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Abstract
The first Petascale supercomputer, the IBM Roadrunner, went online in 2008. Ten years
later, the community is now looking ahead to a new generation of Exascale machines.
During the decade that has passed, several hundred Petascale capable machines
have been installed worldwide, yet despite the abundance of machines, applications
that scale to their full size remain rare. Large clusters now routinely have 50.000+
cores, some have several million. This extreme level of parallelism, that has allowed a
theoretical compute capacity in excess of a million billion operations per second, turns
out to be difficult to use in many applications of practical interest. Processors often
end up spending more time waiting for synchronization, communication, and other
coordinating operations to complete, rather than actually computing. Component
reliability is another challenge facing HPC developers. If even a single processor
fails, among many thousands, the user is forced to restart traditional applications,
wasting valuable compute time. These issues collectively manifest themselves as low
parallel efficiency, resulting in waste of energy and computational resources. Future
performance improvements are expected to continue to come in large part due to
increased parallelism. One may therefore speculate that the difficulties currently faced,
when scaling applications to Petascale machines, will progressively worsen, making it
difficult for scientists to harness the full potential of Exascale computing.

The thesis comprises two parts. Each part consists of several chapters discussing
modifications of numerical algorithms to make them better suited for future Exascale
machines. In the first part, the use of Parareal for Parallel-in-Time integration tech-
niques for scalable numerical solution of partial differential equations is considered.
We propose a new adaptive scheduler that optimize the parallel efficiency by minimiz-
ing the time-subdomain length without making communication of time-subdomains
too costly. In conjunction with an appropriate preconditioner, we demonstrate that it is
possible to obtain time-parallel speedup on the nonlinear shallow water equation, be-
yond what is possible using conventional spatial domain-decomposition techniques
alone. The part is concluded with the proposal of a new method for constructing
Parallel-in-Time integration schemes better suited for convection dominated prob-
lems.

In the second part, new ways of mitigating the impact of hardware failures are devel-
oped and presented. The topic is introduced with the creation of a new fault-tolerant
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Abstract

variant of Parareal. In the chapter that follows, a C++ Library for multi-level check-
pointing is presented. The library uses lightweight in-memory checkpoints, protected
trough the use of erasure codes, to mitigate the impact of failures by decreasing the
overhead of checkpointing and minimizing the compute work lost. Erasure codes have
the unfortunate property that if more data blocks are lost than parity codes created,
the data is effectively considered unrecoverable. The final chapter contains a prelim-
inary study on partial information recovery for incomplete checksums. Under the
assumption that some meta knowledge exists on the structure of the data encoded, we
show that the data lost may be recovered, at least partially. This result is of interest not
only in HPC but also in data centers where erasure codes are widely used to protect
data efficiently.

Keywords – Exascale; Petascale; High-performance Computing; Parallel Computing;
Parallel-in-time; Parareal; Hyperbolic PDEs; Shallow Water Equations; Resilience;
Fault-tolerance
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Zusammenfassung
Der erste Petascale Supercomputer, der IBM Roadrunner, ging 2008 ans Netz. Zehn
Jahre später richtet sich der Blick der Gemeinschaft auf eine neue Generation von
Exascale Maschinen. Im vergangenen Jahrzehnt wurden mehrere Hundert Petascale
fähige Maschinen weltweit installiert. Trotz der Fülle Maschinen sind Anwendungen,
welche das Potential vollumfänglich nutzen, weiterhin selten. Grosse Cluster haben
heutzutage routinemässig 50’000+ Kerne, einige haben sogar mehrere Millionen. Das
extreme Level der Parallelisierung, das theoretisch Rechenkapazitäten von über ei-
ner Million Milliarden Operationen pro Sekunde erlaubt, ist häufig zu schwierig zu
implementieren, um für praktische Anwendungen von Nutzen zu sein. Prozessoren
verwenden häufig mehr Zeit für das Abwarten der Synchronisation, Kommunikation
und weiterer koordinativer Operationen, anstatt eigentliche Berechnungen durch-
zuführen. Die Verlässlichkeit der Komponenten stellt eine weitere Herausforderung
für HPC Entwickler dar. Wenn nur ein einzelner Prozessor unter Tausenden einen
Fehler begeht, muss der Benutzer die Applikation neu starten und verliert wertvolle
Rechenzeit. Diese Schwierigkeiten manifestieren sich in einer niedrigen parallelen
Effizienz, was zur Verschwendung von wertvoller Energie und Rechenzeit führt.

Diese Thesis ist zweiteilig. Jeder Teil besteht aus mehreren Kapiteln über die Modi-
fikation von numerischen Algorithmen, um sie besser an die zukünftigen Exascale
Maschinen anzupassen. Im ersten Teil wird die Benutzung von Parareal zu Parallel-in-
Time Integration Techniken für das Lösen von skalierbaren, numerischen Lösungen
von partiellen Differentialgleichungen betrachtet. Wir schlagen einen neuen adaptiven
Scheduler vor, welcher die parallele Effizienz durch das Minimieren der Zeit Subdo-
main Länge optimiert, ohne die Kommunikation der Zeit Subdomains zu aufwendig zu
gestalten. Wir zeigen, dass in Verbindung mit einem passenden Preconditioner mög-
lich ist, time-parallel Speedup für die nonlineare Flachwassergleichung zu erreichen,
welcher mit konventionellen spatial-decomposition Techniken nicht erreicht werden
ann. Der Teil wird durch das Vorschlagen einer neuen Methode für das Konstruieren
von Parallel-in-Time Integration Schemen abgerundet, welche besser für Konvektion
dominierte Probleme geeignet ist.

Im zweiten Teil werden Techniken zum Reduzieren der Schäden von Hardwareaus-
fällen entwickelt und präsentiert. Das Thema wird durch das Erstellen einer neuen
ausfallresistenten Variante von Pareal begonnen. Im folgenden Kapitel wird eine C++
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Zusammenfassung

Bibliothek für multi-level Checkpoints präsentiert. Die Bibliothek verwendet leichte
in-memory Checkpoints, welche, um die Folgen von Ausfällen zu reduzieren, durch
Erasure Codes geschützt sind. Dies reduziert den Verlust an Rechenarbeit im Falle
eines Ausfalles und die Overheadkosten durch Checkpointing. Wenn mehr Daten
Blöcke verloren gehen, als Parity Codes erstellt wurden, haben Erasure Codes die Ei-
genschaft, dass die Daten als nicht wiederherstellbar angesehen werden. Das finale
Kapitel beinhaltet eine vorläufige Studie über partielle Informationswiederherstellung
für unvollständige Checksummen. Unter der Annahme, dass gewisses Metawissen
über die Datenstruktur vorhanden ist, zeigen wir, dass die verlorenen Daten zumin-
dest teilweise wiederhergestellt werden können. Dies könnte sich nicht nur für HPC
als nützlich erweisen, sondern auch für Datencentren, welche häufig Eraser Codes
verwenden um Daten zu schützen.

Keywords – Exascale; Petascale; Hochleistungsrechnen; Parallele Berechnung; Parallel-
in-Zeit; Parareal; Hyperbolische PDEs; Flachwassergleichung; Fehlertoleranz
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Résumé
L’IBM Roadrunner, le premier superordinateur de Petascale, a été mis en ligne en 2008.
Dix ans plus tard, la communauté s’attend à une nouvelle génération de machines
Exascale. Au cours de la décennie écoulée, des centaines de machines Petascale ont été
installées dans le monde entier. Malgré l’abondance de ces machines, les applications
qui s’adaptent à leur capacité maximale sont rares. De nos jours, les grandes clusters
ont plus de 50 000 cœurs, même certaines en ont plusieurs millions. Le niveau extrême
de parallelism qui permet une capacité de calcul théorique supérieure à un million de
milliards d’opérations par seconde, se révèle difficile à utiliser dans de nombreuses
applications d’intérêt. Souvent, les processeurs passent plus de temps à attendre que
des processus comme la synchronisation, la communication et d’autres opérations
de coordination se terminent, plutôt que de calculer. La fiabilité du composant est un
autre défi auquel sont confrontés les développeurs HPC. Même si un seul processeur
tombe en panne parmis plusieurs milliers, l’utilisateur est obligé de redémarrer l’appli-
cation. L’amélioration des performances futures devrait continuer à se produire, en
grande partie grâce au parallélisme. Il est donc supposé que les difficultés rencontrées
actuellement lors de la mise à l’échelle des applications sur les machines Petascale se
détérioreront progressivement, rendant difficile pour les scientifiques d’exploiter tout
le potentiel de l’informatique Exascale.

Dans la première partie de cette thèse, nous considérons la solution numérique évo-
lutive des équations différentielles partielles, par l’utilisation de Parareal pour les
techniques d’intégration Parallel-in-Time. Nous proposons un nouveau programma-
teur adaptatif qui optimise l’efficacité du parallelism, en minimisant la longueur du
domaine de temps, sans rendre la communication des sous-domaines de temps trop
coûteuse. En conjonction avec un préconditionneur approprié, nous démontrons qu’il
est possible d’accélérer parallèlement l’équation des eaux peu profondes non linéaires,
en utilisant uniquement des techniques classiques de décomposition dans le domaine
spatial. Nous concluons cette première partie en proposant une nouvelle méthode de
construire des schémas d’intégration Parallel-in-Time.

Dans la seconde partie, de nouveaux moyens d’atténuer l’impact des défaillances du
hardware sont développés et présentés. Le sujet est introduit par la proposition d’une
nouvelle variante du fault-tolerant Parareal. Dans le chapitre qui suit, une bibliothèque
C ++ pour le pointage à plusieurs niveaux est présentée. La bibliothèque utilise des
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Résumé

points de contrôle légers en mémoire, protégés par l’implementation de codes d’ef-
facement. Celà, en diminuant le travail de calcul perdu en cas d’échec, ainsi que la
surcharge des points de contrôle. Effectivement, les codes d’éffacement considèrent
comme irrécupérables les données si, plus de blocs de données sont perdus que des
codes de parité sont créées. Le dernier chapitre contient une étude préliminaire sur
la récupération partielle des informations pour les sommes de contrôle incomplètes.
Nous montrons que les données perdues peuvent être au moins récupérées partiel-
lement. Celà pourrait potentiellement être de pertinence, non seulement dans HPC,
mais aussi dans les centres de données, où les codes d’effacement sont largement
utilisés pour protéger les données d’une manière efficace.

Keywords – Exascale ; Petascale ; Hochleistungsrechnen ; Parallele Berechnung ; Parallel-
in-Zeit ; Parareal ; Hyperbolische PDEs; Flachwassergleichung ; Fehlertoleranz
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7.8 Profiling the parallel-in-space WENO based Tsunami simulation when
solving the 1600x1600 cells test-case presented in Section 7.2.3. As the
number of cores increase, the cost of the halo-exchange between sub-
domains comes to dominate. Due to the small size of the test-case, the
code effectively stops scaling with 128 cores. The code was profiled on
the EPFL Bellatrix cluster. Each node in the cluster contains two 8-core
Intel Xeon E5-2660 CPUs and Inifiniband QDR 2:1 connectivity between
nodes. Using a single core on a single node, the computation takes
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7.9 Domain decomposition in space and time of the WENO based solver
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7.10 The standard fully distributed Parareal[9]. Each time-subdomain is
handled by a unique node-group, possibly parallel-in-space. Dark gray
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comes at the cost of more frequent communication of the solution-states
at time-subdomain interfaces. Drawn as if the tolerance was satisfied by
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7.11 Multiple consecutive executions of the standard fully distributed Parareal[9].
Each time-subdomain is handled by a unique node-group, possibly
parallel-in-space. Dark gray indicates that a node-group is computing
the preconditioner GΔT , light gray indicates that a node-group is com-
puting FΔT . Drawn for nt = 8, nc = 3. Shorter time-subdomains may
lead to faster convergence, but this comes at the cost of more frequent
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7.12 Schematic representation of a proposed Adaptive Parareal scheduler.
The scheduler lets multiple cycles of Parareal overlap during execution.
Drawn here for nt = 8, nc = 3. Dark gray indicates that a node-group
is computing the preconditioner GΔT , light gray indicates that a node-
group is computing FΔT . Black dots and arrows indicate sending and
receiving of time-subdomain interface solution state. Blue arrows in-
dicate a signal being sent to inform a node-group working on a time-
subdomain, that the next time-subdomain has become active. Each
node-group has a boolean flag that indicates if the next time-subdomain
is active or not. (a) β = 0 for a fully patient model in which node-groups
that finished a time-subdomain in a cycle will wait for a correction to be
made before receiving a new state to commence their work. (b) β = 1

for a fully impatient model in which node-groups that finished a time-
subdomain in a cycle will receive a new state to commence their work
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7.13 Error of Uk
n with respect to the analytic solution to (7.30) as a function of

t for parallel-in-time integration of (7.1) with time-steps and tolerance
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(d) Adaptive Parareal, nc = 5, β = 0.8. The black dashed line indicates
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iteration for which the convergence criteria was satisfied. . . . . . . . . 77
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7.15 Water surface at T = 60min starting with the initial condition described
in Section 7.2.3 at T = 0min as computed when using (a) Roe’s method
(b) WENO SSP-ERK (c) CAAP with tolerance ε = 10−4 on the norm of
the difference between two consecutive iterations. The coarse operator
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7.16 Cross section of the water height at y = 500km where two shocks meet,
see figure 7.15. The cell width is dx = 0.625km, so the above profile
is resolved with 24 cells. The error of the Parareal solution is largest
in magnitude around shocks. The time-to-solution using the fine and
the coarse solver on a single node, sequentially in time, is respectively
912s and 79s. For CAAP, using a single node in space on each of 16
simultaneously active time-subdomains, the time-to-solution is 205s,
199s, 242s and 361s respectively. It is somewhat surprising that for
the largest tolerance we do not measure the shortest time-to-solution.
Looking at the log files of the simulation, it appears that this is due to
less effective load balancing and that in some intervals convergence
happens in just 1 iteration, i.e. second correction, whilst in other time-
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in space respectively, with a 4th order compact finite difference scheme.
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ΔT u0, the true
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k . In figure (a),
correction is performed in Fourier space as outlined in section 8.1.1, in
figure (b) regular Parareal corrections are used. (c) shows the error at
t = 2.5 as measured with respect to the true solution. (d) shows the error
as measured with respect to the fine solution. All errors are measured in
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8.2 Convergence of the original Parareal method, and the modified variant,
when computing an approximation to the solution of (6.1) with κ = 10−3

and a = 1 to T = 10 on nt = 20 time-subdomains using a factor 6
coarsened space-time grid as GΔT . (a) show iterations at T = 10 of the
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infinity norm measured with respect to the true solution u(T = 10) and
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8.3 Convergence of the original Parareal method, and the modified variant,
when computing an approximation to the solution of (6.1) with κ = 10−5

and a = 1 to T = 10 on nt = 20 time-subdomains using a factor 6
coarsened space-time grid as GΔT . (a) show iterations at T = 10 of the
original method (b) shows iterations of the modified variant. (c) error in
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8.4 Iterative time-parallel solution of the advection equation, α = 1, solved
using the upwind scheme with CFL = 0.5 for F·T . The dissipative GΔT

was created by adding a diffusion term with κ = 5.0 · 103 to F·T . The
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to solve the test equation (8.32) as outlined in section 8.2.3. (a) Error
measured with respect to the true solution. (b) Error measured with
respect to the sequential solution. . . . . . . . . . . . . . . . . . . . . . 105

8.6 Convergence of two parallel-in-time integration methods when applied
to solve the advection-diffusion equation (6.1) as outlined in section
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8.2.3 with (a)-(b) smooth initial condition, and (c)-(d) discontinuous
initial condition. κ = 10−5, a = 1. Integration until T = 2.5 on nt = 50

time-subdomains. FΔT 201 points in space and GΔT 21 points in space.
(a)(c) Error measured with respect to the true solution. (b)(d) Error
measured with respect to the sequential fine solution. . . . . . . . . . . 108
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10.2 Schematic visualization of the recovery procedure of the Fault-Tolerant
algorithm with N = 6 time-subdomains and fault-free convergence
in kconv = 3 iterations. Failed node-groups injected at {idΔT , kerr} =

{3, 2} , {4, 2}. The north east line pattern indicates failed nodes that no
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10.3 Execution time in seconds for the unprotected algorithm, and for the
proposed fault-tolerant algorithm with one or multiple node-group
losses located at {idΔT , kerr}. (a) No errors. (b) {15, 1}. (c) {15, 3}. (d)
{4, 1} , {5, 2}. (e) {11, 2} , {12, 2} , {15, 3}. The number in parenthesis
indicates iterations to convergence. 16 ranks were used in space on 16
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10.4 A tree indicating all possible routes to successful execution as drawn for
a small problem with N = 4 time-subdomains and failure-free conver-
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PN,k
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for each iteration k on the right as computed using (10.2) and (10.3). The
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10.5 Probability of successful execution for the unprotected algorithm and
the Fault-Tolerant variant N = 16, r = 32, kconv = 2 and failure rate
μG
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unprotected algorithm that the Fault-Tolerant version may recover from. 135

10.6 Convergence rate when the solution procedure is subjected to silent-
data corruption (SDCs). The unmarked solid black line indicate the
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11.1 Dependency graph of the Llama header that must be included in appli-
cations using the library. The class declaration for the two checkpoint
types supported are written disk.h and memory.h. They both derive from
a pure virtual class checkpointinterface in the interface header. The inter-
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11.2 Scaling test, time to create Llama Guard as a function of the number
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11.3 Scaling test, time to attach a checkpoint-type to the Llama Guard as a
function of number of cores. The time increases slightly with an increas-
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slower to initialize. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
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on the EPFL Fidis general purpose cluster for 112 to 7168 cores. In the
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11.6 Strong scaling test on the cost of updating a checkpoint as measured
on the EPFL Fidis cluster. In the legend, G indicate group size and P
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11.7 Weak scaling test on the cost of recovering data from a checkpoint as
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11.8 Strong scaling test on the cost of recovering data from a checkpoint as
measured on the EPFL Fidis cluster. In the legend, G indicate group size
and P indicate number of parity code blocks per stripe. Each measure-
ment was made three times in order to illustrate the variance in timings
due to job-placement and network load when using a shared cluster. (a)
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blocks over a large group containing 32 nodes is up to an order of mag-
nitude faster than writing the data to protect to the parallel-file-system.
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12.1 Numerical experiment testing the method (12.9) for partial information
recovery in incomplete checksums. The data indicated by the black line
was stored in k = 100 separate containers. m = 15 checksum vectors
were created to protect the content of the containers. The klost = 20

first containers are removed, i.e. 33% more data vectors are lost than
checksum code vectors created. . . . . . . . . . . . . . . . . . . . . . . . 178

12.2 Numerical experiment testing the method (12.9) for partial information
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12.3 The original version of the 16 images used to demonstrate the method
outlined. Each image is 512x512 pixels, and stored in separate data con-
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13.6 Number of system and flop/s performance share of processors among
the systems recorded on the TOP500 list updated twice a year since
1993[209]. The list of CPU’s in table 13.1 was used to distinguish be-
tween commodity and non-commodity hardware. Note that the share of
systems, not relying only on commodity CPU’s, appears to be increasing. 193
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13.7 Number of system and flop/s performance share of processors among
the 50 most powerfull systems as recorded on the TOP500 list updated
twice a year since 1993[209]. The list of CPU’s in Table 13.1 was used to
distinguish between commodity and non-commodity hardware. Note
that machines using server/HPC specific CPUs and those using co-
processors, now has a combined 80% performance share among the 50
most powerful systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

A.1 "Fully distributed" Parareal. nt = 20, nc = 1, T = 100, ΔT = 5,
dT = 10−3, , dt = 10−5, TF = 5000ms, TG = 50ms, TC = 2ms. Blue
circles indicate a posted send of solution state and convergence flag.
Blue arrows indicate a completed receive of solution state and conver-
gence flag. Dark gray indicates GΔT Uk

n computation, light gray indicates
FΔT Uk

n. Measured speedup 3.19, parallel efficiency 15.9%. . . . . . . . 200

A.2 Multiple consecutive executions of the standard “fully distributed” Parareal.
nt = 20, nc = 6, T = 100, ΔT = 0.833̄, dT = 10−3, dt = 10−5, TF =

4167ms, TG = 42ms, TC = 2ms. Blue circles indicate a posted send of
solution state and convergence flag. Blue arrows indicate a completed
recieve of solution state and convergence flag. Dark gray computation
of GΔT Uk

n. Light gray, and light gray with lines, computation of FΔT Uk
n.

Measured speedup 6.04, parallel efficiency 30.2%. . . . . . . . . . . . . 201

A.3 Adaptive Parareal Scheduler. β = 0, nt = 20, nc = 6, T = 100, ΔT =

0.833̄, dT = 10−3, dt = 10−5, TF = 4167ms, TG = 42ms, TC = 2ms. Blue
circles indicate a posted send of solution state and convergence flag.
Blue arrows indicate a completed receive of solution state and conver-
gence flag. Green square and arrow indicates signal flag. Dark gray
computation of GΔT Uk

n. Light gray, and light gray with lines, computa-
tion of FΔT Uk

n. Measured speedup 7.73, parallel efficiency 37.4%. . . . 202

A.4 Adaptive Parareal Scheduler. β = 1, nt = 20, nc = 6, T = 100, ΔT =
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n. Measured speedup 7.73, parallel efficiency 38.6%.
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B.1 Error as a function of simulation time when using standard single-cycle
Parareal to integrate equation 7.30. In figures (a,c,e) error is measured
with respect to the sequential solution using FδT . In (b,d,e) error is
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B.6 Error as a function of simulation time when using Adaptive Parareal
with β = 0 to integrate equation 7.30. In figures (a,c,e) error is measured
with respect to the sequential solution using FδT . In (b,d,e) error is
measured with respect to the analytical solution. Integration to T =

100 is performed across Nc = 5 cycles, each cycle with Np = 10 time-
subdomains. Tolerance set to ε = 10−2. Time-step length in FδT is dt =
10−5. Timestep length in GδT is dT = 10−4 for figures (a,b). dT = 10−3 in
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B.7 Error as a function of simulation time when using Adaptive Parareal with
β = 0.8 to integrate equation 7.30. In figures (a,c,e) error is measured
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1 A Brief History of Computing

A modest modern day computer easily calculates at a rate of several billion arithmetic
operations per second. Computers have become an ubiquitous part of most aspects of
society and it is hard to imagine computational science without them. Computational
science may however be said to predate the modern day computer by centuries and
traces its roots to the early days of computing the movement of planets and comets by
hand.

In the late summer of 1695, the English astronomer Edmund Halley (1656–1742) was
working on validating statements made by Issac Newton (1642–1727) on the nature
of comets. At the time, calculus was a new invention that had been developed in
part to explain the motion of planets by physical laws rather than that of the actions
of superhuman beings. Newton had theorized that the movement of two objects
under the influence of a single universal force, gravity, are bound to follow certain
paths: Parabola, hyperbola or that of the cyclical ellipse[226]. At the time, comets
were thought of as mysterious visitors that appeared at irregular intervals, no obvious
explanation was known for their coming and going[142]. Newton had postulated that
comets might be celestial objects that came from distant points in the universe and
moved in a tight parabola around the sun before returning to the void from which they
came.

Astronomers, fortunate enough to observe a comet, would measure and record their
position against fixed stars as they moved across the sky. Halley had taken it upon
himself to investigate Newtons explanation by attempting to fit parabola curves to the
paths of previously recorded comets. Halley found that some comets did indeed appear
to follow a parabola curve around the sun. However, more importantly, he noticed
that three comets in the records appeared to follow the very same path across the sky.
One recorded in 1531, another in 1607 and finally one recorded by himself in 1682.
Halley decided to examine if an elliptical orbit would fit the path of the three earlier
observations, and this turned out to indeed be the case. Confidently he proclaimed,
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first to Newton and later to the whole astronomical community, that the three comets
observed must have been the same returning celestial object[151, 46]. The claim was
met with some skepticism from the community. His analysis suggested that the comet
should have a fixed period of return, yet the observations clearly showed that the return
did not occur at an exact period of 75 years. Halley suggested that the irregular period
was due to the influence of the gravitational pull of Saturn and Jupiter but to his dismay
even Newton was unable to find a simple computable expression that described the
motion of such a system.

The Sun, Jupiter, and Saturn form a three body system, each exerting an influence
upon the other two, a problem for which Newton’s calculus could not provide a simple
solution. Edmund Halley made a last prediction in a paper published after his death
in 1742. He estimated that the effect of Saturn and Jupiter would delay the arrival by
1-2 years thus predicting the return “about the end of the year 1758, or the beginning
of the next”[152]. In the years that followed, the anticipated return of Halley’s comet
came to be considered as a test of Newtons theory of gravitation. Despite the attention
the problem received from the public, for more than a decade nobody attempted
a complete treatment of the gravitational impact of Jupiter and Saturn to compute
an exact date of return[142]. This can perhaps be attributed to the large amount of
calculations needed or perhaps due to a realization that correctly solving the problem
would require new computational techniques, going beyond those Halley had used for
his estimates.

In fact only one attempt was made. A French mathematician by the name of Alex-
Claude Clairaut (1713–1765) had recently developed a computational approach for
handling the three body problem and was looking for a grand test-case to demonstrate
his method and propel him into fame. Clairaut’s method consisted of dividing the
movements of Saturn and Jupiter as they revolved around the sun into tiny steps of just
a degree or so. In each step he would first advance the planets by a small step in time
along the idealized path of the ellipse, which would be followed by the computation of
an adjustment to each of the ellipse, based on the gravitational pull between the two
planets and the sun. The calculations of the movement of the comet could be done
after the calculations for Saturn and Jupiter. Whereas the position of the two planets
would pertube the orbit of the comet, the effect of the gravitational pull of the comet
to the planets could safely be ignored[72, 307].

Clairaut’s approach allowed for treating the complex relationship between Saturn,
Jupiter and the sun, but in turn it required a monumental amount of calculations to
be made to compute the path of the comet for roughly 75 years forward in time since
its last observation in 1682. He began the computation during the early summer of
1757, along with two assistants, Joseph Jérôme Lefrançois de Lalande(1732–1807) and
Nicole-Reine Lepaute(1723–1788). The comet’s path could be computed indepen-
dently once the intertwined movements of Saturn and Jupiter was dealt with, and the
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three mathematicians therefore divided the computational work in such a way that de
Lalande and Lepaute would handle the first part of the computation, the three-body
problem, and Clairaut would use their results to compute the path of the comet as well
as checking for any errors. The latter was of great importance since any arithmetic
mistakes not caught could compound over time and render their predictions useless.
The problem of avoiding errors was at the time considered a great weakness of the
then new field of numerical techniques[142]. Critics of scientific research felt certain
that the inevitable introduction of small errors would render such methods much too
frail to capture the nature of the universe.

Despite the critics, the three toiled away with tedious calculations from morning
to evening for almost six months under the increasingly stressful knowledge, that
the comet may arrive before they’d finish their work. In November 1757, the three
announced their prediction that the comet would reach its perihelion on April 15th
1758. Clairaut was, however, cuatious in his prediction as he knew that small quantities
neglected in the approximations would compound over time. He therefore suggested
in his announcement that the comet may come as early as 30 days before or as late
as 30 days after the computed date[72]. Astronomers saw the first sign of the comet
January 1758 and the comet reached it’s perihelion on March 13th, just a few days
outside of the predicted window of arrival. As the news spread of the discrepancy
between the predicted arrival and the actual date, it sparked a vivid discussion amongst
astronomers if it was due to errors in the calculations, the approximation or if other
things were at play. Despite the apparent success, it did not appease the critics of
numerical techniques. The discussion continued for years and notable voices such
as Jean-Baptiste le Rond d’Alembert(1717–1783) were amongst those who decried the
“spirit of calculation”[307].

Today it is known that the effect of the, at the time unknown, planets Uranus and
Neptune were amongst the factors contributing to the discrepancy between the date
computed by Clairaut and his assistants and the actual date of arrival. The achieve-
ment, however, still stands as probably the first ever large scale parallel computation
to seek an approximate solution to a set of differential equations.

For the second anticipated return of Halley’s comet in 1835, there were several major
attempts to predict the time of the perihelion, all using similar technique to that of
Clairaut. Uranus had been discovered since the last passing and it’s effect could there-
fore be included in the computations. On average, the predictions for the 1835 arrival
were 16 days off the date of perihelion, half the error of Clairaut’s original prediction for
the 1758 return. For the 1910 return, interest in the comet had declined substantially
and only Andrew Claude de la Cherois Crommelin(1865 –1939) at the Royal Green-
wich Observatory made an attempt at predicting its arrival time. Crommelin’s novel
contribution was to discard the previous approach of successive corrections to ideal
elliptical paths and instead use the novel method of “mechanical quadratures”, now
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known as numerical integration[75]. With the help of the Greenwhich observatory
computing staff he predicted 17th April 1910 to be the date of return. The comet
reached perihelion on the 20th April, just two days and seventeen hours late of the
prediction.

At the time of the second and third anticipated return, no one doubted the validity
of Newtons theory of gravity nor did anyone doubt the usefulness of numerical tech-
niques. The return of the comets, and their predictions, therefore didn’t receive the
same attention from the public and the broader scientific community as that of the first
anticipated return. In the 152 years that had passed since the first anticipated return,
intricate calculations carried out by human computers had found many purposes and
was no longer a rare oddity. Large groups of human computers were employed to com-
pute celestial tables for the annually released nautical almanacs used for navigation at
sea, and many governments had dedicated bureaus, employing human computers to
compile statistical data for use in governance. Some large cooperations such as General
Electric even had a dedicated office of human computers, working to assists engineers
with solving problems that required a substantial amount of calculations[142]. The
arrival of commercially viable mechanical calculators in the mid to late 19th century
had further improved the efficiency and capabilities of the human computer but also
hinted at the beginning of a new era in computing[306]. By the early 20th century, the
human computer began to see competition on certain tasks in the form of electrome-
chanical tabulating machines. The machines were expensive to buy and operate, they
needed cumbersome punch cards, and a substantial amount of work was required
when machine operation needed to be modified[161]. Despite these shortcomings,
the machines turned out to be economically viable alternatives to human computers
for certain simple tasks such as accounting and tracking of inventory.

Human computers were likewise reaching their limits in terms of capacity. New prob-
lems began to arise in science and engineering that required calculations of a magni-
tude hardly feasibly with human computers. During the course of World War I, the
English physicist Lewis Fry Richardson(1881–1953) had developed a system of partial
differential equations to describe how the weather change over time, using just seven
basic atmosphere variables: air density, pressure, humidity, temperature and velocity
in 3 dimensions[199]. Richardson speculated that if one could solve the system of par-
tial differential equations trough numerical integration on a global longitude-latitude
grid, it would be possible to predict the weather based on first principles rather than on
extrapolation and statistics as was done at that time. Using 2000 points, he estimated
that one would need 64.000 human computers working in parallel to track the weather
in real time and more to do actual forecasts. It would be more than 30 years, from the
time Richardson first began his work on numerical weather forecasting, until it first
saw practical use. In the mean time, another problem had far greater priority amongst
decision makers: Calculation of ballistic trajectories.
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During the course of the first and second world war, a new problem had presented
itself to army generals. Developments in weapons technology in the late 19th and
early 20th century saw the introduction of new types of canons and artillery with a
range and use for which old methods of computing firing tables were insufficient. New
long range artillery could propel shells so high in the air, over such great distances,
that even changes in air density and the rotation of the earth had to be accounted
for to accurately predict the point of impact[134]. Accurate firing tables for the new
anti aircraft artillery turned out to be particularly difficult to create as old methods
completely failed for high-angle firing. Fuses on the projectiles had to be timed to
explode in the air in the vicinity of a target aircraft, so the complete trajectory of a given
shell was needed to create the appropriate tables and not just endpoints and time of
flight.

The problem could be modeled well by a differential equation accounting for the
various forces that acted on the shell. To find an approximate solution to the equations
trough calculations, the newly developed methods of numerical integration would find
use. While solving the problem was not nearly as complex and time consuming as the
three-body problem, first tackled by Clairaut and his assistants more than 150 years
earlier, it still took a trained human computer with a mechanical calculator one or two
full days of work to compute a single trajectory[134, 142]. The pressing issue was that
for each type of ammunition and each type of artillery, trajectories would have to be
calculated for many different conditions such as angle of elevation, crosswind effect,
motion of the barrel, and local firing conditions. The large parameter space made the
work of such magnitude that it was difficult for the army corps of human computers to
deliver in due time[136].

Artillery played a major role in the early days of industrial warfare. The majority of
combat deaths during the Napoleonic wars and both World Wars were due to artillary
bombardments[162]. In connection with the ongoing war effort of the United States
during World War II, cost effective and accurate use of artillery was deemed of great
importance and the funding environment for developing new computing machines to
aid the war effort had therefore become very generous.

There had been many early attempts at creating computing machines to do the work of
the human computer. Charles Babbage(1791–1871) is often credited with designing the
first Turing complete programmable computer, the Analytical Engine, though it was of
such mechanical complexity that it was never built. Babbage had earlier been working
on building his Difference Engine funded by the British government[150]. The machine
was supposed to make the calculation of astronomical tables for aid in navigation
more economical, but it too was of such complexity that he was unable to finish its
construction before the government grew impatient and abandoned the project.

The first major success for electro-mechanical computers came as part of the efforts

7



Chapter 1. A Brief History of Computing

during World War II. The US, UK, Germany and Japan all funded projects to build
large computing machines to tackle problems that were difficult or even impossible
for human computers to solve. In addition to computing ballistic trajectories, the
machines were to be used for other military applications also such as code breaking
and the design of nuclear weapons.

The most famous of early machine computers was the Electronic Numerical Integrator
and Computer (ENIAC) completed in 1945 at the University of Pennsylvania for the
Research and Development Command of the US Army Ordnance Corps. Unlike other
machines at the time, it wasn’t kept secret but put forward to the public on display to be
celebrated by the press as a gigantic brain. ENIAC could compute a complete ballistic
trajectory in just 30 seconds, a task that would otherwise take a human computer
20 hours. When construction had started in 1943, it was intended to be used mainly
for computing ballistic trajectories, but by the time it was completed and ready for
operation at the end of 1945, the war had ended and the calculation of trajectories
was no longer an urgent matter[149]. Its first task instead became to do calculations
for the design of thermonuclear weapons. Aside from the secret Colossus computers
build in the UK for cryptographic purposes, the impact of the new machines on the
war effort was very limited due to their late arrival. The government spending spree
did, however, have other positive benefits, in particular for the scientists who were
fortunate enough to use the machines that the army had paid to build and develop. In
1950, the ENIAC machine was used for the first crude numerical weather forecast as
envisioned by Richardson more than 30 years earlier whilst working as an ambulance
driver during World War I[281, 142].

Although the large new computing machines built during the late 1940s and 1950s
could theoretically deliver the computational capacity of several thousand humans,
they did not displace the use of human computers right away. The machines had
many problems of their own. They were expensive to buy, they typically relied on
vacuum tubes that consumed a large amount of electricity, and they would often break.
Maintenance and operation was cumbersome and difficult. Due to the limitations
of early day machine computers, the widespread use of human computers would
continue for another decade in tandem with the emerging machines. Up until the
beginning of the Mercury program, aiming to carry humans into space, NASA was still
relying on human computers for some mission critical calculations[138].

The invention of the semiconductor transistor, for which the Nobel prize in physics
was awarded in 1956, marked the beginning of a new age. Machines using integrated
circuits became commercially available in IBM computers in the mid 60s and Intel
released the world’s first microprocessor in 1971[197]. During the next several decades
the world would see an exponential increase in computational power that would come
to revolutionize not only computational science and engineering but society as a
whole.
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2 Frontiers of Computational Sci-
ence and Engineering

Modern day computational science has come a long way since the french astronomer
A.C. Clairaut, along with his two assistants J. Lalande and N.R. Lepaute, worked on
tedious calculations of formidable scale for almost six months to compute the orbit
of Halley’s comet and predict the time of its return[72]. If, at the time, A.C. Clairaut
and his two assistants had access to the computing machines available to modern day
scientists, solving the same problem would have taken less than a second.

Today, an off-the-shelf laptop will easily compute at a rate of 1010 floating point opera-
tions per second (flop/s) and the compute performance of a powerful workstation may
well be measured in teraflops (1012flop/s). The most powerful computing machines
available to modern day scientists are constructed by connecting thousands of high-
power computers in high-speed low-latency networks. The compute performance
of the most capable of these machines is now measured in petaflops (1015flop/s). In
comparison, the earliest electronic general-purpose Turing-complete supercomputer,
the ENIAC (Electronic Numerical Integrator and Computer), was able to perform any-
where between 40 and up to 5000 operations per second, depending on the type of
operation[137, 254].

This colossal increase in computational power over the past century has gone hand
in hand with advances in mathematical modeling and computational mathematics
so that it is now possible to solve problems and simulate phenomenons previously
considered impossible. Today, computational and simulation science is regarded as
a third pillar of the method of scientific discovery. Computers have become a vital
tool, complementing theory and physical experiments, allowing scientists to explore
phenomena that are otherwise infeasible to investigate. As for the scientists, computer
simulations and data science have become an ubiquitous and indispensable tool for
engineers in everything from designing airplanes to discovering new medicines and
materials [175, 57, 309].
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Since 1993, the TOP500 project has published a list of the worlds fastest supercom-
puters twice a year[209]. Systems are ranked according to their performance on the
Linpack benchmark which solves a dense system of linear equations[94]. The list has
come to serve as the defining yardstick for supercomputing performance, and the data
compiled and collected over the years is often used both for describing the history of
supercomputing and for predicting future developments [208, 292]. As of November
2017, 181 systems are registered as being able to deliver one petaflops or more on the
Linpack benchmark. The last entry on the list, the 500th computer, achieved 0.549
petaflops of sustained computation in the Linpack benchmark.

The peta-scale machines are modern-day miracles, but 1015 floating point operations
per second comes at the cost of complexity of use. A lot of complexity. To write a scien-
tific code that run efficiently on the entire machine is no simple task. The machines on
the TOP500 list typical have several thousand computing nodes with separate mem-
ory spaces for which the nodes must globally coordinate, synchronize, and exchange
messages when solving a problem that is not embarrassingly parallel. In addition, the
compute nodes themselves are complicated machines with increasingly convoluted
memory hierarchies in a shared memory space of many cores, on potentially many
sockets with non-uniform bandwidth access and latency. To make matters worse, su-
percomputers are increasingly pushing the limits of compute performance by adding
compute-accelerators, or co-processors, with specialized processing capabilities such
as GPUs[227, 44], DSPs[268, 168], FPGAs[245] or a combination hereof[299] to handle
particular tasks. This addition of hardware, specialized for certain compute patterns,
is often denoted as “heterogeneous computing”. Heterogeneous computing is a major
development as it leads to faster and more energy-efficient computers[195, 214]. How-
ever, it also add yet another level of complexity for the users of the machines as they
now have to handle many nodes, each with potentially many different instruction-set
architectures with each their own complexities. Due to the complexities involved in
going from science to hardware and back again, scientific code running on the full size
of peta-scale clusters is now often written by large teams of both HPC programmers
and domain scientists.

In 1985, a new annual prize grew out of a SIAM meeting when a group was discussing
the idea of having a prize to recognize the speedup of real applications on real parallel
machines so to track how and if advancements in compute power was leading to real-
world progress in science and engineering. Alan Karp, at the time a staff scientist at
IBM, had observed that even though there were plenty of talks about building systems
with 1,000 and even 10,000 processors, nobody had demonstrated that reasonable
speedup could be obtained on much smaller systems already available. Karp decided
to pose a challenge to the community, offering US$100 to the first person or group to
demonstrate a speedup of at least 200 times on a real problem running on a general
purpose parallel processor. Gordon Bell, then the founding Assistant Director of NSF’s
Directorate for Computer and Information Science and Engineering, thought Karp’s
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challenge was a good idea, so he decided to make his own annual price, originally set
at US$1000, for the best speedup of a real application running on a real machine[27].
The prize has now been awarded annually since 1987 and is today known as the ACM
Gordon Bell Prize, given each year at the SC Conference with the winning team sharing
US$10, 000. Winners are selected according to the following criteria

“The Gordon Bell Prize is awarded each year to recognize outstanding
achievement in high-performance computing. The purpose of the award
is to track the progress over time of parallel computing, with particular
emphasis on rewarding innovation in applying high-performance comput-
ing to applications in science, engineering, and large-scale data analytics.
Prizes may be awarded for peak performance or special achievements in
scalability and time-to-solution on important science and engineering
problems[8].”

Given the amount of publicity and attention the prize has drawn from the community
over the years, it is not unreasonable to assert that data on past winners and finalist
may be used as a proxy to track the development of state-of-the-art computational
science applications running on state-of-the-art supercomputers. Figure 2.1 contains
a scatter plot of prize winners and notable finalists over the past decade, showing
sustained computational performance as a function of year. In 2007, the winners had
demonstrated the first ever micron-scale molecular dynamics simulation, developing
the Kelvin-Helmholtz instability. The authors had used advances in fault tolerance,
kernel optimization, and highly efficient parallel I/O to squeeze 115 teraflops of ef-
fective continuous compute performance from the 131,072 cores of a BlueGene/L
machine[133].

In recent years, demonstration of multi-petaflop/s performance on a real-world ap-
plication has been necessary to claim the prize. Last years winner was a 12-member
Chinese team, demonstrating 18.9 petaflop sustained compute performance whilst
running a simulation of the 1976 Tangshan earthquake on the worlds largest super-
computer, the Sunway TaihuLight situated at the National Supercomputing Center
in Wuxi, China[118]. The simulated physical area spanned 320 km by 312 km, as well
as 40 km below the surface resolved to 8m. In total, 450TB of input seismic data was
used[116]. Another 2017 finalists, also a Chinese team using the Sunway TaihuLight,
ported, redesigned and scaled the Community Atmosphere Model (CAM) to the full
system of the Sunway TaihuLight supercomputer[225, 117]. With a global 25km res-
olution they were able to simulate 3.4 years per day. At 750m global resolution, they
measured a sustained performance 3.3 petaflop/s. With the high-resolution global
model, they were able to simulate the complete lifecycle of hurricane Katrina and
achieved close-to-observation simulation results for both the hurricane track and the
intensity, the first such feat.
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Chapter 2. Frontiers of Computational Science and Engineering

With the introduction of Petascale machines, the accurate simulation of global weather
phenomena[117], large earthquakes[116], blood flow at cell resolution[256], among
many other things now possible. In the next chapter we give a brief overview of what
potential scientific advances the introduction of Exascale computing machines may
lead to. We follow with a discussion on both existing and speculative challenges in
bringing applications to these new machines.
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Figure 2.1 – List of major landmark computations in scientific computing on top
supercomputers. The list is not meant to be exhaustive, and only results for where a
cite-able source, with details on the study, could be found, have been included. The
* indicates that an associated paper was awarded the Gordon Bell prize in either the
Performance or the Scaling category. Most entries of dates have been moved slightly
left or right so to allow for readable labels.
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3 Moving to Exascale: Status and
Open Challenges

This chapter begins with a brief description on what motivates the global push for
Exascale capable supercomputers. The description is followed by an overview of
currently known planned Exascale machines and the timeline for their development.
Finally an introduction to the challenges, expected in making real world computational
science and engineering application scale to the full size of these machines, is given.

3.1 Motivation for Exascale

The worlds first supercomputer to exceed 1 petaflop of compute performance on the
Linpack test went online in 2008. It was the IBM built Roadrunner, using PowerXCell 8i
processors, a processor variant IBM designed specially for HPC[16]. In 2012, four years
later, there was 20 Petascale systems deployed across the world, with many more on
the way. Today, all systems on the TOP500 list are rated at 0.6 petaflops or more[209].
The community has come a long way over the course of the past decade in making
applications scale to the full size of these new, often heterogeneous, massively parallel
machines. The machines have been, and are being, used to solve problems in science
and engineering previously beyond the realm of possibility. Petascale computing
has become mainstream in high-end supercomputing, and the community is now
beginning to look ahead at what new problems could potentially be solved with access
to Exascale capable machine. A number of studies on such advances in the applications
of computational science and engineering has been published and below follows a
non-exhaustive list with excerpts and conclusions from these studies.

Climate Science Climate modeling is an application where Exascale computing has
the potential to make significant impact. The goal of computational climate
modeling is to estimate the response of the global climate and temperature to in-
creases in greenhouse gases. To simulate how these processes evolve over time re-
quires addressing an intricate multi-physics problem, combining mathematical
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Chapter 3. Moving to Exascale: Status and Open Challenges

models for atmosphere, ocean, ice sheets, land surfaces, and biosphere dynamics.
Complicated temperature feedback effects of melting ice caps, ocean circula-
tion patterns, and natural carbon stores further complicates the models[183].
Even with available Petascale machines, resolution and fidelity of simulations
still leaves much to be desired. Furthermore, many studies are meant for policy
makers and therefore must include estimates of uncertainties in predictions[237].
Climate science is a field hungry for flops.

Material Science Development of new materials play a key role in finding solutions
to many technical challenges faced by society. In particular, the development of
new materials for energy storage and photovoltaics are considered key in moving
towards the widespread adoption of renewable energy sources. Petascale ma-
chines has allowed for atomistic scale simulation and design. Exascale machines
are needed to close the gap from atoms to complex heterogeneous materials
since simulation of the latter requires the bridging of processes spanning from
nanometers to micrometers and femtoseconds to minutes. As an example, the
accurate modeling of lithium-ion batteries requires atomistic modeling at micron
length scales over many cycles of charging and discharging to gain insight into
modes of failure and degradation. Multi-scale, multi-physics models, connecting
transport of ions and electrons, electromechanical interface reactions, heat gen-
eration and transfer and structural deformation and stress, have been developed
for such simulations, but the numerical solution at scale remains challenging.
One issue is the many-body nature of parts of the models. The number of opera-
tions for ground-state calculation using density functional theory (DFT) scales
cubically with the number of atoms, other models scales even worse. Another
complexity is the enormous search space of potential materials to investigate.
Current state-of-the-art high fidelity models require peta-scale machines. To
evaluate the properties of thousands of candidates, Exascale compute capacity is
clearly needed[120, 92].

Fusion Energy The 4th state of matter, plasma and ionized gases, have many impor-
tant industrial applications, particularly in semiconductor processing and in
medical applications. It is also at the center stage of the scientific grand challenge
of the realization of fusion energy. Accurate simulation of plasmas is a difficult
problem, in particular when it is necessary to also simulate the interaction of
burning plasma with solids such as the effect of fusion products on structural
materials of a fusion reactor. The simulation of plasma involves solving the Boltz-
mann equation, coupled to Maxwell’s equations for the evolution of magnetic
and electric fields, and for many practical problems, one must also couple to
other equations for atomic, molecular, and nuclear processes. While major ad-
vances has been made over the past decade with Petascale computing, Exascale
computers are considered critical as a next step to capture the extreme range of
mutually interacting temporal and spatial scales and to enable the multiphysics
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modelling necessary to address many essential questions [59].

Medicine Supercomputing has become an essential component in medical and health-
care innovation. Due to the scale and complexity of developing new drugs and
treatments, doing so has traditionally been a very costly and time-consuming
human-driven affair. Medical trial and error laboratory-based research typically
involves long time lines and supercomputers are therefore increasingly being
relied on to accelerate discovery. In the field of cancer research, projects are
underway to compile all known data on how cancer functions and how drugs
reacts and behaves using Exascale machines. The projects involve deep learning
and novel data acquisition techniques to be able to create prognosis and treat-
ment plans, designed specifically for the individual patient, based on all available
knowlegde[251, 164, 277].

Brain simulation The human cortex consists of roughly 1010 neurons, each neuron
being connected trough synapses with roughly 104 other neurons for an esti-
mated total 1014 synapses. Currently, it is possible to simulate up to about one
percent of the neurons in the human brain with all their connections using Petas-
cale machines. It is estimated that with an Exascale machine it would be possible
to simulate the entire human brain at the neuron level[205, 179].

Turbulent Flows Simulation of turbulent flows has numerous applications in com-
bustion, atmosphere, wind, fusion and nuclear sciences. It’s been estimated that
access to Exascale compute resources will enable a higher degree of system level
simulations of turbulent flows. In wind energy, one could integrate the simulation
of individual wind-turbines with the simulation of wind-farms with hundreds
of turbines, in combustion and vehicle design it would allow for connecting
simulation of in-cylinder combustion processes with models for gas exchange
processes, turbocharging and the drivetrain. These tightly couples models would
facilitate a significant improvement in overall fidelity and correspondence with
real world performance[284]. Computational scientists in turbulent flow also
envision using Exascale machines for solving turbulent flow optimization design
problems by solving Petascale problems 1000’s of times. This is expected to be
particularly challenging as gradient based optimization algorithms generally
do model evaluation and improvements sequentially, in effect implying that
the Petascale sized problem must be solved efficiently on the Exascale machine
which is almost certain to bring about difficulties with sufficient strong scaling.
The concept of strong scaling and related general issues with scaling numerical
algorithms to large machines is discussed in Section 3.3.

Multi-Scale Modeling Many applications have important features at multiple scales
of time and/or space that must all be captured to correctly model a system. Multi-
scale modeling thus finds a wealth of applications across engineering, physics,
chemistry, biology, meteorology and even operations research. The need for
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large multiscale simulations is a primary motivational driver for Exascale. Recent
studies have demonstrated how multiscale computing may be particularly suited
for Exascale HPC systems by improving load balancing and by introducing energy
aware computing [182, 2].

Uncertainty Quantification In computational science, simulations often need input
parameters and/or real world data that is subject to some form of uncertainty. In
many fields, there is an increasing demand for methods to quantify how uncer-
tainties in input parameters lead to uncertainty in the outcome of simulations
and forecasts. In the growing field of Uncertainty Quantification, researchers
typically split the approaches into intrusive and non-intrusive methods. The
non-intrusive methods, e.g. various types of Monte Carlo and stochastic colloca-
tion schemes, reuse existing tools and generate a series of deterministic solutions
to approximate statistical moments of an output. These approaches are popular
because they do not require re-implementation of the original solver. The down-
side is that their weak approximation capabilities may lead to inaccurate results.
The intrusive techniques simultaneously discretize stochastic and physical space,
which leads to much stronger approximation properties and therefore an overall
smaller run-time if sufficiently small errors on the uncertainty is required. Either
approach is, however, still extremely computationally expensive for complex
problems even for todays Petascale machines and hence a strong motivation for
Exascale computers[240, 157].

Many fields of science and engineering stand to benefit from increased compute
capacity. In addition to the direct effects of enabling new landmarks runs and opening
up new frontiners in research, observers expect that the many technologies, developed
for Exascale computers, will subsequently move into mainstream HPC and industry
[184, 233, 132, 163]. In the next section a brief overview of planed Exascale compute
facilities worldwide is given.

3.2 Planned Exascale Supercomputing Facilities

Several countries around the world have presented plans to build machines with
Exascale compute capabilities within the next 5 years[180]. Historically, the US has
been the nation spearheading this, supplying most of the entries on the TOP500 list of
the worlds most powerful supercomputers. The US Department of Energy plans on
spending USD 1.8 billion (∼EUR 1.5 billion) on building two Exascale supercomputers
at US National Laboratories in the 2021-2023 time-frame[300]. The first machine,
named Aurora, is currently under development by Intel and Cray in corporation with
Argonne National Laboratory and is scheduled to go online in 2021. Few details on
the design of the system have emerged as all involved parties are subject to some
form of nondisclosure agreement. Thus far, the only information released on what to
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expect of the new machine is from a recent Call for Proposals by Argonne Leadership
Computing Facility looking to select 10 new projects to be part of the Aurora Early
Science Program[6]. In their Guidance About Aurora for Proposal Authors, the following
points are highlighted about the hardware to be expected

• “The compute performance of the nodes will rise in a manner similar to the
memory bandwidth so the ratio of memory bandwidth to compute performance
will not be significantly different than systems were a few years ago. A bit better
in fact than they have been recently.”

• “The memory capacity will not grow as fast as the compute performance so
getting more performance through concurrency from the same capacity will
be a key strategy to exploit the future architectures. While this capacity is not
growing fast compared to current machines it will have the characteristic that
the memory will all be high performance alleviating some of the concerns of
managing multiple levels of memory and data movement explicitly.”

• “The memory in a node will be coherent and all compute will be first class citizens
and will have equal access to all resources, memory and fabric etc.”

• “The fabric bandwidth will be increasing similar to the compute performance for
local communication patterns although global communication bandwidth will
likely not increase as fast as compute performance.”

The machine is thus expected to be not entirely dissimilar from current large Petascale
machines, but with increased compute performance and energy effciency on the
node level and increased bandwidth between nodes. Also, it is noted that as has been
the case for a while, global communication bandwidth will not increase as fast as
compute performance. The second machine scheduled for 2022-2023 is to be based
on R&D in the ongoing Department of Energy Exascale Computiong Project (ECP). The
machine might be based on novel memory-driven computing technology, currently
being developed by Hewlett Packard Enterprise on a grant by the DoE ECP[158, 93].

The EU has it’s own Exascale Computing Project with a time-line similar to that of the
US. On January 11th 2018, the EU launched a new EUR 1 billion project to build an
Exascale capable supercomputer by 2023. The project will receive EUR 486 million
from the European Commission’s Horizon 2020 budget, an equivalent amount will be
supplied by the 13 member states that signed up for the project. A new organization,
the EuroHPC joint undertaking, will be set up in 2019 for the project. The declared
goal is for Europe to have two "world class" supercomputers, each capable of at least
100 petaflops by 2020. This is in preparation for the final goal of building an Exascale
system by 2022-2023[103, 104]. Since the project is still in its infancy, no details exist on
the planed machines, though it is noted that the project is “to support the development
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of European supercomputing technology, including the first generation of European
low-power microprocessor technology”. This statement likely points to Asos/Bull as a
contributor as it is currently the only European company with expertise in building
ultra large systems. France appears to be the sole country in Europe with a roadmap to
develop and deliver an Exascale supercomputer. The french Commissariat à l’Énergie
Atomique et aux Énergies Alternatives (CEA) has contracted Atos to develop a machine
capable of scaling to Exascale size by 2021. In addition the agency has signed an
agreement with Japanese RIKEN to corporate on the development of an ARM based
Exascale HPC ecosystem[223].

Among the nations planning to build Exascale supercomputing facilities, Japan was the
first to announce concrete plans. In 2014, plans was put forward for a Post-K computer
capable of Exascale computation to be build by Fujitsu and the RIKEN Advanced
Institute for Computational Science. The Japanese government has budgeted JPY
110 billion (∼EUR 850 million) towards the project that was named FLAGSHIP2020.
The aim was for the computer to be deployed by 2019 and go into production in
2020. The project has, however, been delayed, most recent reports suggest by 1-2
years. For the Post-K computer, Fujitsu has announced that they will move away from
the SPARC64 architecture used by the company for previous generations of high-end
supercomputers, and instead move to a new vector-enhanced ARM architecture[170].

In recent years, China has emerged on the scene of international high-performance
computing. A decade ago, June 2008, China had only 12 supercomputers among
the worlds TOP500 most powerful machines and a combined performance share of
only 1.2%. At that time, machines in the U.S. accounted for 61.6% of the installed
supercomputer compute capacity worldwide. A decade later, China has come to rival
the US in terms of installed capacity. On the November 2017 update of the TOP500
list, the Chinese TaihuLight at the Chinese National Supercomputing Center in Wuxi,
build by Sunway was the worlds most powerful supercomputer. Among the 500 most
powerful supercomputers, 202 systems are installed in China accounting for 35.4% of
the supercomputer compute capacity installed worldwide[209]. China’s recent efforts
on pre-Exascale systems has been somewhat hampered by technology export bans
instituted by the US in early 2015. The Chinese are, however, showing no signs of
slowing down their ambitions, and are consequently investing heavily in homegrown
processor and interconnects hardware. The Sunway built TaihuLight was made entirely
using Chinese-designed interconnect hardware and many-core processors. Under the
country’s 13th 5-Year Plan released in 2015, China committed to launching its first
Exascale supercomputer by the end of 2020, or possible 2021. Reports of their progress
is difficult to come by though, as little information is released and when it is, it is
usually trough official Chinese media outlets with few details. It appears that there are
multiple ongoing projects at the six National Supercomputing Centers of China located
in Guangzhou, Changsha, Jinan, Shenzhen, Tianjin and Wuxi. The Guangzhou and
Wuxi centers are already home to the two most powerful supercomputers in the world.
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According to Chinese national news media, another two Exascale prototype systems
are due to be completed in 2018 at the Jinan and Tianjin centers[68, 316]. In addition, a
fully capable Exascale machine is to be build at the center in Shenzhen. The Shenzhen
machine is planned to become operational in 2020 at a cost of CNY 3 billion (∼EUR
400 million) according to China Daily[69]. Some industry observers expect China or
the US to become the first country to demonstrate an Exascale supercomputer[272].
Setbacks and delays are, however, not uncommon when building novel high-end
systems and the announced Exascale system time-lines of both the US, EU, China, and
Japan overlaps to some degree. It remains to be seen by who and how the worlds first
Exascale capable machine will be build and operated. In the next section, an overview
of the future challenges of making numerical algorithms scale to the full size of these
emerging machines will be presented.
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Figure 3.1 – The average energy consumption and average compute efficiency of the
50 most powerful supercomputers in the world as reported on the TOP500 list[209].
Tracking power usage was only introduced in 2008 and compute efficiency in 2011 and
data was not available for every machine on the list for all years. The data points are
therefore computed as averages of the TOP50 machines for which data was available
in a given year.

3.3 Exascale Challenges on Exascale Machines

Challenges related to Exascale computing are not only related to building machines
with a theoretical compute capacity in excess of an exaflop whilst insuring that all
nodes can communicate with a sufficiently high bandwidth and low latency to allow for
Exascale capability on real problems. The user aspect of writing code and formulating
numerical algorithms that may scale to the full size of the machine efficiently whilst
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Figure 3.2 – Average CPU frequency of the 50 most powerful machines on the TOP500
list and of all machines on the list. The frequency is averaged over the main processor,
i.e, not including coprocessors. Figure compiled using freely available data from
TOP500 lists dating back to 1998 [209].

producing reliable trustworty output in itself presents a tremendous task. In a recent
report, titled Applied Mathematics Research for Exascale Computing, released by the
U.S. Department of Energy, a number of expected challenges in making numerical
algorithms scale efficiently to Exascale machines is outlined and described[92]. The
five main concerns are, power consumption, extreme concurrency, limited per-core
memory, data locality, and resilience. In the list below a brief description of the issues
foreseen is given.

Power The currently most power efficient supercomputer on the TOP500 list is the
Japanese built 0.8 petaflop/s Shoubu system B by PEZY Computing. Each node
in the system consists of an Intel Xeon host CPU and 8 PEZY-SCx co-processors
which act as accelerators. The system is able to deliver 17Gflop/s per watt[209].
If one was to extrapolate this machine to Exascale, it would consume at least
60MWe. Possibly more due to the added energy consumption of an extended
network fabric to support the larger machine. In comparison, 60MWe is enough
to power a small city with ∼100.000 residents and the worlds currently most
powerful machine consumes 15MW of electricity at 6Gflop/s per watt also using
purpose build processors and accelerators. The typical commodity hardware type
machine on the TOP500 list is able to achieve 1-2Gflop/s per watt, corresponding
to a power-consumption of around 600MWe at Exascale which is equivalent to
the output of a medium sized nuclear power plant. Figure 3.1 contains a plot of
the power consumption and compute power efficiency over the past decades of
world-class systems. The power consumption has been steadily increasing since
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the inception of the list in ’93 to the point that the life-time cost of electricity of
running the machines is now comparable to the cost of the machines themselves.
This development is driving a change in architecture for high-end HPC and in
power-aware computing in general[172]. It is speculated that energy used by a
job/simulation may compliment, or even replace, CPU time as the cost metric
for supercomputer use. In big machines, moving data between nodes is as costly
energy-wise as working on the data, suggesting that numerical algorithms may
thus need to become power-aware in the future.

Concurrency Processor clock speeds has been stagnant for more than a decade now
due to power density limitations, see Figure 3.2 which contains a plot of the
average frequency as a function of time since 1998 of the worlds most powerful
supercomputers. Fundamentally, a transistor is a little toggle that needs to ac-
cumulate some charge to switch. The time it takes to accumulate the charge is
proportional to the current which in turn is proportional to the voltage applied.
The maximum speed at which the transistor may operate is thus proportional
to the voltage. Unfortunately, power dissipation in a transistor is proportional
to the voltage squared times the frequency. In short, power dissipation is there-
fore proportional to frequency cubed. Processor frequency stopped increasing
at the end of the previous decade because the industry hit practical limits in
terms of energy cost and capacity to physically remove the heat that the tiny
chips generate. Frequency stopped scaling, but performance improvements
have continued due to technical advances in integrated circuit fabrication. The
advances has enabled smaller transistors thus allowing for more cores with larger
caches to fit on the chips. Since 2008, performance has increased mostly due to
more cores per socket per node, adding specialized accelerators to the nodes,
and adding more nodes to the machines. This trend with overall more cores
is expected to continue. The reason is in part due to the cubic power law of
frequency to power dissipation scaling, suggesting that one way of creating more
energy efficiency machines is by increasing the number of cores and decreasing
the frequency at which they operate. An extreme example of this is the Japanese
19PFlops Gyoukou, completed in 2017. It achieves an ultra high power efficiency
of more than 16GFlop/s per watt through extreme concurrency by the use of co-
processors, specifically built for HPC, with a combined 19.8 million lightweight
cores operating at just 700Mhz. There are indiciations that increasing core-count
and decreasing frequency is a general trend, see Figure 3.2. In 2010, the average
operating frequency of supercomputer main processors was around 2.6Ghz, now
it is closer to 2Ghz and there’s a clear downwards trend among the TOP50 ma-
chines. Another example of extreme concurrency is the planned U.S. DoE Aurora
Exascale machine which is expected to have 50.000 nodes[6]. Even on current
Petascale machines with ∼ 5000 nodes and combined 100.000+ cores, making
numerical algorithms scale to the full size of the machines is very challenging.
For many problems, synchronization operations and communication between
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nodes end up limiting how many nodes can effectively work on the same problem
long before the machine itself runs out of nodes to use[92]. New algorithms will
need to be developed to identify and leverage concurrency in a way that reduce
communication and synchronization between separate memory spaces.

Data Locality The bandwidth and latency of the interconnect fabric has for a long
time been unable to keep up with the increasing node-level compute capacity,
and the trend is expected to continue for Exascale machines[6]. Whereas the
energy, used per floating point operation, has been decreasing and is continuing
to do so, the energy used for moving data between nodes is not decreasing at
the same rate, hence exposing an increasing discrepancy between energy cost of
computing and energy cost of moving data between nodes. On the node-level,
memory bandwidth has also had problems keeping up with faster chips. Fu-
ture systems may need to mitigate these issues, in part, by adding new memory
technologies and hierarchies such as nonvolatile memory, scratchpad memory
and/or deeper cache hierarchies. This in turn means that algorithms will need
to be more aware of data locality and seek to minimize data movement across
levels[92]. An example of how important the usage of the memory-subsystem is
for compute throughput is the discrepancy between the performance numbers
reported on the Linpack HPC benchmark (HPL) and achievable performance on
real world applications. The HPL benchmark used since 1993 can be misleading
in terms of evaluating the capability of machine to solve real world problems.
HPL measures the time to solve a dense n by n system of linear equations. Ex-
perience has shown that unless an application consists almost exclusively of a
lot of matrix factorization and multiplication of dense floating point matrices,
it is unlikely to achieve anywhere near the same compute throughput. Many
applications of today use a sparse data structure with random access patterns. In
addition the applications often need a substantial amount of global synchroniza-
tion and communication between separate memory spaces to the extent that
they are effectively memory bound rather than compute bound. For that reason,
a new HPC becnhmark has been developed, the High Performance Conjugate
Gradient (HPCG) benchmark[89]. HPCG uses a preconditioned conjugate gradi-
ent algorithm with lots of collective operations and sparse data structures that
stress the memory subsystem both locally and globally[91]. The currently highest
compute troughput measured on the HPCG benchmark is 603TFlop/s, achieved
by the K Computer at RIKEN Advanced Institute for Computational Science[188],
e.g., in HPCG, the petaflop barrier has yet to be broken. A recent study showed
just how much the HPCG benchmark stresses the memory subsystem[203]. The
researchers demonstrated that knowing just two metrics of the machine being
tested: “The effective bandwidth between the main memory and the CPU” and
“the highest occurring network latency between two compute units”, one can
estimate the HPCG performance quite accurately. The theoretical number of
floating point operations that the machine can deliver is therefore of limited
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relevance when predicting the performance on the HPCG benchmark.

Memory The bandwidth and latency of the memory subsystem and network fabric is
not the only growing issue related to memory. Even though the total distributed
memory on supercomputers are increasing, the per-core memory is decreasing
and this trend is expected to continue[92, 181]. Many current algorithms may
thus find themselves to be memory-constrained and will need to be redesigned.

Resilience Due to the sheer number of components, hardware failures are expected
to become more common on Exascale machines. Petascale machines are already
prone to failures. Even though the nodes themselves may have a mean time
between failure (MTBF) of several years, with thousands of nodes in a cluster,
the MTBF for a failure occurring on any single node on the entire cluster is
suddenly in the order of hours or days at best[51]. This becomes problematic
when attempting to run simulations that span an entire cluster as a failure on
a single node leads to failure of the entire run. The most common approach
used today to mitigate the impact of failures is checkpoint-restart. Applications,
meant to scale on big machines, are written in such a way that they periodically
dump their memory content to the parallel-file-system. In the event of a failure,
the domain scientists running the simulation may then simply restart from
the most recent checkpoint[269, 206]. Checkpoint-restart comes at the cost of
computational efficiency. The I/O bandwidth of parallel-file-systems continues
to not be increasing at the same rate as compute performance and memory
capacity. Creating periodic checkpoints often consume a substantial portion of
the run time in Petascale applications, wasting valuable compute time waiting
for checkpoints to be written. If this trend continues on Exascale machines, it is
projected that some applications may be unable to progress as the time to write,
and read, a checkpoint to the parallel-file-system will be longer than the mean
time between failure. Another potential challenge is mitigating the speculative
impact of silent data corruptions (SDC). SDCs may arise as spurious bit flips due
to cosmic rays and then propagate throughout the simulation creating erronous
results. It is possible that the solution could be corrupted in such a way that it is
not immediately obvious to the user that a data corruption has taken place. This
in turn raises questions on the trustworthiness of simulations on large machines.
In short, the larger the machine, the larger the probability of SDCs[73, 53].

In addition to the many challenges of adapting old, and developing new, numerical
algorithms to work well on the emerging machines it has been highlighted that there is
a lack of HPC programming skills. Many research centers are forced to train their own
staff as very few university provide adequate advanced training in the topic[264]. It has
also been highlighted by prominent researcher that there has been an over investment
in hardware compared to software over the past decade, leaving scientific applications
unable to fully take advantage of new machines[93].
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Figure 3.3 – Average compute performance, number of cores and sockets of the (a) 50
and (b) 500 most powerful machines on the TOP500 list as a function of time. Main
CPU cores indicate the average number of cores of the main architecture, used on
each machine. Main CPU + Acc. cores indicate the average total number of cores, i.e.
including any coprocessor. The dashed line on the socket-numbers between 2005 and
2010 indicates estimates as seperate tracking of cores per socket was not included in
the data until 2010 even though multi-core main processors appeared as early as 2005.
The two figures were compiled using freely available data from TOP500 lists dating
back to 1998 [209].
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4 Thesis Content and Contributions

In this chapter a few important general concepts, related to HPC and used throughout
the thesis, is presented in the first section. In the second section a brief overview of the
content and contributions in each chapter is given.

4.1 Essential Concepts

When evaluating how well the parallel implementation of a numerical algorithm works
when running on a supercomputer a few core concepts are widely used. The most
essential of these being parallel speedup Sp, defined as the ratio of the elapsed real
time of the fastest sequential implementation to that of the fastest parallel solution
which is usually written as

Sp (N) =
Tseq

T (N)
, (4.1)

where N is the number of compute resources used in parallel. Another closely related
metric is the parallel efficiency typically written as

Ep (N) =
Sp (N)

N
, (4.2)

whose value lie in the range from 0 to 1. Practitioners are typically interested in how
parallel speedup and efficiency change with respect to the number N of compute
resources used. A common test to evaluate the performance of an application is to
solve a fixed-sized problem several times using different N to see how the parallel
speedup and efficiency change as the number of compute resources increases. This
type of test is typically referred to as strong scaling [141]. Ideal scaling is when the
parallel efficiency remains at 100% for all N . If the parallel efficiency at some point
become larger than 100%, this is referred to as super-linear scaling. Super-linear scaling
can happen for a number of reasons, but is most often related to the availability of
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more registers and cache when dividing the problem in a distributed memory parallel
computing setting[252]. In practice, ideal or super-linear scaling is rare. In most cases
overhead, related to communication, synchronization and the limitation of inherently
sequential code parts, will result in the parallel efficiency decreasing as the number of
compute resources increases. At some point the rate of decrease in parallel efficiency
becomes larger than the gain from adding more resources, and the parallel speedup
becomes stagnant or may even begin to decrease. Such a peak in parallel speedup
is usually referred to as the scaling limit of a given code on a given problem. For a
program where only some fixed fraction R may be performed in parallel, this in itself
pose an upper limit to obtainable parallel speedup given by

Sp (N) ≤ 1

(1−R) + R
N

(4.3)

The above relation between N , R and Sp (N) is known as Amdahl’s law[5]. In simple
terms, if 1% of the program is inherently sequential, then it is impossible to achieve
more than 100x speedup, regardless of the extend of the compute resources used. In the
early days of parallel computing there was a real concern that this would forever limit
the extent to which parallel computing could be used. The first Gordon Bell prize was
given for showing that Amdahl’s law may not necessarily be a barrier[27]. It turns out
that for many practical problems, the computational complexity of some inherently
sequential code parts tends to scale differently than code which may be executed in
parallel. For example, when doing a large n-by-n matrix-matrix multiplication, the time
to load the matrix may be proportional to n2 whereas the amount of compute work
is proportional to n3. The fraction of sequential code may thus be decreased simply
by increasing the size of the problem. As practitioners with access to supercomputers
are often interested in solving larger problems rather than solving the same problems
faster, this works in their favor. Another often used test to evaluate the performance
of an application is therefore to solve a problem proportional in size to N several
times using different N to measure how the parallel speedup and efficiency change
as the compute resources increase. This type of scaling test is called weak scaling. If
the elapsed real time to compute remains constant as N increase, the code is said to
achieve ideal scaling. For this type of test, Amdahl’s law has little predictive power as it
assumes that the problem size stay fixed. Gustafson’s law addresses this by assuming
that the size of the problem to solve increases proportional to the number of compute
resources. The expression can be written as

Sp (N) ≤ 1 + (N − 1)R, (4.4)

where N and R are defined as above[148]. Throughout the thesis the concepts of
parallel speedup and efficiency in the context of strong and weak scaling will be used
to demonstrate improvements in the scalability of numerical algorithms.
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4.2 Outline of Thesis

The thesis consists of four parts. Part I is a broad introduction and overview to the field
of Exascale computational science and HPC. In Part II, a number of studies on new
methods for more efficient scaling of the solution of PDEs is presented. The third part
treats aspects in resilience and fault tolerance for numerical algorithms in Exascale
HPC. In the fourth and final part of the thesis a summary of contributions is given
along with a perspective on the work and some speculations on the future path of
Exascale development. The content of each of the two parts containing the main
contributions of the thesis is outlined in the following two sections.

Part II – PinT Integration for Scalable Solution of PDEs

After the introduction in Part I follows the first of two parts on the development of
numerical algorithms for Exascale machines. The first of these deal with the challenge
of scaling the solution of partial differential equations (PDEs) on massively parallel
distributed memory machines.

The numerical approximation to a solution to some system of PDEs is generally found
by solving one or more linear systems, arising from a discretization of the continuous
system of equations. To solve linear systems of the type, typically arising from the
discretization of PDEs, domain decomposition methods are frequently used[86]. A key
feature of domain decomposition methods is that the spatial domain is divided into
many smaller subdomains on which smaller problems are solved locally, independent
of the global solution. Consistency with the global solution is achieved iteratively.
Within each iteration, boundary information is exchanged between subdomains and a
new local boundary value problem is solved on the subdomain. The fact that all the
small subdomain problems may be solved independently once boundary information
has been exchanged makes the methods highly suitable for distributed memory ma-
chines where communication between nodes is expensive in terms of both time and
energy.

As long as the size of the global spatial domain is much larger than the number of
nodes, such methods tend to work very well. In the strong scaling limit however, sub-
domains become so numerous and so small that the communication of boundary
information becomes a bottleneck for parallel acceleration. This tend to be partic-
ularly problematic when some form of time-integration is needed because classical
domain decomposition methods only treat boundary value problems. When time
dependent PDEs are to be solved, issues arise even in the weak scaling limit since
refining the solution in space typically also require some form of refinement in time
for accuracy reasons or to satisfy some stability criteria. Consequently, even with ideal
spatial weak scaling, the elapsed real time to solution increases when increasing the

27



Chapter 4. Thesis Content and Contributions

number of compute nodes used. The scaling issues for time-dependent PDE problems
may potentially be greatly diminished by the introduction of parallelism in the time
integration procedure. Investigating this is the topic of part II. A brief outline of each
chapter in part II is given in the list below.

Chapter 5 Contains a brief overview of domain decomposition methods and an intro-
duction to parallel-in-time integration methods with an emphasis on Parareal.

Chapter 6 Various numerical experiments on the application of Parareal to convection
dominated PDE problems are presented.

Chapter 7 A new adaptive scheduler is introduced for Parareal that greatly improve
parallel efficiency when the preconditioner is expensive and convergence slow.

Chapter 8 A new approach for constructing Parallel-in-Time integration schemes is
presented along with some numerical experiments.

Part III – Fault Tolerant Algorithms for Exascale Systems

Despite very high mean time between failure (MTBF) on HPC hardware, due to the
sheer number of components, hardware does occasionally fail. The failure of hardware
components is already posing challenges for efficient scaling of algorithms to the full
size of current day Petascale machines as outlined in Section 3.3. These challenges are
expected to be further exacerbated on Exascale machines[51, 53]. The theme of part III
is to explore ways of mitigating these issues in their various forms, in particular those
that manifest themselves as either complete notified failure of one or more nodes, or
as silent data corruptions, unknown to the program or the user. A brief outline of each
chapter in part III is given in the list below.

Chapter 9 A brief introduction to resilience and fault tolerance.

Chapter 10 A new modified Parareal variant, fault tolerant towards complete node
failures and to silent data corruptions, is introduced.

Chapter 11 A new C++/MPI library for fault-tolerance using checkpoints and auto-
matic rollback is presented. The library, called Llama, uses multi-level layered
group local in-memory checksums to protect distributed arrays.

Chapter 12 Checksum encoding schemes are widely used to protect data from hard-
ware failures. Data protected trough the creation of checksum parity code is,
however, only recoverable if the number of lost data and/or code blocks is smaller
than the number of checksums parity codes created. In this chapter a preliminary
study on partial information recovery in incomplete checksums is presented.
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5 Introduction to Parallel-in-Time
Integration Techniques

In High Performance Computing, one typically distinguish between methods that are
intrinsically parallel, also called embarrassingly parallel, and those that are not. With
intrinsically parallel algorithms, nodes are able to independently work on completely
decoupled parts of a given problem, common examples are Monte Carlo type meth-
ods and parameter sweeps. Conversely, some algorithms are very difficult to solve
efficiently on highly parallel machines. It may be that there are inheritable sequential
components to the algorithm that are difficult, or even impossible, to divide amongst
many processors; or it may be that when the problem is divided, frequent communi-
cation between processors is required during the solution procedure. Many famous
algorithms are notoriously hard to solve efficiently on parallel machines, Dijkstra’s
algorithm[176] and depth-first search[1] being two famous examples that leave little
room for parallel acceleration. Another interesting example is that of n-body simu-
lation. If one was to compute all pairwise interactions, the algorithm would be of
O
(
n2
)

complexity, and easy to implement on a parallel machine. Alternatively, one
could use a fast summation techniques such as the Barnes–Hut tree, this algorithm
is of O (n log (n)) complexity, but highly non-trivial to solve efficiently on a parallel
machine[308].

Algorithms for the numerical solution of Partial Differential Equations(PDEs) are typi-
cally neither embarrassingly parallel, nor are they inherently sequential with no op-
portunity for parallel acceleration. Domain decomposition methods are commonly
employed to reformulate a PDE boundary-value problems onto a set of subdomains to
make the solution more efficient on parallel machines as briefly outlined in section
4.2. Domain Decomposition methods are generally applicable to any discretization
method for PDEs such as finite differences, finite volumes, spectral elements, etc., and
have found widespread use in computational science and engineering[86].
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Methods for the parallel solution of initial value PDE and ODE have only in recent
years started to gain traction due to the seemingly ever increasing number of cores in
new generations of supercomputers. The topic is however not at all new. As noted in a
recent paper by Martin Gander titled “50 years of time parallel time integration”[124],
the first paper to consider a pure time decomposition for the parallel solution of an
ODEs was published as early as 1964 by Jürgen Nievergelt[232]. Nievergelt suggested
that computers might be getting closer to the maximum limit at which they could
operate, and wrote in the paper abstract on parallel machines that

“To take full advantage for real-time computations of highly parallel
computers as can be expected to be available in the near future, much of
numerical analysis will have to be recast in a more "parallel" form. By this
is meant that serial algorithms ought to be replaced by algorithms which
consist of several subtasks which can be computed without knowledge of
the results of the other subtasks. As an example, a method is proposed
for "parallelizing" the numerical integration of an ordinary differential
equation, which process, by all standard methods, is entirely serial.”

Unbeknown to the author at the time, each new generation of microchips would
continue to demonstrate improved capacity for sequential computing for another 40
years.

The remainder of this chapter is dedicated to introducing Parallel-in-Time integration
techniques, this with particular emphasis on Parareal. In section 5.1, a brief motivation
and overview of methods in general is given, and in section 5.2 the Parareal algorithm
is introduced. The chapter concludes with a brief summary of novel contributions in
Part II of the thesis.

5.1 Parallel-in-Time Integration for PDEs

Solving time dependent PDEs is often done in a methods-of-line approach where
the spatial components are discretized in some appropriate manner and a numerical
integration technique applied to advance in time. The approach extends to distributed
memory machines typically by applying some form of domain decomposition in space,
letting independent nodes communicate boundary information of their local sub-
domains. The limitation to the approach lies in the strong scaling limit, i.e., increasing
the number of nodes for a fixed problem size to achieve a reduction in time to compute.

One might naively expect to “run out of parallelism” - i.e. as the combined number of
cores become sufficiently high, there are simply not enough degree’s of freedom for all
cores to work all the time. However, solving a problem with millions, even upwards
of a billion, degree’s of freedom in space may today be done on a potent workstation.

32



5.1. Parallel-in-Time Integration for PDEs

Conversely, even the largest available clusters have no more than a few million cores,
everything included. This scaling limit is therefore somewhat theoretical, and not yet
of much relevance for practitioners. So why does obtainable speed-up saturate in the
strong-scaling limit? Consider a three dimensional domain in space divided into a
number of quadratic sub-domains with n elements spanning each dimension. The
compute work in each sub-domain is proportional to n3. The boundary information
that needs to be exchanged with neighboring sub-domains is proportional to n2. As
n → 1, compute nodes will increasingly be spending time communicating boundary
information rather than computing.

This particular limit is very much of practical concern. Moving a double between two
individual compute nodes in a cluster is many orders of magnitude more expensive
than a compute operation in terms of both wall-time and energy consumption. On
large machines comprising thousands of nodes, this is a substantial bottleneck pre-
venting applications of scaling efficiently, and therefore new algorithmic developments
are required. A potential new path to obtain scaling beyond what is possible using
conventional methods, is to introduce parallelism in the time integration procedure.
Once a system of partial differential equation have been reduced to a large system
of ordinary differential equations to be integrated over time, the problem is usually
viewed as a sequential process. Many methods for parallel-in-time time integration
have, however, been developed over the years. The earliest method to achive this
trough a decomposition of the time domain was due to Nievergalt[232], which served
as a precursor for several shooting type methods of which Parareal has emerged as the
most popular approach. Parareal allows for potentially very large scale parallelism,
the algorithm is non-invasive, and it achieves super linear convergence on certain
problems. A main limitation of the approach is the difficulty of achieving high par-
allel efficiency and issues of stability on convection dominated problems as will be
discussed in section5.2.

In recent years space-time multi-grid methods have been gaining traction as another
potentially highly scalable approach. The first full space-time multigrid method was
introduced in [302], and several others have since been proposed[211, 107, 127]. The
methods may in some sense be seen as a generalization of methods such as Parareal, as
they are designed for use with multiple grids and various ways of cycling between grids.
In [128] it was shown how Parareal, under certain circumstances, may be seen as a
two-level multigrid method. The disadvantage of space-time multigrid methods is that
they compute on the entire space-time domain simultaneously, the added dimension
means a substantial increase in memory consumption. In addition, numerical exper-
iments appear to indicate that these methods experience convergence and stability
issues when applied to convection dominated problems as well.

The methods mentioned thus far are all iterative. They exchange an increase in compu-
tational work, compared to the sequential algorithm, for the availability of parallelism
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in the otherwise sequential solution procedure. Direct solvers for parallel-in-time
integration exists as well. Small scale parallelism suitable for node-level multi-core
architectures can be achieved in predictor-corrector methods where the steps may be
computed in parallel as demonstread in [213], or by deriving Runge Kutta schemes
with independent stages as in[105]. RIDC (Revisionist Integral Deferred Correction) is a
more recent development[71], here Integral Deferred Correction methods are modified
in such a way that pipelining becomes possible, again leading to the availability of
small-scale parallelism.

The remainder of this chapter will focus on the Parareal method and serve as an
introduction to the content presented in chapters 6 to 8 and 10. For a comprehen-
sive overview of past and present research directions on Parallel-in-Time integration
techniques, we refer to[124].

5.2 The Parareal Method

The Parareal method has received substantial attention over the past decade. The
method, first proposed in [192], borrows ideas from spatial domain decomposition to
construct an iterative approach to solve the temporal problem in a parallel global-in-
time approach. To present the method, consider a problem on the form

{
du
dt +A (t,u) = 0

u (T0) = u0 t ∈ [T0, T ]
(5.1)

where A : R × V → V ′ is a general operator depending on u : Ω × R
+ → V with V

being a Hilbert space and V ′ its dual. Now, assume there exists a unique solution u (t)

to (5.1) and decompose the time domain into nt individual time slices

T0 < T1 < · · · < Tnt−1 < Tnt = T. (5.2)

Let Tn = nΔT . We now define an accurate solution operator F t
ΔT that, for any t > T0,

operates on a solution state u (t) and advance it Δ in the sense

FTn
ΔTu (Tn) = UTn+ΔT ≈ u (Tn +ΔT ) (5.3)

To solve (5.1) on [T0, T0 + nΔT ], define the operator MF

MF =

⎡
⎢⎢⎢⎢⎢⎣

1

−FT0
ΔT

. . .

. . . . . .

−FTnt−1

ΔT 1

⎤
⎥⎥⎥⎥⎥⎦ (5.4)
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with Ū = [U0, . . . ,Unt ] and Ū0 = [u0, 0, . . . , 0]. The sequential solution procedure is
equivalent to

MFŪ = Ū0 (5.5)

by forward substitution for Ū to recoverU0 · · ·Unt as approximations tou(T0) · · ·u(Tnt).
If we instead seek to solve the system using a point-iterative approach, i.e., we seek
the solution Ūk+1 = Ūk +

(
Ū0 −MFŪk

)
, we observe that at the beginning of each

iteration, Ūk is known. In each iteration we may thus compute FT1
ΔT · · · FTnt

ΔT on all
intervals in parallel.

An important thing to note here is that the computational complexity of every itera-
tion is strictly larger than that of the sequential solution procedure. Hence a reduced
time to solution is possible only if the number of iterations kconv, needed for conver-
gence is much smaller than the number of time sub-domains nt. To achieve this, a
preconditioner is needed. Assuming the existence of some MG ≈ MF , where MG is
computationally cheap, we can solve a preconditioned system on the form

(MG)
−1MFŪ = (MG)

−1 Ū0. (5.6)

A natural approach to construct the above preconditioner MG is to define a new opera-
tor GΔT as with FΔT

GΔT (Tn,u (Tn)) = UTn+ΔT ≈ u (Tn +ΔT ) (5.7)

and relax the requirements on the accuracy of GΔT , by using a coarser grid or a different
numerical model. Solving the system (5.6) iteratively using the standard precondi-
tioned Richardson iterations we recover

Ūk+1 = Ūk + (MG)
−1
(
Ū0 −MFŪ

k
)

(5.8)

equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎣

1

−GT0
ΔT

. . .

. . .
. . .

−GTnt−1

ΔT 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Uk+1
0

Uk+1
1

...
Uk+1

nt

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1

FT0
ΔT − GT0

ΔT

. . .

. . .
. . .

FTnt−1

ΔT − GTnt−1

ΔT 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Uk
0

Uk
1

...
Uk

nt

⎤
⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎣

u0

0

...
0

⎤
⎥⎥⎥⎥⎦

(5.9)

from this we recover the Parareal algorithm in the form in which it is typically presented

Uk+1
n+1 = GTn

ΔTU
k+1
n + FTn

ΔTU
k
n − GTn

ΔTU
k
n, U0

n+1 = GTn
ΔTU

0
n, Uk

0 = u(T0). (5.10)
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Once the difference between two consecutive iterations is smaller than some tolerance,
the algorithm is said to have converged. One must choose the tolerance small enough
so that the error of the Parareal solution becomes as small as the error on a sequentially
computed solution. A key point to note is how the number of iterations needed for
convergence effect the parallel efficiency of the algorithm. Since in each iteration,
computational work equivalent to the full sequential application of FΔT nt times, the
upper bound on parallel efficiency scales as 1/k where k is the number of times the
fine operators are computed in parallel accross nt time-subdomains. In addition, fast
convergence is not sufficient for efficient usage, it is essential to also consider the
efficient distribution of parallel work. This has been the topic of several studies[101,
38, 9], and will be discussed in detail as part of the material presented in chapters 7
and 10.

A comprehensive introduction to Parareal may be found in [228], whilst important
early contributions on the analysis of the method can be found in [288, 14, 128]. The
algorithm has been applied to a wide range of applications such as simulation of
dynamic physical models in automotive industry and powersystems [196, 147], optimal
control[200, 207], time-fractional equations [313] and pricing of options [236].

The Parareal method has also been applied to plasma simulation with some success as
presented in [262, 250]. Using various coarse operators, the authors achieve parallel-
in-time speed-up, although with a low parallel efficiency of single digit percent whilst
using up to 400 processors in time. In [248], convergence of the Parareal algorithm
on lattice Boltzmann method applied to a laminar flow problem is presented. It
is demonstrated that parallel speed-up is possible, albeit again with a low parallel
efficiency, and no comparison with conventional domain decomposition in space is
supplied. Numerical experiments of parallel-in-time integration using Parareal on
the three-dimensional incompressible Navier-Stokes equations on a cavity problem
is presented in [76]. The authors report that the space-time-parallel method can
provide speedup beyond the saturation of a purely space-parallel approach. In the
cavity test case, the performance saturates at a speedup of 18 with 32 cores in space.
Using another 16 time-subdomains they report a combined space-time parallel speed-
up of 27 using a total of 512 cores. Their results are in line with previous results,
reporting low parallel efficiency on a limited time-domain, but nevertheless reach
higher speedup than what is possible with the purely space-parallel approach. Similar
results are reported in [211, 283], on a space-time parallel version of the Barnes-Hut
tree code. The authors use PFASST for parallel-in-time integration and report scaling
up to 262,144 cores on the IBM Blue Gene/P installation JUGENE, demonstrating that
the space-time parallel code provides speedup beyond the saturation of the purely
space-parallel approach.

Low parallel efficiency due to slow convergence of the algorithm is a general trend
in past results. In [289] the authors present numerical experiments measuring the
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convergence of the Parareal algorithm when applied to the two dimensional Navier-
Stokes equations on a driven cavity benchmark for different Reynolds numbers. They
report that problems of instability and slow convergence increase with decreasing
viscosity, i.e., when the flow becomes increasingly convection dominated. The effect
is found to strongly depend on the spatial resolution of the problem. In [77] the
authors present an analysis of the stability of Parareal applied to hyperbolic systems
and convection dominated problems and it is shown that the instabilities are related
to the regularity of the solution over time. They propose a stabilization scheme that
modifies the iterative algorithm in such a way to avoid a transient phase of divergence
before convergence. However convergence is observed to still be slow for long time-
subdomains and the generalization of this approach is unclear. Other stabilizing
schemes have been proposed [62, 61], but they suffer from similar limitations.

An important contribution to the understanding of how convergence is affected by
the length of the time-interval to be integrated in parallel was presented in [126]. The
authors show that for Hamiltonian systems, and a given problem with some coarse
integrator, there exists a "window" in which time parallel integration is possible, and
outside of which the method does not convergence. The author also demonstrate that
convergence speed increase with smaller time-subdomains. In a recent paper [97], it is
conjectured that there exists an optimal time-subdomain length at which convergence
is rapid, yet the time-subdomain is still long enough that the communication of time-
subdomain interfaces does not become a limiting factor to parallel speedup.

Recently there’s been a renewed interest the application of Parareal to hyperbolic
and convection dominated PDE problems. In early studies it was observed that the
convergence rate of Parareal would deteriorate on certain problems as they become
increasingly convection dominated, and several theoretical results were presented in
support of these observations[288, 123]. A number of recent studies have however
indicated that a PDE problem being convection dominated, or even hyperbolic, may
not necessarily present an unsurmountable barrier for Parallel-in-time integration
using Parareal[259, 41, 169].

5.3 Contributions in Part II

The remainder of Part II of the thesis consists of three chapters. In Chapter 6, we
demonstrate a number of numerical experiments that serves to highlight findings
in resent papers on the implication of phase errors, between the coarse and the fine
operator, on the convergence rate of Parareal[169, 259]. The chapter acts, in part, as
an introduction to Chapter 7, where a newly developed scheduler denoted CAAP is
presented and used along with a phase-error free coarse operator to demonstrate
space-time parallel speedup in excess of what is possible using space-parallel methods
alone. Part II concludes with Chapter 8 in which a new method for creating Parallel-
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in-Time integration schemes is proposed. The method maintains the approach of
using a coarse operator that is allowed to execute sequentially. The idea is to make
an assumption on the difference between F and G when applied to a state U, and
based on the assumption derive an update equation to be used for extrapolation at
time-subdomain interfaces. We demonstrate how that with this approach it is possible
to derive methods that work for simple problems where the original Parareal algorithm
fails spectacularly.

38



6 Numerical Experiments: Parareal
Applied to Hyperbolic Problems

Several studies have demonstrated excellent convergence results for Parareal applied to
diffusion dominated problems, both linear an non-linear of significant complexity[115,
266, 130, 70, 187]. The application of Parareal to hyperbolic and advection dominated
problems has however remained a challenge since the inception of the algorithm in
2001[192, 108]. This is problematic as it prevents the usage of the algorithm for a large
class of problems of practical interest such as fluid dynamics where issues of slow
convergence or instabilities have been observed to arise with increasing Reynolds
number[289]. The issue observed is that the algorithm either converges slowly, or
experiences a transient phase of diverging before converging. Since the parallel effi-
ciency is bounded by 1/k, k being number of iterations needed for convergence, this is
unacceptable.

Several analytical studies on the application of Parareal to hyperbolic problems have
been published over the years. In [288], the behavior of Parareal as applied to a first
order autonomous system of ODEs was considered. The authors were able to demon-
strate that for systems with real eigenvalues, stability can be guaranteed, whereas if the
eigenvalues of the system are purely imaginary, this is not the case. Parareal as applied
to the advection equation has likewise been studied, and shown to be either unstable
or inefficient for several different numerical discretizations[129, 123].

Many methods have been suggested to modify the algorithm in such a way to gaurentee
stability. Unfortunately, all methods proposed thus far appear inadequate as they all
suffer from substantial overhead, slow convergence and/or limited applicability[109,
77, 260, 62, 61]. Despite the many studies published on the topic, the question as
to exactly how the instabilities arise has received little attention. In this chapter we
present a number of numerical experiments to elucidate on this.

The chapter serves, in part, as a precursor to the material presented in Chapter 7.
Chapter 7 is in essense an extended version of an already published paper[229]. In the
paper, an asynchronous adaptive scheduler was presented, denoted CAAP, that bal-
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ances various aspects of the execution process so to achieve higher parallel efficiency
than other schedulers. The method was tested on the 2D nonlinear shallow water
wave equation with a right hand side forcing term and moving boundaries for tsunami
modeling, solved using a 3rd order space-time accurate WENO SSP-RK scheme. Trough
large-scale experiments it was demonstrated not only that time-parallel speedup was
possible, but that higher speedup was possible than what could be achieved using
spacial domain-decomposition alone. The result is somewhat surprising as the general
conviction in the community is that Parareal does not work for hyperbolic problems.
The PDE being solved is purely hyperbolic, and the solution contains shock formation
and waves interacting in a non-linear manner. In addition, due to the use of a high
order WENO scheme, not much artificial numerical dissipation is introduced.

The results of the paper was presented at a talk at the 6th Conference on Parallel-
in-Time Integration (PINT6) held in Monte Veritá Switzerland October 2017. At the
Q/A following the presentation, the audience were primarily interested in figuring
out why the algorithm converged at all, and only to a lesser extent interested in the
asynchronous adaptive scheduler. It was suggested by a member of the audiance that a
possible reason for why convergence was observed could be due to the specific choice
of coarse operator. For the numerical experiments presented in the paper, a lower
order Approximate Riemann solver was used as the coarse solver, applied to the same
grid as the fine WENO SSP-RK scheme. The approximate Riemann solver captures
wave propagation very well, so the difference with respect to the WENO SSP-RK is
almost exclusively that it is more dissipative. In a recent study, it was shown trough a
discrete dispersion analysis of the Parareal integration method as applied to a linear
system of ODEs, that the source of instability is different discrete phase speeds on the
coarse and fine level, and that the instability is particularly pronounced for higher
wave modes[259]. This observation could potentially explain the convergence results
presented in section 7.2.2 of Chapter 7.

The remainder of this chapter is dedicated to verifying that this is indeed the case, and
to demonstrate how instabilities develop due to phase speed difference between the
coarse and fine operator.

6.1 The impact of Phase and Amplitude

In this section we present a few numerical experiments of Parareal applied to an
advection dominated 1D advection-diffusion equation. Two experiments are made,
one using a coarse operator that introduces only dispersive errors, and another using a
coarse operator introducing only dissipative errors. We compute an approximation to
the solution of the 1D advection-diffusion equation

∂

∂t
u (x, t) + a

∂

∂x
u (x, t) = κ2

∂2

∂x2
u (x, t) (6.1)
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6.1. The impact of Phase and Amplitude

on the domain x ∈ [0, 1] with periodic boundary conditions and t ∈ [0, T ]. To act
as a dispersive operator, a space-time 4th order accurate compact finite difference
as proposed in [216] for the advection-diffusion equation is used. The dissipative
operator is constructed by applying upwind finite difference to descritize the advection
term, along with a centered finite difference stencil to descritize the diffusion term.
Both terms treated are explicitly in time with a forward euler.
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Figure 6.1 – The application of Parareal for parallel-in-time integration of the advection-
diffusion equation with κ = 10−5 and a = 1 to T = 2.5 using the initial condition in
figure (a). The dispersive operators FΔT and GΔT are created using 301 and 31 points in
space respectively, with a 4th order compact finite difference scheme. The dissipative
operatorsFΔT andGΔT were created using a 1st order upwind scheme for the advection
term and centered finite difference for the diffusion term, applied to a mesh with 601
and 61 points in space respectively.
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Figure 6.1 depicts the result of an experiment using Parareal with nt = 50 time-
subdomains for the parallel-in-time integration of (6.1) with a discontinuous initial
condition, as shown in figure 6.1a, and κ = 10−5, a = 1, solved to T = 2.5, i.e. 2.5
wave periods. For FΔT , the dispersive operator is given 301 points in space, and the
dissipative 601 points. In both cases GΔT is constructed by factor 10 space-time coars-
ening and spline interpolation to move between grids. The difference between the two
types of operators is demonstrated in figure 6.1b, where the result of the sequential
application of each is plotted. When FΔT and GΔT are dispersive, the algorithm clearly
becomes unstable as seen from figure 6.1c, but interestingly, when both operators are
dissipative, figure 6.1d, the algorithm appears instead to converge monotonously.

Next we test the convergence behavior when combining the dispersive and dissipative
operators. In figures 6.2 and 6.3, another set of numerical experiments are presented,
this time including convergence plots. The error of the Parareal solution is measured
with respect to both the sequential solution, and the exact solution, as a function of
time for consecutive iterations. For the initial condition u (x, 0) = sin (2πx) is used,
and the system is integrated over 10 wave periods using nt = 50 time-subdomains.
FΔT is created using the same 4th order accurate compact finite difference stencil
used for the previous set of experiments, here with 61 points in space. The dissipative
coarse operator GΔT is applied to the same grid with 61 points in space. The dispersive
GΔT is made by coarsening the space-time grid by a factor of 6, i.e. 11 points in space.
The factor was chosen so to make the computational cost of the two coarse operators
comparable.

In figure 6.2 the experiments are made using κ = 10−3, and in figure 6.3 κ = 10−5. In
figures (a)-(b), the Parareal solution is plotted for the first 5 iterations at T = 10. In
figures (c)-(d) the error with respect to the exact solution of the equation is given for
each consecutive Parareal iteration as a function of time. In figures (e)-(f) the error
with respect to the numerical approximation of the fine solution is given for each
consecutive iterations. The difference is rather striking, one notes that when using the
coarse operator that introduce wave phase errors, at T = 10, the algorithm diverges
wildly and converges only towards the end when K → N . When using the lower
order operator as GΔT that only introduce dissipative errors, the algorithm converges
smoothly towards the right solution.

The results presented in figures 6.2(c)(e) and 6.3(c)(e) indicate that Parareal actually
convergences for the dispersive coarse operator, for the first few iterations, for T < 4,
i.e. less than 20 time-subdomains, before eventually diverging. However, comparing
the two figures, it is clear that decreasing κ makes the interval for which it converges
smaller. Crucially, this behavior is not seen in figures 6.2(d)(f) and 6.3(d)(f), no di-
vergent behavior is observed when using the dissipative coarse operator, even for
κ = 10−5.
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Figure 6.2 – Convergence when computing an approximation to the solution of (6.1)
with κ = 10−3 and a = 1 to T = 10 on nt = N = 50 time-subdomains. (a,c,e) using
a factor 6 coarsened space-time grid as a dispersive GΔT . (b,d,f) using a lower order
operator as a dissipative GΔT . In both cases FΔT is the 4th order dispersive scheme.
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Figure 6.3 – Convergence when computing an approximation to the solution of (6.1)
with κ = 10−5 and a = 1 to T = 10 on nt = 50 time-subdomains. (a,c,e) using a factor 6
coarsened space-time grid as a dispersive GΔT . (b,d,f) using a lower order operator as
a dissipative GΔT . In both cases FΔT is the 4th order dispersive scheme.
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6.2 An Illustration of the Correction Procedure

The observations made in the numerical experiment presented in the previous section
confirm the behavior suggested by the analysis presented in [259]; differences in wave
phase speeds between the coarse and fine operator leads to instabilities whereas their
absence leads to smooth convergence. The experiments and analysis referred to was
made for a linear PDE and a linear system of ODEs respectively. The observations
likewise appear to explain the, otherwise surprisingly, positive convergence results that
will be presented in Chapter 7 for Parareal applied to a nonlinear hyperbolic system of
PDEs in the form of the 2D shallow water wave equation with a right hand side forcing
term.

The question still remains though; why does Parareal successfully correct dissipative
errors on GΔT with respect to FΔT , whereas dispersive errors tend to be amplified
rather than corrected? To answer this question, and gain a deeper understanding of
the correction procedure, we draw each step in the Parareal algorithm for different
cases of coarse operator GΔT behavior when applied to the scalar advection equation.
The correction procedure is drawn for the first nt = 3 intervals and k = 2 iterations,
and 3 examples are given in figures 6.4, 6.5 and 6.6. In all figures, FΔT is considered the
true solution to the advection equation, and it advects a solution state two steps to the
right. In figure 6.4, GΔT is exactly FΔT , plus some constant amplitude error. In figures
6.5 and 6.6, GΔT advects the solution a single step to the right instead of the two steps
to the right of FΔT , i.e. a phase error.

The first thing to note from the experiment is how the addition of a constant phase
error leads to the Parareal corrections becoming meaningless around the discontinuity
as evident from following the correction procedure in figure 6.5. The horizontal move-
ment of the wave is wrongly interpreted by Parareal as a need for vertical correction.
Rather than correct errors, additional errors are introduced around the discontinuity.
The same effect is seen in figure 6.6 on the pyramid shape, the softer angle change
leads to a decrease in the magnitude in errors introduced, but does not eliminate them.
Another important observation can be made from the correction procedure outlined
in figure 6.4. When the error on GΔT with respect to FΔT is in the form of the addition
of a constant, i.e. amplitude error, the algorithm converges exactly at iteration k = 1

for all n. This despite it being an advection equation with a moving discontinuity.

The correction that the algorithm performs fundamentally assumes that GΔT differs
from FΔT by some constant function cn(x). If this is satisfied, the algorithm is exact
for all n at the first correction k = 1. Regardless of the underlying properties of FΔT .
This assumption is fundamentally flawed when GΔT has dispersive error components
that differ from FΔT . The horizontal movement of waves is wrongly interpreted by the
algorithm as a need for correction, which results in the injection of additional high
frequency error components. The magnitude of the problematic error components in-
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Figure 6.4 – Illustration of the Parareal correction procedure on a shock moving to
the right with a constant velocity of two steps per ΔT . FΔT is exact in that it takes any
state U and moves it two steps to the right. The coarse operator GΔT also moves the
solution two steps to the right, but introduces an error on the amplitude such that
GΔTU

k
n = GΔTU

k
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k
n �= 0 and GΔTU

k
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k
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Uk
n for all n converge to the exact solution at k = 1.
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Figure 6.5 – Illustration of the Parareal correction procedure on a shock moving to
the right with a constant velocity of two steps per ΔT . FΔT is exact in that it takes
any state U and moves it two steps to the right. The coarse operator GΔT introduces
an error as it only moves a state U one step to the right for each ΔT . One notes that
large oscillations are introduced around the shock and that no meaningful correction
is made on the state Uk

n for all n such that n > k.
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Figure 6.6 – Illustration of the Parareal correction procedure on a wave with sharp
edges moving to the right with a constant velocity of two steps per ΔT . FΔT is exact in
that it takes any state U and moves it two steps to the right. The coarse operator GΔT

introduces an error as it only moves a state U one step to the right for each ΔT . One
notes that for all points xi for which it is true that ∂

∂xFΔTU
k
n (x)

∣∣
xi

= ∂
∂xGΔTU

k
n (x)
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=
∂
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, the correction is exact already by the first correction k = 1. For the
points xi at which the angles differ, large oscillations are introduced and no meaningful
correction made.
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troduced by the correction is proportional to the frequencies already present, therefore,
for the algorithm to be stable, there must be sufficient artificial or natural diffusion in
the problem to dampen these errors components, otherwise they will be magnified in
subsequent iterations.

6.3 Summary

Observing the correction procedure as applied to a pure advection equation exposes
the limitations of Parareal. In the limit that the solution contain high frequencies,
whilst GΔT differ from FΔT only in terms of phase errors, the Parareal correction is
useless. The error of GΔT with respect to FΔT will be magnified rather than corrected.
In this case, the algorithm is exact only for time-subdomains n <= k, for all n > k,
errors are introduced and amplified in Uk

n . Thus, for problems where GΔT and FΔT

have different dispersive error components, it appears that it is only possible to use
Parareal in one of two ways:

1. Ensure somehow that there is sufficient dissipation in the problem to dampen
out all amplification by Parareal on dispersive error components.

2. Design a coarse operator GΔT that is exactly FΔT + some dissipation.

Option 1 is problematic for several reasons. First, no general theory exists to a priori
predict when/if there is enough dissipation to stabilize the algorithm. Second, if one
was to add additional artificial dissipation to GΔT to dampen the errors introduced,
the convergence rate will decrease since the dissipation can not distinguish between
which features are due to errors and which are not. Option 2 may be a viable approach
in certain cases. For the numerical solution of nonlinear conservation laws, many
widely used schemes, such as Godunov method and various Approximate Riemann
solvers, capture the speed of waves exactly, but are dissipative. Applications relying
on discretizations of this type for the numerical solution of conservation laws may be
a possible use-case for Parareal, despite the underlying problem being hyperbolic in
nature.

In Chapter 7 we demonstrate one such example. Here Parareal is applied for the
parallel-in-time integration of a conservation law in the form of 2D shallow water wave
equation solved by WENO SSP-RK[279, 315]. A Roe approximate Riemann solver is
used to create GΔT . The first order scheme captures the position of waves and shocks
very well, but is dissipative compared to the higher order WENO SSP-RK scheme.

At the time of implementing the latter, the observations presented in this Chapter were
not known. The choice of coarse operator was however not simply a lucky guess that
just happened to work well. Before choosing to use that particular coarse operator, we
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had made a number of experiments on the 1D equation with different coarse operator
candidates to determine which operator would work better. Among the candidates
were using a simple coarsened space-time mesh, as well as various lower order schemes
applied to the same mesh in the form of Lax-Friedrichs method, Roe’s method[190]
and two relaxation schemes[177]. A range of operators was tested because coarse
operator efficiency is essential for the method to work well as will be discussed further
in Chapter 7, so one should choose a coarse operator which is as accurate as possible
under whatever cost constraint given. I.e., to create a coarse operator that is a factor
of 10 or 100 faster in terms of computational complexity, simply coarsened the grid
might not be most effective accurate option.

In this chapter we demonstrated how differences in dispersive error components
between FΔT and GΔT are the cause of the instabilities and slow convergence often
reported for Parareal applied to hyperbolic and convection dominated problems. In
Chapter 8, we use the insight gained here to propose a new way of creating parallel-
in-time integration schemes, inspired by Parareal, that allows for phase errors to be
corrected upon.
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7 Communication Aware Adaptive
Parareal

In the strong scaling limit, the performance of conventional spatial domain decompo-
sition techniques for the parallel solution of PDEs tend to saturate as briefly outlined in
Section 4.1. When spatial sub-domains become small, the communication of bound-
ary information and other overhead tend to dominate to the extend that it becomes
a bottleneck for parallel acceleration. A potential path beyond this scaling limit is to
introduce domain-decomposition in time. One such popular approach is the Parareal
algorithm which has received substantial attention due to its generality and potential
scalability.

Low efficiency, particularly on convection dominated problems, has, however limited
the adoption of the method. In this chapter we demonstrate that it is possible to obtain
time-parallel speedup on the non-linear shallow water wave equation, and that we may
obtain parallel acceleration beyond what is possible using conventional spatial domain-
decomposition techniques alone. Two factors are essential in achieving this. First,
for Parareal to converge for the hyperbolic problem we use a finite volume method
with a Roe numerical flux as the preconditioner. This coarse operator introduces only
dissipative errors with respect to the 3rd order accurate WENO-RK discretization used
to solve the PDE system.

The preconditoner is relatively expensive and convergence is slow unless the time-
subdomains are short. We therefore introduce a new scheduler that we denote Com-
munication Aware Adaptive Parareal (CAAP). CAAP increases obtainable speed-up
by minimizing the time-subdomain length without making communication of time-
subdomains too costly whilst also adaptively overlapping consecutive cycles of the
Parareal to mitigate the impact of a relatively expensive coarse operator. The content
of this chapter has been published in a condensed form in [229].
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Chapter 7. Communication Aware Adaptive Parareal

7.1 Introduction

The rapid evolution of computers used to model physical phenomena in the compu-
tational sciences poses new challenges for algorithms. The growing number of cores,
the increasingly convoluted cache hierarchies, and the use of accelerators all seek to
boost the computational capacity of individual nodes. At the same time, the number
of compute nodes in distributed memory machines has increased dramatically. This
development towards increasing hardware parallelism exposes algorithmic shortcom-
ings and requires a rethinking of the fundamental algorithms to maintain scalability
and enable efficient use of the computing platform [92]. The focus of this chapter is
on the Parareal method that has received substantial attention over the past decade.
The Parareal method, first proposed in [192], borrows from ideas in (spatial) domain
decomposition to construct an iterative approach to solve the temporal problem in a
parallel-in-time approach. An introduction to the method was given in chapter 5, and
in chapter 6 the application of the algorithm was investigated in the context of linear
hyperbolic and convection dominated PDEs, which serves in part as an introduction
to chapter 7. A comprehensive introduction to parallel-in-time integration schemes in
general can be found in [124], and an introduction to Parareal specifically in [228].

The chapter begins with an introduction to the nonlinear shallow water wave equation
and to the numerical scheme used to solve it, this followed by the introduction of
the test case used. In section 7.4 we present theoretical considerations on how to a
priori estimate the optimal time-subdomain length for the time-decomposition. To
effectively decouple the time-subdomain length and the total time to be integrated
with Parareal, we introduce an adaptive Parareal variant in section 7.3 based on the
scheduler introduced in [9]. The approach allows consecutive Parareal cycles to overlap
in time to balance processor utilization and convergence efficiently. Henceforth, we
will denote the combination of the adaptive work scheduler and an informed choice
on the time-subdomain length as CAAP, an abbreviation of Communication-aware
Adaptive Parareal. The shallow water wave equation test case is introduced in Section
7.2 along with relevant notation, and the numerical experiments and scaling tests that
demonstrate the performance of our approach are presented in section 7.5.

7.2 2D Shallow Water Equation with Explicit SSP-RK WENO

The shallow water wave equation is used to model a wide array of wave phenomena.
Simulation of trans-ocean waves, flows in rivers and coastal areas, hydraulic engineer-
ing, and atmospheric modeling are among the many examples of application. The
system of coupled partial differential equations that constitutes the shallow water
wave equation is nonlinear and purely hyperbolic. The equation captures fundamental
phenomena across different scales in space and time including shocks that may form
during the solutions procedure even for perfectly smooth initial conditions. The equa-
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tion is therefore a challenging case for parallel-in-time integration and, as such, an
excellent platform for measuring to what extend time-parallel integration is possible
for hyperbolic problems. The two dimensional version of the equation may be written
as ⎧⎪⎪⎨

⎪⎪⎩
ht + (hu)x + (hv)y = 0

(hu)t +
(
hu2 + 1

2gh
2
)
x
+ (huv)y = −ghzx

(hv)t + (huv)x +
(
hv2 + 1

2gh
2
)
y
= −ghzy

(7.1)

where h := h (x, y, t) denotes the water height, u := u (x, y, t) and v := v (x, y, t) the
velocity in the x and y direction, respectively. z := z (x, y) denotes overland topography
and underwater bathymetry whilst g denotes the gravitational constant. The equation
is often presented in conservation form as

qt + f (q)x + g (q)y = s (h, z) (7.2)

where q = (h, hu, hv)T , and the two flux functions f (q), g (q) are given by

f (q) =

⎛
⎜⎝ hu

hu2 + 1
2gh

2

huv

⎞
⎟⎠ , g (q) =

⎛
⎜⎝ hv

huv

hv2 + 1
2gh

2

⎞
⎟⎠ (7.3)

The source term s (h, z) is needed for non-flat bathymetrys. For inundation modeling,
the source term occationally also include Manning’s law, an empirically derived friction
term that is added to better capture the physics of land-overflow. In the code the be
accelerated, a simple thin-layer mesh reduction technique is used for inundation
modelling, but no friction terms are added as hydrological studies is not the primary
concern of this work. We refer to the works of [201, 315] for an introduction to the
shallow water wave equation and inundation modelling.

7.2.1 Introducing the Operators

Finite volume schemes are a popular approach for solving hyperbolic conservation

laws as the underlying physics is represented in a natural way. Let Ii,j =
[
xi− 1

2
, xi+ 1

2

]
×[

yj− 1
2
, yj+ 1

2

]
define a structured rectangular uniform mesh. In a finite-volume scheme,

we seek the cell average

Qij (t) =
1

ΔxΔy

∫
Ii,j

q (x, y, t) dxdy (7.4)

that approximates q (x, y, t) at every cell Ii,j for a given time-step t. The spatial deriva-
tives must therefore be approximated using cell-averages. To do so, a Weighted Es-
sentially Non-Oscillatory (WENO) scheme is used for the reconstruction along with a
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Strong-Stability-Preserving type explicit Runge-Kutta scheme (SSP-ERK) to integrate
the resulting system of coupled ODEs. This scheme is 3rd order accurate in both space
and time. To use Parareal, a “coarse” operator GδT is required that act as a precondi-
tioner in the Parareal iteration. To construct such a preconditioner, we use a simple
finite volume scheme with an approximate Riemann solver, first order in time and
space method. This coarse operator is introduced in Section 7.2.1, followed by the
introduction of the 3rd order WENO SSP-ERK scheme in Section 7.2.1. In both cases,
the methods are presented in their complete form, but without derivation and analysis.
We refer to [279] for an introduction to ENO and WENO based methods, and [315] for
higher order WENO applied to the shallow water wave equation with wetting and dry-
ing of cells. For both the WENO SSP-ERK and the lower order method the integration
procedure is adaptive, in each step the longest possible time-step that satisfy the CFL
condition for all cells is computed and used. Figure 7.4 contains a visualization of a
Tsunami wave hitting the coastline of the main islands of Hawaii as simulated with the
finite-volume discretization of the inhomogeneous shallow water wave equation (7.1)
solved using the WENO SSP-ERK scheme. Following the next two sections where the
numerical scheme is briefly outlined, the test-case that will be used to evaluate our
proposed method for parallel-in-time integration is presented.

Roe’s Method

For the coarse operator GΔT used to solve (7.1), we use a standard finite volume method
with an approximate Riemann solver[253]. The method is explicit, first order in time
and space. The complete scheme is outlined in (7.5)-(7.16). Here we omit any details
on derivation and analysis and instead refer to [190] for a comprehensive introduction
to finite volume methods. Henceforth we will refer to the scheme as “Roe’s Method”
following the convention used in [190]. To find Qn+1

ij from Qn+1
ij , one evaluates

Qn+1
ij = Qn

ij −
Δt

Δx

(
Fn
i+ 1

2
,j
− Fn

i− 1
2
,j

)
− Δt

Δy

(
Gn

i,j+ 1
2

−Gn
i,j− 1

2

)
+

1

Δt
s
(
Qn+1

i,j

)
(7.5)

where

Fn
i− 1

2
,j
=

1

2

(
f
(
Qn

i−1,j

)− f
(
Qn

i,j

))− 1

2

∣∣∣∣J̃f

i− 1
2
,j

∣∣∣∣ (Qn
i,j −Qn

i−1,j

)
(7.6)

Gn
i,j− 1

2

=
1

2

(
g
(
Qn

i,j−1

)− g
(
Qn

i,j

))− 1

2

∣∣∣∣J̃g

i,j− 1
2

∣∣∣∣ (Qn
i,j −Qn

i,j−1

)
(7.7)

Here s is the RHS function taking into account bathymetry. Due to the special structure
of s (Q), (7.5) may be evaluated explicitly, see (7.1). In the above, J̃f

i− 1
2
,j

and J̃g

i,j− 1
2

are

derived from the Jacobian matrices of f (q) and g (q) respectively. From (7.3) we see
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that

∇qf (q) =

⎡
⎢⎣ 0 1 0

−u2 + gh 2u 0

−uv v u

⎤
⎥⎦ , ∇qg (q) =

⎡
⎢⎣ 0 0 1

−uv v u

−v2 + gh 0 2v

⎤
⎥⎦ (7.8)

The matrices J̃f

i− 1
2
,j

and J̃g

i,j− 1
2

are then defined as the Jacobian matrices (7.8) evaluated

at the Roe averages, defined by

ũi− 1
2
,j =

√
hi−1,jui−1,j +

√
hi,jui,j√

hi−1,j +
√
hi,j

, ṽi− 1
2
,j =

√
hi−1,jvi−1,j +

√
hi,jvi,j√

hi−1,j +
√

hi,j
(7.9)

for ũi− 1
2
,j , ṽi− 1

2
,j and

ũi,j− 1
2
=

√
hi,j−1ui,j−1 +

√
hi,jui,j√

hi,j−1 +
√
hi,j

, ṽi,j− 1
2
=

√
hi,j−1vi,j−1 +

√
hi,jvi,j√

hi,j−1 +
√

hi,j
(7.10)

for ũi,j− 1
2

and ṽi,j− 1
2

. The Roe averages on the water height cell average h̃i− 1
2
,j and

h̃i,j− 1
2

are given by

h̃i− 1
2
,j =

1

2
(hi−1,j + hi,j) , h̃i,j− 1

2
=

1

2
(hi,j−1 + hi,j) (7.11)

The Jacobian matrices (7.8) have the following two eigensystem decompositions

Λf =

⎡
⎢⎣ u

u−√
gh

u+
√
gh

⎤
⎥⎦ , Rf =

⎡
⎢⎣ 0 1 1

0 u−√
gh u+

√
gh

1 v v

⎤
⎥⎦ (7.12)

Λg =

⎡
⎢⎣ v

v −√
gh

v +
√
gh

⎤
⎥⎦ , Rg =

⎡
⎢⎣ 0 1 1

1 u u

0 v −√
gh v +

√
gh

⎤
⎥⎦ (7.13)

from which we define

Λ̃f

i− 1
2
,j
=

⎡
⎢⎣

ũi− 1
2
,j

ũi− 1
2
,j − c̃i− 1

2
,j

ũi− 1
2
,j + c̃i− 1

2
,j

⎤
⎥⎦ ,

R̃f

i− 1
2
,j
=

⎡
⎢⎣

0 1 1

0 ũi− 1
2
,j − c̃i− 1

2
,j ũi− 1

2
,j + c̃i− 1

2
,j

1 ṽi− 1
2
,j ṽi− 1

2
,j

⎤
⎥⎦

(7.14)
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and

Λ̃g

i,j− 1
2

=

⎡
⎢⎣

vi,j− 1
2

ṽi,j− 1
2
− c̃i,j− 1

2

ṽi,j− 1
2
+ c̃i,j− 1

2

⎤
⎥⎦ ,

R̃g

i,j− 1
2

=

⎡
⎢⎣

0 1 1

1 ũi,j− 1
2

ũi,j− 1
2

0 ṽi,j− 1
2
− c̃i,j− 1

2
ṽi,j− 1

2
+ c̃i,j− 1

2

⎤
⎥⎦

(7.15)

where c̃i− 1
2
,j =

√
gh̃i− 1

2
,j and c̃i,j− 1

2
=
√
gh̃i,j− 1

2
, so that

∣∣∣∣J̃f

i− 1
2
,j

∣∣∣∣ and

∣∣∣∣J̃g

i,j− 1
2

∣∣∣∣ can be

written as∣∣∣∣J̃f

i− 1
2
,j

∣∣∣∣ = Rf

i− 1
2
,j

∣∣∣∣Λf

i− 1
2
,j

∣∣∣∣
(
Rf

i− 1
2
,j

)−1

,

∣∣∣∣J̃g

i,j− 1
2

∣∣∣∣ = Rg

i,j− 1
2

∣∣∣∣Λg

i,j− 1
2

∣∣∣∣
(
Rg

i,j− 1
2

)−1

(7.16)

Together with equations (7.5), (7.6) and (7.7) this completes the description for Roe’s
method when applied to the 2D shallow water wave equation. Note that the evaluation

of s
(
Qn+1

i,j

)
in (7.5) does not infer that Qn+1

ij can not be computed explicitly for all

i, j since hn+1
i,j can be evaluated explicitly using only Qn

ij before computing hun+1
i,j and

hun+1
i,j in which hn+1

i,j is needed.

WENO and SSP-ERK

We present a brief overview of the WENO SSP-ERK method used in the solver for the
2D shallow water wave (7.1) that we seek to accelerate using Parareal. Integrating (7.2)
over a cell Iij one finds that

dQij (t)

dt
=− 1

ΔxΔy

⎛
⎝∫ y

j+1
2

y
j− 1

2

f
(
q
(
xi+ 1

2
, y, t

))
dy+ (7.17)

−
∫ y

j+1
2

y
j− 1

2

f
(
q
(
xi− 1

2
, y, t

))
dy +

∫ x
i+1

2

x
i− 1

2

g
(
q
(
x, yj+ 1

2
, t
))

dx (7.18)

−
∫ x

i+1
2

x
i− 1

2

g
(
q
(
x, yj− 1

2
, t
))

dx+

∫
Ii,j

s (q, z) dΩI

⎞
⎠ (7.19)

where Qij (t) is the cell average as defined in (7.4). We introduce the operator L as an
approximation to the RHS of (7.17) by the following conservative scheme

L (Qij) = − 1

Δx

(
f̂i+ 1

2
,j − f̂i− 1

2
,j

)
− 1

Δy

(
ĝi,j+ 1

2
− ĝi,j− 1

2

)
+

1

ΔxΔy

∫
Ii,j

s (q, z) dxdy

(7.20)
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where the numerical flux f̂i+ 1
2
,j is defined as

f̂i+ 1
2
,j =

∑
α

wαF

(
q−
i+ 1

2
,yj+βαΔy

, q+
i+ 1

2
,yj+βαΔy

)
(7.21)

Here βα and wα are Gaussian quadrature nodes and weights for approximating the
integration in y as

f̂i+ 1
2
,j ≈

1

Δy

∫ y
j+1

2

y
j− 1

2

f
(
q
(
xi+ 1

2
, y, t

))
dy (7.22)

and q±
i+ 1

2
,y

are the WENO reconstructed values, computed as described in [279]. F is

the numerical flux as defined in (7.6). The approximation of ĝi+ 1
2
,j is defined in the

same way, but using (7.7). With L (Qij) as defined in (7.20), we perform the integration
using the optimal third order SSP Explicit Runge-Kutta scheme

Q(1) =Qn +ΔtL (Qn)

Q(2) =
3

4
Qn +

1

4
Q(1) +

1

4
ΔtL

(
Q(1)

)
Qn+1 =

1

3
Qn +

2

3
Q(1) +

2

3
ΔtL

(
Q(2)

) (7.23)

A complete introduction to the WENO family of numerical schemes is outside the
scope of this chapter. We refer to [279] for an introduction to ENO and WENO based
methods, and [315] for higher order WENO applied to the shallow water wave equation
with wetting and drying of cells.

7.2.2 Parareal Convergence

To use Parareal, a “coarse” operator GΔT is required that acts as a preconditioner in the
Parareal iteration. In our initial investigations on the 1D equation we found that the
choice of the coarse operator has a substantial impact on the speed of convergence
of the algorithm. Using Lax-Wendroff or MacCormack schemes, we observed that
Parareal initially diverges and only converge at the k = N ’th iteration. The best result
was achieved using Roe’s method introduced in the previous section. In this case we
do not observe any instabilities, even for problems where shocks appear.

In a recent paper it has been shown trough a discrete dispersion analysis of Parareal,
applied to a linear system of ODEs, that the source of instability is different discrete
phase speeds of the coarse and fine level, and that the instability is particularly pro-
nounced for higher wave modes[259]. This matches our observations and may well
explain the surprising result that Parareal converges when using this particular com-
bination of fine and coarse solver despite solving a hyperbolic non-linear system of
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PDEs. The convergence properties of Parareal on WENO SSP-ERK when solving the
shallow water wave equation when using Roe’s method as a preconditoner is tested
on the 1D problem. We run the numerical experiments for two different resolutions
dx = 0.01 and dx = 0.001, two different time-domain lengths, T = 0.1 and T = 1.0, and
two different decompositions in time N = 20 and N = 50. For each case, we present
the error as a function of k, measured with respect to a reference solution computed
on a high-resolution mesh

εu =

∫
Ω

∣∣∣Uk
TN

(x)− u (x, TN )
∣∣∣ dx (7.24)

as well as with respect to the “fine” solution, defined as the solution computed sequen-
tially using the 3rd order accurate WENO SSP-ERK scheme

εF =

∫
Ω

∣∣∣Uk
TN

(x)−FN
ΔTu (x, T = 0)

∣∣∣ dx. (7.25)

For the numerical experiment we let g = 1 and use the initial condition

h (x, T = 0) =

{
1− 1

4 sin (8πx) if x < 4
5

3
2 if x ≥ 4

5

, hu (x, T = 0) = 0 (7.26)

as an initial condition at T = 0. The initial condition contains both smooth regions
and discontinuities that develop into shocks over time. The water and flow profile
initial condition is depicted in Figure 7.1 along with the reference solution at T = 0.1

and at T = 1.0. The result of the numerical experiment is presented in Figure 7.2 for
N = 20 and in Figure 7.3 for N = 50. From the convergence measurements we make
several observations.

• The algorithm converges faster on shorter time-subdomains, in particular when
measured with respect to the reference solution. On the coarse mesh with dx =

0.01 and time-interval Tend = 0.1, the Parareal solution reaches the accuracy of
the fine solution εF � εu, already at the second correction.

• When the error of the Parareal solution is measured with respect to the WENO
solution, the number of iterations needed for convergence to machine accu-
racy depends only weakly on the time-subdomain length. For the fine mesh,
decreasing the time-subdomain has less effect than on the coarse mesh.

• The convergence rate seems to decrease as the mesh is refined, yet is still reason-
able even for the very fine mesh using 1000 cells, dx = 0.001. Here the accuracy
of the Parareal solution is of the same order as that of the WENO fine solution
after 4-5 iterations using 20 time-subdomains and 5-7 iterations using 50 time-
subdomains.
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• Comparing Figures 7.2 and 7.3, it appears that the number of iterations needed
before εF � εu is almost unaffected by the total number of time-subdomains. A
positive and somewhat surprising result.

The observations are similar to some of the observations reported in a recent presen-
tation at the 7th Parallel-in-Time workshop[41]. In addition to having the advantage
of not introducing dispersive errors with respect to the WENO SSP-ERK solver, the
lower order approximate Rieman solver has the advantage of being applied on the
same spacial mesh this avoids the use of interpolation between meshes which has
been reported as something that can potentially exacerbate any instability issues.

In conclusion, it appears that this coarse operator is suitable for this particular PDE
and WENO SSP-ERK discretization. A drawback of the chosen coarse operator is that it
is comparatively expensive. It is faster with respect to the fine solver only by a factor
10 to 15 depending on the problem size. In addition, time-subdomains must be short
for the algorithm to converge to the accuracy of the WENO SSP-ERK solution quickly.
In section 7.3 we introduce a new scheduler for the specific purpose of minimizing
the time-subdomain length without making communication of time-subdomains too
costly whilst also adaptively overlapping consecutive cycles of Parareal so to mitigate
the impact of a relative slow coarse operator.

0 1

0

1

h(x, t)
hu(x, t)

(a) T = 0

0 1

0

1

(b) T = 0.1

0 1

0

1

(c) T = 1

Figure 7.1 – Initial condition (7.26) with periodic boundary conditions. The reference
solution is computed using a cell size dx = 10−4. (a) T = 0. (b) T = 0.1. (c) T = 1.
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Figure 7.2 – εu and εF as a function of k for the Parareal algorithm when solving the 1D
non-linear shallow water wave equation on N = 20 time-subdomains using the fine
scheme and Parareal preconditioner, described in section 7.2.1. εWu and εF are defined
in (7.24) and (7.25). The red line indicates the error of the fine solution with respect to
the true solution. The red dotted line indicates the error of the preconditioner with
respect to the true solution.
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Figure 7.3 – εu and εF as a function of k for the Parareal algorithm when solving the 1D
non-linear shallow water wave equation on N = 50 time-subdomains using the fine
scheme and Parareal preconditioner described in section 7.2.1. εu and εF are defined
in (7.24) and (7.25). The red line indicates the error of the fine solution with respect to
the true solution. The red dotted line indicated the error of the preconditioner with
respect to the true solution.
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(a)
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Figure 7.4 – Solving the inhomogeneous two-dimensional shallow water wave equation
(7.1) with absorbing boundary conditions and a thin-layer mesh reduction technique
for land inundation. The equation is solved on a structured rectangular mesh spanning
a 400km by 400km map centered over the O’Ahu and Hawaii islands in the pacific. The
bathymetry and topography was taken from the free ETOPO1 global relief data-set[4].
The initial conditions at T = T0 consists of multiple superimposed waves rising above
the steady-state solution. A red-black-purple coloring scheme is used to indicate the
deviation of water height with respect to steady state water-line over time.
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7.2.3 Introducing the Test Case

The solution presented in Fig. 7.6 and 7.7 to the test-case was computed using the
WENO SSP-ERK scheme.

In this section we present the test-case used to evaluate the extent to which the original
Parareal algorithm and CAAP, yet to be presented, can be used to accelerate the process
of finding a numerical solution to (7.1). The test-case uses the radially-symmetric
elliptic paraboloid bathemetry as a classic test-case presented in [297], but with a
different initial condition to allow shocks to develop as time progresses. In the model,
simulation of land inundation is included.

The initial condition in the model, proposed by Thacker[297], is a standing half-wave in
a radially-symmetric elliptic paraboloid bathymetry. For the test case, Thacker derives
an analytical solution. The case is excellent for testing correctness of an implemen-
tation, but is insufficient in the context of time-parallel integration as the test-case
contains no shocks. In the numerical solution of hyperbolic systems of partial differen-
tial equations, an important aspect is the computational challenges associated with
handling shocks. It is reasonable to assume that the presence of shocks may have an
effect on the convergence rate of the Parareal method. Furthermore the complexity
of the solution is limited. Using the simple test-case of [297] may thus lead to a false
positive in the sense that observing a fair convergence rate on this particular problem
may not say much about the case for hyperbolic problems in general.

Due to these limitations of the classical test-case we instead propose a new shock-
containing test-case which is better suited to investigate the extend to which Parareal
is applicable for such a problem. We maintain the usage of a radially-symmetric elliptic
paraboloid to describe the bottom bathymetry of the basin, given by

z (x, y) = h0
r2

a2
(7.27)

with r =
√

(x− L/2)2 + (y − L/2)2 for (x, y) ∈ [0, L] × [0, L]. Here a is the radius
of the basin and h0 the basin depth at the center of the paraboloid. We define the
perturbation hp to the water surface at rest as

hp (x, y) = A cos2 (ωθ) exp

(
−(r −R)2

2σ2

)
(7.28)

with θ = arctan
(
y−.5L
x−.5L

)
. The initial water height may then be written as

h (x, y, 0) =

{
h0 + hp (x, y)− z (x, y) if r (x, y) ≤ a

0 otherwise
(7.29)
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with the discharges hu (x, y, 0) = 0 and hv (x, y, 0) = 0 for all (x, y) ∈ [0, L]× [0, L]. For
the parallel integration tests in Section 7.5, we let L = 1000km with a basin radius of
a = 400km and a depth h0 = 1km. The peak of the waves Hp at radius R = 300km

from the center of the map, with an amplitude A = 500m, frequency ω = 4 and width
σ = 10km.

In Figure 7.5 the initial condition is depicted on a 1600x1600 cells map. In Figure 7.6
and 7.7 the solution, as computed by the WENO scheme, is presented in 10 minute
intervals. The solution contains rich interactions between smooth regions and shocks
as well as wetting and drying. The complexity of the solution may be increased by
increasing ω. Throughout the remainder of the chapter we keep ω = 4 as in the figures.

1km

0

0

103km

103km

0

Figure 7.5 – The initial condition, (7.29) for a wave amplitude of A = 500m, a frequency
ω = 4 and width a σ = 10km with the bathymetry (7.27) using L = 1000km, a basin
radius of a = 400km, and a depth h0 = 1km. The solution of (7.1) with the initial
condition depicted, is given for 10 minute intervals in Fig. 7.6 and 7.7.
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Figure 7.6 – Water height as a function of time for the test case (7.29) at 10 minute
intervals from T0 = 0 to T = 50min. Beige and green colors are used to indicate land
whilst shades of blue indicate water depth. Light effects have been added to highlight
the location of shocks.
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Figure 7.7 – Water height as a function of time for the test case (7.29) at 10 minute
intervals from T = 60 to T = 110min. Beige and green colors are used to indicate land
whilst shades of blue indicate water depth. Light effects have been added to highlight
the location of shocks.
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7.3 Space-Time Domain Decomposition

The simulation to be accelerated uses an explicit numerical scheme, as described in
Section 7.2.1, and no linear systems needs to be solved so its parallel-in-space imple-
mentation is straightforward. Following each time-step of the explicit Runge-Kutta
scheme, a two-cell wide halo is exchanged between all adjacent spatial subdomains
using MPI with one rank per subdomain. The parallel-in-space implementation scales
well up to 5 nodes (80 cores) on the small 1600x1600 cell test-case using the EPFL
Bellatrix cluser. In figure 7.9, the space-time parallel implementation is conceptually
depicted. White lines indicate the division of the spatial domains, and each image
indicates a time-subdomain.

With 6 nodes and above, the cost of communication between subdomains becomes
too large for further parallel acceleration as illustrated in the profiling measurements
in Figure 7.8. For further parallel acceleration, we turn to time-parallel techniques.
The efficient implementation of the standard Parareal algorithm for combined space
and time parallelism is more involved. For Parareal, a coarse operator acting as a
preconditioner in the solution of the system (5.9) is needed, and this preconditioner
must be parallel in space as well. Unlike the 3rd order WENO SPP-ERK used to solve
(7.1), the preconditioner GΔT , only requires a single cell halo to be exchanged between
the spatial subdomains.
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Figure 7.8 – Profiling the parallel-in-space WENO based Tsunami simulation when
solving the 1600x1600 cells test-case presented in Section 7.2.3. As the number of cores
increase, the cost of the halo-exchange between subdomains comes to dominate. Due
to the small size of the test-case, the code effectively stops scaling with 128 cores. The
code was profiled on the EPFL Bellatrix cluster. Each node in the cluster contains two
8-core Intel Xeon E5-2660 CPUs and Inifiniband QDR 2:1 connectivity between nodes.
Using a single core on a single node, the computation takes 11817 seconds to complete.
Using 4 nodes for a total of 64 cores, the computation needs 278 seconds to complete.
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Whilst the coarse operator GΔT is trivial to make parallel, efficiently solving the re-
cursive Parareal formulation (5.10) is not so. A number of schedulers for dividing
the computational work on clusters have been proposed in the literature. A direct
approach for distributing the work is to apply the coarse and fine operators in strictly
separate phases, i.e., in each iteration, a number of worker node-groups each compute
the application of FΔT in parallel. When completed, data is collected on a manager
node that performs the sequential application of GΔT , followed by the Parareal correc-
tions, before distributing the data to the worker node-groups for a new iteration. If GΔT

is computationally very cheap, the manager-worker approach may work sufficiently
well. In practice however, it has been observed repeatedly that this approach is too
restrictive for Parareal to achieve speed-up for anything but simple problems. In [9],
a better scheduler was introduced, simple in design, yet near optimal in terms of
exploiting the dependencies that exists in the recursive tree that defines Parareal. A
schematic depiction of the procedure is given in Figure 7.10. The algorithm introduced
is equivalent to first executing Algorithm 1 followed by a single execution of Algorithm
2, each of which will be described later.

Parallel-in-time integration with long time-subdomains has certain advantages when
using an appropriate scheduler. In this case the communication pattern becomes
dominated by a few large time-subdomain interfaces that must be communicated
between node-groups. The potential of this latency tolerant communication pattern
was investigated in early papers[287, 314].

ΔTn ΔTn+1 ΔTn+2 ΔTn+3 ΔTn+4
Time

Figure 7.9 – Domain decomposition in space and time of the WENO based solver
introduced in Section 7.2. White lines indicate the division of the spatial domains, and
each image indicate a subdomain spanning ΔT in time.
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Figure 7.10 – The standard fully distributed Parareal[9]. Each time-subdomain is
handled by a unique node-group, possibly parallel-in-space. Dark gray indicates that
a node-group is computing the preconditioner GΔT , light gray indicates that a node-
group is computing FΔT . Drawn for nt = 8. Shorter time-subdomains may lead to
faster convergence, but this comes at the cost of more frequent communication of the
solution-states at time-subdomain interfaces. Drawn as if the tolerance was satisfied
by the 3rd correction.
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Figure 7.11 – Multiple consecutive executions of the standard fully distributed
Parareal[9]. Each time-subdomain is handled by a unique node-group, possibly
parallel-in-space. Dark gray indicates that a node-group is computing the precondi-
tioner GΔT , light gray indicates that a node-group is computing FΔT . Drawn for nt = 8,
nc = 3. Shorter time-subdomains may lead to faster convergence, but this comes at
the cost of more frequent communication of the solution-states at time-subdomain
interfaces. In each cycle, the tolerance is satisfied by the 3rd correction. The direction
of information flow shifts with each cycle to reduce the number of time-subdomain
interface states sent.
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(a) Adaptive scheduler with β = 0
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(b) Adaptive scheduler with β = 1

Figure 7.12 – Schematic representation of a proposed Adaptive Parareal scheduler.
The scheduler lets multiple cycles of Parareal overlap during execution. Drawn here for
nt = 8, nc = 3. Dark gray indicates that a node-group is computing the preconditioner
GΔT , light gray indicates that a node-group is computing FΔT . Black dots and arrows
indicate sending and receiving of time-subdomain interface solution state. Blue arrows
indicate a signal being sent to inform a node-group working on a time-subdomain,
that the next time-subdomain has become active. Each node-group has a boolean flag
that indicates if the next time-subdomain is active or not. (a) β = 0 for a fully patient
model in which node-groups that finished a time-subdomain in a cycle will wait for a
correction to be made before receiving a new state to commence their work. (b) β = 1
for a fully impatient model in which node-groups that finished a time-subdomain in a
cycle will receive a new state to commence their work immediately.
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Convergence of Parareal is slow for most problems on long intervals as has been
demonstrated in many early papers, see [228] for an overview, and later established
rigorously in [126].

To achieve faster convergence one must therefore yet again divide the interval to be
integrated into smaller intervals in which we can apply multiple cycles of Parareal. This
could be done as outlined in Figure 7.11 with Algorithm 3, using multiple consecutive
cycles of Parareal, implemented with the scheduler proposed in [9]. In [38], an "event-
based" Parareal scheduler was proposed. Here a data-dependency driven approach is
taken to scheduling i.e. when all dependencies are satisfied for a time-subdomain, the
work is scheduled to an available node.

In the scheduler we present here, we combine the simplicity of the scheduler intro-
duced in [9], with the scalability of [38], whilst introducing a parameter to tune the
trade-off between node-group occupancy and speed of convergence. We denote this
proposed work scheduler as Adaptive Parareal. The fundamental approach is to let
adjacent cycles of Parareal overlap in execution time. When a node-group completes
its work on a time-subdomain in a given cycle, it will immediately begin working on
the closest inactive time-subdomain in the next cycle.

This may happen in one of two ways: The node-group may commence working on
the time-subdomain on the next cycle using the most recent iteration available on
the preceding time-subdomain. Alternatively it may wait for the next iteration on the
preceding time-subdomain to become available. Which choice is better is not obvious
and will be situation and problem dependent. If a recent iterate is soon to be available,
it may be better waiting. If, on the other hand, the preceding time-subdomain has
just commenced work on a new iteration, it may be better to initiate work on the most
recent iteration available rather than waiting for the preceding time-subdomain to
complete.

We introduce a parameter β ∈ [0, 1] that controls how patient the node-groups shall
be. When a node-group receives a signal that the next time-subdomain has become
active, it will immediately return a solution state if the progress on the application
of FΔT is less than β. The progress indicator on FΔT could for example be on the
time that has been integrated relative to the total time-subdomain length. Thus, if β
is small, the scheduler is patient and if β is large the scheduler is impatient, and will
value minimizing idle nodes over convergence in a small number of iterations.

The communication pattern in this model is asynchronous. The iteration and time at
which the convergence criteria is satisfied, is unknown for all time-subdomains. Hence
it is not possible a priori to predict the communication pattern. To enable node-groups
to signal their status, and potentially send a time-subdomain interface, while they are
in the process of computing FΔT , a separate signal thread is needed.
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Algorithm 1 Initialization procedure for one or more Parareal cycles. The algorithm is
used repeatedly in Algorithm 3 when a new cycle needs to be initiated, and also used in
the adaptive variant for the workthread Algorithm 5 to initiate the 0th iteration on the
1st cycle. Running the initialization once followed by Algorithm 2 once will produce an
execution pattern as schematically depicted in Figure 7.10.

Input Uk
idΔT−1, FirstNodeGroup, LastNodeGroup, tag_send, Converge,

ConvergeNext

Output Ũ0
idΔT

, U0
idΔT

, tag_send, Converge, ConvergeNext

1: k ← 0

2: if FirstNodeGroup then
3: Ũ0

idΔT
← GΔTU

k
idΔT−1

4: U0
idΔT

← Ũ0
idΔT

5: Send Converge and U0
idΔT

on forw_intercomm
6: tag_send = tag_send + 1;
7: ConvergeNext ← TRUE
8: else
9: Recv Converge and U0

idΔT−1 on back_intercomm
10: Ũ0

idΔT
← GΔTU

0
idΔT−1

11: U0
idΔT

← Ũ0
idΔT

12: if !LastNodeGroup then
13: Send Converge and U0

idΔT
on forw_intercomm

14: tag_send = tag_send + 1;
15: end if
16: end if

Each signal thread will receive nc − 1 signals, and each time a signal is received it
indicates that next time-subdomain has become active. When receiving a signal, it
sets the status of the flag, indicating if the next time-subdomain is active, to true. After
doing so, the thread checks if the progress indicator on FΔT is smaller than β. If it is, it
will send the most recent iterate of the time-subdomain interface that it is computing.
In our implementation, Posix Threads was used to create the signal threads needed in
the adaptive scheduler.

Schematic examples for β = 0 and β = 1 are presented in Figure 7.12a and 7.12b,
respectively. In these figures, black dots and arrows indicate the sending and receiv-
ing of time-subdomain interfaces. The blue arrows indicate the signal that a time-
subdomain has become active. Pseudo code for the proposed adaptive scheduler is
given in Algorithm 5 along with Algorithm 4 for the corresponding signal thread. Sepa-
rate communicators are created for each spatial-subdomain, and all communication of
time-subdomain interfaces happens through dedicated inter-communicators. Doing
so provides encapsulation of the application code already written, whilst ensuring
a natural distinction between the parallelism in computing derivatives in space and
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parallelism in the time integration procedure. The asynchronous adaptive scheduler
presented is not trivial to implement. To ease implementation and understanding, we
have presented the new scheduler as the execution of different procedures that may be
implemented and tested independently. Simply executing Algorithm 1, once followed
by Algorithm 2 once is equivalent to the "fully distributed" Parareal from [9]. The two
procedures form the essential components Algorithm 3 for multiple consecutive cycles
of Parareal as well as the proposed adaptive scheduler Algorithm 5 and Algorithm 4.

Algorithm 2 A single Parareal cycle. Identical to the model introduced in [9] when
combined with the initialization in Algorithm 1. This algorithm is used in Algorithm 3
for multiple cycles of Parareal, as well as in Algorithm 5 for the adaptive scheduler.

Input Uk−1
idΔT−1, Ũk−1

idΔT
, k, LastNodeGroup, tag_send, Converge, ConvergeNext

Output Ûk−1
idΔT

, tag_send, Converge, ConvergeNext

1: while !Converge do
2: k ← k + 1

3: Ûk−1
idΔT

← FΔTU
k−1
idΔT−1

4: if ConvergeNext then
5: Converge ← TRUE
6: Uk

idΔT
← Ûk−1

idΔT

7: if !LastNodeGroup then
8: Send Converge and Uk

idΔT
on forw_intercomm

9: tag_send = tag_send + 1;
10: end if
11: break
12: end if
13: Recv Converge and Uk

idΔT−1 on back_intercomm
14: Ũk

idΔT
← GΔTU

k
idΔT−1

15: Uk
idΔT

← Ũk
idΔT

+ Ûk−1
idΔT

+ Ũk−1
idΔT

16: if Converge & |Uk
idΔT

−Uk−1
idΔT

| > ε then
17: Converge ← FALSE
18: ConvergeNext ← TRUE
19: end if
20: if !LastNodeGroup then
21: Send Converge and Uk

idΔT
on forw_intercomm

22: tag_send = tag_send + 1;
23: end if
24: if Converge then
25: break
26: end if
27: end while
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Algorithm 3 Pseudocode for a Parareal implementation, running nc consecutive cycles
of Parareal, each with nt time-subdomains. The direction of information flow shifts
with each cycle to reduce the number of time-subdomain interfaces solution states to
be sent. Schematical example in Figure 7.11.

Input idng, u0
Output U

1: idΔT ← idng
2: U0

0 ← u0
3: back_intercomm ← intercomm between node-groups idng and idng − 1

4: forw_intercomm ← intercomm between node-groups idng and idng + 1

5: for i = 1 to nc do
6: tag_send = tag_send + 1;
7: idΔT ← (i− 1)nt + idng � Set which node-group idng computes which

time-domain idΔT

8: converge, convergeNext FALSE
9: FirstNodeGroup, LastNodeGroup ← FALSE

10: if ( idng = 1 and mod i = 1 ) or ( idng = nt and mod i = 0 ) then
11: FirstNodeGroup ← TRUE
12: end if
13: if ( idng = 1 and mod i = 0 ) or ( idng = nt and mod i = 1 ) then
14: LastNodeGroup ← TRUE
15: end if
16: procedure Algorithm 1 � Initiate the ith cycle
17: procedure Algorithm 2 � Do Parareal on the ith cycle
18: procedure Swap back_intercomm and forw_intercomm
19: end for

Algorithm 4 Signal thread for asynchronous communication in the adaptive Parareal
Algorithm 5. The thread posts a blocking recv and waits until the node-group handling
time-subdomain idΔT + 1 sends a signal that it is active. If k > 0 and status (FΔT ) < β
and tag_send = 0, the thread sends the current solution state idΔT .

Shared β, k, Converge, U, LastNodeGroup, tag_send

1: for i = 1 to nc − 1 do
2: Recv LastNodeGroup on forw_intercomm
3: if k > 0 and status (FΔT ) < β and tag_send = 0 then
4: Converge ← FALSE
5: Send Converge and Uk−1

idΔT
on forw_intercomm.

6: tag_send = tag_send + 1;
7: end if
8: end for
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Algorithm 5 Pseudocode for an adaptive Parareal implementation with nc cycles each
with nt simultaneously active time-subdomains. Schematic examples of the scheduler
is given in Figure 7.12a for β = 0 and Figure 7.12b for β = 1. Pseudo code for the signal
thread is given in Algorithm 4.

Input idng, u0, β
Output U

1: procedure: Initiate algorithm 4 on separate thread
2: back_intercomm ← intercomm between node-groups idng and idng − 1

3: forw_intercomm ← intercomm between node-groups idng and idng + 1

4: Converge, ConvergeNext, F irstNodeGroup, LastNodeGroup ← FALSE
5: idΔT ← idng, U0

0 ← u0, i ← 0

6: if idng = 1 then
7: FirstNodeGroup ← TRUE
8: end if
9: if idng = nt then

10: LastNodeGroup ← TRUE
11: end if
12: procedure Algorithm 1 � 0th iteration of the first cycle.
13: while i < nc do
14: idΔT ← i · nt + idng
15: procedure Algorithm 2
16: i ← i+ 1, k ← 0, tag_send ← 0

17: if i < nc then � Initiate a new cycle
18: Send LastNodeGroup on back_intercomm
19: LastNodeGroup ← TRUE, ConvergeNext ← FALSE
20: Recv Converge and Uk

idΔT−1 on back_intercomm
21: if Converge then � Previous time-subdomain converged, local domain will

converge next.
22: Converge ← FALSE, ConvergeNext ← TRUE
23: end if
24: Ũk

idΔT
← GΔTU

k
idΔT−1

25: Uk
idΔT

← Ũk
idΔT

26: k ← 1

27: if !LastNodeGroup and tag_send = 0 then � If next NG active, send
time-subdomain interface state.

28: Send Converge and Uk−1
idΔT

on forw_intercomm
29: tag_send = tag_send + 1;
30: end if
31: end if
32: end while
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7.3.1 CAAP Convergence

The convergence properties of a regular single cycle of the Parareal method have
been well studied both theoretically [14, 128, 125, 312] and experimentally by [258,
289]W. The convergence properties of multiple consecutive cycles of Parareal and, in
particular, when consecutive cycles are allowed to overlap, as in the proposed adaptive
scheduler, might be very different and no theory exists on the topic. To investigate how
the adaptive scheduler with overlapping cycles may influence the convergence pattern,
we test the scheduler on a small numerical example for which an analytical solution is
known, computing an approximation to the scalar complex initial value problem

d

dt
u (t) = λu (t) , u0 = 1, λ = i (7.30)

with FΔT , and the preconditioner GΔT given by

FΔTU
k
n = (1− λdt)−

ΔT
dt Uk

n , GΔTU
k
n = (1− λdT )−

ΔT
dT Uk

n (7.31)

using dt = 10−5 and dT = 10−3 in FΔT and GΔT respectively. In Figure 7.13 conver-
gence for the test equation (7.30) is presented with nc = 5 cycles. Since an analytical
solution to (7.30) exists for all times t, we can measure the error as a function of t for
each iteration to gain insight into how the Algorithm converges. The convergence
criteria is satisfied in substantially fewer iterations using nc = 5 time-subdomains, as
can be seen in Figure 7.13b, than when using only a single cycle as in Figure 7.13a. The
convergence of the adaptive scheduler with β = 0 and β = 0.8 is presented in Figure
7.13c and Figure 7.13d, respectively. The pattern of convergence is clearly different,
but the adaptive overlapping of time-subdomains in adjacent cycles appears to work
well.

Appendix B contains 8 figures investigating how varying the accuracy of the coarse
operator dt, the length of the timedomain ΔT , and the tolerance on the norm between
two consecutive iteratives used to determine if a time-subdomain should be accepted
as having converged impacts the convergence of both regular Parareal and CAAP on the
test equation 7.30. A particularly interesting finding is how it is paramount to choose
the tolerance ε sufficiently small as otherwise errors will accumulate over . This has
happened in Figures B.6(e)-(f) and B.8(e)-(f). Due to the tolerance not being sufficiently
low, time-subdomains are being accepted as having converged too early, and over
the course of many cycles errors accumulate to the extent that the final solution at
T = Tend is not of the same level of accuracy as that of the sequential operation. Using
a tolerance too large may result in reaching a solution that is not sufficiently accurate,
however one does not want to choose the tolerance too low either as this may adversely
effect the parallel efficiency. So with CAAP as for Parareal, choosing the tolerance may
greatly impact parallel efficiency. How to effectively stop the algorithm is still an open
question[60]. The drawings of the work scheduler computation and communication
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presented in Figures 7.10 and 7.12 are both conceptual, made to present the algorithms.
Appendix A contains similar figures, but rather than being purely conceptual, they are
made from timings taken, and written to a file, during the parallel solution procedure
of solving the ODE 7.30. In the example, the computational work load of FΔT and
GΔT is very light, pause functions inside FΔT and GΔT are therefore used to define
the computational cost so to demonstrate how the CAAP scheduler works and how
it differs from the alternative of simply combing many consecutive cycles of Parareal
with a regular scheduler.
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Figure 7.13 – Error of Uk
n with respect to the analytic solution to (7.30) as a function of t

for parallel-in-time integration of (7.1) with time-steps and tolerance ε = 0.01, used for
the measurements in Figure 7.14. (a) Standard Parareal, nc = 1. (b) Standard Parareal,
nc = 5. (c) Adaptive Parareal, nc = 5, β = 0. (d) Adaptive Parareal, nc = 5, β = 0.8. The
black dashed line indicates accuracy of the fine operator with respect to the analytical
solution, and the black dotted line indicates the accuracy of Ukconv

n obtained at the
iteration for which the convergence criteria was satisfied.
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7.4 Optimizing Time-Subdomain Length

In the previous section we introduced a scheduler for efficiently executing multiple
consecutive Parareal cycles. It does so by letting adjacent cycles overlap in execution
time, and by adaptively choosing which previous iteration to initiate a new cycle from.
This means that that we are effectively free to choose whatever time-subdomain length
we wish, regardless of the number of active subdomains in time to use. Given some
IBVP problem, and a fixed number of nodes nt at our disposal to do parallel-in-time
integration of some fixed (long) time-interval [0, Tend], the question arises of what
time-subdomain length ΔT should one choose?

Since the question is posed for some fixed nt and Tend, it is equivalent to asking: How
many cycles nc of Parareal should we split our time domain of length Tend into? The
purpose of this section is to develop an approach that allows for an informed choice
on ΔT before running the code.

The original Parareal algorithm was presented as parallel-in-time integration of a fixed
time interval with the time-subdomain ΔT = Tend

nt
. In practice, with this approach,

there is a limit to how long Tend may be. Therefore, for integration over a long time
interval, one must decouple the number of independent time-subdomains from the
total time-domain to be integrated. This can be done either trough a simple stop-start
strategy of multiple consecutive “cycles” of plain Parareal, as depicted in Figure 7.11
for nc = 3 cycles, or with a more advanced approach were consecutive cycles are
allowed to overlap in execution time across nodes, as we introduced with the adaptive
scheduler Algorithm 5 and visualized schematically in Figure 7.12.

Decoupling the time-subdomain length ΔT from nt and Tend, in addition to allow-
ing for integration of long time-domains, also introduces the freedom to choose the
time-subdomain length as one deem appropriate for achieving high parallel efficiency.
When choosing a time-subdomain length, one makes a fundamental trade-off be-
tween how often to run the coarse operator and communicate the full solution-state
sequentially across all active time subdomains, and the speed at which the algorithm
converges. If the time-subdomain ΔT is chosen to be very short, one can expect fast
convergence in a few iterations k. However, the algorithm may then fail to provide
any parallel acceleration because the preconditioner GΔT will have to be applied more
frequently, meaning that the time-subdomain interface solution-states Un

k have to
be communicated across node-groups more often. Conversely, if one choose a “very
long” time-subdomain ΔT , up to ΔT ≤ Tend

nt
, we may not be limited by the sequential

execution of GΔT and communication of solution states Un
k , but the algorithm may

instead need many iterations to convergence, limiting the extent to which parallel
acceleration is possible. Ideally, we want to choose ΔT so that these effects are bal-
anced in such a way that we achieve the highest possible speed-up. Finding such a
ΔT is made complicated by the fact that we do not know in general how the number
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of iterations to convergence, kconv, depends on nt and ΔT . As we shall see, this does
however not mean that we must make an uninformed guess when choosing ΔT .

7.4.1 Single Cycle Analysis

Before embarking on an analysis of the multi-cycle Parareal algorithm presented in
Section 7.3, we consider the standard “single cycle” Parareal algorithm. Henceforth
we refer to the collection of CPU’s and possible co-processors that compute the ap-
plication of FΔT and GΔT to Un

k as a node-group. With this notation we abstract away
whatever (spatial) domain-decomposition that may have been applied in constructing
FΔT and GΔT . The parallel speed-up of a single cycle of length δT = ntΔT = Tend, as
presented in Figure 7.11, can be written as

ψ =
ntCFΔT

nt

(
CGΔT + Tw

C
)
+ κ (nt,ΔT )

(
CFΔT + CGΔT + Tw

C
) (7.32)

The term in the numerator is the time it takes to compute the solution sequentially,
the two terms in the denominator measures the time it takes to compute the Parareal
solution. The first of these two terms is the time-consumption of computing iteration
0, the second term expresses the combined time-consumption of all subsequent
iterations. nt denotes the number of time-subdomains, i.e. the number of node groups
that may be used. We assume that there exists some constants CG and CF proportional
to ΔT so that

Tw
F = CFΔT, Tw

G = CGΔT + Tw
C (7.33)

where Tw
F and Tw

G denotes the wallclock-time it takes for the two operators FΔT and
GΔT to be applied to a state Un

k when computed on a node-group. Tw
C denotes the

wallclock-time it takes to communicate a solution state from one node-group to an-
other. Tw

C is included in the complete execution time of the preconditioner GΔT since
for every application of GΔT there will be one state Un

k that must be communicated
from one node-group to another. The function κ : N+×R

+ → N
+ is the number of iter-

ations needed to achieve the convergence criteria. It is important to note here that the
only unknown is κ (nt,ΔT ). ΔT and nt are known and the rest are constants that can
be measured for a specific cluster on a given problem. Let us first explore the limit as
the time-subdomain length ΔT becomes small. Assuming that limΔT→0 κ (nt,ΔT ) = 1,
from (7.32) one finds that

lim
ΔT→0

ψ =
nt

(nt + 1)

Tw
F

Tw
C

(7.34)

becomes an upper bound for achievable speed-up. This is not surprising, as by Am-
dahl’s law, Tw

F /Tw
G must be an upper limit to speed-up for the Parareal algorithm.

Equation (7.34) simply states that for small ΔT , the cost Tw
C of communicating the
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solution states Un
k sequentially across nodes becomes the dominating term that limits

parallel speedup. Whilst (7.34) may be descriptive, it does not let us choose ΔT in any
meaningful way. Our goal is to find the ΔT that maximize (7.32), so let us frame the
problem in the form of an optimization problem

ΔTopt = argmax
ΔT∈R+

ψ (ΔT ) . (7.35)

The derivative of ψ (ΔT ) w.r.t. ΔT is

∂ψ (ΔT )

∂ (ΔT )
=

∂

∂ (ΔT )
ntCFΔT (nt (CGΔT + Tw

C ) + κ (nt,ΔT ) (CFΔT + CGΔT + Tw
C ))−1

=ntCF
(κ (nt,ΔT ) + nt)T

w
C − (CF + CG)κ′ (nt,ΔT )ΔT 2(

ntCGΔT + (κ (nt,ΔT ) + nt)Tw
C + (CF + CG)κ (nt,ΔT )ΔT

)2 .
(7.36)

The optimization problem is not solvable as we do not know κ (nt,ΔT ), nor do we know
it’s derivative κ′ (n,ΔT ). We can, however, still gain insight from the above if we assume
that limΔT→0 κ (nt,ΔT ) = 1 and that limΔT→∞ κ (nt,ΔT ) = nt. In addition to these
assumptions, we know that κ′ (nt,ΔT ) 
 0 for all but a select few ΔT when κ (nt,ΔT )

changes abruptly as the convergence criteria is accepted. From the derivative we
may deduce that for some fixed κ∗ ∈ [1, nt] with κ′ (nt,ΔT ) = 0, when ΔT → 0 then

∂
∂(ΔT )ψ increases whilst from (7.32) we have that ψ → 0. Conversely, as ΔT → ∞
then ∂

∂(ΔT )ψ → 0 asymptotically. So the maximum speedup ψ must exist in the limit

ΔT → ∞. Taking κ′ (nt,ΔT ) = 0 it follows that (CF + CG)κ′ (nt,ΔT )ΔT 2 = 0. The
denominator does not change sign, so for a fixed κ∗, there are no inflection points ΔT ∈
R
+, i.e., we can not hope to find any point where the speedup decreases particularly

fast as we decrease ΔT , even for some fixed κ∗. Because of these limitations, we
take another approach at finding some approximate solution ΔT̂opt ≈ ΔTopt to (7.35).
While we might not be able to quantify the gain in speed-up from κ (nt,ΔT ) becoming
smaller as we let ΔT → 0, we can quantify the associated cost of doing so in terms of
added wallclock-time spent communicating Un

k across node-groups. Let εc ∈ (0., 1) be
a parameter that denotes the fraction of decrease in speedup, due to communication,
that we are willing to accept. The optimization problem is then recast as

ΔT̂opt = min
ΔT∈R+

ΔT s.t.ψ (ΔT ) ≥ εcψmax (7.37)

with some prior guess κ∗ ≈ κ (nt,ΔT ). The problem is now to find the smallest ΔT for
which the reduced speed-up, due to communication, is less than εc the fraction of the
maximal speedup ψmax. The above problem is much simpler to solve. Writing out the
inequality (7.37) using (7.32) one arrives at the criteria

ntCFΔT

nt

(
CGΔT + Tw

C
)
+ κ∗

(
CFΔT + CGΔT + Tw

C
) ≥ εcψmax (7.38)
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with

ψmax = lim
ΔT→∞

ntCFΔT

nt

(
CGΔT + Tw

C
)
+ κ∗

(
CFΔT + CGΔT + Tw

C
) (7.39)

to be satisfied. We can derive an explicit expression for ΔT̂opt by evaluating the r.h.s
limit and manipulating the inequality to find

ΔT̂opt =
εc

1− εc

(κ∗ + nt)T
w
C

(κ∗ (CG + CF ) + ntCG)
(7.40)

as an approximate solution to (7.37). In what sense does the problem (7.37) with
solution (7.40) relate to the original optimization problem (7.35)? Equation (7.40) is
not a solution to (7.35), rather it is intended as a rough estimate of ΔT̂opt, that could
possibly also be used over several iterations of running the algorithm to improve the
estimate. The above analysis, however interesting, is somewhat artificial. Solving
(7.35), we seek to optimize the parallel speed-up over a domain Tend = ntΔT that
varies in size with ΔT . For parallel-in-time speedup when solving (7.1) on some (long)
fixed time-domains Tend, we are interested in the multi-cycle Parareal introduced in
the previous section. In this case Tend = ncδT = ncntΔT . We consider the number of
simultaneously active time-subdomains nt to be a fixed parameter and wish to find
the optimal time-subdomain length ΔT to use. In what follows we build on the insight
gained.

7.4.2 Multi Cycle Analysis

We seek an approach to estimate ΔTopt for Parareal with multiple cycles, as introduced
in Section 7.4.1. For the stop-restart Parareal, Figure 7.11, the parallel speed-up may
be expressed as

ψ (ΔT ) =
ncntTF

ncntTG +
∑nc

i=1 κi (nt,ΔT ) (TF + TG)

=
ncntCFΔT

ncnt

(
CGΔT + Tw

C
)
+
∑nc

i=1 κi (nt,ΔT )
(
CFΔT + CGΔT + Tw

C
) (7.41)

In the numerator we have the time to solve the problem sequentially applying the
operator FΔT ncnt times on the initial condition. The denominator measures the
time it takes when using multiple consecutive non-overlapping cycles of Parareal.
Note that the above is technically an upper bound estimate as we only include the
computation of FΔT and GΔT as well as the time to communicate a solution state
Tw
C , but not the time to compute the correction (5.10) and other overhead. As in the

previous section, κi (nt,ΔT ) is unknown, and it is therefore not possible to solve the
optimization problem (7.35) to find ΔTopt a priori. As before we take the approach of

solving (7.37) instead. We first let 〈κ∗〉 = 1
nc

∑nc
i=1 κi and assume 〈κ∗〉 ≈ κ

(
Tend
nt

, nt

)
to
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recover

ncntCFΔT

ncnt

(
CGΔT + Tw

C
)
+ nc 〈κ∗〉

(
CFΔT + CGΔT + Tw

C
) ≥ εc lim

ΔT→Tend
nt

ψ (ΔT )

(7.42)

where

εc lim
ΔT→Tend

nt

ψ (ΔT ) =
εcntCFTend

nt

(
CGTend + ntTw

C
)
+ 〈κ∗〉 (CFTend + CGT + ntTw

C
) (7.43)

With nc =
Tend
ntΔT , the solution to (7.37) becomes

ΔT̂ β=0
opt =

εc (nt + 〈κ∗〉)Tw
C Tend

(nt + 〈κ∗〉)ntTw
C + (1− εc) (ntCG + (CF + CG) 〈κ∗〉)Tend

(7.44)

In the case of the Adaptive Parareal, Figure 7.12, consecutive cycles are allowed to
overlap in execution time across nodes. For the case of the “impatient” algorithm,
β = 1, this will ideally hide the initialization cost of the zero’th iteration for all but the
first cycle. In this case we may approximate the speed-up as

ψ (ΔT ) =
ncntCFΔT

nt

(
CGΔT + Tw

C
)
+
∑nc

i=1 κi (nt,ΔT )
(
CFΔT + CGΔT + Tw

C
) . (7.45)

Note that (7.45) is no longer equivalent to (7.32) for the single cycle case. We take
another look at the derivative for ideas on how to solve (7.35).

∂

∂ (ΔT )
ψ (ΔT ) = −TendCF

ntCG + T
nt

(
〈κ∗〉′

(
CF + CG +

Tw
C

ΔT

)
− 〈κ∗〉 Tw

C
ΔT 2

)
(
nt

(
CGΔT + Tw

C
)
+ T

nt
〈κ.∗〉

(
CF + CG +

Tw
C

ΔT

))2 . (7.46)

As before we assume 〈κ∗〉′ = 0, it is clear that if
√
〈κ∗〉TendT

w
C n−2

t C−1
G = ΔT ≤ Tend

nt

then the derivative ψ (ΔT ) changes sign somewhere in
(
0, Tend

nt

]
, e.g., the largest value

of ψ (ΔT ) is not necessarily in the limit ΔT → Tend
nt

. With ∂
∂(ΔT )ψ (ΔT ) = 0, only a

single maxima exists for ΔT in R
+

ΔT̂max =

√
〈κ∗〉TendT

w
C

n2
tCG

. (7.47)
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Inserting (7.47) into (7.45) and using that nc =
Tend
ntΔT , the associated speedup is

ψmax =
ncntCFΔTmax

nt

(
CGΔTmax + Tw

C
)
+ nc 〈κ∗〉

(
CFΔTmax + CGΔTmax + Tw

C
)

=
ntCFTend

Tend 〈κ∗〉 (CF + CG) + n2
tT

w
C + 2

√
n2
tT

w
C 〈κ∗〉CGTend

.
(7.48)

With ψmax as above, the constraint (7.37) to be satisfied may be written as

ncntCFΔT

nt

(
CGΔT + Tw

C
)
+ nc 〈κ∗〉

(
CFΔT + CGΔT + Tw

C
) ≥ εcψmax. (7.49)

Inserting (7.48) into (7.49) and manipulating the inequality we recover

εcn
2
tCGΔT 2 + εc 〈κ∗〉Tw

C Tend(
2
√

n2
t 〈κ∗〉Tw

C CGTend + (1− εc)
(
n2
tT

w
C + 〈κ∗〉 (CF + CG)Tend

))
ΔT

≤ 1 (7.50)

from which we recover the smallest ΔT , satisfying the quadratic inequality, is

ΔT̂ β=1
opt = ΔT̂ε −

√
(ΔTε)

2 −ΔT̂ 2
max (7.51)

where

ΔT̂ε =
1

εc
ΔT̂max +

1− εc
2εc

(
Tw
C

CG
+

1

Tw
C
ΔT̂ 2

max (CF + CG)

)
(7.52)

and ΔT̂max is defined in (7.47). This yields a rough estimate of ΔT̂ β=1
opt that ensures that

the choice of ΔT is not too long such as to waste communication bandwidth, while
ensuing that moving data does not become a new significant limitation to parallel
acceleration. In deriving ΔT̂ β

opt for the adaptive scheduler with β → 1, i.e. impatient,
it was assumed that the initialization procedure of the zero’th iteration was perfectly
hidden by the adaptive scheduler for all but the first cycle as depicted in Figure 7.12b.
This is unlikely to be the case for all cycles, and we therefore expect that the optimal

ΔT will lie somewhere in the interval
[
ΔT̂ β=0

opt ,ΔT̂ β=1
opt

]
spanned by (7.44) and (7.51).

In section 7.5, parallel scaling is measured when using each scheduler with a time-
subdomain length as estimated from (7.44) and (7.51). To somehow test the effective-
ness of the estimates derived, one would need to measure speed-up for all possible
different time-subdomain lengths for a given problem to compare if the peak speedup
occurs for the ΔT̂ predicted.

Doing so for the high-order 2D shallow water equation solver introduced as the test-
case in section 7.2.3 is computationally intractable. Instead we perform a test on a
smaller numerical experiment by computing an approximation to the scalar complex
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initial value problem (7.30) also used in the previous section to investigate how the
overlapping adaptive scheduler change the convergence pattern of the algorithm.
Again we let dt = 10−5 and dT = 10−3 in FΔT and GΔT respectively.
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Figure 7.14 – Parallel speedup and efficiency measured when solving (7.30) as a
function of time-subdomain length ΔT (a)-(b), and number of cycles nc (c)-(d). Using
nt = 20 processors parallel-in-time and letting CF = 10000ms, CG = 100ms, Tw

c =
100ms. The square, circle and triangle markers indicate the estimates for the optimal
time-subdomain length using (7.44), (7.51) and the average of the two, respectively.
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For the test we perform the integration until Tend = 100 with nt = 20 simultaneously
active time-subdomains on 20 processors. The test is performed using from nc = 1

to nc = 100 cycles, corresponding to time-subdomain lengths from ΔT = 10−3 to
ΔT = 10−1. A time-subdomain is accepted as converged if the norm on the difference
between two consecutive iterations is smaller than some tolerance and if all previous
time-subdomains have converged. Here we use the tolerance ε = 0.01. Since the appli-
cation of both FΔT and GΔT only require 6 floating point operations, the wall-time used
by a processors is set manually to CF = 10000ms, CG = 100ms, and communication of
a time-subdomain interval to Tw

c = 100ms.

The numerical experiments are presented in Figure 7.14. The estimates for the time-
subdomain length that will result in the highest speedup are indicated by the square,
triangle and circle markers. The estimates were computed using a priori guess 〈κ∗〉 = 2

and limit εc = 95%. We note that the estimates are not sharp, but nevertheless the
optimal time-subdomain length is smaller than the upper estimate and larger than
the lower estimate. Using the average of the two estimates appear to give the best
prediction on the optimal time-subdomain lengths for large speedup. In particular
we note that the ΔT , resulting in the highest speedup for the adaptive scheduler was
measured to be very close to the arithmetic average of nc from the estimates (7.44) and
(7.51). This indicates that the estimates may indeed be useful for approximating the
optimal choice of time-subdomain length a priori.

Appendix C contains 6 figures of tests like those presented in Figure 7.14. Here it is inves-
tigated how well the estimates from equation (7.44) and (7.51) approximate the optimal
time-subdomain length is tested for communication cost Tw

c = 1ms, 10ms, 100ms, and
three different coarse operator time-step lengths. The cost of performing the coarse
operator Cw

G is made proportional to it’s time-step length. Results presented both as
a function of number of cycles Nc, and as a function of time-subdomain length. We
observe good agreement between the predicted values and the actual optimal value.
The estimates are not sharp, but using them it appears that one may safely avoid
making the time-subdomains much too long or much too short.

7.5 Numerical Experiments: Parallel Scaling

Numerical experiments using time-parallel integration on the test case, introduced
in section 7.2.3, are presented in the following. For all numerical experiments, the
EPFL Bellatrix general purpose cluster consisting of 424 compute nodes, each with two
8-core Intel Xeon Sandy Bridge processors and infiniband QDR 2:1 network has been
used. The adaptive work scheduler, combined with the approach of estimating the
time-subdomain length that optimally balances communication cost and convergence
speed, is collectively denoted as CAAP. In all cases, an approximation to (7.1) is being
computed on an interval of length Tend = 60min. A tolerance of ε = 10−4 on the norm

85



Chapter 7. Communication Aware Adaptive Parareal

of the difference between consecutive iterations is used as a convergence criteria. To
evaluate if the solution, found iteratively trough Parareal or CAAP, is as accurate as the
sequential WENO SSP-ERK solution, we define two errors measurements. The relative
error with respect to the sequential WENO SSP-ERK solution

ε̃
(
Ukconv
ntnc

)
=

√∫
Ω

∣∣∣Ukconv
ntnc −Fntnc

ΔT u (·, T0)
∣∣∣2 dΩ∫

ΩFntnc
ΔT u (·, T0) dΩ

(7.53)

and the relative error with respect to the true solution

ε̂
(
Ukconv
ntnc

)
=

√∫
Ω

∣∣∣Ukconv
ntnc − u (·, Tend)

∣∣∣2 dΩ∫
Ω u (·, Tend) dΩ

(7.54)

No analytical solution is known to exists for our test-case. We therefore approximate
the "true" solution using a very fine mesh with 14400x14400 cells with adaptive time-
steps, computed as outlined in section 7.2.1.
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Figure 7.15 – Water surface at T = 60min starting with the initial condition described
in Section 7.2.3 at T = 0min as computed when using (a) Roe’s method (b) WENO
SSP-ERK (c) CAAP with tolerance ε = 10−4 on the norm of the difference between
two consecutive iterations. The coarse operator captures wave speeds very well but
introduces dissipative errors. From a bird-eye perspective it appears that CAAP arrives
at the same solution as the parallel WENO SSP-ERK with sequential time-stepping.
In Figure 7.16 a zoomed in view of the profile around a shock is presented. Units in
kilometers.
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The relative error ε̂ between the WENO SSP-ERK approximation and the true solution
at T = 60min is 3.7 · 10−3. For Roe’s method, used here as a preconditioner in Parareal
and CAAP, the relative accuracy ε̂ is 1.2 · 10−2.

Ideally, the error of the Parareal solution and the CAAP solution with respect to the
true solution, should be very close to that of the sequential WENO SSP-ERK solution.
In the numerical experiments presented in Table 7.1, we measure ε̂ to be between
3.7 · 10−3 and 3.9 · 10−3 for CAAP, and between 4.0 · 10−3 and 4.1 · 10−3 for the standard
Parareal algorithm. In Figure 7.15 the water height at T = 60min for the sequential
time-stepping WENO SSP-ERK scheme is depicted along with the Parareal solution.
Upon further investigation we find that the maximum error of the Parareal solution is
always in the vicinity of shocks. See Figure 7.16 for a cross-section view of the solution
in Figure 7.15. Here the Parareal solution is given for different tolerances.

To estimate the number of Parareal cycles to use in CAAP, i.e. the time-subdomain
length ΔT , we need to measure the constants CF , CG and Tw

F on the EPFL Bellatrix
cluster on which we will run our numerical experiments. We run the code over the full
interval of 60 minutes to estimate the two ratios CF and CG . Doing so we find that we
need roughly 4000ms to compute 1 minute of simulation time when using 5 nodes in
space. For the coarse operator, we need roughly 300ms.

CF = 4018.3ms/min, CG = 309.4ms/min, Tw
F = 75ms (7.55)

Measuring the time used for transferring a complete solution state across a time-
subdomain interface from one group of nodes to another, denoted Tw

F , proved difficult
as the number fluctuates substantially, depending on the load of the cluster and of the
location of the nodes. Doing multiple runs on different node locations, we arrived at
75ms on average when using 5 nodes in each group. In comparison it takes around
15ms to exchange the halo on the 1600x1600 cell test-case mesh. We let εc = 0.95 and
〈k∗〉 = 2, and use these measured quantities with (7.44) and (7.51) to estimate the
optimal number of cycles nc to split the time domain into.

The values are listed in Table 7.1, the high estimates computed using (7.51) and the low
using (7.44), the estimates are rounded. The parallel speed-up of the average number
of cycles between the two estimates is also tested. As can be seen from the numbers in
the table, it appears to generally give the highest speed-up to use the average of the
two estimates.

In Figure 7.17, the equivalent scaling measurements of the space+time parallel code
is presented. The maximum attainable speed-up for the conventional parallel-in-
space WENO SSP-ERK implementation is 49 using 5 nodes (80 cores). Using 6 nodes
and above, no further speedup is possible. Adding CAAP with β = 0.5 and nt = 24,
we measure a speedup of 229 using 1920 cores. The factor 4.5 reduction in time to

87



Chapter 7. Communication Aware Adaptive Parareal

solution of the test-case is substantial and may be critical in cases where a simulation
is expected to take days. It is also worth noticing that for CAAP with β = 0.5 and
nt = 8, we measure a parallel-in-time efficiency of almost 35%. This is the highest
parallel efficiency that has been demonstrated for parallel-in-time integration of a
purely hyperbolic nonlinear PDE system using domain decomposition in time. We
conjecture that for less challenging problems, e.g. diffusion dominated, still higher
efficiency may be possible using the proposed method.

Appendix D contains figures with drawings of the work schedulers when solving the
shallow water wave equation. Unlike the drawings of the work schedulers in Figures
7.10, 7.11, and 7.12 that are purely conceptual and included to ease the introduction of
the algorithms, all figures in appendix D are created from time-stamps written to a file
during the actual solution procedure on the cluster.
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Figure 7.16 – Cross section of the water height at y = 500km where two shocks meet,
see figure 7.15. The cell width is dx = 0.625km, so the above profile is resolved with
24 cells. The error of the Parareal solution is largest in magnitude around shocks. The
time-to-solution using the fine and the coarse solver on a single node, sequentially in
time, is respectively 912s and 79s. For CAAP, using a single node in space on each of
16 simultaneously active time-subdomains, the time-to-solution is 205s, 199s, 242s
and 361s respectively. It is somewhat surprising that for the largest tolerance we do
not measure the shortest time-to-solution. Looking at the log files of the simulation,
it appears that this is due to less effective load balancing and that in some intervals
convergence happens in just 1 iteration, i.e. second correction, whilst in other time-
subdomains it takes several iterations despite the large tolerance.
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Type, nt = 8 nc ΔT [s] ε̃ ε̂ P. Eff. T [%] P. Eff. T+S [%] P. Speedup

Stnd. Parareal 1 450 1.4 · 10−3 4.1 · 10−3 14.9 9.1 58.4

Mltpl. Parareal 5 90 1.4 · 10−3 3.9 · 10−3 18.3 11.2 71.8
CAAP, β = 0.0 5 90 1.4 · 10−3 3.9 · 10−3 25.5 15.6 100.1
CAAP, β = 0.5 5 90 1.5 · 10−3 3.9 · 10−3 22.2 13.6 87.2
CAAP, β = 1.0 5 90 1.5 · 10−3 3.9 · 10−3 22.0 13.5 86.4

Mltpl. Parareal 20 22.5 1.4 · 10−3 3.9 · 10−3 27.1 16.6 106.4
CAAP, β = 0.0 20 22.5 1.4 · 10−3 3.9 · 10−3 27.9 17.1 109.5
CAAP, β = 0.5 20 22.5 1.5 · 10−3 3.9 · 10−3 34.1 20.9 133.8
CAAP, β = 1.0 20 22.5 1.5 · 10−3 3.8 · 10−3 31.7 19.4 124.4

Mltpl. Parareal 40 11.25 1.4 · 10−3 3.9 · 10−3 24.8 15.2 97.0
CAAP, β = 0.0 40 11.25 1.4 · 10−3 3.9 · 10−3 25.8 15.8 101.2
CAAP, β = 0.5 40 11.25 1.4 · 10−3 3.8 · 10−3 31.8 19.5 125.1
CAAP, β = 1.0 40 11.25 1.5 · 10−3 3.8 · 10−3 29.4 18.0 115.1

Type, nt = 16 nc ΔT [s] ε̃ ε̂ P. Eff. T [%] P. Eff. T+S [%] P. Speedup

Stnd. Parareal 1 225 1.4 · 10−3 4.1 · 10−3 11.1 6.8 86.8

Mltpl. Parareal 3 75 1.5 · 10−3 4.0 · 10−3 8.7 5.3 67.3
CAAP, β = 0.0 3 75 1.5 · 10−3 3.9 · 10−3 11.9 7.3 93.7
CAAP, β = 0.5 3 75 1.5 · 10−3 3.9 · 10−3 12.1 7.4 95.0
CAAP, β = 1.0 3 75 1.5 · 10−3 3.9 · 10−3 11.6 7.1 90.3

Mltpl. Parareal 15 15 1.5 · 10−3 3.8 · 10−3 15.5 9.5 120.9
CAAP, β = 0.0 15 15 1.6 · 10−3 3.8 · 10−3 23.8 14.6 187.4
CAAP, β = 0.5 15 15 1.6 · 10−3 3.8 · 10−3 23.8 14.6 186.7
CAAP, β = 1.0 15 15 1.7 · 10−3 3.9 · 10−3 21.2 13.0 166.9

Mltpl. Parareal 15 7.5 1.5 · 10−3 3.9 · 10−3 17.1 10.5 134.0
CAAP, β = 0.0 30 7.5 1.7 · 10−3 3.8 · 10−3 22.4 13.7 175.8
CAAP, β = 0.5 30 7.5 1.6 · 10−3 3.7 · 10−3 23.3 14.3 182.5
CAAP, β = 1.0 30 7.5 1.7 · 10−3 3.9 · 10−3 22.5 13.8 176.9

Type, nt = 24 nc ΔT [s] ε̃ ε̂ P. Eff. T [%] P. Eff. T+S [%] P. Speedup

Stnd. Parareal 1 150 1.5 · 10−3 4.0 · 10−3 10.1 6.2 118.6

Mltpl. Parareal 3 50 1.5 · 10−3 3.9 · 10−3 7.3 4.5 85.6
CAAP, β = 0.0 3 50 1.6 · 10−3 3.9 · 10−3 9.0 5.5 106.0
CAAP, β = 0.5 3 50 1.6 · 10−3 3.9 · 10−3 8.5 5.2 98.8
CAAP, β = 1.0 3 50 1.6 · 10−3 3.9 · 10−3 8.5 5.2 99.3

Mltpl. Parareal 15 10 1.5 · 10−3 3.9 · 10−3 13.1 8.0 153.7
CAAP, β = 0.0 15 10 1.7 · 10−3 3.8 · 10−3 18.6 11.4 218.0
CAAP, β = 0.5 15 10 1.7 · 10−3 3.9 · 10−3 19.4 11.9 228.6
CAAP, β = 1.0 15 10 1.7 · 10−3 3.9 · 10−3 17.1 10.5 201.0

Mltpl. Parareal 25 6 1.6 · 10−3 3.7 · 10−3 11.4 7.9 151.3
CAAP, β = 0.0 25 6 1.8 · 10−3 3.7 · 10−3 17.1 10.5 201.7
CAAP, β = 0.5 25 6 1.7 · 10−3 3.8 · 10−3 18.6 11.4 218.4
CAAP, β = 1.0 25 6 1.9 · 10−3 3.8 · 10−3 14.7 9.9 189.4

Table 7.1 – Parallel acceleration as measured using nt = {8, 16, 24} simultaneously
active time-subdomains. Within each time-subdomain, 5 nodes (80 cores) are used
parallel in space, for a total of {640, 1280, 1920} cores, respectively. The first parallel
efficiency column indicates the efficiency of the parallel-in-time integration procedure,
the second column indicates the combined space-time parallel efficiency.
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Figure 7.17 – Speedup as a function of number of cores used in the space-time parallel
code for solving the SHW test case introduced in Section 7.2.3 as measured on the
424-node EPFL Bellatrix cluster. Tend = 60min, and nc = {20, 15, 15} for nt = {8, 16, 24}
respectively. Tolerance ε = 10−4 was used as the convergence criteria.
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7.6. Summary

In the application the finite volume method with a Roe’s flux used as a coarse operator,
is roughly 12 times faster than the WENO SSP-ERK fine solver. This means that no
matter how many simultaneously active time-subdomains we use, we will never gain
more than a factor 12 reduction in time to solution with respect to a pure space parallel
WENO SSP-ERK implementation. We did attempt to use a cheaper coarse operator,
testing the Lax-Friedrichs method with a diffusion term for stability. This operator
was roughly 40 times faster than the WENO SSP-ERK scheme, potentially allowing
for much create parallel-in-time speed-up. Unfortunately, we observed that in order
for the algorithm to convergence, the length of the time-subdomain had to be as
short as a single time-step, otherwise the algorithm would diverge for a couple of
iterations before eventually converging, leading to no, or very little, speedup. With a
time-subdomain length equivalent to a single time-step, little parallel-speed-up was
possible, in excess of spatial saturation, because the full spatial solution state must
then be transfered from one group of nodes to another in between every timestep.

7.6 Summary

The Parareal algorithm is one among several new algorithms that seek to introduce
parallelism in time. Unlike other proposed models, Parareal has the distinct advantage
of being potentially highly scalable and minimally invasive. The algorithm may, to
a large extent, simply be wrapped around existing simulation codes in combination
with the introduction of some coarse operator. The parallel efficiency of the method,
particularly for hyperbolic problems and for integration of long time domains has
however been a major concern. In this chapter we have demonstrated parallel-in-time
efficiency of upwards of 35% for long time integration of a purely hyperbolic problem
using CAAP. This is more than double of what could be achieved using the standard
Parareal approach with the scheduler presented in [9]. With CAAP, we demonstrated a
speedup of 228 in our space-time parallel tests, compared to a maximum speedup of
49 for the original code. The factor of 4.5 reduction in time to solution of the test-case
is substantial and may be critical in cases where a simulation is expected to take days
or if real-time response is needed.

For the coarse operator GΔT , we used a lower order discretization that operates on
the same mesh as the original WENO SSP-ERK solver. The choice was motived by
experience gathered by testing multiple different coarse operators on a simpler 1D
problem. In our experience, for Parareal to converge on a hyperbolic problem, one
must design the coarse operator in such a way that it only introduces dissipative errors
with respect to the fine operator. In addition, we observed during these preliminary
tests that designing a coarse operator in such a way that it is as accurate as possible
under the constraint that CF/CG > nt is satisfied seems to lead to the highest overall
speedup.
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For all our numerical experiments, we have used a tolerence on the norm of the differ-
ence between two consecutive iterations as a convergence criteria. This is, however,
not necessarily a good predictor of the actual error. We therefore presented error
measurements along with all speedup measurements to document that the error of
the Parareal solution is indeed as small as the error of the sequential solution. Recently,
techniques for posteriori error analysis on Parareal have been developed[60], and the
approach may provide a way to certify a priori that the solution found is sufficiently
accurate.

While we consider our findings to offer substantial progress in the understanding
of how to move past the strong scaling saturation limit of classical spatial domain-
decomposition methods, there are potential improvements to be made. Using CAAP,
we have observed that small load imbalances arise due to the nature of the test-
case. In the nonlinear shallow water wave equation solver in which we implemented
time-parallel integration, time-steps are adaptive. In between the integration of each
timestep, the longest possible next timestep is computed and therefore some time-
subdomains end up using a different number of time-steps than others. This in turn
creates small load imbalances which may only be partially hidden by the adaptive
scheduler. We speculate that a better approach may be to use the proposed optimal
time-subdomain estimates derived in Section 7.4 to compute an optimal wallclock-
time and from this set a fixed number of time-steps to use in a time-subdomain
during the zero’th iteration of the preconditioner, i.e., the decomposition in time is
not fixed, but computed dynamically and set during the zeroth iteration for each
time-subdomain as the parallel-in-time integration procedure progresses. In this way
one may achieve significantly better load-balancing for problems with an adaptive
timestep integrator, and in doing so the proposed scheduler would be adaptive, not
only in balancing utilization and convergence, but also in setting the length of each
time-subdomain dynamically during the integration procedure.

Finally, we note that Parareal and CAAP as methods for domain-decomposition in time
are different from classical (spatial) domain decomposition in the sense that several
copies of the solution states at time-subdomain interfaces must be stored. This extra
use of memory is not of primary concern since Parareal is of interest in the strong
scaling limit. In [231] it was, however, demonstrated how these extra states may be
used to make the algorithm in [9] tolerant to node failures, even when the underlying
operators F·T and G·T themselves are not. Since the adaptive scheduler proposed in
Section 7.3 is based on overlapping cycles of the same scheduler, we expect that it too
may be made tolerant towards node failures in a similar manner.
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8 Time-Parallel Integration for Con-
vection Dominated Problems

In chapter 6 it was discussed how, and why, Parareal tends to perform poorly on
convection dominated PDE problems. The horizontal movement of dispersive error
components in the coarse operator GΔT , that differ from those in FΔT , are wrongly
interpreted as a need for vertical correction which causes errors to be introduced and
amplified in subsequent iterations. This behavior limits the applicability of Parareal to
only certain hyperbolic and convection dominated problems where it is possible to
create a cheaper coarse operator GΔT that essentially resolve all wave behavior of FΔT

accurately. In this chapter we first present in Section 8.1 two approaches at modifying
the Parareal algorithm to facilitate correction of phase errors. This is followed in
Section 8.2 with the presentation of a new way of deriving parallel-in-time integration
schemes. To illustrate the idea, a scheme is derived and tested.

8.1 Modifying Parareal

In section 8.1, we present two experiments of modifying the Parareal algorithm to
introduce correction on phase errors. In section 8.1.1, numerical experiments of doing
Parareal-style phase correction in Fourier space is presented, and in section 8.1.2, a
more generally applicable local correction procedure is developed and tested.

8.1.1 Fourier Space Phase Correction

As a first experiment, we investigate the impact on convergence of performing the
Parareal correction in Fourier space. At each iteration, the Parareal correction (5.10),
using GTn

ΔTU
k
n , FTn

ΔTU
k
n and GTn

ΔTU
k+1
n to compute Uk+1

n+1 , is performed independently
twice, once to correct all wave numbers, once to correct all amplitude coefficients.
We test the alternative correction procedure on the 1D constant coefficient linear
advection equation (6.1) with periodic boundary conditions. Both FTn

ΔT and GTn
ΔT are

constructed using a fourth ordered compact finite difference stencil[216], GTn
ΔT oper-
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ates on a space-time mesh coarsened by a factor 5. The numerical experiments are
presented in figure 8.1, using the discontinuous initial condition from chapter 6.
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Figure 8.1 – The application of Parareal for parallel-in-time integration, on nt = 50
time-subdomains, of the advection-diffusion equation with κ = 10−5 and a = 1 to
T = 2.5 using the initial condition in figure 6.1a. The dispersive operators FΔT and
GΔT are created using 301 and 61 points in space respectively, with a 4th order compact
finite difference scheme. Figures (a) and (b) shows the sequential solution FN=50

ΔT u0,
the true solution u(t = 2.5), and consecutive iterations UN=50

k . In figure (a), correction
is performed in Fourier space as outlined in section 8.1.1, in figure (b) regular Parareal
corrections are used. (c) shows the error at t = 2.5 as measured with respect to the true
solution. (d) shows the error as measured with respect to the fine solution. All errors
are measured in the infinity norm on the entire space-time domain.
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The test presented in Figure 8.1 is not an easy test in the context of parallel-in-time
integration. The diffusion constant in (6.1) is very small, the shape to advect is discon-
tinuous, and crucially, the discretization is dispersive. From the results it is however
clear that using Parareal to correct wave modes, individually on both phase and ampli-
tude components, stabilize the algorithm to the point that monotone convergence is
observed. Even though the approach of correcting twice in Fourier space appears to
very work well, it is of limited practical relevance since there is no obvious extension
of the method for anything else than linear constant coefficient hyperbolic problems
with periodic boundary conditions. It however serves as another demonstration of
how the traditional Parareal algorithm is unable to cope with phase error differences
between FΔT and GΔT , and it indicates that the community should seek to create new
methods without this inherent limitation.

8.1.2 Wave-Local Phase Correction

The method of performing the Parareal corrections in Fourier space as outlined in the
section above is a global approach at introducing phase correction. For it to work, all
waves must move at the same wave-speed everywhere in space.

In this section, we instead derive a modified correction scheme where we attempt to
locally adjust the Parareal correction to take into account advective effects. We leave
the zero’th iteration to generate U0

n from uo = u (x̄, t = 0) for all n ≤ nt unmodified
as the sequential application of GΔT . In deriving the modification, we assume the
behavior of an advection dominated 1D advection-diffusion equation like (6.1), but
without assuming the wave-speed to be constant throughout the domain. The question
as to how the update equation itself should be modified comes down to interpretation.
Consider the below two ways of writing the Parareal correction (5.10),

Uk+1
n+1 = FΔTU

k
n +

[
GΔTU

k+1
n − GΔTU

k
n

]
= GΔTU

k+1
n +

[
FΔTU

k
n − GΔTU

k
n

]
(8.1)

The equations are the same, but their interpretation becomes important when con-
sidering how to do phase-correction. Should we locally estimate the difference in
amplitude and phase of GΔTU

k+1
n and GΔTU

k
n , and then add it to FΔTU

k
n , or should we

locally estimate the difference in amplitude and phase between FΔTU
k
n and GΔTU

k
n ,

and then add it to GΔTU
k+1
n ? The two approaches are not necessarily the same. One

might reckon that it makes the most sense to correct FΔTU
k
n using the difference be-

tween GΔTU
k
n and GΔTU

k+1
n , but this is not necessarily so. We may somewhat easily

estimate differences between FΔTU
k
n (x̄) and GΔTU

k
n (x̄), at any point in space, through

Taylor expansion around x̄, since they started from the same Uk
n , but estimating the

difference in behavior of GΔTU
k
n and GΔTU

k+1
n is not so easy because they were applied

to different solution states Uk
n and Uk+1

n , i.e. the change may be larger than what we
can reasonably interpolate from a local expansion.
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For the reasons mentioned, we choose the first approach, i.e. correcting upon GΔTU
k+1
n .

Let’s estimate the new iterate Uk+1
n+1 (x̄) as GΔTU

k+1
n (x̄) plus some correction due to

local amplitude and phase difference between FΔTU
k
n (x̄) and GΔTU

k
n (x̄). We denote

αx̄
δ as the correction due to local amplitude change, and φx̄

δ the correction due to
local wave-speed difference, between FΔTU

k
n (x̄) and GΔTU

k
n (x̄) , so that the modified

Parareal correction becomes

Uk+1
n+1 (x̄) = GΔTU

k+1
n (x̄) + αx̄

δ

(
FΔTU

k
n ,GΔTU

k
n

)
+ φx̄

δ

(
FΔTU

k
n ,GΔTU

k
n

)
(8.2)

The correction φx̄
δ due to phase change may be written as a first order approximation

φx̄
δ

(
FΔTU

k
n ,GΔTU

k
n

)
=
[
sx̄Fk − sx̄Gk

]∇x̄GΔTU
k+1
n (x̄) (8.3)

where sx̄Fk and sx̄Gk are the distance a wave moves in a time-subdomain intervalΔT .
I.e, sx̄Fk is the distance a point (x̄) has moved after applying FΔT to Uk

n , similarly sx̄Gk

is the distancea point (x̄) has moved after applying GΔT to Uk
n . The correction αx̄

δ of
amplitude can be written as

αx̄
δ

(
FΔTU

k
n ,GΔTU

k
n

)
=FΔTU

k
n (x̄)− GΔTU

k
n (x̄)

−
(
sx̄Fk∇x̄FΔTU

k
n (x̄)− sx̄Gk∇x̄GΔTU

k
n (x̄)

) (8.4)

Inserting (8.3) and (8.4) into (8.2), we recover

Uk+1
n+1 (x̄) =

(
1 + sx̄Fk − sx̄Gk

)∇x̄GΔTU
k+1
n (x̄) +

(
1− sx̄Fk∇x̄

)FΔTU
k
n (x̄)

− (1− sx̄Gk

)∇x̄GΔTU
k
n (x̄)

(8.5)

as a modified correction procedure. The question that remains is, how may sx̄Fk and
sx̄Gk be evaluated? This turns out to be slightly problematic. Even if we knew the exact
value of sx̄Fk and sx̄Gk , they might be so long that the result of the taylor expansion
around (x̄) is inaccurate. We get around this by recognising that we should be able
to estimate sx̄Fk − sx̄Gk for any (x̄) quite accurately assuming ΔT small, thus we add
another equation

skδ (x̄) = sx̄Fk − sx̄Gk (8.6)

where skδ (x̄) can be approximated quite easily. That leaves us with two equations
and three unknowns. To ensure a unique solution, we now demand that correction
procedure should yield the same result both forwards and backwards in time. I.e,
imagine that Uk+1

n+1 (x̄) was known, and that we instead wanted to find FΔTU
k
n (x̄) as
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the unknown. Using the same approach outlined as before, we find that this entails

FΔTU
k
n (x̄) =

(
1 + sx̄Fk − sx̄Gk

)∇x̄GΔTU
k
n (x̄) +

(
1− sx̄Fk∇x̄

)
Uk+1
n+1 (x̄)

− (1− sx̄Gk∇x̄

)GΔTU
k+1
n (x̄)

(8.7)
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Figure 8.2 – Convergence of the original Parareal method, and the modified variant,
when computing an approximation to the solution of (6.1) with κ = 10−3 and a = 1
to T = 10 on nt = 20 time-subdomains using a factor 6 coarsened space-time grid as
GΔT . (a) show iterations at T = 10 of the original method (b) shows iterations of the
modified variant. (c) error in infinity norm measured with respect to the true solution
u(T = 10) and (d) error in infinity norm measured with respect to the sequential fine
solution at u(T = 10).
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Figure 8.3 – Convergence of the original Parareal method, and the modified variant,
when computing an approximation to the solution of (6.1) with κ = 10−5 and a = 1
to T = 10 on nt = 20 time-subdomains using a factor 6 coarsened space-time grid as
GΔT . (a) show iterations at T = 10 of the original method (b) shows iterations of the
modified variant. (c) error in infinity norm measured with respect to the true solution
u(T = 10) and (d) error in infinity norm measured with respect to the sequential fine
solution at u(T = 10).

when assuming that sx̄Fk = sx̄Fk+1 and sx̄Gk = sx̄Gk+1 . This leaves 3 equations with 3

unknowns from which the modified correction procedure for computing Uk+1
n+1 (x̄) is

found to be

Uk+1
n+1 (x̄) = FΔTU

k
n (x̄) +

(
1 + skδ (x̄)∇x̄

)(
GΔTU

k+1
n (x̄)− GΔTU

k
n (x̄)

)
(8.8)

It turns out that this new update equations actually looks a lot like the original Parareal
method, with the exception of the multiplication by a factor 1 + skδ (x̄)∇x̄ on the
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difference GΔTU
k+1
n (x̄)− GΔTU

k
n (x̄). Numerical experiments testing the method (8.8)

are presented in figures 8.2 and 8.3 for κ = 10−3 and κ = 10−5 respectively, in both cases
α = 1. As before, both FTn

ΔT and GTn
ΔT are constructed using a fourth ordered compact

finite difference stencil[216], and GTn
ΔT operates on a space-time mesh coarsened by a

factor 6. The experiments essentially mirror those presented in section 6.1, except here
nt = 20 time-subdomains were used. In the experiments, the exact skδ (x̄) for a single
mode was measured and used as it is constant in the entire domain. In practice skδ (x̄)

may be estimated locally as long as ΔT is sufficiently short.

8.2 Deriving Parallel-in-Time Integration Schemes

The Parareal modification introduced in section 8.1.2 improves the initial convergence
rate on the simple advection dominated problem, but it does not appear to eliminate
the issues of instability. In this section we take another approach. Rather than further
attempt to modify the Parareal correction procedure, we here develop a new general
method for deriving parallel-in-time integration schemes. We maintain the idea of
having a “fine” level operator FΔT , for which we wish to find approximations Un (x) =

Fn
ΔTu0 at all n < nt time-subdomain interfaces, without allowing for the sequential

application of FΔT . Inspired by Parareal, we instead allow for one or more coarser
levels to be computed sequentially and thereby in some sense act as preconditioners.

In order to present the method for deriving parallel-in-time integration schemes, imag-
ine first that for any given discretization, there exists some operator H that transforms
FΔTU (x) into GΔTU (x) for any solution state U (x), and that the operator depends on
some set of functions c1 (x, t), c2 (x, t), ..., so that one may write

GΔTU (x) = H (FΔTU (x) , c1 (x, t) , . . .) (8.9)

Can we somehow make an assumption on the behavior of H with respect to the
parameters so to construct a parallel-in-time type scheme? Say for example that in
(8.9), H depends only on a single parameter function c (x, t). If this was the case, maybe
we could use GΔTU

k
n (x) and FΔTU

k
n (x) to approximate c (x, t). Given c (x, t), we could

then compute an approximation to FΔTU
k+1
n (x) from GΔTU

k+1
n (x), i.e. extrapolating

from previous iterates to approximate FΔTU
k+1
n (x) without actually computing it

explicitly. This approximation could then be used as Uk+1
n+1 (x) on which FΔT may be

computed in parallel for all n in the subsequent iteration as done in Parareal.

If it so happened that we would need a complicated assumption on H with multiple
function parameters c1 (x, t) , c2 (x, t) , . . . to properly approximate the relationship
between FΔT and GΔT , then a single equation relating GΔTU

k
n (x) and FΔTU

k
n (x)

wouldn’t be sufficient to uniquely determine a correction procedure. In that case, one
could make the correction into a two-step method by just adding another iteration to
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the equations like so

GΔTU
k−1
n (x) =H

(
FΔTU

k−1
n (x) , cn1 (x) , . . .

)
GΔTU

k
n (x) =H

(
FΔTU

k
n (x) , cn1 (x) , . . .

)
GΔTU

k+1
n (x) =H

(
FΔTU

k+1
n (x) , cn1 (x) , . . .

) (8.10)

With three equations, H is allowed to have two function parameters. Two-step meth-
ods have the unfortunate problem of needing a one-step method to get started. An
alternative approach, allowing for more parameters without including many previous
iterates, would be to insists on some form of symmetry. One could for example demand
that the extrapolation procedure gives the same result when done both forwards and
backwards.

FΔTU
k−1
n (x) =H

(
GΔTU

k−1
n (x) , cn1 (x) , . . .

)
FΔTU

k
n (x) =H

(
GΔTU

k
n (x) , cn1 (x) , . . .

)
FΔTU

k+1
n (x) =H

(
GΔTU

k+1
n (x) , cn1 (x) , . . .

) (8.11)

Yet another approach could be to add an additional coarse layer SΔT ,

SΔTU
k
n (x) =H

(
GΔTU

k
n (x) , cn1 (x) , . . .

)
GΔTU

k
n (x) =H

(
FΔTU

k
n (x) , cn1 (x) , . . .

)
SΔTU

k+1
n (x) =H

(
GΔTU

k+1
n (x) , cn1 (x) , . . .

)
GΔTU

k+1
n (x) =H

(
FΔTU

k+1
n (x) , cn1 (x) , . . .

)
(8.12)

Which would then give four equations to work with, allowing for more parameters
and therefore potentially increasing the accuracy with which the relation between the
coarse and fine layers may be approximated. Essentially infinite many schemes could
be created with this approach. The general idea for constructing schemes is outlined
in three steps below

1. Make an assumption on H with some parameter functions c1 (x) , c2 (x) , . . . that
approximate how FΔTU relates to coarser levels GΔTU .

2. Add as many steps and/or as many layers as there are parameter functions in H.

3. Derive an expression for approximating FΔTU
k+1
n (x) without computing it ex-

plicitly, set as next iterate Uk+1
n+1 (x).

Let’s try an derive a simple Parallel-in-Time integration scheme using the method
outlined above. To keep things simple, we begin by deriving a one-step method using
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a single coarse layer. This allows H to have only a single parameter function c (x, t) in
order for the correction-procedure to be unique. What would be a good assumption on
the connection between GΔTU and FΔTU? The simplest possible model is to simply
add the function parameter, i.e.

GΔTU (x) = FΔTU (x) + c (x, t) (8.13)

With this assumption, i.e. that there is a constant function c (x, t) that relates GΔT

and FΔT for all U (x), we may derive the correction procedure that would lead to
convergence in a single iteration by writing out the equations

GΔTU
k
n (x) =H

(
FΔTU

k
n (x)

)
= FΔTU

k
n (x) + cn (x)

GΔTU
k+1
n (x) =H

(
FΔTU

k+1
n (x)

)
= FΔTU

k+1
n (x) + cn (x)

(8.14)

From which FΔTU
k+1
n (x) is isolated, leading to the following correction procedure

Uk+1
n+1 (x) = GΔTU

k+1
n (x) + FΔTU

k
n (x)− GΔTU

k
n (x) (8.15)

Which we immediately recognize as Parareal! From this we may infer that Parareal
may be considered a form of extrapolation method, at time-subdomain interfaces,
GΔTU

k
n (x), FΔTU

k
n (x) and GΔTU

k+1
n (x) are used to estimate FΔTU

k+1
n (x) under the

simple assumption that there exists some function c (x, t) for which GΔTU (x) ≈
FΔTU (x) + c (x, t). So maybe it is not so surprising that Parareal has limitations given
how simple the underlying assumption is. Actually, one might even say that it is quite
surprising that it works as well as it does!

8.2.1 An Exact Correction Procedure

In the previous section we demonstrated how Parareal may be derived with a very
simple assumption on the relationship H between FΔT and a single coarse layer GΔT .
For certain linear problems, it is possible to write up the exact relation between GΔT

and FΔT , so that

FΔTU
k+1
n (x) = H

(
GΔTU

k+1
n (x)

)
(8.16)

without the use of any parameters to be approximated by previous iterations GΔTU
k
n (x)

and FΔTU
k
n (x). This is the case for examples presented in chapter 6 on Parareal applied

to the linear advection-diffusion equation. Here we’ll attempt to construct an exact H
for the upwind scheme used to solve the linear constant coefficient advection equation
with α = 1 and CFL = 0.5.

We do so for two different coarse operators GΔT ; One with a dispersive error component
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with respect to GΔT , created using the same discretization as for FΔT but with α = 1.1,
and one with a dissipative error component, created by adding a diffusion term with
κ = 5.0 · 10−3 to FΔT . The error with respect to FΔT . is similar in magnitude between
the two.
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Figure 8.4 – Iterative time-parallel solution of the advection equation, α = 1, solved
using the upwind scheme with CFL = 0.5 for F·T . The dissipative GΔT was created
by adding a diffusion term with κ = 5.0 · 103 to F·T . The dispersive GΔT was created
by letting α = 1.05. In (a)(c), error was measured with respect to the true solution.
In (b)(d), error was measured with respect to the sequential fine solution. Parareal
was used in figures (a)(b). In figure (c)(d), the correction procedure was performed
as described in Section 8.2.1. Integration until T = 2.5 on nt = 50 time-subdomains,
starting from the discontinuous initial condition depicted in Figure 6.1a. FΔT and GΔT

were constructed using 101 points in space with CFL = 0.5.
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Since the problem and discretization are both linear, the operators GΔT and FΔT may
simple be written as matrix products applied to a vector solution state Uk

n . The exact H
can therefore here be computed by evaluating

H = FΔT (GΔT )
−1 . (8.17)

The convergence pattern from numerical experiment of using H, as computed above,
with the correction (8.16) are presented in figures 8.4 (c)(d). The convergence pattern
for Parareal with equivalent GΔT and FΔT are presented in figures 8.4 (a)(b). As is to be
expected, Parareal converges faster when the difference between GΔT and FΔT is only
in terms of dissipation. This is not surprising, and follows the observations presented
in chapter 6. What is somewhat surprising is that the reverse is true in our attempt to
construct an exact H for the linear advection equation.

When the error on GΔT is almost exclusively dispersive, the correction procedure (8.16)
converges in the first iteration, but when the error on GΔT is dissipative, the correction
procedure (8.16) fails. The reason for this behavior is that in order to compute H from
(8.17), one must invert GΔT . When GΔT contains dissipative components, this problem
becomes ill conditioned. One is essentially trying to rewind a diffusion process, a
problem with no unique solution possible solutions, i.e. the matrix to invert becomes
close to singular. In the case of having only a little artificial dissipation from the
discretization in GΔT , the correct solution can be recovered to high accuracy ∼ 10−6

in a single iteration. When making an assumption on H containing some parameters,
it is thus interesting to note that dissipative effects are both good and bad. On one
hand, dissipation appears to help stabilize parallel-in-time schemes of this sort, on the
other hand it is difficult to make an accurate extrapolation if there is a lot of dissipation
present.

8.2.2 A New 2-Level Scheme

In the beginning of this section we introduced a method for deriving parallel-in-time
integration schemes, and showed how the Parareal scheme follows readily from a
simple assumption on H. Parareal works poorly when there are differences in disper-
sive error components between GΔT and FΔT , this is not surprising as the underlying
assumption on H, (8.13), that relates GΔT and FΔT , is particularly bad in this case.
In this section we will derive a new scheme by making an assumption on H that is
more reasonable when one expects phase-error type differences between GΔT and
FΔT . Assuming only phase-error differences, one might speculate that

GΔTU (x) = H (FΔTU (x)) = FΔT+cn(x,t)U (x) (8.18)
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with some set of functions cn (x, t) would be a better approach. This leads assumption
leads us to the equations

GΔTU
k
n (x) =FΔT+cn(x)U

k
n (x)

GΔTU
k+1
n (x) =FΔT+cn(x)U

k+1
n (x)

(8.19)

In order to isolate FΔTU
k+1
n (x), we first do a 1st order Taylor expansion around ΔT to

find

GΔTU
k
n (x) =FΔTU

k
n (x) + cn (x)

∂

∂t
FΔTU

k
n (x)

∣∣∣∣
tn+1

GΔTU
k+1
n (x) =FΔTU

k+1
n (x) + cn (x)

∂

∂t
FΔTU

k+1
n (x)

∣∣∣∣
tn+1

(8.20)

From which FΔT ′Uk+1
n (x) may be readily isolated to recover the following update

equation at time-subdomain interfaces[
I + cn (x)

∂

∂t

∣∣∣∣
tn+1

]
Uk+1
n+1 (x) = GΔTU

k+1
n (x) (8.21)

where

cn (x) =
GΔTU

k
n (x)−FΔTU

k
n (x)

∂
∂tFΔTUk

n (x)
∣∣
tn+1

(8.22)

The notation ∂
∂t

∣∣
tn+1

indicates the partial derivative in time of the solution state taken at
tn+1, i.e. the n+1’th time-subdomain interface. Normally only the data at tn+1 is saved,
hence the notation. In order to compute the derivative in time at tn+1 numerically,
one must therefore save data in some interval around tn+1. This might at first appear
somewhat inconvinient, but it turns out that one can avoid having to do so by simply
exploiting the fact that the solution state must satisfy the original PDE that we’re trying
to solve, i.e. by transforming the derivative in time into derivatives in space.

It is worth noting that the correction procedure (8.21) derived above is implicit, i.e. a
linear system must be solved to perform the correction. One could however just as
well have derived an explicit scheme by instead assuming

GΔT+cn(x)U
k
n (x) =FΔTU

k
n (x)

GΔT+cn(x)U
k+1
n (x) =FΔTU

k+1
n (x)

(8.23)

With a first order Taylor expansion around ΔT , this would then lead to a scheme on
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the form

Uk+1
n+1 (x) =

[
I + cn (x)

∂

∂t

∣∣∣∣
tn+1

]
GΔTU

k+1
n (x) (8.24)

with

cn (x) =
FΔTU

k
n (x)− GΔTU

k
n (x)

∂
∂tGΔTUk

n (x)
∣∣
tn+1

(8.25)

which is explicit. Whether one is better than the other is not immediately clear, but
it illustrates nicely how many different kinds of method may be derived using the
approach outlined earlier. One might speculate that a weighted method between
the two would be the best, since the above two methods may be problematic when
δ
δtGΔTU

k
n (x) ≈ 0 and δ

δtFΔTU
k
n (x) ≈ 0 respectively. Two small test-cases testing the

convergence rate of the correction (8.24) is presented in section 8.2.3. In figure 8.5 the
method is tested for integration of the scalar ODE test equation, and in figure 8.6 the
method is tested for integration of the advection-diffusion equation (6.1) previously
used.

In the method just derived we assumed that there was one source of errors between
GΔT and FΔT , phase errors. Since we’ve seen that the assumption (8.13) works well for
dissipative differences, we might speculate that a combination of the two would be a
good idea, i.e. assuming the relation
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Figure 8.5 – Convergence of two parallel-in-time integration methods when applied
to solve the test equation (8.32) as outlined in section 8.2.3. (a) Error measured with
respect to the true solution. (b) Error measured with respect to the sequential solution.
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GΔTU (x) = H (FΔTU (x)) = FΔT+c1(x,t)U (x) + c2 (x, t) (8.26)

In order to be able to derive a unique update equation for Uk+1
n+1 , we need now two

equations. The simplest way of satisfying this is by using an additional previous
iteration, i.e. by making a two step method. Writing the equations we arrive at

FΔTU
k−1
n (x) =GΔT+cn1 (x)

Uk−1
n (x) + cn2 (x)

FΔTU
k
n (x) =GΔT+cn1 (x)

Uk
n (x) + cn2 (x)

FΔTU
k+1
n (x) =GΔT+cn1 (x)

Uk+1
n (x) + cn2 (x)

(8.27)

Again we need to do a Taylor expansion around ΔT to be able to isolate FΔTU
k+1
n (x).
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(8.28)

From which we derive the correction procedure

Uk+1
n+1 (x) = GΔtU

k+1
n (x) + cn1 (x)

∂
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GΔtU

k+1
n (x)
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+ cn2 (x) (8.29)
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(8.30)

and

cn2 (x) =
1

2

(
FΔtU

k
n (x) + FΔtU

k−1
n (x)− GΔtU

k
n (x)−GΔtU

k−1
n (x)

−cn1 (x)
∂

∂t
GΔtU

k
n (x)− cn1 (x)

∂

∂t
GΔtU

k−1
n (x)

) (8.31)

The scheme (8.29) is an explicit two-step method. To initiate the algorithm, the original
Parareal algorithm, or the method (8.24) just derived, could be used in the first iteration,
depending on whether the problem is convection dominated or not. In the section that
follows, a few preliminary experiments on the convergence rate of the methods just
derived as applied to the scalar ODE test equation, as well as the advection-diffusion
equation (6.1), are presented.
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8.2.3 Numerical Experiments

The scalar complex valued test equation is used as a first test for the 1-step parallel-in-
time method (8.24)

du (t)

dt
= λu (t) , u (0) = 1, λ = −i (8.32)

Using nt = 50 time-subdomains of length ΔT = 1 and explicit euler integration for
both FΔT and GΔT with timesteps 0.001 and 0.5 respectively. The results are presented
in Figure 8.5.

The method converges in a single iteration whereas Parareal diverges. This seems al-
most too good to be true, but it turns out there’s a natural explanation for the extremely
fast convergence rate observed in this example. Upon closer inspection one may show
that for this particular equation and choice of operators, the assumption on H after
the Taylor expansion is exactly satisfied, and hence convergence in a single iteration is
achieved. The example demonstrates that the method introduced here for designing
parallel-in-time integration schemes can be used to create schemes that work well on
simple cases where Parareal fail spectacularly. Motivated by the promising results, we
also tested the method on the advection-diffusion equation (6.1) with κ = 10−5, a = 1

and the smooth initial condition u (x, 0) = sin (2πx). The same fourth order compact
finite difference scheme previously used was used for FΔT and GΔT with 201 and 21
points in space respectively.
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Figure 8.6 – Convergence of two parallel-in-time integration methods when applied
to solve the advection-diffusion equation (6.1) as outlined in section 8.2.3. (a) Error
measured with respect to the true solution. (b) Error measured with respect to the
sequential fine solution.
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The results are presented in Figure 8.6. Here we note that the new method stagnates. A
straight-forward explanation is that the 1-step method (8.24) derived does not correct
dissipative errors. This motivated the derivation of the two-step method (8.29). The
same advection-diffusion test case was used to test the two-step method, results are
presented in Figure 8.7(a)(b) when using a continuous initial condition.
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Figure 8.7 – Convergence of two parallel-in-time integration methods when applied
to solve the advection-diffusion equation (6.1) as outlined in section 8.2.3 with (a)-(b)
smooth initial condition, and (c)-(d) discontinuous initial condition. κ = 10−5, a = 1.
Integration until T = 2.5 on nt = 50 time-subdomains. FΔT 201 points in space and
GΔT 21 points in space. (a)(c) Error measured with respect to the true solution. (b)(d)
Error measured with respect to the sequential fine solution.
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8.3. Summary

In figures 8.7(c)(d) the two-step method was tested with a discontinuous initial con-
dition as depicted in Figure 6.1a. For the discontinuous case, the two-step scheme
derived diverges like Parareal. This indicates that simply increasing the accuracy of
the extrapolation is not sufficient to stabilize this approach at creating parallel-in-time
integration schemes.

8.3 Summary

The material presented in this chapter are results from work in progress testing recent
ideas. For the numerical experiments in section 8.1.2, testing the proposed modifica-
tion of Parareal, the code-base used for tests in Chapter 6 was reused. In the code, the
fourth order discretization for the linear advection-diffusion is hard coded for constant
coefficients only. Since the modification should work for non-constant coefficient
advection-diffusion as well, investigating this is a first priority in further testing. In
addition, it should be tested how the method handles solutions containing higher
frequencies.

In section 8.2, a general approach for deriving parallel-in-time integration schemes
was derived. Two examples were given and tested. The methods are shown to work very
well when only a single mode is present, but like Parareal it too fails for discontinuous
solutions. The latter is somewhat disappointing as the two-step scheme corrects on
two parameters. It appears that there are still aspects concerning stability that are
not understood, so this should be further studied. Ideally, the approach for deriving
parallel-in-time integration schemes should be modified in such a way to guarantee
stability of methods derived.
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Part IIIFault-tolerant Algorithms for
Exascale Systems
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9 An Introduction to HPC Resilience
and Fault-tolerance

Building reliable computing machines has been an ongoing challenge ever since the
early days of the first electro-mechanical computers. A design for a general purpose
computing machine was published as early as 1837 by Charles Babbage (1791–1871).
The Analytical Engine, briefly mentioned in Part I, was however never built. Due to its
complexity, the estimated cost of construction was so high that no one was willing to
fund it[45]. It has since been postulated that despite the design being Turing-complete
in principle, the machine, if built, would likely not have worked very well due to
limitations on manufacturing technology at the time, likely unable to produce the
required reliability of the many components involved. Reliability of operation was
likewise a major concern with the first general purpose computer built during the
1940s, and the challenge continues with modern day supercomputers[254].

Computers today achieve reliable operation due to a combination of extreme manu-
facturing tolerance and accuracy as well as the use of error correcting codes in critical
circuits. The reliability of the individual compute nodes that make up modern day
supercomputers has become so extreme that if placed in a protected environment,
with adequate cooling and a stable power supply, they may operate continuously for
several years without failing.

Increased parallelism has become a key element in increasing compute throughput
of supercomputers due to fundamental physical laws relating energy consumption
and transistor operation as briefly outlined in the introductory chapters. Today, a
moderately sized cluster typically operates around 500 compute nodes, and the largest
supercomputers in the world ∼10.000 nodes. When operating thousands of machines
in parallel, even though the mean time between failures (MTBF) of a compute node is
measured in years, the time between failure of any single node amongst the thousands
of nodes in the machine may be in the order of days or even hours. Limited reliability
thus pose a substantial challenge when attempting to run numerical algorithms on
the full size of large clusters. The larger the machine, the more likely it is that some
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component will fail during the computing process. Shrinking processor technology
may make processors more susceptible to spurious bitflips due to process variation
and manufacturing defects [32, 52], and the crowing complexity of systems will make
managing system reliability increasingly difficult [185]. Early studies have estimated
that Exascale machines may fail as frequently as once every 30 minutes on exascale
platforms [282]. Such failure rates will require new error-handling techniques.

The term resilience has thus far been used without an explicit definition. In the thesis
we follow the terminology used by Avizienis et al. [12] and adopted in several widely
cited papers on the topic of Exascale resilience[53, 282]. We consider the word to be
synonymous with fault tolerance and define it as in [282]

• “A collection of techniques for keeping applications running to a correct solution
in a timely and efficient manner despite underlying system faults”

In the literature on fault tolerance and resilience, faults, errors, and failures are some-
times used interchangeably. In the thesis we add a slight distinction to the terms
following the definitions in [12].

Fault: The cause of an error (Bug, spurious bit flip, etc.)

Error: The part of total system state that may lead to a failure (Bad values, hardware
malfunction, etc.)

Failure: A transition to incorrect service (An event, e.g. no solution, wrong solution,
unresponsive nodes, etc. )

The total system state is the set of all states in computation, communication, stored
information and interconnects. A fault is said to be active when it cause an error, other-
wise it is a dormant fault. Faults are typically local to a single component, this opposed
to errors that may potentially propagate trough the machine from one component
to another. Errors will not necessarily result in a failure. An extensive overview of
challenges in addressing fault-tolerance for future exascale computing systems is given
in [282] and [53] along with an overview of sources and potential ways if mitigating the
problems. In this chapter, a brief introduction sufficient to supplement the material
presented in the subsequent 3 chapters is given.

9.1 Classification of Errors and Failures

In the thesis, two general types of failures are considered, both briefly presented here.
Computers may experience faults that lead to an error in registers, memory, storage, or
the output of a logic unit which may then manifest itself in the form of one, or more,
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undetected bit-flips in a word. This may in turn lead to a failure in the form of a wrong
solution, polluted by the data corruption. We refer collectively to errors and failures in
the form of corrupted program data as Silent Data Corruptions(SDCs).

Spurious bit flips may also lead to other types of errors and failures than an SDC. If the
fault occurs in such a way that the resulting SDC leads to the termination of a local
MPI process, this will eventually result in the failure of the entire program. Spurious
bit-flips are just one of many types of faults that may cause an error in the form of
a permanent or transient compute node loss. Other common faults are hardware
malfunctions in the form of failed power-supply units, network cards, etc. Increasingly
often, software bugs, rather than hardware malfunction, are determined to be the root
cause[99, 206]. Regardless the type of fault, such events will cause abrupt termination
of all processes running on the node, likely leading to a failure of the entire application.

In the literature specifically related to HPC on fault tolerance and resilience, SDC
type errors and failures are often referred to as soft, whereas the loss of compute
resources are considered hard. Hard errors are sometimes distinguished as being
either permanent or transient. In sections 9.1 and 9.1, the impact of soft and hard
errors are discussed, and an overview of statistics on their occurrence as available in
the literature is presented.

Soft Errors and Failures

Soft errors have the potential to corrupt the solution procedure in ways that may not be
immediately obvious to the domain scientist or engineer using the simulations as part
of their work. The typically attitude towards SDC resilience is to assume that errors are
so rare that they may as well be ignored, favoring the simple solution of doing a re-run
if the computational output looks vastly different than what was expected. This ap-
proach raises questions of the trustworthiness of numerical simulations performed[54].
In addition it is worth noting that both the cost of an SDC induced re-run and the
probability of needing such a re-run scales linearly with the size of the machine.

Soft errors are mostly related to storage elements in the form of spurious bit-flips. A
primary source of soft errors arise from energetic particles interacting with the silicon
subtract that either flip the state of a storage element or disrupt the operation of a
logic circuit. Such events may lead to a silent data corruption (SDC), i.e., no warning
or exception is raised but data has been corrupted. Depending on the location of the
SDC, it may lead to an event that over the course of many compute cycles turns into a
hard error as discussed in section 9.1.

The amount of studies on quantifying the rate at which SDC type errors occur on mod-
ern day clusters is somewhat limited in comparison to the work done on developing
SDC fault-tolerant algorithms. Despite a sizable amount of research, a consensus on
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the frequency of SDC type errors seems not yet to have been established[210, 286]. In
[286, 285] the authors present a study on soft-errors occurring in the DRAM measuring
error rate on ECC type memory, reporting rates of correctable and not correctable
errors. A similar study was published in [82] investigating the impact on HPC accelera-
tors. As for CPUs, in [65] the authors present a study on the occurrence of soft-errors
when irradiating a Power BQC 16C chip with high-energy particles during execution.
They use the measurements to project actual long term failure rate for larger-scale HPC
systems. They project using the irradiation experiments the mean time between errors
at sea level of the SRAM-based register files and Level-1 caches for a system similar
to the scale of Sequoia system with roughly 1.6 million cores to be approximately 1.5
days.

Analyzing DRAM errors based on job scheduler logs and counters in hardware-level
error correcting codes has the inconvenience that knowledge about errors escaping
hardware checks is incomplete and must be inferred. In [25] a study was presented
analyzing memory errors on a 1000-node cluster using low-power memory without
error correcting codes. The authors present data from 12000 terabyte hours of error
monitoring on 1000 nodes observing 55.000 faults in total. Their study showed that
most multi-bit errors corrupted non-adjacent bits in a memory word, and interestingly
that most errors flipped memory bits from 1 to 0. The studies confirm that use of error
correcting codes in peta-scale systems is essential.

The error correcting codes typically used in HPC use parity bits so to protect words
against spurious bit flips typically caused by alpha particle strikes. ECC memory
may correct a single bit error and detect any double bit error within a word. The
numbers presented also suggest that the extensive hardware based error correction
in modern systems is doing a good job making SDCs somewhat infrequent even on
Petascale systems. When SDCs do happen, they may have no measurable impact,
depending on the location of the fault, as many iterative algorithms used widely used
in computational science are inherently soft error resilient [274]. Mitigating the effects
of SDC type errors is however still very much an active field of research as it is not
clear how well the approach of protecting circuits with error correcting codes will
work at exascale. Parity bits and error detection/correction on DRAM is expensive in
terms of both cost and energy, and some circuits are not feasible to protect without
large overhead. It has been speculated that creating algorithms inherently resilient
to SDC type errors may be a cheaper options than increasing hardware protection of
vulnerable circuits.

Hard Errors and Failures

Whereas the impact of SDCs on production code remains somewhat speculative, hard
errors already present a very real challenge on large compute clusters[282]. Having
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at least some form of rudimentary fault-tolerance is essential for running code that
scales to the full size of peta-scale systems. Simplistic approaches are unlikely to scale
exascale systems. Even if the compute nodes in a potential exa-scale system would
have an individual MTBF (Mean Time Between Fealure) of a century, a machine with
100.000 such nodes would encounter a failure every 9 hours on average[88]. This being
shorter than the execution time of many HPC applications.

Faults that begin as soft-errors but eventually propagate into hard-errors have been a
major issue in the past, in particular during the early days of building clusters based on
commodity hardware. In a number of notable cases, radiation sources were shown to
be the culprit in rendering, at the time being, very large scale clusters useless [131]. On
today’s clusters, all components from memory to CPUs to networks have some form of
error correcting code build in. This does however not mean that soft-errors and SDCs
have become non-issues. Some logic units, particularly with-in CPUs are prohibitively
expensive to protect with error-correcting code[215]. Typically a hard error involves
only a single node, but in particular if critical infrastructure is shared among multiple
nodes, such as a power supply units, occasionally hard errors do affect more than one
node at a time.

In [146], Gupta et al. presented a study on failures in large-scale systems at Oak Ridge
National Laboratory. Their study covered failures of more than one billion compute
node hours across five different systems over a period of 8 years. The systems studied
varied in size from 0.3 Petalops to 27 Petalops. They found that system software related
bugs such as kernel panic and bugs related to the Parallel File System contributed to
approximately 20% of failures. This differs somewhat from previous studies indicating
that failures due to software bugs is the dominant type of failure[99, 206]. Interconnect
technology has improved significantly over the course of the 8 years, and they now
constitute a small proportions of errors with hardware malfunction still being the
predominant source of failures. Failures due to detected but uncorrected bit-flips, i.e.,
two or more bit-flips in the same word, are the source of around 15 percent of all failures
on Titan GPU based machine. Overall the five systems, normalized to 18688 nodes,
has a mean time between failure (MTBF) of 7.5 to 22.7 hours. Any application that
wish to scale across the entire machine must therefor be equipped with rudimentary
fault-tolerance against hard failures so to avoid wasting compute resources.

The usage of compute accelerators in large scale systems has become common practice,
and a number of studies on their reliability has been published [298, 234]. Naturally,
adding more components increase the frequency of hard failures. An interesting key
point is that although using memory protected with error correcting codes reduce the
occurrence of soft errors by several orders of magnitude, they may surprisingly lead to
a small increase in the rate of hard failures as otherwise benign double bit corruptions
are caught and lead to process termination.
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Several studies on the statistics of the occurrence of hard failures among compute
nodes in a cluster setting exists. Assuming that hard failures are mutually independent
so that failures occur as a Poisson point process, i.e. exponential distribution, is nat-
ural and a good first approximation. It has however been demonstrated empirically
that failures tend to not be entirely independent in the sense that following a failure
the probability of another failure increases. The Weibull distribution with decreas-
ing hazard rate has been shown to model the occurrence of failures well in several
studies[269, 319].

9.2 Strategies for Detection and Repair

Some strategies for detection, repair, and recovery are generic, others are algorithm
specific, and some are designed specifically to protect against either soft or hard
failures whilst others offer protection against both. For soft errors, the main difficulty
is the issue of effectively detecting the presence of corrupt data, whereas for hard
failures the main issue tends to be dealing with the data lost in a distributed memory
application. Some strategies such as process replication are naturally applicable for
protection against both soft and hard errors, others such as checkpointing requires the
addition of some detection strategy to protect against soft failures. In section 9.2 and
9.2, a brief overview of commonly used methods and recent results is given.

Soft Errors and Failures

Although soft errors are expected to be less frequent than hard errors, they have
the added complexity of being difficult to detect. Several recent papers have been
published on the topic of understanding how SDC type errors propagate throughout a
system and on how to model and predict their impact on programs[47, 191].

A highly robust way of preventing SDC type errors causing soft failures is the use of full
or partial replication as has been explored in several studies [114, 36, 28]. An advantage
of the replication based approach is that it may be used to protect mitigate the impact
of hard failures as well. The disadvantage to the approach is that replication is very
costly. One method of reducing the cost is to employ compile time analysis to protect
trough replication only statistically vulnerable portions of program code[111, 194].

More algorithm specific cost effective approaches to soft error resilience requires
efficient detection of SDC’s[20, 35]. Many lightweight detectors has been proposed.
The common theme is to allow for some trade-off between detection cost and accuracy.
The methods are typically designed to recognize anomalies in HPC datasets based
on knowledge on the physical laws or spatial interpolation. Other approaches use
various filters and/or time series prediction. Although the methods are not completely
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accurate, they are able to detect a substantial amount of SDC type errors at a reduced
cost [19, 84, 21, 37].

There exists a large body of published research on handling SDC type errors from
an application perspective in which fault tolerant versions of commonly used algo-
rithms in computational science has been developed. Methods has been developed
for general matrix operations [167, 311], certain iterative solvers [275, 265], sorting
algorithms[144], numerical algorithms for PDEs[145, 160] and many others.

Hard Errors and Failures

When creating, or modifying, an application to make it resilient towards hard failure,
usually one of three approaches is taken, each of which is outlined in the list below

Backward Recovery: To tolerate hard failures, all current production-quality tech-
nologies available rely on checkpointing, also known as backwards recovery[53].
The approach is conceptually simple; write all critical program data to some
non-volatile storage at periodic intervals so that, in the event of a fail-stop, the
application may be restarted from the most recent checkpoint. This approach
has been used since the early days of HPC. It mitigates the impact of hard failures
by enabling the application to only have to recompute the progress lost since last
checkpoint[189, 88]. The main drawback of checkpointing is the burden it places
on I/O infrastructure. Computational power and memory capacity of nodes has
increased at faster rate than that of the Parallel-file-system bandwidth, leading
to I/O becoming a bottleneck in many applications. In addition, on shared-use
distributed memory clusters, checkpointing is likely to interfere with commu-
nication and I/O of other applications. The checkpoint-to-filesystem approach
works well when using a comparatively small number of nodes, but does not
scale well. The mean time between failure scales linearly with the number of
nodes used, and so does the associated lost computational work done between
the point of failure and the most recent check-point.

Some applications when running on large clusters may need up to several hours
to create a checkpoint on parallel file system. This is dangerously close to the
MTBF of many machines, current day peta-scale clusters typically have a mean
time to failure (MTBF) of any single node of roughly a day[146]. When the time to
checkpoint is close to the MTBF of a system, an application may spend all its time
in a never ending cycle of checkpoint-restart without making much progress.

Various techniques for reducing the size of checkpoint have been developed or
proposed. The proposed methods typically work by exploiting similiaties in data
[39], trough data aggregation and compression [173, 74], or trough the use of
incremental checkpointing [263, 224]. Other proposed approaches attempt to in-
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crease the speed of protection whilst minimizing I/O congestion trough disk-less
checkpointing and/or multilevel checkpointing[301, 243, 321, 217]. The idea with
multi-level checkpointing is to combine checkpoints to the parallel-file-system
with cheaper, and less resilient, checkpoint levels. Light-weight checkpoints
can be constructed utilizing node-local storage or memory along with some
form of cross-node redundancy or erasure code. If the cheaper checkpoints are
able to recover from are comparatively large number of failures, the expensive
parallel-file-system checkpoints will not have to be made as often. This leads to
higher overall system efficiency as less time is spent creating checkpoint, and
recomputing lost work. A more comprehensive introduction to checkpointing
technologies is given as part of the introduction to 11.

Forward Recovery: In addition to the problem of protecting data, recovery trough
checkpointing has the disadvantage that a lot of compute work is discarded
upon rollback. For certain algorithms it is possible to recover without roll-
back by instead taking extra steps to compensate for the lost data and its effect.
This approach is often referred to as algorithmic based fault tolerance (ABFT).
Fault-tolerant variants has been developed for the numerical soltuion of certain
PDEs[135, 222], for use in N-Body tree computations[56], for the conjugate gradi-
ent method[235], and for some general dense matrix operations such as matrix
factorization[63, 95].

A requirement for roll-forward recovery is that the application processes and
the runtime environment stay alive when experiencing failures. This is not
the case with standard MPI, but several resilient MPI designs has been under
development, or are currently being developed. Among these, FT-MPI was the
first attempt[106], another more recent development is ULFM MPI that allows
for notification of errors and add specific functionality to reorganize work by
identifying failed ranks and allowing for MPI communicators to be repaired either
by removing the failed rank, or by replacing it with a spare rank[40, 7]. Another
recent development is the Global View Resilience (GVR) that use versioning
distributed arrays for resilience and allow for flexible recovery[66, 67].

Replication: Process replication is another proposed approach to cope with faulty
hardware. The idea with replication is to concurrently run one or more repli-
cas of the data and computation so that in the event of failure, no need for
forward or backwards recovery is needed[43, 294]. At least two MPI based li-
braries for process replication to address fail-stop have been developed, rMPI
and MR-MPI[112, 102], demonstrating the feasibility. The main issue with reppli-
cation is the high resource overhead. A recent study showed that it is possible
for repplication to be more effecient than rollback recovery, but only in some
extreme situations where the MTBF of the system is extremely low and the time
to checkpoint and restart very high[113].
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9.3 Contributions in Part III

The remainder of this part of the thesis consists of three chapters, each of which deals
with issues of fault-tolerance in HPC. In 10, a modified variant of the Parareal algorithm
discussed in great detail in part II is presented. The chapter is an extended version of
that published in [231]. The modified algorithm is resilient towards both soft and hard
failures, the first such variant of Parareal.

According to a recent study, multi-level checkpointing is likely the most realistic ap-
proach for general purpose fault tolerance at exascale[81]. In 11, a new library for
multi-level check-pointing is presented along with scaling tests. The library, called
Llama, is the first to support both automatic rollback without restart and the use of an
arbitrary number of checkpoint levels with topology aware checksum checkpoints of
arbitrary group size and number of parity code blocks.

Llama use erasure codes to create resilient memory-conserving checkpoints. Erasure
codes are widely used for protecting data in applications spanning everything from
Blu-ray Discs to QR codes. A particular important application these days is protecting
data in data centers. Erasure codes take a message of k data blocks and transform it
into a longer message of n data blocks in such a way that the original message of k
blocks may be recovered from some subset of the n blocks. If any subset of k blocks
amongst the n is sufficient to recover the original message, the code is said to be
optimal. It is in general not possible to recover the original message with less than k

blocks, even for optimal codes. In 12, it is demonstrated that, given a little knowledge
about the underlying structure of the data encoded, it is possible to partially recover
the otherwise lost data even when less than k data blocks are available.

121





10 Fault-Tolerance in Parareal

In this chapter, a modified version of the Parareal algorithm introduced by Lions et al.
in [193] and treated in great detail in Part II, is developed. The modified variant is fault-
tolerant in the sense that it is resilient towards the loss of compute nodes and towards
the introduction of silent data corruptions, i.e. soft and hard errors. Tolerance towards
loss of compute nodes is made possible by using nodes that have already completed
their work as spare nodes in a scheme that allows for detection, removal and repair of
unresponsive compute resources. Resilience towards silent data corruptions (SDCs) is
achieved by viewing the Parareal corrections procedure at time-subdomain interfaces
as a series of fixed point methods, each of which is only dependent on previous time-
subdomains. Detection of SDC infected iterates is made possible by monitoring the
residual, locally at each time-subdomain, for unexpected behavior. The content of the
chapter is a slightly extended version of an article published in [231].

10.1 Introduction

Parallel-in-time integration is a technique for extracting additional parallelism in the
solution of evolution problems beyond what is possible using standard spacial domain
decomposition methods. By introducing a decomposition of the time domain, it is
possible, for certain classes of problems, to greatly increase the number of nodes that
may be used to accelerate the solution procedure. A space-time parallel algorithm
presented in [261] is able to scale to 458,752 cores whilst solving the 3-dimensional
heat equation, the full size of the 5 Petaflop/s JUQUEEN cluster. The space-time
parallel code scales to three times the number of nodes than the code based on parallel
multi-grid alone on the same problem.

In a recent report released by the Exascale Mathematics Working Group at Lawrence
Livermore National Laboratory, time-parallel integration techniques are highlighted
as a potential path to overcome limitations of strong scaling in evolution problems

123



Chapter 10. Fault-Tolerance in Parareal

and calls for more research in the direction [92]. Here research is presented following
these directions by showing how Parareal, with slight modifications, may be made
resilient towards hardware faults. The chapter begins with a short introduction to time-
domain parallelism and the general formalism. In section 10.2 the approach to work
distribution and data-locality is outlined along with the strategy and implementation
for recovery upon node loss. In section 10.3 we benefit from the interpretation of
Parareal as a point-iterative method in the introduction to develop the algorithm
resilient to silent data error. The ideas introduced for mitigating the impact of SDC
type errors are tested on a parallel-in-time implementation of the solution of an
advection-diffusion equation. The final section 10.4 contains a short summary of the
chapter.

10.1.1 Parallel-in-Time using Parareal

In section 5.2 of Part II, the Parareal algorithm was presented as a fixed point method. In
this chapter, we focus the analysis and implementation od the Parareal algorithm where
the preconditioner have the same lower bi-diagonal structure as MF . However, similar
fault-tolerant implementations may be constructed for other fixed-point iteration
type time-parallel domain-decomposition methods. A recent example of how time-
parallel methods may be made resilient to silent data corruption can be found in
[143] where it is demonstrated how the Spectral-Deferred-Correction based Parareal
algorithm, introduced in [212], may be made resilient by introducing a special strategy
for monitoring the residual inside the iterations. A comprehensive introduction to
Parareal can be found in [228], and important contributions to the analysis of the
method can be found in [288, 14, 128]. The computation of both FΔT Uk

n and GΔT Uk
n

is likely in itself parallel in some form, and we therefore henceforth apply the generic
term "node-group" to refer to whatever combination and number of CPU and co-
processor used to apply FΔT and GΔT to Uk

n. This has the benefit of abstracting away
any techniques for parallelism in numerical algorithms potentially used in FΔT and
GΔT , e.g. conventional spatial domain-decomposition.

10.1.2 Resilience and Fault-tolerance

In [92, 53], resilience to faults is identified as being critical for future exascale HPC
systems. The techniques needed to achieve a thousand fold increase in computational
capacity, are predicted to also increase the rate of failures on large systems. This poses
substantial new challenges in terms of how to effectively use the machines, and on
how to assess and assure the correctness of the results of numerical simulations. In
the context of parallel integration techniques, the issue of algorithmic resilience is of
particular relevance since methods of parallel integration are developed primarily with
a focus on extracting parallelism in the solution of PDE’s beyond what is possible using
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standard domain decomposition techniques, i.e., simulations involving a very large
number of compute nodes. An extensive overview of challenges in addressing faults at
exascale is given in [282]. In the white paper, faults caused by malfunctioning hardware
are placed into two overall categories, soft and hard node errors. A significant source
of soft errors arise from energetic particles interacting with the silicon subtract that
either flip the state of a storage element or disrupt the operation of a combinational
logic circuit. Such events may lead to a silent data corruption (SDC), i.e., no warning or
exception is raised but data has been corrupted. Depending on the location of the SDC,
it may lead to an event that, over the course of many compute cycles, turns into a hard
error. Hard errors are faults that lead to the complete failure of a node. For current
parallel applications based on MPI, the approach for dealing with the loss of a process
is to terminate all remaining processes and restart the application at nearest check-
point. This approach is costly as many modern clusters scale to thousands of nodes,
and the I/O cost of a check-point/restart procedure may be prohibitive. Ideally, a local
failure should permit local recovery. Unlike hard errors, soft errors have the potential
to corrupt computer simulations in ways that may not be immediately obvious to the
domain scientist or engineer relying on them as part of their work, and it is worth
noting that both the cost of an SDC induced re-run and the probability of needing
such a re-run scales linearly with the size of the machine. Hence, the expectation value
of the induced cost scales quadratically, and this may not be acceptable on future
exascale systems. In this work we seek to develop a variant of the Parareal algorithm
for time-parallel integration that is resilient to both soft and hard errors. As presented
in [124] some parallel integration methods are intimately related, and we therefore
conjecture that our ideas may extend to other techniques of time-parallel integration.

10.2 Recovering from Node-Loss

The Parareal correction (5.10) may be implemented in different ways. The simplest
approach is to divide work into two phases; a purely sequential phase, computing
Uk+1

n+1 from GΔTU
k+1
n with the correction (5.10), and a parallel phase where FΔTU

k
n is

computed in parallel on n ∈ N nodes. Ideally, the wall-time TG for a node group to
compute GΔTU

k+1
n is much smaller than the wall-time TF to compute FΔTU

k
n, and

the limiting factor in obtainable speed-up will be the number of iterations kconv < N

required for convergence. In practice however, it is rarely possible to construct a coarse
operator GΔT that is sufficiently cheap that its cost may be ignored. Fortunately, there
exists many other ways to schedule the computational work than relying on two strictly
separated phases, switching between the sequential computation of GΔTU and the
parallel computation of FΔTU.
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Figure 10.1 – The “Fully-Distributed” work scheduling of the Parareal algorithm as
proposed in [9]. Light grey boxes indicate a node-group for computing FΔTU and dark
gray indicates that a node group is evaluating the coarse operator GΔTU. Drawn for
N = 6 time-subdomains and convergence in kconv = 3 iterations.
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Figure 10.2 – Schematic visualization of the recovery procedure of the Fault-Tolerant
algorithm with N = 6 time-subdomains and fault-free convergence in kconv = 3
iterations. Failed node-groups injected at {idΔT , kerr} = {3, 2} , {4, 2}. The north east
line pattern indicates failed nodes that no longer participate.
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For example, GT0
ΔTU

0
0 and FT0

ΔTU
0
0 may be computed concurrently. By exploiting such

in-dependencies, it is possible, to some extent, to mitigate the effects of a relatively
expensive coarse operator GΔT .

The most widely cited scheduler for the Parareal algorithm was proposed by Aubanel
[9]. The “Fully-Distributed” scheduler is near optimal in exploiting independencies,
while at the same time being fairly simple to implement. In Figure 10.1, the scheduler
is schematically visualized for a small problem, N = 6 time sub-domains, and con-
vergence in kconv = 3 corrections. Note how, as the first time-subdomain converges,
node-groups remain idle while waiting for the rest of the application to finish. In this
section a new variant of this scheduler is introduced. The scheduler uses features of
the UFLM MPI framework [40] to build a fault tolerant algorithm. Here node-groups
that have already completed their work will be used as spares in the event that a still
active node-group is lost.

10.2.1 A Fault-Tolerant Scheduler

In Algorithm 7, pseudo code of the proposed Fault-Tolerant Parareal algorithm is pre-
sented. The only difference between it and the original “Fully-Distributed” scheme[9]
is the introduction of the function calls check_send, check_recv, and spare. The guide-
line for the recovery strategy for the fault-tolerant implementation is summarized
below. In Figure 10.2 the recovery procedure is schematically visualized for a small
problem, N = 6 time sub-domains, and convergence in kconv = 3 corrections with
node-groups lost at {idΔT , kerr} = {3, 2} , {4, 2}.

• Spare Mode. When Uk+1
n on a time sub-domain handled by a node-group con-

verges, the node-group will become a spare node-group, ready to receive new
instructions.

• Push Strategy. Recovery upon failure is initiated by check_send(). It searches for
available spares to continue the work If no spares are available, the application
fails globally. If check_send() on idΔT successfully connects to a spare node-group,
it returns a new inter-communicator for sending to the node-group working on
idΔT + 1.

• Receiving. A failed check_recv() will wait cTG , c > 1, for a signal to connect. If
no signal appears, it initiates a global failure. Thus, the loss of a node-group
is only recoverable if the loss happens during the computation of FΔTU. If a
node-group is in the process of completing the correction (5.10) when the group
fails, the local loss of a node-group will lead to global failure. If check_recv()
on idΔT successfully connects to a spare node-group, it returns a new inter-
communicator for receiving from the node-group working on idΔT − 1. The
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converge flag is set zero so that no intervals, following a node-group failure,
converges in the current iteration.

• Convergence. In the unprotected algorithm, Uk+1
n on the node-group working

on the earliest time sub-domain idΔT , will converge, i.e, during each iteration at
least one time sub-domain converges. In the Fault-Tolerant implementation, we
require this to be the case as well and FΔTU must complete on the node-group
with the lowest idΔT among active node-groups. This condition is naturally
enforced by the wait condition on check_recv() this simplifies the algorithm while
also ensuring that it converges in a maximum of kconv = N iterations as in the
unprotected algorithm.

Pseudo code for check_send, check_recv and spare_node is given in Algorithm 6, 8
and 9 respectively. In each algorithm, a number of procedures are outlined. The
procedures involve querying node-groups that are actively computing FΔTU or GΔTU

for information on their current status. That is, retrieving the local values of k and
idΔT on node-groups without explicit synchronization. The ideal way of achieving
this is to use RMA features introduced in the MPI 3.0 standard. However, for our test
implementation, this was not possible since ULFM-1.1 is based on OpenMPI 1.7.

Algorithm 6 Pseudo code for spare() function

1: if idΔT = N − 1 then
2: work ← FALSE
3: procedure: Send exit to all node-groups.
4: else
5: procedure: Wait for exit or work signal from any node-group n.
6: end if
7: if work then
8: recv_intercomm ← intercomm n

9: RC ← receive k and idΔT on recv_intercomm
10: idΔT ← idΔT + 1

11: RC ← receive converge and Uk
idΔT

on recv_intercomm
12: check_recv(RC,converge)
13: Ũk

idΔT+1 ← GΔTU
k
idΔT

14: Uk
idΔT+1 ← Ũk

idΔT+1

15: Revoke and free send_intercomm
16: if Is idΔT + 1 being processed on any n.-g.? then
17: procedure: Find the node-group n processing time-subdomain idΔT + 1.
18: send_intercomm ← intercomm n

19: else
20: check_send(1,converge)
21: end if
22: K ← k + 1

23: for k = K to Kmax do
24: procedure: Execute pseudocode Algorithm 1, line 28 to 54.
25: end for
26: end if
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Algorithm 7 Pseudocode for a Fault Tolerant version of a "fully-distributed" Parareal imple-
mentation.

1: convergeNext ← FALSE
2: idΔT ← idNG

3: recv_intercomm ← intercomm idNG − 1

4: send_intercomm ← intercomm idNG + 1

5: if idΔT = 0 then
6: Ũ0

0 ← y0, Ũ0
1 ← GΔT Ũ

0
0

7: RC ← send Ũ0
1 on send_intercomm

8: check_send(RC,converge)
9: Û0

1 ← FΔT Ũ
0
0 , U1

1 ← Û0
1

10: converge ← TRUE
11: RC ← send converge and U1

1 on send_intercomm
12: check_send(RC,converge)
13: spare � idNG = 0 completed idΔT = 0, now spare
14: else
15: RC ←receive Ũ0

idΔT
on recv_intercomm

16: check_recv(RC,converge)
17: Ũ0

idΔT+1 ← GΔT Ũ
0
idΔT

18: if idΔT ! = N − 1 then
19: RC ←send Ũ0

idΔT+1 on send_intercomm
20: check_send(RC,converge)
21: end if
22: end if
23: U0

idΔT
← Ũ0

idΔT

24: for k = 1 to Kmax do
25: Ûk−1

idΔT+1 ← FΔTU
k−1
idΔT

26: if convergeNext then
27: converge ← TRUE
28: Uk

idΔT+1 ← Ûk−1
idΔT+1

29: if idΔT ! = N − 1 then
30: RC ← send converge, Uk

idΔT+1 on send_intercomm
31: check_send(RC,converge)
32: end if
33: spare � enter spare mode
34: end if
35: RC ←receive converge and Uk

idΔT
on recv_intercomm

36: check_recv(RC,converge)
37: Ũk

idΔT+1 ← GΔTU
k
idΔT

38: Uk
idΔT+1 ← Ũk

idΔT+1 + Ûk−1
idΔT+1 + Ũk−1

idΔT+1

39: if converge & |Uk
idΔT+1 − Uk−1

idΔT+1| > ε then
40: converge ← FALSE
41: convergeNext ← TRUE � converges in k = k + 1

42: end if
43: if idΔT ! = N − 1 then
44: RC ←send converge, Uk

idΔT+1 on send_intercomm
45: check_send(RC,converge)
46: end if
47: if converge then
48: spare � enter spare mode
49: end if

50: end for
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Algorithm 8 Pseudocode for check_send(RC,converge)

1: if RC ! = 0 then
2: Revoke and free send_intercomm
3: if converge then
4: converge ← FALSE
5: idΔT ← idΔT + 1

6: Ũk
idΔT+1 ← GΔTU

k
idΔT

7: Uk
idΔT+1 ← Ũk

idΔT+1

8: if Is idΔT + 1 being processed on any n.-g.? then
9: procedure: Find the node-hroup n processing time-subdomain idΔT + 1.

10: send_intercomm ← intercomm n

11: else
12: check_send(1,converge)
13: end if
14: RC ←send converge, Uk

idΔT+1 on send_intercomm
15: check_send(RC,converge)
16: k ← k + 1

17: Ûk−1
idΔT+1 ← FΔTU

k−1
idΔT

18: Uk
idΔT+1 ← Ûk−1

idΔT+1

19: converge ← TRUE
20: RC ← send converge, Uk

idΔT+1 on send_intercomm
21: check_send(RC,converge)
22: else
23: if Any node-group in spare-mode? then
24: procedure: Find node-group n in spare-mode and send work signal.
25: send_intercomm ← intercomm n

26: RC ← send k, idΔT on send_intercomm
27: RC ← send converge, Uk

idΔT+1 on send_intercomm
28: check_send(RC,converge)
29: else
30: procedure: Send exit to all node-groups.
31: exit � application failure
32: end if
33: end if

34: end if

Algorithm 9 Pseudocode for the check_recv(RC,converge) function

1: if RC ! = 0 then
2: procedure: Wait for exit or work signal from any node-group n. If wait-time exceeds ΔTG ,

assume failure and abort program.
3: if work then
4: recv_intercomm ← intercomm n

5: RC ←receive converge and Uk
idΔT

on recv_intercomm
6: check_recv(RC,converge)
7: end if

8: end if
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Instead of using RMA, a solution where all node-groups spawn two Pthreads in the
beginning of the application was chosen. One thread for doing the compute work, as
outlined in Algorithm 7 and another thread solely for handling signals and returning in-
formation on the local node-group’s current k and idΔT that may be requested by other
node-groups. The Fault-Tolerant version must create N

2 (N − 1) inter-communicators
between N intra-communicators at the onset of the algorithm. For the unprotected
algorithm even the loss of a single node within a node-group will lead to global failure.
No rearranging will be needed, and creating N − 1 inter-communicators between
the intra-communicators of N adjacent node-groups is sufficient. It is not an option
to simply create the new inter-communicator during the recovery process since this
would require a global synchronization to shrink the global communicator to cre-
ate a new inter-communicator. In addition to the cost associated with creating the(
N
2 − 1

)
(N − 1) extra inter-communicators, the Fault-Tolerant algorithm performs a

check after each receive and send operation on the intercommunicators. A check must
involve an agreement operation across the local intra-communicator to ensure that
all send/recv completes successfully. In the section that follows, a small numerical
experiment to examine the cost associated with the added operations is presented.

Numerical Experiments

For testing purposes, the proposed Fault-Tolerant variant and the unprotected algo-
rithm are wrapped around the parallel-in-time integration of an ODE system, d

dtu = Λu

using an implicit Euler integration scheme on the interval T = [0, 10] with u0 =

[1, . . . , 1], Λ being a complex valued diagonal matrix, the dimension of which is given
by the number of ranks in space. For the numerical experiment 16 ranks in space
were used. The computational complexity of this type of problem is very light, so the
ratio r = TF

TG is controlled by a sleep function rather than the compute capacity of the
node. This approach allows for kconv, r and the number of time sub-domains N to
be controlled independently. This mimics a general problem, while at the same time
allowing to accurately measure the associated costs of creating a large number of inter-
communicators and performing agreement operations on the send/recv operations
on inter-communicators between time sub-domains. In Figure 10.3, measurements
for a problem with N = 16 time sub-domains and a ratio r = 16 with TG = 2s and GTn

ΔT

fine enough that
∣∣Uk+1

n −Uk
n

∣∣ < ε after kconv = 3 corrections is presented for different
error scenarios on a 2x Xeon E5-2643V3 system. Comparing cases (b) and (c), it is clear
that the cost associated with a recovery operation is fairly small, and that the cost due
to loss of information, possibly forcing the algorithm to make another iteration or two
before converging, is an order or two higher. Likewise, the initial added cost of setting
up the inter-communicators and threads for handling signaling is comparatively small.
The tests were performed on a workstation where all ranks reside in the same memory
space and synchronization and communication is therefore cheap. On a large cluster
this will not be the case. Given that the experiments were performed using 256 ranks
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and still reveals a substantial difference in cost, it seems reasonable to expect that
upon node loss in a cluster setting, the largest cost factor would be the extra iterations
required due to lost information.
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Figure 10.3 – Execution time in seconds for the unprotected algorithm, and for
the proposed fault-tolerant algorithm with one or multiple node-group losses lo-
cated at {idΔT , kerr}. (a) No errors. (b) {15, 1}. (c) {15, 3}. (d) {4, 1} , {5, 2}. (e)
{11, 2} , {12, 2} , {15, 3}. The number in parenthesis indicates iterations to convergence.
16 ranks were used in space on 16 time-subdomains for 256 ranks in total.

10.2.2 Failure Analysis

The proposed Fault-Tolerant variant of the Fully-Distributed Parareal work scheduling
algorithm may fail to recover when subjected to node-group losses under certain
circumstances. As outlined in Section 10.2.1, there is a limit to how many node-groups
may be lost at a given iteration, as well as the limitation that all correction operations
(5.10), and the computation of GΔTU must not fail. In this section we derive a lower
bound on the probability that the Fault-Tolerant algorithm will execute successfully. A
key assumption in our derivation is that the occurrence of node-losses may be assumed
to be a Poisson point process, and that statistics on the average time between node
failure is available. Let μG

ΔT be the average number of times during a time interval TG
that any node within a node-group fails, and assume that μG

ΔT � 1. Since the zero’th
iteration consists solely of computing GΔTUN times, each of which must complete
correctly, the probability of successfully executing the zero’th iteration is equal to the
probability of zero node-losses occurring

PN (0, 0) = e−N ·μG
ΔT (10.1)

For the iterations that follow, the derivation is less trivial. Due to the “push-strategy” for
recovery, all subsequent iterations k must have zero node-losses during the correction
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phase, the probability of which is exp
(
(k −N) · μG

ΔT

)
. During the computation of

FΔTU, several node-groups may be lost whilst still being recoverable. The probability
that n node-groups are lost at iteration k is

(
r · (N − k) · μG

ΔT

)n
n!

exp
(
r · (k −N) · μG

ΔT

)
(10.2)

where r = TF
TG . Finally, due to the requirement that the algorithm must converge in

a maximum of k = N iterations, FΔTU on the first active time sub-domain in any
iteration k must execute successfully, the probability of which is

exp
(−r · μG

ΔT

)
, (10.3)

independent of k. The probability PN,k
n that the algorithm for N time sub-domains

successfully completes iteration k with n node-group loses is then given by the product
of (10.2) and (10.3) which becomes

PN (k, n) =

(
r (N − k)μG

ΔT

)n
n!

e(1+r)(k−N)μG
ΔT−rμG

ΔT (10.4)

Using the above expression, one may write the probability that the unprotected algo-
rithm executes successfully as

PN,kc
PA =

kc∏
i=0

PN (i, 0) , (10.5)

as in the unprotected algorithm, each iteration must be completed with n = 0 node-
group losses. In the case of the Fault-Tolerant algorithm it is more complicated to
evaluated the probability of successful execution PN,kc

FT-PA. The reason for this being
that the number of iterations needed for convergence may increase due to the failures
as information is lost, and there are many different potential paths to successful
execution.

Figure 10.4 depicts a tree where the branches indicate all possible paths to successful
execution for a small example, using only N = 4 time-subdomains and needing
kconv = 2 iterations to convergence if no failures occur. In drawing the tree it was
assumed that for each failure, the number of iterations, needed for convergence, would
always increase by one. This will not always be the case however, and the assumption
means that evaluating the product of all potential successful completions as drawn in
blue circles in the tree would, lead to a lower bound on the combined probability for
successful execution. To deduce an expression to describe PN,kc

FT-PA as a function of all
possible N and kc, we first recognize that at any iteration k, the fault-tolerant algorithm
may recover from up to

l1 (N, k, np) = min[k − np, N − k] (10.6)
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node-group failures, np being the sum of node-group failures in previous iterations
1 . . . k − 1. The limitation arises due to the need for a spare node-group to be available
at node-loss. When a node-group is lost, it may or may not lead to the need for an
added iteration before convergence, depending on the location and iteration of the loss.
For the purpose of deriving a bound on the probability of the fault tolerant algorithm
executing successfully, we assume worst case scenario, i.e. loss of a node-group will
always lead to an added iteration, up until the limit that convergence will happen in
no less than N iterations. Hence, we define yet another limit

l2 (N, kc, np) = min (kc + np, N) , (10.7)

on the number of iterations needed for convergence. For any given problem, a lower
bound on the probability of successful execution may be computed as the sum of
the products of each possible path to success. To compute the sum of all possible
branches in a tree, as depicted in Figure 10.4, for problems with a large number of time
sub-domains, we define a recursive function

ΦN
kc (k, n) =

{∑l1(N,k,n)
i=0 PN (k, i) ΦN

kc
(k + 1, n+ i) if k ≤ l2 (N, kc, n)

1 otherwise
. (10.8)
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Figure 10.4 – A tree indicating all possible routes to successful execution as drawn
for a small problem with N = 4 time-subdomains and failure-free convergence in
kconv = 2 iterations. The probability of successful execution PN,k

n at a given node may
be computed using (10.4). l1 and l2 are shown for each iteration k on the right as
computed using (10.2) and (10.3). The blue circle indicates successful execution of the
algorithm. Branches leading to failed execution are not drawn.
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The lower bound on the probability that the fault tolerant algorithm will execute
successfully may be written as

PN,kc
FT-PA ≥ PN (0, 0)ΦN

kc (1, 0) . (10.9)

In Figure 10.5, the probability of successful execution for the unprotected and for the
Fault-Tolerant, Algorithm 7, is presented for a problem N = 16, r = 32 and kconv = 3,
with on average one node-loss within a node-group per 10000 time-intervals TG , i.e.,
μG
ΔT = 0.0001. In addition, the figure contains a plot of the percentage of failures of the

unprotected algorithm that is successfully executed by the Fault-Tolerant algorithm.
We denote this ratio R

R =
PN,kc

FT-PA − PN,kc
PA

1− PN,kc
PA

(10.10)

Note that as the number of time-subdomains grows, so does the number of possible
paths to success. In the limit kc → N and N large, the number of nodes in the tree of
possible paths to evaluate approaches the N ’th Catalan number. For N = 28 that is
∼ 2.6 · 1014 nodes to evaluate. For large N it is therefore not feasible to evaluate all
possible paths to successful execution. We found that a simple alternative to brute
force computation of all paths is to prune the tree at some given fixed depth, say 10.
By doings so, many theoretically possible, but extremely unlikely paths, are ignored.
Since the paths ignored are highly improbable, they contribute little to the overall
probability of success. Pruning the tree to traverse does not make the lower bound
invalid as removing paths will further decrease the estimate.
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Figure 10.5 – Probability of successful execution for the unprotected algorithm and
the Fault-Tolerant variant N = 16, r = 32, kconv = 2 and failure rate μG

ΔT = 0.0001. The
dashed line indicate the proportion of errors in the unprotected algorithm that the
Fault-Tolerant version may recover from.
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10.3 Guarding against SDC Errors

In the previous section we approached the issue of node failures. We now consider the
other major concern of faults in HPC applications, i.e. soft failures in the form of silent
data corruption. When subjected to this type of error, an application may provide
an incorrect output without any indication that the application has malfunctioned.
Algorithmic resilience towards SDC type errors is an active area of research, and [143]
provides a recent example in the context of time integration. In that paper, the authors
demonstrate how spectral deferred correction for solving ODE’s may be made resilient
to SDC type errors and in [31], an auxiliary checking scheme is introduced to form a
fairly generic approach to silent error detection in numerical time-stepping schemes.
In this work we extend the Parareal algorithm to make SDC resilience an integral part of
the algorithm, regardless of the SDC resilience properties of the underlying operators
F�T and G�T .

Numerical algorithms have traditionally been developed under the assumption that
all underlying algebraic operations are carried out accurately, subject only to the limi-
tation of machine accuracy. In the following work we stray away from this assumption,
i.e., if a matrix vector product results in x, then there is a non-zero probability of com-
puting x+ x̃, with x̃ being a random variable. In the field of numerical analysis, a main
focus is on the analysis of error and convergence, but since our error is now a random
variable, how should we approach the analysis? A natural idea is to define convergence
in terms of the statistical moments of the error. This approach was used in [290], where
the authors consider a method to be convergent with respect to hardware error, if for
every ε > 0, a finite amount of work will make E [e] < ε and V ar [e] < ε2, e being the
residual between two consecutive iterations.

10.3.1 SDC Resilient Parareal

In building an SDC resilient algorithm for iterative methods, it is natural to look at the
difference between consecutive iterations to detect whether or not an SDC-type error
occurred. This is the approach taken by Stoyanov and Webster in [290], where a generic
approach for making fixed-point iterative methods resilient towards SDC-type errors
is proposed. In that approach, it is argued that if the iteration matrix is a contraction,
the norm of the difference between successive iterates should reduce at the same rate
as the rate of convergence of the algorithm, thus rejecting iterates if they fail to do
so. As presented in the introduction, Parareal is in essence a fixed point iteration, but
with a non-normal iteration matrix, the elements of which are potentially non-linear
operators. Due to the non-normal structure of the iteration matrix, it is not possible to
provide a general guarantee that the iteration matrix will be a contraction. However,
since the upper bound on parallel efficiency of the algorithm scales as 1/kconv, it is
reasonable to assume that for any practical application, GΔT is constructed sufficiently
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close to FΔT so that the iteration matrix will remain a contraction on Uk
n from k = 0

and onwards. Hence, the approach of [290] is applicable to make the Parareal method
SDC resilient. However, this approach is limited by the fact that Ūk is needed, imposing
the need for a synchronization stage between consecutive iterations. This limits the
scheduling of work to a slow manager-worker type model. As discussed in Section
10.2.1, such a model is not used in practice as the limitations it imposes on obtainable
speed-up are too severe. Fortunately, due to the special structure of the iteration
matrix (5.8), we may construct a local approach without the need for synchronization
between iterations. First, define the residual between two consecutive iterations on
the node-group local time sub-domain n as

ek+1
n =

∥∥∥Uk+1
n −Uk

n

∥∥∥
∞

(10.11)

For an SDC resilient model, ek+1
n must be computed at iteration k + 1 on each time

sub-domain n, and communicated along with converge, see Algorithm 7, so that the
node-group responsible for the n’th time sub-domain at the k + 1’th iteration can
access ek+1

i ∀i ∈ 1 . . . n. Then, if at any iteration for any time sub-domain

max
i=0...n

ek+1
n ≥ β max

i=0...n
ekn (10.12)

is true, we reject Uk+1
n and replace it with

Uk+1
n = Uk−1

n , ek+1
n = ek−1

n (10.13)

where β ≤ 1 is an upper bound of the contraction factor. If no upper bound is available,
using β = 1 appears to work well. To avoid stagnation due to false rejection, we reject
the previous two local iterates. In [290] other approaches for guarding against false
rejections are discussed. These approaches only discard a single iterate, but need
tunable parameters, or estimates of the Parareal iteration matrix that may not be
available in general. In our experience the above approach appears to be near-optimal
for avoiding stagnation, while at the same time being parameter-free and easy to
implement.

10.3.2 Numerical Experiments

For the numerical experiments, a strategy to introduce data corruption during the
solution process is needed. Various studies have attempted to quantify the rate of
soft errors leading to SDC’s on clusters, see section 9.1 in chapter 9 for a review of
studies on the topic. On modern day clusters, DRAM memory and CPU caches are
often protected at the architectural level using some type of error correction. SDC type
errors may, however, still be caused by external or internal radiation sources, effecting
the logic elements within a CPU. It is not at all trivial to deduce how a fault in a logic
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unit during operation will effect the output of said operation, or it’s statistical nature.
In [304], a quantitative comparison between the accuracy of direct fault-injection at
the assembly code level with that of fault injection in high level code is presented.
They demonstrate that faults leading to SDC type errors are well approximated by high
level injection of single bit flips. We proceed with this error model for our test-case.
At each time-step, in operators GΔT and FΔT , every element in the state vector Uk

n

will be subject to a bit-flip with probability P at a random location in the 64bit wide
double. As a test-case for SDC-type resilience, we use the time-parallel integration
over a wave-period of the 1D advection-diffusion equation

∂

∂t
u (x, t) + α

∂

∂x
u (x, t) = κ2

∂2

∂x2
u (x, t) (10.14)

with periodic boundaries and advection-diffusion coefficients α = 1, κ = 0.01.

0 8 16 24 32
10−15

10−10

10−5

10−0

10300

E
[ Uk n

−
Fn Δ

T
u
0

]

Unprotected
Stoyanov & Webster
Node-Local Correction

(a)

0 8 16 24 32
10−15

10−10

10−5

10−0

10300

V
ar
[ Uk n

−
Fn Δ

T
u
0

]

(b)

Figure 10.6 – Convergence rate when the solution procedure is subjected to silent-data
corruption (SDCs). The unmarked solid black line indicate the convergence rate for
the error-free solution procedure. (a) Average error. (b) Error variance.
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For the equation, FΔT is constructed using a 4th order compact finite-difference
stencil for discretizing the spacial derivatives and C1-spline collocation for solving
the linear system of ODEs[216]. GΔT is constructed using first order finite difference
approximations in space and time. We test the solution procedure with a high rate
of errors P = 10−6, and measure the mean and variance as a function of iterations,
averaged over 1000 realizations. We present the results in Figure 10.6. Clearly, the
proposed node-local correction strategy is not only preferable in the sense that it is
generally applicable regardless of the work-distribution model used. As an added
bonus, it also converges faster than the approach proposed by Stoyanov and Webster,
this due to the fact that less information is discarded upon rejection.

10.4 Summary

Time-domain parallelism is receiving increasing attention as a viable way to extend the
limits of strong scaling in solving evolution-type PDE problems, and offer a potential
path to scaling at exascale. We have demonstrated how a novel method of time-domain
parallelism, the Parareal method, may be made resilient towards hard errors, when a
fault-tolerant supporting API such as ULFM is used. In addition, we have shown that
due to the special structure of the iteration matrix, it is possible to monitor the residual
between consecutive iterations locally for an SDC resilient correction strategy that may
be applied, regardless of the work distribution model used.

The analysis presented in section 10.2.2 may be used to determine if an application
should use the regular Parareal scheme or the fault tolerant variant presented. By
measuring the overhead related to using the fault-tolerant version, one can a priori
for any machine determine if the expected gain in efficiency from running the fault-
tolerant algorithm outweighs the loss of efficiency due to its overhead.

A difficulty experienced was the practical aspect of implementing the algorithm using
ULFM 1.1. ULFM 1.1 is built on an old version of OpenMPI, with limited support for
threading and no RMA. ULFM 2.0 has now been released in sync with the OpenMPI
Master. This means better support for threading and the introduction of RMA features
introduced in MPI 3. RMA is, however, still not a supported by ULFM. In our expe-
rience this limits the extent to which advanced recovery models with asynchronous
communication patterns may be efficiently implemented.
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11 Llama: A new library for Multi-
level Checkpointing

Modern Petascale machines experience node-failures on a regular, sometimes daily,
basis[53, 146]. Having to restart a job from scratch is a waste of energy, computational
resources, and of the time of the domain scientists using numerical methods as part of
their research.

In order to make numerical algorithms scale to the full size of large machines, the de
facto standard for fault-tolerance is to have applications periodically write all essential
data, required for a restart, to safe storage on a parallel file system[88]. In the event of
failure of one or more nodes, the job may simply be rescheduled and restarted from
the nearest checkpoint rather than from the beginning.

Periodically creating checkpoints on the parallel file system serves to mitigate the
impact of failures on time and resources. The approach has served the community well
for many years, but is emerging as a bottleneck for the efficient scaling of algorithms
on new machines. For many years, the speed of parallel file systems has been unable
to keep up with the increase in compute power and memory of new generations of
supercomputers. Time spent by compute nodes on writing data to safe storage is time
not spent computing. The impact on parallel efficiency is application dependent, but
as much as 10 to 20 percent overhead due to checkpointing is not uncommon[139]. In
recent years, new approaches advocating, local recovery for local failures, has started
to appear, challenging the notion that compute jobs, spanning hundreds or thousands
of nodes, must terminate and restart in the case of failure of a single node. The new
approach is necessary to facilitate scaling to big machines of upwards 50.000 nodes
such as the planned Exascale machine Aurora to be build at the Argonne Leadership
Computing Facility[6]. Even if the mean time between failures (MTBF) of a node is a
decade, the machine could experience 10+ node failures per day. Statistics compiled
over years of supercomputing usage has shown that the majority of failure incidents
involve just a single node, or some small subset of nodes, depending on a shared set
of resources. This knowledge may be used to design scalable methods to protect the
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data needed to rewind an application. In the context of checkpointing, there are many
possible ways to protect data locally, or near locally. A simple approach is to assign
every rank with a buddy rank, the two may then be made to exchange critical data
and keep it locally in-memory. Upon a failure, so long that no two buddies have failed
collectively, data at the last point of exchange may be recovered and used for an appli-
cation restart. Such lightweight local checkpoints may only recover from a subset of
possible failure patterns, and it has therefore been proposed to use lightweight check-
points as a complement to parallel file system checkpoints for increased efficiency and
scalability. Protecting data locally is crucial for scalability as it allows to circumvent
the bottleneck of the parallel file system. When compute nodes use local storage or
memory, the bandwidth for protecting data increases linearly with the number of
nodes which serves to avoid limiting network congestion. Several libraries for using
lightweight checkpoints, both experimental and for production purposes, has been
developed or is currently under development. Approaches of the different libraries
under development is discussed in section 11.1.2.

The main topic of this chapter is the introduction of a new Library called Llama. In
Switzerland, llamas are used as guards to protect flocks of sheep against predators,
lonely or few in numbers. The Llama library uses layers of lightweight checkpoints
to guard a cluster of nodes against failures, being particularly effective against local
failures of limited scope. Hence the name.

Llama is build on top of ULFM-MPI, Jerasure and GF-Complete and allows for fast and
scalable fault-tolerance in time-stepping MPI applications through multi-level check-
pointing. A range of checkpoint types are supported, from strong to-disk checkpoints
to light-weight in-memory checksum-checkpoints with group-local parallel encoding
and decoding for maximum scalability. Light-weight checksum-checkpoints rely on
parallel Reed-Solomon encoding and decoding. The library, unlike any other available,
supports the usage of an arbitrary number of checkpoint types of arbitrary group and
parity size so that checkpoints may be targeted to protect against single node or multi-
ple node failures. It may also be used to provide protection of specific system-resources
shared by multiple units, e.g. power supplies and network equipment or potentially
entire racks.

The aim of the library is to provide a simple and easy-to-use interface for enabling appli-
cations to recover and rewind automatically, without restart, and continue in the face
of single and multi-node failures. The library interface and basic usage, along with nu-
merical experiments demonstrating the speed of the library components, is presented
in this chapter. The goal is to eventually test the library for protecting applications writ-
ten in Nektar++, an open-source software framework for high-performance scalable
solvers for partial differential equations using the spectral/hp element method[48].
The work presented in this chapter has yet to be submitted for publication.
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11.1 Checkpoint-Restart for HPC Fault-Tolerance

An introduction to HPC resilience using checkpointing is given in this section along
with a review of libraries currently used, or under development. A brief introduction to
User Level Failure Mitigation (ULFM) MPI is presented at the end. ULFM is a proposed
extension to MPI, developed by the MPI Forum’s Fault Tolerance Working Group. It is
not a fault-tolerance library, rather it is an API that allows developers to implement
fault-tolerant algorithms in MPI.

11.1.1 Checkpointing for Resilience

In current large-scale distributed memory applications, rudimentary fault tolerance
is typically achieved by periodically synchronizing all nodes before writing a solution
state to a checkpoint file as first demonstrated in [58]. These checkpoints are written
to reliable storage, typically in the form of a parallel file system. Upon failure, an
application may restart from a recent state by reading the checkpoint[100, 88]. Syn-
chronization and writing of large files to the parallel file system introduces an overhead,
limiting parallel efficiency of applications. Several techniques has been proposed to
reduce the size of checkpoints so to minimize the impact. Data may be compressed
before being written [74], or one may use an incremental checkpointing approach
where only the difference between two checkpoints is stored [263, 224], or combina-
tion of techniques including message logging[22, 49]. It has also been proposed to
mitigate the impact of to-disk checkpointing by decreasing the frequency of which it is
needed, through process replication. By running the same application on 2x nodes, the
probability of both failing at the same time decreases substantially, which translates to
a decrease in the optimal checkpointing frequency[43, 55, 29].

Diskless checkpointing, obtained by keeping all checkpoint data in-memory, has been
recognized early on as one way of accelerating checkpointing[280, 243]. Data may
be distributed in such a way that if just a small set of nodes fail, it may be recovered
from the nodes unaffiliated with the failure incident. A simple approach to realize
this is by simply making many copies of the data to protect and distribute the copies.
This approach, however fast, is problematic due to the large memory overhead it
incurs. One approach for minimizing the memory footprint of both to-disk and in-
memory checkpoint types, is to use RAID techniques or Reed-Solomon based encoding
techniques [241, 140]. Creating and storing parity codes has the advantage of requiring
less storage, but comes at the cost of needing to encode data to protect it, and decode
it upon recovery as well as added implementation complexity. Parity codes may be
stored on additional nodes, or may be distributed equally amongst the nodes that
created a particular set of parity codes.
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In [301], the case was made for using two-level distributed recovery schemes, combin-
ing to-disk and in-memory type checkpoints. Their analysis suggested that a two-level
system could be substantially more efficient as compared to the use of only a single
level. It has been observed that most hard errors only effect a single node and when
more nodes fail at the same time they typically do so in a predictable manor, i.e. a
power supply unit, serving multiple nodes, fail. Ideally, a local failure should permit
local recovery. Multi-level check-pointing addresses this problem by using different
types of checkpoints, each of which have their own level of resilience and associated
cost. Slower and more resilient levels, such as those made by writing data to the par-
allel file-system, may allow for recovery from many nodes failures. Cheaper and less
resilient checkpoint levels may be utilizing node-local storage or memory[320].

The multi-level approach has received increasing attention from the community in re-
cent years. Machines are now becoming so big, and the discrepancy between compute
capacity and speed of parallel file systems so large, that the use of multiple levels of
protection is no longer just a question of parallel efficiency and waste of resources. It
is speculated that at Exascale, the discrepancy may become so large that some applica-
tions will be unable to make computational progress when scaled to the full size of the
machine, being trapped in a never ending loop of failure-recovery-restart[282, 88].

Recently, the use of node local solid-state drives and emerging nonvolatile memory
technologies has been investigated for possible use in checkpointing[139, 87]. Using
local non-volatile storage allow for a fast local approach to protect the data, as with
standard random access memory, but without the impact on memory consumption.
In [50] it was suggested that checkpointing on node-local SSD drives might even be
sufficient for Exascale computation on certain applications.

Frequency of Checkpointing

A key thing to consider is the frequency with which to create checkpoints. Choosing an
optimal frequency with which to checkpoint is about balancing the trade-off between
loosing as little progress as possible in the event of a rollback, whilst not spending
too much time on checkpointing too often. An estimate for the optimal length of the
time-interval between checkpoints can be computed using the formula derived by
Young [318], which assumes that failures occur as a Poisson process with failure rate λ

τ̃opt =
√
2TsTf (11.1)

where Tf = 1/λ is the mean time between failures and Ts the time to protect data. A
higher order estimate for the optimal checkpoint interval was derived later by Daly
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[79] under the same assumptions

τ̃opt =

⎧⎪⎨
⎪⎩
√
2TsTf
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− Ts , Ts < 2Tf

Tf , Ts ≥ 2Tf

(11.2)

With regards to multi-level checkpointing schemes, recent studies has investigated
methods of optimal selection of the number of levels [30] and the frequency of check-
pointing in the different levels[85, 83]. In [293], a general theory for optimal check-
point placement with arbitrary failure probability distribution was presented and [11]
demonstrated how a checkpointing strategy could be modified if some form of online
fault-prediction method is available.

Different checkpoint types may have different energy demands and the optimal fre-
quency and number of levels in terms of runtime might therefore not be the same as
the optimal frequency and the number of levels in terms of energy consumption, as
has been demonstrated and explored in several papers [10, 15, 80]. In most clusters,
nodes tend to share certain resources, the failure of which will result in the failure of all
nodes. Different such components are likely to have different failure rates. Models to
account for this was developed and presented in [13].

Extensive work has been done to develop different models, appropriate under different
conditions, for choosing checkpoint levels and frequency of updating checkpoints
in the context of optimizing both runtime and energy. One thing all models have
in common is that they need estimates of mean time between failure of nodes to
compute the optimal frequency of checkpointing. The sensitivity to poor estimates has
not been examined as extensively. Studies presented in [178], running simulation using
real workload data, suggested that the resulting parallel efficiency of an application
is not particularly sensitive to the accuracy of the estimates used. This is perhaps
not surprising. If one overestimates the failure rate, this will result in too much time
spent checkpointing, but in turn one may save extra time upon recovery and restart.
Conversely, if the failure rate is underestimated, an application will spend less time
checkpointing. It appears that in practice, the parallel efficiency of a given application
is fairly robust with respect to choosing the checkpointing frequency.

11.1.2 Libraries for Automatic Checkpoint-Restart

Several libraries for fault-tolerance in HPC has been developed, or are in the process of
being developed, for both experimental and production purposes.

One of the earliest examples of a library for multi-level checkpointing is from 2011,
the fault tolerance interface (FTI). In FTI, global parallel-file-system checkpoints is
combined with fast checkpoints written to node local storage in the form of SSDs[24].
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Along with the checkpoint copy data, Reed-Solomon parity code blocks are computed
and written so that an application may be restarted from the lightweight checkpoint
even if some failures are non transient, i.e., if a node experienced a hard failure and
is no longer available. The authors demonstrated an eight percent checkpointing
overhead on the TSUBAME2.0 supercomputer while running at over 0.1 petaflops and
checkpointing every 6 minutes. FTI source code is still available in the authors git
repository[23].

Scalable Checkpoint/Restart (SCR) is another library for checkpointing. It is well
tested and has been used in early versions in production code at LLNL since 2009 and
is supported with a comprehensive manual[220]. SCR uses a two-level checkpoint
scheme. The more resilient level is a complete check-point to the parallel file system
whereas the cheap, less resilient, checkpoint level is constructed using smaller groups
of processors that save a check-point locally, either in-memory or on solid-state drives,
whilst applying some redundancy scheme across the processors in the group. Two
redundancy schemes are supported; a partner/buddy scheme where data copies are
distributed, and an XOR model where parity blocks are coded in groups of 8 nodes and
distributed evenly within nodes in a group as RAID5. The authors of SCR find that on
the systems at LLNL, roughly 85 percent of all node failures may be recovered using
the cheaper local checkpoint[217]. SCR may be used in conjunction with ULFM MPI
trough the CRAFT library[273]. For a code to use the SCR Library, a list of 11 criteria
must be satisfied. Most criteria are trivially satisfied by many applications, except for
two

• The code must take globally-coordinated checkpoints written primarily as a file
per process.

• On some systems, checkpoints are cached in RAM disk. This restricts usage of
SCR on those machines to applications whose memory footprint leaves sufficient
room to store checkpoint file data in memory simultaneously with the running
application.

The first requirement that a globally-coordinated checkpoint must be written as a file
per MPI rank, this may be a limiting factor in some codes. If a code is MPI only, having
a separate file for each process per checkpoint will create a very large number of files
which may conflict with file system quotas. The second requirement is a potentially
limiting factor for applications that are memory bound. Even if the XOR redundancy
scheme is used, the total memory footprint of the application will increase by more
than a factor of two if solid-state drives are not available.

In addition to FTI and SCR, a library called Fenix has been developed for checkpointing
purposes by researchers at Rutgers University and Sandia National Laboratory[121,
122]. Fenix is based on ULFM MPI and provides an API to implement automatic roll-
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back within the application code to avoid restarting jobs that have failed. In Fenix,
data is protected by copying the checkpoint in-memory to a partner node’s memory.
The Fenix library was the first to demonstrate online multi-node recovery and auto-
matic rollback at large scale when injecting actual failures. The library source code is
available at a github repository along with rudimentary documentation on usage[296].

11.1.3 User Level Failure Mitigation MPI

The Fenix library achives online rollback, i.e. no restart, by using ULFM-MPI. User
Level Failure Mitigation (ULFM) is a proposed extension to MPI developed by the
MPI Forum’s Fault Tolerance Working Group[40]. It is not a fault-tolerance library,
but rather it is an API that allows developers to implement fault-tolerant algorithms
in MPI. According to the authors, ULFM was designed to manage failures following
three fundamental concepts: 1) simplicity, the API should be easy to understand
and use in most common scenarios; 2) flexibility, the API should allow varied fault
tolerant models to be built as external libraries and; 3) absence of deadlock, no MPI
call (point-to-point or collective) can block indefinitely after a failure, but must either
succeed or raise an MPI error. A prototype of ULFM is available to be used with the
OpenMPI compiler[42]. As with Fenix, Llama is using ULFM MPI to implement the
failure detection, communicator repair, and rollback methods.

11.2 The Llama Library

The Llama library is written in C++ and designed for use with MPI applications. It
supports fault-tolerance trough checkpointing with automatic rollback without ap-
plication restart trough the use of ULFM MPI. To protect application data, the user
may specify an arbitrary number of checkpoint levels. The levels may consists of both
regular to-disk checkpoints to the parallel-file-system, and topology aware in-memory
memory-conserving checksum checkpoints, each of which may be of arbitrary group
size with an arbitrary number of checksums parity code blocks. In section 11.2.1, the
design of the library is outlined, and in section 11.2.2 the usage of the core functionality
is described. Code examples demonstrating usage are given in appendix E.

11.2.1 Design

Llama is designed to be minimally invasive. The target code itself needs very little, if
any, modification. Unlike other libraries, rather than modifying preexistent lines of
code, code is added to indicate what data is essential to protect and to express how the
application should proceed in the event of a rollback. The fundamental object that any
application, using the library, must instantiate is the Llama Guard. The object must
be created in the beginning of the application and is responsible for keeping track of
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arrays being protected, and checkpoints used, as well as initiating recovery and repair
of the MPI communicator.

The functionality provided by the library is to be used in a loop within which the
computational parallel work to protect takes place. Within the loop, the Llama Guard
must perform a status check at the beginning each iteration. If the status check detects
one or more failed ranks, the communicator will be repaired by the guard by injecting
spare-ranks to take the place of failed ranks. The status check call will then return a
flag, indicating that the application should perform a rollback and recovery of data.
Llama provides an interface trough the Guard that expose data protected at a previous
checkpoint to enable a rollback, however it is up to the user to write the functionality
needed to do use the data to recover an earlier state as such an operation is application
dependent. Instructions on rollback and data recovery is given in section 11.2.2.

Following declaration of the Guard, before entering loop, the library user may add as
many levels of checkpoints as needed. Two different categories of checkpoints are
supported. The to-disk checkpoint, which protects data by writing it to the parallel-
file-system using MPI-IO, and in-memory checksum checkpoints that protects data by
encoding parity blocks and distributing these in-memory across ranks. Upon failure,
the Guard will find the most recently updated checkpoint for rollback to. If more
than one checkpoint has been updated at the same index, the Guard will choose the
checkpoint which it perceived as being faster to recover from.

llama.h

../src/interface.h

../src/disk.h ../src/memory.h

../src/testing.h

map vector climitsstring mpi.h mpi-ext.h iostream unistd.h

sys/stat.h checksum.h reed_sol.h jerasure.h

cmath

csignal chrono

Figure 11.1 – Dependency graph of the Llama header that must be included in applica-
tions using the library. The class declaration for the two checkpoint types supported are
written disk.h and memory.h. They both derive from a pure virtual class checkpointin-
terface in the interface header. The interface header also includes the decleration of
the Guard class. The testing header includes functionality used in the ctest package
which includes 30 tests, testing to verify correct execution of the various components
of Llama and their interactions.
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The implementation of both checkpoint types are derived from a pure virtual class
checkpointinterface. Other checkpoint types may be added to the library if needed, but
to be compatible with the Llama Guard, they must inherit from checkpointinterface.
Figure 11.1 contains a dependency graph of the Llama header that applications must
include. The interface header contains the declaration of both the Guard class and
the checkpointinterface as well as the definition of all templated methods of the two
classes. The two methods of checkpointing are explained in greater detail in the two
sections that follow.

Protecting data using the parallel file system

MPI-IO is used to write and read checkpoint data to the parallel file system. Distributed
1D arrays are written to a single binary file with each rank writing to it’s own section
of the file for optimal performance. 2D arrays are protected as arrays of 1D arrays,
without closing and opening file objects in between row change. The bandwidth of
writing and reading data may be slow for 2D arrays if the number of columns is very
small due to the overhead of sending many small messages. This could be improved by
implementing features to rearrange data before sending if the number of columns is
small, but as of now this has not been implemented. 3D arrays are treated as arrays of
2D arrays, thus they are subject to the same limitation that the data transfer rate may
decrease when the number of columns is small.

Protection data using in-memory checksum codes

Protecting data locally in-memory is fast. Transferring data to a nearby node over the
network is in general much faster than writing it to a parallel file system. In addition,
when compute nodes keep checkpoint data in nearby node-local storage or memory,
the bandwidth for protecting data increases linearly with the number of nodes. This
makes in-memory checkpointing potentially highly scalable. The disadvantage of
protecting data in-memory on nearby ranks is the added consumption of memory
which may be a limiting factor in some applications. When protecting data by simply
copying it to nearby nodes, the overhead in terms of memory consumption is at least
200 percent.

One way of decreasing the memory footprint, required for a checkpoint, is to use
some form of erasure code to encode checksum parity blocks rather than making extra
copies of the data to protect. Generally speaking, an erasure code transforms a data
block of k symbols into a larger data block of n > k symbols in such a way that the
original data block may be recovered using any subset of k symbols from the n symbol
data block. Erasure codes are widely used in data-centers to protect data against disk
failures.
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In the context of HPC, several studies have demonstrated the usage of erasure codes
for fault tolerance. In FTI, Reed-Solomon erasure code was used to encode/decode
data saved locally on solid state disks[24] and in the SCR library XOR parity bits are
computed and stored distributed in-memory to protect against single node failures
[217]. In the Llama library, Reed-Solomon encoding is used to create in-memory
memory conserving checksum checkpoints. Reed-Solomon codes have found use
for a wide range of applications such as storage media, data transmission and data
centers[249, 305]. Reed-Solomon codes can be used to encode an arbitrary number of
parity codes p = n− k for a data block with an arbitrary number of symbols k thereby
allowing for recovery of protected data for up to p failures.

The process of computing pparity code blocks {c1, · · · , cp} from k data blocks {c1, · · · , cp},
can be seen as matrix-vector multiplication where all components are elements in a
Galois field

⎡
⎢⎣

c1
...
cp

⎤
⎥⎦ =

⎡
⎢⎣

a1,1 · · · a1,k
...

. . .
...

ap,1 · · · ap,k

⎤
⎥⎦
⎡
⎢⎢⎢⎢⎣

d1
...
...
dk

⎤
⎥⎥⎥⎥⎦ (11.3)

and the matrix A a Vandermonde matrix. In the event that one or more data and/or
code blocks are lost, they may be recovered trough another matrix-vector multiplica-
tion using the inverse of A, or the inverse of a subset of A along with the remaining
code and data blocks.

In Llama, a library called Jerassure is used to create the matrix of Gallois field coeffi-
cients, needed for both the encoding and the decoding procedure. Jerasure is an open
source library written in C that supports erasure coding in storage applications[244].
Another library, GF-Complete, is used for fast multiplication of coefficients with entire
data blocks[242]. The multiplication of each coefficient can be done in parallel as the
data blocks are stored on different nodes.

MPI reduce is used to compute the bitwise XOR reduction operation required, to
compute the sum for each code-block. Through the parallel reduction operation,
the sum is simultaneously computed and distributed. The in-memory checksum
checkpoints are created in independent groups of size n, with the p parity codes
distributed equally among the n nodes. Equal distribution is achieved trough block
level stripping as is done in RAID5 and RAID6, but here implemented in-memory using
MPI. With the distribution of parity code-blocks, the memory overhead associated
with the checkpoint in addition to the copied data is

∼ p

n− p
. (11.4)
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In the limit that the communication in the MPI bitwise reduction operation is the
dominant cost of encoding the checkpoint, the time-to-encode will scale as

∼ p �log2 (n) (11.5)

if all ranks in a group are involved in each reduction. In Llama, however, an array
of communicators of size np is created when the checkpoint is declared. The array
includes all possible patterns of reduction to avoid including group members not
relevant in a reduction. The cost of updating the checkpoint therefore scales as

∼ p �log2 (n− p) (11.6)

The improved scaling comes at the cost of an added overhead when creating the check-
point object as well as when repairing it after a failure. The in-memory checkpoints
may be made topology aware in the sense that the user may specify a critical distance
that ranks within a group must be separated. If a checkpoint is to protect entire nodes,
the user should provide the number of ranks running per node. If the checkpoint is to
protect some other entity or multiple nodes, this should be specified in this distance.

2D arrays are protected by treating columns as blocks and each row as a new stripe,
similar to RAID6. Due to this design, as with the to-disk checkpoints, performance
may be suffer if the number of columns in an array is very small. This may be mitigated
by repacking data before protection. 1D arrays are treated by creating a dummy array
of pointers to transform it into a 2D array. 3D arrays are treated as many 2D arrays. As
with the to-disk checkpoints, declaration is templated so that arrays of all fundamental
types may be protected.

11.2.2 Usage

Llama seeks to provide a simple and easy-to-use interface for enabling applications to
recover automatically and continue in the face of single and multi-node failures, or the
failure of larger shared system resources such as power supplies or network equipment.
In this section, library usage is briefly outline. The library uses components of ULFM-
MPI, Jerasure and GF-Complete. The latter must therefore be installed first to build
the library. After the installation of dependent libraries, Llama can be build from
source by cloning the git repository available at [230] with a c4science account. As of
now, the build system is rudimentary and the main cmake files needs to be modified
manually with the local path to headers and library objects of ULFM-MPI, Jerasure
and GF-Complete. Additional details for building the library, and associated examples,
are available in the readme file in the repository.
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Llama Guards

To make a time-stepping MPI application fault tolerant using Llama, the first step is to
create a llama::guard object in the beginning of the application right after MPI_Initialize.
The constructor for the llama::guard takes three arguments. The first is the address
of the global communicator, the second is the number of ranks in the communicator
that should be used as spares rather than active workers, and the third a boolean that
indicates if the application should throw an error object if recovery is not possible.

Listing 11.1 – Declaration of guard

llama : : guard my_llama ( MPI_Comm∗ my_world_comm , u i n t 3 2 _ t
my_num_spare_ranks , bool r e t u r n _ e r r o r s ) ;

If return_errors is true, calls to llama::guard methods will throw an error object if
recovery is not possible rather than exiting with failure and error message on the
std::cerr stream. The situation of recovery not being possible may happen in one of
two different situations: A failure pattern for which the checkpoints do not protect has
occurred, or if the Guard has run out of spares to replace failed ranks. The Guard, when
created, removes my_num_spare_ranks number of ranks from the my_world_comm
communicator, and places an error-handler on my_world_comm so that if a rank in
my_world_comm fails, MPI operation using my_world_comm will throw an error object
and return rather than abort. In addition to splitting the main global communicator
into two pools, a worker and a spare rank pool, and creating an error-handler for
my_world_comm, the Guard is responsible for the following tasks:

• Keeping track of which arrays need protection

• Keeping track of the status of all checkpoints.

• Monitoring the status of the application and initiating recovery if a failure is
detected.

• Choosing which checkpoint to recover from, when a failure is detected.

To notify the llama::guard as to what data needs to be protected, a member function
called ProtectArray is used.

Listing 11.2 – Method for adding array to guard

my_llama . ProtectArray <type T>( const std : : s t r i n g &key , T∗ p_array ,
u i n t 6 4 _ t dim1 ) ;

Each array to be protected must be supplied with a unique key in the form of an
std::string. This key is used to identify which array to recover if recovery is needed.
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If one attempts to protect an array with a key that is already in use, ProtectArray will
compare the new array and dim1 input with the already existent. If they are identical,
ProtectArray will ignore the call and if not, it will throw an error. p_array should be a
pointer to the array that needs to be protected and dim1 the number of elements in
the array. Equivalent methods exist for 2D and 3D arrays, with the interface for these
are as follows

Listing 11.3 – Method for adding array to guard

my_llama . ProtectArray <type T>( const std : : s t r i n g &key , T∗∗ p_array ,
u i n t 6 4 _ t dim1 , u i n t 6 4 _ t dim2 ) ;

my_llama . ProtectArray <type T>( const std : : s t r i n g &key , T∗∗∗ p_array ,
u i n t 6 4 _ t dim1 , u i n t 6 4 _ t dim2 , u i n t 6 4 _ t dim3 ) ;

Arrays that contain vital information to allow for a quick restart of the application
should all be marked for protection. The arrays may be marked for protection in the be-
ginning of an application right after declaring the llama::guard, but may also be added
dynamically during the time-stepping phase. Be aware, though, that ProtectArray is
collective over all workers, i.e., all ranks in my_world_comm after creation of my_llama.
Each rank must therefore specify an array to be protected, it is not required that the
arrays are of the same size for all ranks. Though performance and memory efficiency
is higher if all arrays belonging to the same key is of similar size. Similarly, there is
an overhead involved in creating and updating arrays. The 1D arrays should ideally
exceed 1000kb for the overhead involved in the synchronization between ranks to be
mostly negligible. If a given array no longer needs to be protected, the llama::guard
can be notified through the methods

Listing 11.4 – Method for removing array from guard

my_llama . ForgetArray ( const std : : s t r i n g &key ) ;
my_llama . F o r g e t A l l A r r a y ( ) ;

Checkpoint Objects

Under the hood, arrays are protected by checkpoints. The user must specify which
kind of checkpoints should be used. Llama supports two overall types of checkpoints;
checkpoints to the parallel-file-system and checkpoints that are kept in-memory and
distributed in groups across ranks. The constructor for creating checkpoints of the
first type looks like this

Listing 11.5 – Declaration of to-disk type checkpoint

llama : : checkpoint : : disk my_disk_checkpoint ( llama : : guard∗ my_llama ) ;
llama : : checkpoint : : disk my_disk_checkpoint ( llama : : guard∗ my_llama ,

std : : s t r i n g file_name ) ;
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llama : : checkpoint : : disk my_disk_checkpoint ( llama : : guard∗ my_llama ,
std : : s t r i n g file_name , std : : s t r i n g r e l a t i v e _ p a t h ) ;

The first argument is a pointer to the llama::guard used, here simply my_llama. The
second argument is a string, specifying the file name to use for the file written to
the parallel-file-system to protect the data. If no name is supplied, a default name
convention is followed. The third argument is a relative path in case the user wishes
that the checkpoint files are placed somewhere else than in the same folder as the
executable. Checkpoints written to the disk has the advantage of being completely
resilient, i.e. all arrays marked for protection may be recovered no matter how many
ranks are lost. The only limitation to recovery is the size of the pool of spare ranks. The
disadvantage of checkpoints on the parallel-file-system is that they are slow to create
for large jobs using hundreds of nodes as the bandwidth is limited. Llama supports
light-weight in-memory checksum checkpoints. Checkpoints of this type are stored
in-memory along with a small parity code that can be used to recompute the data lost if
ranks have failed. Parity codes are computed locally in groups in parallel, which allows
for the bandwidth of data encoded to scale linearly with the number of ranks in a job.
Reed-Solomon codes are used for a limited memory footprint with high resilience. An
in-memory checkpoint may be created like this

Listing 11.6 – Declaration of in-memory type checkpoint

llama : : checkpoint : : memory my_memory_checkpoint ( llama : : guard∗ my_llama
, u i n t 3 2 _ t connected_ranks , u i n t 3 2 _ t num_ranks_per_group , u i n t 3 2 _ t
num_parities_per_group ) ;

As with the to-disk checkpoint, the first argument is a pointer to the llama::guard
which serves to notify the Guard of the existence of the checkpoint and as to give
the checkpoint access to information about which arrays must be protected. The
second argument indicates the number of consecutive ranks that is deemed likely
to fail together. This would most often be a node-entity, i.e. the number of ranks
spawned on each node, but could in practice be anything. For instance, if multiple
nodes share a power supply, then a checkpoint could be created with connected_ranks
being the number of ranks which depend on the same power-supply. The third argu-
ment num_ranks_per_group is the size of the groups in which the parity data will be
computed. The parity data is stored distributed across all ranks within a group. The
fourth and final argument is the number of parity data blocks to compute within a
group. In simpler terms, num_parities_per_group indicates how many failures are
allowed to occur simultaneously within a group.

Say for example that num_parities_per_group = 1 and num_ranks_per_group = 8,
then in each group of eight sets of connected_ranks, all protected arrays are recover-
able so long as no more than one set of connected_ranks have failed. The group size
num_ranks_per_group must be chosen so that num_worker_ranks / ( num_ranks_per_group
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* connected_ranks ) is a positive integer. The choice of num_ranks_per_group and
num_parities_per_group will not only affect how resilient to failures the checkpoint
is, but also how fast the checkpoint can encode and decode the parity data for the
protected arrays as well as its memory footprint. In general, as num_ranks_per_group
becomes larger, the memory footprint will become smaller but the encoding and
decoding time will become larger. As num_parities_per_group increase, the check-
point becomes more resilient since more sets of connected_ranks may fail without
compromising the protected arrays, but the memory footprint increases and so does
the encoding and decoding time. A simple constructor also exists to create a fast
in-memory checkpoint layer

Listing 11.7 – Declaration of in-memory type checkpoint

llama : : checkpoint : : memory my_memory_checkpoint ( llama : : guard∗ my_llama
, u i n t 3 2 _ t connected_ranks ) ;

Here we only notify the checkpoint of the number of connected_ranks that are expected
to be likely to fail together. The checkpoint sets num_ranks_per_group will then be set
by the llama::guard to be the integer nearest to eight that satisfies num_worker_ranks /
( num_ranks_per_group * connected_ranks ) == integer. num_parities_per_group will
be set to one. We consider a group size of eight with one parity block to be a good
lightweight checkpoint for most purposes, thus it is the default option. With a group
size of eight, the checkpoint is fairly memory conserving without being slow to encode
or decode and one parity block will allow for recovery upon failure of up to one set of
connected_ranks in every eighth set. When a checkpoint has been declared, it may be
updated by the user using the Update() method.

Listing 11.8 – Method for updating checkpoint data protection

my_disk_checkpoint . Update ( u i n t 6 4 _ t idx ) ;
my_memory_checkpoint . Update ( u i n t 6 4 _ t idx ) ;

The update method will loop over all arrays that has been marked in the llama::guard as
critical and protect the data in each of them. The to-disk type checkpoints simply write
the array to the parallel-file-system whereas the in-memory checkpoints will create an
in-memory copy as well as encode parity data to be able to decode and recover data if
ranks are lost. The provided index is essential. Upon recovery, the llama::guard will
choose the checkpoint with the highest index among the checkpoints that are able
to recover from a given failure pattern. Any checkpoint can be updated at anytime
during the time-stepping procedure that the user deems necessary. If several different
recoverable checkpoints with the same idx exist, the llama::guard will recover the data
content using the checkpoint it deems to allow the fastest recovery.
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Checking Application Status and Recovering Data

Here we outline how to recover the application in the event that failure on one or
multiple ranks occur during a time-stepping procedure. A member method exists

Listing 11.9 – Method for Guard to check application status

my_llama . CheckStatus ( u i n t 6 4 _ t ∗ idx )

CheckStatus() plays an important role in the fault-tolerent time-stepping procedure
and in the recovery. All spare ranks that were split from my_world_comm will proceed
until they reach the CheckStatus() call and wait here until needed to replace a failed
worker rank. In the beginning of each step in the time-stepping loop, the status of
the application should be checked. The call to CheckStatus() will return one of four
different statuses

• LLAMA_STATUS_SUCCESS

• LLAMA_STATUS_REPAIRED

• LLAMA_STATUS_FAILED

• LLAMA_STATUS_COMPLETE

The first status flag, LLAMA_STATUS_SUCCESS indicates that no failed ranks could be
detected in my_world_comm so the application can proceed safely. LLAMA_STATUS_REPAIRED
indicates that one or more ranks were found to have failed but they were successfully
repaired, i.e., one or more ranks in my_world_comm has been replaced with one or
more ranks from the pool of spare ranks and released from CheckStatus() together
with all the other worker ranks. This status flag indicates that the user should take
action to role back to a previous checkpoint idx at which a sufficiently resilient check-
point was updated. LLAMA_STATUS_FAILED indicates that one or more ranks were
found to have failed, but it wasn’t possible to repair the communicator. This could
happen if the llama::guard has run out of spare ranks or if the llama::guard detects a
failure pattern for which none of its associated checkpoints may recover. This status
flag will only be returned in the event that return_errors was set to true when cre-
ating the llama::guard, otherwise the application will write an error message on the
std::cerr stream and exit with the EXIT_FAILED status. The final possible status flag
LLAMA_STATUS_COMPLETE is only returned with a spare-rank and indicates that the
application has completed and that the spare rank should proceed to clean-up.

In the event that a LLAMA_STATUS_REPAIRED status flag is returned, the user must
specify how the application should be repaired. Llama simply exposes access to the
content of all arrays that was marked as protected at the most recent checkpoint idx
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for which recovery is possible. To access the data content of an array at the most recent
checkpoint idx, the method RecoverArray() is used.

Listing 11.10 – Method to recover data

my_llama . RecoverArray < c l a s s T>( const std : : s t r i n g &key , T∗ p_array ,
u i n t 6 4 _ t dim1 )

key is the key that was previously used to identify the array and T is the type of the
objects stored in the array. p_array indicates to where the recovered data should be
copied. For ranks that had not failed, this might very well be the same pointer, whereas
for a newly introduced worker, rank relevant data structures must be created. As before
dim1 indicates the number of elements in the array. The same interface is used for 2D
and 3D arrays

Listing 11.11 – Method to recover data

my_llama . RecoverArray < c l a s s T>( const std : : s t r i n g &key , T∗∗ p_array ,
u i n t 6 4 _ t dim1 , u i n t 6 4 _ t dim2 )

my_llama . RecoverArray < c l a s s T>( const std : : s t r i n g &key , T∗∗∗ p_array ,
u i n t 6 4 _ t dim1 , u i n t 6 4 _ t dim2 , u i n t 6 4 _ t dim3 )

The example folder in the git repository contains several examples on how to make
applications fault-tolerant.

Finalizing the Environment

Before finalizing the MPI environment, the Llama environment must be finalized
using my_llama.Finalize() to clean up all checkpoints and to free all spares. If the
environment is not finalized, unused data files may remain on the parallel file system.

Usage examples

A code example for the use of the Llama library is given in appendix E and additional
examples are available in the Git repository. In the example in the appendix, a small
code for finding a numerical approximation to the solution of the 2D Euler equation
in parallel using MPI is made fault tolerant using the Llama library. Rank failures are
forced by raising SIGKILL on a subset of nodes to demonstrate recovery in case of
two different failure patterns. A detailed outline of the example is given in the code
comments.
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11.3 Numerical Experiments

Numerical experiments demonstrating the overhead initialization cost of creating
the Llama Guard, adding checkpoints and marking arrays to protect are presented
in sections 11.3.1, 11.3.2, and 11.3.2. In section 11.3.3, scaling tests on the walltime
cost to periodically update checkpoints are presented. The cost of recovering data
from a checkpoint is presented in section 11.3.4. All measurements are made for to-
disk checkpoints, and for four different types of in-memory checksum checkpoints as
outlined below

To-Disk Arrays to be protected are written to the GPFS filesystem using MPI-IO.

In-Memory G32P4 Arrays encoded in groups of 32 ranks. Four parity code blocks are
created per code stripe. 14.3 percent memory overhead.

In-Memory G16P2 Arrays encoded in groups of 16 ranks. Two parity code blocks are
created per code stripe. 14.3 percent memory overhead.

In-Memory G8P2 Arrays encoded in groups of eight ranks. Two parity code blocks are
created per code stripe. 33.3 percent memory overhead.

In-Memory G8P1 Arrays encoded in groups of eight ranks. one parity code blocks are
created per code stripe. 14.3 percent memory overhead.

The checkpoint types are listed in order of increasing resilience. The to-disk type
checkpoints may recover lost data regardless of how many ranks have failed. In-
memory checksum checkpoints may recover so long as the number of lost ranks within
a group is smaller than the number of parity code blocks encoded and stored per stripe.
Smaller groups with few parity code blocks may recover from fewer failure patterns and
may thus be considered less resilient. Small groups with few code blocks are, however,
expected to be faster to update as fewer operations and less communication between
ranks in a group is needed to compute the checksum code blocks. Weak and strong
scaling tests has been made from 112 to 7168 cores for all numerical experiments. The
EPFL Fidis general purpose cluster was used to run the scaling tests. Each node in the
cluster has two Intel Broadwell 2.6Ghz processors with 14 cores each, i.e. 28 cores per
node. The cluster network fabric is Infiniband FDR fully-non-blocking, with a fat-tree
topology.
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11.3.1 Creating the Llama Guard

The first step in making an application fault tolerant by way of periodic check-pointing
using Llama, is to declare a Guard object following the initialization of the MPI envi-
ronment

Listing 11.12 – Declaration of the constructor for the Llama Guard

llama : : guard : : guard (MPI_Comm &input_comm , i n t num_spare_ranks , bool
r e t u r n _ e r r o r s ) ;

The first argument is a pointer to a duplicate of the world communicator, containing
all worker and spare ranks. The second argument tells the Guard how many ranks to
put aside in a pool of spare worker ranks. The third argument, if true, tells the Guard
to throw error objects rather than exit upon encountering failure patterns which are
not recoverable. The constructor of the Guard initiates various structures needed, and
it removes num_spare_ranks ranks from the input_comm communicator and places
these ranks in a pool for later use in case of failures. A scaling test is presented in
Figurer 11.2. The walltime to create the Guard does not depend on checkpoints added
later, and only increases weakly with the number of cores. The measured time varies
substantially between measurements.
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Figure 11.2 – Scaling test, time to create Llama Guard as a function of the number of
cores as tested on the EPFL Fidis cluster. The time to create the checkpoint increases
slightly with an increasing number of cores, but varies mostly due to difference in
network load and job placement on the shared general purpose cluster.
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11.3.2 Adding a Checkpoint to the Guard

For the Guard to protect arrays, one or more checkpoint objects must be associated
with the Guard. To-disk and in-memory type checkpoints may be added using their
respective constructors and passing a pointer to the Guard.

Listing 11.13 – Constructors for adding checkpoints

// Declarat ion of the constructor f o r the to−disk type checkpoint
void llama : : checkpoint : : disk : : disk ( llama : : guard ∗MyGuard )
// Declarat ion of the constructor f o r the in−memory type checkpoint
void llama : : checkpoint : : memory : : memory( llama : : guard ∗MyGuard , bool

copy_protected_data , i n t connected_ranks , i n t l o c a l _ g r o u p _ s i z e , i n t
num_parities_per_group )

Within the constructor for declaring a to-disk type checkpoint, only a few local ini-
tialization operations are needed. For the in-memory checksum type checkpoints,
global operations are needed to verify that all workers are creating in-memory type
checkpoint of the same group size, using the same number of parity blocks. In addition,
an array of local communicators are created within each group. The overhead of at-
taching an in-memory checkpoint to the Guard is therefore higher than for the to-disk
type checkpoint. As may be seen from the scaling test in Figure 11.3, the in-memory
checksum checkpoint is an order of magnitude more expensive to initialize.
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Figure 11.3 – Scaling test, time to attach a checkpoint-type to the Llama Guard as a
function of number of cores. The time increases slightly with an increasing number of
cores, the overhead of checking parameters and creating a matrix of local communica-
tors makes the in-memory type checkpoint slower to initialize.
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Adding an Array for the Guard to Protect

Any array, containing data needed upon recovery, must be protected by the Llama
Guard created. To notify the Guard of the existence of the array, the ProtectArray
method of the Llama Guard class is used. The method is a template on the data type of
the array to be protected, and overloaded by the number of arguments to distinguish
between 1D, 2D, and 3D arrays.

Listing 11.14 – Notifying the Llama Guard that an array must be protected

// Method f o r 1D a r r a y s
template < c l a s s T> void guard : : P r o t e c t A r r a y ( const std : : s t r i n g &key , T
∗p_array , i n t dim1 )

// Method f o r 2D a r r a y s
template < c l a s s T> void guard : : P r o t e c t A r r a y ( const std : : s t r i n g &key , T
∗∗p_array , i n t dim1 , i n t dim2 )

// Method f o r 3D a r r a y s
template < c l a s s T> void guard : : P r o t e c t A r r a y ( const std : : s t r i n g &key , T
∗∗∗p_array , i n t dim1 , i n t dim2 , i n t dim3 )

The method checks if the key supplied is unique- If it is not the application exists
with an error code, or an error object is thrown, depending on how the Guard was
initialized. If the key is unique, the array pointer and array dimensions are added
together to a map connecting the key and the array information. Within the method,
all checkpoints associated with the Guard is notified of the existence of a new array
to be protected. Guard objects are friends of checkpoint objects, so checkpoints are
notified by calling a protected method that initiates whatever structures that may be
needed for the checkpoint type. Only two types of checkpoints exists, the to-disk that
uses MPI-IO to protect an array on the parallel-file-system, and the in-memory which
encodes checksum parity codes to protect the data and distribute these parity codes
in a local group. In the case of the to-disk checkpoint, no action is needed. For the
in-memory checkpoint, memory is allocated for the parity code blocks that will be
written. If other types of checkpoints are to be implemented, they must inherit from
the pure virtual checkpointinterface class and implement all required functionality.

In either case, before notifying checkpoints of the addition of an array to protect, a
check is performed across all workers, verifying that all workers are adding an array
with the same unique key. The operation is thus global and must be accessed by all
workers to avoid deadlock. Figure 11.4 contains a weak and a strong scaling plot of the
overhead walltime associated with adding an array for the Llama Guard to protect. The
numerical experiment indicates that there is little or no difference in the cost of adding
an array between the to-disk and the in-memory type checkpoints. The principal cost
of the ProtectArray method is therefore likely the addition of a new array to the map,
followed by the global agreement operation in the Guard that is independent of the
size of the array.
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(a) Weak Scaling – 12MB per Array per Core
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(b) Strong Scaling – 128GB Distributed Array

Figure 11.4 – The wall-time cost of adding an array to the Llama Guard as measured on
the EPFL Fidis general purpose cluster for 112 to 7168 cores. In the legend, G indicate
group size and P indicate number of parity code blocks per stripe. Each measurement
was made 3 times to illustrate the variance in timings due to job-placement and
network load when using a shared cluster. The cost of adding an array is observed to
be almost constant, only vaguely increasing with an increasing number of cores.
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11.3.3 Cost of Updating Checkpoints

In the fault tolerant application, checkpoints protecting data will need to be periodi-
cally updated. This is done using the Update method. The method is a pure virtual
function in the checkpointinterface class from which all checkpoints derive.

Listing 11.15 – Declaration for method to update checkpoint

// Update a l l data a r r a y s and encode a l l checksums in checkpoint
void llama : : checkpoint : : memory : : Update ( i n t new_checkpoint_idx )
void llama : : checkpoint : : disk : : Update ( i n t new_checkpoint_idx )

When calling the function, the checkpoint will update the protection of all arrays
marked by protection. The variable new_checkpoint_idx indicates the index for the
new checkpoint. The index provided must be greater than any previous index used.
The underlying action of Update depends on the checkpoint implementation. For the
to-disk checkpoint, MPI-IO is used to write a copy of the array to be protected by the
parallel file system. Once the array has been written, an agreement check is performed
between all workers to verify that the new checkpoint is safe before deleting the file
containing the previous checkpoint. For the in-memory checkpoint, all arrays are
encoded using Reed-Solomon erasure code as outlined in section 11.2.1. The walltime
cost of updating the checkpoint may be the most critical part of the Llama library
as, unlike the creation of the Guard and adding arrays, the update will be performed
periodically throughout the execution of the code to protect. Steps has therefore been
taken to make the update as fast as possible. All essential checks on identifier keys
and array dimensions has been moved to the ProtectArray method of the Guard class,
used to notify the Guard of arrays to be protected. No checks are performed inside
Update. The operation is global over all workers so deadlock will ensue if any workers
are missing unless it being due to failure in which case it returns throwing an error
object. Figure 11.5 contains weak scaling measurements on the EPFL Fidis cluster for
112 to 7168 cores for the protection of a 2D array. Measurements has been made for
the to-disk type checkpoint as well as for four different types of in-memory checksum
checkpoints. Each node on the Fidis cluster has 28 cores. In all four in-memory cases
the number of adjacent nodes assumed likely to fail together is set to the size of a single
node, 28, i.e., ranks 0, 28, 56, ... will be placed in the zero’th group, rank 1, 29, 57, ... in
group 1 and so forth. At 12MB per core close to ideal scaling is observed when using a
group size of eight with one or two parity codes per stripe. In the limit of using 7168
cores, Llama encodes data at a rate of 300GB/s. Which is more than two orders of
magnitude faster than what may be achieved protecting the arrays using MPI-IO in the
parallel-file-system checkpoint. Figure 11.6 contains strong scaling tests for a 16GB 2D
array and a 128GB 2D array. In the strong-scaling test, the size of the 2D array per core
decreases as the number of cores increases, making it more challenging to achieve
perfect scaling. As in the weak scaling test, the in-memory checksum checkpoint is up
to 200 times faster than the to-disk type checkpoint when using 7168 cores.
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(a) Weak Scaling – 1.5MB per Array per Core
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(b) Weak Scaling – 12MB per Array per Core

Figure 11.5 – Weak scaling test on the cost of updating a checkpoint as measured on
the EPFL Fidis cluster. In the legend, G indicate group size and P indicate number of
parity code blocks per stripe. Each measurement was made three times to illustrate
the variance in timings due to job-placement and network load when using a shared
cluster. (a) 1.5MB per core. (b) 12MB per core. With as little as 1.5MB per core, good
scaling is observed for the in-memory checkpoints.
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(a) Strong Scaling – 16GB Distributed Array
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(b) Strong Scaling – 128GB Distributed Array

Figure 11.6 – Strong scaling test on the cost of updating a checkpoint as measured on
the EPFL Fidis cluster. In the legend, G indicate group size and P indicate number of
parity code blocks per stripe. Each measurement was made three times in order to
illustrate the variance in timings due to job-placement and network load when using a
shared cluster. (a) 12GB distributed array. (b) 128GB distributed array. Encoding four
parity blocks over a large group containing 32 nodes is up to an order of magnitude
faster than writing the data to protect to the parallel-file-system.
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11.3.4 Cost of Data Recovery

If a status-check, using CheckStatus during the operation reveals that one or more
ranks has been lost and replaced, the arrays at a previous checkpoint_idx may be
recovered by the Llama Guard using the RecoverArray method of the Guard class. To
identify the array to be recovered, one must use the key associated with the array,
when the array was added to the Guard’s list of arrays to protect using the method
ProtectArray of the Guard class. The dimensions of the array, as well as a pointer
p_array to where the newly recovered data from a previous checkpoint idx should be
recovered, are part of the input arguments. This pointer can be a pointer to the same
location as used when updating checkpoints associated with the Guard. The method is
templated on the data type of the array to be recovered, and overloaded by the number
of arguments to distinguish between 1D, 2D, and 3D arrays.

Listing 11.16 – Declaration for the method to recover array

// I n i t i a t e recovery of 1D array
template < c l a s s T> void RecoverArray ( i n t checkpoint_idx , const std : :

s t r i n g &key , T ∗p_array , i n t dim1 ) ;
// I n i t i a t e recovery of 2D array
template < c l a s s T> void RecoverArray ( i n t checkpoint_idx , const std : :

s t r i n g &key , T ∗∗p_array , i n t dim1 , i n t dim2 ) ;
// I n i t i a t e recovery of 3D array
template < c l a s s T> void RecoverArray ( i n t checkpoint_idx , const std : :

s t r i n g &key , T ∗∗∗p_array , i n t dim1 , i n t dim2 , i n t dim3 ) ;
void llama : : checkpoint : : disk : : Update ( i n t new_checkpoint_idx )

When a Guard is asked to recover the content of an array at some previous index, it
first performs an agreement function, ensuring that all workers have been asked to
recover the same array. This is followed by a few basic checks that the array exists and
that the information on key, array data type, and dimensions is consistent with an
array being protected. The Guard then cycles over all checkpoints type associated with
it, and queries the checkpoint to see if it is able to recover all data at the checkpoint
index specified. Among the candidates, it choses the checkpoint which it reckons is
the fastest to recover from. The chosen checkpoint is then instructed by the Guard to
recover the data to the location of the pointer supplied. How recovery is performed
depends on the checkpoint type. To-disk checkpoints will use MPI-IO to read from the
parallel-file-system, while in-memory checksum checkpoints will perform a group-
local decoding procedure.

Figure 11.7 contains weak scaling numerical experiment, demonstrating the rate at
which a 2D array may be recovered using the different types of checkpoints. Tested for
112 cores to 7168 cores on the EPFL Fidis cluster. Two scaling tests are demonstrated,
one with 1.5MB per core and another with 12MB per core. Each data point constitutes
a job on the shared general purpose cluster. Each experiment has been performed
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three times since job placement and cluster network load may substantially impact
the speed of recovery. Figure 11.8 contains strong scaling measurements using a fixed
global array size of 16GB in Figure 11.8a and 128GB in Figure 11.8b. In all tests, a
single rank in a single group is terminated by raising a SIGKILL locally on the rank to
disappear. For recovery from in-memory checkpoints, all groups containing a broken
rank must decode in parallel across the group to recover the lost data. All unbroken
groups may simply copy the unbroken content of the local array. The time-to-recover is
therefore limited by the time it takes the broken groups to decode all local data blocks.
The location of ranks within a group on the cluster and the network may therefore
substantially impact the speed of recovery. For to-disk checkpoints, all cores must read
the array from a file on the parallel-file-system, regardless of whether or not they were
involved in a failure or not. This makes the to-disk checkpoint time-to-recovery less
sensitive to how ranks are distributed on the cluster. Instead the speed of recovery is
sensitive to the load on the parallel-file-system at the time of the job execution.

The recovery procedure always proceeds after a status check where one or more worker
ranks are found to have failed. The status check is a method of the Llama Guard
class. When worker ranks enter the CheckStatus method, an agreement operation is
performed across all workers to check if any workers have failed. If one or more worker
ranks are found to have failed, spare ranks are released and the worker communicator
revoked and repaired. During the repair, spare ranks are injected to take the place of lost
worker ranks. The process of detecting failures and repairing the worker communicator
is essential for the automatic restart at an earlier checkpoint index. The method is
implemented using functionality of ULFM-MPI. Unfortunately we’ve found that when
testing the Llama library using a large number of cores on the EPFL Fidis cluster, the
detection of failed ranks and subsequent communicator repair sometimes experience
either a deadlocks or fail completely. Following the simulation of rank failures by
raising SIGKILL on a rank to terminate it, deadlock or failure of otherwise failure-free
ranks often happen within MPIX_Agree or MPIX_Comm_Replace. The errors returned
vary in type. Sometimes failure-unaffiliated ranks lose contact with the MPI helper
daemon orted and exit, other times errors related to the operations on the InfiniBand
network are returned. As described in section 11.1.3, ULFM-MPI is still at an early
phase of development and is not part of the official MPI standard yet. According to the
developers of ULFM-MPI, the possibility of buggy corner cases is high.

In our current implementation using ULFM-MPI 2.0, correct detection of failures
and subsequent repair of the worker communicator happen only about half the time
when running large jobs with 1000+ cores. When the detection and repair proceeds
correctly, the time to repair ranges from less than one second to 80+ seconds. Due to
the inconsistent behavior of the detection and communicator-repair operations, we’re
unable at the moment to perform meaningful large-scale scaling tests on the cost of
this component of Llama.
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(a) Weak Scaling – 1.5MB per Array per Core
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(b) Weak Scaling – 12MB per Array per Core

Figure 11.7 – Weak scaling test on the cost of recovering data from a checkpoint as
measured on the EPFL Fidis cluster. In the legend, G indicate group size and P indicate
number of parity code blocks per stripe. Each measurement was made three times
in order to illustrate the variance in timings due to job-placement and network load
when using a shared cluster. (a) 1.5MB per core. (b) 12MB per core. With as little as
1.5MB per core, good scaling is observed for the in-memory checkpoints.
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(a) Strong Scaling – 16GB Distributed Array
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(b) Strong Scaling – 128GB Distributed Array

Figure 11.8 – Strong scaling test on the cost of recovering data from a checkpoint as
measured on the EPFL Fidis cluster. In the legend, G indicate group size and P indicate
number of parity code blocks per stripe. Each measurement was made three times
in order to illustrate the variance in timings due to job-placement and network load
when using a shared cluster. (a) 12GB distributed array. (b) 128GB distributed array.
Encoding 4 parity blocks over a large group containing 32 nodes is up to an order of
magnitude faster than writing the data to protect to the parallel-file-system.
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11.4 Summary

The Llama library delivers fault tolerance in HPC trough checkpointing. It is the first
library to support both automatic rollback without restart and the use of an arbitrary
number of checkpoint levels with topology aware checksum checkpoints of arbitrary
group size and number of parity code blocks. In section 11.3.3, it was demonstrated
that the library can achieve in excess of 300GB/s encoding when running on 256 nodes,
similar to what has been demonstrated using the SCR library by LLNL[217], with the
major distinction that there are no limitation in Llama on the group size and the
number of parities to use per group.

One issue not touched upon in outlining the recovery procedure is that for any ap-
plication, newly joined worker ranks must create all structures that was created by
the original worker ranks during initialization. This initialization phase may involve
communication with other worker ranks and could potentially be very time consuming.
A potential path around this issue was presented in [49] where it was demonstrated
that this procedure need not be slow nor cumbersome to implement. By logging all
MPI transactions during the initialization phase and protecting these, new workers
can recover in complete isolation from other workers waiting to restart at the previous
checkpoint.

The library is still under development and there are several points that needs to be
addressed in future versions. At the moment, only the use of spare nodes to replace
failed workers has been implemented, i.e., there is no support for spawning new ranks
as needed. Another issue that remains is that upon injecting a large number of errors,
the failure-detection and communicator repair may fail. Identifying the underlying
cause of these issues is ongoing work.

Finally, the implementation of error handling within Llama functionality is not com-
plete, so at the moment if worker ranks fail within Llama calls such as the update
or recovery methods of the Guard, this will result in undefined behavior. To protect
against failures during the process of updating in-memory checkpoints, the approach
presented in [295] is to be used, maintaining an extra copy of the parity code blocks
during checkpoint update.
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12 Partial Information Recovery with
Incomplete Checksums

Hardware is inherently failure prone. For data centers and cloud services, protecting
user data has been essential for as long as the services have existed. In early days, the
standard approach was protection trough triple redundancy. At any given moment,
three separate hard drives on separate systems would store any given data[202, 166].
If at some point, a drive would fail, the two remaining hard-drives are to make a new
copy by sending their data over the network to a new failure-free machine. The process
of copying the full content of a hard-drive over network fabric might take an hour or
so, depending on the state of network congestion.

With triple redundancy, three hard-drives on separate systems would have to all fail
within the span of roughly an hour for the data to be lost. Consumer grade hard disk
drives (HDD) have an annualized failure rate of 2 to 5 percent when running 24 hours a
day, 365 days a year[270]. With these ballpark numbers, the probability of loosing one
hard-drive worth of data within a year is in the order of ∼ 10−15. Thus, even with a very
large number of hard-drives, the probably of loosing data becomes small. Newer Solid
State Drives (SSD) are unlikely to lessen the need for failure protection techniques
meaningfully. Studies have shown that they have lower annual replacement rate of
1-3 percent, but in turn they have a higher rate of uncorrectable data errors [271].
The problem with the approach of redundancy for protecting data is that it is very
expensive. The main cost of running a data-center is due to energy consumption
and hardware purchase. Triple redundancy essentially triples the cost of running the
service.

For said reasons, the industry no longer rely solely on redundancy as a mean of fault-
tolerance. Instead, erasure codes have found use. Erasure codes are a form of forward
error correction that take data consisting of k symbols and turn it into a larger data
set with n symbols such that the original data may be recovered from a subset of the n

symbols. Erasure codes for which any k symbols are sufficient to recover the original
data are called optimal, these codes are as resilient as possible, but typically scale
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quadratic in terms of coding and decoding complexity with respect to n. The n − k

extra symbols created are typically referred to as parity codes or checksums. The most
commonly used erasure code is Reed–Solomon error correction[249], used in RAID6
and in various storage services.

The advantage of using Reed-Solomon erasure code instead of redundancy is that it
is relatively memory efficient. Imagine three hard-drives full of data that one would
like to protect, i.e. k = 3, say another three hard-drives are used to store parity code,
i.e. n = 6. We’d have to loose four drives among the six, before the data on the lost
hard-drives become truly lost. This comes at the cost of a 100 percent overheard
in hard-drive usage. Compare this to the triple-redundancy approach, here nine
hard-drives would be required corresponding to a 200 percent overheard, this despite
the two approaches having essentially the same probability of data-loss. The Reed-
Solomon approach is thus very efficient in terms of disk-usage. The trade-off is that
Reed-Solmon requires encoding and decoding of data, which increase both CPU usage
and network congestion. In practice, major data-centers are typically using various
forms of hierarchies of parity codes, in combination with redundancy techniques, to
mitigate issues of network congestion in particular[165, 267, 238].

The use of erasure code is beginning to find its way into HPC as well. In the context of
fault-tolerance, the interest is to protect data in-memory to avoid the comparatively
slow parallel-file-system; this makes the memory conserving property very attrac-
tive. In addition, most clusters used for large-scale applications are equipped with
high-bandwidth low-latency networks, which serves to somewhat alleviate the cost of
encoding data. In Chapter 11, erasure codes were used for this exact purpose to enable
a library for fault-tolerance to create memory-conserving in-memory checkpoints.

Unfortunately Reed-Solomon too has limits, even optimal erasure codes can not
recreate lost data if the number of lost hard-drives, or nodes, kl is greater than n− k.
Up until this point, all data lost can be recreated with bit-wise accuracy, but after,
there’s no known way of recreating the lost data. This is unfortunate. In the context of
HPC fault-tolerance trough light-weight checkpointing, as demonstrated in chapter
11, this means one must revert to a more resilient checkpoint such as one written to
the parallel-file-system. In the context of data-centers and cloud services protecting
costumer data, it is unfortunate because they are forced to use sufficiently many
resources to ensure that the probability of this situation happening is infinitely small.

The decoding procedure can be thought of, in very simple terms, as the procedure of
solving a linear system. In order to recover lost data, one must solve a system for which
the number of columns is the number of lost symbols kl, while the number of rows is
the number of parity code symbols n− k. The reason that it becomes impossible to
recover the data when n− k < kl is that the system to solve become under-determined.
If real numbers were used in the encoding scheme, infinitely many solutions to the
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decoding procedure would exist. If, as in the case of Reed-Solomon, the encoding
matrix and symbols to encode str in a Galois field, the number of possible solutions
would still be finite, but there would be no unique solution.

Despite the fact that no unique solution exists to the decoding problem when n−k < kl,
one could argue that the remaining equations still hold information about the structure
of the lost data. Even though the number of possible solutions is infinite, the number
of solutions not admissible is likewise infinite. One might speculate that given some
other knowledge about the data that was decoded, say knowledge of how one element
in a vector tends to relate to another, could this information be used to impose other
conditions in such a way that the system to solve yet again become well posed? In this
chapter we present a small preliminary study demonstrating a proof-of-concept. For
reasons of simplicity, we consider an erasure code in the style of Reed-Solomon, but
on real numbers.

12.1 The Weighted Checksum Scheme

Since real numbers can only be represented with finite precision on computers, most
erasure codes such as Reed-Solomon, are designed to be applied to data represented as
elements in a Galois field so that bitwise exact recovery is possible, thereby allowing the
encoding/decoding mechanism to be agnostic with respect to what the bits represent.

In HPC fault-tolerance applications, some form of numerical data is often what needs
to be protected. A vector, or matrix, filled with real numbers. This data could be
treated as bit-streams using Reed-Solomon encoding, but parity codes could also
be generated directly from the floating point numbers. In [189] the authors list a
number of advantages in doing so. A main argument is that one avoids the trouble of
introducing Galois Field arithmetic in the encoding and decoding procedure, instead
being able to rely on standard matrix operations for floating point numbers. The
disadvantage is the introduction of round-off errors during the recovery procedure
due to the limited precision with which floating point numbers may be represented.
The latter may however be of limited concern since it has been shown that the loss of
accuracy can be limited with a clever choice of checksum encoding matrix [64, 189].

In the introduction below, we use k to indicate the number of separately stored data,
m to indicate the number of parity codes to compute, i.e. checksums, and n = m+ k

the total number of data and code blocks. In the context of the example given in the
previous section, this corresponds to a total of n hard-drives, among which k separate
hard-drives are used to store the data that must be protected, and m hard-drives are
used to store checksum parity code.
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Consider a vector x̄ of length d times k. Let’s assume that this vector is partially stored
in k equal parts on k independent hard-drives. Then the “sub-vector” stored on each
hard-drive contain d elements. For ease of notation, let x̄i denote the i’th sub-vector.
A simple way of protecting the content of the vector against hardware failures is to
compute an element-wise sum, i.e. a new vector c̄, also containing d elements,

c̄ =

k∑
i=1

x̄i (12.1)

and then storing c̄ on a separate hard-drive, m = 1. We will refer to the vector c̄ as
the checksum hence forward. If at some point we were to lose a hard-drive klost ∈
{1, k}. No matter which one it is, the vector c̄ can be used to recover the data trough a
summation on the form

x̄klost = c̄−
k∑

i �=klost

x̄i (12.2)

The above approach is extendable to create a simple scheme for protection against
multiple failures, called a weighted checksum scheme. Suppose that we can afford to
store m checksum vectors on m separate hard-drives, we would then compute each
checksum vector c̄i as such⎧⎪⎪⎨

⎪⎪⎩
a1,1x̄

1 + . . .+ a1,kx̄
k = c̄1

...

am,1x̄
1 + . . .+ am,kx̄

k = c̄m

(12.3)

where am,k are some weights to be chosen. The matrix A = (ai,j)m,k is called the check-
sum matrix. If multiple hard-drives fail, how could the data be recovered? Assume,
without loss of generality, that all of the first klost hard-drives have failed, and the all
subsequent hard-drives have survived, we may then derive an equation to recover the
sub-vectors x̄1, x̄2 . . . , x̄klost lost by restructuring (12.3) to arrive at

⎧⎪⎪⎨
⎪⎪⎩
a1,1x̄

1 + . . .+ a1,klost x̄
klost = c̄1 −∑k

t=klost+1 a1,tx̄
t

...

am,1x̄
1 + . . .+ am,klost x̄

klost = c̄m −∑k
t=klost+1 am,tx̄

t

(12.4)

We refer to the coefficient matrix of the left hand side matrix in the above linear sys-
tem, consisting of klost columns of A, as Ar. For recovery to always be possible, the
coefficients of the weighted checksum matrix A must be chosen in such a way that
for any possible Ar, a unique solution is guaranteed to exist. I.e., the elements in the
checkpoint matrix A must be chosen so that any sub-matrix of A is non-singular as this
guarantees that Ar will always have full rank. Many structured matrices such as Van-

174



12.2. Partial Information Recovery for Incomplete Checksums

dermonde matrix, Cauchy matrix, and Gaussian Random matrix satisfy this condition.
Not all such matrices would necessarily be suited though, it is also important that any
sub-matrix Ar is well conditioned. If Ar has a high condition number, round off errors
will accumulate and reduce the accuracy of the recovered data[18]. Gaussian Random
matrices are both well conditioned and satisfy the condition that any submatrix is
non-singular[96]. They are therefore a natural choice as noted in [189], and will be
used as the checksum matrix for all numerical experiments presented in this chapter.

12.2 Partial Information Recovery for Incomplete Checksums

The unfortunate limitation of the approach, as with all erasure codes, is that if the
number of hard-drives lost klost is larger than the number of checksums m, there is
no unique solution to the problem of recovering the lost sub-vectors x̄1, x̄2 . . . , x̄klost

since the system (12.4) becomes under-determined. Of course, one could simply
let m be very large to avoid that situation, but increasing m means increasing the
overhead in terms of hardware and energy. Ideally, we’d like to keep the overhead due
to data protection as low as possible. Therefore, it would be immensely practical if we
could somehow magically find the right x̄1, x̄2 . . . , x̄klost among the infinite number of
solutions to the under-determined system (12.4) when m < klost.

To appreciate how that might be possible, let’s take a step back and consider again
the case of having only a single checksum vector. If we are so unfortunate to loose
klost > 1 number of hard-drives, the solution space of every element d in each lost
sub-vector x̄1, x̄2 . . . , x̄klost is spanned by an klost − 1 dimensional affine hyperplane
as can be deduced from (12.3). The solution space is infinitely large, so we can not
naively recover the lost sub-vectors by direct computations. Here’s an idea though,
let’s assume that the data vector x̄ stored in a distributed manor on many hard-drives
has some structure to it, and that we have some knowledge of what that structure is.
Say, we might be informed that the content of the vector x̄ represents points sampled
from a C∞ functional. Now, given this knowledge, what if, among the infinitely many
solutions to (12.3), for each element in each of the lost data vectors x̄1, x̄2 . . . , x̄klost , we
choose the solution which makes, in some yet to be defined sense, the function that x̄
represents as smooth as possible?

The essence of the approach is simple. Let ˙̄x represents the first order derivative of
x̄; now, find the sub-vectors x̄1, x̄2 . . . , x̄klost that minimize ‖ ˙̄x‖2 under the constraint
that all checksum equations must be satisfied. By writing ˙̄x as a function of x̄ with the
application of a finite difference stencil, and then rewriting the checksum equations
(12.3) to depend on ˙̄x instead of x̄, we are left with a well-posed convex optimization
problem for ˙̄x that may be solved using standard methods. The approach worked
fairly well, though the derivation is somewhat long, and becomes especially involved
if to be extended to surfaces or volumes. In addition, due to the global nature of the
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optimization, it is computationally expensive. Upon further experiments, we found
that though the underlying idea was right, a slightly different path proved better.

Instead of formulating a problem that finds the smoothest possible solution that satisfy
all checksum equations, we assume that some compressed data or reduced model of x̄
is available, denoted x̃. We then formulate a different optimization problem, i.e., find
the sub-vectors x̄1, x̄2 . . . , x̄kklost that minimize ‖x̄− x̃‖2 under the constraint that all
checksum equations must be satisfied. This approach turns out to both work well and,
unlike the other approach, be particularly simple to formulate and solve. The method
is introduced in section 12.2.1, and extended into an iterative scheme in section 12.2.2
to demonstrate partial data recovery for incomplete checksums of image data.

12.2.1 Minimizing Distance to Inexact Data

Let’s define ĉ as the right hand side of (12.4), so that the equation for recovery may be
written as

Arx̄
1:klost = ĉ (12.5)

When m < klost, all possible admissible solutions z to the under-determined system
above may be written as

z̄ = A+
r ĉ+

[
I −A+

r Ar

]
w̄ (12.6)

where A+
r is the Moore-Penrose pseudo inverse of Ar. w̄ is an arbitrary vector with

klost elements. The solution corresponding to w = 0̄, is the minimum norm solution,
i.e., the solution for which ‖z‖2 is the smallest amongst all the admissible solutions.
If x̄ approximates a function that is never too far from zero, one might speculate that
computing

x̄1:klost = A+
r ĉ (12.7)

could potentially recover data that is close to what was lost. Let’s take that approach a
bit further, imagine that we have access to some reduced model or compressed data
x̃ that approximates the original vector x̄. Upon failure, we’d like to use this data in
conjunction with the checksum equations to find an even better approximation to the
lost data. Subtracting Arx̃

1:klost from (12.5) we recover

Ar

(
x̄1:klost − x̃1:klost

)
= ĉ−Arx̃

1:klost (12.8)

Applying the M–P pseudo inverse A+
r on each side and isolating x̄1:klost we arrive at

x̄1:klost = A+
r ĉ+

[
I −A+

r Ar

]
x̃1:klost (12.9)
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where x̄1:klost as computed in (12.9) is the solution that minimize
∥∥x̄1:klost − x̃1:klost

∥∥
2
.

Two experiment with this approach at partial information recovery for incomplete
checksum equations are presented in Figures 12.1 and 12.2. The vector x̄ contains
data created from a smoothed random walk, it contains a total of 10.000 data points.
The data vector x̄ was split into k = 100 separate sub-vectors, each containing 100
data points, and protected trough the creation checksum vectors as in (12.3), encoding
vectors element-wise. x̃ is created by taking the first 20 modes of a Fourier transform
of the entire dataset x̄. After encoding the m checksum vectors, the first klost = 20

sub-vectors were removed. The figure contains both the original data vector x̄, the
compressed data x̃, and the recovered data x̄1:klost computed by (12.9). In Figure 12.1,
the data was protected usingm = 15 checksums, hence in the incomplete data recovery,
33.3% more sub-vectors were lost than checksum vectors created. In Figure 12.2, the
data was protected using m = 18 checksums, hence in the incomplete data recovery,
10% more sub-vectors were lost than checksum vectors created. For all experiments,
the checksum matrix A was a Gaussian Random matrix.

This preliminary result indicates that the method works well. An interesting aspect of
the approach of ensuring uniqueness by minimizing the distance between the data
to be recovered, and some inexact data, is that the algorithm may be used to feed
itself in an iterative manor. An iteration could consists of first solving the constrained
minimization problem, followed by the application of some regularization function
that modifies the data towards some property, smoothness for example. In the next
section, the method just derived is used to create an improved, iterative, self-feeding
algorithm for incomplete data recovery.
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Figure 12.1 – Numerical experiment testing the method (12.9) for partial information
recovery in incomplete checksums. The data indicated by the black line was stored
in k = 100 separate containers. m = 15 checksum vectors were created to protect the
content of the containers. The klost = 20 first containers are removed, i.e. 33% more
data vectors are lost than checksum code vectors created.
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Figure 12.2 – Numerical experiment testing the method (12.9) for partial information
recovery in incomplete checksums. The data indicated by the black line was stored
in k = 100 separate containers. m = 18 checksum vectors were created to protect the
content of the containers. The klost = 20 first containers are removed, i.e. 11% more
data vectors are lost than checksum code vectors created.
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12.2.2 An Iterative Recovery Scheme

In the previous section we demonstrated that partial information recovery for incom-
plete checksums is possible when some compressed version, or reduced model, of the
lost data was available to be used in conjunction with the under-determined checksum
equations.

Here we present a further improved method in the form of an iterative algorithm.
Computing (12.9) reconstructs the lost data by finding the solution, nearest to some
guess, that satisfy the checksum equations. After performing this operation, one could
continue the recovery procedure by applying some function, to the approximation
found, that filters or modifies the solution in accordance with what meta knowledge
one might have on the structure of the lost data. If, for example, it is known that the
data to be recovered represents a continuous surface, one could apply a function that
smooth the solution a bit.

This new, filtered solution, will however in all likelihood no longer satisfy the checksum
equations. So it could be fed back into (12.9) as a new, improved guess. In this way, one
could alternate between the two, to potentially arrive at a better approximation to the
data lost. In the enumerated list below, the iterative scheme is outlined step-by-step.

1. Choose an initial guess x∗ = x̃1:klost . This could be zero if need be.

2. Form the error equation

Ar

(
x̄1:klost − x∗

)
= ĉ−Arx

∗ ⇒ Are = r∗ (12.10)

Find the e with minimum euclidean norm ‖e‖2 among all admissible solutions.

3. Update x̄1:klost = x∗ + e.

4. If ‖e‖ / ‖x∗‖ < ε, algorithm converged.

5. Otherwise, modify the data x̄1:klost with any a priori knowledge of the structure of
the data to recover.

6. Set x∗ = x̄1:klost , go to 2.

To test the method, we use it to recover images lost. In the test-case, all 16 images
are stored separately in 16 data sets, each image being 512x512 pixels. Another 3 data
sets, consisting of checksums, are computed element-wise, per color, using (12.3), to
protect the images. The images used are depicted in Figure 12.3 in their original form.
(12.9) are used for step 2-3 in the method outlined above.

In Figure 12.4, 4 images have been removed, and then recovered. The approximations
recovered are almost indistinguishable to the originals in Figure 12.3. In figure 12.5,
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6 images have been removed, i.e. the recovery procedure is attempting to recover
having only half as many checksums parity sets as data sets lost. The results are still
visually pleasing, although the recovered images have clearly been degraded in quality
compared to the originals. In the test, no compressed data was used to initiate the
algorithm. As a guess for the first iteration, a zero matrix was used.

An important thing to note about the results presented is that in the encoding pro-
cedure, and subsequent decoding procedure, a set of randomly generated checksum
matrices A was used in a round-robin fashion, rather than just using a single A repeat-
edly as is normally the case with erasure codes. Doing so improved the quality of the
recovered images substantially compared to using the same matrix A for all elements.
In general, our observation was that the increasing the number of randomly generated
checksum matrices used would also increase the quality of the images recovered. Using
4, or 16, randomly generated matrices was clearly better than using a single matrix, the
improvements were found to be diminishing however, as using 64 matrices instead of
16 would yield results only marginally better.

Figure 12.3 – The original version of the 16 images used to demonstrate the method
outlined. Each image is 512x512 pixels, and stored in separate data containers that
are assumed to be failure prone. The images are taken from the The USC-SIPI Image
Database[303]. In figures 12.4 and 12.5, the partial information recovery procedure is
demonstrated when removing 4 and 6 images respectively.
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(a) The four images removed.

(b) The four images reconstructed.

Figure 12.4 – Three checksums were computed to protect the content of the 16 con-
tainers. (a) Shows four images removed. (b) Depicts the recovered images.
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(a) The six images removed.

(b) The six images reconstructed.

Figure 12.5 – Three checksums were computed to protect the content of the 16 con-
tainers. (a) Shows six images removed. (b) Depicts the recovered images.
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12.3 Summary

In this chapter we set out to investigate to what extent it might be possible to find an
approximate solution to the problem of recovering lost data from an under-determined
checksum system, when having some knowledge of the underlying structure of the
data encoded. We proposed a new method, and tested its application on a weighted
checksum scheme for floating point numbers. Our preliminary finding is that the
answer is yes, it is indeed possible to partially recover the data otherwise considered
lost.

The data recovered when klost > m is not of machine accuracy with respect to the
original data, so for the approach to be of practical use in applications like the multi-
level checksum checkpointing scheme presented in chapter 11, one would need some
way of quantifying the accuracy expected of the data recovered.

The method as presented works best when generating and using multiple checksum
matrices. These checksum matrices needs to be stored as well since they are needed
in the decoding scheme. The added memory overhead is however very small, in the
example given the checksum matrices took up 0.8KB of space compared to 12.6MB for
the image data.

Using Gaussian matrices to encode a checksum is somewhat of a niche in the context
of fault-tolerance as it really only applies to floating point numbers where the exact
bitwise representation is not necessary upon recovery. For the method introduced to
have practical relevance, it must be extended to the case where the checksum matrix
elements are from a Galois field, i.e. Reed-Solomon codes. There are no obvious
reasons to believe that the fundamental idea of alternating between enforcing the
constraint of the checkpoint equations, and applying some filter, should not work. In
practice though, one need a way of completing step 2-3 in the method as outlined in
section 12.2.2. When A ∈ R

m×k, the Moore–Penrose pseudo inverse could be used
as it provides the minimum euclidean norm solution to the under-determined linear
system.

A solution procedure for the same problem when A ∈ F
m×k is less obvious. Generalized

inverses of matrices with elements from finite fields is a research topic that has received
limited attention. Some first results on matrices over finite fields that satisfy the four
criteria of a Moore-Penrose pseudo inverse were published in [119]. In [310], necessary
and sufficient conditions on A ∈ F

m×k for the existence of A+ was given, and in [78]
a method for constructing the Moore–Penrose pseudo inverse was presented. It is
however not clear if/how the minimum norm property applies here. In short, further
studies are needed to generalize the method.
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12.3. Summary

If successfully extended, the method could potentially have a wide number of applica-
tions in fault tolerance and error correction, also outside the context of HPC. Today
the average data-center consumes as much power as a small city. In the US alone,
data-centers and cloud-service providers store several hundred million terabytes of
data, and account for more than 2% of the nations electricty consumption[276]. Over-
head related to protection of data accounts for a substantial part of the energy usage,
this mainly due to extensive use of redundancy and erasure code to ensure that the
probability of hard-drive data loss is extremely small. If a method existed that would
allow for robust partial information recovery in the commonly used erasure codes,
this would mean that failures that would otherwise result in complete data loss would
instead only result in loss of data fidelity which in turn could potentially lead to relaxed
requirement on data protection for certain applications.
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13.4. Novel Contributions

13.4 Novel Contributions

The main contributions of the thesis were presented in Chapters 6 to 8 and Chapters
10 to 12. In each Chapter, issues regarding parallel scaling and fault tolerance were
considered. The problems considered all seek to improve parallel efficiency in applica-
tions as they scale to larger machines. Novel contributions of the thesis are outlined in
the list below

• In Chapters 6 and 7 it was demonstrated that Parareal may be applied for the
Parallel-in-Time integration of convection dominated PDE problems under cer-
tain conditions. As long as the coarse operator, the preconditioner, only introduce
dissipative errors with respect to the fine operator, the algorithm convergences.
The findings were used to accelerate a space-parallel finite-volume solver for the
nonlinear shallow water wave equation with Parareal. In doing so we devised a
new scheduler, denoted Communication Aware Adaptive Parareal (CAAP). With
CAAP, we demonstrated a speedup of 228 in the space-time parallel tests, com-
pared to a maximum speedup of 49 for the original parallel-in-space code. In
doing so we demonstrated that it is possible to obtain time-parallel speedup
for a nonlinear hyperbolic problem in excess of what may be obtained using
conventional spatial domain-decomposition techniques alone. These findings
offer substantial progress in the understanding of how to move past the strong
scaling saturation limit of classical (spatial) domain-decomposition methods for
complex convection dominated problems.

• A new method for constructing Parallel-in-Time integration schemes, better
suited for hyperbolic and convection dominated problems, is proposed and in-
vestigated in Chapter 8. We show than one may construct schemes that work
well on simple problems where the classical Parareal scheme otherwise fail. The
results indicate that it is possible to construct schemes in which the correction
procedure is better suited for problems with strong advective components. How-
ever, as with Parareal, the schemes tend to suffer from stability issues when used
on more general problems, and as such, the difficulty lies in finding a way to
guarantee stability without adversely effecting the speed of convergence.

• In chapter 10, a fault tolerant variant of Parareal was developed and tested. The
algorithm exploits clever scheduling, the usage of ULFM-MPI and the interpreta-
tion of Parareal as a fixed point iteration for resilience against both hard and soft
failures.

• Periodic checkpointing to the parallel-file-system is the workhorse of fault-
tolerance in high-performance computing today. This is expected to continue in
the foreseeable future, and it has been suggested that extending the approach
trough multi-level checkpointing is the most viable approach for minimizing the
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cost of checkpointing and reducing the compute work lost upon failure[81]. In
chapter 11, a C++/MPI library for multi-level checkpointing is presented. The
library, called Llama, supports, through ULFM-MPI, automatic rollback without
application restart. It is the first library to support both automatic rollback with-
out restart and the use of an arbitrary number of checkpoint levels with topology
aware checksum check. Trough numerical experiments, it was demonstrated
that the library can achieve in excess of 300GB/s encoding on 256 nodes.

• Erasure codes are widely used to protect data in data centers and are beginning
to find usage for fault-tolerance in high-performance computing applications.
Data protected through the creation of checksum parity code is, however, only
recoverable if the number of lost data and/or code blocks are smaller than, or
equal to, the number of checksums parity codes created. In chapter 12, a method
for partial information recovery in incomplete checksums was presented. The
methods require some knowledge of the underlying structure of the encoded
data. Through numerical experiments it was demonstrated that data, otherwise
considered lost, may be recovered, at least partially.

In section 13.5 below, we first present a brief overview of current trends and develop-
ment in high-performance computing, and then discuss perspectives for future work
in that context.

13.5 Outlook and Perspectives

World-class supercomputing has become about more than world-class science. Crown-
ing the TOP500 list has become something of a statement, a platform to demonstrate
leadership in technological progress and scientific innovation, as well as a source of
national pride. After many years of US dominance, the EU, China, and Japan have
all fielded large innovative machines in recent years, and each have plans in progress
to build an Exascale supercomputer. In 2010, China’s HPC presence was almost non-
existent. This has changed dramatically during the past eight years, particularly since
HPC development became a key objective in the country’s 13’th 5-year plan. From
2015 to 2017, the Gordon Bell prize was won each year by Chinese teams running
applications on Chinese supercomputers[93, 209]. In June 2018, the US reclaimed the
TOP500 throne with the IBM build Summit supercomputer. The development in HPC
is, however, currently moving at a breakneck paste, and the machine might already
lose its position on the November 2018 update of the list since several other Exascale
prototype machines are under construction.

It has been suggested that the first Exascale systems may be motivated in part by
politics. As a result, it could be both unreliable and have unreasonable power require-
ment, with the aim for it to be operational long enough to run the Linpack benchmark,
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13.5. Outlook and Perspectives

whereas applications of scientific interest would mostly be unable to scale efficiently
to the full size of the machine[17]. It remains an open question as to which country
will be the first to field an Exascale machine. After delays in several programs, the US,
China, and Japan now all aim to deploy their first Exascale machine during 2021, each
country relying on homegrown hardware to claim the honor.

Recent reports would suggest that the Exaflop compute barrier has already been
passed by the Summit supercomputer, deployed June 2018 at Oak Ridge National
Laboratory[159]. According to these reports, researchers were able to demonstrate 1.88
Exaflops of peak performance on an application for analyzing genomes. The machine
derives the bulk of its computational power from 27648 Nvidia Tesla V100 GPUs. This
generation of GPUs are equipped with what is called Tensor Cores, special purpose cir-
cuits made solely for 4x4 dense matrix-matrix multiplication of mixed precission[204].
Including the special purpose Tensor Cores, the machine has a combined theoretical
compute throughput of 3.3 Exaflops. Most applications, however, need to perform
other operations than just many small, almost independent, dense matrix-matrix
multiplications. The machine achives 122.3 Petaflops of sustained performance on
the HPLinpack benchmark, LU factorization of dense matrices[239], and 2.9 Petaflops
sustained performance on the HPCG benchmark, preconditioned conjugate gradient
for sparse matrices[90]. As to the question of whether or not an Exascale machine
already exits? Yes and no, Summit has a theoretical compute throughput that exceeds
an Exaflop of mixed precision performance, but in practice this is only achievable on
very specific parts of certain applications.

This in turn raises the question of when a computer can really be considered an Exas-
cale machine. Performance of different applications may vary by orders of magnitude,
and a machine, suitable for one problem, may be less suitable for other problems.
The question therefore has in some sense become meaningless if one does not, at the
same time, specify “on what application?”. Perhaps it would be beneficial if the HPC
community took a turn of perspective and started focusing on Exascale Applications
rather than Exascale machines?

Extreme parallelism and heterogeneous compute architectures have become the norm
in large-scale supercomputing as discussed in Part I. A massive investment in new sys-
tem developments has been seen in recent years as countries prepare for Exascale, and
new hardware is being developed at an unprecedented rate. Unfortunately, the very
high theoretical compute throughput of the new machines often remain theoretical.
The new machines frequently require legacy codes to be rewritten, and sometimes
even algorithms to be changed. According to prominent researchers in the field of
HPC, there has been an overinvestment in hardware during the past decade and a shift
towards funding of scientific software development is needed for the community to
fully take advantage of the new machines[264, 93].
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In the early 90s, the HPC community experienced a massive shift in technology. New
generations of microprocessors, manufactured relatively cheaply in great numbers
for the PC and workstation market, offered much better price/performance ratios
than vector multiprocessors, specially designed for HPC use. Over the course of two
decades, commodity hardware clusters came to almost entirely outcompete hardware
made specifically for HPC purposes[291]. Figure 13.6 and 13.7 contains plots of the
performance and system share of processors as a function of time since 1993 on the
TOP500 list. The change that happened in the early 90s is clearly observed. The figures
also indicate that things might be changing in HPC yet again, with a new trend towards
greater specialization. Among the world TOP50 computers, the majority of systems are
now mostly relying on either HPC specific hardware or a combination of commodity
CPUs and compute accelerators.

In terms of performance share, more than 50 percent of installed capacity now comes
from compute accelerators. Even more HPC centric specialization is on the way,
as both the EU, Japan and China plan to use Reduced Instruction Set Computing
(RISC) based architecture for processors in their Exascale machines. It appears that
the HPC community is moving into a period of greater processor diversity and more
specialization after having relied mostly on commodity CPU’s for 20 years.

Company Processor technology

AMD Athlon, Opteron, x86_64

DEC Alpha EV4, Alpha EV5, Alpha, EV56 Alpha, EV67, Alpha EV68

Hewlett-Packard PA-RISC PA-8000, PA-RISC PA-8200, PA-RISC PA-8500, PA-RISC

PA-8600, PA-RISC PA-8700

IBM POWER1, POWER2, POWER3, POWER4, PowerPC 6xx, PowerPC

7xx, PowerPC 9xx

Intel i860, Pentium, Core, Penryn, Nehalem, IA-32, IA-64, EM64T,

Westmere, SandyBridge, IvyBridge, Haswell, Broadwell, Skylake

MIPS Technologies MIPS R8000, MIPS R10000, MIPS R12000, MIPS R14000, MIPS

R16000

Sun Microsystems SuperSPARC I, UltraSPARC, UltraSPARC II, UltraSPARC III

Table 13.1 – List of processors used in HPC from 1993 to 2018 which was considered
commodity processors when creating figures 13.6 and 13.7. The distinction between
commodity and non-commodity hardware is not sharp. The above processors were
selected because they were all, at some point, used in personal computer workstations,
or it was planned for them to be used for such purposes during the design stage.

192



13.5. Outlook and Perspectives

1993
1994

1995
1996

1997
1998

1999
2000

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

2017
2018

0

20

40

60

80

100
Fl

o
p

/s
p

er
fo

rm
an

ce
sh

ar
e

[%
]

Server/HPC specific CPUs
Com./Serv./HPC CPUs + Co-proc.
Commodity CPUs only

(a) Performance share TOP500

1993
1994

1995
1996

1997
1998

1999
2000

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

2017
2018

0

100

200

300

400

500

N
u

m
b

er
o

fs
ys

te
m

s

Server/HPC specific CPUs
Com./Serv./HPC CPUs + Co-proc.
Commodity CPUs only

(b) System share TOP500

Figure 13.6 – Number of system and flop/s performance share of processors among the
systems recorded on the TOP500 list updated twice a year since 1993[209]. The list of
CPU’s in table 13.1 was used to distinguish between commodity and non-commodity
hardware. Note that the share of systems, not relying only on commodity CPU’s,
appears to be increasing.
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Figure 13.7 – Number of system and flop/s performance share of processors among the
50 most powerfull systems as recorded on the TOP500 list updated twice a year since
1993[209]. The list of CPU’s in Table 13.1 was used to distinguish between commodity
and non-commodity hardware. Note that machines using server/HPC specific CPUs
and those using co-processors, now has a combined 80% performance share among
the 50 most powerful systems.
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13.5. Outlook and Perspectives

The research presented in the thesis revolve around parallel scalability and fault toler-
ance for numerical algorithms on large supercomputers. Fundamental laws of physics
limits frequency scaling. The way forward towards higher compute performance and
energy efficiency has now become, and continues to be, by increasing the number of
processors. The IBM Summit supercomputer has a total of 140 million CUDA cores on
2.3 million Streaming Multiprocessors. Specialization of certain circuits will not make
parallelism go away, so the challenge of coordination and communication between
millions of cores on upwards of 50.000 separate compute nodes will therefore continue
in the foreseeable future. Parallel-in-Time integration enable numerical algorithms for
solving PDEs to continue scaling across the strong scaling barrier of classical meth-
ods, the method continues to be of relevance and may find practical use in certain
applications where time-to-solution is essential.

The work presented in this thesis has served to elucidate the difficulties that arise
when applying Parareal to convection dominated and hyperbolic problems. In chapter
7, it was demonstrated how the method can be successfully applied to conservation
laws solved using certain types of discretizations. Parareal is however severely limited
in some ways; dispersive difference of GΔT with respect to FΔT are amplified rather
than corrected. We can therefore never expect Parareal to be a good general-purpose
approach for convection dominated problems, and new methods for parallel-in-time
integration better suited for those types of problems should therefore be developed. In
chapter 8, a general approach for deriving new parallel-in-time integration schemes
was proposed. Several methods were derived and tested. Although they outperformed
Parareal in terms of convergence speed on certain problems, these methods too suffer
from issues of stability. Future work should focus on finding a way to derive methods
that are guaranteed to converge monotonously so to accommodate better scaling for a
wider range of problems.

Tolerance towards hardware-failures was another key issue considered. In Chapter 12,
a method for partial information recovery with incomplete checksums was proposed.
The number of data-centers around the world has been growing exponentially in recent
years[276], and the trend is expected to continue, so such a method could therefore
be of potential interest in the industry. The method was, however, derived for use on
data represented as real numbers. Most erasure codes, such as the Reed-Solomon
algorithm, are for use on data treated as finite field elements, i.e., binary numbers.
For the method to have practical relevance, it must be extended from the field of real
numbers to the finite field. Likewise, all tests were performed using real numbers
representing lines and 2D surfaces, data with well defined structure. Further studies
should test how well the method works when the data to be protected contains objects
of less well defined structure such as text files or compressed images.

When it comes to algorithm based fault-tolerance in the context of HPC, the future is
less certain. In position papers, published in the years 2014-2015, it was conjectured
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that applications would be unable to run on Exascale machines without the develop-
ment and deployment of new forms of fault-tolerance[53]. The essential argument
was that HPC is a scavengers field, using and adapting commodity hardware. The
market for commodity processors has become driven by mobile devices and laptops,
which are cost and energy sensitive, but do not require high reliability. It has been
estimated that it would be possible to avoid an increase in the frequency of errors,
using commodity hardware at Exascale, at the expense of 20% more circuits and energy
consumption[282]. This is, however, implausible as in commodity hardware there is
no need for such extreme reliability. Thus, it is theorized that if an Exascale machine is
to be build of commodity hardware, new methods of fault-tolerance will be essential
for any applications using the machine.

Plans for the construction of Exascale machines around the world are now beginning to
take form, and it turns out that none of the them will be based on commodity hardware.
Furthermore, a recent study on the long-term failure rate of several large clusters of
different generations found that the MTBF has remained roughly constant[146]. Newer
world-class systems are not more or less reliable than older systems, and the MTBF
for these machines continues to be in the range of 8-24 hours. As such, algorithm
based fault-tolerance in HPC will probably continue, in the foreseeable future, to be
considered a nice-to-have, rather than becoming a must-have as previously thought.

With planned Exascale machines on the horizon, some researchers have begun spec-
ulating what lies ahead. The move from Teraflops and Petaflops to Exasflops has
seen the introduction of heterogeneous architectures, specialization and extreme par-
allelism. Prominent researcher have postulated that developing machines capable
of Zettaflops (1021) would require changes in hardware even more disruptive than
those seen over the course of the past decade[110]. Some even suggest that we will
never reach Zettaflops using conventional approaches, and that the community must
eventually look beyond the Von Neumann architecture, of which almost all commer-
cial computing systems of the past seventy years have derived from. Optical[174],
Neuromorphic[218], and Quantum[219] computing are among the proposed alter-
natives, but it is still much too early to make any meaningful prediction on which
technology will prevail.

As a closing remark to end the thesis, we will quote Prof. Thomas Sterling, recipient of
the Gordon Bell Prize and known as the father of Beowulf clusters. He recently wrote
on the coming generation of Exascale machines[110],

“... it is a beachhead on the forefront of nanoscale enabling technolo-
gies, marking the end of Moore’s Law, the flatlining of clock rates due to
power considerations, and the limitations of clock rate. The achievement of
exascale computing will serve as an inflection point at which change from
conventional means is not only inevitable but essential.”
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A CAAP Scheduler on Test Eq.

Appendix A contains schematic drawings of the schedulers presented in chapter 7
when applied to solve the test ODE 7.30 as described in section 7.3 with pauses to
replace compute work. Unlike the conceptual drawings used to outline the algorithm
in section 7.3, all drawings of the work scheduling in the appendix are made from
timings made during the parallel solution procedure and the dumped to a file at the
end. The four figures containing a schematic representation of computation, and
communication of time-subdomain interface states, are

Figure A.1 The "Fully distributed" parareal scheduler as proposed in [9].

Figure A.2 Multiple consecutive executions of the fully distributed Parareal.

Figure A.3 CAAP. Here using with β = 0 so that node-groups that finished a time-
subdomain in a cycle will wait for a correction to be made before receiving a new
state to commence their work.

Figure A.4 CAAP. Here using β = 1 so that node-groups that finished a time-subdomain
in a cycle will receive a new state to commence their work immediately.

In all figures, blue circles indicate a posted send of solution state and convergence
flag. Blue arrows indicate a completed receive of solution state and convergence flag.
Dark gray indicates GΔT Uk

n computation in progress, light gray indicates FΔT Uk
n being

computed. For CAAP where multiple cycles of Parareal overlap in execution time so
that otherwise idle node-groups commence their work on the following cycle before
the current cycle has completed, the green squares and arrows indicate signal flag send
and receive.
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Appendix A. CAAP Scheduler on Test Eq.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
+0ms

+31384ms

Figure A.1 – "Fully distributed" Parareal. nt = 20, nc = 1, T = 100, ΔT = 5, dT = 10−3,
, dt = 10−5, TF = 5000ms, TG = 50ms, TC = 2ms. Blue circles indicate a posted send
of solution state and convergence flag. Blue arrows indicate a completed receive of
solution state and convergence flag. Dark gray indicates GΔT Uk

n computation, light
gray indicates FΔT Uk

n. Measured speedup 3.19, parallel efficiency 15.9%.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
+0ms

+16543ms

Figure A.2 – Multiple consecutive executions of the standard “fully distributed”
Parareal. nt = 20, nc = 6, T = 100, ΔT = 0.833̄, dT = 10−3, dt = 10−5, TF = 4167ms,
TG = 42ms, TC = 2ms. Blue circles indicate a posted send of solution state and
convergence flag. Blue arrows indicate a completed recieve of solution state and con-
vergence flag. Dark gray computation of GΔT Uk

n. Light gray, and light gray with lines,
computation of FΔT Uk

n. Measured speedup 6.04, parallel efficiency 30.2%.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
+0ms

+13386ms

Figure A.3 – Adaptive Parareal Scheduler. β = 0, nt = 20, nc = 6, T = 100, ΔT = 0.833̄,
dT = 10−3, dt = 10−5, TF = 4167ms, TG = 42ms, TC = 2ms. Blue circles indicate a
posted send of solution state and convergence flag. Blue arrows indicate a completed
receive of solution state and convergence flag. Green square and arrow indicates
signal flag. Dark gray computation of GΔT Uk

n. Light gray, and light gray with lines,
computation of FΔT Uk

n. Measured speedup 7.73, parallel efficiency 37.4%.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
+0ms

+12944ms

Figure A.4 – Adaptive Parareal Scheduler. β = 1, nt = 20, nc = 6, T = 100, ΔT = 0.833̄,
dT = 10−3, dt = 10−5, TF = 4167ms, TG = 42ms, TC = 2ms. Blue circles indicate a
posted send of solution state and convergence flag. Blue arrows indicate a completed
receive of solution state and convergence flag. Green square and arrow indicates
signal flag. Dark gray computation of GΔT Uk

n. Light gray, and light gray with lines,
computation of FΔT Uk

n. Measured speedup 7.73, parallel efficiency 38.6%.
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B CAAP Convergence on Test Eq.

The appendix contains 8 figures investigating the impact on the convergence pattern
of the schedulers of three different parameters. Varying the accuracy of the coarse
operator δT , the length of the timedomain T , and the tolerance on the norm ε between
two consecutive iterations used to determine if a time-subdomain should be accepted
as having converged. The impact on the convergence pattern of both regular Parareal
and CAAP on the test equation 7.30 as described in section 7.3 is investigated. Below a
list of figures in the appendix.

Figure B.1 Parareal, Nc = 1, Np = 10, T = 10, ε = 10−3

Figure B.2 Parareal, Nc = 1, Np = 10, T = 100, ε = 10−2

Figure B.3 Multipe Consecutive Parareal, Nc = 5, Np = 10, T = 10, ε = 10−3

Figure B.4 Multipe Consecutive Parareal, Nc = 5, Np = 10, T = 100, ε = 10−2

Figure B.5 CAAP, β = 0 on Nc = 5, Np = 10, T = 10, ε = 10−3

Figure B.6 CAAP, β = 0 on Nc = 5, Np = 10, T = 100, ε = 10−2

Figure B.7 CAAP, β = 0.8 on Nc = 5, Np = 10, T = 10, ε = 10−3

Figure B.8 CAAP, β = 0.8 on Nc = 5, Np = 10, T = 100, ε = 10−2
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Appendix B. CAAP Convergence on Test Eq.

Standard single cycle Parareal on Nc = 1, Np = 10, T = 10, ε = 10−3
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Figure B.1 – Error as a function of simulation time when using standard single-cycle
Parareal to integrate equation 7.30. In figures (a,c,e) error is measured with respect
to the sequential solution using FδT . In (b,d,e) error is measured with respect to the
analytical solution. Integration to T = 10 is performed across Nc = 1 cycles, each cycle
with Np = 10 time-subdomains. Tolerance set to ε = 10−3. Time-step length in FδT is
dt = 10−5. Timestep length in GδT is dT = 10−4 for figures (a,b). dT = 10−3 in figures
(c,d). dT = 10−2 in figures (e,f).
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Standard single cycle Parareal on Nc = 1, Np = 10, T = 100, ε = 10−2
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Figure B.2 – Error as a function of simulation time when using standard single-cycle
Parareal to integrate equation 7.30. In figures (a,c,e) error is measured with respect
to the sequential solution using FδT . In (b,d,e) error is measured with respect to the
analytical solution. Integration to T = 100 is performed across Nc = 1 cycles, each
cycle with Np = 10 time-subdomains. Tolerance set to ε = 10−2. Time-step length in
FδT is dt = 10−5. Timestep length in GδT is dT = 10−4 for figures (a,b). dT = 10−3 in
figures (c,d). dT = 10−2 in figures (e,f).
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Standard multi cycle Parareal on Nc = 5, Np = 10, T = 10, ε = 10−3
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Figure B.3 – Error as a function of simulation time when using standard multiple-cycle
Parareal to integrate equation 7.30. In figures (a,c,e) error is measured with respect
to the sequential solution using FδT . In (b,d,e) error is measured with respect to the
analytical solution. Integration to T = 10 is performed across Nc = 5 cycles, each cycle
with Np = 10 time-subdomains. Tolerance set to ε = 10−3. Time-step length in FδT is
dt = 10−5. Timestep length in GδT is dT = 10−4 for figures (a,b). dT = 10−3 in figures
(c,d). dT = 10−2 in figures (e,f).
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Standard multi cycle Parareal on Nc = 5, Np = 10, T = 100, ε = 10−2
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Figure B.4 – Error as a function of simulation time when using standard multiple-cycle
Parareal to integrate equation 7.30. In figures (a,c,e) error is measured with respect
to the sequential solution using FδT . In (b,d,e) error is measured with respect to the
analytical solution. Integration to T = 100 is performed across Nc = 5 cycles, each
cycle with Np = 10 time-subdomains. Tolerance set to ε = 10−2. Time-step length in
FδT is dt = 10−5. Timestep length in GδT is dT = 10−4 for figures (a,b). dT = 10−3 in
figures (c,d). dT = 10−2 in figures (e,f).
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Adaptive Parareal with β = 0 on Nc = 5, Np = 10, T = 10, ε = 10−3
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Figure B.5 – Error as a function of simulation time when using Adaptive Parareal with
β = 0 to integrate equation 7.30. In figures (a,c,e) error is measured with respect to
the sequential solution using FδT . In (b,d,e) error is measured with respect to the
analytical solution. Integration to T = 10 is performed across Nc = 5 cycles, each cycle
with Np = 10 time-subdomains. Tolerance set to ε = 10−3. Time-step length in FδT is
dt = 10−5. Timestep length in GδT is dT = 10−4 for figures (a,b). dT = 10−3 in figures
(c,d). dT = 10−2 in figures (e,f).
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Adaptive Parareal with β = 0 on Nc = 5, Np = 10, T = 100, ε = 10−2
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Figure B.6 – Error as a function of simulation time when using Adaptive Parareal with
β = 0 to integrate equation 7.30. In figures (a,c,e) error is measured with respect to
the sequential solution using FδT . In (b,d,e) error is measured with respect to the
analytical solution. Integration to T = 100 is performed across Nc = 5 cycles, each
cycle with Np = 10 time-subdomains. Tolerance set to ε = 10−2. Time-step length in
FδT is dt = 10−5. Timestep length in GδT is dT = 10−4 for figures (a,b). dT = 10−3 in
figures (c,d). dT = 10−2 in figures (e,f).
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Adaptive Parareal with β = 0.8 on Nc = 5, Np = 10, T = 10, ε = 10−3
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Figure B.7 – Error as a function of simulation time when using Adaptive Parareal with
β = 0.8 to integrate equation 7.30. In figures (a,c,e) error is measured with respect
to the sequential solution using FδT . In (b,d,e) error is measured with respect to the
analytical solution. Integration to T = 10 is performed across Nc = 5 cycles, each cycle
with Np = 10 time-subdomains. Tolerance set to ε = 10−3. Time-step length in FδT is
dt = 10−5. Timestep length in GδT is dT = 10−4 for figures (a,b). dT = 10−3 in figures
(c,d). dT = 10−2 in figures (e,f).
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Adaptive Parareal with β = 0.8 on Nc = 5, Np = 10, T = 100, ε = 10−2
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Figure B.8 – Error as a function of simulation time when using Adaptive Parareal with
β = 0.8 to integrate equation 7.30. In figures (a,c,e) error is measured with respect
to the sequential solution using FδT . In (b,d,e) error is measured with respect to the
analytical solution. Integration to T = 100 is performed across Nc = 5 cycles, each
cycle with Np = 10 time-subdomains. Tolerance set to ε = 10−2. Time-step length in
FδT is dt = 10−5. Timestep length in GδT is dT = 10−4 for figures (a,b). dT = 10−3 in
figures (c,d). dT = 10−2 in figures (e,f).
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C CAAP Subdomain length for Opti-
mal Speedup

Appendix C contains figures, for Chapter 7, of measured parallel speedup and efficiency
as a function of both time-subdomain length and number of cycles when solving the
test equation (7.44). Measurements are presented when using multiple consecutive
cycles of the standard fully distributed Parareal scheduler as well as CAAP for β = 0.0,
β = 0.5, and β = 1.0. Figures are made so to evaluate how well the a priori estimate for
the optimal time-subdomain length δT using equation (7.44) and (7.51) approximate
the actual optimal time-subdomain length.

For the numerical experiments, results are presented as a function of both parallel
efficiency and of speedup. Experiments are made for three different costs of commu-
nicating a solution state, Tw

c = 1ms, 10ms, 100ms, and three different coarse operator
time-step lengths. The cost of performing the coarse operator Cw

G is made proportional
to it’s time-step length.

Figure C.1 Number of cycles Nc for T = 100, Np = 20, ε = 10−2, Tw
c = 1ms

Figure C.2 Time-subdomain length for T = 100, Np = 20, ε = 10−2, Tw
c = 1ms

Figure C.3 Number of cycles Nc for T = 100, Np = 20, ε = 10−2, Tw
c = 10ms

Figure C.4 Time-subdomain length for T = 100, Np = 20, ε = 10−2, Tw
c = 10ms

Figure C.5 Number of cycles Nc for T = 100, Np = 20, ε = 10−2, Tw
c = 100ms

Figure C.6 Time-subdomain length for T = 100, Np = 20, ε = 10−2, Tw
c = 100ms
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Appendix C. CAAP Subdomain length for Optimal Speedup
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Figure C.1 – Parallel speedup as a function of time-subdomain length δt when in-
tegrating equation 7.30 to T = 100 using multiple consecutive cycles of a standard
fully distributed parareal, and when using CAAP. Circles indicate a priori estimated
optimal δT using equation (7.44) and equation (7.51). Np = 20, ε = 10−2, Tw

c = 1ms,
Cw
F = 10000ms. (a)-(b) dT = 10−4, Cw

G = 1000ms. (b)-(c) dT = 10−3, Cw
G = 100ms.

(d)-(e) dT = 10−2, Cw
G = 10ms.
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Figure C.2 – Parallel efficiency as a function of number of cycles nc used in the time-
parallel integration to T = 100. The black line represents data measured using multiple
consecutive cycles of a standard fully distributed parareal, and the yellow/purple
dashed lines are measured using CAAP. Circles indicate a priori estimated optimal
δT using equation (7.44) and equation (7.51). Np = 20, ε = 10−2, Tw

c = 1ms, Cw
F =

10000ms. (a)-(b) dT = 10−4, Cw
G = 1000ms. (b)-(c) dT = 10−3, Cw

G = 100ms. (d)-(e)
dT = 10−2, Cw

G = 10ms.
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Figure C.3 – Parallel speedup as a function of timesubdomain length δt when in-
tegrating equation 7.30 to T = 100 using multiple consecutive cycles of a standard
fully distributed parareal scheduler, and when using CAAP. Circles indicate a priori
estimated optimal δT using equation 7.44 and 7.51. Np = 20, ε = 10−2, Tw

c = 10ms,
Cw
F = 10000ms. (a)-(b) dT = 10−4, Cw

G = 1000ms. (b)-(c) dT = 10−3, Cw
G = 100ms.

(d)-(e) dT = 10−2, Cw
G = 10ms.
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Figure C.4 – Parallel speedup as a function of number of cycles nc used in the time-
parallel integration to T = 100. The black line represents data measured using multiple
consecutive cycles of a standard fully distributed parareal, and the yellow/purple
dashed lines CAAP. Circles indicate a priori estimated optimal δT using equation
7.44 and 7.51. Np = 20, ε = 10−2, Tw

c = 10ms, Cw
F = 10000ms. (a)-(b) dT = 10−4,

Cw
G = 1000ms. (b)-(c) dT = 10−3, Cw

G = 100ms. (d)-(e) dT = 10−2, Cw
G = 10ms.
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Figure C.5 – Parallel speedup as a function of timesubdomain length δt when inte-
grating equation 7.30 to T = 100 using multiple consecutive cycles of a standard fully
distributed parareal, and when using CAAP. Circles indicate a priori estimated optimal
δT using equation 7.44 and 7.51. Np = 20, ε = 10−2, Tw

c = 100ms, Cw
F = 10000ms.

(a)-(b) dT = 10−4, Cw
G = 1000ms. (b)-(c) dT = 10−3, Cw

G = 100ms. (d)-(e) dT = 10−2,
Cw
G = 10ms.
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Figure C.6 – Parallel speedup as a function of number of cycles nc used in the time-
parallel integration to T = 100. The black line represents data measured using multiple
consecutive cycles of a standard fully distributed parareal, and the yellow/purple
dashed lines are measured using CAAP. Circles indicate a priori estimated optimal
δT using equation 7.44 and 7.51. Np = 20, ε = 10−2, Tw

c = 100ms, Cw
F = 10000ms.

(a)-(b) dT = 10−4, Cw
G = 1000ms. (b)-(c) dT = 10−3, Cw

G = 100ms. (d)-(e) dT = 10−2,
Cw
G = 10ms.
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D CAAP Scheduler on 2D SHW

Appendix D contains schematic drawings of the schedulers presented in chapter 7.
Unlike appendix A where the figures are for the method applied to solve the test ODE
7.30, here figures are presented of the methods applied to the 2D shallow water wave
equation with F and G as outlined in section 7.2. The figures are created using time-
stamp dumps from actual cluster tests. In all tests, 1 node was used in space and the
integration performed until T = 100min and ε = 10−5 as the convergence criteria.

Figure D.1 Standard Parareal, i.e. a single cycle nc = 1

Figure D.2 Multiple consecutive Parareal cycles, nc = 10

Figure D.3 Adaptive Parareal, β = 0.0, nc = 10

Figure D.4 Adaptive Parareal, β = 0.4, nc = 10

Figure D.5 Adaptive Parareal, β = 0.4, nc = 10

In all figures the green squares indicate the mpi send(s) being posted for sending the
solution state to the next time-subdomain, red circles indicates a complementing
receive being posted, green x indicate completion of send operation. The green arrows
indicate signal flag send and receive. The figures differ from those in Appendix A in
that load balancing issues due to adaptive timesteps of the exposed. In the example
shown, β = 0.0 and β = 0.4 is faster than β = 0.8 because the cost of extra iterations is
outways the gain from having less idle nodes.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +0ms

+1206829ms

Figure D.1 – Fully distributed Parareal applied to solve the 2D shallow water wave
equation test case using the WENO SSP-RK scheme as outlined in chapter 7. nc = 1.
Integration to T = 100min, 1 node in space.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +0ms

+1233344ms

Figure D.2 – Multiple consecutive executions of the standard “fully distributed”
Parareal to solve the 2D shallow water wave equation test case using the WENO SSP-RK
scheme as outlined in chapter 7. nc = 10. Integration to T = 100min, 1 node in space.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +0ms

+787216ms

Figure D.3 – Adaptive Parareal with β = 0.0 used to solve the 2D shallow water wave
equation test case using the WENO SSP-RK scheme as outlined in chapter 7. nc = 10.
Integration to T = 100min, 1 node in space.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +0ms

+784721ms

Figure D.4 – Adaptive Parareal with β = 0.4 used to solve the 2D shallow water wave
equation test case using the WENO SSP-RK scheme as outlined in chapter 7. nc = 10.
Integration to T = 100min, 1 node in space.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +0ms

+987038ms

Figure D.5 – Adaptive Parareal with β = 0.8 used to solve the 2D shallow water wave
equation test case using the WENO SSP-RK scheme as outlined in chapter 7. nc = 10.
Integration to T = 100min, 1 node in space.
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E Llama Library Example Code

This appendix contains code examples for Llama library usage. Listing E.1 contains
an unprotected code example solving the 2D euler equation in parallel using MPI. All
simulation code is encapsulated within the EulerSim object for readability. The code
consists only of an initialization phase and a loop. Within the loop, one time-step is
computed in each round. In Listing E.2, the same code has been protected using the
Llama library. In the example given, two layers are used to protect the application.
A to-disk checkpoint that updates once every 25th step, and a cheaper in-memory
checksum checkpoint that updates once every 5th step. Several errors are injected,
and survival is demonstrated. The Llama guard choses which checkpoint to recover
from depending on the failure pattern so that the loop completes correctly despite the
forced termination of several ranks by raising SIGKILL.
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Appendix E. Llama Library Example Code

Unprotected Code Example

Listing E.1 – Unprotected example code used to demonstrate usage of the Llama library
1 # include " eulersim . h"
2

3 void PrintPerformance ( const EulerSim & , double , double ) ;
4

5 i n t main ( i n t argc , char ∗∗argv ) {
6

7 // Solving the 2D e u l e r equation on a t e s t−case in P a r a l l e l using MPI .
8 // For implementation d e t a i l s , see eulersim . h and eulersim . cc
9 //

10 // Run with mpirun −−mca io romio314 −−oversubscribe −np 8 euler_example
11

12 // I n i t i a l i z e the MPI environment
13 MPI_Init (& argc , &argv ) ;
14

15 // Make a d u p l i c a t e of MPI_COMM_WORLD to use in a p p l i c a t i o n
16 MPI_Comm my_comm;
17 MPI_Comm_dup(MPI_COMM_WORLD, &my_comm) ;
18

19 // Create a simulation o b j e c t on a 1024 x1024 g r i d with i n i t i a l condition 6
20 auto ∗my_sim = new EulerSim (&my_comm, 1024 , 6) ;
21

22 // For loop to simulate over time
23 double s t a r t = MPI_Wtime ( ) ;
24 f o r ( i n t idx = 0 ; idx < 100; idx ++) {
25

26 // Do a timestep my_sim . dt
27 my_sim−>DoTimeStep ( ) ;
28 my_sim−>P r i n t S t a t u s ( ) ;
29

30 }
31 double f i n i s h = MPI_Wtime ( ) ;
32

33 // Check accuracy with r esp ec t to s o l u t i o n s t a t e on disk
34 my_sim−>SaveStateToFi le ( ) ;
35

36 // Communicate completion
37 PrintPerformance (∗my_sim , f i n i s h , s t a r t ) ;
38

39 // F i n a l i z e the MPI environment .
40 MPI_Finalize ( ) ;
41

42 return 0 ;
43

44 }
45

46 void PrintPerformance ( const EulerSim &MySim, double f i n i s h , double s t a r t ) {
47 i f (MySim . world_rank == 0) {
48 std : : cout << "Time to compute : " << f i n i s h − s t a r t << " seconds " << std : : endl ;
49 std : : cout << "Avg . performance : "
50 << 95.0 ∗ ( double ) (MySim . c o l s ) ∗ ( double ) (MySim . c o l s ) ∗
51 ( double ) (MySim . time_step_count ) /
52 ( 1 . 0 e9 ∗ ( f i n i s h − s t a r t ) ) << " g f l o p s " << std : : endl ;
53 }
54 }
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Code Example protected using two-layered Llama

Listing E.2 – Llama usage example using two separate checkpoint levels.
1 # include " eulersim . h"
2 # include " llama . h"
3

4 # define STEPS_PER_MEM_CHECKPOINT 5
5 # define STEPS_PER_DISK_CHECKPOINT 25
6

7 void PrintPerformance ( const EulerSim & , double , double ) ;
8

9 i n t main ( i n t argc , char ∗∗argv ) {
10

11 // Solving the 2D e u l e r equation − With f a u l t−t o l e r a n c e !
12 //
13 // Two−l a y e r p r o t e c t i o n using an in−memory checkpoint and a disk checkpoint
14 // One checkpoint with a group−s i z e of 4 and 2 p a r i t y codes per group
15 // One r e g u l a r to−disk checkpoint
16 // In t h i s t e s t two f a i l u r e s are i n j e c t e d :
17 // One at idx 57 l o s i n g world rank 1 , 2 and 3
18 // One at idx 92 l o s i n g world rank 0
19 // At the f i r s t f a i l u r e , i f the behavior i s c o r r e c t the guard i s supposed to
20 // recognize t h a t the cheap checkpoint at idx 55 i s i n s u f f i c i e n t f o r recovery
21 // due to 3 simultaneous f a i l u r e s . Instead the guard should organize a r o l l b a c k
22 // to the most recent to−disk checkpoint update t h a t was made at idx 5 0 . An
23 // a d d i t i o n a l f a u l t i s i n j e c t e d at idx 92 , here the most recent update of the
24 // in−memory checksum checkpoint can recover the l o s t data , the guard should
25 // recognize t h i s and execute a r o l l b a c k to idx 90 by i n s t r u c t i n g the checkpoint
26 // to decode the l o s t data from the p a r i t y codes stored .
27

28 // I n i t i a l i z e the MPI environment
29 MPI_Init (& argc , &argv ) ;
30

31 // Make a d u p l i c a t e of MPI_COMM_WORLD to use in a p p l i c a t i o n
32 MPI_Comm my_comm;
33 MPI_Comm_dup(MPI_COMM_WORLD, &my_comm) ;
34

35 // Here we c r e a t e our llama guard to p r o t e c t our code , using 4 spare ranks
36 llama : : guard my_llama (my_comm, 4 , true ) ;
37

38 // Hello world !
39 my_llama . Disp ( " Hello world ! I am worker " , my_llama . rank_worker_comm ) ;
40 MPI_Barrier ( my_llama . world_comm ) ;
41

42 // Declare to−disk type checkpoint
43 llama : : checkpoint : : d isk my_disk_checkpoint (&my_llama ) ;
44

45 // Declare in−memory type checkpoint with 4 ranks and 2 p a r i t y codes per group
46 llama : : checkpoint : : memory my_checksum_checkpoint(&my_llama , true , 1 , 4 , 2) ;
47

48 // I n i t i a l i z a t i o n of simulation o b j e c t
49 EulerSim ∗my_sim = n u l l p t r ;
50 i f ( my_llama . is_worker ) {
51

52 // Create a simulation o b j e c t on a 1024 x1024 d i s t r i b u t e d g r i d
53 // using i n i t i a l condition 6
54 my_sim = new EulerSim (&my_comm, 1024 , 6) ;
55

56
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57 // Mark a l l a r r a y s t h a t need to be protected f o r easy and quick r e p a i r
58 my_llama . ProtectArray <double >( " Density " , my_sim−>density ,
59 my_sim−>rows , my_sim−>c o l s ) ;
60 my_llama . ProtectArray <double >( " V e l o c i t y X " , my_sim−>v e l o c i t y _ x ,
61 my_sim−>rows , my_sim−>c o l s ) ;
62 my_llama . ProtectArray <double >( " V e l o c i t y Y " , my_sim−>v e l o c i t y _ y ,
63 my_sim−>rows , my_sim−>c o l s ) ;
64 my_llama . ProtectArray <double >( " Pressure " , my_sim−>pressure ,
65 my_sim−>rows , my_sim−>c o l s ) ;
66 my_llama . ProtectArray <double >( " Energy " , my_sim−>energy ,
67 my_sim−>rows , my_sim−>c o l s ) ;
68 }
69

70 // Do 100 time steps
71 double s t a r t = MPI_Wtime ( ) ;
72 f o r ( i n t idx = 0 ; idx < 100; idx ++) {
73

74 // Check s t a t u s of a c t i v e workers
75 i n t l l a m a _ s t a t u s = my_llama . CheckStatus (& idx ) ;
76

77 // Check return s t a t u s of r e p a i r i s needed
78 i f ( l l a m a _ s t a t u s == LLAMA_STATUS_REPAIR ) {
79

80 // Communicate s t a t u s
81 my_llama . Disp ( " Detected f a i l u r e − performing r o l l b a c k to idx : " , idx ) ;
82 MPI_Barrier (my_comm) ;
83

84 // Clean−up old data s t r u c t u r e s
85 d e l e t e my_sim ;
86

87 // Regenerate data s t r u c t u r e s
88 my_sim = new EulerSim (&my_comm, 1024 , 6) ;
89

90 // Recover data from most recent checkpoint
91 my_llama . RecoverArray <double >( idx , " Density " , my_sim−>density ,
92 my_sim−>rows , my_sim−>c o l s ) ;
93 my_llama . RecoverArray <double >( idx , " V e l o c i t y X " , my_sim−>v e l o c i t y _ x ,
94 my_sim−>rows , my_sim−>c o l s ) ;
95 my_llama . RecoverArray <double >( idx , " V e l o c i t y Y " , my_sim−>v e l o c i t y _ y ,
96 my_sim−>rows , my_sim−>c o l s ) ;
97 my_llama . RecoverArray <double >( idx , " Pressure " , my_sim−>pressure ,
98 my_sim−>rows , my_sim−>c o l s ) ;
99 my_llama . RecoverArray <double >( idx , " Energy " , my_sim−>energy ,

100 my_sim−>rows , my_sim−>c o l s ) ;
101

102 // Update counter in simulation o b j e c t
103 my_sim−>time_step_count = idx ;
104

105 }
106

107 // Update address of a r r a y s to p r o t e c t
108 my_llama . SetArrayAddress <double >( " Density " , my_sim−>density ) ;
109 my_llama . SetArrayAddress <double >( " V e l o c i t y X " , my_sim−>v e l o c i t y _ x ) ;
110 my_llama . SetArrayAddress <double >( " V e l o c i t y Y " , my_sim−>v e l o c i t y _ y ) ;
111 my_llama . SetArrayAddress <double >( " Pressure " , my_sim−>pressure ) ;
112 my_llama . SetArrayAddress <double >( " Energy " , my_sim−>energy ) ;
113

114

115

116
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117 // Update checkpoint i f need be
118 i f ( idx % STEPS_PER_DISK_CHECKPOINT == 0) {
119 my_llama . Disp ( " Updating disk checkpoint at idx : " , idx ) ;
120 my_disk_checkpoint . Update ( idx ) ;
121 }
122 i f ( idx % STEPS_PER_MEM_CHECKPOINT == 0) {
123 my_llama . Disp ( " Updating in−memory checksum checkpoint at idx : " , idx ) ;
124 my_checksum_checkpoint . Update ( idx ) ;
125 }
126

127 // Do some a c t u a l work ( a timestep )
128 my_llama . Disp ( "Computing at idx : " , idx ) ;
129 my_sim−>DoTimeStep ( ) ;
130

131 // K i l l one or more ranks
132 i f ( idx == 57 && 0 < my_llama . rank_world_comm &&
133 my_llama . rank_world_comm < 4 ) {
134 my_llama . Disp ( " Rais ing s i g k i l l at idx : " , idx ) ;
135 r a i s e ( SIGKILL ) ;
136 }
137 // K i l l one or more ranks
138 i f ( idx == 92 && ( my_llama . rank_world_comm == 0) ) {
139 my_llama . Disp ( " Rais ing s i g k i l l at idx : " , idx ) ;
140 r a i s e ( SIGKILL ) ;
141 }
142

143 }
144 double f i n i s h = MPI_Wtime ( ) ;
145

146 // Check accuracy with r esp ec t to r e f e r e n c e s o l u t i o n
147 my_sim−>CheckAccuracy ( ) ;
148 my_sim−>SaveStateToFi le ( ) ;
149

150 // P r i n t compute time and performance
151 PrintPerformance (∗my_sim , f i n i s h , s t a r t ) ;
152

153 // F i n a l i z e the Llama pr o t e c t i o n environment .
154 my_llama . F i n a l i z e ( ) ;
155

156 // F i n a l i z e the MPI environment .
157 MPI_Finalize ( ) ;
158

159 return 0 ;
160

161 }
162

163 void PrintPerformance ( const EulerSim &MySim, double f i n i s h , double s t a r t ) {
164 i f (MySim . world_rank == 0) {
165 std : : cout << "Time to compute : " << f i n i s h − s t a r t << " seconds " << std : : endl ;
166 std : : cout << "Avg . performance : "
167 << 95.0 ∗ ( double ) (MySim . c o l s ) ∗ ( double ) (MySim . c o l s ) ∗
168 ( double ) (MySim . time_step_count ) /
169 ( 1 . 0 e9 ∗ ( f i n i s h − s t a r t ) ) << " g f l o p s " << std : : endl ;
170 }
171 }
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F Llama Library Scaling Tests

Appendix F contains weak and strong scaling measurements of the time to update
array protection in a checkpoint and of the time to recover lost data from a checkpoint.
The timings were used to compute the speed of data protection/recovery presented
in section 11.3 of chapter 11. Scaling tests for the cost of updating a checkpoint are
given in figure F.1 and F.2. Scaling tests for the cost of updating a checkpoint are given
in figures F.3 and F.4.
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Updating Checkpoint Protection - Weak Scaling
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(a) Weak Scaling – 1.5MB per Array per Core
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(b) Weak Scaling – 12MB per Array per Core

Figure F.1 – Weak scaling test on the cost of updating a checkpoint as measured on
the EPFL Fidis cluster. In the legend, G indicate group size and P indicate number
of parity code blocks per stripe. Each measurement was made 3 times in order to
illustrate the variance in timings due to job-placement and network load when using a
shared cluster. (a) 1.5MB per core. (b) 12MB per core. With as little as 1.5MB per core,
good scaling is observed for the in-memory checkpoints.
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Updating Checkpoint Protection - Strong Scaling
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(a) Strong Scaling – 16GB Distributed Array
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(b) Strong Scaling – 128GB Distributed Array

Figure F.2 – Strong scaling test on the cost of updating a checkpoint as measured on
the EPFL Fidis cluster. In the legend, G indicate group size and P indicate number
of parity code blocks per stripe. Each measurement was made 3 times in order to
illustrate the variance in timings due to job-placement and network load when using
a shared cluster. (a) 12GB distributed array. (b) 128GB distributed array. Encoding 4
parity blocks over a large group containing 32 nodes is up to an order of magnitude
faster than writing the data to protect to the parallel-file-system.
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Data Recovery - Weak Scaling
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(a) Weak Scaling – 1.5MB per Array per Core
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(b) Weak Scaling – 12MB per Array per Core

Figure F.3 – Weak scaling test on the cost of recovering data from a checkpoint as
measured on the EPFL Fidis cluster. In the legend, G indicate group size and P indicate
number of parity code blocks per stripe. Each measurement was made 3 times in order
to illustrate the variance in timings due to job-placement and network load when using
a shared cluster. (a) 1.5MB per core. (b) 12MB per core. With as little as 1.5MB per core,
good scaling is observed for the in-memory checkpoints.
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Data Recovery - Strong Scaling
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(a) Strong Scaling – 16GB Distributed Array
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(b) Strong Scaling – 128GB Distributed Array

Figure F.4 – Strong scaling test on the cost of recovering data from a checkpoint as
measured on the EPFL Fidis cluster. In the legend, G indicate group size and P indicate
number of parity code blocks per stripe. Each measurement was made 3 times in order
to illustrate the variance in timings due to job-placement and network load when using
a shared cluster. (a) 12GB distributed array. (b) 128GB distributed array. Encoding 4
parity blocks over a large group containing 32 nodes is up to an order of magnitude
faster than writing the data to protect to the parallel-file-system.
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