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A Bayesian Approach to Intervention-Based Clustering

IGOR KULEV, PEARL PU, and BOI FALTINGS, École Polytechnique Fédérale de Lausanne

An important task for intelligent healthcare systems is to predict the e�ect of a new intervention on
individuals. This is especially true for medical treatments. For example, consider patients who do not respond
well to a new drug or have adversary reactions. Predicting the likelihood of positive or negative response
before trying the drug on the patient can potentially save his or her life. We are therefore interested in
identifying distinctive subpopulations that respond di�erently to a given intervention. For this purpose,
we have developed a novel technique, Intervention-based Clustering, based on a Bayesian mixture model.
Compared to the baseline techniques, the novelty of our approach lies in its ability to model complex decision
boundaries by using soft clustering, thus predicting the e�ect for individuals more accurately. It can also
incorporate prior knowledge, making the method useful even for smaller datasets. We demonstrate how
our method works by applying it to both simulated and real data. Results of our evaluation show that our
model has strong predictive power and is capable of producing high-quality clusters compared to the baseline
methods.
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1 INTRODUCTION
Many situations require applying interventions, which are actions designed to bring about a change
in a process or an individual. Examples of interventions are medical treatments, special o�ers in
marketing, government policies, and exercises in teaching. In this article, we focus on the example
of medical treatments, but the techniques also apply to other domains.

The adoption of a new intervention requires scienti�c proof that it provides bene�t. The
conventional approach uses a randomized controlled trial (RCT) design to measure the intervention
e�ect. Subjects are randomly assigned to a control group where they do not receive the intervention
or a treatment group where they do. One or several variables, known as responses (e.g., a person’s
health status), are measured before and after the intervention. If the average response for the
treatment group is better while it remains unchanged for the control group, then it is likely the
intervention worked. However, this method misses an important opportunity to examine the
intervention e�ects at a more detailed level. Consider the case where a subpopulation (orange
circles in Fig. 1b) improves after taking a medication while another group (green crosses in Fig.
1b) does not. In both cases, e�ect changes are compared to the baseline (orange and green dashed
lines). We may not �nd this di�erence if we used e�ect averages (Fig. 1a). While some people
improved (blue solid lines going up in Fig. 1a), overall the health status of a population did not
change signi�cantly. Our goal is to sub-divide the population into clusters taking into account their
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Fig. 1. Modeling the treatment e�ects of a given population: conventional vs. our method

respective response to the intervention (Fig. 1b). In this manner, we will be able to decide whether to
administer an intervention depending on the individual’s characteristics. We believe this approach,
which we call Intervention-based Clustering (IBC), holds great promises in personalized medicine.
Previous work in discovering the heterogeneity of the treatment e�ect (HTE) has addressed some
of the challenges. Compared to these baseline methods, we are providing the following advantages:

A More Accurate Model of Subpopulations. The subpopulations with di�erential treatment e�ect
may be associated with complex membership functions, which cannot be modeled by traditional
HTE methods. These membership functions might depend on both observed and unobserved
variables, and, as a result, it is impossible to determine the cluster membership with full certainty.
The ability of our method to model the cluster membership more precisely while taking into
account its certainty could help in deciding who has the highest chances to respond positively to
the intervention.

Modeling Multiple Objectives. Dealing with multivariate outcomes is also important when identi-
fying subpopulations with di�erential treatment e�ect. This is because some interventions may
a�ect multiple variables simultaneously, possibly causing desirable and adversarial outcomes at
the same time. For example, energy drinks can give a person a strong boost while making him or
her anxious. If we model both variables, then we can identify a subpopulation who gets a boost
without the anxiety side-e�ect. When there is more than one outcome variable of interest, we are
able to make a tradeo� between the bene�cial and the harmful e�ects.

Bayesian Approach. It can be challenging to identify the true subpopulations with di�erential
treatment e�ect when the sample used in the analysis is small. This is because the treatment
e�ect estimates become more variable and less stable as we decrease the size of the associated
subpopulation and increase the number of parameters. Also, individuals with extreme responses
(outliers) could signi�cantly a�ect the estimates. For this reason, we have decided to use the
Bayesian approach, which allows us to include prior knowledge.

Various methods that identify heterogeneous groups have been investigated in the literature
[24]. The novelty of our approach is that it creates complex and more accurate decision boundaries
and allows reasoning about the tradeo� of multivariate outcomes. It performs soft clustering and
incorporates prior knowledge. The results of our approach can a�ect inclusion criteria in later
clinical trials or can be used in deciding with higher con�dence whether a person should receive a
treatment based on how likely she is to respond to it.
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This article is organized as follows. First we review some of the existing methods used to identify
HTE. Then we describe our approach in the third section. In the fourth and �fth sections, we
apply our approach on both synthetic and real data, and we compare it with two existing methods,
qualitative interaction trees (QUINT) and the Growth Mixture Model. In the sixth section, we
evaluate and discuss the relationship between the sample size and the quality of the HTE estimates.
We conclude in the seventh section.

2 RELATED WORK
Identifying the causal e�ect of a treatment on a patient is a di�cult problem. To make accurate
causal inference, we need to observe the potential outcome if the subject received the treatment, the
potential outcome if the subject received the alternative treatment, and to compare the outcomes.
This is not possible, because once a treatment is applied on a patient, at most one potential outcome
can be observed. Although we cannot simultaneously observe a single patient with and without
the treatment, we can simultaneously observe a group with the treatment that is functionally
identical to one without the treatment [23]. The causal e�ect of a treatment for that population
can be estimated by comparing their average outcomes. The ATE can be easily estimated without
bias in randomized experiments [15]. However, treatments might have di�erent causal e�ects on
each subject. Existing work is focused on either estimating the patient-level treatment e�ect [34],
or searching for subgroups with di�erential treatment e�ects [19]. In both cases, we make use
of the pre-treatment variables, because they can be highly predictive of the potential outcomes.
More concretely, we are interested in the conditional average treatment e�ect (CATE) which is an
estimate of ATE for all possible combinations of values for the covariates.

2.1 Methods for Estimating CATE
To estimate CATE, we can use modern predictive modeling approaches such as boosting, random
forest, or support vector machines [37]. These methods essentially establish a relationship between
attributes and outcomes, with a penalty parameter that penalizes model complexity [2]. Recently,
Wager and Athley [34] developed a non-parametric causal forest that extends Breiman’s widely
used random forest algorithm [6]. The method utilizes the strength of the random forests to model
interactions in high dimensions and provides asympthotically unbiased and normal estimates of
CATE under the assumption of randomization conditional on the covariates or ”unfoundedness”
[25].

2.2 Methods for Identifying Subpopulations with Di�erential Treatment E�ect
In practice, we are more likely to be interested in identifying subpopulations with di�erential
treatment e�ect than simply estimating the patient-level CATE. For example, existence of subgroups
that appear to respond di�erently to treatment can a�ect inclusion criteria in later clinical trials
or in labeling decisions for approved drugs [1, 14]. Identifying subpopulations with di�erential
treatment e�ect is a methodologically challenging task, especially when many characteristics are
available that may interact with treatment and when no comprehensive a priori hypotheses on
relevant subgroups are available [10]. The most popular methods for resolving this challenge
found in the literature are based on trees. Trees produce a partition of the population according to
covariates so that each subpopulation associated to a leaf has a distinct relationship between the
covariates and the response. The most important feature of the trees is interpretability, enhanced
by visualizations of the �tted decision trees [37]. Several di�erent tree-based methods have been
developed, including simultaneous threshold interaction modeling (STIMA) [9], Interaction Trees

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 44. Publication date: January 2018.



44:4 I. Kulev et al.

[30], Model-based recursive partitioning [37], Virtual Twins [13], subgroup identi�cation based on
di�erential e�ect search (SIDES) [17], and QUINT (qualitative interaction trees) [10, 11].
Interaction Trees[30] follow the CART [7] convention, which consists of three major steps: (1)

growing a large initial tree, (2) pruning, and (3) validation for determining the best tree size. Their
splitting criterion is based on a measure for assessing the interaction that assigns high values
when the squared di�erence between ATE in the left and right subtree is large and when the
variance is small. Pruning is done using an interaction-complexity measure that penalizes trees
with large number of internal nodes. Each leaf represents one subpopulation and all the patients in
a subpopulation receive the same estimate of CATE.
Model-based recursive partitioning[37] gives a tree where every leaf is associated with a �tted

model such as a maximum likelihood model or a linear regression. The model in each leaf is �tted
by minimizing some objective function, e.g., sum of squared errors and minus the loglikelihood. A
splitting is done if the parameter estimates are not stable with respect to at least one partitioning
variable.

Virtual Twins[13] is based on the concept of potential outcomes [27]. The method consists of two
steps. In the �rst step, a random forest is applied on the data in order to estimate CATE for each
patient. In the second step, a regression or classi�cation tree is estimated with the patient-level
treatment e�ect as the response variable. The algorithm outputs all the leaves in which the predicted
di�erential treatment e�ect is larger than a threshold.

The goal of QUINT [10, 11] is to identify subgroups that are involved in an optimal ”qualitative”
treatment-subgroup interactions where one treatment performs better than another in one subgroup
and worse in another subgroup. The method outputs three groups, the �rst contains those patients
for whom Treatment A is better than Treatment B, the second contains those for whom B is better
than A, and the third (optional) contains those for whom it does not make any di�erence. The
method builds a tree so that each leaf belongs to one of the three groups. The partitioning criterion
maximizes the absolute di�erential treatment e�ect in the �rst two groups and their samples sizes.

The main advantage of tree-based methods is that they do not require assumptions about the
distribution of the dependent variable. Unfortunately, two main disadvantages remain. First, the
splitting of each node is induced by a threshold on only one covariate, so the space is always
splitted using a hyperplane perpendicular to one of the axes and parallel to the other axes. This is
why these methods may not fully identify additive impact of multiple variables [36]. The second
disadvantage is that they use a greedy approach to build the tree, which does not always result in
an optimal tree.

The focus of the methods presented so far is to identify subpopulations with di�erential treatment
e�ect measured at one instance after the intervention. However, when we are working with
longitudinal data [26], we are interested in knowing how the treatment e�ect develops during the
time after the intervention. Bauer and Curran [3] advocate the strong need for trajectory methods
that are capable of discerning and testing hypotheses about the developmental growth of unobserved
population subgroups called latent trajectory classes. Latent growth modeling approaches, such
as Latent Class Growth Analysis (LCGA) [16] and Growth Mixture Modeling (GMM) [21] have
been increasingly recognized for their usefulness for identifying homogeneous subpopulations
within the larger heterogeneous population and for the identi�cation of meaningful groups or
classes of individuals [16]. In addition to the pre-intervention variables, these methods include
time-related variables and, optionally, time-varying variables [21], which explain the development
of the subpopulation over time. The main idea behind these methods is that they represent the
trajectory as a latent variable and the propensity of a patient to belong to a particular trajectory
depends on its baseline characteristics. The main di�erence between LCGA and GMM is that
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LCGA assumes no within class variance on the growth factors, whereas GMM freely estimates the
within class variances [16]. These models mostly have been applied to non-interventional data
[12, 21], however, they have also been successfully used to analyze interventions, for example,
interventions aimed at reducing aggressive behavior [22]. An advantage of GMM over tree-based
methods is that it can identify the additive impact of multiple variables on cluster membership.
Another advantage is that it assigns soft cluster memberships to each patient. As we mentioned
before, in this way we model the reality better. For example, it is unrealistic to expect that patients
who are otherwise very similar, but belong to di�erent leaves of the tree due to hard constraints
for splitting of the tree, would be a�ected by the intervention in a very di�erent way (determined
by ATE in the corresponding leaves). A limitation of GMM is that there is no clear criterion for
determining the optimal number of subpopulations [36]. Another issue with this model is the
existence of singularities. This can be especially important if we use GMM to analyze the treatment
e�ect measured at one moment after the intervention.

2.3 Comparison with our Approach
In our work we have developed a Bayesian mixture model that is suitable for identifying the
subpopulations with di�erential treatment e�ect. We consider that each person responds to the
treatment in a particular way that is unobserved but is partially explained by the pre-intervention
data. Our goal is to discover the di�erent ways subjects respond to the treatment and to estimate
the propensity of a subject belonging to a subpopulation that responds in a particular way. Higher
uncertainty of the cluster membership may suggest that there are important factors that are not
measured but explain the treatment e�ect better. In contrast to GMM, our method utilizes prior
information to avoid the singularity problem and stabilize the treatment e�ect estimates.

Recently a number of other researchers began using Bayesian approaches. For example, a
Bayesian tree-based approach was proposed by Berger et al. [4]. Unfortunately, this method is not
able to discover clusters with complex (nonlinear) decision boundaries. In another recent work,
Shahn and Madigan [28] proposed a Bayesian framework for modeling treatment e�ect hetero-
geneity. In comparison with our approach, their method is not able to model multi-dimensional
responses, such as the combination of e�ects stated earlier. Tree-based methods have been proposed
for subgroup discovery in datasets with multi-dimensional responses [18, 31], but they have less
power to identify complex subpopulations. We aim to overcome the limitations of the existing
methods to produce higher-quality clusters. The novelty of our approach is that it combines several
desirable qualities in a single method to e�ectively identify subpopulations with di�erential treat-
ment e�ect: complex decision boundaries, multi-dimensional continuous outcomes, soft cluster
membership, and the ability to stabilize the highly variable treatment e�ect estimates.

3 MODEL
RCT are the most rigorous way of determining whether a cause-e�ect relation exists between
treatment and outcome [29]. In RCT, N people are allocated at random to receive one of M di�erent
treatments. One of these treatments is the standard of comparison or control. There are three
types of observed variables in RCT: pre-intervention variables, treatment variables, and outcome
variables. The pre-intervention variables represent the baseline characteristics of each subject
under treatment and its environment, for example: age, gender, education, medical condition,
rainy weather, and so on. The treatment variables represent the type of intervention the subject
received, for example: drug, or a persuasion message delivered in a mobile phone app, and so on.
The outcome variables represent the outcome of interest, for example, well-being or health status
change. The outcome is usually the change of a variable some time after the intervention.
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Fig. 2. Plate notation for our graphical model. The observed variables are displayed in gray circles, the
unobserved variables are displayed in white circles and the hyper-parameters are displayed in gray squares.
The dimensions of the multidimensional variables are displayed next to the variables’ names.

After conducting RCT, the analysis is focused on estimating the size of the di�erence in prede�ned
outcomes between intervention groups [29]. However, people with di�erent baseline characteristics
might respond to the same treatment in a di�erent way. We propose a probabilistic graphical model
to identify the homogeneous subpopulations (clusters) within the larger heterogeneous population.
In the rest of this section, we will describe our model (Fig. 2). Let us denote the pre-intervention,
treatment, and outcome variables associated to the n-th person by xn , tn and yn correspondingly.
xn and yn are multidimensional continuous variables whose dimensions are Dx and Dy , while
tn is a discrete variable with M levels. In RCT, yn depends on both xn and tn , but xn and tn are
independent, because tn is chosen randomly. We introduce a discrete variable cn ∈ {1, 2, . . . ,K}
that identi�es the type of response to the intervention (discrete heterogeneity of the treatment
e�ect) and that is hidden. There are K di�erent types of responses and each person is associated to
one of them. Observing the person’s characteristics xn we would like to determine the prior odds
for her to respond according to each of the treatment e�ect types. This is why we set xn to a�ect
cn in our model. If it was the opposite, then cn would represent both the treatment e�ect type and
the type of person who receives the intervention. We say that people with cn = k belong to the
k-th cluster, so a cluster represents a subpopulation with the same type of treatment e�ect. Besides
cn , xn also directly a�ects yn allowing for variation in subjects’ individual responses to treatment
within the same cluster. We de�ne p (cn = k |xn ,α) to be a softmax function:

p (cn = k |xn ,α) =
exp

(
αTk xn

)
∑K

i=1 exp
(
αTi xn

) (1)

The motivations behind using softmax function are that its derivative is easy to calculate and it is
simple to interpret, i.e., an increase of the dot product αTk xn increases the odds of the n-th person
to belong to the k-th cluster (and vice versa). The �rst element of xn should be set to 1 in order to
interpret α1

k as the intercept. αK should be a zero vector that is not a�ected in the learning process
in order to make our model identi�able. In this way, we decrease the degrees of freedom without
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losing modeling power. We de�ne yn to be normally distributed with density:

p (yn |cn = k,xn , tn , β , Σ) = N
(
yn |βk,tnxn , Σk,tn

)
= (2π )−

Dy
2

��Σk,tn ��− 1
2 exp

[
−

1
2

(
yn − βk,tnxn

)T
Σ−1
k,tn

(
yn − βk,tnxn

) ]
(2)

In our model, we associate the following prior distributions to the parameters:

p (α) =
K∏
k=1

Dx∏
i=2
N

(
α ik |0,

1
λα

)
=

K∏
k=1

Dx∏
i=2

1√
2π 1

λα

exp
(
−

1
2
λαα

i
k

2
)

(3)

p (β) =
K∏
k=1

M∏
m=1

Dy∏
i=1

Dx∏
j=2
N

(
β i, jk,m |0,

1
λβ

)
=

K∏
k=1

M∏
m=1

Dy∏
i=1

Dx∏
j=2

1√
2π 1

λβ

exp
(
−

1
2
λβ β

i, j
k,m

2
)

(4)

p (Σ) =
K∏
k=1

M∏
m=1

W
(
Σk,m |Σ0,ν0

)
=

K∏
k=1

M∏
m=1

��Σk,m �� ν0−Dy−1
2 exp

[
− 1

2 tr
(
Σ−1

0 Σk,m
) ]

2
ν0Dy

2 |Σ0 |
ν0
2 ΓDy

( ν0
2
) (5)

whereW
(
Σk,m |Σ0,ν0

)
is the probability density function of a Wishart distribution with scale matrix

Σ0 and ν0 degrees of freedom.

3.1 Parameter estimation
Using the method of maximum a posteriori estimation (MAP), we estimate model parameters as
the mode of the posterior distribution of these random variables:

arg max
α,β,Σ

p (α , β , Σ|Y ,X ,T ) = arg max
α,β,Σ

p (Y |X ,T ,α , β, Σ)p (α , β , Σ)∫ ∫ ∫
p (Y |X ,T ,α , β , Σ)p (α , β, Σ)dα dβ dΣ

(6)

= arg max
α,β,Σ

p (Y |X ,T ,α , β , Σ)p (α , β, Σ) (7)

When we logarithmize the product of probabilities in Eq. 7 we obtain the following function:

logp (Y ,α , β, Σ|X ,T ) =
N∑
n=1

log


K∑
k=1
N

(
yn |βk,tnxn , Σk,tn

) exp
(
αTk xn

)
∑K

i=1 exp
(
αTi xn

) 
+

K∑
k=1

Dx∑
i=2

logN
(
α ik |0,

1
λα

)
+

K∑
k=1

M∑
m=1

Dy∑
i=1

Dx∑
j=2

logN
(
β i, jk,m |0,

1
λβ

)
+

K∑
k=1

M∑
m=1

logW
(
Σk,m |Σ0,ν0

)
(8)

This is our objective function and our goal in the learning procedure is to �nd the parameter values
at the global maximum. Unfortunately, the function is not concave and it is di�cult to �nd the
global extreme point, i.e., the most likely model parameters. However, we can �nd locally optimal
parameter estimates using the Expectation-Maximization algorithm (EM). The algorithm starts with
some initial parameter estimates α (0), β (0), Σ(0), and iteratively updates and improves the estimates
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until convergence. Two steps are performed in each iteration: Expectation and Maximization. In
the Expectation step, we use the current parameter values to �nd the posterior distribution of the
latent variables. Given these probabilities, EM computes a tight lower bound to the true likelihood
function. In the Maximization step, the lower bound is maximized, and the corresponding new
estimate is guaranteed to lie closer to the location of the nearest local maximum of the likelihood
[8]. In the Expectation step of our learning procedure, we calculate the posterior over cn given the
current estimates of the model parameters α (l ), β (l ), Σ(l ):

p(l )n,k = p
(
cn = k |yn ,xn , tn ,α

(l ), β (l ), Σ(l )
)
=
N

(
yn |β

(l )
k,tn

xn , Σ
(l )
k,tn

)
p

(
cn = k |xn ,α

(l )
)

∑K
i=1N

(
yn |β

(l )
i,tnxn , Σ

(l )
n,tn

)
p

(
cn = i |xn ,α (l )

) (9)

We use the estimated posterior and Jensen’s inequality to �nd the lower bound of Eq. 8:

logp (Y ,α , β, Σ|X ,T ) >
N∑
n=1

K∑
k=1

p(l )n,k

logN
(
yn |βk,tnxn , Σk,tn

)
+ log

exp
(
αTk xn

)
∑K

i=1 exp
(
αTi xn

) 
+

K∑
k=1

Dx∑
i=2

logN
(
α ik |0,

1
λα

)
+

K∑
k=1

M∑
m=1

Dy∑
i=1

Dx∑
j=2

logN
(
β i, jk,m |0,

1
λβ

)
+

K∑
k=1

M∑
m=1

logW
(
Σk,m |Σ0,ν0

)
= Q

(
α , β , Σ|α (l ), β (l ), Σ(l )

)
(10)

The new parameter estimates are obtained by maximizingQ
(
α , β , Σ|α (l ), β (l ), Σ(l )

)
. This is a concave

function, because it is represented as a sum of concave functions. It means that the function has
only one global maximum. At this point, the derivatives of the function with respect to α , β , Σ
are equal to zero, so by solving these equations we can �nd the optimal parameter estimates. The
derivative of Q (·) with respect to αk (k < K ) is

∂Q (·)

∂αk
=
∂

∂αk


N∑
n=1

K∑
i=1

p(l )n,i log
exp

(
αTi xn

)∑K
j=1 exp

(
αTj xn

) + Dx∑
i=2

logN
(
α ik |0,

1
λα

)
=
∂

∂αk

[
N∑
n=1

K∑
i=1

p(l )n,i

(
αTi xn − log

K∑
j=1

exp
(
αTj xn

))
−
λα
2

Dx∑
i=2

α ik
2
]

=
∂

∂αk

[
N∑
n=1

(
p(l )n,kα

T
k xn − log

K∑
j=1

exp
(
αTj xn

))
−
λα
2

Dx∑
i=2

α ik
2
]

=

N∑
n=1

p
(l )
n,k −

exp
(
αTk xn

)
∑K

j=1 exp
(
αTj xn

)  xn − λα ᾱk = 0 (11)

where ᾱ1
k = 0, and ᾱ ik = α

i
k for all i > 1. There is no closed-form solution to the equation above.

This is why we use gradient ascent to �nd the optimal parameter values for αk . The derivative of
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Q (·) with respect to βk,m is:

∂Q (·)

∂βk,m
=
∂
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
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(
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)
+
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logN
(
β i, jk,m |0,

1
λβ
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∂
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1
2
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(
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)T
Σ−1
k,m

(
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2
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β i, jk,m
2


= Σ−1
k,m

N∑
n=1

1 (tn =m)p
(l )
n,k

(
yn − βk,mxn

)
xTn − λβ β̄k,m = 0 (12)

where β̄ i,1k,m = 0 for all i , and β̄ i, jk,m = β
i, j
k,m for all i and j > 1. There is no closed-form solution to

this equation as well, so we can use gradient ascent to �nd the optimal parameter values for βk,m if
the optimal Σk,n is given. The derivative of Q (·) with respect to Σk,m is:

∂Q (·)
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=
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[
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0 = 0 (13)

We transform Eq. 13 by multiplying from left and right by Σk,m and after regrouping we get:

−Σk,mΣ−1
0 Σk,m +

(
ν0 − Dy − 1 −

N∑
n=1

1 (tn =m)p
(l )
n,k

)
Σk,m

+

N∑
n=1

1 (tn =m)p
(l )
n,k

(
yn − βk,mxn

) (
yn − βk,mxn

)T
= 0 (14)

The solution Σk,m to this equation for given βk,m is also a solution to the following Riccati equation:

ATXE + ETXA −
(
ETXB + S

)
R−1

(
BTXE + ST

)
+Q = 0 (15)

where
X = Σk,m (16)

A =
1
2

(
ν0 − Dy − 1 −

N∑
n=1

1 (tn =m)p
(l )
n,k

)
IDy (17)

B = E = IDy (18)

S = 0Dy (19)
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R = Σ0 (20)

Q =
N∑
n=1

1 (tn =m)p
(l )
n,k

(
yn − βk,mxn

) (
yn − βk,mxn

)T (21)

This equation has unique solution if [
Q S
ST R

]
> 0 (22)

It can be proven than this holds in our case using the de�nition of positive de�niteness. We choose
z to be non-zero vector of real numbers of size 2Dy . Let us denote the �rst part of the vector of size
Dy by z1 and the second part of the vector of size Dy by z2. Then:

zT
[
Q S
ST R

]
z =

[
zT

[
Q
ST

]
zT

[
S
R

] ]
z =

[
zT1 Q zT2 R

]
z = zT1 Qz1 + z

T
2 Rz2 > 0 (23)

Therefore we can �nd the optimal Σk,m by solving a Riccati equation if the optimal βk,n is given.
We can �nd the optimal Σk,m and βk,m in the Expectation step in an iterative process by �xing
Σk,m to calculate new βk,m , and by �xing βk,m to calculate new Σk,m , until convergence. The EM
algorithm does not necessarily �nd the global extreme of the function. The quality of the solution
heavily depends on the initial parameter values. We use a random restart approach for escaping a
local maximum. Besides the parameters, our model has �ve hyper-parameters: λα , λβ , ν0, Σ0 and
K . They can be determined using grid search and cross-validation.

3.2 Alternative approach to estimate model parameters
It is possible to use a Markov Chain Monte Carlo (MCMC) approach instead of EM to estimate
model parameters. Gibbs sampling is a MCMC approach where we iteratively replace the value
of one of the variables by a value drawn from the distribution of that variable conditioned on the
values of the remaining variables until convergence. In our case, we should alternate between draw-
ing samples from the conditional distributions p (cn = k |Y ,X ,T ,C−n ,α , β, Σ), p (α |Y ,X ,T ,C, β, Σ),
p (β |Y ,X ,T ,C,α , Σ) and p (Σ|Y ,X ,T ,C,α , β). The �rst conditional distribution is categorical, and
it is easy to draw samples from it. However, it is di�cult to directly sample the model parameters,
because their conditional distributions are complex. For this purpose, we could use the importance
sampling method [5]. The idea behind importance sampling is to simulate the conditional distribu-
tion using a di�erent proposal distribution. L samples are generated from the proposal distribution
and weights are assigned to each sample in order to correct the bias introduced by sampling from
the wrong distribution. Then we use the discrete distribution de�ned by these samples and the
normalized weights to simulate sampling from the complex conditional distribution. This results in
generating large number of samples.

There are two main advantages of the Gibbs sampling approach combined with importance sam-
pling over EM. First, it is easier to implement, because we do not need to maximizeQ

(
α , β , Σ|α (l ), β (l ), Σ(l )

)
used in the Maximization step of EM. Second, given enough computational resources, it could
converge to better parameter estimates than EM. However, there are three disadvantages of this
approach. First, the convergence could be slow if the variables have strong dependencies. Second,
in the importance sampling we need to choose the proposal distribution to be as similar as possible
to the target distribution, so if this distribution is very biased, we will need a huge number of
importance samples for this technique to achieve su�cient con�dence [20]. Third, importance
sampling may not work well in high dimensions, because in this case most of the samples carry
no useful information [20], so an even larger number of samples need to be generated. This is an
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important limitation, because in the learning algorithm we need to estimate the matrices Σk,m that
could be high dimensional, depending on the dataset. We cannot separately sample each value in
the matrix, because if we do this, then we might not obtain a positive de�nite matrix. Because of
all these limitations, the application of Gibbs sampling on our problem would result in excessive
time complexity. This is why we use the EM algorithm to estimate the model parameters. However,
if the outcome variable is one-dimensional, then Gibbs sampling may also be suitable.

4 EVALUATION ON SIMULATED STUDIES
This section contains simulated experiments designed to evaluate the capability of our approach
to capture the true underlying HTE present in the data. We de�ned several synthetic datasets
to be used in the experiments. Each dataset involves two or three subpopulations with di�erent
treatment e�ects. A good model should recognize the true subpopulations. We validate this (1)
qualitatively by comparing the true decision boundaries with the inferred decision boundaries and
(2) quantitatively by analyzing the prediction errors.

4.1 Complex decision boundaries
The goal of the �rst experiment is to evaluate the ability of our method to capture clusters with
complex decision boundaries. For the purpose of this experiment, we de�ned one simulated
dataset that involves two continuous pre-intervention variables X1 and X2, and one continuous
response Y . We generated 1,000 subjects so that for each subject xn was randomly sampled from a
mixture of 20 Gaussians. We choose a distribution of X1 and X2 so that clusters cannot be clearly
distinguished in this space. We randomly assign one of two treatments to each subject (control
and intervention group), and we de�ne three di�erent types of responses to the treatments (cn).
We divide the subjects into three subpopulations, and we associate one type of response to each
subpopulation. The subpopulations were de�ned so that the boundaries between them are non-
linear. The distribution of subjects and their true cluster memberships can be seen in Fig. 3. The
response of a subject Yk,t as a function of its subpopulation k and treatment group t was de�ned in
the following way:

Y1,1 ∼ 1 + ε ; Y1,2 ∼ 0 + ε ; Y2,1 ∼ 0 + ε ; Y2,2 ∼ 0 + ε ; Y3,1 ∼ 0 + ε ; Y3,2 ∼ 1 + ε (24)

where ε comes from a Normal distribution with mean 0 and standard deviation 0.5.
We apply our approach1 on the simulated data to discover the HTE and to identify the subpopula-

tions that respond to the intervention in a di�erent way. We do not dismiss the possibility that there
could be more complex non-linear decision boundaries between the subpopulations, so we include
polynomial terms in the model up to degree P . We treat P as a hyper-parameter, besides the number
of clusters K . In our approach, we set less informative prior on the model parameters (λα = 0.1,
λβ = 0.1, ν0 = {4}, Σ0 = Cov (Y ) /ν0). We built 20 di�erent models, using di�erent combinations of
P ∈ {1, 2, 3, 4, 5} and K ∈ {1, 2, 3, 4}. We applied each model on independent validation dataset with
10,000 subjects. The average log likelihood on the validation dataset is given in Table 1. The model
with the highest generalization power is the model with K = 3 and P = 2. We observe that the
model correctly identi�ed the true number of subpopulations. In Fig. 3 we visualize the most likely
cluster membership for di�erent points in the pre-intervention variable space. We observe that
the decision boundaries correctly discriminate between members of di�erent true subpopulations.
We also compared the discovered decision boundaries with the true decision boundaries, and
we observed that they are consistent. The results from the experiments suggest that our model
is able to capture the true HTE and to identify the subpopulations with di�erential HTE, even

1our own Matlab implementation
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Table 1. Average log likelihood on the validation dataset for di�erent number of clusters K and di�erent
number of polynomial terms P . We choose the model with the highest log likelihood, indicated in bold.

P = 1 P = 2 P = 3 P = 4 P = 5

K = 1 -1.0462 -1.0462 -1.0462 -1.0462 -1.0462
K = 2 -0.8913 -0.8827 -0.8772 -0.8731 -0.8728
K = 3 -0.8158 -0.7872 -0.7885 -0.7896 -0.8004
K = 4 -0.7924 -0.7937 -0.7978 -0.8071 -0.8110

if they are separated with complex non-linear boundaries in the preintervention variable space.
The root-mean-square error (RMSE) obtained by IBC is 0.5364 and is very close to the standard
deviation of ε (0.5). This means that our model is able to identify the treatment e�ect associated to
the subpopulations. We should note that the prediction error is lower than the error obtained by
linear regression model2 (0.719198).

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

X1

-3

-2

-1

0

1

2

X
2

Cluster 1 Cluster 2 Cluster 3

Fig. 3. Distribution of the data points in the first experiment. The color and the symbol associated to each
patient indicate its true cluster membership. The background color and the decision borders indicate the
most likely prior cluster membership generated by our model.

4.2 Comparison with tree-based methods
In the second experiment, we compare our method with the tree-based method QUINT[10, 11]. We
chose this method for comparison, because its recovery performance is generally better than that of
STIMA and as good as Interaction Trees for true models comparable in complexity and size of the
interaction e�ect [11]. For the purpose of our experiment, we de�ned �ve simulated datasets, each
involving two continuous pre-intervention variables X1 and X2 and one continuous response Y
(see Fig. 4). Each subject in the datasets has equal chances to receive one of two treatments (control
and intervention group). In these datasets, we de�ned linear decision boundaries to separate the
subpopulations, in contrast to the previously used dataset. This was done in order to accommodate
the QUINT model that cannot handle non-linear decision boundaries. We applied our approach
and QUINT3 on the simulated datasets, and we compared the results. For our approach, we set less
informative prior on the model parameters (λα = 0.1, λβ = 0.1, ν0 ∈ {5, 10}, Σ0 = Cov (Y ) /ν0) and
we run cross-validation to �nd the optimal number of clusters (K ∈ {1, 2, 3, 4, 5}).
2polynomial regression with regularization
3R package quint with default parameters
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Fig. 4. The true subpopulations and the subpopulations discovered by our approach and QUINT in five
di�erent simulated datasets. The true ground truth model is shown on the le�, and the results of our
approach and QUNIT are shown in the middle and in the right, correspondingly. The background color
corresponds to the regions discovered by our method and QUINT, and the color associated to each subject
corresponds to its true subpopulation membership.
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In the �rst simulated dataset, we generated 1,000 subjects. Each subject was assigned to one
of three subpopulations by sampling from a categorical distribution that is a function of X1 and
X2. We de�ned this function so that there was high uncertainty in the process of sampling the
subpopulation assignments, as shown in Fig. 4a. The darker color means higher certainty that a
subject belonging to that region will belong to the subpopulation associated to that color. ATEs
in the �rst, the second, and the third subpopulation were 0, -1 and 1, respectively. Our method
recognized the true subpopulations in this dataset and assigned soft cluster memberships that
could further be used to identify the most prominent responders. However, QUINT produced some
heterogeneous subpopulations. This means that its members did not generally belong to one true
subpopulation. As a consequence, the prediction error produced by QUINT was higher than IBC
(Table. 2).

In the second simulated dataset, we generated 1000 subjects belonging to two subpopulations
so that the ATEs in the �rst and the second subpopulation were -1 and 1, respectively. In this
setting, the subpopulation membership was fully determined by the additive impact of X1 and X2,
and as a result, the subpopulations were separated by a straight line under the 45 degree angle
(Fig. 4b). Our approach was accurate to identify the true subpopulations, but QUINT identi�ed
only half of the true positive and negative responders (lower left and higher right region). The
other subpopulations were a mixture of true positive and true negative responders. As a result,
the overall response in these subpopulations was neutral. This wrong estimate is used to predict
the response for new subjects belonging to these regions and as a result, the RMSE for QUINT is
much higher than the RMSE for IBC (Table. 2). We should note that increasing the size of the data
should enable QUINT to produce smaller homogeneous regions. This in general holds true if the
decision boundaries are more complex. In this case, each true subpopulation is distributed in a
larger number of leaves.

In the third simulated dataset, we generated 1,000 subjects coming from two equally sized
subpopulations. In this setting, the response of the subjects in each subpopulation was de�ned to
be a linear function of X1 and X2, not just a constant, as shown in Fig. 4c. QUINT does not have the
ability to identify responses that are more complex functions of xn , unless there is a large amount
of data. In this case, QUINT decomposes the complex function into a union of simpler constant
functions, each associated to one leaf. In this dataset, QUINT identi�ed �ve subpopulations that
di�ered in the direction and magnitude of the ATE. We should emphasize that the subjects from
the intervention group respond in opposite (symmetric) ways in the lower and the upper half of
the space. What is surprising is that the discovered regions in the lower and the upper half of the
space are not symmetric. This means that QUINT does not produce stable results even though the
sample size is relatively large. In contrast, our model correctly identi�ed the true subpopulations,
as expected. However, the prediction errors were similar for both models and very close to the
lowest possible RMSE (Table. 2).

In the fourth simulated dataset, we generated 1,000 subjects in a similar way as in the �rst dataset,
except that we removed the uncertainty in the cluster membership. This means that a given xn
belongs to exactly one subpopulation uniquely determined by xn . Our approach selected a model
with three subpopulations that corresponded to the true subpopulations, as it can be seen in Fig.
4d. QUINT produced 4 instead of 3 subpopulations. The reason behind this is that the method is
greedy and does not consider splitting on X1 in the root node (any initial split on X1 produces two
sets of subjects with equal average treatment responses). However, all the subpopulations were
homogeneous, i.e., their members belonged mostly to one true subpopulation. This resulted with
low RMSE, even lower than the RMSE produced by our method (Table. 2). We explain this by the
fact that the decision boundaries discovered by IBC are not straight lines parallel to the axis. To
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Table 2. RMSE produced by IBC, QUINT and linear regression on five synthetic datasets. The best performer
on each dataset is indicated in bold.

IBC QUINT LinReg

Dataset 1 0.591910 0.632236 0.661348
Dataset 2 0.524258 0.613043 0.845543
Dataset 3 0.531897 0.538983 0.693013
Dataset 4 0.564238 0.542187 0.763315
Dataset 5 0.585064 0.613337 0.831486

perfectly reconstruct the true subpopulations, some of the model parameters need to have very
extreme values. This is not likely to happen in our experiment because of the prior we imposed on
the model parameters.

The �fth simulated dataset had the same underlying model as the fourth dataset but contained
smaller number of subjects (100). Our approach was robust enough to recognize the three true
subpopulations. QUINT also produced three subpopulations, but not all of them were homogeneous.
This is because QUINT did not have enough data to di�erentiate between di�erent types of
responses.

We conclude that IBC is better than QUINT in reconstructing the true subpopulations with
di�erential treatment e�ect and produces smaller prediction errors. We also applied linear regression
model on the �ve datasets, and its predictions were worse than both IBC and QUINT. This indicates
that heterogeneity in the treatment e�ect should not be neglected in the prediction task. It is
interesting that if we just estimated the overall average responses for each treatment group and
compared them, there would be no di�erence between the groups. So we might wrongly conclude
that the intervention is not e�ective. However, when we apply the IBC approach we can identify
the correct subpopulations with di�erential treatment e�ect.

5 EVALUATION ON ACUPUNCTURE DATA
5.1 Dataset
We evaluated our algorithm on a randomized trial data where patients were randomly allocated
to receive up to 12 acupuncture treatments over 3 months, in addition to standard care, or to a
control intervention o�ering usual care [32, 33]. Headache score, SF-36 health status [35], and
use of medication were assessed at baseline and at 3 and 12 months. The analysis of this dataset
showed that acupuncture leads to persisting, clinically relevant bene�ts for primary care patients
with chronic headache, particularly migraine [33]. We applied our method on the acupuncture data
to discover homogeneous subpopulations who were a�ected by the intervention in similar ways.

We chose two output measures in our analysis: energy and emotional well-being. Higher scores
indicate a better condition. These scores are estimated as a weighted sum of a particular subset of
questions in the SF-36 questionnaire [35]. This questionnaire is a 36-item, patient-reported survey
of patient health. Patients �lled in the questionnaire before and after the intervention. We are
interested in the long-term e�ect of the intervention, so the di�erences between the energy and
emotional well-being, assessed at 0 months and 12 months, are the outcome variables in our model.
In the original analysis, the di�erence between the control and the intervention group reached
signi�cance for energy but not for emotional well-being. Baseline energy, baseline emotional
well-being, and age were included as pre-intervention variables in our model. There were 262
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Fig. 5. Boxplot of the log likelihood on the validation dataset for di�erent number of clusters K ∈ {1, 2, 3}.
For each K , we repeated all cross-validations 10 times. We show the boxplot of the log likelihood on the
validation dataset for the model with the optimal remaining hyper-parameters. The model with two clusters
is suggested (statistically significant result with p-value < 0.00001).

participants in the trial. They gave full responses on the SF-36 and were split into 121 for control
and 141 for the intervention group, respectively.

5.2 Model
Since our model involves hyper-parameters, we need to perform model selection. We use grid
search for this purpose. We use 10-fold cross-validation to estimate the generalization performance.
Before we build each model, we standardize the pre-intervention and the outcome variables in
the training dataset. In the model building process, we run 100 random restarts and choose the
model parameters that maximize the likelihood function. To reduce the search space, we decided to
de�ne Σ0 to be a function of ν0 so that Σ0 = Cov (Y ) /ν0. This is how we ensure that the expected
value of a Wishart random matrix is equal to the covariance matrix of the outcome variable. We
choose four di�erent values for each λα , λβ and ν0, i.e. λα ∈ {0, 0.1, 1, 10}, λβ ∈ {0, 0.1, 1, 10} and
ν0 ∈ {4, 8, 12, 16}. We varied the number of clusters K from 1 to 3. We repeated all cross-validations
10 times, each time with di�erent random partitions in order to obtain higher relevance of the
results. Our model selection procedure suggests a model with two clusters. This can be seen in
Fig. 5. The log likelihood on the validation dataset for K = 2 is signi�cantly higher than the log
likelihood on the validation dataset for K = 1 or K = 3.

After we select the optimal model, for each patient we could estimate the prior or the posterior
odds for cluster membership. We use only pre-intervention variables to estimate the prior odds
and all variables to estimate the posterior odds. We are interested in the �rst case, because our goal
is to predict the future behavior of the patient by only using the pre-intervention data. If we know
that the patient is likely to belong to a cluster of people who respond to the intervention, then it
is more likely that we recommend the intervention to him or her. The most likely prior cluster
membership for a given baseline energy and baseline emotional well-being, with age �xed to zero,
is shown in Fig. 6. In the �gure we can also see the prior cluster memberships for all the patients.
Although we also use age information to determine the prior cluster membership for the patients,
the clustering is not much di�erent than the case when we set patient’s age to zero. This indicates
that age does not play a signi�cant role in determining the prior odds for cluster membership,
as can be seen in Table 3. On the other hand, emotional well-being (EW) is the most important
variable in determining the prior odds for cluster membership, because, for each increase of EW
by one unit (standard deviation), the odds of belonging to the �rst cluster increase by 0.52. The
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Fig. 6. The most likely prior cluster membership in the pre-intervention variable space (age is fixed to zero)
and the most likely prior cluster membership for all patients.

Table 3. Estimated model parameters.

Feature α1 β1, :
1,1 β1, :

1,2 β1, :
2,1 β1, :

2,2 β2, :
1,1 β2, :

1,2 β2, :
2,1 β2, :

2,2

intercept 0.12 -0.03 0.79 -0.38 -0.35 0.05 0.54 0.00 -0.45
age -0.05 -0.32 0.00 0.21 0.04 -0.29 0.15 0.44 0.20
energy 0.20 -0.13 -0.76 -0.70 -0.22 0.51 0.16 -0.24 0.03
EW 0.52 -0.23 -0.25 0.00 0.02 -1.08 -0.85 -0.05 -0.55

average prior odds for the most likely cluster are not very high (0.625), suggesting that there are
other unobserved variables that might improve the prediction of the treatment e�ect. The �rst
cluster consists of healthier people, having better emotional well-being and higher energy than
the people in the second cluster. There are 161 people in the �rst cluster (78 in the control and 83
in the intervention group), and 101 people in the second cluster (43 in the control and 58 in the
intervention group).

In the rest of this section, we analyze how people from di�erent clusters change their energy and
EW after the intervention. In Fig. 7 we see the mean relative change of energy and EW after the
randomization for each cluster. The relative change at 12 months after the randomization represents
the long-term Average Treatment E�ect (ATE). Although we do not use the measurements of energy
and EW 3 months after the randomization, we show them in the �gure to better observe people’s
behavior in the post-intervention period. People from the intervention group in the �rst cluster
increased their energy signi�cantly more than the people from the control group (p-value < 0.01).
However, there was no change in emotional well-being for both groups in the �rst cluster. Also,
there were no signi�cant di�erences between the outcomes for both groups in the second cluster.
It is interesting that these people improved both their energy and their emotional well-being
regardless of whether there were or they were not under intervention.

We can use the obtained results to generate recommendations for better health (improved energy
and/or EW). If people already have higher energy and EW (they belong to the �rst cluster), then
acupuncture treatment in addition to standard care is recommended for them. We expect that
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Fig. 7. Mean relative change of energy and emotional well-being in each cluster a�er the randomization.
Each individual was assigned in the most likely cluster according to the prior odds for cluster membership.

this would result in higher energy but no change of EW. If people have low energy and EW (they
belong to the second cluster), then recommend them only standard care. We expect that this would
result in higher energy and higher EW. Giving acupuncture to these people in addition to standard
care would not make a signi�cant di�erence and would be more costly. The recommendation
strategy that is based on our model is more cost-e�ective than the strategy that gives both standard
treatment and acupuncture to everyone. However, we must emphasize that acupuncture is not a
good intervention, because it does not treat the people who need it more, i.e., those having low
energy and low EW.

5.3 Comparisons
In this section, we analyze the performance of our model and compare it with existing methods.
We will perform a standard cross-validation on the acupuncture dataset, and we will use the log
likelihood and the root mean squared error (RMSE) on the held-out data, as our performance
measures.

In the �rst analysis, we compare three versions of our model: IBC-SIMPLE, IBC-COMPLEX,
and IBC-FULL. IBC-SIMPLE is a constrained version of our model where we set Σk,1=Σk,2 and
β i, jk,1 = β

i, j
k,2 for all i and j > 1 (the superscript denotes the position of the element in the matrix).

IBC-COMPLEX is another constrained version of our model where set just Σk,1=Σk,2. IBC-FULL is
the unconstrained version of the model. We decided to use constrained versions of our model in
the analysis, because they have smaller number of parameters and might generalize better on a
small dataset like ours. After we trained the three versions of the IBC model, we observed that
IBC-FULL performs the best and produces the highest log likelihood on the held-out data (Fig.
8). This demonstrates that although the unconstrained version of IBC has the highest degrees of
freedom, the priors on the model parameters enable it to generalize well on small datasets.

In the second analysis, we compare our method with other existing methods. In this case, we use
RMSE on the held-out data as our performance measure. The simplest model we use for comparison
is the one where a new user predicts that his or her response would be equal to the average response
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Fig. 8. Average log likelihood on the validation dataset produced by three versions of IBC which di�er in their
power to represent the impact of the intervention (from le� to right, lowest to highest). The unconstrained
model IBC-FULL has the best performance on the validation dataset (p-value < 0.01).

Table 4. RMSE on the validation dataset for nine di�erent models. Our model produces the smallest RMSE.

Model energy EW

BASELINE-mean-treatment 0.9930 1.0030
BASELINE-lin-reg 0.9337 0.9293
QUINT 0.9803 1.0021
GMM-SIMPLE-2-outputs 1.0182 0.9361
GMM-COMPLEX-2-outputs 1.0085 0.9544
GMM-SIMPLE-1-output 0.9576 0.9525
GMM-COMPLEX-1-output 0.9609 0.9525
IBC-SIMPLE 0.9318 0.9069
IBC-COMPLEX 0.9318 0.9325
IBC-FULL 0.9265 0.9060

in the treatment group he or she belongs in (BASELINE-mean-treatment). A second baseline is
linear regression. We should note that a linear regression can be considered as a constrained version
of IBC withK = 1 and uninformative priors. Another model we compare with is QUINT. This model
was separately applied on both responses, energy and EW, with di�erent critical minimum values
[10] and the best model was chosen in each case. The last model we compare with is GMM4. We
de�ned two variants of GMM, GMM-COMPLEX and GMM-SIMPLE according to whether we allow
the intervention indicator to interact with the pre-intervention variables or not. These models were
separately applied on both responses, energy and EW, and we used random restarts to escape local
maxima (GMM-SIMPLE-1-output and GMM-COMPLEX-1-output). The implementation of GMM
that we used allowed modeling multivariate outcomes through a link function, so we additionally
de�ned two more variants of GMM that use a linear link function to model both outcomes in the
same time (GMM-SIMPLE-2-outputs and GMM-COMPLEX-2-outputs). We applied all these models
4R package lcmm with default parameters
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on the acupuncture dataset, and we compared their RMSE with the RMSE produced by our model.
In Table 4 we can see that IBC-FULL produces the smallest RMSE on the held-out dataset. Linear
regression also performs well on this dataset, in contrast to the other synthetic datasets on which
it performed poorly. This might be because this dataset is of much smaller size, so simple methods
still generalize well. QUINT performed very poorly and its RMSE was very close to the RMSE of
our simplest baseline method.

6 RELATIONSHIP BETWEEN THE SAMPLE SIZE AND THE QUALITY OF THE
RESULTS

The acupuncture dataset is small, so our method might not have enough information to approximate
the true underlying model that generated the data. In this section, we will try to get more insight
in the amount of data needed to reconstruct the true underlying model with our method under
the assumption that the true underlying model is the optimal model that we obtained from the
acupuncture dataset. For the purpose of our analysis, we generated 10 synthetic datasets simulating
a RCT with 100 to 1,000 subjects based on this model. The pre-intervention data were sampled
according to the distribution of the pre-intervention variables in the original dataset. Also, each
subject was randomly assigned to one of two treatment groups. The outcome data were generated
using the model that we trained on the original acupuncture dataset whose parameters are given
in Table 3.

We performed an experiment to test how well the model training procedure can learn the true
model parameters for di�erent data sample sizes. This is shown in Fig. 9. We generated a large
independent dataset with 10,000 subjects to evaluate the models trained on the smaller synthetic
datasets. If the learned model parameters are correct, then they would result in the maximal average
log likelihood on the test data (dashed green line). We can see that the log likelihood converges
and becomes relatively stable at the point when the sample size is 300 or more. This means that
300 subjects would be enough to have a good approximation of the true underlying model, under
the assumption that our model is powerful enough to describe the true data generating process.
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Fig. 9. Average log likelihood on a large independent test dataset obtained using models trained on data
from 100 to 1,000 subjects. The dashed green line shows the optimal log likelihood obtained with the true
model used to generate the data. If the trained model approximates well the true underlying model, then the
average log likelihood associated to this model should be close to the optimal log likelihood. Sample size of
300 or more is required to obtain a good approximation of the true underlying model.
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Otherwise, the results are no longer valid. For example, if there was a non-linear relationship
between the pre-intervention and the outcome variables, then a linear model would not be able
to discover the true model. In this case, we should have used polynomial features to increase
the modeling power. We need to take into account that capturing more complex models with
nonlinear decision borders, nonlinear responses, or larger numbers of clusters requires more data.
For example, if we de�ned our true underlying model simulating the acupuncture dataset to consist
of more than two clusters, then we would need more than 300 subjects to discover these clusters. It
is likely that the acupuncture dataset we worked with is not large enough for us to discover more
than two clusters if they were present.

7 CONCLUSION
The best treatment for the general population is not likely to be equally e�ective for each individual.
Personalized medicine aims to provide treatments that are tailored to the individual, taking into
account his or her characteristics and the characteristics of his or her environment. For this pur-
pose, it is important to classify individuals into subpopulations who respond similarly to the same
intervention. Identifying subpopulations with di�erential treatment e�ects is a methodologically
challenging task, especially when many characteristics may interact with treatment and no compre-
hensive a priori hypotheses on relevant subgroups are available [10]. The most popular approaches
for this purpose are based on trees, since trees provide features that are easily to interpret. However,
many limitations remain, as we have analyzed in the related section. We propose a Bayesian
mixture model that combines four useful features to overcome the disadvantages of the tree-based
approaches: It generates soft cluster memberships for each subject, supports more complex decision
boundaries, handles multivariate outcomes, and utilizes the strength of the Bayesian approaches to
model better subpopulations with small sample sizes. Our method has two disadvantages: It does
not guarantee that it can identify the optimal partition, and it has higher computational cost than
tree-based methods.

We applied our method on both simulated and real data and compared it with existing methods.
Our model was able to capture the true HTE present in the simulated data, while QUINT, the tree-
based method we were comparing with, had di�culties when there was uncertainty in the cluster
membership (unobserved factors a�ecting the cluster membership), when the subpopulations were
separated with decision boundaries at an angle, and when the response was a complex function of
the pre-intervention covariates. We also demonstrated that if we look just at the overall treatment
e�ect, then we might wrongly conclude that the intervention is not e�ective. However, when our
method is applied on the data, it reveals subpopulations who respond di�erently than the overall
response (if they exist). We also evaluated our algorithm on a real-world randomized trial data.
We were able to discover two distinct clusters of people. The intervention was e�ective in one of
the clusters, suggesting that acupuncture signi�cantly increases the energy levels of the people
with high emotional well-being. We compared our method with QUINT and GMM, a mixture
model that is mostly used to model longitudinal study data. Our method was able to predict the
long-term treatment e�ect in the acupuncture dataset more accurately than the baseline methods.
From our experiments and the qualitative and quantitative analysis of the results, we can conclude
that in comparison with the existing clustering methods (QUINT and GMM), our method produces
more stable clusters (is more robust), reconstructs the true subpopulations better, and has higher
predictive power. In summary, the Bayesian approach to intervention-based clustering proposed in
this article provides a better insight into the way di�erent people respond to the same intervention.
This insight allows personalized medicine to provide more suitable tailored treatments. In the
future, we plan to extend our method to time series and multiple interventions.
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