is used for the

precise and direct visualization of active transcription sites in the nucleus and of endoge-

nous transcripts allowing to distinguish between mRNA and nascent pre-mRNA in cells. The

method was initially limited to measure only a few genes in parallel [Levsky and Singer, 2003].

Further improvements based on combinatorial labeling extended this approach to the simul-

taneous measurement of a larger number of RNA species [Jakt et al., 2013, Levsky et al., 2002,

Lubeck and Cai, 2012]. A modified approach called iceFISH (intron chromosomal expression

FISH), generated transcriptional profiles of 20 genes simultaneously by using distinguishable

combinations of fluorophores, along a single chromosome in single cells [Levesque and Raj,

2013]. Similarly, bDNA (branched DNA) approach further enabled large-scale multivariate

profiling RNA transcript abundance using tree-like structure of probes [Battich et al., 2013].

More recent methods ultimately achieved transcriptome scale multiplexing using barcoding

approach through successive rounds of hybridization and imaging on the same sample [Chen

et al., 2015, Moffitt and Zhuang, 2016, Eng et al., 2017]. smRNA-FISH has been applied to

different organisms including E.coli [Taniguchi et al., 2010, So et al., 2011, Chong et al., 2014],

yeast [Mao et al., 2010, Zopf et al., 2013, Neuert et al., 2013], and mammals [Raj et al., 2006,

Brody et al., 2011, Senecal et al., 2014, Singer et al., 2014, Battich et al., 2015]. In addition

to cultured cells, the method was successfully applied to tissue slices [Itzkovitz et al., 2011,

Bahar Halpern et al., 2015] and thin organisms [Lécuyer et al., 2008, Raj et al., 2008]. Overall,

smRNA-FISH allows the quantification of both the copy number of individual transcripts and

the spatial distribution of these molecules within single cells. The transcriptional bursting

parameters of the telegraph model can be estimated by fitting measurements of mRNA copy

number at a single-cell level[Dey et al., 2015]. This approach, providing rapid estimates of

transcriptional kinetics, contributes to our understanding of transcription. Yet, these dynamic
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properties are usually inferred from a population distribution at a single time point, assuming

each cell is part of a homogeneous population. smFISH is still a static method since it is

performed on fixed samples and it does not allow real-time measurements of transcriptional

fluctuations. Thus, it is essential to utilize dynamic methods to monitor and quantify how

transcription evolves in time.

Figure 1.2 – mRNA detection in single cells using single molecule fluorescence in situ hybridization
(sm-FISH). Schematic representation of smFISH method (left side). The binding of fluorescently labeled
synthetic oligonucleotides allows visualization of mRNAs including nascent mRNAs at the transcription
site. Active transcription sites, shown by the arrow, create brighter spots due to synthesis of multiple RNAs
(right). Modified from [Larson et al., 2009].

MS2/PP7 techniques allowed visualization of mRNA in real time in living cells for the

first time. The method is based on the high binding affinity of MS2/PP7 capsid proteins to

RNA stem loop structure (Figure 1.3). The system has two parts: The first part constitutively ex-

presses MS2 or PP7 capsid protein labeled with a fluorescent protein. The second part includes

a DNA cassette of sequence repeats coding for RNA stem loop in the untranslated regions

of the reporter mRNA. As soon as the reporter mRNA is transcribed, MS2/PP7-fluorescent

fusion protein binds to these stem-loop sequences [Bertrand et al., 1998]. This system allows

visualization of the transcription spot directly and consequently monitoring of transcription

kinetics in living cells. Real-time imaging of transcriptional activity in single cells provide

the possibility to develop models describing the stochastic transcription. The method has

been applied to many organisms such as E.coli [Golding et al., 2005], yeast [Larson et al.,

2011], dictyostelium [Chubb et al., 2006] and mammals [Darzacq et al., 2007, Brody et al., 2011,

Martin et al., 2013, Yunger et al., 2010, Ochiai et al., 2015]. The technique has also been applied

to live imaging of transcription in Drosophila embryos [Bothma et al., 2014]. Moreover, these

systems have been shown to allow simultaneous measurements of two gene loci in living cells

[Hocine et al., 2013]. The method is suitable for time-lapse recording with high-temporal

resolution (5-60 sec); however, the duration of the recording is limited by photobleaching

and phototoxicity. The system has also the disadvantage that mRNA stability and trafficking

may deviate from its normal profile due to insertion of stem-loops while modifications of

the system improved this issue [Tantale et al., 2016]. Moreover, the establishment of the

system requires an initial titration of each expression construct to achieve an optimal ratio

of MS2-GFP stem loop to RNA expression [Boireau et al., 2007, Lionnet et al., 2011, Yunger

et al., 2013, Suter et al., 2011, Yunger et al., 2010]. Precise detection of RNA signal localization

is also a challenging task due to strong fluorescent background sourced from accumulated
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fluorescent-coat protein.

Figure 1.3 – MS2-GFP system for detection of RNA in living cells. Schematic depiction of MS2-GFP
system (left), MS2 coat protein binds to MS2 stem loops inserted into 3-untranslated region of mRNA of
interest. MS2 system long-term imaging allowing the visualization of transcription site as the bright spot.
Modified from [Tyagi, 2009, Larson et al., 2013].

Single-cell real-time imaging of gene expression reporters provides an alternative tool

to quantify the temporal evolution of protein expression in a given cell. Live-cell microscopy

combined with fluorescent protein based technologies has been used to quantify gene ex-

pression and its variability in single cells [Warmflash et al., 2012, Aymoz et al., 2016, Strasen

et al., 2018]. Fusing the fluorescent protein to a target protein or inserting the fluorescent

protein under the control of a promoter of interest allowed monitoring of expression dynamics

and variability over time. Despite its widespread use in live-cell imaging, fluorescent based

technologies have some limitations. One limitation is that fluorophores lose their capacity to

fluoresce over time due to photobleaching. Moreover, cells are prone to phototoxic effect of

generated reactive chemical species due to repeated exposure of fluorescently labeled cells

to illumination from lasers and high-intensity lamps. In addition, a fluorescent protein has

to go through several stages to become functional, termed as maturation. This maturation

time, varying from several minutes to more than an hour, restrains use of fluorescent imaging

in some signalling pathways where rapid changes are investigated [Miyawaki et al., 2003,

Shaner et al., 2005]. Finally, autofluorescence sets a limit for sensitivity which would not

allow detection of fewer than several thousands of proteins per cell [Newman et al., 2011].

It is possible to overcome most of aforementioned limitation by using luminescence based

imaging methods which utilize an enzymatic reaction of luciferases to produce light reaching

much higher sensitivity without any phototoxicity effect for extended periods of time [Suter

et al., 2011, Mazo-Vargas et al., 2014]. Furthermore, luminescence imaging shows the potential

of dual-imaging by combining different luminescence systems [Hall et al., 2012, England et al.,

2016]. One drawback of luminescence imagingis that it needs long exposure times up to a few

minutes due to lower amounts of light produced, which may limit the temporal and spatial

resolution depending on expression levels.

Deciphering the molecular mechanisms of cellular decisions, how they are dynamically

regulated based on environmental cues and how they manifest phenotypically, is a central

topic in biology research and is important for clinical applications. Yet, heterogeneity is
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pronounced, even in clonal and closely related cell populations regarding cellular dynamics.

Especially, in the pathway signaling research, such heterogeneity has crucial importance to

understand why and how cells respond differently. Population level measurements, such

as western blots provide the discrete measurements of many cells which may hide the true

variability of the response. Single-cell snapshot measurements such as sm-FISH and flow

cytometry, on the other hand, reveal the heterogeneity of cell populations displaying different

activation states in single cells. Yet, these methods lack the temporal resolution which may

result in the misinterpretation with different conclusions from the same experimentental

measures (Figure 1.4). Only dynamic single-cell measurements reveal the true dynamics and

the underlying heterogenity of the response to stimuli. Therefore, single-cell measurements

are crucial to gain insight into complex interconnections of signaling pathways consisting of a

network of positive and negative feedback or feedforward loops [Skylaki et al., 2016, Wosika

and Pelet, 2017]
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Figure 1.4 – Continuous long-term quantification of single cells is crucial to detect heterogeneous and
dynamic cellular responses to stimuli. Population average (top) or single-cell snapshot (middle) analyses
lack the required resolution for reliable inference of cellular and molecular dynamics. Only dynamic
single-cell measurements reveal the true dynamics and the underlying heterogeneity of the response to
stimuli (bottom).
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One important modification that can be utilized in single-cell live microscopy based

on either fluorescent or luminescent proteins is to destabilize reporters in an attempt to

decipher transcriptional activity. This would allow more precise assessment of transcriptional

dynamics since longer half-lives significantly buffer the noise in transcriptional kinetics. In-

deed, destabilized fluorescent [Bean et al., 2006, Zhang et al., 2013] and lumicent reporters

provides a powerful technique to investigate transcriptional kinetic parameters [Suter et al.,

2011, Molina et al., 2013]. In such systems, promoter activation leads to an intermittent signal

increase in the reporter signal. When combined with stochastic modeling, the transcriptional

state of the gene can be inferred from measurements using the telegraph model of stochastic

transcription (Figure 1.5). The transcriptional bursting parameters can be inferred by calcu-

lating the likelihood of moving between successive time points in the time series given the

telegraph parameters [Bronstein et al., 2015]. Live-cell imaging methods allowed us to gain

more mechanistic insights about transcriptional dynamics which would not be possible to

quantify in static methods performed on fixed cells.

Figure 1.5 – Schematic for a gene switching between “on” and “off” states and expressing short-lived
mRNA and proteins. The gene switches between the active “on” and inactive “off” state (black). mRNA
is produced during “on” state (red) followed by short-lived protein production (blue). Using protein
level measurements, the underlying transcriptional bursting parameters and the state of the gene can be
inferred. Adapted from [Suter et al., 2011].

1.1.4 Noise in gene expression

Over the last two decades, emerging single-cell methods improved our understanding of

gene expression in individual cells and revealed that protein expression is a dynamic process

that varies in time and between individual cells. Cells even in isogenic populations exhibit

substantial heterogeneity in protein expression and factors contributing to this variability are

still not clear and under investigation. In principle, this heterogeneity may arise partly from

changes in the cellular state due to fluctuations in cellular components while ever-changing

cellular microenvironment adds another layer of variability.

To decipher sources of cellular component fluctuations, initial studies used two fluo-

rescent protein reporters expressed separately under two alleles of the identical promoters
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[Elowitz et al., 2002]. Owing to this design, the extrinsic noise influenced both expression

concurrently while intrinsic noise influenced each copy individually. This system showed

the contribution of both intrinsic and extrinsic sources of variability on gene expression and

revealed that both contributed substantially to overall variation. Extrinsic factors include cell-

to-cell differences in the cellular state including cell-cycle phase, cell size, stress from intrinsic

sources, or fluctuations in cellular components. On the other hand, intrinsic noise is the result

of discrete nature of basic cellular processes, the low number of components involved, the

random partitioning of molecules at cellular division and the bursty nature of eukaryotic tran-

scription [Suter et al., 2011, Singh and Soltani, 2013]. Finally, microenvironment parameters

including cell density, number of cell-to-cell contact or the existence of environmental cues

vary substantially between individual cells. Therefore, it is essential to decipher how intrinsic

stochastic fluctuations, cellular states and microenvironment determines heterogeneity in

single cell responses.

Transcription emerges as the central dynamic process contributing to noise in gene

expression. Temporal fluctuations in lowly abundant mRNAs resulting from sporadic tran-

scriptional activities, termed as bursts, form an important source of noise in gene expression

[Golding et al., 2005, Chubb et al., 2006, Raj et al., 2006, Suter et al., 2011]. These bursts repre-

sent short and intense periods of transcriptional activity followed by longer periods of gene

inactivity. The discrete nature of biochemical reactions involving low abundance of molecules,

random diffusion processes of TFs to find their targets and even fluctuations of transcriptional

reactants lead to stochasticity in transcription. These factors combined with slow transitions

between promoter states result in mRNA heterogeneity measured in mammalian systems.

This sporadic mRNA production is subsequently further amplified by translation. Therefore,

in individual cells, mRNAs usually exist in low amounts (< 100 copies) while their protein

counterparts is much more abundant (103-106 copies) due to the amplification effect of trans-

lation [Schwanhäusser et al., 2011]. Yet, this amplification effect on protein levels and long

protein lifetimes may average out fluctuations in protein levels. In a system with a short mRNA

half-life coupled to a long protein half-life, the noise in mRNA profile does not reflect into

protein levels which may prevent observations of corresponding protein bursts. Destabilized

reporters of short-lived mRNA and protein allowed measurements of transcriptional bursting

on the protein level. Although some recent studies revealed stochastic events occurring during

the ribosomal scanning process and posttranscriptional noise generation in E.coli [Dacheux

et al., 2017], the noise of gene expression in mammalian systems predominantly depends on

promoter activity and transcription.

Noise in gene expression influences all other processes including genes, RNAs and

proteins which leads to propagation and summation of such noise in one gene to other

downstream genes in complex networks [Pedraza and van Oudenaarden, 2005]. Fluctuations

in the expression of transcription factors may contribute to the noise further due to their

involvement in transcription. Therefore, even a network whose components have low noise,

may have substantial noise depending on gene interactions. Notably, cells develop certain

mechanisms such as negative feedback loops which potentially limit the propagation of noise
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[Lestas et al., 2010]. In addition, the formation of multimeric complexes [Konkoli, 2010] or

sequestration of promoters of the downstream genes within compact chromatin has also been

shown to prevent transmission of the transcriptional noise further [Shah and Tyagi, 2013].

While noise in gene expression has been associated with undesirable phenotype in certain

contexts, it may have evolved to have certain benefits providing better survival strategy than

synchronized cellular response. On one hand, synchronized cellular responses provided by

control mechanisms is beneficial in multicellular organisms to assure the proper functioning

in a uniform manner. Yet, some studies revealed that heterogeneity in cell populations can

be beneficial depending on the pathway, the input type and the tissue [Loewer and Lahav,

2011]. In the NFκB pathway, for instance, a dual-negative feedback system contributes to the

heterogeneity in NFκB oscillations which in return minimizes paracrine signalling fluctuations

of the tissue [Paszek et al., 2010]. Similarly in E.coli, the persistence of individuals to stress

such as antibiotic treatment was associated with preexisting variability based on a phenotypic

switch [Balaban et al., 2004]. Also in the p53 response pathway, the variability in sensitivity

of individuals to intrinsic stress in the basal state has been shown to select for healthy strong

cells for survival [Lahav et al., 2004]. Thus, in some cases high noise creating a broad variety of

phenotypes can be an evolutionary survival strategy while minimal noise is favorable in some

others.

1.1.5 Stochastic modeling of gene expression

Transcription is an important source of noise in gene expression due to its irregular pulsatile

pattern leading to fluctuations of mRNAs over time. The simplistic model of such stochas-

tic nature of transcription is the birth-death process. In this model, the number of mRNA

molecules can change either due to stochastic production or degradation, according to a

Poisson process. This model involves transcript production with a constant rate (km) and a

constant degradation rate per molecule (γm). The model leads to a Poisson distribution for

the number of mRNA molecules at steady state. Yet, the noise in transcription measurements,

characterized by dispersion of mRNA numbers in measurements, deviates from Poissonian

statistics showing a more widespread distribution especially in higher eukaryotes. Therefore,

the simple birth-death process is not able to reflect and explain the high levels of fluctuations

in mRNA levels. A modified model, termed as telegraph model, hypothesizes that high lev-

els of fluctuations are due to sporadic activations of the gene. In this model,the promoter

switches stochastically between an active (on-state) and inactive state (off-state) with constant

switching rates. Transcripts are produced only in the active state while degradation occurs

continuously. In the telegraph model, the degradation process occurs with constant degrada-

tion rate per molecule (γm) while mRNA production is modeled using three parameters: two

switching rate from off-state to on-state or the opposite) and the average transcription rate

durin on-state. This modified version of the simple birth-death model can fit to other distri-

butions observed during measurements. If on states are very short, the mRNA distribution

exhibits a higher super-Poissonian variance [Shahrezaei and Swain, 2008]. When promoter

transition rates are low meaning that cells stay longer in one particular state, then mRNA
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distribution exhibits bimodality. Thus, the telegraph model provides sufficient plasticity to

model possible measured RNA distributions corresponding to different dynamic scenarios

of promoter activation. In the regime assuming short off-states and mRNA lifetime while

large burst size (transcripts per burst), measurements of mRNA copy numbers can be used to

estimate bursting parameters such as normalized burst frequency (events per transcript life

time) and burst size. This provides a powerful framework to obtain rapid estimates of bursting

parameters using smRNA-FISH measurements.

a) b)

Figure 1.6 – Random telegraph model describing the stochastic gene expression is applied to short-lived
luciferase reporter system to infer underlying transciptional bursting parameters. a) The gene promoter
switches between active (on) and inactive (off) states stochastically with rates kon and ko f f . Transcription
and translation occurs with rates km and kp , respectively. mRNA and protein degradation are modeled
as Poissonian processes with rates γm and γp , respectively. b) Real-time monitoring of the short-lived
luciferase reporter expressed under Bmal1 promoter. Because the reporter is destabilized both at mRNA
and protein level, the underlying mRNA profile and activation state of the gene can be inferred using
telegraph model. Modified from [Suter et al., 2011]

In addition, the telegraph model can be utilized to infer bursting parameters from live-

cell imaging measurements [Suter et al., 2011], Figure 1.6. In this case, a second birth-death

process can be inserted to represent the translation event (Figure 1.6a). Proteins are stochas-

tically produced with a rate proportionally to the amount of existing mRNAs (mkp ) and

degraded with a rate proportionally to the amount of existing proteins (pγp ) according to

a Poisson process. Overall, km and mkp represents the transcripion and translation rate,

respectively while γm and γp describe constant degradation rates for transcription and trans-

lation. km represents the effective transcription rate including processes such as synthesis,

splicing and nuclear export while kp describes the effective translation rate per mRNA en-

compassing events such as translation initiation, peptide elongation and termination. This

minimal model is sufficient to represent measurements on both mRNA and protein levels

despite its simplistic approach combining several processes in effective rate constants. The

telegraph model is utilized to estimate bursting parameters, otherwise not easy to measure

directly, using data collected by several experimental methods. For example, these parameters
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can be estimated in smRNA-FISH measurements of mRNA copy number for each single cell,

by explicitly calculating the likelihood of the observed data for given parameters [Raj et al.,

2006, Senecal et al., 2014, Bahar Halpern et al., 2015]. Instead of the transcripts, the telegraph

gene expression model can be applied to short-lived fluorescent and luminescent reporter

measurements. Suter et al. established various gene trap cell lines and transgenic cell lines

expressing a short-lived luciferase protein from an unstable mRNA which allowed the tele-

graph model to infer underlying transcriptional parameters using real-time bioluminescence

data. The analysis revealed highly gene-specific bursting kinetics and also refractory periods

representing inactive gene states before turned on again.

Short-lived luciferase offers a solution to eliminate the buffering effect of long protein

half-lives [Suter et al., 2011]. With long protein lifetime, protein levels represent transcriptional

activity integrated over certain amount of time which is undesirable to resolve transcriptional

bursts. In this system, the degradation rate of protein (γp ) and mRNA (γm) were estimated

using deterministic model defined by Eq 1.1. Inhibiting transcription (ke f f =0, ke f f : effective

transcription rate) and translation (kp =0) in separate population level experiments allowed to

estimate degradation rates. In addition, calibrations of photon emission to different luciferase

concentrations allowed the quantification of number of luciferase molecules per cell in single-

cell imaging experiments. The calibration of mRNA molecules is also conducted using real-

time quantitative polymerase chain reaction. These calibrations were incorporated into the

model to precisely describe the data. The other four parameters of the telegraph model (kon ,

ko f f , km , kp ) were estimated by computing the probability of the time traces using maximum

likelihood approach.

ṗ = kp m(t )−γp p(t )

ṁ = ke f f −γmm(t )
(1.1)

In the telegraph model described, the state of the system at a certain point is determined

by three integers p,m,g which represent the number of proteins p (any integer), the number

of mRNA molecules (any integer), and the state of the gene g (0 or 1). The model is defined

as Markovian. Therefore, the model has memoryless property meaning that at any time

point t, the state of the system depends only on the state at the previous time point. Eq 1.2

describes the transition probability of the state p,m,g at time t. Eq 1.2 represents an intractable

differential equation which can be solved under different approximations[Shahrezaei and
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Swain, 2008, Iyer-Biswas et al., 2009].

Pp,m,g

d t
=kp mPp−1,m,g +γp (p +1)Pp+1,m,g

+km g Pp,m−1,g +γm(m +1)Pp,m+1,g

−kp mPp,m,g −γp pPp,m,g

−km g Pp,m,g −γp mPp,m,g

+kg Pp,m,g −kg Pp,m,g

(1.2)

1.1.6 Molecular mechanisms regulating transcriptional bursting

Aforementioned emerging methods and analysis approaches have together revealed the bursty

nature of transcription in different organisms from prokaryotes to yeasts and higher eukaryotes

. Despite its rare occurrence in bacteria due to formation of positive supercoiled DNA following

the passaging of RNA polymerase [Ma and Wang, 2016, Chong et al., 2014], higher level of

organisms exhibit transcriptional bursting as a quasi-universal behaviour. These studies

revealed the substantial difference of bursting kinetics among different genes which can

frequently be characterized by using a combination of two parameters: 1) the burst frequency

referring the number of bursts per unit time 2) mean number of transcripts produced along

one burst period. In mammalian systems, burst frequency typically varies from a burst every

30 minutes to 10 hours while the burst size from one to several hundreds of transcripts

[Lionnet and Singer, 2012]. Such diversity in bursting profiles among genes can be attributed

to the their complex regulation and mechanisms involved in shaping the gene expression

on the transcription level[Nicolas et al., 2017]. Despite remarkable progress in experimental

techniques to monitor transcription at the single-cell level and the analytical tools such as

new variants of the telegraph model, molecular mechanisms involved in regulation and their

influence on transcriptional bursting is still elusive and under investigation [Molina et al.,

2013, Lenstra et al., 2016].

Nucleosome occupancy and histone mark have been shown to shape the gene expression

in yeast [Brown and Boeger, 2014, Tirosh and Barkai, 2008]. PH05 gene expression fluctu-

ations and the promoter nucleosome dynamics observed by electron microscopy revealed

the coupling between nucleosome configurations and stochastic gene activity [Brown et al.,

2013]. This interaction seemed to modulate bursting dynamics through changes in burst

frequency. Another study used DNase hypersensitivity assays in mammalian cells to assess

the effect of chromatin accessibility on the gene expression noise [Dey et al., 2015]. Denser

nucleosome occupancy leads to noisier gene expression while lower nucleosome occupancy

around the transcription start site exhibited higher burst frequency and lower gene expres-

sion noise. Combinations of histone marks also influence the genomic organization, thereby

transcriptional bursting parameters. In Dictyostelium, H3K4 methylation states inherited to
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daughter cells exhibited their characteristic transcriptional profiles regarding burst frequency

and duration [Muramoto et al., 2010]. The effect of acetylation on transcriptional bursting was

also investigated by blocking histone deacetylation with Trichostatin A (TSA). Yet, this pertur-

bation yield in various transcriptional bursting modulations in a highly gene specific manner

[Harper et al., 2011, Dar et al., 2012, Suter et al., 2011]. Overall, nucleosome occupancy exerted

its influence on transcriptional burst frequency while histone marks exhibited gene-specific

alterations of transcriptional bursting parameters [Nicolas et al., 2018].

Core promoters and other DNA regulatory sequences also influence the bursting profile.

Similar reporters expressed under different promoters at the same genomic locations lead to

varying burst frequency profiles [Yunger et al., 2010]. In some studies, the effect of regulatory

sequences is investigated by observing gene expression dynamics in altered DNA contexts

[Suter et al., 2011, Bartman et al., 2016, Fukaya et al., 2016] while other studies revealed

associations of certain expression profiles with the existence of specific regulatory elements

[Zoller et al., 2015, Newman et al., 2006, Bengtsson et al., 2005, Stewart-Ornstein et al., 2012].

Certain binding motifs such as TATA-boxes typically exhibited high-expression noise genome-

wide and correlated with the absence of refractory period [Newman et al., 2006, Blake et al.,

2003, Hornung et al., 2012]. The core promoter architecture also shaped the transcriptional

bursting profile. Increased number of transcription factor binding sites in inducible synthetic

promoters resulted in increased burst size [Raj et al., 2006]. Similarly additional binding sites

of TALE transcription activators around the TSS resulted in prolonged burst episodes [Senecal

et al., 2014]. In addition to core promoter and its proximity, distal regulatory sequences

such as enhancers have recently been investigated recently. Perturbation in loop formation

between β-globin gene and its LCR enhancer resulted in lowered burst frequency observed

with smRNA-FISH [Bartman et al., 2016]. Similar results in Drosophila embryos using MS2-

GFP system revealed that distal genomic regions are likely to modulate burst frequency while

the proximal element alterations mainly influenced the burst size [Fukaya et al., 2016].

Figure 1.7 – Molecular mechanisms regulating transcriptional bursting. Schematic represents an active
gene and other components participating in the regulation of bursting parameters. Color code represents
the involvement likelihood of shown entities in different bursting parameter modulations (DNA-black
line, the core promoter-large white boxes, TSS-arrow, a specific transcription factor-small grey sphere, the
pre-initiation complex-large grey oval, nucleosomes-grey cylinders). Modified from [Nicolas et al., 2017].
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1.1.7 Stimulus-induced modulation of transcriptional bursting

Cells operate in dynamic environments and respond to external changes modulating their

gene expression through a series of events. External stimuli activate regulatory pathways

through specific transcription factors which possibly alter transcriptional kinetics of their

target genes in certain ways. Since bursting modulation has been attributed predominantly to

chromatin accessibility and modifications, only a few studies attempted to link transcriptional

activators to downstream bursting profile. smFISH measurements of the endogenous c-Fos

gene upon stimulation through MAPK pathway revealed a correlation between transcriptional

activator p38 and the number of active transcription sites suggesting the transcriptional

burst frequency modulation [Senecal et al., 2014]. Another study showed steroid driven

mRNA synthesis through dose-dependent frequency modulation of transcription [Larson

et al., 2013]. In blood differantiation process, the effect of TFs on each other’s transcription

measured by qPCR revealed the burst frequency as the main regulated parameter [Ezer et al.,

2016]. In mouse liver, upregulated genes in response to fasting conditions predominantly

revealed increased burst fraction—the fraction of time a promoter is actively transcribing

[Bahar Halpern et al., 2015]. These results suggest that stimulation altered mainly the bursting

frequency while some other studies showed combined modulation of burst frequency and

burst size in other systems. The transcriptional response of β-actin to extracellular stimuli

showed alterations both in burst frequency and size in perturbed levels of key signaling factors

[Kalo et al., 2015]. In Wnt pathway, MS2-GFP measurements revealed increases in burst

duration, burst intensity and on-rate of transcription on a cyclinD1 reporter correlating with

the accumulation rate of its activator β-catenin [Kafri et al., 2013]. The controversy that

whether stimuli modulate burst frequency alone or burst size and burst frequency together

is further elucidated with additional studies. Using a large panel of reporters obtained with

HIV based random lentiviral insertions at 8000 loci concluded that both the frequency and

size of the transcriptional bursts is modulated in response to TNF-α stimulation. Interestingly,

weakly expressing loci alter only burst size while loci expressing stronger modulate also the

burst size [Singh et al., 2010, Dar et al., 2012, 2016]. This observation suggests an expression

threshold level determining the mode of bursting modulation which may explain different

suggestions in other works. Indeed, this mechanism holds true for the case in which the

endogenous mouse gene ctgf seemed to respond strongly to TGF-β and serum stimulation

with a rapid and acute increase in burst sizes [Molina et al., 2013]. Similarly, another highly

expressing doxycycline synthetic promoter exhibits modulation of average size of the bursts

rather than their frequency in accordance with increased transcription factor levels [Raj et al.,

2006]. In these cases, cells may have surpassed the expression threshold over which cells

starts to use burst size modulation rather than burst frequency. In summary, approaches

that activate these broad array of inducible systems and investigation of transcription factor

modulation on target genes will contribute to our understanding of mechanisms shaping the

transcriptional bursting.
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1.2 TGF-β Signal Transduction

As multicellular organisms emerged, it became essential to develop a tight control of individual

cells to move, divide, differentiate and organize in synchrony. This was achieved by certain in-

tercellular communication systems. Among them, secretory polypeptides that signal through

membrane receptors coupled to transcriptional regulatory networks provided an efficient way

of communication. The transforming growth factor (TGF) family is one of the best examples

of such communication molecules. The TGF-β superfamily of ligands include TGF-βs, bone

morphogenetic proteins (BMPs), growth and differentiation factors (GDFs), activin and nodal

playing roles in many biological processes such as cell proliferation, embryogenesis, lineage

determination, motility, adhesion and tissue homeostasis [Massagué, 1998], [Attisano and

Wrana, 2002]. Each member, expressed in certain temporal and tissue-specific patterns, has

been discovered and investigated in separate lines of research due to their complex interac-

tions with each other [Massagué, 2012]. However, the superfamily can be categorized into

two groups based on sequence comparisons between the bioactive domains and sequence

similarity and the specific signaling pathways that they induce. The first group includes

TGF-β, Activin, Nodal while the second group includes Bone Morphogenetic Protein(BMP),

Growth and Differentiation Factors(GDF), MIS (Muellerian inhibiting substance). TGF-β is

the prototypical ligand of the TGF-β superfamily which we will focus more in this study.

1.2.1 Mechanisms of regulation at receptors

The mature TGF-β is a secreted cytokine that dimerizes to produce a 25 KDa dimer covalently

linked by a disulphide bond between cysteine residues of two monomers. However, it is se-

creted as part of a latent complex (large latent complex, LLC) that localizes on the extracellular

matrix. This complex includes latency associated proteins (LAP) and latent TGF-β binding

protein (LTBP) [Blobe et al., 2000]. After TGF-β is synthesized, it interacts with LAP forming

an initial complex which further binds to LTBP, a large glycoprotein disulfide-linked to LAP.

LTBP is not essential for the latency of the TGF-β complex, however, it attaches tightly to

extracellular matrix preventing the complex from binding to TGF-β receptors. Upon cer-

tain perturbations of ECM associated with processes such as angiogenesis, wound repair,

inflammation, cell growth, this latent complex is released from ECM and activated by different

molecules including proteases, integrins and thrombospondin (TSP). Such storage of latent

TGF-β in the ECM and the activation through a diversity of activators allow for differential

responses of TGF-β in vivo [Constam, 2014]. In addition to this mechanisms, some acces-

sory receptor molecules such as betaglycan, biglycan, decorin, endoglin also regulate the

bioavailability of TGF-β for receptors [Annes et al., 2003, Shi and Massagué, 2003, Heldin and

Moustakas, 2016].

Liberated TGF-β and related factors signal through a family of transmembrane protein

serine/threonine kinases referred to as the TGF-β receptor family. Based on their structural

and functional properties, the TGF-β receptor family is divided into two subfamilies: type
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I receptors and type II receptors (TβRI and TβRII in case of TGF-β). Both receptor types

have an N-terminal extracellular ligand binding domain, a transmembrane region, and a C-

terminal serine/threonine kinase domain. The type I, different from type II, receptors contain

a characteristic GS domain where type II exerts its effect on. In basal state, TβRII can form

ligand-independent homo-oligomers which can prime the formation of heteromeric TβR-

I/TβR-II receptor complex upon ligand binding. Each ligand initiates signaling by binding

to a specific combination of type I and type II receptors forming tetramers consisting of two

type II and two type I receptors. In case of no stimulation, both type I and type II receptors

are found as either dynamic monomers or dimers on the membrane. TGF-β binding to the

receptor stabilizes receptor dimerization of TβRII followed by TβRII autophosphorylation.

Consequently, TβRII dimer transphosphorylates serine residues of TβRI in their GS domain

which induces conformational changes that activate TβRI kinase activity [Heldin and Mous-

takas, 2016]. Upon this ligand-induced oligomerization, these dual specificity kinase receptors

phosphorylate receptor regulated SMADs, R-SMADs.

The type of activated SMADs depends on the ligand since each TGF-β super-family

member signals through specific sets of type I and type II receptor complexes. As stated

earlier, TGF-β signals via TGF-β type II receptor (TβRII) and TβRI (also known as ALK5).

Similarly, Activin and NODAL signals via type I receptors ACVR1B (ALK4) and ACVR1C (ALK7)

coupled to the type II receptors ACTR2A and ACTR2B. In case of BMP, the receptor binding

affinity depends on the type of the ligand. BMP6 and BMP7 interacts with the type II receptors

ACTRII recruiting type I receptors ALK2, ALK3 and ALK6. Therefore, activins and BMPs share

the type II receptor ACTRII and compete with each other when binding. In contrast, BMP2

and BMP4 prefer to bind to type I receptors ALK3 and ALK6 and only then recruit type II

receptors while BMP9 and BMP10 prefers ACVRL1 (ALK1) as the type I receptor. ACVR1

(ALK2) and AMHR2 are the type I and type II receptors for AMH [Massagué, 2012, Wakefield

and Hill, 2013].This complex combinatorial pairing of receptors and overlapping receptor

usage increases the diversity of downstream responses in different cellular contexts. [Shi and

Massagué, 2003]. However, two main distinct branches described is an oversimplification,

since other combinations of ligands and receptor interaction may happen which contributes

to the plasticity of the pathway. TGF-β, for example, has been shown to signal additionally

through SMAD1/5/9 via mixed ligand-receptor combinations [Goumans et al., 2003, Wu and

Hill, 2009, Grönroos et al., 2012]. Finally, in addition to canonical SMAD-mediated signaling,

other non-canonical pathways including MAPK and PI3K have been reported [Heldin and

Moustakas, 2016]. However, my thesis is mainly based on the canonical SMAD pathway

mediated TGF-β responses which will be further investigated.

The dynamic nature of TGF-β receptor activity requires additional tight control through

posttranslational modifications. The kinase activity of TβRI upon ligand-induced phosphory-

lation is reversible and targeted by phosphatases. The protein phosphatase PP1c dephospho-

rylates TβRI with SARA, a scaffolding protein that stabilizes the interaction with the receptor.

Another phosphatase molecule PP2A was shown similarly to interact with TβRI upon stim-

ulation [Bennett and Alphey, 2002, Shi et al., 2004, Batut et al., 2008]. Similarly, ubiquitin
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modification of TβRI plays a key role in defining receptor stability and turnover. TβRI receptors

can be ubiquitinated and degraded through the ubiquitin system. In general, ubiquitination is

defined by sequential actions of a ubiquitin activating enzyme(E1), a ubiquitin conjugating en-

zyme(E2) and a ubiquitin ligase(E3) that determine the specificity of the process. An inhibitory

SMAD, SMAD7, recruits E3 ubiquitin ligases such as Smurf1, Smurf2, WWP1, and NEDD4-2

which target receptors for proteasomal degradation [Lönn et al., 2009, Lo and Massagué,

1999, Zhang et al., 2001, Boeck and Dijke, 2012, Lin et al., 2000]. Conversely, deubiquitinating

enzymes (DUBs) such as USP4, USP11 and USP15 interact with TβRI through SMAD7 and

remove poly-ubiquitin chains resulting in the stabilization of the receptor. On the other hand,

no dephosphorylation or ubiquitination enzymes of TβRII have been demonstrated. Taken

together, the balance of the aforementioned reversible posttranslational modifications shapes

the response on the receptor level [Xu et al., 2012, Zhang et al., 2014].

Internalization of activated surface receptors provides a further regulation mechanism

for TGF-β signal transduction [Chen, 2009, Meyer et al., 2011]. This receptor-mediated en-

docytosis can modulate the signaling positively or negatively. It can suppress the signalling

by reducing the number of receptor molecules on the surface or by mediating the receptor

degradation. On the other hand, it can recycle receptors back to the cell surface for reuse. It has

been shown that activated receptor complex internalization can occur in two ways: clathrin-

mediated and non-clathrin mediated (caveola-mediated) [Penheiter et al., 2002, Le Roy and

Wrana, 2005]. In the absence of ligand, TGF-β receptors are constitutively endocytosed and

recycled back to the cellular membrane. In case of clathrin-mediated endocytosis, upon

ligand binding, the activated receptor-RSMAD complex enters early endosomes where they

are brought into contact with signaling-promoting molecules such as SARA, Hrs, endofin

which allow for phosphorylation of RSMADs and their association with SMAD4 [Runyan et al.,

2005, Hayes et al., 2002]. In this respect, early endosomes may operate as a TGF-β signal

promoting organelle. Moreover, some of ligand-bound complexes in early endosomes are

sorted to late endosomes for either degradation together with TGF-β or for separation from

bound TGF-β and recycling to the cell surface. The caveola/lipid raft mechanism, on the other

hand, was shown to promote receptor turnover and signal termination since the inhibitory

textitSMAD7 together with Smurf proteins targets activated receptor complex for ubiquitina-

tion and eventually for proteasomal degradation [Di Guglielmo et al., 2003]. Therefore, the

distribution of activated receptors in between two compartment-specific mechanism adds

another layer of regulation in TGF-β signaling [Zhang et al., 2005].

1.2.2 Signaling through SMADs

SMADs include a family of structurally similar proteins that transduce signals coming through

receptors of TGF-β superfamily ligands to target genes in the nucleus. Located downstream

of the receptor activation mechanism and just upstream of the transcriptional activity, they

can provide valuable information regarding transcriptional regulatory mechanisms. They play

key roles in many different cellular contexts such as cell proliferation, embryogenesis, lineage
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determination, motility, adhesion and tissue homeostasis. The first identified member of the

SMAD family is the Mad (mothers against dpp) protein in Drosophila. Based on structural

and functional similarities, SMADs can be categorized into three classes: 1) SMADs that are

involved in direct signaling from the TGF-β receptor (receptor regulated SMADs, R-SMADs,

SMAD1/2/3/5/8 2) SMAD that has the role of partnering with R-SMADs to recruit co-regulators

to the complex (co-SMAD, SMAD4), 3) SMADs that suppress the signalling activity of the other

two groups (inhibitory SMADs, SMAD6 and SMAD7. Among R-SMADs, SMAD1, SMAD5 and

SMAD8 mediates BMP signaling through the receptor BMPRI while SMAD2 and SMAD3 are

substrates of TβRI transducing TGF-β and activin signals. However, the common mediating

partner for all R-SMADs is SMAD4 [Massagué et al., 2005, Hill, 2009, Warmflash et al., 2012].

SMADs are ~500 aminoacids long proteins that have similar structural characteristics

[Macias et al., 2015]. They consists of two relatively well-conserved globular domains (N-

terminal MH1 and C-terminal MH2) separated by a quite divergent linker region. MH1

domain, conserved in all R-SMADs and SMAD4 but not in inhibitory SMADs, has DNA-binding

activity established by β-hairpin structure. Therefore, MH1 domain determines the DNA-

binding affinity and specificity of SMAD transcriptional complexes to the particular target gene.

MH2 domain, a highly-conserved domain as well, functions as a very versatile region for many

protein interactions. It allows for homo-oligomeric complex formation of all three subgroups

of SMADs. R-SMADs interact in their MH2 domain with activated receptors through a Ser-X-Ser

motif which gets phosphorylated and associates with SMAD4 to form further transcriptional

complexes. MH2 domain also mediates interactions with cytoplasmic retention proteins,

nuclear pore complex (nucleoporins), transcriptional activators and repressors. The linker

region contains MAPK, CDK and other protein kinase phosphorylation sites in R-SMADs

allowing interactions with other pathways and an NES (nuclear export signal) in SMAD4 which

regulates the nuclear translocation [Massagué, 1998, Attisano and Wrana, 2002, Massagué

et al., 2005, Derynck and Zhang, 2003, Zhang, 2009].

In the basal state, SMADs exist as homo-oligomers mainly residing in the cytoplasm.

SMAD4, for example, is constitutively imported into the nucleus via nuclear localization signal

(NLS) in its MH1 domain and also exported back to cytoplasm via CRM1-mediated nuclear

export mechanism associated with its linker region. Therefore, the distribution between

nucleus and cytoplasm is determined by the relative strengths of the nuclear import and

export signals. When the nuclear export is inhibited with CRM-1 export mechanism inhibitor

LeptomycinB treatment, SMAD4 strongly localizes into nucleus which points to an active

export mechanism [Pierreux et al., 2000]. However, it has been shown that this nuclear SMAD4

in unstimulated cells is not transcriptionally active. Moreover, SMAD4 and also SMAD3 have

been shown to translocate into nucleus via direct interactions with the nuclear pore complex.

Similarly, R-SMADs (SMAD2 and SMAD3 are also predominantly localized in the cytoplasm in

the basal state while this localization is based on some anchor and adaptor molecules that

contributes to their retention in the cytoplasm. The protein SARA (SMAD anchor for receptor

activation) binds to SMAD2/3 in a region on the MH2 domain which is also involved in the

interaction with nucleoporins. This configuration prevents SMAD2/3 from translocating into
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nucleus in the absence of ligand [Massagué et al., 2005, Clarke et al., 2006].

Figure 1.8 – Simplified SMAD mediated TGF-β activation pathway.

Upon ligand binding, the association of SMAD4 with the receptor-phosphorylated

SMAD2 and SMAD3 masks the NES in SMAD4 resulting in the nuclear accumulation of RS-

MAD-SMAD4 complexes. In addition, receptor-activation of SMAD2/3 decreases the binding

affinity of SMAD2 for SARA which frees SMAD2/3 from cytoplasmic retention resulting in their

interaction with nucleoporins and constant shuttling, providing a dynamic pool that is com-

petitively drawn by cytoplasmic and nuclear signal transduction partners including SMAD4

[Xu et al., 2002]. SMAD4 and R-SMAD complex formation can happen both in cytoplasm or

nucleus while the latter causes nuclear trapping of activated SMAD4-SMAD2/3 complexes

[Nicolás et al., 2004]. Activated SMAD oligomers of diverse stoichiometric compositions, both

heterodimer R-SMAD-SMAD4 and SMAD2-SMAD3-SMAD4 trimer forms, were proposed and

observed to accumulate into nucleus, in response to stimulation [Zieba et al., 2012].

In principle, the nuclear accumulation of SMADs despite constant shuttling can be ex-

plained by two mechanisms, either an increase in import rate or a decrease in export rate.

Using photoactivatable fluorescent proteins (PAFPs) and fluorescence recovery after pho-

tobleaching (FRAP) approach, it has been shown that ligand-induced increased affinity for

DNA-binding is the main mechanism resulting in a drop in export rates without affecting im-

port rates [Schmierer and Hill, 2005]. TGF-β treatment decreases the nuclear SMAD mobility

most likely due to increased DNA interaction with activated SMAD complexes. However, the

difficulty of SMAD complexes being recognized by nuclear export mechanisms as explained

in case of SMAD4 can be another explanation for altered nuclear retention. Moreover, the

incapability of complexed SMAD2 to interact with cytoplasmic anchor proteins contributes

to the nuclear localization. Therefore, subsequent dephosphorylation of R-SMADs can drive

their return to the cytoplasm for another cycle of receptor-mediated phosphorylation and

nuclear accumulation. The phosphatase activity in the nucleus causes the dissociation of

SMAD2/SMAD4 complexes resulting their monomers to be exported from the nucleus inde-

pendently as explained previously [Lin et al., 2006]. In summary, the predominant cytoplasmic

localization of SMAD4 and R-SMADs without ligand treatment can be explained by continuous
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nuclear import and export mechanisms, having faster export rates than the import. Upon

ligand binding, nucleus functions as a trap for activated SMAD complexes filtering out the in-

activated portion and contributing to the formation of increased DNA-bound transcriptionally

active complexes [Massagué et al., 2005, Clarke et al., 2006].

1.2.3 Transcriptional control by the SMAD-mediated TGF-β signaling

Activated SMAD complexes interact directly with defined DNA sequences via their MH1

domain or indirectly via other transcription factors to regulate gene expression negatively

or positively. It has been shown that SMAD1, SMAD3 and SMAD4 specifically recognize a

DNA sequence motif 5′-CAGAC-3′ known as SMAD-binding element (SBE) [Dennler et al.,

1998, Ross and Hill, 2008b]. However, instead of a single SBE providing minimal affinity, direct

or inverse palindromic repeats of SBEs are recognized in the regulatory regions of TGF-β

target genes. In contrast to other R-SMADs, the full length SMAD2 does not bind DNA due to

an insert encoded by exon 3 upstream of the DNA-binding β-hairpin. The SMAD2 isoform

that lacks exon3, on the other hand, shows binding affinity equivalent to other SMADs [Yagi

et al., 1999]. The MH1 domain can also interact with GC-rich palindrome motifs (GGCGCC)

as efficiently as SBE [BabuRajendran et al., 2010]. Despite such consensus sequences, the

binding affinity of SMADs for DNA is not strong [Shi et al., 1998].These short DNA-binding

sites of SMADs necessitate the need for cooperation with additional molecules for required

versatility of the pathway.

Different from the majority of transcription factors, the activated SMADs need the inter-

action with chromatin to recruit the general transcription machinery. In vitro studies revealed

that SMAD complexes only activate transcription from chromatin templates, and not at all

from naked DNA [Ross et al., 2006]. Therefore, SMAD transcriptional activity relies on the

interaction with other factors together with epigenetic landscapes and chromatin-modifying

enzymes. It is now more evident that different programmes of gene expression are based on

the context and cell type dependent interplay between these interactions. In this section, I

will summarize SMAD transcription regulation mechanisms reported so far and emphasize

questions still unanswered.

Due to limited DNA binding affinity and specificity of SMADs, the interaction with part-

ner TFs plays a key role in shaping the transcriptional responses to TGF-β signaling. Genome-

wide studies of SMAD binding across different cell types revealed SMAD co-occupation of

the genome at different target genes with lineage-specific master TFs [Chan and Kyba, 2013].

High-affinity and high-specificity binding of SMADs to DNA is achieved by recruitment of

additional transcription factors since SMAD affinity alone for DNA is weak. SMADs interact

with a vast diversity of other transcriptional factors via their MH1 and MH2 domains [Feng and

Derynck, 2005, Ross and Hill, 2008a]. These interacting transcriptional factors, in most cases,

are involved in other signaling pathways which contributes to the cell context dependence of

the target gene transcriptional activities. They are essential to recruit SMAD complexes to DNA
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in some cases. For example, in response to activin, receptor activated SMAD2-SMAD4 com-

plex interacts with FoxH1 (a forkhead transcription factor), the first transcriptional cofactor

reported to cooperate with SMADs [Chen et al., 1996]. In this complex, FoxH1 associate with

SMAD2 via its MH2 domain while SMAD4 binds DNA. SMAD2-FoxH1 interaction, using the

same domain as SARA, excludes SMAD2-SARA association which contributes nuclear accu-

mulation of the complex. In this case, FoxH1 is essentially required to recruit SMAD2-SMAD4

complexes to its own promoters [Germain et al., 2000, Randall et al., 2004]. Similarly, some

other transcription factors have been shown recruit SMAD3-SMAD4 complexes to DNA. In

other cases, SMADs also co-operate with other transcription factors at TGF-β dependent pro-

moters. For that, transcription factors bind DNA in regions next to SBE repeats and co-operate

with SMADs to activate transcription. For example, FoxO3 protein has been shown to bind

the distal region of the p21 promoter at a conserved forkhead-binding element next to SBE

repeats which concurrently associate with SMAD3-SMAD4 complexes [Seoane et al., 2004].

These diverse set of transcription factors and mechanisms guide SMADs to specific subsets of

target genes and provide pleiotropic capacity of TGF-β signaling.

SMADs also interact with certain coactivators (chromatin readers, modifiers and remod-

ellers) and corepressors resulting in chromatin remodeling. Both R-SMADs and SMAD4 can

bind molecules such as p300 and CBP with histone acetyltransferase (HAT) activity. Upon

TGF-β stimulation, SMADs associate with CBP/p300. These proteins have been shown nec-

essary for SMAD mediated transcription and its specificity [Ross et al., 2006, Janknecht et al.,

1998, Feng et al., 1998]. In addition to HATs, SMAD2 and SMAD3 binds BRG1 (also known

as SMARCA4) which is a subunit of SWI/SNF chromatin remodeling complexes. SWI/SNF

complexes modulate gene expression by using ATP energy to mediate nucleosome sliding. In

a TGF-β dependent manner, SMADs interact with SWI/SNF complexes involved differentially

in the transcriptional response of many target genes of this cytokine [Ross et al., 2006, Xi et al.,

2008]. Some studies also demonstrated signal induced DNA demethylation mechanism in

which SMAD transcriptional complex recruits removes DNA methylation of a TGF-β target

gene via recruiting a base excision repair complex [Thillainadesan et al., 2012, Laugesen and

Helin, 2014]. On the other hand, SMAD complexes can also achieve transcriptional repres-

sion by triggering repressive histone marks and reversing histone activating modifications.

In certain target genes, SMADs recruit corepressors such as SnoN, Ski , TGIF and histone

deacetylases (HDACs) into the transcription machinery which removes activating histone

acetylations in a TGF-β dependent manner [Liu et al., 2001, Wotton et al., 1999, Kang et al.,

2005a]. Moreover, some genes may form synexpression groups to achieve a complex and

balanced response to a TGF family stimulus [Gomis et al., 2006]. These observations reveal

mechanisms of how TGF signaling through the SMAD pathway translates complex inputs to a

variety of concrete responses.
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1.2.4 Negative regulation of SMAD mediated TGF-β signaling

Due to its key importance in diverse biological processes, TGF-β signaling is spatiotemporally

fine-tuned. Activated complexes are subject to ubiquitin-mediated proteasomal degradation.

Inhibitory SMADs (SMAD6/7) play a key role in this respect. TGF-β signaling ensures a stable

response by targeting also inhibitory SMAD genes (SMAD7 in case of TGF-β, SMAD6 in case of

BMP) [Xu et al., 2012, Itoh and ten Dijke, 2007]. I-SMADs lack the MH1 domain preventing

their binding to the DNA [Aragón et al., 2012].

These inhibitory SMADs, in turn, repress the response at multiple stages of the path-

way [Wegner et al., 2012]. SMAD7, as the key negative regulator, exerts its inhibitory effects

through different mechanisms both at the receptor level and in the nucleus. It has been first

demonstrated that SMAD7 inhibits signaling by binding to TGF-β type I receptors (TβRI) and

preventing R-SMAD activation [Kavsak et al., 2000]. It was also shown that SMAD7 regulates

the TβRI activity by recruiting different molecules to the receptor. SMAD7 associates with

both Smurf1 and Smurf2, E3 ubiquitin-protein ligases, which in turn induces the cytoplasmic

localization of the complex. This inhibitory complex is recruited to TGF-β type I receptors

(TβRI) and targets receptors for ubiquitin-mediated proteolysis [Ebisawa et al., 2001]. In

addition, SMAD7 recruits a phosphatase complex to phosphorylated TGF-β type I receptors

resulting in their dephosphorylation and inactivation [Shi et al., 2004]. Inhibitory SMADs also

interfere with the transcriptional by disrupting SMAD-DNA complex via recruiting repressors

[Itoh and ten Dijke, 2007, Moustakas and Heldin, 2009]. Contrarily, SMAD7 also associates with

deubiquitinase enzymes to reverse the ubiquitination of receptors potentiating the signaling

[Wicks et al., 2000].

TGF-β signaling is subject to tight regulation due to negative feedback also through

R-SMADs and co-SMAD, SMAD4. Upon signaling, Smurf1/2, being transcriptional targets

of TGF-β cytokines, show enhanced association with phosphorylated SMAD2/3 targeting

it for ubiquitination and subsequent degradation [Lin et al., 2000]. Proto-oncoprtotein Ski

and SnoN are also important negative regulators of the pathway since they interact with

SMAD2/3/4 preventing activated R-SMAD-SMAD4 formation [Stroschein et al., 1999, Wegner

et al., 2012]. Similarly, some negative feedback mechanisms provide control on SMAD4 activity

upon ligand induction. Transcriptionally induced SMAD7 binds phosphorylated SMAD2/3

preventing SMAD2/3-SMAD4 association [Yan et al., 2009]. SMAD4 association with SMAD2

and I-SMADs recruits different complexes causing mono- and polyubiquitylation via different

molecules and subsequent degradation [Dupont et al., 2009]. In addition, negative regulators

Ski and SnoN can participate in formation of histone deacetylation complexes which shows

that some negative feedback mechanisms target the pathway in the nucleus at the chromatin

level [Deheuninck and Luo, 2009]. Another E3 ubiquitin ligase Arkadia has also been shown

to interact with SMAD2/3 and SMAD7 inducing their turnover. Arkadia perform this only on

inactivated SMAD2/3 in the nucleus which couples degradation of SMAD2/3 with the target

gene transcription [Mavrakis et al., 2007, Levy et al., 2007]. Moreover, it prevents the inhibitory

acitivity of SMAD7 via ubiquitin-dependent degradation of SMAD7 [Koinuma et al., 2003].
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Therefore, the feedback provided by Arkadia counterintuitively amplifies the transcriptional

response induced by TGF-β superfamily proteins.

Different studies identifying a vast variety of feedback mechanisms changed our un-

derstanding of the pathway as a linear arrangement of components. The complex interplay

between activation and negative feedback contributes to the versatility of the pathway. More-

over, the balance between activation and negative regulation causes heterogeneous responses

in single cells such that some cells respond to the stimulus in a transient way while some

respond either in a sustained or oscillatory fashion [Strasen et al., 2018]. Therefore, it needs

further investigation to determine factors that contribute the response variability. Single-cell

approaches may reveal underlying mechanisms [Warmflash et al., 2012]. However, it remains

a big challenge considering the versatile dynamics of the pathway and the contextual nature

of TGF-β/SMAD pathway.

1.2.5 TGF-β signaling in context

Recent progress in the TGF-β field has contributed to our understanding of molecular mech-

anisms in the pathway to a first approximation. However, the influence of TGF-β depends

heavily on the cellular context. TGF-β signaling mediates a broad array of medically important

cellular processes such as immunity, inflammation, cancer, fibrosis and also muscle, bone,

adipose, vascular, and hematopoietic homeostasis [Leask and Abraham, 2004]. The influence

of TGF-β signaling, depending on the cell type and conditions, can vary to a great extent and

can even be opposite. It has been shown that TGF-β can suppress cell proliferation but also

induce cell growth, contribute to stem cell pluripotency but also differentiation, promote

metastatic cells and also suppress pre-malignant cells. These contradictory functions point to

the contextual functionality of the pathway [Massagué, 2012].

ES cell self-renewal and differentiation: Pluripotency in embryonic stem (ES) cells is

maintained by the core pluripotency complex including the core transcriptional regulators

OCT4, SOX2 and NANOG [Young, 2011]. The core transcription factors together positively

regulate their own promoters while repressing lineage-specific transcription factors. The

core pluripotency triad maintain repressive marks on differentiation genes via chromatin-

modifying complexes preventing the escape from the pluripotent state. Some studies showed

that SMAD proteins play also a key role in this state. BMP-induced SMAD1 co-occupy ge-

nomic sites marked active by H3K4me3 together with OCT4, SOX2, NANOG, and STAT3 [Ying

et al.]. In principle, Nodal signaling drives mesendodermal differentiation. However, in the

pluripotent state, OCT4 drives Nodal induced SMAD3 to some Nodal negative feedback sites

which keeps cells in a non-responsive state to differentiation signals. Moreover, differentiation

genes targeted by Nodal signaling are marked by H3K9me3 which keeps them in a repressed

but a poised state via HP1γ (heterochromatin protein 1γ) [Azzaz et al., 2014]. However, in ES

cells lacking self-renewal signals, Nodal signaling results in TRIM33-SMAD2/3 and SMAD4-

SMAD2/3 associations. TRIM33 recognizes H3K9me3 histone marks, displaces HP1γ and gives
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access to activin responsive elements by SMAD4-SMAD2/3 complexes [Massagué Joan and Xi

Qiaoran, 2012]. In the pluripotent state BMP activated SMAD1 contributes to the maintenance

of the state but in absence of self-renewal signals, Nodal activated SMAD complexes induce

differentiation genes. Furthermore, lineage identity factors target SMAD proteins to differ-

ent subsets of genes which activates special differentiation programs. These mechanisms

demonstrate the importance of SMAD mediated TGF-β signaling in ES cell pluripotency,

differentiation and lineage regulation.

Epithelial-mesenchymal transition (EMT): EMT is the process in which epithelial cells

lose their epithelial phenotypes such as cell polarity, cell-cell adhesion and gain a mesenchy-

mal invasive phenotype. EMT underlies many developmental processes such as mesoderm

formation, neural tube formation while pathological types of EMT cause fibrosis and cancer.

EMT is fundamentally characterized by loss of cell-cell adhesion protein E-cadherin. A tran-

scriptional network including SNAIL1, SNAIL2, ZEB1, KFL4M TCF3 and TWIST suppresses

the E-cadherin promoter, CDH1 [Thiery et al., 2009]. Together with WNT signaling, TGF-

β-induced SMADs trigger EMT in epithelial cells through this mechanism. TGF-β induced

SMADs activate SNAIL1 and TWIST1 supressor expression while WNT effector LEF1 associat-

ing with SMAD1/4 similarly joins the suppression complex of CDH1 promoter. BMP signaling,

on the other hand, antagonizes EMT by activating pro-epithelial microRNAs miR-200 and

miR-205 which favour mesenchymal-epithelial transition (MET) [Brabletz and Brabletz, 2010].

Tumor suppression and tumor progression: Context-dependent activity of TGF-β sig-

naling plays a key role in tissue regeneration and homeostasis [Yang et al., 2010]. In principle,

TGF-β as a strong tumor suppressor exerts its cytostatic effects in the context of normal ep-

ithelial cells. In case of a pre-malignant cell, TGF-β alters its suppressive effects even yielding

apoptosis. However, it has been shown that TGF-β switches to a tumor enhancer in more

advanced carcinoma cells. In some cancer cells, mutations inactivating TβRII and SMAD4

functionality result in selection of malignant clones not responsive to suppressive effect of

TGF-β. This insensitivity to TGF-β can create a TGF-β rich environment which can favor more

tumor progression. On the other hand, some cancer cells still own TGF-β induced SMAD4 ac-

tivity but lack responses downstream of SMAD signaling. The genetic loss of tumor suppressive

responsivity result in further inductions of metastatic effects. This change of TGF-β function-

ality from tumor suppressor to tumor enhancer again points to the context-dependent nature

of TGF-β signaling [Massagué, 2008].

TGF-β signaling and the fibrotic response: Fibrosis is the formation of excess fibrous

connective tissue in an organ or tissue in a reparative or reactive process. Thus, the term is

used to describe both the process of connective tissue deposition in healing and pathological

state of excess deposition of fibrous tissue. After injury, the synthesis of the new connective

tissue is crucial. During this process, fibroblasts proliferate and migrate into the wound and

synthesize elevated levels of matrix proteins such as collagen and fibronectin [Leask and

Abraham, 2004]. Specialized form of fibroblasts, known as myofibroblasts, express increased

levels of α-smooth muscle actin (α-SMA) allowing to contract extracellular matrix which is
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crucial for wound closure [Gabbiani, 2003].

Normal tissue repair is controlled by complex interactions of profibrotic and antifibrotic

cytokines including TGF-β, connective tissue growth factor (ctgf), tumor necrosis factor-α

(TNF-α), interferon-γ (IFN-γ). TGF-β, the central mediator of the fibrotic response, activates

fibroblasts to synthesize and contract ECM. Ctgf, induced by TGF-β, acts as the downstream

mediator of the effect of TGF-β on fibroblasts [Grotendorst, 1997, Leask et al., 2004]. TGF-β

also induces the expression of an alternative splicing variant of the fibronectin, extra domain-A

containing fibronectin which result in collagen type I andα-SMA expression [Serini et al., 1998].

Inversely, macrophages expresses the proinflammatory cytokine TNF-α which downregulates

the expression of ECM genes during the wound healing process [Hill, 2000]. Similarly, T-cells

release another proinflammatory cytokine, IFN-γ, suppressing collagen synthesis after injury

[Ghosh et al., 2001].

After injury, quickly released TGF-β assists in the attraction of fibroblasts, neutrophils

and macrophages which results in TGF-β release further [Kane et al., 1991]. Therefore, TGF-β

and its receptor expressions are elevated during wound healing process in fibroblasts of human

postburn scars, in keloids and keloid-derived fibroblasts [Chin et al., 2001, Schmid et al., 1998].

Increased levels of TGF-β appear in fibrotic lesions of scleroderma patients during formation

of scar tissue but not in the established lesions [Querfeld et al., 1999, Abraham et al., 2000].

These observations suggest the function of TGF-β in the initiation of the fibrotic response, in

vivo. Similarly, the treatment of fetal wounds with TGF-β induces scarring and wound closure.

Conversely, anti-TGF-β antibody or antisense oligonucleotide treatments suppress scarring

and matrix synthesis [Cordeiro et al., 2003]. Supporting that notion, TGF-β1 deficient mice

display impaired late-stage scarring due to reduced collagen deposition accompanied by a

pronounced, generalized inflammatory response and tissue necrosis [Böttinger et al., 1997].

Taken together, these results suggests roles of TGF-β in fibrosis while challenges regarding the

use of this cytokine as an antifibrotic target still remains. The utilization of TGF-β as the target

may be restricted to only acute cases which would require the antifibrotic treatment for a

limited period. However, the long period of application of this cytokine to treat chronic fibrotic

disease still remains as a challenge. Therefore, thorough characterization of the responses

downstream of TGF-β and its receptors is crucial to develop clinically proper antifibrotic

therapies.

1.2.6 Connective tissue growth factor functions and mechanisms of regulation

In this work, we investigate TGF-β induced and SMAD mediated transcriptional regulation of

the target gene, connective tissue growth factor (ctgf, also known as CCN2) in NIH/3T3 mouse

fibroblast cells. This cell line on which first studies of TGF-β induced ctgf upregulation was

performed can serve as an excellent model system [Grotendorst, 1997]. Upon treatment with

TGF-β, these cells acquire a myofibroblastic phenotype and further contribute to increased

matrix deposition. Ctgf is a 38-kDa cysteine-rich secreted matricelluar peptide that belongs
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to a group of proteins named CCN whose members share a similar structure [Moussad and

Brigstock, 2000]. These proteins are secreted and sequestered in the extracellular matrix inter-

acting with cell surface receptors such as integrins, growth factors, cytokines or extracellular

matrix proteins [Abreu et al., 2002]. Therefore, ctgf can be considered as a modulator of

activities for other growth factors such as TGF-β or VEGF. Ctgf activity heavily depends on the

cellular context and its interactions with other molecules in the cellular environment [Sama-

rakoon et al., 2010]. It plays a key role in a broad array of cellular processes such as adhesion,

migration, extracellular matrix production as well as regulation of development, differentia-

tion and tumorigenesis [Cicha and Goppelt-Struebe, 2009]. It is barely expressed in normal

adult tissue while it is stimulated in fibrotic tissue, in wound healing, during development and

in some types of cancer.

Figure 1.9 – Signaling pathways involved in the regulation of ctgf expression. Mechanical stress also
regulates ctgf gene activity mediated by actin proteins modulating MKL-1, a required cofactor of SRF
(serum response factor). Modified from [Samarakoon et al., 2010].

Ctgf is encoded by an immediate-early response gene, therefore it is expressed within

minutes of stimulation and its upregulation does not depend on the newly synthesized protein

[Hahn et al., 2000]. Treatment of cells with an inhibitor of protein synthesis (cycloheximide)

results in a strong and long lasting upregulation of ctgf mRNA typical for immediate early

response genes [Fowler et al., 2011]. Upregulation of ctgf mRNA upon treatment with protein

synthesis inhibitor suggests the existence of short-lived proteins degrading ctgf mRNA to

control ctgf expression levels.

Due to its multifunctional significance, ctgf expression is tightly regulated. ctgf mRNA

synthesis occurs in basal state even in the absence of external stimuli when cells are trans-

fected with ctgf promoter constructs [Cicha and Goppelt-Struebe, 2009]. In these conditions,

promoter activity is observed for more than 24 hours even in the absence of external stimuli.

Such basal regulation of ctgf involves soluble mediators together with mechanical forces

(Figure 1.9). Its expression is predominantly regulated at the transcriptional level while few

studies report the regulation of ctgf mRNA stability [Kondo et al., 2006]. Therefore, it provides

29



Chapter 1. Introduction

a suitable model system for the investigation of transcriptional response upon stimulus.

While ctgf was initially considered to be almost exclusively controlled by TGF-β, it has

been shown that many other soluble mediators, including bioactive lipids, angiotensin II,

VEGF, or lipoproteins as well as mechanical strain can upregulate ctgf expression [Cicha

and Goppelt-Struebe, 2009]. It has become evident that mechanical signals cooperate with

biochemical signals originating from growth factors and cytokines. Cells perceive their mi-

croenvironment through physical and mechanical cues, such as extracellular matrix (ECM)

stiffness or confined adhesiveness. In response to mechanical strain, the cellular components

of organ systems, particularly fibroblasts, endothelial, and smooth muscle cells upregulates the

various growth factor synthesis including ctgf resulting in proliferative and fibrotic responses.

Ctgf expression is upregulated in response to non-uniform shear stress while suppressed by

laminar flow. In endothelial cells , ctgf upregulates in a RhoA-dependent manner in response

to non-uniform shear stress [Cicha et al., 2009]. Induced ctgf gene expression depends on

stress-associated restructuring within the cellular microfilament system. RhoA signaling

and its downstream effectors ROCK and mDia result in elevated cellular F-actin structures

and a corresponding decrease in monomeric G-actin (Figure 1.9). The ratio of G-actin and

F-actin levels modulates the activity of certain serum response factor(SRF)-responsive genes

including ctgf transcription [Vartiainen, 2008, Samarakoon et al., 2010]. SRF was shown to

upregulate ctgf expression via its interaction with a response element about 4 kb upstream

of ctgf promoter [Muehlich et al., 2007]. Similarly, the transcriptional regulators YAP/TAZ

has been identified as downstream mediators of Wnt pathway mediating mechanical cues

instructed by the cellular microenvironment to ctgf target gene induction [Dupont et al., 2011,

Park et al., 2015, Tsutsumi et al., 2013].

In vivo studies indicated high correlation of the expression of ctgf transcripts with the

expression or presence of TGF-β [Moussad and Brigstock, 2000]. Ctgf shows a much stronger

induction upon TGF-β treatment compared to some other cytokines such as PDGF, FGF or EGF.

Moreover, ctgf response upon TGF-β stimulation showed a prolonged profile even with a brief

exposure to the ligand despite its relatively short-lived mRNA and protein, with mRNA half-life

around 1-2h and protein being degraded within 3-4h. It has been shown that TGF-β induces

ctgf expression directly by activating the transcription of the gene through its specific sequence

element,TGF-β responsive enhancer (TGF-βRE), identified between nucleotides −244 and

−166 upstream of the promoter [Grotendorst et al., 1996]. In adult normal fibroblasts, ctgf

expresses only minimally in the absence of stimulation while in dermal fibroblasts obtained

from lesional areas of scleroderma, ctgf is expressed constitutively. TGF-βRE control element

plays a role in increased basal expression of ctgf in scleroderma fibroblasts [Leask et al., 2001,

Holmes et al., 2001], mesangial cells [Chen et al., 2002].

TGF-βRE sequence differs from the TGF-β response elements described in other genes,

including the SMAD recognition sequence. Therefore,Induction of ctgf transcription by TGF-

β occurs through SMAD mediation and action on the ctgf promoter via a functional SMAD

binding site. This functional SMAD binding site, CAGACGAA located between nucleotides
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−173 and −166 in the ctgf promoter, is neccessary for ctgf induction in response to TGF-β in

NIH 3T3 fibroblasts [Leask et al., 2001]. Mutations on this SMAD binding site led to complete

removal of the ctgf response while increased SMAD levels enhanced ctgf expression signifi-

cantly depending on SMAD3 and SMAD4 but not SMAD2. The SMAD element is not necessary

for the basal high ctgf promoter activity seen both in dermal and scleroderma fibroblasts

while ctgf upregulation depends on SMAD3-SMAD4 complex binding to corresponding DNA

sequence. Supporting this notion, transfection of the inhibitory SMAD, SMAD7, had little

efFect on basal expression while it significantly reduced SMAD3-SMAD4 complex mediated

ctgf promoter activity [Holmes et al., 2001].

The existing data suggest that SMADs regulate the TGF-β induced response of ctgf. How-

ever, these studies used static measurements which may not capture the dynamic nature of

the pathway. Given the rapid expression of ctgf upon stimulation, it has remained a challenge

to understand how it is transcriptionally regulated via SMAD signal transduction. Another

important question that is yet to be fully resolved is the fate of target genes in response to

the duration of signaling (transient versus sustained). Therefore, it is crucial to investigate

how SMAD signaling modulates the target ctgf gene expression and transcriptional kinetics in

single-cell dynamic measurements.

1.2.7 Single-cell dynamics of SMAD-mediated TGF-β response

Aforementioned quantitative analyses of the pathway indicated the average behavior of a

cell population at certain time points which would not capture the true dynamics and the

underlying heterogenity of the response to stimuli. Yet, the long-term response to stimulus

at the level of single cells needs further investigation. A major step in TGF-β signaling is the

translocation of SMAD complexes from the cytoplasm to the nucleus. Single cell observations

indicated that SMAD2-SMAD4 complex formation and nuclear translocation of activated com-

plexes display substantial cell-to-cell heterogeneity [Warmflash et al., 2012]. Heterogeneous

signaling behavior upon stimulation was shown to be partially related to cell density and cell

cycle stage [Zieba et al., 2012]. Moreover, some studies emphasized the importance of receptor

dynamics determining the long-term signaling behavior of the TGF-β pathway [Vizán et al.,

2013].

Single-cell studies have demonstrated that true signaling dynamics of the TGF-β pathway,

while how cells interpret SMAD signaling and respond in single cells remains a challenging

question mostly due to the lack of experimental systems allowing measurements of both

SMAD dynamics and consequent transcriptional output in the same cells. To achieve that,

some studies attempted to correlate signaling activity and protein expression in different

pathways and organisms [Aymoz et al., 2016, Sung et al., 2014]. Similarly, several studies

attempted to decode the contributions of SMAD dynamics to downstream response in TGF-β

pathway [Sorre et al., 2014, Frick et al., 2017]. Sorre et al. demonstrated the influence of the

speed of the ligand presentation TGF-β signaling outcomes such as SMAD translocation and
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its target gene response using synthetic TGF-β reporters. However, the analysis in this study

linking SMAD dynamics to its expression response lacks the single-cell resolution and uses

a synthetic TGF-β targeted promoter constructs which might have not the same epigenetic

controls as the TGF-β responsive elements in the endogenous gene. Similarly, Frick et al.

studied SMAD-mediated target gene transcriptional activity and revealed that cells sense

signaling state relative to background in a fold-change manner and encode in downstream

responses. Yet, in this study, the target gene response analysis relied on a static measurement

(single-molecule FISH) which may have not captured the full dynamics the response.

This dissertation study aims at understanding how transcription factor expression levels

and its translocation dynamics quantitatively relate to target gene activation kinetics in re-

sponse to stimulus. Therefore, using SMAD-mediated TGF-β signaling in fibroblast cells as the

model system, we embarked on the task to decipher the quantitative link between SMAD2/4

dynamic profiles and its target ctgf gene response which would provide new insights into both

TGF-β and transcription regulation fields.
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2.1 Cell line generation and cell culture

2.1.1 Construction of lentiviral plasmid constructs

pLVTRE3G-NLuc-SMAD4 was constructed by inserting NLuc-SalI-SMAD4-STOP into pLVTRE3GMCS

[Deluz et al., 2016] linearized with SalI using a two-fragment In-fusion (Clontech) reaction.

pLVTRE3G-NLuc-SMAD2 was constructed by cloning into pLVTRE3G-NLuc-SMAD4 digested

with SalI and NdeI (NEB) to remove SMAD4 (Figure 2.1 and 2.2). pLV-PGK-rtTA3G-IREShygro

was constructed as described previously [Mandic et al., 2017]. All constructs were verified by

Sanger sequencing.

Figure 2.1 – Graphical representation of the pLVTRE3G-NLuc-SMAD4 vector.
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Figure 2.2 – Graphical representation of the pLVTRE3G-NLuc-SMAD2 vector.

2.1.2 Lentiviral vector production and generation of stable cell lines

Lentiviral vector production was performed by co-transfection of HEK 293T cells with the

lentiviral construct, the envelope (PAX2) and packaging (MD2G) constructs using calcium

phosphate, and concentrated 120-fold by ultracentrifugation as described previously [Suter

et al., 2011]. NIH 3T3 gt:ctgf cells [Suter et al., 2011] were infected with concentrated virus

carrying pLV-PGK-rtTA3G-IREShygro followed by selection with 200 μg/ml Hygromycin. Sub-

sequently, these cells were infected with either pLVTRE3G-NLuc-SMAD4 or pLVTRE3G-NLuc-

SMAD2, followed by selection with 2 μg/ml Puromycin. These two stable cell lines (Nluc-

SMAD2 and Nluc-SMAD4) were seeded at clonal density and clones were picked manually to

obtain more homogeneous expression levels of the transgene.

2.2 Time-lapse measurements

2.2.1 Population real-time luminescence recordings

Bioluminescence recordings on populations of cells were performed using a Lumicycle lumi-

nometer (Actimetrics) which allows simultaneous measurement of up to 32 dishes in a fully au-

tomated fashion. The photon counts collected were integrated every 6 min using 4 photomul-

tiplier tubes (PMTs) which detect sensitively green portion of the spectrum at which luciferase

emits. Lumicycle was placed into an incubator to provide optimal conditions for cultures (37◦C,

5% CO2). Cells were plated 1 day before bioluminescence recordings in 35mm Petri dishes and

maintained in DMEM media (Gibco-Thermo Fisher, 41966029) supplemented with 10% Fetal

Bovine Serum (FBS, Sigma, Cat. No. F7524) and 1% L-Glutamine–Penicillin–Streptomycin

(PSG) antibiotics (Sigma, Cat. No. G6784). Cells were seeded with high confluency (~500

000 cells) to prevent the bias from cell divisions during recordings. Samples were prepared

in triplicates for each condition. When seeding, cells were treated with a range doxycycline
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concentrations spanning from 1 to 500 ng/ml. 1 day after seeding and doxycycline treatment,

half of samples were added the NanoLuc substrate MT Cell Viability Assay Substrate (Promega,

dilution 1:4000 in cell culture medium) for SMAD2/4 measurements while the other half were

added 0.5 mM luciferin (NanoLightTechnology, 306A) for ctgf measurements. The luminome-

ter system allowed us to supplement samples with TGF-β (5nM) for stimulation experiments.

The recordings had a total duration up to 24 hours with time resolution of 6 minutes, and the

collection of data was performed with the LumiCycle Data Collection software. Matlab was

used for further analysis of obtained bioluminescence recordings.

2.2.2 Single-cell time lapse luminescence microscopy

One day before imaging, 2 x 105 cells, stably expressing short-lived luciferase and Nanoluc-

SMAD2/4, were diluted 1:1 into non-luminescence NIH-3T3 cells (total 4 x 105 cells), seeded

in a 2.3 cm glass bottom dish (FluoroDish, World Precision Instruments) and maintained in

DMEM media supplemented with 10% Fetal Bovine Serum and 1% L-Glutamine – Penicillin –

Streptomycin (PSG) antibiotics. Non-luminescent cells provided space for spatial separation

of individual cells. High confluency was needed to keep fibroblast cells in G0 phase preventing

cell divisions as much as possible. In this way, the effect of cell cycle on single cell responses,

which can be an additional source of extrinsic noise, was minimized.

Luminescence images at the single-cell level were acquired using a Luminoview LV200

imaging system (Olympus) equipped with an electron multiplier charge-coupled device cam-

era (ImagEM, Hamamatsu Photonics, EM-CCD C9100-13). Images were taken using a 60-fold

oil-immersion magnification objective (OlympusUPlanSApo 60x, NA 1.35, oil immersion).

The culture dish was maintained in a 37◦C, 5% CO2 humidified incubator and imaged up to

during 24 hours. For dual-luminescence imaging of single cells, a 700nm LP filter (Chroma) for

Fluc and 460/36nm band-pass filter (Chroma) for Nluc were used. Different exposure times

spanning from 1 to 5 min for channels were used in preliminary experiments (data now shown)

to determine the optimal exposure times for each channel ensuring high signal-to-noise ratio

and avoiding saturation of signals in each frame. Considering also the importance of temporal

resolution in the analysis of single cell traces, images throughout time-lapse experiments were

acquired as following: a frame in the Fluc channel (exposure time: 2min), followed by a frame

in the Nluc channel with a higher exposure time (3min), overall allow a temporal resolution of

5 min. Right before imaging, samples were added the NanoLuc substrate MT Cell Viability

Assay Substrate (Promega, dilution 1:4000 in cell culture medium) for Nluc imaging and 0.5

mM luciferin (NanoLightTechnology, 306A) for Fluc imaging.

2.3 Extraction of single cell traces

In what follows, steps of analyzing image series obtained by luminescence microscopy are

explained. Custom-written Matlab (MathWorks) scripts were used for preprocessing images,

segmentation, tracking of individual traces, quality control of obtained traces and further
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analysis. Single-cell data encompassed a range of conditions in which experimental parame-

ters were varied including ligand concentration, SMAD abundance, ligand type and temporal

profile reaching a large number of single cells for long-term luminescence imaging (more than

2000 cells and ~1 million time points, in total with replicates of each condition). The extraction

of the single cell traces was based on the CAST (Cell Automated Segmentation and Tracking)

software [Blanchoud et al., 2015], in which, we adapted the existing tool to our luminescence

recordings. This required the optimization of analysis parameters for both segmentation and

cell tracking since different imaging conditions and cellular contexts impact the image features.

Different steps involved in the image analysis pipeline (e.g. segmentation, quantification and

tracking) will be further explained (Section 2.3.1 to 2.3.4). CAST was developed as a set of

custom MATLAB functions. Importantly, while its applicability on bioluminescence data is

explained here, its modular implementation can be easily adapted to the analysis of a wide

variety of time-lapse data [Blanchoud et al., 2015, Bieler et al., 2014]. CAST consists of steps

that are configurable, editable and, once the corresponding parameters are manually tuned to

the specificity of the analyzed recording, fully automatized. Together, these features provide a

robust way to track the reporter signals in mammalian culture cells.

2.3.1 Pre-processing images

To ease the analysis of raw images obtained from luminescence imaging, the following prepro-

cessing steps are applied. The background is obtained, for each image of the recording inde-

pendently, by opening the raw image, smoothing it using a Gaussian kernel, and least-squares

fitting of a 2D quadratic surface on the resulting intensities. Of note, the fitted background,

that is then subtracted to the raw image, is centered (i.e. has a mean of zero) to remove trends

from the image without altering the range of values. CAST also removes saturated pixels from

cosmic rays (useful for bioluminescence when long exposure times are used) with a local

histogram approach [Pych, 2004], using robust statistics for the estimation of the location

and scale (i.e. using the median instead of the mean and the spell out, MAD, instead of the

standard deviation). CAST also remove defective pixels by detecting them as a signal varying

more from the mean of the whole image than a defined threshold times the standard deviation.

Finally, the entire stack of images can be normalized (i.e. scaled) to compensate for variation

between recordings. The result of all these operations is then stored in a new image stack that

is used for all the subsequent steps of the analysis.

2.3.2 Image segmentation

After preprocessing images, images are convolved with a family of cell-like filters (Figure 2.3).

The resulting images are converted to binary masks using an adaptive threshold. The binary

images are cleaned using morphological operations. Finally an automatic correction is done

by splitting adjacent cells that have been recognized as one object (Figure 2.4).
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(a) (b)
Figure 2.3 – Preprocessing images. a) Raw image from Fluc channel representing nuclei to be preprocessed
and segmented. Inverted gray scale images are used for better visualization. b) Preprocessed image ready
for segmentation.

(a) (b)

(c) (d)
Figure 2.4 – Cell segmentation overview. a) A collection of cell-like filters used before segmentation. b)
Filtered image before segmentation. c) Filtered images are converted to binary masks using an adaptive
threshold. d) After segmentation, binary images are cleaned using morphological operations.
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a) b)

Figure 2.5 – Automated object splitting process detects and corrects merged cells. a) Segmented image
before splitting process consisting of one merged pair is shown. b) After automated splitting process.
Arrow shows the split cell pair.

Figure 2.6 – Segmentation validation tool. The left panel displays both the current segmented frame and
the previous one. Red areas correspond to parts of the image corresponding to the segmented objects
in the two frames. Orange objects represent detection only in the current frame, and light blue ones
display those only present in the previous frame. The white lines represent which objects are linked by
local tracking between the two frames, thereby also showing the distance traveled between two frames.
If needed, the user is able to execute a series of operations on the current segmented frames to correct
automatic segmentation errors.

Robustness assessment of nuclear segmentation

The segmented images were manually corrected and validated using a custom Matlab user

interface (Figure 2.6). When mistakes were detected, segmentation was optimized and re-

peated with altered parameters. The adaptive threshold was adjusted to encompass the whole

nuclear signal. An example of a typical single cell segmentation is shown in Figure 2.7.
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2.3. Extraction of single cell traces

Figure 2.7 – Robustness assessment of nuclear segmentation. Signal intensity profile (right) along a path
represented by black line (left) for a single cell is given. Circles represent different dilation and erosion of
the segmented nuclei represented by the middle circular region. Adaptive thresholding was adjusted to
include the whole nuclear signal measured from enclosed region (black arrows).

Robustness assessment of cytoplasmic segmentation

We segmented nuclear region as described previously and defined a cytoplasmic region using

an annulus around the nucleus. Using a varying distance from nucleus to define a cytoplasmic

region, nuclear to cytoplasmic signals for each case is quantified. This helped us to define the

most robust distance for cytoplasmic annulus (Figure 2.8).
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Figure 2.8 – Robustness assessment of cytoplasmic segmentation. For the cytoplasmic region quantifi-
cation, a ring around nucleus was used. Three panel show the effect of different distance selection of
ring borders from the nucleus on the quantified nuclear to cytoplasmic ratio (black plots). Rings that
were not distant enough (1-5 pixels, lower and middle panel) from detected nuclei result in bias from the
nuclear signal. Above a certain distance from the nucleus (around 8 pixels), nuclear-to-cytoplasmic ratio
quantification stabilizes (upper panel). Arrows show the ring borders to obtain nuclear-to-cytoplasmic
ratios on the left part. Nuclear segmentation is kept the same based on ctgf signal as explained in Figure
2.7.

2.3.3 Cell-tracking

Tracking of cells is performed using a custom, memory efficient, implementation of an algo-

rithm that solves both the frame-to-frame linking of objects and the problem of assigning

trajectories globally using the Hungarian algorithm [Jaqaman et al., 2008]. Our implementa-

tion uses sparse matrices for the previously proposed cost matrices to decrease the memory

load of the algorithm, a major bottleneck in the standard implementation, hence permit-

ting the efficient handling of a very large number of trajectories. Thus, CAST can efficiently

handle the gap closing (i.e. linking similar objects that were not segmented in some frames),

merging and splitting steps, and thus provides a powerful framework for accurately tracking

cell lineages in mammalian culture cells. Importantly, the splitting step grants an automated

approach for tracking both daughter cells of a division, thus providing a full lineage of the

cells present in the recording. Finally, to remove spurious detection of cells, we implemented

an additional optional step to filter out short trajectories before the gap closing, merging

and splitting steps, thus preventing these glitches from being linked together into a spurious

trajectory.
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2.4. Clustering of single cell trajectories

2.3.4 Assessment of the cross-talk between Fluc and Nluc channels

For dual-luminescence imaging of single cells, a 700nm LP filter (Chroma) for Fluc and

460/36nm band-pass filter (Chroma) for Nluc were used. These filters allowed to resolve the

emission spectra of Nluc and Fluc (Figure3.2). We further determined the crosstalk between

Fluc and Nluc channels using Nluc-Fluc calibration cell line. No detectable bleed-through

signal was observed in 460/36nm (Nluc) channel due to luminescence emitted by Luciferin.

The luminescence measured by 700nm LP filter (Fluc) is shown as a function of luminescence

measured by 460/36nm BP filter (Nluc) when the sample was treated with MT Cell Viability

Assay Nluc Substrate alone (Figure 2.9). It is assumed that the intensity measured in 700nm

LP channel was proportional to the intensity measured in the 460/36nm channel since it

was due to leakage of luminescence from one filter to another. Taking this characteristic into

account, the data were fitted linearly. Analyses of intensities from the two channels revealed

1.5% leakage (slope) of Nluc signal to Fluc channel. This fraction of Nluc signal was subtracted

from Fluc signal measured in single cells, when analyzing dual-luminescence imaging frames.
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Figure 2.9 – Crosstalk analysis of dual-luminescence imaging system. Graph represents the luminescence
measured by 700 nm LP filter (Fluc) in function of luminescence measured by 460/36 nm BP filter (Nluc)
when the sample was treated with MT Cell Viability Assay substrate alone. The data represents nuclear
signals measured from individual cells in both Nluc and Fluc channels. The intensity of both channels
were analyzed after subtracting background values. (Linear coefficient: 0.015(%1.5), R2 = 0.93482)

2.4 Clustering of single cell trajectories

We used k-means clustering approach to group cells with similar dynamic patterns. k-means

clustering is an iterative, data-partitioning algorithm that assigns n observations to k clusters

defined by centroids [Lloyd, 1982]. The number of clusters (k) is chosen before the algorithm is

executed. Steps of k-means clustering algorithm with the modification of k-means++ algorithm

for the initial seeding step is given below:

1. Randomly choose k cluster centers (centroid. One modification for this step is to use
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k-means ++ algorithm for better cluster center initialization [Arthur and Vassilvitskii,

2007]

2. Repeat until cluster assignments do not change since doing so does not reduce the sum

of distances, or the maximum number of iterations is reached.

• For each point, calculate point-to-cluster centroid distance

• Find the nearest centroid and assign each point to its closest centroid

• Calculate the average of the newly assigned observations to obtain k new centroid

locations

Step 2 in the algorithm requires a distance metric to check in every iteration with newly

assigned centroid locations. We employed 1 minus correlation between samples as the dis-

similarity metric instead of commonly used Euclidean distance for two reasons: 1) We mainly

aimed to observe subgroups differing in long-term dynamics which came to our notice during

qualitative assessments 2) Observed variability in the ctgf expression level may be mislead-

ing when using a clustering approach that relies on Euclidean distance and can ignore the

dynamic features of the response.

2.5 Western Blot

Cells were plated 1 day before experiments and grown until confluent. When seeding, cells

were treated with a range doxycycline concentrations spanning from 1 to 20 ng/ml for doxycy-

cline dose response investigation. For time-lapse TGF-β stimulation samples, cells were stimu-

lated 1 day after seeding and collected with counting at indicated time points by trypsinization

and centrifugation. Cells were then lysed in RIPA buffer (50 mM Tris pH 7.4, 1% NP-40, 0.5%

NaDeoxycholate, 0.1% SDS, 150 mM NaCl, 2 mM EDTA), supplemented with 1mM PMSF

(AppliChem A0999.0005) and Protease Inhibitors (Sigma P8340-5ML). Samples were left on

ice for 30 minutes and then spun down at 14,000g for 15 minutes at 4◦C. The protein concen-

tration of the supernatant was determined by performing a Bicinchoninic acid assay (BCA,

ThermoFisher 23235) and 15 ug of protein were mixed with Laemmli sample buffer (Invitrogen

NP0007) and loaded on an SDS gel (BioRad 456-1094) for separation (SDS Running Buffer

25mM Tris, 190mM Glycine, 0.1% SDS). Proteins were subsequently transferred from the gel

onto a nitrocellulose membrane using a dry transfer system (Merck IB21001, iBlot 2 Dry Blot-

ting System). Antibodies against C-terminally phosphorylated SMAD4 (3108; Cell Signaling

Technologies) (dilution 1:1,000), SMAD2/3 (610482; BD Transduction Labs) (dilution 1:1,000),

and SMAD4 (B-8; Santa Cruz) (dilution 1:500) were used. The membrane was blocked with

5% bovine serum albumin or 5% milk (Roth T145.3) in TBS-T (for phosphorylated samples)

or PBS-T followed by incubation with primary antibody overnight. The following primary

antibodies with given dilutions were used; SMAD4 (ABE21 ; Merck, dilution 1:2000), pSMAD2

(D27F4; Cell Signaling Technologies, dilution 1:1000), SMAD2 (D43B4 ; Cell Signaling Tech-

nologies, dilution 1:1000). Membranes were subsequently washed shortly and incubated with
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HRP-conjugated secondary antibodies in 5% milk in TBS-T(for phosphorylated samples) or

PBS-T. The following secondary antibodies with given dilutions were used; antimouse-IgG-

HRP(W402B; Promega , dilution 1:10.000), antirabbit-IgG-HRP (W401B; Promega , dilution

1:10.000). Before imaging, membranes were washed lastly with in TBS-T/ PBS-T. The protein

bands were visualized using Clarity Western ECL Substrate (BioRad 170-5060). Images were

captured using a Vilber-Fusion chemiluminescence system (Molecular Imaging Vilber Fusion

FX7) and were analyzed using ImageJ.

2.6 Immunofluorescence

NIH-3T3 cells were fixed for 15 min with ice-cold 4% PFA (AppliChem A0877,0500) in PBS,

permeabilized and blocked with chilled PBS-Triton (AppliChem A1388,0500) and 1% FBS for

30 - 60 min. Samples were incubated with the primary antibody in PBS and 1% FBS overnight

at 4°C, washed twice in PBS, and incubated with the secondary antibody in PBS and 1% FBS

for 45 - 60 min. Samples were then washed three times with 0.1% PBS-Tween (Fisher Scientific

BP337- 500), incubated with 1 g/mL DAPI for 15 minutes, washed twice with 0.1% PBS-Tween

and once with PBS.

To quantify signals in samples, a semi-automated image analysis pipeline built in Cell-

Profiler software was used as depicted in Figure 2.10. Figure 2.10a shows DAPI and SMAD4

channels merged. DAPI staining was used to precisely locate nuclear regions (Figure 2.10c) and

SMAD4 staining was used to define cellular borders and to determine cytoplasmic regions (Fig-

ure 2.10c and Figure 2.10d). Manual correction was performed for erroneous detections. Based

on defined nuclear and cytoplasmic regions, signal intensities from control and temporal

samples were obtained. Background subtraction was performed using control samples.
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(a) Merged (b) DAPI

(c) Cellular segmentation (d) Cytoplasmic segmentation segmentation
Figure 2.10 – Quantification of immunofluorescence samples with the automated CellProfiler pipeline.
(a) Merged image of DAPI and SMAD4. (b) Nuclear segmentation based on DAPI signal. Nuclei touching
image boundaries were not segmented. (c) Cell contour segmentation based on SMAD4 signal (d) Defined
cytoplasmic regions. Images are taken from Cell Profiler software [Carpenter et al., 2006].
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3 Results

3.1 Simultaneous monitoring of transcription factor signaling and

target gene activation in single living cells

3.1.1 Generation of stable cell lines for dual-luminescence imaging

Suter et al. previously generated a lentiviral gene trap cell line with an insertion of a short-lived

firefly luciferase into the 5th exon in one allele of the connective tissue growth factor (ctgf )

gene. This cell line allowed to monitor the transcriptional profile of the endogenous ctgf gene

both in steady state [Suter et al., 2011] and upon stimulation [Molina et al., 2013].

Figure 3.1 – Schematic of the lentiviral gene-trap vector to gen-
erate the gene-trap cell line

The gene trap construct ele-

ments (Figure 3.1) were assembled

from 5′ to 3′[Friedrich and Soriano,

1991]. The EMCV internal ribosomal

entry site (IRES) initiates indepen-

dent translation of the protein [Jang and Wimmer, 1990]. F2A (Foot-and-mouth disease

virus2A) mediates the cleavage into separate Bsd (blasticidin) and NLSluc proteins [Ryan and

Drew, 1994]. Nuclear localization signal (NLS) increases the local luciferase (luc) concentration

for better luminescence signal. ARE (AU-rich element) controls mRNA stability [Winzen et al.,

1999] while a destabilized version of firefly luciferase (Promega Corp.) was used for protein

instability. This vector was used to generate the gene trap cell line after Bsd selection.

Nanoluciferase is a small luciferase subunit (19kDa) from the deep sea shrimp Oplopho-

rus gracilirostris. Optimization of this protein structure together with development of a novel

substrate (furimazine) resulted in a novel bioluminescent system (Promega). It has been

shown that the Nluc system provides several advantages over other established systems such

as smaller size, enhanced stability and around 100-fold increase in luminescence and lower

background (Figure 3.2). Its smaller size results in minimal disturbance and bias in its ex-

perimental hosts. Moreover, the spectral profile of Nluc displays an emission maximum of

460 nm significantly distinct from firefly luciferase emission (Figure 3.2b). Thus, with its
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superior features and well separated spectra, Nluc suits for applications involving other longer

wavelength reporters (e.g., firefly luciferase in our case).

(a) (b)
Figure 3.2 – Comparison of luminescence systems. a) Luminescence systems performance comparison
based on molecular size and luminescence efficiency. b) Emission spectrum for different bioluminescence
systems with Firefly, Renilla and Nanoluc luciferases. The distinct emission spectra of Nanoluc and Firefly
luciferase allows simultaneous monitoring of two channels. Adapted from [Hall et al., 2012].

We established two Tet-On inducible stable cell lines each expressing a fusion protein of

a Nluc reporter to either SMAD4 or SMAD2, the two main transcription factors downstream

of TGF-β signaling pathway. These cell lines that also contain a short-lived firefly luciferase

reporter for the expression of the target endogenous ctgf gene allowed us to perform dual-

luminescence imaging (Section 2.2.2, Figure 3.3, Figure 3.4).

SMAD4NlucTRE3G IRESSA  ARE pABsd-F2A-NLSLuc-PESTCTGF

(a)

(b)
Figure 3.3 – Schematic illustration of the dual-luminescent reporter system. a) Nanoluciferase was fused
to SMAD4 and expressed under the control of doxycycline inducible promoter TRE3G (left). Schematic
representation of the luciferase (Luc) fusion constructs used in the experiments (right,[Suter et al.,
2011]). Constructs used in the experiments Bsd: Blasticidin-deaminase; F2A: foot-and-mouth virus
co-translationally cleaved peptide; NLS: Nuclear localization signal; PEST: destabilizing sequence. Using
this gene trap lentivector, short-lived NLS-firefly luciferase was integrated into endogenous locus and
expressed under endogenous promoter. Arrows represent promoters. b) In unstimulated condition,
SMAD4 is localized both in the nucleus and cytoplasm and ctgf is expressed at a basal level localizing
into nucleus due to fused nuclear localization signal.
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Fluc Nluc Merged

Figure 3.4 – Dual-luminescence detection of SMAD4 and ctgf in NIH 3T3 cells. Image shows one frame
obtained from luminescence movies: Fluc (left, blue) channel, Nluc channel (green, middle), merged im-
age (right). Fluc signal is localized to nucleus via an NLS signal. Nluc-SMAD4 signal is distributed inside
the whole cell in the basal state. Nuclear Fluc signal is used to segment nuclei of cells in luminescence
imaging.

Nluc-SMAD2/4 fusion reporter proteins were designed to be expressed with an inducible

system. For this purpose, cells were transduced with two lentiviral vectors. The first one ex-

pressed the reverse tetracycline transactivator rtTA3G while the second one expressed reporter

fusion proteins under TRE3G promoter (Clontech). This promoter consists of repeats of tet

operator sequence named as tetracycline response element (TRE). In absence of doxycycline,

a tetracycline analog, rtTA3G protein is not able to bind and activate TRE3G promoter. More-

over, TRE3G promoter does not have binding sites for endogenous mammalian transcription

factors. Therefore, the inducible promoter TRE3G provides for very low basal expression.

When cells are cultured in the presence of doxycycline, the transactivator protein undergoes a

conformational change that allows it to bind to tet operator (tetO) sequences located within

TRE3G promoter and activate expression (Figure 3.5).

Figure 3.5 – Schematic description of Tet-On 3G inducible system. The Tet-On 3G system allows inducible
gene expression only in the presence of doxycycline. The reverse tetracycline transactivator rtTA3G is
constitutively expressed under PGK promoter. In the presence of doxycycline, rtTA3G protein binds and
activates TRE3G promoter expressing Nluc-SMAD4/2 fusion proteins.

This Tet-on inducible expression system allows precisely regulated control of transgene

expression which is reversible and reproducible [Gossen and Bujard, 1992]. It provides very

low basal expression and high maximal expression after induction. Such tunable expression
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profile offered the possibility to tune expression levels SMAD reporter in experiments which

will be covered in the next sections. Therefore, it was crucial to characterize expression levels

of the reporter before performing single-cell experiments.

3.1.2 Validation and characterization of dual-luminescence reporters

In order to avoid high overexpression of the reporter and to mimic the endogenous SMAD lev-

els and localization, both parental cell line and Nluc-SMAD reporter clones were characterized

regarding SMAD localization and expression levels.
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Figure 3.6 – Doxycycline induced SMAD reporter levels and its effect on ctgf response upon TGF-β
stimulation in population-level measurements. In lumicycle measurements, Firefly and Nanoluciferase
expression levels were measured in parallel in response to a range of dox concentrations. a) Samples
cultured with indicated doxycycline concentrations are stimulated with TGF-β (5 nM) as indicated by
dashed black line. SMAD2 expression levels varied gradually depending on doxycycline concentration.
TGF-β stimulation didn’t have any impact on SMAD2 levels (left). SMAD2 levels dose-response was
calculated averaging signals on the left panel in triplicates (middle). Upon TGF-β stimulation, the
mean ctgf response of triplicates corresponding to SMAD levels in the left and middle panel. b) Samples
cultured with lower doxycycline concentrations to characterize the expression induction from 2ng/ml to
10ng/ml (left and middle panel). c) The same experiment and quantification using Nluc-SMAD4 cell line
(TGF-β stimulation at t=0). Samples are color coded as shown in legends.

The doxycycline-dose responses of both Nluc-SMAD4 and Nluc-SMAD2 reporter levels

were characterized using Lumicycle measurements. When seeding, cells were treated with a

range doxycycline concentrations spanning from 1 to 500 ng/ml. Expression levels of both

Nluc-SMAD4 and Nluc-SMAD2 reporters, in comparison to uninduced leakage expression,

were measured. Samples were also stimulated with TGF-β to check how samples with different

SMAD reporter levels respond. Regarding SMAD levels, Nluc-SMAD2 cell line showed up to
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50-fold induction (Figure 3.6a and Figure 3.6b) while Nluc-SMAD4 covered more than 2 orders

of magnitude fold-induction depending on doxycycline concentration (Figure 3.6c). Both

reporters have a similar dose response profile that has a profound increase from 2 ng/ml to

10 ng/ml of doxycycline concentration (Figure 3.6a and Figure 3.6c, left and middle panel).

Therefore, we also repeated the same experiments covering lower dose range of doxycycline (0-

2-5-10 ng/ml). This set of samples revealed the gradual transition in expression levels (Figure

3.6b, left and middle panel). Gradually higher SMAD levels resulted in slight differences

in ctgf response profiles upon TGF-β stimulation. In SMAD2 samples, there was no clear

enhancement in ctgf responses with the increased SMAD2 levels (Figure 3.6a, right panel). Yet,

in case of SMAD4, the increasing levels of SMAD4 resulted in slightly higher initial response

levels and more sustained long term ctgf signals. In uninduced samples and the sample

induced with low dose of doxycycline (2 ng/ml), the response was transient. Starting from

certain level of doxycycline concentration (10 ng/ml), the response gradually became less

transient (Figure 3.6c, right panel).

The dose response of doxycycline was previously characterized; however, these results

only showed the comparative fold-induction of transgene expression relative to its leakage

expression. Therefore, it was essential to compare ectopic expression of SMAD reporters with

endogenous levels. Characterization of endogenous SMAD2/4 and Nluc-SMAD2/4 levels by

Western blot showed that for low doses of doxycycline (2 ng/ml), Nluc-SMAD reporter levels

are either on the order of endogenous SMAD levels (in case of SMAD4) or much less than the

endogenous levels (in case of SMAD2). Starting from doxycycline concentration of 10ng/ml,

the exogenous levels reach and exceed endogenous levels with the increasing doxycycline

levels (20 ng/ml) (Figure 3.7). This observation agrees with the previous dose-response profile

of dox induction (Figure 3.6).
a b

20 7.5 10 20

GAPDH
SMAD2

Nluc-SMAD2
Dox (ng/ml) Dox (ng/ml)

Nluc-SMAD4
SMAD4

0  2 10 20

Figure 3.7 – Western blot analysis of endogenous and Nluc-tagged SMAD2/4 in the stable clonal reporter
cell lines. Samples were treated with doxycycline using indicated concentrations. a) Nluc-SMAD2 cell
line. GAPDH is shown as a loading control. b) The same experiment is repeated for Nluc-SMAD4 cell line
using indicated doxycycline concentrations.

Our reporter system allowed us to operate in different regimes of SMAD levels. Previ-

ous studies used different expression levels of exogenously tagged SMADs in comparison to

endogenous levels ranging from subendogenous levels(x0.5, [Strasen et al., 2018] ) to over

expressed regime(>2, [Warmflash et al., 2012]. We started our single-cell microscope ex-

periments with low doxycycline concentration (2ng/ml) to minimize perturbations of the

signalling network with ectopic expression. Such expression level provided the minimal signal

that can be detectable in the luminescence microscope while preserving the system as close as

possible to its endogenous state. However, the tunability of doxycycline-inducible promoter

was exploited to adjust SMAD expression levels in further experiments in the study. This

allowed us to investigate the effect of SMAD abundance on the target gene response upon
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stimulation. Taken together, these results validate that our reporter system covered a range

expression levels and can be utilized for real-time stimulation experiments.

3.1.3 Single-cell imaging measurements of SMAD2/SMAD4 translocation and ctgf
expression response in TGF-β stimulation experiments

Aforementioned population averaged measurements initially gave some basic understanding

of the newly designed SMAD reporters. Yet, they did not reveal the detailed cellular dynamics

and variability. Only dynamic single-cell measurements would allow us to dissect those

aspects of the response to TGF-β stimulation. However, before performing TGF-β stimulation

experiments, the behaviour of the reporter system regarding SMAD localization and the

target gene expression in the absence of any stimuli was checked (Figure 3.8a). In the basal

state, a roughly homogeneous localization of both SMAD2 and SMAD4 between nucleus and

cytoplasm, which was quantified as the ratio of nuclear to cytoplasmic signal, was observed.

This localization is due to continuous shuttling between the nucleus and the cytoplasm and

dictated by the relative strengths of the nuclear import and export signals [Pierreux et al., 2000].

On the other hand, ctgf expression levels, revealed a slightly decaying profile for the initial 1-2

hours followed by a non-changing profile on average, while exhibiting random bursts of activity

in some single cells agreeing with its previously observed steady-state characteristics [Suter

et al., 2011]. The initial decay of ctgf expression can be attributed to adaptation to mechanical

stress exerted during initial periods of the experiment since physical and mechanical cues were

shown to induce ctgf expression together with other soluble signals [Chaqour and Goppelt-

Struebe, 2006, Dupont et al., 2011]. After such adaptation, both ctgf expression and SMAD

localization baseline remained constant for hours. Therefore, stimulation experiments were

performed 1-2 hours after imaging started when this mechanotransduction effect diminished,

providing a flat baseline.

Single cells exhibited substantial heterogeneity even in basal ctgf expression levels which

may be attributed to both the stochastic nature of its transcription [Suter et al., 2011] and

involvement of ctgf in different cellular processes [Samarakoon et al., 2010]. Therefore, it was

checked if initial SMAD4 expression levels have any influence on ctgf expression level in the

absence of stimuli. Therefore, we designed an experiment in which doxycycline induction

of SMAD4 levels was utilized (Figure 3.8b). The experiment was performed with low initial

ectopic expression levels of SMAD4, thereby only expressing endogenous SMAD4, using no

doxycycline as characterized before (Figure 3.7). Right before imaging, addition of 20ng/ml

doxycycline resulted in a significant amount of increase in the SMAD4 reporter expression,

more than one order of magnitude, in SMAD4 levels along 5 hours (Figure 3.8b), upper and

lower panels). This marked increase, which would also possibly level up the total SMAD4

abundance in cells, did not lead to any response or expression level increase in ctgf expression

(Figure 3.8b, middle and lower panels). Similar results were also obtained with Nluc-SMAD2

cell line. This observation suggests that SMAD2/4 abundance alone does not induce any

response in the target gene in the absence of stimulation.
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Figure 3.8 – Dual-luminescence reporter system control experiments. a) Unstimulated cells reveal flat
baseline of SMAD localization and ctgf expression. Heat maps of SMAD4 (upper) and ctgf expression
(middle) levels in unstimulated individual cells over time were shown. Population average shows baseline
of SMAD4 nuc/cyto ratio localization of SMAD4 (blue) and ctgf expression levels (red,bottom N=58). b)
SMAD4 levels alone do not induce any expression response in the absence of stimulation. Heat map of
SMAD4 (upper) and ctgf expression (middle) levels in individual cells over time. Cells were treated with
20 ng/ml doxycycline at the time point indicated by dashed black line. They were imaged up to 6 hours
but not longer due to high expression levels of SMAD4 reached. Population average shows the significant
induction of SMAD4 levels (blue) and steady profile of ctgf expression levels (red,bottom N=52).

After validation of the dual reporter system and characterizing its behaviour in case

of no stimulation, single-cell time-lapse bioluminescence experiments monitoring SMAD

translocations and the target gene expression in response to stimulation were performed

(Figure 3.9). To do that, cells were imaged with luminescence microscopy up to 24h, upon a

high dose (5 nM) of TGF-β stimulation (Figure 3.9).To verify the activation of SMAD signal

transduction pathway and to relate time-courses of reporter cell lines to endogenous SMAD

dynamics, a combination of western blot analysis and immunofluorescence experiments was

performed (Figure 3.11).

Luminescence microscopy movies were analyzed using a custom-made automated

image analysis pipeline in Matlab (Section 2.3). With this tool, all individual cell nuclei are

segmented and tracked throughout the entire experiment using nuclear Fluc signal. Using

segmented nuclei regions, ctgf expression signal, localized to nucleus via nuclear localization

signal, is calculated. For SMAD translocation quantification, nuclear and cytoplasmic SMAD

signal is measured separately and nuclear/cytoplasmic ratio is calculated. When quantified in

single cells, levels of nuclear and cytoplasmic SMAD signal varied. Upon stimulation, cells

with higher basal levels of nuclear SMAD4 responded more strongly, reaching a higher final

level while cells with lower basal levels of nuclear SMAD4 responded less in absolute levels.
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(a)

(b)

(c)

(d)
Figure 3.9 – Single cell quantification of dual-luminescence imaging movies in TGF-β stimulation
experiments. a) Nanoluciferase is fused to SMAD4 and expressed under the control of doxycycline
inducible promoter TRE3G (left). Using a gene trap lentivector, short-lived NLS-luciferase is integrated
into endogenous locus and expressed under endogenous promoter (right). Arrows represent promoters.
b) Before TGF-β stimulation, SMAD4 is localized both in the nucleus and cytoplasm (T1) and ctgf is
expressed at a basal level. TGF-β stimulation results in a transient nuclear enrichment of SMAD4 signal
while nuclearly localized ctgf expression signal increases. T2 and T3 represent time points 1h and 3.5h
after TGF-β stimulation at which nuclear SMAD localization and ctgf response reach their maxima
respectively. c) Time series images of a tracked single cell on both Nluc (left) and Fluc (right) channel in
the luminescence microscopy. Time goes from top left to bottom right, each of the 10 rows represent 1
hour. Images were taken every 5 minutes. d) Quantification of SMAD4 translocation (upper panel) and
ctgf expression (lower panel) dynamic profiles in four individual cells stimulated with TGF-β (5 nM) at
time T1.

Therefore, nuclear/cytoplasm SMAD ratio, rather than the absolute signal, is a reasonable

choice against variable levels of transgene expression (Figure 3.9c and Figure 3.9d). Especially
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when the reporter is expressed at subendogenous levels (2ng/ml dox, Figure 3.7), the ratio

quantification can be a good proxy for the assessment of SMAD translocation levels upon

stimulation. Indeed, cells displayed a more precise response to ligand stimulation in the ratio

quantification (Figure 3.10). Therefore, nuclear enrichment relative to cytoplasmic levels,

either SMAD nuclear/cytoplasmic ratio or nuclear minus cytoplasmic levels, are used further

in this study to assess the translocation response to stimulation.
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Figure 3.10 – Nuclear/cytoplasmic SMAD ratio is a more precise response to ligand stimulation. The
dashed line indicates when TGF-β was added. Each line is a trace from a single cell, plotted as the
absolute nuclear level (left) or relative to its cytoplasmic level (nuclear/cytoplasmic ratio, right).

Immunofluorescent staining for endogenous SMAD4 in parental cell line displayed

strong overlap of SMAD4 localization and translocation profile upon stimulation as the re-

porter (Figure 3.11a and b). Slight differences between endogenous profile obtained from

immunofluorescence quantification and SMAD reporter profiles in single-cell luminescence

imaging may source from the distinct nature of experiments and different image analysis

pipelines used for quantification (Section 2.6 and Section 2.3). Similarly, Western blot anal-

ysis comparing pSMAD2 levels as a function of time showed the transient induction profile

agreeing with SMAD4 translocation profile measured in reporter cell lines (Figure 3.11c and

d).

53



Chapter 3. Results

a b

c d

D
A

P
I

t=45 mint=0 min
S

M
A

D
4

Time (min)
0 50 100 150 200 250 300 3501

1.1
1.2
1.3
1.4
1.5
1.6

S
M

A
D

4 
N

uc
/c

yt
o 

ra
tio

D)

0 50 100 150 200 250 300 350 400
Time (min)

0
0.2
0.4
0.6
0.8

1

pS
M

A
D

20 30Time (min)
pSMAD2

60 120 240 360

Figure 3.11 – Validation of the reporter system using immunofluorescence and western blot. a) Im-
munofluorescent staining for SMAD4 at the indicated times after continuous application of 5nM TGF-β
b) showing transient enrichment of endogenous SMAD4 in the nucleus characterized by SMAD4 nucle-
ar/cyto ratio at different time points (typically ~100 cells for each time point). c) Western blots of total cell
lysates from cells exposed to 5nM TGF-β for the indicated times show transiently elevated pSMAD2 levels
(exogenous pSMAD2 is not detected due to low doxycycline induction (2ng/ml)). Signals were normalized
to GAPDH staining in each well. The sample at t=120 min had a low loading problem which was still
corrected with GAPDH normalization. d) GAPDH normalized signals were further normalized with
min-max scaling assuming that sample was at the low basal limit before TGF-β stimulation (performed
in monoplicate).

It is also verified that the localization of SMADs and ctgf response levels were both

dependent on the stimulation. In contrast to unstimulated cells or cells treated with inhibitor

SB-431542 (Figure 3.12 and Figure A.1), we observed robust nuclear shuttling of SMAD4

and SMAD2 and the subsequent transcriptional response of ctgf upon TGF-β stimulation.

Therefore, dual-color luminescence imaging allows simultaneous recording of transcription

factor shuttling and transcriptional responses at high temporal resolution.
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Figure 3.12 – Dual-luminescence system performance in single-cell TGF-β stimulation experiments. After
quantification of the time-lapse movies, a) the ratio of nuclear-to-cytoplasmic SMAD4 ratio (red) and b)
ctgf expression (blue) are plotted as a function of time. The response of cells with the functional reporter
and stimulated with 5 nM TGF-β (N = 301) was compared to unstimulated cells (N = 58, gray). The solid
lines indicate the population average of single cells and the shaded area the standard deviation. Data is
shown up to 8 hours to emphasize activation both in SMAD4 and ctgf.

Similarly, signal-to-noise ratios for newly established SMAD translocation reporters
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were calculated based on single cell SMAD translocation traces (Figure 3.13). High SNR

even with modest levels of translocation indicates that reporters are suitable to measure

SMAD translocation in response to stimuli. Taken together, these results suggest that we have

established a functional dual-luminescent reporter system to measure SMAD mediated TGF-β

pathway at two different nodes.
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Figure 3.13 – Signal-to-noise ratio assessment of SMAD translocation reporter measurements for a)
SMAD4 and b) SMAD2. Each data point represents a single cell. The signal on x-axis is the amplitude
of the translocation peak compared to basal SMAD nuclear/cytoplasmic ratio. The SNR was calculated
as the maximum ratio change, normalized to the baseline ratio, divided by the standard deviation of
baseline signal levels (5 frames) before TGF-β stimulation. The data were fitted by using the relationship
SNR = Signal1/2. Blue lines indicate the 95% confidence intervals.

3.2 Cellular heterogeneity in transcription factor translocation and

the target gene response dynamics

Single cells in previous stimulation experiments responded to the stimulation with a profound

cellular variability (Figure 3.9, Figure 3.11, Figure 3.12). Both SMAD translocation and ctgf

response varied from cell to cell temporally and in amplitude. To assess such heterogeneity

thoroughly, TGF-β stimulation experiments were repeated several times to reach enough statis-

tical power, typically hundreds of cells for each condition. Next, the variability in the response

and the contribution of SMAD signaling on ctgf response heterogeneity were investigated.

Using the described single-cell quantification methodology, we extracted single-cell

information from repeated experiments and combined hundreds of cells (Figure 3.14, typically

~30 cells from each imaging). For each single cell (~300 cells), SMAD4 translocation and

ctgf response were quantified and displayed in two separate heat maps where each row

corresponded to the same individual cell (Figure 3.14a). Single cell traces were min-max

scaled, meaning that the data was scaled to a fixed range, 0 to 1, to indicate different levels of

activation in the same scheme. Yet, absolute quantification of SMAD translocation and ctgf

expression is utilized for further analysis (Figure 3.14b).

To investigate also temporal features of the response, certain time points on single cell

traces such as SMAD translocation peak, the target gene response initiation and the target gene

55



Chapter 3. Results

response peak were manually annotated. Temporal distributions of the single cell traces were

checked to assess the variability of each feature. The quantification of nuclear to cytoplasmic

ratio of the SMAD4 translocation reporter signal revealed an immediate translocation response

into nucleus which directly starts at 5 min and reaches a peak about 1h after TGF-β stimulus

(Figure 3.14a, upper panel and Figure 3.14c, upper panel, green). This suggests the immediate

phosphorylation of SMAD2/3 (Figure 3.11), their interaction with SMAD4 and formation

of R-SMAD-SMAD4 complexes which leads to its translocation from the cytoplasm to the

nucleus.
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Figure 3.14 – Single cell temporal variability of SMAD4 translocation and ctgf expression dynamics. a)
Heat map of single cell SMAD4 translocation (upper panel) and the consequent ctgf expression (lower
panel) upon TGF-β stimulation (5nM). Results are a combination of several stimulation experiments.
Min-max scaling, ranging from 0 to 1, was used to represent each single cell data. b) Population average
of the data shown in heat maps with standard deviation (SMAD4 nuclear to cytoplasmic ratio (blue)
and ctgf signal (green)). c) Nuclear localization of SMAD4 reaches a peak with a mean temporal delay of
~60 min after TGF-β stimulation (green). The target gene expression starts to increase with a temporal
delay of ~60 min after TGF-β stimulation (blue). The target gene expression reaches a peak with a
temporal delay of ~210 min after TGF-β stimulation (purple). The distribution of the time delay between
SMAD4 nuclear localization peak and ctgf expression peak (gray, mean ~150min). Legends indicate the
coefficient of variation (horizontal cross line) while the vertical cross line displays the mean.

Concurrently, the immediate early gene, ctgf, initiates a response which reaches a maxi-

mum expression only 3.5 h from stimulation after SMAD4 localization has already returned

to almost its uninduced profile (Figure 3.14a, lower panel and Figure 3.14c, purple). Individ-

ual cells displayed relatively little variability in their timing of SMAD4 translocation (Figure

3.14a) but strong variability in its amplitude (Figure 3.15a-c) , suggesting variable transduction

efficiency of TGF-β signaling to SMAD4 shuttling. Both timing and amplitude of the ctgf

transcriptional response displayed a broad distribution, reflecting large cell-to-cell variability

in upregulation of the ctgf gene (Figure 3.14c and Figure 3.15b-d).
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Figure 3.15 – Single cell variability of SMAD4 translocation and ctgf expression levels. Heat map of single
cell a) SMAD4 translocation and b) the consequent ctgf expression upon TGF-β stimulation (5 nM). Data
is represented as the absolute single cell quantification. c) Single-cell distribution of SMAD4 nuclear to
cytoplasmic ratio calculated at translocation peak. d) Single-cell distribution of maximal ctgf responses
calculated by subtracting basal nuclear ctgf levels from its peak value in response to TGF-β.

SMAD4 nuclear localization peak temporally varied from 0.5h to 1.5h in individual cells

while the gene expression response covered a wider temporal range from 2h to 6h. This

variability is also reflected in the peak-to-peak temporal distribution (Figure 3.14c). SMAD

translocation process, directly downstream of TGF-β stimulation, encompasses the activation

of the pathway on the membrane, SMAD-phosphorylation, heteromerization with co-SMADs

and the import of the complex into the nucleus. On the other hand, the gene expression

output may have many other sources of variability such as the transcription itself, the export

of mRNA, its translation and the feedback mechanisms shaping the response further.

SMAD4 undergoes continuous nucleocytoplasmic shuttling prior to TGF-β signaling

which determines its basal localization [Pierreux et al., 2000]. SMAD4 accumulation in the nu-

cleus peaking at 1h is due to formation of complexes with the R-SMADs, SMAD2 and SMAD3.

This increase in nuclear localization is attributed to the increased interaction with DNA and

reduced export levels. R-SMAD dephosphorylation results in dissociation of SMAD4 from com-

plexes and export from the nucleus to the cytoplasm. Regarding localization quantification,

SMAD4 localization before induction seemed to be homogeneous all around the cell which

may slightly deviate from the previous reports [Warmflash et al., 2012]. Such deviation could

be explained with differences such as expression levels of SMAD4 reporter, cell types used,

single-cell quantification strategy and the type of microscopy used in different studies. In

addition, single cells displayed intercellular variability in SMAD localization prior to induction.

Such variability could arise from varying basal activity of the pathway or from other extrinsic

sources of noise such as cell cycle, cellular microenvironment leading to different SMAD4

localization in individual cells [Strasen et al., 2018].
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Figure 3.16 – Single cell temporal variability of SMAD2 translocation and ctgf expression dynamics. a)
Heatmap of single cell SMAD2 translocation and the consequent ctgf expression upon TGF-β stimulation
(5 nM). Min-max scaling was used to represent each single cell data. b) Population average of the data
that was shown in heat maps with standard deviation (SMAD2 nuclear to cytoplasmic ratio (green) and
ctgf signal (blue)) c) Nuclear localization of SMAD2 reaches a peak with a temporal delay of ~70 min
upon TGF-β stimulation (green). The target gene expression starts to increase with a temporal delay of
~70 min after TGF-β stimulation (blue). The target gene expression reaches the peak with a temporal
delay of ~210 min after TGF-β stimulation (purple). The distribution of the time delay between SMAD2
nuclear localization peak and ctgf expression peak (gray, mean ~150min). Legends indicate coefficient of
variation (horizontal cross line) while vertical cross line displays the mean.

In parallel, we also conducted the same experiments to assess the partner signal trans-

ducer (SMAD2), behaviour using Nluc-SMAD2 translocation reporter cell line (Figure 3.16

and Figure A.2). Since the activated SMAD4-SMAD2 complexes translocate together into nu-

cleus, similar translocation dynamics and gene expression response profiles were obtained as

SMAD4 clone. SMAD2 nuclear localization reached the peak around 70 min which coincided

with the initiation of the expression response. The ctgf response peaked at 3.5-4 hours after

stimulation.
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3.2. Cellular heterogeneity in transcription factor translocation and the target gene
response dynamics

Figure 3.17 – Single cell variability of SMAD2 translocation and the ctgf expression levels. Heat map of
single cell a) SMAD2 translocation and b) the consequent ctgf expression upon TGF-β stimulation (5nM).
Data represents the absolute single cell quantification. c) Single-cell distribution of SMAD2 nuclear to
cytoplasmic ratio calculated at translocation peak. d) Single-cell distribution of maximal ctgf responses
calculated by subtracting basal nuclear ctgf levels from its peak value in response to TGF-β.

Average SMAD2 and SMAD4 translocation dynamics upon stimulation agreed with the

biochemical measurements in previous studies [Vizán et al., 2013] while we observed profound

heterogeneity of SMAD translocation in single-cells. However, the gene expression response

showed a higher cell-to-cell variability compared to SMAD translocation throughout the

experiment (Figure 3.14 to Figure 3.17). SMAD localization has relatively low variability in the

basal state while it reaches higher values after TGF-β stimulation due to differential responses

in individual cells. On the other hand, ctgf expression levels show substantial heterogeneity

even in basal state which can be due to both its high responsivity to cellular microenvironment

(Samarakoon et al. [2010], Section 1.2.6) and its bursty nature even in steady-state [Suter et al.,

2011]. Its expression can be stimulated by shear stress, serum shock, or TGF-β in cultured

fibroblasts [Samarakoon et al., 2010, Molina et al., 2013]. Therefore, conditions such as serum

concentration,cellular density contribute to its variability. However, TGF-β stimulation causes

a synchronized response of individual cells which reflects into lowered, yet still higher than

SMAD, cellular variability (Figure 3.14 and 3.16).

3.2.1 ctgf dynamics decompose into two distinct classes: transient and sustained

Single cells displayed substantial amount of cell-to-cell variability in SMAD translocation

and ctgf expression response both in dynamics and amplitude. Inspection of individual cells

revealed a more detailed profile of ctgf responses. The majority of individual ctgf responses

were nicely defined transients, reaching a peak in 3-4 hours upon stimulation, termed as

‘initial response’, and returning to basal levels in around 8 hours (Figure 3.18, blue traces)

while some portion of the whole population differed from such profile in their responses.

These individuals responded in a sustained manner rather than transient as defined earlier,

characterized by a relatively weaker initial response and a longer-lasting activity. In this

subpopulation, cells typically also displayed a distinct second wave of response, termed as

‘final response’ for the rest of the study, before returning to their basal values (Figure 3.18,

red traces) while this final response was temporally less synchronous among individuals.

Such sustained or oscillatory profiles, previously reported to be possible in TGF-β induced

SMAD signaling [Strasen et al., 2018], have not been clearly investigated in relation to its

consequent target gene responses so far. Therefore, further analyses were crucial to clearly

define individuals belonging to these two distinct sub-populations.
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Figure 3.18 – Inspection of individual ctgf responses revealed two distinct profiles. Sample single-cell ctgf
trajectories from TGF-β (5 nM, at t=0) stimulation experiments are shown (N=6-blue traces, N=7-red
traces). Some cells responded in a transient manner (upper panel, blue single cell traces) with only ‘initial
response’ (blue shaded region) while the others responded in a sustained manner (lower panel, red single
cell traces), typically and additionally exhibiting a ‘final response’ (red shaded region).

In order to dissect these qualitatively different ctgf responses, individual ctgf traces

were categorized into two classes using k-means clustering. Due to pronounced cell-to-cell

variability in absolute ctgf levels and the weakness of Euclidean metric to resolve dynamic

behaviour of traces, we did not use Euclidean distance as the similarity/dissimilarity measure.

Instead, we use correlation as the k-means distance metric to determine subgroups with

similar dynamic patterns. Moreover, previous qualitatively observed distinct classes mainly

differentiate in their dynamics rather than amplitudes. We, therefore, decided to employ two

clusters to represent best the dynamical heterogeneity observed. Constraining the number of

clusters to two would make our results remain biologically significant since some previous

studies also claimed two main response groups in TGF-β induced SMAD signaling, transient

and sustained [Zi et al., 2011, Strasen et al., 2018]. Moreover, categorizing single cells into

bigger numbers of classes would reduce the statistical power by further lowering number of

cells in each cluster.

Indeed, we identified two cellular subpopulations of ctgf traces that show qualitatively

distinct behaviour as observed manually earlier (Figure 3.19). Figure 3.19a displays the mean

ctgf response of cells in the identified categories (solid lines) and the variability in that category

(error bars). The first group exhibited a transient behaviour returning back to its basal values

in around 8 hours (Figure 3.19a, blue) while the second group showed sustained and even

oscillatory response (Figure 3.19a, red). The sustained population represents only a small

portion of all individuals (13%-sustained vs 87%-transient).

As stated earlier, we made a heuristic choice of two clusters when applying k-means

algorithm as the initial choice since our initial observations of ctgf responses in different

samples gave us the notion of two classes although we do not exclude the possibility of having

more number of clusters. Yet, our clustering approach, even with two classes, provided

promising results when the performance of the clustering is evaluated using silhouette score.

Silhouette plots provided a graphical representation of how well ctgf expression response
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of each cell belonging to a cluster corresponded to other cell traces in the same cluster

rather than the other cluster [Rousseeuw, 1987]. The silhouette score ranges from 1 to +1,

where a high value indicates that the object is well matched to its own cluster and poorly

matched to neighboring clusters. The silhouette scores are calculated using 1-correlation as

the distance metric. Results showed a very high percentage of cells with positive silhouette

scores suggesting the nice separation of clusters (Figure 3.19b).
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Figure 3.19 – Ctgf response dynamics decompose into two distinct response classes. a) Single-cell traces
from TGF-β (5 nM) stimulation experiments (Nluc-SMAD4 cell line, as in Figure 3.14) were categorized
into two classes using k-means clustering (N=301 cells). Time courses of the identified response classes
showed qualitatively distinct behavior. The solid lines indicate the mean of the cell population and
the shaded area the standard deviation of the mean. b) Silhouette plot of cells sorted according to ctgf
expression dynamics. Plots represent how similar each cell to its own cluster (in our case, transient and
sustained) compared to other clusters. Positive silhouette scores indicate that ctgf responses are more
similar to their own group while negative scores suggest that the corresponding trace is closer to the other
group. c) Heterogeneity in initial and final ctgf response levels, quantified at the peak point, for transient
and sustained classes. (*p<0.05; **p<0.0005, t-test).

While predominantly distinct in their dynamics, identified subpopulations also differed

in their absolute levels of responses. Cells belonging to the sustained cluster displayed slightly,

but still significant, lower levels of the initial response (Figure 3.19c). This observation might

already suggest an existing differential cellular state among individuals that already reflects

into the initial response level. As expected, the same sustained subpopulation showed higher

expression levels compared to the transient category, at longer time scales (in between 8-12

hours). Taken together, both the response levels and dynamics differed in two identified
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clusters indicated by absolute and normalized (min-max scaled) signals (Figure 3.20).
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Figure 3.20 – Decomposition of cell-specific ctgf responses into transient and sustained classes. Heatmaps
for ctgf traces belonging to transient (upper panels) and sustained (lower panels) are shown, quantified
as both absolute (left) and normalized (right) levels (min-max scaled, 0 to 1). TGF-β (5 nM) is applied at
t=0 and ctgf responses in Nluc-SMAD4 cell line is quantified (Dox concentration, 2ng/ml).

The same clustering approach is also applied in Nluc-SMAD2 cell line, on the single-cell

data of TGF-β stimulation experiments (Figure 3.16) which indicated similar results (Figure

A.3 and Figure A.4, TGF-β (5 nM), doxycycline concentration (2ng/ml)). Both the mean profile

of identified subpopulations and the percentage of sustained category did not change much

which suggests that identified distinct behaviours are independent from the reporter cell line

type.

3.2.2 Long-term dynamics of ctgf response is influenced by SMAD4, but not SMAD2,
levels

After decomposing responses into two distinct classes, we aimed to determine if SMAD signal-

ing has any influence on the distribution of traces into those classes. Thus, we hypothesized

that SMAD signaling components, SMAD4/2 in our case, may have certain variability among

individuals such that these differences can manifest themselves in distinct ctgf responses.

To check such relation, single-cell SMAD signaling traces obtained from dual-luminescence

imaging measurements were utilized. Interestingly, both SMAD4 and SMAD2 translocation

dynamics did not display a significant difference among transient and sustained ctgf response

classes (Figure 3.21, left).In addition, even in case of a sustained ctgf response, cells belonging

to this class showed a transient SMAD signaling upon stimulation. However, SMAD4, but not

SMAD2, levels differed significantly between two classes which may suggest that high SMAD4

levels may contribute to sustainability of the response in certain proportion of cells (Figure

3.21, right).
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Figure 3.21 – Not SMAD shuttling dynamics but SMAD4 levels differ between transient and sustained ctgf
response to TGF- stimulation. Average SMAD nuclear to cytoplasmic ratio trajectories belonging to two
classes identified with clustering (blue-transient, red-sustained ), in Nluc-SMAD4 (a) and Nluc-SMAD2
(b) cell lines. c) Comparison of SMAD levels in the transient and the sustained classes. SMAD4 levels are
significantly higher in the sustained class while SMAD2 levels do not differ. SMAD levels are quantified as
the mean signal during 12 h after TGF-β (5 nM) stimulation (t=0). (*p<0.005; t-test)

To further validate the identified link between SMAD4 levels and the target gene re-

sponses to TGF-β stimulation, we designed experiments to vary SMAD levels in reporter cell

lines by exploiting the doxycycline-inducible promoter. We repeated the previously described

TGF-β stimulation experiments with the same high dose of TGF-β stimulation (5 nM) while us-

ing a range of doxycycline concentrations (0-200 ng/ml) (Figure 3.22). This allowed us to vary

SMAD reporter levels from subendogenous levels to over expressed regime as characterized

before (Figure 3.6 and Figure 3.7).

Population averages obtained from single-cells, treated with increasing doses of doxycy-

cline, revealed a pattern in long-term ctgf response dynamics. With the increasing SMAD4

levels, population averages showed more sustained and even oscillatory ctgf responses upon

stimulation (Figure A.7). This was better visualized when ctgf responses were normalized

using min-max scaling. Starting from 20 ng/ml doxycycline treatment, population averages

for ctgf response becomes less transient and more sustained. Higher-doses of doxycycline

treatment (50-200 ng/ml), hence higher SMAD4 levels, resulted in even oscillatory responses

(Figure 3.22a). On the other hand, SMAD2 samples did not exhibit such behaviour since all

samples, irrespective of their induced SMAD2 levels, responded in a transient manner (Figure

3.22b). These observations agree with our previous Lumicycle measurements revealing also

differential effect of SMAD2 and SMAD4 levels on the target gene response dynamics upon
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TGF-β stimulation (Figure 3.6).
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Figure 3.22 – Long-term dynamics of ctgf response is influenced by SMAD4, but not SMAD2, levels.
Population time courses for ctgf responses upon TGF-β stimulation in samples treated with varying
doses of doxycycline (0-200 ng/ml). TGF-β stimulation is at t=0. a) Nluc-SMAD4 cell line showed distinct
long-term ctgf dynamics depending on SMAD4 levels (upper panel). Traces were normalized using
min-max scaling (lower panel). b) In Nluc-SMAD2 cell line, no difference was found between samples
regarding long-term dynamics (absolute traces-upper panel, normalized traces-lower panel).

To dissect further the identified link occurring in SMAD4, but not in SMAD2 samples,

single-cell time series data obtained from different doxycycline dose treatment experiments

were pooled for k-means clustering approach described earlier. This allowed us to analyze

higher number of cells (N=1576) and gave a complete picture of response profiles, ranging

from strongly transient ones to sustained and even oscillatory profiles. Similar to previous

observation, the clustering revealed two distinct classes mainly differing in their long-term

dynamics (Figure 3.23). Due to inclusion of many replicates of TGF-β stimulation experiments

in different doxycycline conditions led to a wide range of ctgf response levels in absolute

values (Figure 3.23, left). Yet, normalized profiles better revealed the underlying heterogeneity

of dynamics detected (Figure 3.23, right). Of note, data represented in heatmaps display

where the most striking difference lies in between two classes, within 12 hours after TGF-β

stimulation. Yet, in later time points, the sustained class individuals also returned to their

basal levels with varying dynamics (Figure A.6). Still, the sustained profile, which can also be

considered as two waves of activation, differs from the typically expected transient response,

thereby needs further investigation.
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Figure 3.23 – Decomposition of cell-specific ctgf responses into transient and sustained classes. Cells
treated with varying doxycycline concentrations as indicated in Figure 3.22 were all included in the
analysis (Ntot al = 1576, Ntr ansi ent = 1213 (77%), Nsust ai ned = 363 (23%)). Heat maps for ctgf traces
belonging to transient (upper panel) and sustained (lower panel) are shown using absolute (left) and
normalized (min-max scaling, 0 to 1, right) levels of ctgf responses.

Neither population level measurements nor average signals of individual cells deciphers

the relation between SMAD levels and the response dynamics. Thus, this link is checked in

single-cell traces by determining the occurrence, fraction of cells, of sustained dynamic profiles

based on doxycycline induction levels. The clustering approach provided a clear separation of

two classes (Figure 3.24a). In addition, distribution of each classes into varying doxycycline

dose samples gave some clue about contribution of SMAD levels on such categories of target

gene responses. Increased doses of doxycycline, consequently higher SMAD4 levels, altered the

portion of sustained individuals in the population, from 10% to 50% in the most extreme case.

The increase in sustained occurrence overlapped with the profile of relative SMAD reporter

levels compared to endogenous counterparts. Starting from doxycycline concentration of

20 ng/ml at which SMAD4 reporter levels reached and even exceeded endogenous levels as

measured earlier, the occurrence of the sustained portion is altered reaching its highest value

(50%) at doxycycline concentration of 200 ng/ml (Figure 3.24b, right and Figure A.8). Yet,

SMAD2 levels did not display any regular trend as sustained proportion varied between 10%

and 23% in different samples (Figure 3.24b, left).
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Figure 3.24 – Distribution of ctgf response clusters depending on SMAD levels. a) Silhouette plot of
cells sorted according to ctgf expression dynamics. b) Bar plots indicate the fraction of each cluster
(yellow-transient, blue-sustained) in the corresponding doxycycline dose inducing either SMAD2 (left) or
SMAD4 (right) levels.

Of note, not all experiments in doxycycline dose analysis have the second channel, Nluc.

Only experiments with doxycycline concentrations of 2 ng/ml and 10 ng/ml which allowed

us to directly check if, in single cells, SMAD levels have any significant difference between

two identified response clusters. Indeed, SMAD4 levels, in both conditions, displayed higher

values in the sustained class compared to its transient counterparts (Figure 3.24).
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Figure 3.25 – Comparing SMAD levels in the transient and the sustained classes in samples treated with
2 ng/ml and 10 ng/ml doxycycline. SMAD4 levels are significantly higher in the sustained class while
SMAD2 levels do not differ significantly. SMAD levels are quantified as the average signal during 12 h
after TGF-β (5 nM) stimulation (t=0). (*p<0.05; t-test)

The experimental approach and analysis of single-cell data in previous sections allowed

us to analyze the ctgf response in relation to SMAD profile in hundreds of genetically identical

reporter cells. Heterogeneous ctgf responses were deciphered by the decomposition of traces

into two clusters, transient and sustained. Modulating SMAD levels, the influence of SMAD

levels on the distribution of cells into the defined classes was determined. It was observed that

altered SMAD4 levels led to a shift in response toward sustained profile while SMAD2 levels

did not have any impact on the ctgf dynamics. To verify if these observations were not sourced
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by any perturbation due to doxycycline treatment itself [Moullan et al., 2015] and to eliminate

any alternative interpretation of the results, a non-inducible doxycycline control cell line was

produced. The same type TGF-β stimulation experiments, using this non-functional cell line,

did not reveal any differential effect of doxycycline treatment on the ctgf response. Both the

sample induced with high dose of doxycycline (200 ng/ml) and non-induced sample exhibited

similar ctgf response amplitude and dynamics in response to TGF-β stimulation (Figure A.5).

This non-inducible doxycycline control cell line expressing only rtTA3G without any target

gene also did not exhibit altered ctgf response, confirming the absence of the perturbation

due to reporter system on ctgf dynamics.

These results, in overall, agree with our previous observations at population level show-

ing differential effect of SMAD2 and SMAD4 on the long-term ctgf dynamics (Figure 3.6).

Furthermore, single-cell assessment of both SMAD levels and ctgf responses revealed the

extent at which SMAD levels influence responses, evaluated by counting the occurrence of

different behaviours, which would not be possible with bulk measurements.

3.3 TGF-β dose modulation on both SMAD signaling and ctgf re-

sponse

TGF-β plays a key role in a broad array of cellular activities in a dose-dependent manner.

Mammalian cells interpret the concentration of TGF-β in the surrounding environment and

translate this information into downstream signals that direct their proliferation, survival

or death in different cellular contexts. While some early studies assume constant TGF-β

concentration throughout experiments, it has been shown that TGF-β is internalized and

degraded by cells. This ligand depletion emerges as one of the main determinants of the

downstream signalling [Vizán et al., 2013]. Moreover, units of ligand molecules per cell rather

just the ligand concentration was shown to be a better representation of TGF-β ([Zi et al.,

2011]). Therefore, it was crucial to investigate how cells respond to different ligand doses and

how changes in ligand exposure influence SMAD signalling and consequent gene expression

dynamics.

In previous experiments, a high-dose of TGF-β (5 nM) was used which led to response of

all cells both on SMAD and ctgf level to different extents. Therefore, when designing dose-

response experiments, this dose (5 nM), also known to be high in comparison to existing

literature, was considered as the upper limit which was also further validated. Before single-

cell level investigation, the influence of TGF-β dose on ctgf response profile in population

level lumicycle experiments was studied. An experiment to investigate both the dose effect of

TGF-β on the response and its putative depletion dynamics in long-term experiments was

designed. To do that, samples were stimulated cells on culture dishes with three different

doses of TGF-β covering two orders of magnitude of TGF-β dose (5-50-500 pM) which were

again stimulated after 24 hour with the highest dose used (500 pM) (Figure 3.26).
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Figure 3.26 – Determination of the concentration dynamic range for TGF-β in population-level mea-
surements. Samples were recorded for up to 2 days in lumicycle. Traces correspond to the average over 4
replicates. Stimulations are represented by dashed black lines (the first at t=0, the second at t=24h). The
first stimulation doses varied, as indicated in legends, while the second stimulation was 500 pM.

The first responses scaled well with the TGF-β dose; low dose (5 pM) led to a shorter and

weaker response while higher doses (50-500 pM) showed much higher and longer responses.

High dose samples showed very similar response profiles, slightly differing in their return

profile to basal levels, suggesting that these doses of stimulation already represent the saturat-

ing stimulation levels. This further validates our choice of 5 nM as the saturating high dose

for single cell experiments. The second stimulation of the same dose (500 pM) also revealed

other characteristics related to depletion of the ligand in medium such that samples with

initial lower dose stimulations showed higher responses in the second stimulation. Yet, the

highest dose sample (500 pM) in the first stimulation showed a very weak response to the

second stimulation (Figure 3.26). First, it may point to still remaining amounts of TGF-β in the

medium which had not been internalized or degraded. Second, cells that experienced high

doses initially may have lost their responsiveness due to the internalization of ligand-receptor

complexes which still keeps them impotent to further stimulations. Yet, initially low-dose

applied samples responded to the second stimulus stronger inversely correlated with the

dose of the first stimulation. This suggests that these samples recovered their potency to the

ligand quicker due to the lower dose of the first stimulation which likely led to easier receptor

turnover. In addition, this experiment roughly revealed the range of stimulation doses which

we further could use for single-cell experiments. Similar results are obtained when double

stimulation is applied on samples in the luminescence microscope (Figure 3.27).
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Figure 3.27 – Consecutive stimulation with high doses of TGF-β revealed refractoriness in the response.
Samples were treated with high dose of TGF-β (5 nM) twice in 24 hours. Both samples showed refractori-
ness while the sample initially treated with lower dose (0.5 nM) exhibited a small response to the second
stimulation. Stimulations are represented by black dashed lines.

These results overall revealed stimulation dose levels that substantially change both

signaling and the target gene transcriptional response levels. Some studies emphasized that

TGF-β molecules per cell is the main proxy for the TGF-β response [Feng et al., 2016]. Here,

TGF-β molar concentration is used as the dose parameter since we used the same number of

cells with the same amount of medium volume for each dose condition. When converted to

this unit, our doses cover a three orders of magnitude range varying from 1.2 x 104 to 1.2 x 107

TGF-β molecules per cell. This range provided enough dynamic range covering doses from

non-responding regime to the response saturation [Zi et al., 2011].

Next, different doses, previously tested on lumicycle measurements, of TGF-β (0.005-

0.05-0.5-5 nM) were applied to samples to check their gene expression response together

with signaling (SMAD2/4) profile in single-cells. These experiments revealed dose-dependent

(analog) profile of the response characterized by gradually altered translocation signal and

the target gene activity (Figure 3.28, Figure 3.29,Figure 3.30 and Figure 3.31). Expression

responses exhibited slightly different profiles compared to lumicycle measurements such that

0.005 nM (5 pM) sample on average did not show any detected response both on SMAD and

ctgf level which can be attributed to heterogeneity of single cells. Comparison of the data

between untreated samples (Figure 3.8a) and those treated with the lowest concentration

of TGF-β (5 pM) confirms that the concentration range used here was sufficient to capture

the minimal responses from low doses of TGF-β. At this low stimulation level, cells either

showed transient very weak response returning to basal levels quickly or no response both

on SMAD and ctgf levels. At intermediately high stimulation levels (50 pM), average of single

cells showed transient responses on signaling and ctgf response level. This intermediate level

of stimulation represents an interesting non-saturated regime that cells respond in a dynamic

range that can reveal information about SMAD mediated ctgf response levels. Starting from

the ligand concentration of 500 pM, cells reached their maxima for signaling and target gene

transcriptional response to TGF-β stimulation.
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Figure 3.28 – Ligand dose response of TGF-β-induced SMAD4 signalling and the ctgf response in single
cells. At time t=0, cells were treated with the indicated concentrations of TGF-β and representative
traces for active single cells are shown. Left panels show single-cell SMAD4 nuclear to cytoplasmic
signal difference quantification and right panels show ctgf responses in the corresponding single cells
color-coded.
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Figure 3.29 – Population averaged ligand dose–response of TGF-β-induced SMAD4 signalling and the
ctgf expression. At time t=0, cells were treated with different doses of TGF-β represented in the plot
legends. Upper panel shows the overlaid average of single-cell SMAD4 nuclear to cytoplasmic signal
difference quantification. Plots were shown until 7hours to emphasize the region in which the transient
response in SMAD4 occurs. Lower panel shows ctgf responses upon stimulation, plotted up to 12hours
after stimulation.
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Figure 3.30 – Population averaged ligand dose–response of TGF-β-induced SMAD2 signalling and the
ctgf expression. At time t=0, cells were treated with different doses of TGF-β represented in the plot
legends. Upper panel shows the overlaid average of single-cell SMAD2 nuclear to cytoplasmic signal
difference quantification. Plots were shown until 7 hours to emphasize the region in which the transient
response in SMAD2 occurs. Lower panel shows ctgf responses upon stimulation, plotted up to 10 hours
after stimulation
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Figure 3.31 – Heat maps of stimulation dose response of TGF-β-induced SMAD4 signalling and ctgf
response in samples treated with a range of ligand dose. Heat maps of stimulation dose response of
TGF--induced SMAD signalling and ctgf response in single cells for Nluc-SMAD4 and Nluc-SMAD2 cell
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by two heat maps representing SMAD signaling (upper) and ctgf response (lower). Absolute response
values are plotted using the same scale: ctgf levels (0-6000), SMAD nuclear/cytoplasmic ratio (0.8-2.4).

SMAD2 and SMAD4 signaling dose response profiles differed slightly regarding their

saturation concentrations and response alterations between different doses. SMAD signaling

did not always scaled linearly with ctgf response levels while both signals revealed the analog

encoding of TGF-β dose information (Figure 3.32).

Similarly, temporal profiles of responses displayed trends influenced by ligand concen-

trations (Figure 3.33). In single cells, SMAD4 response peak times showed significant increase

in transition from 5 to 50 pM and reaching a saturation starting from 500 pM. SMAD2 sig-

naling peak times, on the other hand, revealed a sharp transition of peak times between 50

and 500 pM. Reduced levels of ligand treatments resulted in smaller response transients of

SMAD translocation compared to higher ligand doses. Interestingly, such alteration of SMAD

translocation temporal peak did not reflect into ctgf dynamics since ctgf peak timing did not

much vary in a dose dependent manner. This might suggest that single cells, once activated

by sufficiently high SMAD signaling, respond with the same temporal dynamics tailored by

other components of the pathway.
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Figure 3.32 – Analog encoding of TGF- dose information by dose-dependent SMAD and ctgf responses.
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Figure 3.33 – Encoding of TGF-β concentration information in temporal profiles of SMAD signaling
and ctgf responses. Data from the same cells treated with different dose of ligand were also temporally
analyzed to determine the time taken to initiate ctgf response (middle), to reach the first peak of nuclear
translocation of SMAD (left) and ctgf (right) (t-test for significance).

3.4 Ligand-dependent translocation and the target gene response

Cells receive a variety of signals from the their environment and process these signals through

shared signaling components. Response to both TGF-β and BMP signaling, for instance,

involves parallel activation of two signal transduction pathways converging on SMAD4 to

further regulate downstream events. In this section, how a different upstream activation

mechanism, BMP4 stimulation, causes SMAD4 translocation and consequent ctgf response is

investigated.

Similar to TGF-β signaling, BMP4 initiates the signal transduction cascade by binding to

cell surface receptors and forming a heterotetrameric complex consisting of two type I and

type II serine/threonine kinase receptors. Upon formation of the complex, type II receptor

transphosphorylates the type I receptor which leads to phosphorylation of receptor-regulated
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SMADs (SMAD 1/5/8) and their association with SMAD4 to further activate downstream gene

expression. Therefore, this pathway represents a similar cascade to TGF-β pathway causing

SMAD4 to translocate and regulate gene expression. Therefore, it may provide us a useful

platform to investigate SMAD4 mediated mechanisms of transcriptional regulation. To do

that, I stimulated cells with BMP4 and measured both SMAD4 translocation and ctgf response

which led to a similar response with a transient response in SMAD4 translocation and its

consequent transient expression activation of ctgf. This stimulation exhibited a narrower

transient on SMAD4 translocation compared to TGF-β stimulation, reaching a peak in half an

hour despite the same translocation amplitude. Interestingly, this same amount of SMAD4

translocation resulted in much lower gene expression response which may suggest the activa-

tor type specificity of the gene expression response. In case of of BMP stimulation, the complex

SMAD1/5/8-SMAD4 may activate the gene with different efficiency than the SMAD2/3-SMAD4

heteromers in response to TGF-β (Figure 3.34).
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Figure 3.34 – Experimental observation of integrative processing of simultaneous TGF-β and BMP4
signals. At time t=0, cells were treated with either TGF-β (blue) or BMP4 (yellow) or both (red). Transient
SMAD4 translocations characterized by nuclear to cytoplasmic ratio are shown up to 12 hours after
stimulation (upper panel). Ctgf responses differed in amplitude and in temporal profiles between
different treatments (lower panel)

To understand how cells process multiple signals in this context, a scenario involving co-

stimulation with BMP4 and TGF-β was also examined. In this case, cells showed a prolonged

and altered SMAD4 translocation as well as prolonged and stronger expression response.

The net response caused by simultaneous two stimuli was the sum of the responses that

would have been caused by each stimulus individually. These results provide experimental

evidence of integrative processing of multiple simultaneous input signals in which cells

display dynamics that represent the additive contribution of the two pathways. This may

suggest that previously characterized dose responsive activation of the pathway enables cells
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to respond in an integrating manner when subjected to different stimuli. To further elucidate

the independency of these two signalling branch, an experiment in which cells were first

stimulated with a high-dose of TGF-β followed by a BMP4 stimulation was performed. Upon

first TGF-β stimulation, cells normally move into a refractory phase in which cells do not

respond until TGF-β is depleted or potent receptors are returned back to cell surface. Yet, the

second stimulation with BMP4 led to both SMAD4 translocation and ctgf response which

would not be possible otherwise with a second TGF-β stimulation (Figure 3.35). Overall, these

observations suggest an integrative information processing of the pathway which sums up

contributions originated from two independent stimuli of different strength to activate the

same gene.
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Figure 3.35 – Consecutive stimulation experiment with TGF-β (first) and BMP4 (second) stimulation.
Response to stimuli is characterized by SMAD4 nuclear to cytoplasmic ratio (red) and ctgf expression
level (blue). Stimulations are represented by dashed black arrows.

3.5 Single-cell correlations

Our dual-luminescence system technique allowed us to accurately measure both the levels

and dynamics of transcription factor (SMAD2/4) reporter and its endogenous target gene

(ctgf ) with a temporal resolution of 5min. We applied this system to investigate SMAD2/4

translocations and its possible modulation on the target gene response in response to stimuli,

mainly using TGF-β as the ligand. In principle, the modulation of transcriptional response

could exhibit a broad array of behaviours depending on stimulation profile, promoter archi-

tecture and the topology of the pathway. Here, we attempted to dissect the contribution of

translocation profile including features both in time and amplitude on the response features

with single-cell resolution (Figure 3.36).
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Figure 3.36 – Single-cell features of SMAD translocation and ctgf response dynamics in response to TGF-β
stimulation. Both the amplitude and timing of response peaks were utilized as a measure of the signaling
and the gene expression response. Horizontal black arrows represent temporal features while vertical
black arrows denote amplitude features.

3.5.1 Temporal correlation of signaling activity and the expression response

One decent and straightforward hypothesis would be that SMAD translocation correlates

with the expression temporally due to their mechanistic causality in the pathway. This would

reflect into temporal correlations in single cells which can be characterized by peaking time

points on both TF translocation and the target gene expression. Due to short-lived nature of

the target gene reporter, temporal profile of the expression response also gives clues about the

transcriptional response kinetics. Therefore, I attempted to check whether such correlation

exist in individual cells (Figure 3.37).
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Figure 3.37 – Schematic representation for temporal correlation of signaling activity and the expression
response.

To determine whether temporal profile of ctgf response, particularly the peaking time

point, is influenced by SMAD4 translocation timing, I sorted cells either according to the their

SMAD4 peaking time point or according to the ctgf expression response peak time point.

However, we did not observe any obvious correlation between SMAD4 translocation peaking

and ctgf expression response (Figure 3.38 and Figure 3.39).
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Figure 3.38 – Temporal correlation of signaling activity and the expression response based on ctgf peaks.
a) Heat map of SMAD4 translocation in individual cells over time in response to 5nM TGF-β1. Each
horizontal line represents a single-cell signal obtained with min-max scaling. b) Heat map of ctgf
expression response for each single-cell corresponding to SMAD4 heat map is shown again with min-
max scaling. c) Distribution of SMAD4 nuc/cyto ratio peaks obtained with automated peak detection
algorithm. d) Distribution of ctgf expression response peaks obtained with automated peak detection
algorithm. Black arrow represents the stimulation timing.

Heat maps for both SMAD4 and ctgf expression response were normalized using min-

max scaling to visualize better the temporal profile of peaking in both signals. To ensure a

robust detection of peak points, both automated and manual annotations were performed

which reveal a high agreement. Heat maps were sorted according to manual annotations of

peaks while binary peak maps showed the result of automatic peak detection algorithm.

SMAD4 nuc/cyto ratio

ctgf response

ctgf response peaks

2 4 6 8 10 12
Time (h)

Figure 3.39 – Temporal correlation of signaling activity and the expression response based on SMAD4
translocation peaks. a) Heat map of SMAD4 translocation in individual cells over time in response to
5nM TGF-β1 ordered by their peak timing. Each horizontal line represents a single-cell signal obtained
with min-max scaling. b) Heat map of ctgf expression response for each single-cell corresponding to
SMAD4 heat map is shown again with min-max scaling. c) Distribution of ctgf expression response peaks
obtained with automated peak detection algorithm.
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To further validate this observation, we applied the same kind of analysis to SMAD2

experiments which also did not reveal any obvious correlation between translocation and

expression response timings. Such lack of correlation between SMAD translocation peaking

and the response peaking may suggest a mechanism that SMADs trigger the transcriptional

response upon its translocation while other components in the pathway shape the response

further determining the duration of the expression response.
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Figure 3.40 – Temporal correlation of signaling activity and the expression response based on SMAD2
translocation peaks. a) Heat map of SMAD2 translocation in individual cells over time in response to 5
nM TGF-β1 stimulation. Each horizontal line represents a single-cell signal obtained with min-max
scaling. b) Heat map of ctgf expression response for each single-cell corresponding to SMAD2 heatmap is
shown again with min-max scaling, ordered based on peak timing for each cell. c) Distribution of ctgf
expression response peaks obtained with automated peak detection algorithm.

3.5.2 The expression response amplitude scales with the expression response du-
ration

Despite the lack of temporal correlations between SMAD and the expression response, one

feature emerged during our investigations regarding the ctgf expression response itself. When

sorted according to their response maximum time points, the ctgf expression response am-

plitude compared to their basal levels exhibited an increasing profile with the increasing

response peaking time. Cells that reach their response peaks earlier exhibited weaker response

amplitudes while late peaking individuals showed stronger responses (Figure 3.41). Since

negative feedbacks have the strongest potential to cease the activation and parameters such

as TGF-β concentration, SMAD levels were not varied in this set of examples, the variability of

activation duration in individual cells can be attributed to the variability in negative feedback

components.

To further validate this observation, cell traces were grouped into three equally sized

bins based on their peak timing, and labelled as early, intermediate and late. Such grouping

also supported the previous observation that early peaking individuals showed weaker and
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narrower responses while late peaking ones exhibited stronger and wider responses (Figure

3.41).
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Figure 3.41 – Heat map of Ctgf expression responses in single cells to TGF-β stimulation (at t=0), sorted
according to their response peak timing, shows an increasing trend also in the response amplitude (Left).
Color bar represents the signal amplitude. Grouping of ctgf expression responses into three categories
based on their response peaking time (Middle). Groups are labeled as early, intermediate and late. Dashed
arrows represent full width at half maximum (FWHM) as a measure of response duration. Groups did
not show significant difference in SMAD translocation profiles (Right).

The previously defined three categories of cells did not show an obvious trend in their

SMAD translocation profiles (Figure 3.41). This observation similarly suggests an initiation

role of SMADs on the gene expression in response to stimulation while negative feedbacks

[Warmflash et al., 2012, Zi et al., 2011, Wegner et al., 2012] or secondary mechanisms of

SMADs recruiting activators and suppressors shape the transcriptional response further at

later instances [Coda et al., 2017].

3.6 Improvements of the experimental pipeline

Dual-reporter system integrated with microscopy system and image analysis pipeline has still

room for further improvements. One important modification that would alter the precision of

measurements is to account for substrate instability leads to a slight drop in Nluc signal during

long-term experiments. Since Nanoluciferase is a newly engineered protein being in its infancy

, its substrate stability performance gets better with new commercially available variants. To

evaluate its current performance for long-term imaging, a cell line expressing a fusion protein

of Nanoluciferase and firefly luciferase was developed. This calibration cell line, owing to 1:1

stoichiometry, allowed us to measure the slow luminescence decay of nanoluciferase by cross-

correlating signal between two channels (Figure 3.42). While the substrate of firefly luciferase

is stable for several days in our experimental conditions, it can be utilized to correct for slow

decaying of Nanoluciferase signal. In future experiments, incorporation of this Nluc-Fluc cell

line into experiments with Nluc-SMAD2/4 cell line would be a useful modification for the

robustness of measurements.
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Figure 3.42 – Nluc-Fluc cell line for signal correction. a) Schematic representing expression of Nluc-Fluc
fusion protein under doxyccyline inducible promoter with 1:1 stoichiometry. b) A sample single cell trace
showing coupled expression of Fluc and Nluc for extended periods of time. c) The linear correlation over
a wide range between signals quantified in both channels. d) Population mean of both channels showing
the slow decay in Nluc signal compared to stable Fluc signal.

In the current system, the quantification of SMAD translocation is characterized by a

method quantifying nuclear-to-cytoplasmic ratio of the Nluc signal in which a ring-shaped

annulus around the nucleus defined the cytoplasmic region. This aspect of the system further

can be improved by including cytoplasmic markers that can allow us to clearly segment the

cytoplasmic compartment. Another modification of the experimental system can be the

involvement of microfluidic cell culture systems to apply complex time courses of stimula-

tion. To this end, it was once attempted to incorporate a 2x2 microfluidic chamber system,

altogether fitting into the field of view, which would, in principle, allow us to perform 4 ex-

periments in parallel subjected to different stimuli (Figure 3.43). Such parallel experiments

performed in the same conditions might reduce sources of noise due to batch effect and

provide the opportunity to apply complex forms of ligand input to samples.
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b)ba

Figure 3.43 – Initial implementations of microfluidic chambers. a) The design of 4 microfluidic chambers
fitting into the field of view. b) One successful run of the system with cells loaded into chambers (left) and
luminescence imaging of cells in the chamber (right).
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4 Discussion and Outlook

In this chapter, the main points of the study are summarized and the biological significance of

results are elaborated.

4.1 Dual-luminescence imaging system allows highly sensitive mon-

itoring of protein levels over extended time periods

Despite their widespread usage in monitoring dynamic protein levels in single cells, there are

certain aspects that limit the use of fluorescent reporters. First, the sensitivity of fluorescence

imaging is limited by autofluorescence which hinders measurements of protein abundances

lower than a few thousands [Filipczyk et al., 2015]. Second, phototoxicity and photobleaching

put a constraint on the use of fluorescent reporter systems in long-term imaging measure-

ments. Finally, certain fast protein expression dynamics can not be captured with fluorescence

due to slow maturation processes and variable folding efficiency [Miyawaki et al., 2003, Shaner

et al., 2005]. Even the fast folding variants such as sfGFP (superfolder green fluorescent pro-

tein) require on average 6 mins to become fluorescent which may still be slow to capture

some fast dynamics [Khmelinskii et al., 2012]. Therefore, luminescent reporter counterparts

provide a unique alternative to fluorescent reporters. Owing to its higher sensitivity which

can go down to hundreds of protein molecules, luminescent reporters have been used in

a broad array of studies for dynamical transcriptional and gene expression measurements

[Mazo-Vargas et al., 2014]. In addition to higher sensitivity, duration of imaging is not limited

due to any cellular perturbation from the luminescent imaging system.

As a novelty in this study, we used NanoLuc (Nluc), which is a newly engineered small

luciferase, in combination with firefly luciferase. NanoLuc (Nluc) has been shown to provide

several advantages over other luminescence systems. Its smaller size, enhanced stability and

significantly brighter profile compared to the traditional luminescence counterparts make it a

great choice as a fusion tag to monitor proteins in long-term imaging experiments [Hall et al.,

2012]. Therefore, we utilized Nluc reporters in combination with previously developed firefly

luciferase reporters in the same cell line owing to their differing emission spectra [Mandic
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et al., 2017]. In two of those cell lines, Nluc is fused to two transcriptions factors, SMAD2

and SMAD4, which are main downstream activators of many target genes responding to

TGF-β family ligands (Section 3.1.1). In addition, cells expressing Nluc-Fluc fusion proteins

were also utilized for evaluation of furimazine substrate stability (Section 3.6). Expression of

these three fusion proteins was driven by a doxycycline inducible promoter, TRE3G, whose

expression spans a broad range depending on doxycycline levels. In our experiments with

SMADs, we exploited this tunability of the promoter and varied expression levels by more

than two orders of magnitude. In this wide range of expression, Nluc was able to operate

linearly reporting protein levels varying from subendogenous to overexpressed levels. Owing

to its bright luminescence, we were able to monitor low levels of SMAD proteins that were not

detectable by Western blotting.

Despite its aforementioned advantages, luminescence imaging has several limitations

that need to be addressed. It requires certain experimental parameters to be optimized

before experiments depending on the expression level of the protein being monitored. For

example, the time resolution of the imaging needs to be adjusted to allow for a temporal

window to collect enough luminescence signal. Therefore, long exposure times are needed

for lowly expressed proteins which makes it difficult to image multiple positions without

sacrificing temporal resolution. Long exposure times above several minutes lead to poorer

spatial resolution due to cellular/subcellular motions in comparison to fluorescence imaging

which require much shorter exposure times for a single frame. This low spatial resolution due

to minutes scale exposure time may have caused small deviations in our SMAD localization

measurements compared to reported values in the literature obtained using fluorescence

imaging [Warmflash et al., 2012, Strasen et al., 2018]. However, we believe these potential

deviations did not affect our conclusions significantly since we typically seeded cells with high

confluency which should limit the excess movement of cells. Moreover, the use of different

cell lines and expression levels of our reporter may have also contributed to such deviation.

Similar to exposure times, substrate concentrations need to be optimized depending

on the protein expression levels. Therefore, marked changes of SMAD levels due to different

doses of doxycycline required adjustments of substrate levels used. Another issue that concern

our dual imaging system was the stability of Nanoluc substrate used. Although the Fluc

substrate, luciferin, exhibits very high stability up to several days, the most common substrate

of Nluc, furimazine, suffers from instability in cell culture medium (half life around 70min).

Commercially available alternatives of furimazine, however, display much higher stability

since these pro-substrates are converted to their active form only in presence of cells. The

Nluc substrate utilized in this study (MT Cell Viability Assay Substrate, Promega) relies on the

reduction potential of cells to be activated. Therefore, upon addition of this pro-substrate,

the activated form concentration shows a slow increase over time reaching a plateau phase

followed by a slow decay phase. To characterize and account for these temporal changes in

activated substrate concentration, the possibility to utilize the cell line expressing Nluc-Fluc

fusion protein allowing us to cross-correlate the Nluc signal to the stable Fluc signal was

demonstrated (Section 3.6). The cell line expressing Nluc-Fluc fusion protein revealed this
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4.2. Simultaneous monitoring of SMAD mediated signaling and target gene activation in
response to TGF-β revealed high variability in single cells

slow decay in Nluc prosubstrate luminescent activity. These slow changes appeared to make a

difference only in time scales longer than 24 hours while SMAD translocation dynamics upon

stimulation occur at much shorter time scales, typically 2-3 hours. At these short time scales,

the dynamics of substrate stability are negligible.

4.2 Simultaneous monitoring of SMAD mediated signaling and tar-

get gene activation in response to TGF-β revealed high variabil-

ity in single cells

Despite great efforts to understand pathways and their implications in different cellular con-

texts, complex interactions between upstream regulators and their downstream target is still

not completely understood. Despite a detailed picture of each step, it still remains unanswered

how information is transferred between each level. This is partly due to the lack of methods

which can causally relate a single pathway to its target gene responses. Therefore, methods

that can allow to measure multiple steps in signaling pathways is needed to disentangle reg-

ulation in different stages of the central dogma. Some recent studies monitoring response

pathways at different nodes have contributed to our understanding of signaling, transcription

and translation [Aymoz et al., 2016, Wilson et al., 2017, Xu et al., 2015, Schulz et al., 2018].

Deciphering the information flow between consecutive steps is challenging due to com-

plex networks of upstream signaling and downstream targets. Receptor level induction usually

activates multiple signaling pathways in parallel with different dynamics converging on target

gene responses. These pathways are typically regulated at different steps which makes it

difficult to causally relate any signaling pathway to their target gene responses. To make the

investigation easier, one can isolate a single pathway to prevent the impact of other regulators.

Similarly, exerting a fine-tuned control on the activation levels of the pathway may help to

causally relate input-output relations. Lastly but most importantly, developing an experimen-

tal system to measure different nodes during the response process is crucial. In this study, we

embarked on this task to dissect regulation of the target gene (ctgf) response in relation to

their downstream activators, SMADs, in response to TGF-β treatment.

Previous studies characterized the TGF-β pathway by dissecting regulation at different

steps of the cascade. Some studies focused on the pathway at the receptor level revealing

the importance of TGF-β availability and depletion as an important mechanism [Vizán et al.,

2013]. Other experimental and theoretical studies investigated the mechanisms controlling the

temporal dynamics of SMAD signaling [Warmflash et al., 2012, Strasen et al., 2018]. It has been

further shown that negative feedback mechanisms acting on the pathway at multiple levels

determine the dynamics of signal termination [Itoh and ten Dijke, 2007, Wegner et al., 2012].

Despite investigations at multiple steps of TGF-β pathway, a quantitative relationship between

upstream activators (SMADs) and the downstream target gene transcriptional activity is still

not clear mostly due to gene specific nature of such relation and unavailability of experimental

systems to investigate this regulation. To this end, we established two Tet-On inducible stable
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cell lines each expressing a fusion protein of a luminescence (Nanoluc) reporter to either

SMAD4 or SMAD2, the two main transcription factors downstream of the TGF-β signaling

pathway (Section 3.1.1). These cell lines also contain a short-lived firefly luciferase reporter

for the expression of the target endogenous ctgf gene, which allowed us to quantitatively

link nuclear accumulation of TFs upon TGF-β stimulation to the target gene expression in

real-time single cell measurements. Our experimental approach allowed us to monitor the

translocation of SMADs (SMAD2 and SMAD4) from cytoplasm to nucleus together with ctgf

response in TGF-β stimulation experiments at the single cell level. We characterized transient

SMAD translocations into the nucleus concurrently with ctgf response initiation in hundreds

of single cells.

Single-cell data obtained from stimulation experiments revealed agreement with the

previously reports while differing in some respects. Average SMAD2 and SMAD4 translocation

dynamics upon stimulation agreed with the biochemical measurements in previous stud-

ies [Vizán et al., 2013] regarding SMAD accumulation in the nucleus peaking at 1h due to

formation of activated R-SMAD-SMAD4 complexes. This increase in nuclear localization is

attributed to the increased interaction with DNA and reduced export levels [Hill, 2009]. Next,

R-SMAD dephosphorylation results in dissociation of SMAD4 from complexes and export

from the nucleus to the cytoplasm which reflected into reduced nuclear localization signals in

our measurements in both SMAD2 and SMAD4 case. Yet, in some studies, probably due to

used cell types, SMAD2 showed sustained nuclear localization which was not the case in our

measurements [Warmflash et al., 2012].

Regarding basal localization, both SMAD4 and SMAD2 localization before induction

was shown to be homogeneous in cells which may slightly deviate from the previous reports

claiming homogeneous SMAD4 and predominantly cytoplasmic SMAD2 signals in the absence

of stimulation [Strasen et al., 2018, Warmflash et al., 2012]. Such deviation, however, could be

explained with differences between studies including expression levels of SMAD reporters,

cell types used, single-cell quantification strategy and the type of microscopy.

SMAD translocation and ctgf response showed substantial heterogeneity among indi-

vidual cells while the gene response showed much higher variability both temporally and in

amplitude, agreeing with previous observations [Warmflash et al., 2012, Strasen et al., 2018].

When response peak time points of both SMAD and ctgf were measured, translocation of

SMADs into the nucleus showed a much narrower distribution compared to the widespread

temporal distribution of the gene expression (from 2h to 6h). Increased variability both tem-

porally and in amplitude of the gene response compared to the signaling may suggest the

propagation and accumulation of noise throughout the pathway (Figure 4.1).
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Figure 4.1 – Target gene expression response, both temporally and in amplitude, showed a higher cell-to-
cell variability compared to SMAD signaling. Color shades represent the response intensity.

When assessing the heterogeneity both in basal and induced condition of the pathway,

it is crucial to note that both SMAD signaling and ctgf itself have been recently reported as a

target of certain proteins, YAP/TAZ, which themselves are regulated by Hippo signaling path-

way. Ctgf, for instance, is identified as a direct target gene regulated by activated YAP-TEAD

complexes [Zhao et al., 2008]. In the nucleus, TAZ/YAP act as transcriptional cofactors regu-

lating the activity of several transcription factors including TGF-β-regulated SMADs [Varelas

et al., 2008]. The Hippo pathway senses cell density information to control tissue growth

by regulating the localization of TAZ/YAP which in return dictate the localization of active

SMAD complexes in response to cell density information [Varelas et al., 2010]. In high-density

cell culture, the Hippo pathway drives the cytoplasmic localization of YAP/TAZ resulting in

sequestration of phosphorylated SMADs too in the cytoplasm and overall suppression of the

TGF-β signaling. While these observations might partially explain the cellular variability of

ctgf expression observed in the basal state, the contribution of these mechanism was tried to

be kept minimal using high and the same confluency of cell cultures throughout experiments.

Our dual reporter system, in principle, might allow us further to investigate the contri-

bution of different factors that influence pathway at different stages which eventually lead

to modulation of the response. Owing to the destabilized nature of the luciferase reporter,

the system has the potential to infer underlying mechanisms and deduce dynamics of the

transcription indirectly [Suter et al., 2011, Molina et al., 2013]. Similarly, the tunability of SMAD

reporter provided us the plasticity to operate in different regimes of SMAD expression.
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4.2.1 Higher SMAD4, but not SMAD2, levels favor sustained and oscillatory ctgf
responses

In principle, TGF-β induced SMAD signaling has been shown to be predominantly transient

while consecutive pulse stimulations may result in sustained activation [Warmflash et al.,

2012, Sorre et al., 2014]. In our experiments, we observed both transient and sustained ctgf

expression responses co-occurring in individual cells, especially to higher doses of TGF-β

stimulation. Cells that respond in a transient manner returned back to their basal levels

approximately in 8 hours while the sustained population remained higher over an extended

period of time. Despite the small fraction of cells showing sustained profile, we attempted to

dissect these qualitatively different responses since we thought that biological implications of

such variability could be important. Of the several other biological processes involved, higher

ctgf expression induced by TGF-β has been shown to be highly associated with pathological

fibrosis and fibroblasts are direct targets of such high expression levels [Holmes et al., 2001].

To entangle such variability of responses in hundreds of cells, we utilized k-means

clustering which quantified differences and similarities in dynamic patterns of single cell

traces. Since our main interest in this classification was to define classes with different dynamic

profiles rather than the expression amplitude itself, we utilized correlation as the dissimilarity

metric. We also made a heuristic choice of two clusters since this can summarize what we

observe in time courses. However, we do not exclude the possibility to involve more number

of classes which can yield to more fine-tuned description of the whole data. Our clustering

approach still exhibited good performance evaluated with silhouette scores. In principle,

such variability of transient and sustained responses would have been attributed to negative

feedback mechanisms based on previous studies. However, exploiting the inducible nature of

our TRE3G promoters expressing SMAD2/4, we attempted to assess whether SMAD levels have

any impact on this clustered classes. Varying SMAD levels has revealed an interesting trend

such that the portion of sustained subpopulation increased with altered levels of SMAD4 while

SMAD2 levels did not have any significant effect. This difference can be attributed to the fact

that when in heteromeric complex of SMAD2/SMAD4, only SMAD4 can bind DNA through its

SMAD binding elements (SBE) and among R-SMADs, SMAD3 plays a more significant role for

the induction of TGF-β target genes including ctgf.

When expressed subendogenous levels, SMAD4 did not show any alteration on the gene

expression. Starting from ectopic expression that are comparable to endogenous levels, sam-

ples with high SMAD4 expression showed much bigger portion of sustained responses. In

the extreme cases in which SMAD4 expression reach several fold higher than the endogenous

levels, a large portion of cells, reaching up to half of the population, exhibited sustained and

even oscillatory ctgf responses. This observation interestingly related sustained responses

to SMAD4 levels which had been generally attributed to negative feedbacks in the pathway.

Population level measurements also supported this SMAD-type-specific promotion of sus-

tained responses. However, only the single-cell approach coupled with measurements both on

transcription factor and the target gene expression levels allowed us to determine the extent
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of which SMAD4 levels can promote such sustained responses. This observation also defined

an expression level below which sustained responses have the same incidence rate which may

suggest a thresholding mechanism that filters out small fluctuations in SMAD4 levels and

prevent undesired cellular fate decisions such as fibrosis in case of ctgf. Despite its influence

on the response transientness, SMAD4 levels did not exhibit any significant effect on the first

response amplitude in the target gene in high-dose TGF-β stimulation experiments. However,

such lack of correlation can be due to saturation in the response amplitude. Therefore, the

effect of SMAD abundance on the target gene response amplitude in low doses of stimulation

needs further investigation.

4.2.2 Analog encoding of TGF-βdose information in both signaling and transcrip-
tional response

While current explanations about response variability of members of the TGF-β superfamily

of ligands focus mainly on the downstream signal transduction cascades, the concentration of

TGF-β in the surrounding environment and its depletion emerge as the main determinants

of the signaling response [Vizán et al., 2013]. Recent studies revealed the dose dependent

responses of SMAD signaling [Strasen et al., 2018]. However, the question about how cells

encode and transmit this ligand concentration dependent signaling information into down-

stream genes is still unanswered (Figure 4.2). Therefore, using our dual-reporter system,

how different doses of TGF-β influence SMAD signalling and its consequent gene expression

response were analyzed (Section 3.3).

Analog response

Ligand dose

Digital response

Figure 4.2 – Schematics of the two different scenarios for single-cell responses to stimuli. White filled
circles represent the unresponsive single-cells while blue shades display the response strength.

In principle, the increase in the ligand concentration alters the probability for a receptor

to bind the ligand which would lead to continuous increase in the response. Yet, due to ligand

induced degradation of receptors, TGF-β responses were shown to be eventually attenuated

[Vilar et al., 2006]. In our ligand dose-response experiments, using a wide range of stimulation

doses, a span of three orders of magnitude (5pM-5nM), different regimes of activation were

characterized in signaling and the transcriptional response (Section 3.3). Such a range of

ligand concentrations was utilized covering the full range of activation as previously reported

and further validated with our experiments. Of note, molar concentration is used throughout

the investigation to express ligand dose levels, despite some studies using density, to comply
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with previous studies regarding ligand doses [Molina et al., 2013]. Yet, it is important to state

that our ligand dose regime (5 pM to 5 nM) corresponds to ligand density range of 0.125-125

ng/ml. The upper bound of the range was intentionally chosen high to ensure that the pathway

was activated to the full extent. Moreover, some studies claimed TGF-β molecules per cell as

the main parameter to assess the activation levels [Zi et al., 2011]. When converted to this unit,

our doses cover a range spanning three orders of magnitude, varying from 1.2 x 104 to 1.2 x 107

TGF-β molecules per cell.

5 pM (0.125 ng/ml) was determined, in measurements of this study, as the lower threshold

for TGF-β stimulation which induced virtually no or very slight response in both SMAD

signaling and the target gene. Previous studies have reported that SMAD4 signaling amplitude

but not the kinetics is dependent on the dose based on the observation meaning that low ligand

treatments (0.1 ng/ml) just altered the amplitude of nuclear SMAD4 peak but not the duration

of nuclear localization [Warmflash et al., 2012]. Yet, in our observations, sufficiently low doses

of ligands reduced the SMAD4 nuclear localization time window as well as the translocation

amplitude. Such low dose stimulations resulted in very short transients in signaling and

relatively weaker ctgf responses. This suggests that the time that SMAD complexes stayed

nuclear impacts the transcriptional response to TGF-β in a dose-dependent manner.

Above such low doses, a sensitive regime of stimulation dose (around 50 pM) revealed

small signaling responses leading to pronounced target gene response. Overall, the activation

was identified as an analog process at the single-cell level. Consistent with an analog response,

nearly all of the cells displayed a response to all of the doses of TGF-β if not insufficiently

low (5 pM - 0.125ng/ml). The response amplitude was progressively altered until both SMAD

signaling and the target gene response reached a saturation regime in which further higher

doses of stimulation did alter neither SMAD translocation nor the target expression levels.

Previous studies also reported the dose response profiles of the pathway, but only focusing on

signaling dynamics [Sorre et al., 2014]. Here, it was shown that SMAD signaling scale similarly,

but not exactly in the same manner, with ctgf response levels in a dose-dependent manner.

In our observations, SMAD2 and SMAD4 signaling dose response profiles differed only

slightly regarding their saturation concentrations and response alterations between different

doses which may indicate an existing upstream mechanism. Indeed, the availability of TGF-β

in the medium for instance, governed by cellular intake and consequent depletion, was shown

to play a key role in shaping the signaling and the transcriptional response, particularly in

long-term experiments [Vilar et al., 2006, Vizán et al., 2013]. Supporting that notion, initial

low doses of ligand treatments in our observations allowed restimulation of cells after a

certain time while high doses kept cells in a refractory state for extended periods of time.

TGF-β dose was identified as one of main determinants of cellular response to stimulation

which needs to be taken into account assessing the cellular response dynamics both in short

and long timescales. Previous analysis of response dynamics using clustering approach, for

instance, revealed the existence of sustained subpopulation whose activity extends beyond

initial transients (Section 2.4). High doses of ligands used in that set of experiments might
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have allowed certain individuals to respond in a sustained manner. Therefore, it is crucial to

consider ligand profiles together with other important components of the pathways, SMADs

in our case, when assessing the variability of the pathway responses.

4.2.3 Integrative processing of independent inputs in signaling and transcriptional
response

Cells receive a broad array of signaling molecules from their environment which makes it

crucial to process concurrent signals to direct downstream cellular processes. Although studies

investigate signaling pathways in isolation, it is still elusive how cells process concurrent

signals. In a scenario of multiple simultaneous stimulation, some pathways exhibited a

non-integrative processing in which cells respond to only one of the two inputs depending

on variability of certain cellular components. In the nuclear factor-κβ (NF-κβ) system, for

instance, tumor necrosis factor (TNF) and lipopolysaccharide (LPS) induce distinct responses

due to different dynamics of I-κβ kinase and NF-κβ. Yet, in case of multiple simultaneous

stimulation, the pathway exhibited a non-integrative processing in which cells respond to

only one of the two inputs depending on variability of certain cellular components [Kellogg

et al., 2017].

This study predominantly characterized the ligand TGF-β response of cells focusing

on SMAD signaling and ctgf expression. Yet, at the molecular level in vivo conditions, there

is a complex signal transduction network combining 42 identified different ligands of the

TGF-β superfamily depending on the cellular context [Massagué, 2012]. Both ligands and

receptors form an intricate interaction network in which different ligands share receptors and

downstream signal transducers, probably coupling their signaling.

To investigate how cells handle simultaneous stimulation and how these signals are

integrated to transcriptional responses, BMP4 was used as the second ligand in a small set of

experiments. TGF-β and BMP pathways have similar topology that also interact with each

other through SMAD4 signal transduction. Like TGF-β, BMP stimulation initiates a SMAD

signaling cascade in which receptor regulated SMADs, SMAD 1/5/8, get phosphorylated on the

membrane through serine/threonine kinase activity of type I BMP receptor (BMPRI). However,

both TGF-β and BMP uses SMAD4, the common mediating partner for all R-SMADs, to further

activate downstream gene responses. Signals are expected to be coupled if SMAD4 is saturated

with ligand activation and uncoupled if ligand concentrations do not saturate SMAD4.

Using our cell line having reporter for both SMAD4 and its target ctgf, BMP4 stimulation

was observed to display slightly distinct response profile compared to TGF-β activation, char-

acterized by quicker translocation of SMAD4 and weaker, but still detectable, gene expression

response. Knowing response profiles of each ligand separately, a combination of TGF-β-BMP4

ligands were provided and single-cell SMAD4 and ctgf dynamics were measured using live cell

imaging. Such simultaneous treatment of ligands revealed a response combining features of

both stimuli in an additive manner. On SMAD4 level, the average translocation profile revealed
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an earlier translocation compared to only TGF-β scenario, reaching to a higher translocation

peak level in a more sustained manner.

The gene expression response exhibited stronger and more sustained profile than the

case in which ligands were applied individually. This observation may point towards an

integrative information processing which may also be linked to previously reported graded

(analog) nature of the pathway. However, such observation currently depends on a limited

number of experiments and this aspect of the pathway needs further investigation with larger

single cell data sets including combination of ligands of varying doses. Such efforts applying

conditions that are closer representation of in vivo conditions where multiple ligands of the

TGF-β superfamily are present at the same time interacting with each other, will provide

valuable insight regarding information processing of the pathway.

4.3 Negative feedback and oscillations in TGF-β signaling

Feedback loops are mechanisms connecting the output signal back to its input. Negative

feedbacks are main mechanisms that provide robustness for signaling pathways against

sustained ligand stimulation. Feedback mechanisms generally control information processing

by determining strength and duration of the signal. Both experimental and modeling analysis

revealed the significance of feedbacks in different pathways which contributes to formation

of transient, sustained or oscillating signaling profiles. Many biological processes such as

circadian rhythm, cell cycle, hormone secretion and certain signalling pathways exhibit

oscillatory behaviours based on certain feedback topologies. In principle, oscillatory systems

need to meet four requirements: negative feedback, time delay, nonlinearity of reaction

kinetics and the proximity of antagonistic reaction timescales. Certain pathways exhibit

characteristic oscillations due to the complex opposing interplay between activation and the

negative feedbacks [Lahav et al., 2004, Tay et al., 2010].

Although TGF-β signaling was predominantly associated with transient responses in

response to stimulations, sustained or oscillatory responses, in principle, are also possible

due to complex interplay between activation and negative feedback branches [Zi et al., 2012].

Among several negative feedback mechanisms identified, SMAD7 has been well characterized

and shown to antagonize TGF-β signaling through a variety of mechanisms. As an early

response gene to TGF-β stimulation, SMAD7 is transcriptionally activated to ensure a stable

transient activation of the pathway [Kavsak et al., 2000]. In addition, other feedback regulators

(Arkadia, Smurf1, Smurf2, SnoN and Ski) contribute further the stabilization of the pathway

[Ebisawa et al., 2001, Deheuninck and Luo, 2009]. Recent modeling studies attempted to

evaluate the strength of these negative feedback mechanisms, together with SMAD signaling,

in terminating signaling at different levels of the pathway. Some studies claimed the existence

of oscillating signaling responses also in TGF-βpathway by sampling of an extensive parameter

space related to negative feedbacks [Wegner et al., 2012]. They determined the impact of the

different feedback components on the potential oscillatory dynamics which revealed SMAD7
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and Smurf2 as the most important candidates responsible for oscillations. However, this

expectation of oscillations in the pathway has not clearly been validated since such negative

feedback mechanisms may not be strong enough at the endogenous level. Moreover, existing

population level measurements were likely to obscure such oscillatory behaviours even if

certain individual cells exhibited such profiles. Therefore, it is crucial to investigate responses

with single-cell resolution in different cellular culture and stimulation conditions.
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Figure 4.3 – Negative feedback and oscillations in TGF-β signaling. a) Schematic representing both
activation and negative feedback branches of TGF-β signaling pathway. b) Time course simulation of the
pathway using a previous model encompassing activation, transcription and feedbacks of the pathway
in response to TGF-β stimulation at t=0 [Wegner et al., 2012]. Dotted lines represent our experimental
data of SMAD4 nuclear/cytoplasmic ratio (green) and ctgf response (purple). Units are arbitrary both in
simulation and experimental data.

Our observation that high SMAD4 levels favor for sustained and even oscillatory re-

sponses may contribute to this investigation. Interestingly, previous studies identified only

negative feedback components as the determinants of oscillations. However, in our samples

with high SMAD4 abundance, almost half of single cells exhibited sustained and oscillatory

profile on the target gene expression level. Even the average profile of single cells revealed such

oscillations which suggest an underlying robust mechanism. One possible mechanism for

high SMAD4 levels resulting in oscillations can be through suppression of SMAD7 expression

with nuclear SMAD4-SnoN complexes [Liu et al., 2001]. These complexes have been shown

to bind and repress SMAD7 gene promoter which can explain the predominant oscillatory

93



Chapter 4. Discussion and Outlook

profiles in SMAD4 abundant cells.

4.4 SMAD modulation of transcriptional regulation and bursting

parameters

Suter et al. previously used short-lived reporters to infer the dynamics of endogenous gene

from time courses which revealed the bursty nature of transcription in ctgf gene, among many

others [Suter et al., 2011]. In the follow-up study, Molina et al. investigated the transcriptional

profile of ctgf gene in response to two stimuli, serum and TGF-β1 [Molina et al., 2013]. Using

telegraph model of gene expression, the transcriptional state of the gene was inferred from

protein level traces thanks to destabilized nature of the reporter. In steady state, cells displayed

asynchronous bursts of activity while stimuli modulated transcriptional kinetics in certain

ways. Both serum and TGF-β1 stimulation resulted in a rapid and acute increase in burst

size which was mediated by slightly different mechanisms. Serum stimulation caused a

pronounced first transcriptional burst followed by a refractory period while TGF-β1 revealed

prolonged transcriptional activation due to an increase in transcription rate for extended

periods of time. Such prolonged alterations in transcriptional rate may explain subpopulations

with sustained ctgf responses in our experiments. Cells with higher SMAD4 levels that could

overcome the negative feedback barrier may have resulted in sustained expression responses

exploiting such prolonged high levels of transcription rate. Moreover, one of the conclusions

of the previous study was the dose dependent increase of the transcription rate. In our

experiments, similar ligand dose response profiles showed gradual increase in translocation

strength. This may suggest that transcription factor modulation on transcriptional bursting

occurs through transcription rate rather than burst frequency which ultimately affects the

burst size (Figure 4.4, left scenario). BMP4 stimulation experiments may also provide an

interesting case since in these experiments, the same amounts of SMAD translocations as

with TGF-β1 stimulation resulted in much lower transcriptional response. This may suggest

that transcription factor complexes, SMAD2/3-SMAD4 (TGF-β1) versus SMAD1/5/8-SMAD4

(BMP4) in this case, distinctly modulate the amplitude of transcriptional response without

altering their temporal profiles.

Figure 4.4 – Potential scenarios for SMAD mediated modulation of transcriptional bursting. Temporal
profiles of transcription factors can be incorporated into random telegraph model using time-dependent
transcriptional bursting parameters. Three scenarios in which transcription factors can modulate
transcription rate (left), on rate (middle), off rate (right).
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4.5 Implications for ctgf function

TGF-β plays crucial roles in different cellular processes such as cell proliferation, differentia-

tion, regeneration and tissue homeostasis. Depending on the cellular context, the number of

target genes it can modulate range from a few (pluripotent ES cells) to hundreds (differenti-

ated cells). It can have both activating or suppressing effect on different genes. In principle,

TGF-β functions as a potent growth inhibitor leading to cell cycle arrest or apoptosis in normal

epitalial cells or at early tumor stages. However, in certain pathologic contexts, cells selectively

lose their growth inhibitory responses to TGF-β which converts it from a tumor suppressor

into a tumor progressor.

Among other targets, ctgf has been reported to respond to TGF-β primarily at the level

of transcription. TGF-β stimulation leads SMAD2/3-SMAD4 complex to SMAD4 binding

regions of ctgf promoter. Together with TGF-β, ctgf participates in wound healing process

reconstituting a properly arranged connective tissue. However, uncontrolled activity of the

gene is generally associated with pathological forms of fibrosis characterized by uncontrolled

scarring. Therefore, ctgf is only lowly expressed in normal tissue while fibrotic or some cancer

tissues exhibit high basal levels of ctgf.

In MDA-MB-231 human breast cancer cell line, for instance, ctgf has been shown as

highly overexpressed promoting bone metastasis in vivo. Due to its angiogenic functionality,

high basal levels of ctgf provide favorable environments for metastasis when further induced

by TGF-β. It has been further shown that canonical TGF-β/SMAD pathway is essential for

such metastatic activity characterized by high ctgf levels. Depletion of SMAD4 in these cells

caused a substantial reduction on metastatic potential while restoration or exogenous expres-

sions of SMAD4 restored metastatic activity [Kang et al., 2003, 2005b]. These observations

may emphasize the importance of our observations revealing that higher SMAD4 levels shift

ctgf responses from a transient to more sustained profile. Higher levels of SMAD4 in some

subpopulations of cells may lead to overexpression of ctgf which may further provide se-

lective advantage favoring growth of tumor cell population. Taken together, the canonical

TGF-β/SMAD pathway may emerge as one of the therapeutic targets to be investigated in the

context of metastasis.

Also in normal adult fibroblasts, TGF-β controls the expression of ctgf which induces

fibroblast proliferation and production of extracellular matrix. In contrast to normal fibrob-

lasts, fibrotic tissue samples revealed high expression levels of ctgf. In case of scleroderma

(systemic sclerosis), a fibrotic disorder, ctgf has been shown to be expressed constitutively

while this basal expression levels were SMAD-independent [Holmes et al., 2001].This SMAD-

independent mechanism observed in sclerotic lesions suggest anti-ctgf treatments as a more

plausible treatment strategy in this particular case. However, in another study of benign biliary

stricture, a positive correlation between SMAD4, ctgf and TGF-β was observed suggesting the

importance of TGF-β/SMAD/ ctgf signaling pathway [Geng et al., 2008]. And finally, in the

context of renal diseases, studies suggest that early TGF-β1 fibrotic responses such as induc-
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tion of ctgf expression and E-cadherin down-regulation are crucialy dependent on SMAD3

abundance [Phanish et al., 2006]. Taken together, these studies revealed the complex and con-

text dependent nature of TGF-β-induced, SMAD-mediated and ctgf related pathological cases

which complicates the task of making generalizations. However, previous studies typically

utilized traditional biochemical methods to analyze only populations of cells rather than indi-

vidual cells and at very few time points of an experiment rather than continuously. Therefore,

our experimental approach providing time-resolved measurements of different nodes in this

signalling pathway with single-cell resolution presents a powerful tool for future investigations.

4.6 Conclusion and Outlook

In this thesis, a novel method allowing to measure simultaneously transcription factor translo-

cation and target gene response dynamics in single cells using a dual-luminescence reporter

system was presented. Using this system, the quantitative relationship between transcriptional

activators (SMAD2 and SMAD4) and the target gene ctgf response induced by the ligand TGF-

β was uncovered. Thanks to destabilized nature of firefly luciferase reporter expressed under

ctgf gene, underlying mechanisms of the transcriptional regulation in this signal transduction

pathway was assessed. Combined with statistical and clustering approaches, single-cell time

courses were analyzed to determine the extent how much the transcription factor profile is

encoded in the transcriptional response.

First, a substantial heterogeneity in single cells regarding both the translocation and

the response profiles was quantified while the expression response showed more widespread

distributions across the population both temporally and in amplitude, suggesting a possible

accumulation of noise along the path. Second, a quantitative clustering framework was

demonstrated simplifying the observed variability in target gene responses down to two

categories: transient and sustained. Further, these two categories were linked to SMAD

abundance which suggested that initial high SMAD4, but not SMAD2, levels favor for sustained

and even oscillatory responses in single cells despite the predominant transient nature of the

pathway. Third, effects of several variations of the pathway components such as ligand type,

ligand dose and consecutive stimulations on both the translocation and the response profile

were explored. This provided useful insight into the information processing mechanisms of

this particular signal transduction pathway. Finally, mutual correlations of different single

cell features both in translocation and the response were checked. Due to several biological

and technical factors imposing additional noise on single cell measurements, these single cell

features and their correlations still remains to be further investigated. It would be interesting

to check these single cell features in different experimental conditions varying ligand dose,

ligand type,etc.

Taken together, the experimental approach presented in this study allowed us to link a

panoply of single cell features in translocation and target gene response profiles. However,
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4.6. Conclusion and Outlook

both on SMAD and ctgf level, single-cell time courses were subjected to biological noise in

addition to technical noises explained before. On one hand, ctgf, which is a highly inducible

gene responsive to serum concentrations and shear stress, required careful handling to mini-

mize variability while its wide dynamic range of response provided us a convenient platform

to investigate transcriptional regulation. On the other hand, expression levels of SMAD2/4

were fine-tuned to span a wide range owing to its doxycycline-inducible promoter which also

required careful optimization of the substrate concentration and experimental conditions. In

future experiments, expressing SMAD reporters under constitutively active promoters would

be a good alternative for stable signal levels. Yet, our observations of SMAD4 levels modulating

response dynamics revealed SMAD4 levels as an important determinant of a mechanism

in which upstream activators modulate the target gene response. In a recent study, Strasen

et al., using live-cell imaging combined with clustering approach, grouped SMAD signaling

time-courses into distinct classes. Therefore, it would be expected that the heterogeneity in

SMAD signaling reflects into transcriptional responses as determined in our investigations.

Such heterogenous responses were previously reported in some other pathways [Tay et al.,

2010, Ryu et al., 2015].

Negative feedback was shown to determine the heterogeneity in SMAD signaling [Strasen

et al., 2018]. Therefore in our system, it would be interesting to experimentally test the role

of feedback using either siRNA-mediated knockdown or Cas9-mediated gene knock-out of

certain negative feedback components such as SMAD7. Such perturbations on feedback

mechanism would modulate SMAD signaling and consequently the target gene response.

Moreover, approaches such as ChIP-seq to assess SMAD-induced chromatin remodeling and

investigations of proteins involved in the pathway, other than SMAD4/2, contributing to gene

activity at later times would be useful future research directions to gain a better understanding

of the pathway [Coda et al., 2017]. Such measurements coupled with modeling approaches

would provide new insights that can contribute to both TGF-β and transcriptional regulation

research.
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A.1 Supplementary Figures
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Figure A.1 – Single-cell ctgf expression levels in samples treated with TGF-β-receptor agonist SB-431542
(dashed black line) shown in heatmap (left) and as population average (right) . The solid line and the
shaded area indicate the population average of single cells and the standard deviation, respectively.
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Figure A.2 – Single-cell quantification of Nluc-SMAD2 cell line in luminescence imaging. Time series im-
ages of a tracked single cell of iS2 cell line on both Nluc (left) and fluc (right) channel in the luminescence
microscopy. Time goes from top left to bottom right, each row represents 1 hour. Images are taken every 5
minutes. Single-cell quantification of SMAD2 translocation (a) and ctgf expression level (b) profiles in
four individual cells stimulated with TGF-β (5nM, black dashed lines).
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Figure A.3 – ctgf response dynamics decompose into two distinct classes in Nluc-SMAD2 cell line. a)
Single-cell traces from TGF-β (5 nM) stimulation experiments (Nluc-SMAD2 cell line, as in Figure 3.16)
were categorized into two classes using k-means clustering (N=342 cells). Time courses of the identified
response classes showed qualitatively distinct behavior. The solid lines indicate the mean of the cell
population while the shaded area represents the standard deviation of the mean. b) Silhouette plot of
cells sorted according to ctgf expression dynamics. Plots represent how similar each cell to its own cluster
(in our case, transient and sustained) compared to other clusters. Positive silhouette scores indicate that
ctgf responses are more similar to their own group, while negative scores suggest that the corresponding
trace is closer to the other group.
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Figure A.4 – Decomposition of cell-specific ctgf responses into transient and sustained classes in Nluc-
SMAD2 cell line. Heatmaps for ctgf traces belonging to transient (upper panels) and sustained (lower
panels) are shown, quantified as both absolute (left) and normalized (right) levels (min-max scaled,
0 to 1). TGF-β (5 nM) is applied at t=0 and ctgf responses in Nluc-SMAD2 cell line is quantified (Dox
concentration, 2ng/ml)
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Figure A.5 – Control experiments with non-inducible doxycycline. TGF-β stimulation of 5 nM was
applied at t=0 to the cell line, pretreated with either no (0 ng/ml) or high dose (200 ng/ml) of doxycycline.
Mean ctgf expression responses from two experiments are shown.

Figure A.6 – ctgf response dynamics decompose into distinct classes in experiments with varying doses
of doxycycline stimulation. Single-cell traces from TGF-β stimulation experiments (Nluc-SMAD2 and
Nluc-SMAD4 cell line treated with a range of doxycycline concentrations (0-200 ng/ml) were pooled and
categorized into two classes using k-means clustering. Average time courses of the identified response
classes were shown. The solid lines indicate the mean of the cell population while the shaded area
represents the standard deviation of the mean.
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Figure A.7 – Population time courses for ctgf responses upon TGF- stimulation in samples treated with
varying doses of doxycycline (0-2-10-20-50-200 ng/ml) are shown. TGF-β stimulation is at t=0. Nluc-
SMAD4 cell line showed distinct long-term ctgf dynamics depending on SMAD4 levels (left panels).
In Nluc-SMAD2 cell line, no difference was found between samples regarding long-term dynamics
displaying predominantly transient profiles (right panels).
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Figure A.8 – Decomposition of cell-specific ctgf responses into transient and sustained classes in case of
high SMAD4 abundance when samples treated with 50 ng/ml doxycycline. Heat maps for ctgf traces
belonging to transient (upper panels) and sustained (lower panels) are shown, quantified as both absolute
(left) and normalized (right) levels (min-max scaled, 0 to 1). TGF-β (5 nM) is applied at t=0 and ctgf
responses in Nluc-SMAD4 cell line is quantified
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a b s t r a c t

Fluorescence and bioluminescence time-lapse imaging allows to investigate a vast range of cellular pro-
cesses at single-cell or even subcellular resolution. In particular, time-lapse imaging can provide uniquely
detailed information on the fine kinetics of transcription, as well as on biological oscillations such as the
circadian and cell cycles. However, we face a paucity of automated methods to quantify time-lapse imag-
ing data with single-cell precision, notably throughout multiple cell cycles. We developed CAST (Cell
Automated Segmentation and Tracking platform) to automatically and robustly detect the position and
size of cells or nuclei, quantify the corresponding light signals, while taking into account both cell divi-
sions (lineage tracking) and migration events. We present here how CAST analyzes bioluminescence data
from a short-lived transcriptional luciferase reporter. However, our flexible and modular implementation
makes it easily adaptable to a wide variety of time-lapse recordings. We exemplify how CAST efficiently
quantifies single-cell gene expression over multiple cell cycles using mouse NIH3T3 culture cells with a
luminescence expression driven by the Bmal1 promoter, a central gene of the circadian oscillator. We fur-
ther illustrate how such data can be used to quantify transcriptional bursting in conditions of lengthened
circadian period, revealing thereby remarkably similar bursting signature compared to the endogenous
circadian condition despite marked period lengthening. In summary, we establish CAST as novel tool
for the efficient segmentation, signal quantification, and tracking of time-lapse images from mammalian
cell culture.

� 2015 Published by Elsevier Inc.

1. Introduction

Improvements in microscopy techniques has enabled rapid pro-
gress in quantitative cell biology [1–7]. Notably in mammalian
cells, time-lapse imaging has provided unprecedented insights into
complex problems such as transcriptional bursting [8–11], cell
cycle transitions [12,13] and the circadian oscillator in individual
cells [14–17]. However, a current bottleneck is that accurate quan-
tification of time-lapse imaging data is typically slow, repetitive,
and requires a significant amount of human intervention
(reviewed in [18]). Therefore, versatile automated solutions to
robustly quantify temporal signals reflecting noisy biological pro-
cesses are needed. In particular, single-cell analysis typically
requires quantifying hundreds of individual expression traces to

overcome inherent stochasticity and gain statistical significance
[15,16,19,20]. However, both the segmentation, i.e. the recognition
of object in single frames, as well as the tracking, namely the link-
ing of objects corresponding to the same instance over consecutive
frames, are challenging computational tasks.

An intuitive and widespread method for localizing objects is to
determine a threshold value in the intensity of the image to sepa-
rate the signal from the background [21–23]. However, this
method is particularly sensitive to fluctuations often observed in
biological data, such as cell-to-cell variation, low signal images or
uneven illumination. Therefore, segmentation methods based on
thresholding are often used as an initial step that is refined by
other algorithms such as active contours [24], watersheds [25],
morphological operations [26–28], or machine learning methods
[29]. In addition, segmentation algorithms that use alternative
detection strategies were developed, including multi-scale wave-
lets [30], cross-correlations [31] or likelihood criteria [32].
Howbeit, the performances of each detection method is strongly
dependent on the type of data to be segmented, in particular for
images with low signal-to-noise ratio (SNR) or objects of varying
sizes (reviewed in [33]).

http://dx.doi.org/10.1016/j.ymeth.2015.04.023
1046-2023/� 2015 Published by Elsevier Inc.

Abbreviations: CAST, Cell Automated Segmentation and Tracking platform;
OME-TIFF, Open Microscopy Environment Tagged Image File Format; MAD, Median
Absolute Deviation; SNR, signal-to-noise ratio.
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After objects are localized in a sequence of time-lapse frames,
tracking them across frames is also a very challenging task, which
is often complicated by the motion, disappearance, fusion or split-
ting of the studied objects. Moreover, tracking suffers from a prob-
lem of combinatorial explosion in the number of potential
assignments that renders the identification of the global optimum
practically unfeasible for biological datasets. Different strategies
were developed to circumvent these problems such as fitting
Gaussian curves to object intensity values [34], using
cross-correlation of consecutive frames [35] or calculating the
probability of each set of assignment [36]. Alternatively, a number
of greedy algorithms avoid the aforementioned issues by solving
the frame-to-frame correspondence problem in a spatially global
fashion [37–40]. However, objective comparisons between these
methods concluded that these often need to be tailored to a partic-
ular problem, and typically require significant manual intervention
and curation [18,41–43]. An additional challenge occurs when the
signal intensity of an object drops below detectability during cer-
tain time intervals (e.g. during the cell cycle [44] or the circadian
cycle [14,15]), in which case the algorithm needs to recognize and
stitch the track over the resulting gaps. However, while this caveat
can be alleviated by using constitutively expressed reporters in
multi-channel fluorescent imaging (e.g. a nuclear or membrane
marker), this is not easily possible in bioluminescence imaging,
which typically permits the acquisition of only one channel.

In our ongoing work on single-cell transcription [8,9], we expe-
rienced that none of the available software tools providing imple-
mentations of such segmentation and tracking algorithms [45–56]
combine the level of accuracy and automation that we are aiming
for our bioluminescence data. Consequently, we set out to develop
CAST (Cell Automated Segmentation and Tracking platform), a
robust and automated image analysis algorithm for the segmenta-
tion, tracking and quantification of time-lapse recordings. To illus-
trate the potential of CAST, we analyze single-cell bioluminescence
reporters engineered to study transcriptional bursting, and demon-
strate how transcriptional fluctuations can be deciphered using
mathematical modeling to dissect the underlying transcription
process. Regardless of this particular application, CAST was con-
ceived in a highly modular fashion, so that its implementation is
versatile enough to be readily fitted to many recording configura-
tions, including fluorescence imaging.

2. Material and methods

CAST was developed as a set of custom MATLAB functions
accessed through user-friendly graphical interfaces (see Appendix
A). Importantly, while we here detail its applicability on biolumi-
nescence data, its modular implementation can be easily adapted
to the analysis of a wide variety of time-lapse data. CAST consists
of four main steps (described below) that are configurable, editable
and, once the corresponding parameters are manually tuned to the
specificity of the analyzed recording, fully automatized. Together,
these provide a robust way to track the reporter signals in mam-
malian culture cells using a single emission channel. All code is
freely available via the Github service (https://git.epfl.ch/repo/
cast.git).

2.1. Preprocessing of images

For maximal compatibility between the numerous existing
types of biological data, CAST starts by converting the time-lapse
recording to be analyzed to a standardized format (unsigned
16-bits OME-TIFF stacks, [57]). Three filtering steps can then be
applied to the resulting images. First, a background correction

can compensate for non-uniform illumination of the images. The
background is obtained, for each image of the recording indepen-
dently, by morphologically opening the raw image, smoothing it
using a Gaussian kernel, and least-squares fitting of a 2D quadratic
surface on the resulting intensities. Of note, the fitted background,
that is then subtracted to the raw image, is centered (i.e. has a
mean of zero) to remove trends from the image without altering
the range of values. Second, CAST can remove saturated pixels from
cosmic rays (useful for bioluminescence when long exposure times
are used) with a local histogram approach [58], using robust statis-
tics for the estimation of the location and scale (i.e. using the med-
ian instead of the mean and the spell out, MAD, instead of the
standard deviation). Thirdly, CAST can remove defective pixels by
detecting them as a signal varying more from the mean of the
whole image than a threshold defined times the standard devia-
tion. Finally, the entire stack of images can be normalized (i.e.
scaled) to compensate for variation between recordings. The result
of all these operations is then stored in a new image stack that is
used for all the subsequent steps of the analysis.

2.2. Image segmentation

The steps described below are optimized for detection of spher-
ical objects as typically encountered in bioluminescence imaging
(e.g. cells, nuclei or other organelles depending on the type of
reporters and image resolution), however, these steps can straight-
forwardly be adapted to segment different types of objects (e.g.
non-spherical). As the first step towards segmentation, a back-
ground subtraction (as described in 2.1) can be applied, here affect-
ing only this step of the analysis. Second, default de-noising is
performed by applying a Gaussian filter with a radius of 0.6 px
[59] and by subtracting the estimated mean of the uniform
Gaussian white noise, replacing the homogeneity analyzer pro-
posed in [60,61], which is utilized to identify the empty portions
of the image, by the Absolute Difference Mask (ADM) edge detector
[62]. Candidate object locations are then detected using the ‘‘à
trous’’ wavelet transform [30], followed by a filtering step in which
only single-pixel local maxima detections are kept. The biolumi-
nescence signal corresponding to each of the detected position is
then estimated by iterated least-square fitting of a 2D symmetric
Gaussian function (based on [63]). Spurious detections are then fil-
tered out using size and intensity thresholds (all thresholds come
with default values but can be changed by the user). Finally, over-
lapping cells are fused together. The position of the new cell sub-
stituting the fused objects is estimated using a weighted average
of their respective positions, each weight being proportional to
the integral of the corresponding signal intensity. The parameters
of the signal are then similarly computed by a weighted average
of the fused signals, using a Gaussian weighting kernel of their
respective distance to the averaged position.

2.3. Cell tracking

Tracking of cells is performed in CAST using a custom, more
memory efficient, implementation of an algorithm that solves both
the frame-to-frame linking of objects and the problem of assigning
trajectories globally using the Hungarian algorithm [40]. Our
implementation uses sparse matrices for the previously proposed
cost matrices to decrease the memory load of the algorithm, a
major bottleneck in the standard implementation, hence permit-
ting the efficient handling of a very large number of trajectories
(i.e. tested on more than 5000 trajectories). Thus, CAST can effi-
ciently handle the gap closing (i.e. linking similar objects that were
not segmented in some frames), merging and splitting steps
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described in [40], and thus provides a powerful framework for
accurately tracking cell lineages in mammalian culture cells.
Importantly, the splitting step grants an automated approach for
tracking both daughter cells of a division, thus providing a full lin-
eaging of the cells present in the recording. Finally, to remove spu-
rious detections of cells, we implemented an additional optional
step to filter out short trajectories before the gap closing, merging
and splitting steps, thus preventing these glitches from being
linked together into a spurious trajectory.

2.4. Path filtering

The obtained cell trajectories are then filtered by three faculta-
tive steps. First, short trajectories can be discarded as they typically
result from spuriously detected objects. Second, trajectories that
split over some frames before merging back together are zipped
into a unique average trajectory. Such splitting-merging typically
results from numerous detections of the same cell that were not
properly fused during the segmentation step described in 2.2.
Third, the position and signal of cells missed in some frames (e.g.
as a consequence of biological fluctuations in the signal such as
transcriptional bursting or circadian oscillations) is interpolated
linearly using the information obtained in the gap-closing step
described in 2.3. Finally, the signal of all new cell positions (i.e.
either zipped or interpolated) is re-estimated on the raw data.
When that new estimate of the signal meets the size-based thresh-
olds described in 2.2, it will then be used to replace the previously
interpolated values. Otherwise, the intensity alone is estimated on
the raw data for a cell with the interpolated size characteristics to
replace the interpolated value. Importantly, no intensity threshold
is applied during the re-estimation step to permit quantification of
low intensity cells.

2.5. Cell culture

Time-lapse luminescence microscopy was performed on two
previously described strains of NIH3T3 mouse fibroblasts [8]. The
Ctgf fibroblast clone (Figs. 1 and 2A) consists in a gene trap inser-
tion of the short-lived luciferase into the 5th exon of the Ctgf gene
(connective tissue growth factor, [8,9]), whereas the Bmal1 strain
(Fig. 2B) was generated by transduction of a lentiviral vector carry-
ing the �1014/129 region of the mouse Bmal1 promoter driving
the expression of the short-lived luciferase reporter [8]. To illus-
trate applicability of CAST to other cell types, two bioluminescent
mouse ES cell lines (E14 cells) were engineered using gene trap as
previously described [8] (Fig. 2C and D).

Luminescent cells were diluted with non-luminescent NIH3T3
cells 24 h prior to recording at 1:10 and 1:100 ratios for Ctgf and
Bmal1 strains, respectively. Cells were plated in a 2.2 cm glass bot-
tom dish (WillCo) to a total of 9 � 105 cells per dish. Prior to lumi-
nescence recording, Bmal1 cells were synchronized for 2 h at 37 �C
in 50% horse-serum (BioConcept). Right before recording, both cell
strains were washed with PBS, and placed in white DMEM supple-
mented with 10% serum and D-luciferin (Lifetechnologies) to a
final concentration of 1 mM. In lengthened circadian period condi-
tion, longdaysin (Sigma) was added to the medium at a concentra-
tion of 4 lM. In control conditions, this volume was compensated
with dimethyl sulfoxide (DMSO, Thermo Scientific).

2.6. Bioluminescence time-lapse imaging

Luminescence monitoring was performed in a LuminoView
LV200 microscope (Olympus) equipped with a cooled C9100-13
EM-CCD camera (Hamamatsu). During the recording, cells were
maintained at 37 �C in a humid environment with 5% CO2. Since

Ctgf cells displayed elevated signal [8,9], they were monitored
using a 40� objective, binning 1 and an exposure time and time
resolution of either 2 min (Fig. 2A) or 5 min to reach a higher
SNR (Fig. 1). The Bmal1 cells, for which the luminescence signal
is typically lower [8], were monitored with an exposure time and
time resolution of 5 min, binning 4 and a 20� objective (Fig. 2B).
Since ES cells have smaller size, these were imaged with an expo-
sure time and time resolution of 5 min, binning 1 and using either
a 40� (Fig. 2C) or a 60� (Fig. 2D) objective. All cell lines were
imaged using an EM gain of 150 and 5� photon imaging mode
(Hamamatsu camera setting). Together, the different imaging con-
ditions provided a good test set for CAST’s versatile applicability.

3. Theory

To highlight the applicability and the benefits of CAST regarding
single-cell bioluminescence time-lapse imaging, we performed
quantitative analysis of transcription kinetics based on stochastic
mathematical modeling of short-lived luciferase reporters driven
by an individual promoter in mouse fibroblasts.

Following our previous studies (details in [8,9]), we aimed to
decipher the kinetics of the processes underlying the temporal
fluctuations of luminescence signals, using a three-layer stochastic
gene expression model, accounting for translation, transcription
and gene activation (Fig. 4). Briefly, the gene is assumed to switch
between an active (‘‘on’’) and an inactive (‘‘off’’) state, potentially
leading to transcriptional bursting, i.e. short and episodic events
of transcription further amplified by translation resulting in large
fluctuations at the protein level. The model is parameterized by
six kinetic rates (kp, cp, km, cm, kon, koff) assumed constant in time
and identical among the cell population. Three kinetic parameters
(kp, cp, cm) were previously measured [8], while the others three
describing the transcriptional kinetics (km, kon, koff) were to be
inferred from the time-lapse imaging.

Each luminescence time-traces S was modeled as a
Hidden-Markov Model (HMM, [64]) whose hidden states were
encoded by pmg, namely the protein copy number (p), the tran-
script copy number (m) and the gene state (g, ‘‘on’’/’’off’’) respec-
tively. The probabilities of the measured light intensity s given p
protein copies, PeðsjpÞ followed from the protein-light calibration
and the microscope noise model, while the transition probabilities
Ptðpmgjp0m0g0Þ were dictated by the master equation of the
stochastic gene expression model (see [8,9]). The likelihood of a
single luciferase time-traces consisting of L time frames,
S = (s1,. . .,sL), is then given by

LðSjHÞ ¼
X

fpmgg

YL�1

i¼1

PeðsijpiÞPtðpimigijpi�1mi�1gi�1; HÞPðs0p0m0g0Þ

where the sum runs over all hidden trajectories {pmg}. The likeli-
hood for the cell population is then simply given by the product
of each single-cell likelihood. We inferred the unknown kinetic
parameters of the population H ¼ ðkm; kon; koff Þ adopting a
Bayesian approach by estimating the posterior distribution of the
parameters:

PðHjSÞ ¼ LðSjHÞPðHÞR
LðSjHÞPðHÞdH

We sampled the posterior PðHjSÞ according to a Markov-Chain
Monte Carlo algorithm (MCMC, [65]). Inferred parameters were
estimated as the mean of the posterior distribution. As in our pre-
vious work [8,9], we used the optimal model as a prior to decon-
volve the bioluminescence traces, by means of Gibbs sampling
[65]. This allowed us to reconstruct most likely states for the pro-
tein, transcript and gene activity all along the traces.
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4. Results

We first illustrate the different steps performed by CAST to
automatically segment, track and quantify objects in time-lapse
recordings using an unstable bioluminescence reporter in NIH3T3
culture cells [8]. Secondly, we demonstrate the robustness of our
approach to a variety of imaging conditions. Thirdly, we exemplify
how CAST can follow cells over various cell cycles. Finally, we
study transcriptional bursting driven by the Bmal1 promoter using
data extracted by CAST. In particular we compare transcriptional
bursting in normal and longdaysin treated cells, a conditions that
lengthens the period of the circadian oscillator [66].

4.1. Quantifying bioluminescence time-lapse imaging using CAST

To exemplify the steps described in Section 2, CAST was utilized
to analyze a time-lapse recording of bioluminescent NIH3T3 cul-
ture cells in which an unstable, nuclear, transcriptional luciferase
reporter was driven by the Ctgf promoter (Fig. 1A, Section 2). As
detailed above, CAST first preprocesses the recording (Fig. 1B) by
converting the original movie into a standardized format and
applying facultative image filters, such as corrections for
non-uniform background correction, cosmic rays and defective
pixels. Second, the image was segmented (Fig. 1C, D and D0) and
the signal and sizes corresponding to individual objects (i.e. indi-
vidual nuclei) were estimated. Next, the algorithm proceeded to
the tracking step (Fig. 1E, E0 and F), during which it computed
the trajectories of individual cells, taking into account cellular divi-
sions, and assembled objects detected in different frames into cell
traces. CAST also closed recording gaps by interpolating the trajec-
tory of cells that transiently disappeared due to transcriptional dis-
continuities [8,9]. Finally, during the path filtering step, the

software discarded short traces resulting from sporadic detections,
and merged trajectories arising from accidental over-segmentation
of a single object. Importantly, each of these steps is fully auto-
mated, making CAST a platform to straightforwardly follow cells
throughout a recording and thus thoroughly quantify the corre-
sponding expression signals.

4.2. CAST can be applied to a range of cell-lines and imaging conditions

Time-lapse imaging is a broadly used technic across many
research fields. Consequently, resulting movies can widely differ,
notably in terms of image quality and resolution. Also, the biologi-
cal purpose of a recordingmay require specific culturing conditions
(e.g. confluence cells, presence or absence of cell divisions), as well
as distinct requirements regarding downstream analyses (e.g. posi-
tions or sizes of the tracked objects). CAST was designed as a highly
flexible tool with tunable parameters, hence adaptable to a broad
range of requirements. Here, we illustrate the versatility of our plat-
form by analyzing time-laps recording from different experimental
and imaging conditions, reporter strengths and cell types.

As a first example, we used CAST to analyze recordings of
NIH3T3 cells expressing a short-lived luciferase driven by the
strong endogenous Ctgf promoter [8,9]. To illustrate CAST capaci-
ties in tracking motile objects, cells were plated at medium conflu-
ency, allowing them to freely migrate during the 2 days of
recording while dividing only very rarely (Section 2). CAST effi-
ciently segmented and followed each individual cell throughout
the recording (Fig. 2A).

Second, we analyzed recordings of another NIH3T3 clone
expressing a luminescence reporter driven by a Bmal1 promoter
[8]. Cells carrying this weaker promoter typically display lower
SNR and thus required higher camera binning (Section 2).

Fig. 1. Sequential analysis of a time-lapse recording using CAST. (A) Raw image (40�) of NIH3T3 cells expressing a luminescence reporter from a Ctgf promoter. The white
scale bar represents 10 lm. The gray arrows point at cosmic rays. (B) The processing step removes, among other filters, cosmic rays. (C) CAST detects signal-emitting cells, the
width of which is represented using orange circles. The white dashed box highlights the portion of the image that is magnified in panels D and E. (D) Both the position as well
as the signal of the emitting cells is properly determined by CAST. (E) CAST tracks cells over consecutive frames. (D0–E0) Same steps as D and E but applied to the next frame of
the recording, thus exemplifying the detection of a dividing cell (gray arrows show daughter cells). (F) Full tracks of all identified cells throughout the recording. Each
individual track is color-coded using a randomly chosen color in a red–black–green color-code.
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Nevertheless, CAST thoroughly detects the weaker and lower reso-
lution signals in this recording (Fig. 2B).

Third, CAST analysis was applied on high-density time-lapse
images monitoring mouse ES cells expressing a luciferase reporter
(Section 2). Despite this higher density, a large majority of cells
were successfully segmented properly, even in cases of partial
overlaps (Fig. 2C).

Finally, we monitored the same ES cells using a 60� objective.
At this higher resolution, the irregular profiles of the luminescent
objects (i.e. the nuclei) are very apparent, hence making
them deviate from circular (i.e. Gaussian-like) shapes.
Notwithstanding, CAST correctly detects the vast majority of cells
(Fig. 2D).

4.3. CAST robustly quantifies emission signals over several cell cycles

Keeping track of dividing cells through multiple days recordings
is crucial for many applications involving time-lapse microscopy
[12–15]. An important objective of our platform was thus to
efficiently and robustly follow cell lineages.

To illustrate CAST capacities in tracking dividing cells, we
recorded Ctgf clones in proliferating conditions (Section 2).
During the nearly 70 h of recording, individual cells underwent
up to two division events, resulting in the presence of four daugh-
ter cells by the end of the movie (Fig. 3A–C). CAST efficiently
detected divisions and thus reconstructed the corresponding cell
lineage throughout the recording (Fig. 3D). The provided output
features facilitated the graphical representation of dividing cells,
such as their positions over time (Fig. 3D), or the signal intensity
of each daughter cell (Fig. 3E). Importantly, CAST’s robust tracking
capacities (i.e. performing gap closure) permit to overcome the loss
of signal during mitosis, which is caused by the dilution of the
nuclear reporter into the cytoplasm upon nuclear envelope break-
down (Fig. 3E).

4.4. The bursting kinetics of Bmal1 promoter in normal vs. longdaysin-
treated culture cells are similar

In the past years, time-laps microscopy has become a method of
choice to monitor transcriptional bursting (reviewed in [67,68]).

A B

C D

Fig. 2. CAST can track cells in a variety of imaging conditions and cell types. In each panel, the left side represents a frame after the segmentation step (detected objects
highlighted in orange), while the right side corresponds to the same frame after tracking (single-cell trajectories color-coded using a randomly chosen color in a red–black–
green color-code). All white bars represent 10 lm. (A) NIH3T3 Ctgf clones presenting high mobility and high SNR. (B) NIH3T3 Bmal1 clones displaying low SNR and lower
resolution. (C) High density of ES cells monitored in low spatial resolution (10� objective). (D) High resolution recoding of ES cells (60� objective). Note that the cells deviate
from circular (Gaussian-like) shapes at this resolution but are still detected correctly.
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This biological phenomenon arises from the sequential series of
molecular events inherent to gene expression, resulting in the
stochastic synthesis of downstream gene products (reviewed
in [69]). Indeed, transcription of individual mammalian genes
frequently occurs discontinuously in the form of short active
periods, termed bursts, followed by windows of transcriptional
inactivity.

In previous studies, we used single-cell level real-time mea-
surements of a short-lived nuclear luciferase from a collection of
mammalian promoters to monitor gene transcription [8,9].
Combined with a mathematical model [70,71], these data allowed
us to directly estimate the transcriptional kinetics underlying the
transcriptional bursting pattern of endogenous and synthetic
genes. We notably described the signature activity of the Bmal1
promoter, a master regulator of the mammalian circadian clock.

We now use CAST to segment and track new recordings, thus
avoiding the tedious work of manual tracking. In particular, we
aimed at studying how the endogenous transcriptional bursting
behavior of the Bmal1 promoter is altered upon longdaysin treat-
ment. As this compound lengthens the circadian period in a
dose-dependent manner, by delaying the degradation of the PER
proteins through CK1d inhibition [66], it is of interest to under-
stand how this stretching is reflected at the level of transcriptional
parameters, such as the durations of ‘‘on’’ and ‘‘off’’ times, the tran-
scription rate, or the burst sizes.

To validate the segmentation and tracking capacities of CAST on
such data, we first compared traces of individual cells with their
manually tracked equivalents (Fig. 4A). The similarity between
traces obtained with CAST and manual tracking confirmed that

the platform could recover data of similar quality as obtained man-
ually, as well as much faster (typically 20 min for a whole record-
ing containing 50 traces compared to 5 min for a single manual
trace). Moreover, CAST allowed us to increase the number of cell
traces extracted from a recording (compared to manual tracking),
notably due to the close proximity of some objects making it too
delicate to follow each one of them by eye. In fact, automated
tracking increased by more than 20% the amount of exploitable
data per recording.

As a validation, the population average of individual traces
resulting from CAST processing both wild type and longdaysin
treated cells successfully recapitulated the phenotypes previously
described for cell populations (Fig. 4B, [66]). Indeed, we clearly
observed a stretch in the circadian period upon longdaysin treat-
ment, increasing it from 25 h in endogenous circadian conditions
to 32 h after treating cells with 4 lM of the compound.

We then analyzed the collection of single-cell traces obtained
both in control and longdaysin conditions using our mathematical
modeling approach (Theory, [8,9]). This method consists in infer-
ring the amount of luciferase proteins, transcripts and Bmal1 pro-
moter activity that most appropriately reflect the luminescence
signal observed in the recording (Fig. 4C). By analyzing over a hun-
dred single-cells, we could deduce the transcriptional kinetics
defining the bursting signature of the Bmal1 gene in both condi-
tions (Fig. 4D). Interestingly, we did not observe major differences
between the bursting kinetics of cells cultured in an endogenous
circadian context and those enduring lengthened period, suggest-
ing that longdaysin treatment does not affect the transcriptional
bursting characteristics of Bmal1.

Fig. 3. CAST tracks cells over several cellular divisions. (A) Magnification of the first frame of the recording used in Fig. 1 showing a parental cell that will undergo two
successive divisions, overlaid with its estimated size color-coded in black. The white bar represents 10 lm. (B) Intermediate and (C) final frames of the same region of the
recording as in A, depicting the various cells originating from the single ancestor. Each detected cell is overlaid with its estimated size, color-coded in tones of red or green. (D)
Diagram of the X–Ymovements of the dividing cells throughout the recording. The 2D trajectory of each cell is color-coded as in A–C. Cellular division events are indicated by
gray arrows. The full black line, visible slightly before 40 h on the time axis, indicates the position of the frame depicted in B. (E) Quantification of the bioluminescence signal
emitted by the cells throughout the recording. Note that because of the shared ancestors, the darker portions of the signal are duplicated between traces. Cellular divisions are
indicated by vertical gray bars, color-coded as in D.
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5. Discussion

5.1. CAST can quantify and track cells in a broad range of time-lapse
imaging data

Biological research, and in particular transcription regulation,
has greatly benefitted from quantitative approaches and mathe-
matical modeling [8,68,72,11,9]. However, the extraction of data
with sufficient precision as required for quantitative analysis is
typically highly time consuming, mostly because of the significant
degree of manual intervention required [18]. To circumvent this
bottleneck, we have developed CAST, the automated analytical
platform presented here (Fig. 1), which quantifies robustly the
expression signal of culture cells without the need of manual
curation. Moreover, we showed that CAST could adapt to a variety
of cell types and imaging conditions, hence providing a general
analytical framework for study of bioluminescence time-lapse data
(Fig. 2). Furthermore, we demonstrate CAST performances in track-
ing cell divisions, which makes it a powerful tool for long-term
experiments covering several cell cycles (Fig. 3). Notably, given
that cell divisions typically introduce a perturbation in the
expression trace (Fig. 3E), detecting these events is of importance
to discriminate the corresponding alterations from genuine varia-
tions in gene expression (e.g. in stimulation experiments, [9]).

While the robustness to variations in SNR and cell size is currently
provided at the segmentation step for Gaussian-like objects [30],
the modular architecture of CAST allows one to easily implement
alternative segmentation algorithms, thus permitting the analysis
of different types of data such as fluorescence imaging. Similarly,
while the provided tracking algorithm [40] is highly versatile and
can be applied to a large variety of biological data, it could also
straightforwardly be extended higher dimensional datasets (e.g.
3D + time [3]). Importantly, many fields of research could directly
benefit from the segmentation and tracking capabilities of CAST.
Overall, CAST is a highly versatile algorithm with an intuitive
user-friendly graphical interface that can be used to solve a large
number of segmentation, tracking and quantification problems.

5.2. Transcriptional bursting of Bmal1 upon longdaysin or TSA
treatment is similar

To examplify CAST capacities, we used it to monitor the tran-
scriptional bursting pattern of Bmal1 (Fig. 4). The software seg-
mented, tracked and quantified the expression of bioluminescent
reporter, thus providing single-cell traces suitable for mathemati-
cal modeling. This analysis allowed us to observe two remarkable
effects associated with the alterations in Bmal1 expression upon
longdaysin treatment. First, and in agreement with previous

Fig. 4. Comparison between the transcriptional bursting pattern of Bmal1 in control and longdaysin conditions (A) superposition of three typical Bmal1 single-cell traces
obtained by CAST (brown lines, left axis) and manual tracking (gray lines, right axis) in both endogenous (DMSO, left column) and lengthened circadian period (red, right
column). (B) Average Bmal1 signal displayed by individual cells tracked with CAST, both in control condition (orange, n = 127) and in 4 lM longdaysin condition (brown,
n = 108), recapitulating the phenotype of a population of cells. Orange areas delimit the standard error and vertical grey bars estimate the position of expression peaks (C)
Example of deconvolved single-cell traces obtained from our mathematical modeling approach (control condition on the lighter left column, and longdaysin 4 lM on the
darker right one). From the raw luminescence signal (first row in panel A, corresponding Z-score in red), we infer the amount of luciferase proteins (purple) and transcripts
(blue), as well as the probability of gene activity (green). (D) Transcriptional bursting kinetics of Bmal1 in endogenous (gray) and lengthened (black) circadian conditions.
Displayed kinetics are the mean number of transcripts produced per burst (burst size), the transcription rate (km), as well as the mean time spend in active (son) and inactive
states (soff).
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studies [15,66], longdaysin stretched the rhythmic expression pat-
tern of Bmal1 (Fig. 4B). Second, the compound did not affect the
transcriptional bursting signature of the gene (Fig. 4D).

These results are strikingly similar to the ones previously
obtained by treating similar cells with Trichostatin A (TSA), an his-
tone deacetylase inhibitor that promotes a transcriptionally favor-
able chromatin state [8]. Indeed, while TSA treatment abolished
the periods where Bmal1 is repressed, the fine kinetics of transcrip-
tional bursting remained virtually unchanged compared to the con-
trol condition. Together, these results imply that the bursting
signature of Bmal1 is dominated by the impact its transcriptional
activators, and not that of repressive mechanisms that are directly
linked to the activity of histone deacetylases, which are inhibited by
TSA [73]. Consequently, modifying the circadian phase at which
Bmal1 activators operate (e.g. using TSA or longdaysin), is not suffi-
cient to observe major changes in the bursting signature of the
gene. Thus, to further understand the role of molecular factors in
shaping the bursting signature of Bmal1, it would be interesting
to directlymodulate the activity of Bmal1 transcriptional activators.

5.3. Advantages and limitations of CAST

Biological time-lapse imaging data display great variability in
terms of reporter type, object shape, image quality and signal
dynamics (both in time and space). Consequently, it is often prob-
lematic to find an analytic platform able to suitably segment and
track the signal, while providing a quantitative output directly
applicable for downstream analyses. Indeed, many tools are avail-
able either as standalone applications or integrated in generic plat-
forms [45–56], but although they excel in the analysis of some
imaging data, they may not represent a perfectly suitable solution
for other, less conventional, types of recordings such as biolumi-
nescence imaging.

Notably, we attempted to analyze our Bmal1 promoter biolumi-
nescence real-time data with popular tracking methods, though
with limited success [45,46]. One reason was that many methods
lack flexibility as they contain hard-coded limitations that pre-
vented us from obtaining the type of data required for our subse-
quent analyses. Among other important features, the following
three properties were not available simultaneously in any single
platform: (1) a complete and automated pipeline (2) proper quan-
tification of signal intensities during intervals of low signals (3) lin-
eaging of both daughter cells over multi cell cycles. Indeed,
recordings such as the Bmal1 bioluminescence traces pose signifi-
cant challenges for popular algorithms, due to the weak signals,
the limited resolution of the images (e.g. high binning), or the
absence of signal over prolonged periods owing to circadian regu-
lation (in some cases up to 12 h, or almost 150 frames).
Consequently, to overcome this limitations, and to avoid the
tedious and time-consuming manual tracking used so far [8,9],
we developed CAST as a versatile and extensible solution.

CAST was specifically developed to deal with challenging
recordings, and comprises several advantages. First, it consists in
a self-contained platform that combines all the steps for cell track-
ing and quantification (i.e. image pre-processing, segmentation,
tracking, path filtering and signal quantification). Second, CAST
adapted robust and published approaches for each of these steps.
Notably, CAST’s pre-processing steps treat cosmic rays [58], the
segmentation permits the detection of variable-size objects in
noisy data [30], its tracking algorithm efficiently links related
objects over large gaps or divisions [40] and CAST interpolates
the trajectory of objects below detection levels, thus providing reli-
able estimation of the signal intensity. Third, each step contains
tunable parameters, allowing the platform to adapt to a large vari-
ety of experiment types. In addition, a graphical interface allows
the real-time visualization of CAST performances throughout the

whole procedure, and on any frame of the recording, hence greatly
facilitating the tuning of parameters during each step of the anal-
ysis. Finally, CAST was developed as a modular Matlab package,
thus providing a convenient platform for further improvements
to fit more specific requirements.

However, CAST may show limitations depending on the type of
subsequent analysis performed. Typically, the large amount of tun-
able parameters (for which default parameters are provided) may
sometimes represent a drawback, notably with more conventional
recordings, for which existing tracking are sufficiently powerful.
Indeed, selecting the most appropriate parameters may require sig-
nificant prior knowledge, and be time-consuming. Thus, the use of
CAST is mainly recommended in cases where data are delicate to
parse, or if the same tracking parameters can be applied to large col-
lections of independent time-lapse recordings. Additionally,
because of its development platform, CAST can be slower than other
available solutions, and computation time may represent a limita-
tion when treating high-temporal resolution recordings. Finally,
although we have successfully used CAST on fluorescence data,
the current pipeline was primarily developed to deal with lumines-
cence traces. Consequently, the robust analysis of fluorescence data
will most likely require the development of additional modules.

6. Conclusion

We developed CAST as a new versatile tool for the analysis of
single-cell imaging data. Moreover, we presented its robust capac-
ity to quantify bioluminescence signals form transcriptional repor-
ters in single, and showed how such data can be combined with
mathematical modeling to analyze the fine kinetics of Bmal1 tran-
scription, a key regulator of the circadian rhythm. Consequently,
we are confident that CAST will be widely applicable to many out-
standing problems in quantitative single-cell biology.
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Appendix A. CAST graphical user interface

CAST was developed in Matlab and can be utilized through a
user-friendly graphical interface (Fig. S1). This interface allows
the user to control all the steps of the algorithm detailed in
Section 2, and has extensive possibilities to visualize the status
of the different steps in the analysis. CAST thus provides a flexible
tool to monitor and adapt each step of analysis. In addition, this
interface allows users to modify all parameters in the analysis
pipeline, which can also be saved and shared between experi-
ments. Finally results of the analysis can be exported to common
formats (i.e. spreadsheet and/or movie files).

Time-lapse recordings as well as their respective CAST configu-
ration files (corresponding to Figs. 1 and 2) are freely available via
the Github service (https://git.epfl.ch/repo/cast-supplements.git).
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Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ymeth.2015.04.
023.
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Appendix A. Appendix

A.3 Revisions

Here I list the critiques of the experts and explain how they were addressed in the revised

manuscript.

1. Some figures lack statistical analysis and information on statistical significance. e.g. 2.29

and 2.30. These two figures should also be merged into one.

Mentioned figures were combined into Figure 3.41. In relevant parts of the thesis,

statistical tests and single cell data were provided explicitly to support the claim (e.g.

Figure 3.15, 3.17, 3.21,).

2. Some figures are not cited in the text, while others needs a further description of the

results and conclusions in the main text.

All figures were carefully checked, cited and explained in the text.

3. The entire text was scanned and reviewed carefully for the detection and the correction

of typographical and grammatical errors. Referencing style to bibliography is now fixed

across the thesis stating author and publication year for each reference (e.g., [Larson

et al., 2009]).

4. Parts of the thesis that need modification were extended and supported with new figures

whose explanations were provided here:

Section A (Appendix) was inserted to display the supplementary figures and data.

Section 1.2.7 presenting the state of the art in single-cell studies regarding TGF-β

signaling was added. This section explains a number of studies about SMAD signaling

dynamics, the single-cell heterogeneity of the pathway and its consequent responses. It

also emphasizes the motivation of this thesis and the gap this study attempted to fill in

transcriptional regulation and TGF-β signaling field.

Throughout the thesis, there are two versions of single cell signal traces. The first

version is the min-max scaled (between 0 to 1) single cell quantification which requires

no color scale (Figure 3.14 and 3.16). This version is sometimes used to have a better

visualization of the response, to visualize the responding percentage for instance. How-

ever, absolute signal quantification is utilized when assessing the heterogeneity among

individual cells, therefore, Figure 3.15 and 3.17 were inserted showing absolute signal

quantification of SMAD and ctgf signals revealing the true heterogeneity in the response.

Paragraph 1.2.1 was extended to explain how the specificity of responses to differ-

ent members of TGF-β superfamily of ligands is achieved. In addition, the crosstalk

between canonical and non-canonical pathways was emphasized to indicate the plas-

ticity of the pathway depending on combinations of ligands and receptor interactions.

Though the focus in this work is the canonical SMAD pathway mediated TGF-β signal-

ing, the literature described in this section emphasizes the complex regulation of SMAD

signaling.
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References about transcriptional control by SMAD signaling, missing before, were

inserted in section 1.2.3.

The new figure 3.28 now displays the stimulation dose response of TGF-β SMAD4

signalling and the target gene ctgf response in single cells. It reveals single-cell hetero-

geneity and transitions in the response, from almost no response to saturation profile

with the increasing doses of the ligand.

Figure 1.4 was inserted. This figure displays a comparative summary of existing

methods to measure transcription and gene expression emphasizing the motivation to

utilize single-cell dynamic measurements for our investigations.

Figure 3.7b was updated. Western blot experiments indicating the dose-response of

the SMAD4 expression of the reporter as a function of doxycycline concentration were

repeated which led to a cleaner observation compared to previous version.

Figure 3.3a was updated. Now, schematics illustrating the constructs used to generate

cell lines display the complete details the constructs.

Section 1.2.5 about fibrosis is inserted. This section now explains previous studies

describing the involvement of ctgf in cellular processes such as the wound healing and

the pathological case, fibrosis. The section also presents both TGF-β-dependent and

independent regulation of the target gene ctgf used in the study in different cell types

and cellular contexts. Such a detailed investigation about ctgf is important for a few

reasons: Firstly, use of NIH 3T3 fibroblast cells is shown to be a good choice due to

previously shown TGF-β-dependent SMAD-mediated regulation of ctgf in those cells.

Secondly, ctgf expression, shown to be minimal in the absence of stimulation in normal

fibroblasts, appeared to have elevated levels of expression in the pathological case of

fibrosis which may further motivate our investigations. Moreover, the section explains

previously reported SMAD regulation of ctgf promoter and therefore why our single

cell dynamic measurements would be helpful for therapeutic targeting of the TGF-β

pathway, as discussed in section 4.5.

All discussion chapters now have the literature cited.

Section 4.2 in Discussion explains the contribution of YAP/TAZ pathway on SMAD

mediated TGF pathway.

The previous problem of white space were sourced mostly from automatic page

formattings from latex which was now corrected by using proper packages and also

reviewing individual figures and their integration into the related text. Figure captions

now have italic fonts to distinguish from the normal text.

5. Data on method development that are presently shown in the Methods section (and

one data figure in the Discussion) should be at the beginning of the Results section.

Previously mislocated sections in Discussion part including development of the

calibration cell line expressing Nluc-fluc fusion protein and initial implementation

of simple microfluidics setup have now been transferred to Results part (Section 3.6).
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Similarly, the figure, previously mislocated in Methods section, displaying the silhouette

score of k-means clustering was transferred to Results section (Figure 3.19). Also, the

order of the Methods and Results section is interchanged.

6. Text in the Results section needs to be heavily revised by adhering to a more conventional

writing style: For every figure, the question asked should be stated at the beginning of

a new paragraph (not at the end of the preceding paragraph), and each description of

the data should be followed by a conclusion statement, defining clearly what is claimed

based on this data.

Results section was updated based on the given recommendation about the flow

of ideas for each paragraph. Updates and insertion of new sections and figures are

discussed throughout this revision file.

7. Importantly, there is a clear style mismatch between the introduction, which is very

clearly written, and the result section which is much less clear. It took me a lot of time to

extract the essence of the result section. It would be good if this was clarified a bit.

Each section in Results were expanded, both figures and their explanation texts were

modified.

8. Fig.2.17 legend is continuous with the text. This is confusing.

This is corrected. Figure captions now have italic fonts and they are separated from

the normal text with certain spacing.

9. This paper contains trajectories of signaling or transcriptional activity of single cells, but

often information about the data is missing. It would be nice to mention how many cells

have been analyzed. It would be important to mention if the experiments that are shown

have been performed multiple times, and if they are representative. Heatmaps would

benefit from a scale to judge dynamic range of the signal. For many figures, population

averages are shown without any information about stdev. A homogeneous figure style

would enhance the presentation of the data.

Now, some figure captions are provided with cell numbers analyzed. Otherwise,

heatmaps of those experiments indicated how many cells were used, on y-axis.

10. Some experiments that would capture experimental noise would help to understand

the data. What is the fluctuation of the signal in conditions in which SMAD signaling is

inhibited using drugs or genetic perturbations. This would enable to get an estimation

of what is real signal or not.

Section 3.1.2 and 3.1.3 were expanded including complete performance characteri-

zation of the dual-reporter system. Figure 3.8 additionally covers control experiments

including those with no ligand stimulation which reveals baseline signals and variability

associated with those. In addition, Figure 3.12 displays the comparative profiles of stim-

ulation and no stimulation conditions giving a sense of signal-to-noise performance of
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both SMAD and ctgf reporters. Furthermore, updated Figure 3.11, including immunoflu-

orescence and western blot analysis, revealed no reporter-dependent perturbation of

the endogenous system but agreement of reporter and endogenous dynamics and levels.

Finally, the performance of translocation reporters is evaluated with signal-to-noise

ratio assessment (Figure 3.13).

11. Especially pertinent to the last point, are the response peaks observed detected by

automated peak detection meaningful in Fig 3.38 and 3.39 biologically relevant ? or do

they arise from the "bumpiness" of the tracks ? I did not understand what information

is conveyed in these traces.

In Figures 3.38 and 3.39, heatmaps reveal general behaviour of traces; however,

in heatmaps, one can not resolve, by eye, the exact peak points for each single-cell.

Therefore, automated peaks detected with certain thresholds were provided to guide

the reader. As noticed by the reviewer, both SMAD and ctgf traces have some other peak

points in the long-term since the peak detection criteria may be satisfied also by those

smaller bumps. However, the relevant peaks for our investigation are those with certain

amplitudes occuring at typical response timescales.

12. Fig.3.20: decomposition of different cell trajectories by clustering. Transient versus

sustained trajectories are identified. Sustained trajectories seems to be oscillating not in

phase. Yet a population average of the latter cellular state is shown ? Is this population

average representative ?

Fig.3.20 displays the existence of two different behaviours. I agree with the comment

that the sustained portion can also be interpreted as oscillating while the stability of

those oscillations in longer terms is not clear. Such behaviour can be interpreted as

due to interplay between negative feedbacks and the activation [Warmflash et al., 2012,

Zi et al., 2011] or secondary mechanisms of SMADs such as recruiting activators and

suppressors shaping the transcriptional response further at later time points[Coda

et al., 2017]. Heat maps regarding two clusters now display both versions of the signal,

absolute and normalized, min-max scaled (between 0 to 1). Yet, population averages

provided are based on the quantification of the absolute signals.
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