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Abstract 

The solar to electric power conversion efficiency (PCE) of perovskite solar cells (PSCs) has 

recently reached 22.7 % exceeding that of competing thin film photovoltaics and the market 

leader polycrystalline silicon. In order to augment the PCE further towards the Shockley 

Queisser limit of 33.5 %, judicious engineering of the interfaces between the light harvesting 

perovskite and the charge carrier extraction layer is warranted. Here, we introduce a mesoscopic 

oxide double layer as an electron selective contact consisting of a scaffold of TiO2 nanoparticles 

covered by a thin film of amorphous SnO2 (a-SnO2). The conduction band of a-SnO2 is well-

aligned with the perovskite light harvester as compare to that of the crystalline tetragonal 

polymorph SnO2. This accelerates carrier extraction with respect to the bare scaffold, avoiding 

electron trapping by TiO2 surface states. As a result, the notorious hysteresis in the current-

voltage (J-V) curves of PSCs is suppressed and nonradiative carrier recombination retarded 



resulting in a remarkable increase of the open circuit photovoltage (Voc). These benefits are 

specific to a-SnO2 and disappear upon its crystallization. By introducing the a-SnO2 coated mp-

TiO2 scaffold as electron extraction layer, we not only increase the Voc and PEC of the device but 

render it resistant to UV light which forebodes well for outdoor deployment of these new PSC 

architectures.  

Keywords: Electron specific contact, Amorphous SnO2, Mesoscopic structure, Efficiency, UV 

stability.    

Organic-inorganic perovskite solar cells (PSCs) have been the focus of intensive research during 

the past few years. So far, compositional engineering and interface modifications have been 

employed in order to boost the solar to electric power conversion efficiency (PCE) of perovskite 

solar cell over 22%.1-6 Surface modification of the electron extraction layer (EEL) is one of the 

most effective way to improve the efficiency of perovskite solar cell.4-6 TiO2 is the most common 

EEL for fabrication of PSCs due to its low cost, eco friendliness, ease of fabrication and 

favorable conduction band alignment with the perovskite. However, the compact TiO2 (c-TiO2) 

layer has a relatively low electron mobility and contains electron traps that retard electron 

extraction leading to enhanced hysteresis in the current-voltage (J-V) curves and nonradiative 

charge carrier recombination .7-11 To tackle this problem, an additional layer of mesoporous TiO2 

(mp-TiO2) consisting of a 3-dimensional (3D) array of interconnected TiO2 nanocrystals is 

usually deposited on top of the c-TiO2. However, this EEL structure may bring other risks, such 

as performance degradation by UV light. Surface modification of mp-TiO2 scaffold offers an 

effective way to improve the carrier collection and in turn the photovoltaic metrics of the 

PSCs.12-15 For instance, lithium treatment of mp-TiO2 can help to passivate the surface defects of 

the EEL and improve the charge collection, resulting in a higher Voc and PCE.16 



TiO2 films show photocatalytic activity under UV light,17,18 which could affect the perovskite. 

Therefore, TiO2 layers are increasingly replaced by SnO2 films which are photo-catalytically 

inactive, show very high electron mobility and fast electron extraction.19-21 Methods for 

depositing SnO2 based EELs employ e.g. solution processing, atomic layer deposition (ALD), 

and sputtering technique.22-25 Solution processing has so far yielded the highest PCE of 21.6% 

reported by Jiang et al. albeit on a tiny device area of only 0.0737 cm2.26 It appears that the direct 

deposition of the SnO2 layer onto the FTO glass is not well reproducible due to the roughness of 

the conductive glass support,27 and there is a risk of infiltration with fluoride ions from the FTO. 

Therefore, Lee et al. introduced a compact TiO2 layer between the FTO and the SnO2 film 

attaining a maximum PCE of 19.8%.15 Dong et al. employed SnO2 quantum dots (NC-SnO2) 

mixed with mp-TiO2 nanoparticles as an EEL for PSCs reporting PSC of 16%.28 In addition, 

Song et al. deposited a thin layer of SnO2 on top of anodized amorphous TiO2 (a-TiO2), yielding 

a PCE of 21.1%.27 While none of these results were certified, they concur that using SnO2 as EEL 

the photovoltaic performance and stability are increased with decreasing the undesirable 

hysteresis effect.29-31 

Here we introduce a mesoscopic oxide double layer as an electron selective contact consisting of 

a scaffold of TiO2 nanoparticles coated by a thin film of amorphous SnO2 (a-SnO2) using solution 

deposition. The band gap of the a-SnO2 exceeds that of the crystalline tetragonal polymorph by 

0.05 eV, affording perfect alignment of its conduction band with that of the perovskite light 

harvester. This accelerates carrier extraction with respect to the bare TiO2 scaffold, avoiding 

electron trapping by surface states. As a result, the notorious hysteresis in the current-voltage 

curves of PSCs is suppressed and nonradiative carrier recombination retarded yielding a very 

high open circuit photovoltage (Voc) of 1.2 V.  Results from intensity modulated photovoltage 



spectroscopy (IMVS) are consistent with these extraordinarily high Voc values. Importantly, we 

find that these benefits are specific to a-SnO2 and are not observed upon converting it to a 

crystalline form by high temperature annealing. Apart from enhancing the photovoltaic 

performance, the a-SnO2 coating also prevents UV degradation of the PSC devices based on a-

SnO2/mp-TiO2 as EEL retaining 97% of their initial PCE after 60 h exposure to the UV light.  

Result and discussions  

Figure S1 shows a schematic of the investigated device structure. It consisted of FTO glass 

coated by a compact TiO2 layer, a 150 nm-thick mp-TiO2, a thin layer of SnO2, a 300 nm-thick 

perovskite film, a 150 nm-thick spiro-OMeTAD hole transfer layer (HTL), and a 80 nm thick 

gold contact. The mesoporous TiO2 scaffold was coated in a manner by a conformal thin layer of 

a-SnO2, c-SnO2, or NC-SnO2. Top-view SEM images of the perovskite films deposited on the 

different EELs are shown in Figure S2. As seen, the grain size of perovskite film on a-SnO2 is 

slightly larger than perovskite films on top of the bare mp-TiO2 scaffold or NC-SnO2. This 

indicates that the number of nucleation cites in amorphous SnO2 (continuous film) is less than 

other substrates, resulting in larger grain size for perovskite film.  

X-ray diffraction (XRD) patterns of SnO2 films deposited from solution and the NC-colloid are 

shown in Figure 1a. The data show the spin-coated SnO2 film annealed at 180 °C to be 

amorphous turning fully crystalline upon annealing at 450 °C.32 The reflections match the known 

pattern of tetragonal SnO2 (JCPDS Card No: 41-1445). The NC-SnO2 layer shows similar XRD 

reflections although it exhibits a stronger prevalence of (101) over the (110) and (200) facets. It 

was deposited onto the mp-TiO2 scaffold by spin coating of a colloidal solution of SnO2 

nanocrystals with a 3-5 nm particle size (Figure S3), followed by annealing at 150 °C.33 



Figure 1b,c demonstrate the optical properties of the triple cation perovskite films deposited on 

the different EELs. Panel (b) shows the absorption onset and luminescence peak to be around 

770 nm, corresponding to a band gap of 1.61 eV. The photoluminence (PL) decay is significantly 

influenced by the nature of the EEL reflecting its effectiveness in scavenging photo-generated 

conduction band electrons from the perovskite light harvesters (Figure 1c). The PL lifetimes 

obtained from exponential fits of the decay curves are 2.43 ns, 3.21 ns, and 1.93 ns for mp-TiO2, 

mp-TiO2/NC-SnO2, and mp-TiO2/a-SnO2, respectively, showing that the amorphous SnO2 

extracts electrons more rapidly from the pervoskite than the bare TiO2 scaffold while the SnO2-

NC show a slower rate.  

Table 1. Photovoltaic metrics for best performing devices based on mp-TiO2, mp-TiO2/SnO2-NCs, and 

mp-TiO2/a-SnO2 with different scan directions 

Sample Voc(V) Jsc(mA/cm2) FF (%) PCE (%) Hysteresis index (%) 

Mp-TiO2-forward 1.078 22.12 78.1 18.62 

2.7 

Mp-TiO2-backward 1.098 22.21 78.5 19.14 

Mp-TiO2/SnO2-NCs-forward 1.114 21.76 67.8 16.43 

3 

Mp-TiO2-SnO2-NCs-backward 1.135 21.83 68.4 16.95 

Mp-TiO2/a-SnO2-forward 1.171 22.47 76.8 20.21 

1.1 

Mp-TiO2/a-SnO2-backward 1.168 22.51 77.6 20.4 

We fabricated perovskite solar cells endowed with these EELs as explained in the experimental 

section. Figure 2a presents the cross-sectional SEM image of a PSC based on mp-TiO2/a-SnO2. 

Current density-voltage (J-V) curves of devices employing the three different EELs under 



simulated (AM1.5G) solar irradiation are shown in Figure 2b for both backward and forward 

scanning directions. The PV metrics for best performing devices are listed in Table1 and J-V 

curves are shown in Figure 2b. The PSC based on mp-TiO2/a-SnO2 presents the highest PCE of 

20.4% with a Voc of 1.168 V, Jsc of 22.51, and FF of 77.6%, clearly outperforming the bare and 

mp-TiO2/NC- SnO2 films. The reference cell using bare mp-TiO2 gave a Jsc of 22.21 mA/cm2, 

Voc of 1.098 V, fill factor (FF) of 78.5%, and PCE of 19.14%. 

Note, the high Voc of 1.17 V obtained with mp-TiO2/a-SnO2 as EEL exceeding that of the bare 

TiO2 reference by 80-100 mV. This finding is counterintuitive as one would expect SnO2 to 

produce a lower Voc than TiO2 (anatase) due to the 0.3 eV larger offset of its conduction band 

edge energy with respect to that of the perovskite. In keeping with this expectation, Dai et. al. 34 

obtained a Voc of only 0.7 V with a PSC employing meosporous SnO2 (mp-SnO2) instead of TiO2 

as electron extracting scaffold. Upon covering the mp-SnO2 film with a thin layer of TiO2 the Voc 

improved to 0.93 V. Strikingly, we observe exactly the opposite behavior, i.e. by coating the mp-

TiO2 scaffold with a thin layer of a-SnO2, we greatly improve the Voc pushing it near 1.2 V. In 

order to rationalize these seemingly contradictory findings, we draw attention to our recent 

discovery35 that the conduction band edge energy of amorphous SnO2 is lifted by about 0.5 eV 

with respect to that of the tetragonal crystalline phase. This shift improves the band alignment 

with the perovskite allowing for rapid carrier extraction without voltage loss. The amorphous 

overlayer shows also the lowest hysteresis index, i.e. 1.1 % calculated from the formula 

h=(PCEbackward- PCE forward)/PCEbackward)*100. This again confirms that electrons are extracted 

rapidly without undergoing significant trapping at the perovskite/EEL interface.  

Figure S4 demonstrates statistical data for batches of 15 PSCs for each of the three EELs. The 

average values of photovoltaic metrics confirm that the amorphous SnO2 film coating on mp-



TiO2 increases all photovoltaic parameters except FF. In particular, the Voc of device using mp-

TiO2/a-SnO2 is greatly increased. However, the presence of SnO2-NCs on mp-TiO2 decreases the 

Jsc and especially FF with respect to the reference cell. This indicates that the crystal structure of 

the SnO2 film plays a key role in device performance.35 Figure S5 shows the J-V curve of a PSC 

using the SnO2 film on mp-TiO2 annealed at 450 °C. The results prove that the conduction band 

edge of crystalline SnO2 film (as shown in Figure 1a) is much less favorably aligned with the 

perovskite layer than that of the amorphous form resulting in a poorer device performance. In 

case of crystalline SnO2 films (SnO2-NCs or SnO2 annealed at 450 °C), despite similarity of their 

XRD features, the PV performance of the crystalline SnO2-annealed at 450°C is worse than that 

of the SnO2-NCs, which can be attributed to quantum confinement effects in the SnO2 

nanocrystals,36 changing the band alignment of EEL with respect to perovskite (Figure 3b).  

Figure 2c shows the stabilized maximum power delivered from mp-TiO2, mp-TiO2/SnO2-NCs, 

and mp-TiO2/a-SnO2 PSCs to be18.89, 16.75, and 20.27 mW/cm2, respectively, in line with the 

PCE values derived from the J-V curves. Figure 2d depicts the wavelength dependence of the 

external quantum efficiency (EQE) of these devices. The EQE values of the perovskite device on 

mp-TiO2/a-SnO2 are slightly higher than those of others cell, which is in good agreement with 

the observed trends in the photocurrent. 

In order to rationalize the effect of the SnO2 structure on the photovoltaic performance, we 

derived the band alignment of the perovskite with the EELs from ultraviolet photoelectron 

spectroscopy (UPS) and UV-vis absorption measurements. Figure 3a shows the valence band 

and Fermi level of the EELs calculated from the UPS data. The valence band edges of mp-TiO2, 

SnO2-NCs, and a-SnO2 films are positioned at 7.92 eV, 8.22 eV, and 8.44 eV below vacuum, 

respectively. From the UV-visible data shown in Figure 3b, the band gaps of mp-TiO2, SnO2-



NCs, and a-SnO2 are 3.3 eV, 4.05 eV, and 4.1 eV, respectively. We used these values to derive 

the energy band diagrams plotted in Figure 3 for devices employing mp-TiO2, mp-TiO2/SnO2-

NCs, and mp-TiO2/a-SnO2 as EELs. Clearly, the conduction band edge of a-SnO2 on mp-TiO2 is 

optimally positioned to facilitate the extraction of electrons from the perovskite and their 

subsequent injection into the TiO2 scaffold, while the nano-crystalline layer of SnO2 acts as a 

barrier explaining the poor fill factors produced with this architecture. The conduction band edge 

for the bare mp-TiO2 scaffold is at 0.4 eV lower energy than that of the perovskite accounting for 

the observed decrease in Voc to an average of 1.08 V. This offset is greatly enhanced for the c-

SnO2 overlayer, reducing the Voc substantially to below 1 V.   

Figure 6S shows results from intensity modulated photovoltage spectroscopy (IMVS) 

measurements carried our at different open circuit voltages, which were adjusted by varying the 

light intensity. The derived time constants in panel are in the 10–100 microsecond domain and 

are attributed to carrier recombination. These recombination times are of similar magnitude for 

the two investigated types of PSCs using EELs with and without a-SnO2 overlayers on the mp-

TiO2 scaffold. Nevertheless, the values for bare mp-TiO2 show steeper voltage dependence than 

the ones obtained with a-SnO2/mp-TiO2 double layer. The two curves reach a crossing point at ca 

0.98 V beyond, which the carriers recombine more slowly for the a-SnO2 covered than for the 

bare TiO2 films. 

However the IMVS spectra shown in panel 4b reveal the presence of a second time constant for 

the mp-TiO2 sample which is much less pronounced for the mp-TiO2/a-SnO2 one. In fact, each 

peak of the imaginary part of IMVS spectra can be associated to a time constant of the device 

under investigation. This feature is attributed to the recombination of carriers being trapped in 

deep states slowing down the time constants to the hundred millisecond domain. This slow 



relaxation process may also be couple to the displacement of ions in the local space charge 

electric field generated by the trapped carriers. 

Even though we can observe a small peak also in the spectra of the double layer sample mp-

TiO2/a-SnO2, it appears significantly reduced in magnitude and is evident only for very low 

illumination intensities. This shows that the amorphous SnO2 layer is capable of mitigate the 

deleterious effect of electron trapping states at the interface between the pervoskite layer and the 

TiO2.  

Moreover, the direct comparison of electroluminescence measurements confirmed the capability 

of the a-SnO2 treatment in suppressing the nonradiative recombination losses (Figure 4). In fact, 

the external quantum efficiency (EQE) of mp-TiO2/a-SnO2 sample at the same current density 

(16 mA/cm2) is higher than the standard mp-TiO2 structure, reaching approximately 0.5% in line 

with the higher Voc values observed for the sample with a-SnO2 as EEL. Note that this value is 

comparable with the state of the art values. 

Due to the photocatalytic action of TiO2 based-perovskite solar cells, TiO2 EEL is prone to 

degradation under UV light. Eliminating this unwanted effect is important for large scale outdoor 

application of PSCs. Encouragingly, we observed that the device based on mp-TiO2/a-SnO2 is 

more stable than mp-TiO2 based solar cell under continuous UV light. For this experiment, the 

devices were exposed to UV light and measured after each 3 hours. Figure 5 shows the UV 

stability of devices on mp-TiO2 and mp-TiO2/a-SnO2 after 60 hours exposure to UV lamp. The 

PCE of perovskite solar cell based on mp-TiO2/a-SnO2 is maintained almost 97% of its initial 

value, while bare TiO2 shows 18% PCE loss under this condition. This clearly shows another 

advantage of our proposed double layers EEL for perovskite solar cell.  



Conclusions 

Our results show that applying a thin amorphous overlayer of SnO2 on mesoporous TiO2 scaffold 

improves not only the power conversion efficiency of perovskite solar cells but also enhances the 

UV stability of the device. The strong gain in the Voc enabled by the amorphous SnO2 capping 

layer stands in stark contrast to the dramatic losses in the Voc and PCE encountered with 

crystalline SnO2 films. This striking difference arises from larger band gap of amorphous layer 

and better band alignment with respect to triple cation perovskite compared to crystalline SnO2. 

Based on mp-TiO2/a-SnO2 architecture, a perovskite solar cell with PCE of 20.4% was achieved, 

which is 6% higher than bare mp-TiO2 device. Moreover, it was discovered that the UV stability 

of perovskite device for double layer mp-TiO2/a-SnO2 is improved drastically compared with 

pure mp-TiO2 ETL, where after 60 h exposure to UV lamp, the PCE loss in only 3%.  
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Figure 1. XRD patterns of SnO2 films annealed at 180 °C (amorphous phase) and 450 °C (crystalline 

phase) and SnO2-NCs layer annealed at 150 °C. For this experiment the SnO2 films were deposited on a 

silicon support. (b) UV-visible absorption and photoluminescence (PL) spectra of the triple cation 

pervoskite  and (c) time-resolved PL (TRPL) curves of perovskite films on mp-TiO2, mp-TiO2/SnO2-NCs, 

and mp-TiO2/a-SnO2.   

 



 

Figure 2. (a) Cross-sectional SEM image of perovskite solar cell based on mp-TiO2/a-SnO2. (b) J-V 

curves, (c) Maximum power point tracking (MPPT), and (d) EQE spectra of PSCs based on mp-TiO2, 

mp-TiO2/SnO2-NCs, and mp-TiO2/a-SnO2. 



 

Figure 3. (a) UPS measurements and (b) UV-visible spectra of SnO2 and TiO2 films on Si substrate for 

band levels calculation. (b) Schematics of band alignment for devices based on mp-TiO2, mp-TiO2/SnO2-

NCs, and mp-TiO2/a-SnO2.  

 



 

Figure 4. Dark current (black) photon flux (blue) and external quantum efficiency (EQE) (green) 

measurements for devices on mp-TiO2 (a) and mp-TiO2/a-SnO2 ETL (b). (c) Comparison of EQE at the 

same dark current for mp-TiO2 (red) and mp-TiO2/a-SnO2 ETL (black). Note that the device area in this 

test was ~ 0.25 cm2. 

 

 

 



 

Figure 5. UV stability of perovskite solar cells based on mp-TiO2 and mp-TiO2-a-SnO2 EELs at room 

temperature inside a dry air box.  
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Experimental section 

Device fabrication:  

 FTO glasses (NSG-10) were chemically etched using zinc powder and HCl solution (2 M), 

followed by four steps ultrasonic cleaning using Triton X100 (1 vol% in deionized water), DI 

water, acetone, and ethanol, respectively. All substrates were further cleaned by ozone plasma 

for 15 min, before deposition of each EEL. To prepare TiO2 compact layer, a precursor solution 

of titanium diisopropoxide (Sigma-Aldrich) in ethanol was deposited on the substrates at 450 °C 

using spray pyrolysis process, followed by 30 min annealing at 450°C. Thereafter, a 150 nm-

thick mesoporous TiO2 was spin coated on compact TiO2 (4000 rpm for 15 s with a ramp rate of 

2000 rpm/s) from a diluted TiO2 paste (Dyesol 30 NR-D) in ethanol, followed by annealing the 

substrates at 450°C for 30 min. To modify the surface of mp-TiO2, SnO2 precursor solution (0.1 

M SnCl2.2H2O in ethanol) was spin-coated on top of mp-TiO2 with a 20 s delay time to allow for 

full impregnation before spinning at 6000 rpm for 40 s. Subsequently , the film was annealed at 

180 °C for 1 hour. We converted the a–SnO2 to crystalline phase (c-SnO2) by annealing the film 

at 450 °C for 1 hour. The SnO2 quantum dots (NC-SnO2) had a size of 3-5 nm and were 

deposited on top of the mp-TiO2 by spin coating at 5000 rpm for 20 s with 2000 rpm/s ramp-rate, 

followed by annealing at 150 °C for 1 hour.  

For deposition of perovskite film a precursor solution of (FAPbI3)0.87(MAPbBr3)0.13 was first 

prepared by mixing FAI (1.05 M, Dyesol), PbI2 (1.10 M, TCI), MABr (0.185 M, Dyesol) and 

PbBr2 (0.185 M, TCI) in a mixed solvent of DMF:DMSO = 4:1 (volume ratio). Then, a 5 vol% 

of 1.5 M CsI solution in DMSO was added into the perovskite solution in order to have a triple 

cation perovskite. The solution was spin-coated at 1000 rpm for 10 s and, continuously at 4000 

rpm for 30 s. During the second phase, 200 µL of chlorobenzene was dropped on top film 10 



second before end of spinning. Thereafter, the film was annealed first at 120 °C for 10 min 

followed by 40 min at 100 °C. After annealing and cooling the samples, spiro-OMeTAD solution 

in chlorobenzene (70 mM) containing a solution bis(trifluoromethylsulfonyl)imide lithium salt 

(Li-TFSI, Sigma-Aldrich) in acetonitrile (200 mg/400 µL) and (4-tert-butylpyridine-Sigma-

Aldrich) with molar ratios of 0.5 and 3.3, respectively, was prepared and spin-coated at 4000 rpm 

for 20 s (using a ramp rate of 2000 rpm/s). Finally, 80-nm thick gold was thermally evaporated 

as a back contact to complete the device structure with a masked active area of 0.16 cm2.  

Film characterization 

The morphology of perovskite film and device structure were studied using a ZEISS Merlin high 

resolution Scanning electron microscopy (HRSEM). The quality and crystal structure of 

perovskite films were characterized by using X-ray diffraction (Bruker D8 X-ray Diffractometer, 

USA) utilizing a Cu Kα-radiation. Transmission electron microscopy (JEOL (2010F) under an 

accelerating voltage of 200 volts) was employed to take images from SnO2 nanocrystals. 

For optical absorption measurement, a Varian Carry 500 spectrometer (Varian, USA) was used. 

To record steady-state photoluminescence spectra, an Edinburgh Instruments FLS920P 

fluorescence spectrometer. For time resolved measurements (TRPL), we employed a picosecond 

pulsed diode laser (EPL-405, excitation wavelength 405 nm, pulse width 49 ps) was PL decay 

curves were fitted to the exponential function: I(t) = I0exp(−(ti/τi)βi), where τi is the decay lifetime 

and βi is a stretching parameter. 

Device characterization 

The solar cells were measured under AM1.5G sun simulator (a 450 W Xenon lamp (Oriel), with 

intensity of 100 mWcm-2, equipped with a Schott K113 Tempax sunlight filter (Praezisions 

Glas&Optik GmbH) to simulate the emission spectra of AM1.5G standard in the region of 350-



750 nm. Calibration of the lamp was performed using standard Silicon solar cell (KG5-filtered Si 

reference cell). To measure the current density-voltage (J-V) curves, a 2400 series source meter 

(Keithley, USA) instrument was employed. The voltage range for J-V sweeps was between 0 and 

1.2 V, with a step increment of 0.005 V and a delay time of 200 ms at each point. External 

quantum efficiency (EQE) spectra were measured with a commercial apparatus (Arkeo-Ariadne, 

Cicci Research s.r.l.) based on a 300 Watts Xenon lamp. 

Electroluminescence and IMVS measurements. The photon flux emitted by the perovskite solar 

cells was detected with a 1cm2 Silicon Photodiode (Hamamatsu s1227-1010BQ). The bias to the 

device under test was provided by a Bio-Logic SP300 potentiostat, which was used to measure 

also the short circuit current of the photodetector on another channel. IMVS measurements were 

performed by Bio-Logic SP300 in combination withthe Galvano Staircase Spectroscopy routine 

from EC-Lab Software.  

The UV stability of devices was measured inside a dry air box using a UV lamp (Spectronics 

ENF-240C) with power of 40 mW/cm2. 

 

 

 

 

 

 

 

 



 

 

Figure S1. Schematic cross sectional image of the investigated PSC architecture. The blue bottom layer 

of the stack denotes the TCO glass, covered by blocking layer of TiO2 (brown). The interconnected white  

nanoparticles of the TiO2 scaffold are coated with a conformal layer (green) of either amorphous, 

crystalline or nanocrystalline SnO2. The pervoskite light harvesting layer indicated in brown-red color is 

covered with the gray HTL and the gold contact.  

 

 

 

 

 

 



 

Figure S2. Top-view SEM images of perovskite film deposited on mp-TiO2 (a), mp-TiO2/SnO2-NCs (b), 

and mp-TiO2/a-SnO2 (c).  

 

 

 

 

 

 

 



 

Figure S3. TEM image of commercial SnO2 nanocrystals with average size of 3-5 nm.  

 



 

Figure S4. Statistical photovoltaic data for perovskite solar cells based on mp-TiO2, mp-TiO2/SnO2-NC, 

and mp-TiO2/a-SnO2.  



 

Figure S5. J-V curve of perovskite solar cells based on mp-TiO2/crystalline SnO2 annealed at 450 °C for 1 

hour with forward and backward scan directions.  

 

 

 

 

 

 

 

 



 

Figure S6. (a) Recombination time constants for mp-TiO2 and mp-TiO2/a-SnO2 ETLs. (b) Imaginary part 

of IMVS spectra for mp-TiO2 and mp-TiO2/a-SnO2 ETL. The measurements are performed at open circuit 

voltage and for different bias level of illumination. The complex voltage measured at this conditions, 

reflects the dynamics of charges recombining in the device  

 

 


