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Analysis of wall-embedded Langmuir probe signals in different conditions
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This paper presents the current wall-embedded Langmuir probe system installed on the tokamak à
configuration variable, as well as the analysis tool chain used to interpret the current-voltage charac-
teristic obtained when the probes are operated in swept-bias conditions. The analysis is based on a
four-parameter fit combined with a minimum temperature approach. In order to reduce the effect of
plasma fluctuations and measurement noise, several current-voltage characteristics are usually aver-
aged before proceeding to the fitting. The impact of this procedure on the results is investigated, as well
as the possible role of finite resistances in the circuitry, which could lead to an overestimation of the
temperature. We study the application of the procedure in a specific regime, the plasma detachment,
where results from other diagnostics indicate that the electron temperature derived from the Langmuir
probes might be overestimated. To address this issue, we explore other fitting models and, in particular,
an extension of the asymmetric double probe fit, which features effects of sheath expansion. We show
that these models yield lower temperatures (up to approximately 60%) than the standard analysis in
detached conditions, particularly for a temperature peak observed near the plasma strike point, but a
discrepancy with other measurements remains. We explore a possible explanation for this observation,
the presence of a fast electron population, and assess how robust the different methods are in such
conditions. https://doi.org/10.1063/1.5022459

I. INTRODUCTION

A surface in contact with a plasma acts as a sink for elec-
trons and ions. Because of the higher mobility of the electrons,
they will tend to reach the surface faster than the ions, resulting
in the accumulation of negative charges on the surface, which
will in turn repel electrons. This results in the formation of a
sheath1 close to the surface, a region where quasi-neutrality
is not enforced.2 If the surface potential is left floating, it will
adjust itself so that the ion and electron currents reaching the
surface counterbalance each other. However, if a voltage is
imposed to the surface, then a current can flow. Measurements
of this current can be used to derive essential properties of
the plasma in the vicinity of the sheath. This idea is at the
heart of the Langmuir Probe (LP),3 a common diagnostic in
plasma physics. By measuring the current reaching a probe
to which a swept-bias potential is applied, it is possible to
construct the so-called current-voltage characteristic (or I-V
characteristic), which can then be used to derive plasma prop-
erties such as the electron temperature T e, density ne, and
floating potential V f l, by fitting a physical model to the data.1,4

However, the interpretation of the measurements provided by
the probes can be challenging, particularly for a magnetized
plasma, as it occurs, for example, in a tokamak. The purpose
of this paper is to present the standard analysis chain that is
used to interpret the data obtained from the wall-embedded
Langmuir probes on TCV5,6 (Tokamak à Configuration Vari-
able) at EPFL (École Polytechnique Fédérale de Lausanne)

a)olivier.fevrier@epfl.ch

and to investigate alternative methods in non-standard situa-
tions and regimes where the default analysis is susceptible to
misbehave. After briefly presenting the Langmuir probe sys-
tem installed on the TCV tokamak (Sec. II), we detail the
standard analysis workflow in Sec. III. After a first step consist-
ing in the removal of possible stray currents from the measured
signals, the I-V characteristics are fitted with a four-parameter
model,7–9 combined with a minimum temperature method.10

We then investigate the impact of averaging several I-V curves
before performing the fit, which allows reducing the effect
of measurement noise and plasma fluctuations, assuming that
the plasma is in stationary conditions. In non-stationary plas-
mas, for instance, in the H-mode with Edge Localized Modes
(ELMs),11 possible solutions to facilitate the fitting procedure
are outlined. We furthermore provide an estimate of the error
induced by the presence of resistance in the circuitry, which
could yield an overestimation of the temperature. In Sec. IV,
the standard analysis is applied to a discharge with varying
conditions. We study a density ramp experiment, where the
line-averaged density of the plasma is linearly increased dur-
ing the discharge. In particular, we focus on a regime called
plasma detachment,12 where both density and temperature at
the wall drop, and a pressure gradient develops along the mag-
netic field lines. We observe that the temperatures and densities
derived from the Langmuir probe analysis tend to show the
expected temperature and density drop, although the tempera-
ture can still attain between 5 and 10 eV in this regime across
part of the wall,13 while simulations and other measurements
predict much lower temperatures. In particular, we observe a
strong temperature peak in a certain part of the profile that
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seems to be in contradiction with the expected physics. This
could be an indication of a possible shortcoming of the anal-
ysis procedure. In addition, we observe a significant change
of the I-V curve shape around detachment, with a reduction
of the ratio between the electron and ion saturation currents.
Therefore, to further investigate these issues, we explore other
fitting models that can be used instead of the four-parameter fit
in detached conditions. We first take advantage of the expected
relation between the plasma potential and the floating poten-
tial to obtain another estimate of the temperature. We also
introduce the Asymmetric Double Probe (ADP) model with
sheath expansion, which folds in information from the entire
I-V characteristic (Sec. V) and which could, in principle, yield
more reliable results in detached conditions. These alternative
fitting methods are included in the analysis chain as auxil-
iary estimates of the electron temperature. We show that in
attached conditions, all the three methods are in relatively good
agreement and agree relatively well in detached conditions
far from the strike point. Near the strike-point, however, the
two alternative methods do not show the strong temperature
peaking observed with the four-parameter fit, an indication
that it is indeed due to misbehavior of the four-parameter
fit technique. Finally, in Sec. VI, we investigate the possi-
ble effect of a fast electron population on the inferred electron
temperature, as their presence in detached plasma is strongly
suspected.14

II. THE TCV LANGMUIR PROBE SYSTEM

The TCV wall-embedded Langmuir probe system15 is
currently composed of 114 Langmuir probes (LPs). The cylin-
drical probe tips are made of graphite and have a 4 mm
diameter. The probes are embedded flush into the tiles except
for a few rooftop probes and the floor probes, which have a
dome-shaped head, protruding from the tile shadow by 1 mm.
Figure 1 shows a picture of the three different probe heads
installed in TCV. The locations of the probes are shown in
Fig. 2, where a color code is used to distinguish the different
kind of probes.

Data are acquired at 200 kHz, and for each probe, two
operational modes are possible:

1. No biasing is applied to the probe, which is therefore left
floating. It accumulates charges such that the collected
current is zero, and the associated potential, the so-called
floating potential, is measured.

FIG. 1. Picture of the different probe heads installed in TCV. A: dome-shaped
head. B: rooftop. C: flush.

FIG. 2. Positions of the currently installed Langmuir probes in the TCV vac-
uum vessel walls. For illustration purpose, a typical plasma geometry is plotted
(shot #52062). The different colors and symbols indicate the type of the probe.
Red circle: flush embedded. Green triangle: rooftop. Blue diamond: dome.

2. An arbitrary biasing voltage in the range ±120 V relative
to the machine ground is applied to the probes, and the
current collected by the probe is measured.

In this article, we focus on the second operational mode
and, in particular, on swept-bias, where the voltage Vpr applied
to the probes is a triangular signal of given frequency (typically
330 Hz) and amplitude (typically ranging from �100 V to
80 V), thus allowing us to construct I-V characteristics of the
plasma response in the vicinity of a probe, as illustrated in
Fig. 3.

III. STANDARD ANALYSIS

This section describes the standard analysis chain imple-
mented at TCV to analyze the measurements from the Lang-
muir probe system.
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FIG. 3. (Top) Voltage sweep applied to an LP. (Bottom) Associated current
collected by the probe (blue curve). The yellow curve shows the stray current
caused by the circuitry, and the red curve shows the “cleaned” current resulting
from the subtraction of the stray current from the measured current.

A. Removal of stray currents

Because of the non-ideality of the circuitry, the presence
of stray currents in the system cannot be excluded. In order to
evaluate them, voltage sweeps are acquired after the termina-
tion of the plasma, when the currents provided by the probes
should be Ipr = 0. Therefore, the only currents that are mea-
sured are the stray currents Istray coming from the circuitry.
Istray can then be reconstructed by averaging the measured
patterns over a few sweep cycles (typically 50) to provide
Istray(Vpr), and, assuming that the stray currents do not change
during a discharge, it is then possible to subtract them from the
measured signals, thus giving a “clean” Ipr . Such a process is
illustrated in Fig. 3, which shows the current measured by an
LP operated with a swept voltage (shown in the top panel of
Fig. 3). The measured current is plotted in blue in the bottom
panel of Fig. 3. For each probe, a few sweeps performed after
the termination of the plasma are used to determine the stray
current Istray, plotted in yellow in Fig. 3. Istray is then removed
from the measured current to reconstruct the “cleaned” current
Ipr , plotted in red in Fig. 3. By subtracting Istray from the col-
lected current, one ensures that the current to be analyzed only
stems from the plasma and not the circuitry. In Fig. 4, we have
plotted the effect of the stray current removal on the obtained
I-V characteristics for this specific case. We observe that, in the
absence of stray current removal, there is a difference between
upward and downward sweeps in the ion saturation branch
of the I-V curve. In particular, downward sweeps (and, to a
lesser extent, upward sweeps) show an unphysical drop of
the measured current at low Vpr . This is however not seen
on the “clean” current I-V characteristic, obtained by remov-
ing the stray current. The stray current removal is performed
routinely and automatically at the beginning of the Langmuir
probe analysis chain.

B. Fitting model

The standard interpretation of the I-V characteristic in
TCV is performed using a four-parameter model7,9 that links

FIG. 4. Example of an I-V curve reconstructed during a complete voltage
sweep (one voltage up and one voltage down phase) with and without the
removal of stray currents, for the probe considered in Fig. 3. For readability
of the figure, we zoomed in on the ion saturation part of the curve.

the measured current Ipr to the voltage Vpr applied to the probe,
as follows:

Ipr = Isat

(
1 + α

(
Vpr − Vf l

)
− e

Vpr−Vf l
Te

)
. (1)

Here, V f l is the floating potential, that is, the potential at which
the probe draws no current from the plasma. α accounts for
the effect of sheath expansion.16 T e (expressed in eV) is the
electron temperature, and Isat corresponds to the ion saturation
current. The saturation current is linked to ne and T e via the
Bohm condition,1,4

Isat = ne,seecsS, (2)

where ne,se is the electron density at the entrance of the sheath

and cs =

√
γTi+Te

mi
is the ion sound speed, with γ being the adi-

abatic index. In the following, we use γ = 1 and T i = T e,
unless stated otherwise. It should be noted that when γ = 1,
cs corresponds to the sound speed of an isothermal plasma.
In non-isothermal situations, depending on the assumptions
made on the collisionality, the value of γ should be comprised
between 5

/
3 and 3 (see Refs. 1, 2, and 17). In Ref. 18, the

value γ = 3 is used. In our case, we use γ = 1 as a default value
to assure backward compatibility with previous TCV studies
which assumed this value. It is however an input parameter of
the analysis that can be changed if necessary. S is the effective
ion collection area of the probe and is taken as the projected
area of the probe along the magnetic field, with the latter deter-
mined from the equilibrium reconstruction code LIUQE19 and
typically forming an angle with respect to the wall of about
0◦ to about 10◦. Equation (2) thus allows evaluating the elec-
tron density ne,se near the wall from the value of Isat and T e

determined from the fit. In order to better model the current
collected by the probe, the sheath expansion effect16 is added.
It corresponds to the modification of the sheath thickness due to
the presence of the biased probe. While analytical expressions
have been developed to model this phenomenon in the case of
flush-mounted18,20,21 and cylindrical probes,22 we opted for
a simpler formulation based on a linear reduction of the ion
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current as the probe voltage is increased,7 the rate of the mod-
ification being set by the additional fit parameter α, defined
such that α < 0.

A difficulty in the I-V curve fitting procedure is that Eq. (1)
is only valid at most up to the plasma potential Vpl and thus is
not able to model the electron current saturation. In practice,
the I-V curve already deviates from the exponential decrease
well below Vpl. ThereforeQ2 , in order to fit I-V characteristics,
a supplementary step is added so as to find an upper limit of
Vpr over which to apply Eq. (1). In the standard analysis pro-
cedure, we use the minimum temperature method.10 At first,
a non-physical fit of the data is done using a modified hyper-
bolic tangent function, presented in Appendix B, allowing us
to invert the I-V characteristic to obtain Vpr = Vpr(Ipr). A
discrete grid {rn}n=1,...,N , where rn ∈R+, is specified by the
user and used to determine a discrete set of cut-off voltages{
V ∗n

}
n=1,...,N defined by V ∗n =Vpr(−rnIest

sat ), where Iest
sat is an esti-

mate of Isat based on the first (lowest voltage) points of the
characteristic. The I-V curve is then fitted on each interval[
min(Vpr), V ∗n

]
n=1,...,N

. Among the N individual fits obtained

in this way, the one which returns the lowest temperature is
then retained.

The minimum T e approach avoids that a too large fraction
of the curve is fitted, which would result in an overestimation
of T e. The choice of the grid {rn}n=1,...,N used to apply the
minimum temperature method is however critical. For indi-
vidual I-V curve fitting, if the chosen grid is too fine, then the
algorithm can pick up on noise or fluctuations occurring on a
faster time scale than the sweeping period (which is typically
the case for plasma edge turbulence) and will return tempera-
tures much lower than realistic. Such a case is illustrated in the
top panel of Fig. 5, where we have plotted the current collected
by an LP and the associated naive minimum temperature fit.
One can see that in this situation, the minimum temperature
approach leads to a low cut-off value for the fit (V cut ≈ 1.9 V),
and a large part of the characteristic has been discarded. The
fit appears to have picked up on fluctuations. A possibility
to avoid this problem is to choose a coarser grid and check
that the fit did not pick up on fluctuations. A better solution
often consists in aggregating several I-V characteristics over a
given time-window (typically 50 ms in our analysis) in order
to get more points and thus reduce the effect of fluctuations.18

To further enhance the stability of the minimum temperature
method, the I-V data are also binned to produce an averaged
I-V characteristic that is reasonably smooth. This is plotted in
the bottom panel of Fig. 5, where the data points correspond
to the data acquired for a period of 50 ms, corresponding to
≈32 voltage sweep cycles. The cut-off threshold determined
by the procedure is higher (V cut ≈ 6.5 V) than that in the case
of the single I-V fitting case, and a larger part of the (binned)
I-V characteristic has been fitted, which ultimately leads to a
derived temperature that is higher than that in the previous case.
In both cases, we used {rn} =

{
(n − 1) 6

39

}
n=1,...,40

. This grid has

been chosen based on the observation of the general aspect of
the I-V curves in TCV and generally yields satisfactory results
when fitting aggregated I-V curves.

We now focus on the effect of aggregating data from
multiple I-V characteristics and then binning the data, when

FIG. 5. (Top) Four-parameter fit associated with the minimum temperature
method of a single I-V characteristic that features a high level of fluctuations.
The points represent the measurements, while the red curve corresponds to
the fit that has been determined by the method. The vertical line indicates
the voltage cutoff that has been determined by the minimum temperature
approach. (Bottom) Typical aggregated I-V data (blue dots) and binned I-V
curve (green dashed curve). The red curve is the fit of the averaged I-V curve
using the 4 parameter model described by Eq. (1). The data points from the
single I-V curve in the top plot are highlighted by black stars. 〈ne〉 refers to
the line-averaged density of the plasma.

compared to a fit of each characteristic with a good choice
of the voltage grid {rn}n=1,...,N . In Fig. 6, two temperature
profiles are plotted as a function of the radial coordinate
ρψ , which is the normalized poloidal magnetic flux, defined
as ρψ =

√
(ψ − ψ0) / (ψ1 − ψ0), where ψ is the poloidal mag-

netic flux and ψ0 and ψ1 are its value at the magnetic axis
and at the primary X-point, respectively. The blue profile
in Fig. 6 has been obtained after fitting the average of I-V

FIG. 6. Profiles of T e showing the impact of I-V characteristics averaging
before the fitting procedure, compared to averaging the data points after fitting.
(Top) High temperature (>5 eV) case. (Bottom) Low temperature (<5 eV over
most of the profile) case.
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curves on a 50 ms time span, using {rn} =
{
(n − 1) 6

39

}
n=1,...,40

.

The red data points have been obtained by fitting indepen-
dently each I-V curve from the 50 ms time span, and the
red profile represents the interpolation of this data. To limit
the pickup on fluctuations in this case, we use a coarser grid,
defined by using {rn} = {1, 2, 3, 4, 6, 8}. The profiles resulting
from the two methods are similar, even if one observes, as
expected, a larger scatter of the data points when each I-V
curve is fitted separately. Therefore, in cases with station-
ary turbulence that do not feature fast mesoscale fluctuations
such as ELMs or fast strike-point sweeping, averaging the
I-V curves before fitting yields very satisfactory results while
being simple to use. A similar conclusion was obtained on
the TORPEX device,23 where fitting-aggregated I-V curves
provided profiles very similar to those obtained from time-
averaging measurements from a triple probe.9 This technique
is therefore the default strategy that is used in the analysis tool
chain.

Averaging and binning I-V data are however not well
adapted to non-stationary conditions, for instance, in cases
of fast strike-point sweeping or during the H-mode, where
ELMs can occur during a sweep. In the former case, reduc-
ing the time-window used for aggregating the data or applying
the minimum temperature method to single I-V characteris-
tics can be used to retrieve the averaged profiles. In the latter
case, beyond these two previous methods, one can also con-
sider excluding a subset of “contaminated” data points before
performing the averaging, thus allowing us to obtain the inter-
ELM profiles. Figure 6 illustrates that performing a single I-V
curve fitting is possible. This generally requires the user to test
several values and assess visually the goodness of the fits. A
dedicated GUI has been developed to allow the user to plot both
experimental data points and fits, so as to ensure the robustness
of the latter.

In our analysis chain, the experimental data are fitted to
the model described in Eq. (1) using a non-linear least square
approach based on the Levenberg-Marquardt algorithm. Mat-
lab is used to retrieve and prepare the data for the analysis,
while the fitting in itself is done by a Fortran routine rely-
ing on the MINPACK library.24,25 This allows a speed-up of
more than an order of magnitude with respect to the previous
analysis, which was written entirely in Matlab. The complete
analysis chain, using a typical set of parameters, can be done
in less than 10 min. Results are written to the MDSplus26 tree
and can be inspected with a Matlab GUI, thus allowing for
inter-shot analysis.

C. Possible impact of resistance

In the case of the presence of resistances in the circuitry,
the voltage actually applied to the probe is different than the
voltage set by the voltage source. If we denote with R the
possible resistance in the circuitry and Vms the applied voltage,
the actual probe voltage is given by

Vpr =Vms + RIpr. (3)

Thus, a finite R will affect the shape of the I-V curve and lead
to its expansion around the floating potential. This might lead
to an over-estimation of the temperature and more generally to

an incorrect determination of the different parameters. In TCV,
considering the circuit going from the probe to the amplifier,
an overall resistance can be estimated. Along the circuit, there
are at least 4 electrical contacts of unknown resistance. We
will assume for them a resistance of ∼0.1Ω per contact. There
is also 2.5 m of thermocoax cable, with a line resistance of
0.23 Ω

/
m, and 15 m of cable follows with a line resistance

of 0.0336 Ω
/
m. The estimated overall resistance is therefore

around 1.5 Ω. Note that the goal of this section is merely to
evaluate how much the presence of resistance in the circuit
can affect the measurements and not to give an absolute and
precise quantification of this effect in our measurements. By
inserting Eq. (3) into Eq. (1), and assuming α = 0, we obtain

Ipr = Isat

(
1 − e

Vms+RIpr−Vf l
Te

)
. (4)

Equation (4) can be recasted in the form aex + bx + c = 0, and
thus, following Appendix A, the expression for the current
reaching the probe becomes

Ipr = Isat −
Te

R
W0

(
RIsat

Te
e

Vms−Vf l+RIsat
Te

)
, (5)

where W0 is the 0-th branch of the Lambert W function.27,28

It should be noted that for the sake of simplicity, we did not
include the effect of sheath expansion in Eqs. (4) and (5), but it
is straightforward to do so. One can check that for Vms = V f l,
Eq. (5) yields Ipr = 0. Therefore, R does not affect the float-
ing potential measurement. From Eq. (5), one can estimate
what is the impact of the resistance R on the derived tempera-
ture. Starting from Eq. (1) and assuming no resistance (R = 0,
leading to Vms = Vpr), the temperature T e can be estimated as

1
Te
=−

1
Isat

dIpr

dVms

�����Vms=Vf l

. (6)

Denoting T eff
e as the temperature that would be estimated from

Eq. (6) applied to Eq. (5), we have

1

T eff
e

=−
1

Isat

dIpr

dVms

�����Vms=Vf l

=
1
Te

1

1 + IsatR
Te

, (7)

and therefore

T eff
e =Te

(
1 +

IsatR
Te

)
. (8)

Using Eq. (2), this analysis shows that the determined temper-
ature is overestimated by a factor scaling as

∆T th
e =

IsatR
Te
∝

Rne
√

Te
. (9)

Therefore, we expect to see a manifestation of this effect for
high density and low temperature plasmas. It should be noted
that the scaling of the temperature error we determined is based
on using the derivative of the I-V characteristic at Vms = V f l.
However, in the standard analysis chain, the temperature that
we derive is instead determined by fitting globally the char-
acteristic to Eq. (1). Thus the error in the determination of T e

could differ from the evaluation done in Eq. (9). To evaluate
this, we generate a set of synthetic curves using Eq. (1). We
choose R = 1.5 Ω, V f l = 5 V, α = 0, and S = 3.0 × 10�6 m2,
and we vary ne and T e. Isat is evaluated from Eq. (2). Once
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FIG. 7. Evolution of ∆Tfit
e (expressed in %) as a function of ne and T e for

a stray resistance of 1.5 Ω and S = 3.0 × 10�6 m2. The white lines are iso-
contours of ∆Tfit

e . The red lines correspond to the scaling predicted by Eq. (9).

the curve Ipr = Ipr(Vpr) has been generated, we substitute the
voltage values to reflect the existence of resistance in the cir-
cuit, Vpr ← Vpr � RIpr . Note that this is equivalent to using
directly Eq. (5) since it is just a change of variables. The curves
are then fitted using the four-parameter fit, and we evaluate the
error ∆T e defined as

∆Tfit
e =

Tfit
e − Te

Te
, (10)

where Tfit
e is the temperature determined by a four-parameter

fit with minimum temperature and T e is the temperature used
to construct the synthetic I-V. In Fig. 7, we have plotted the
variation of∆Tfit

e as a function of ne and T e. While for low den-
sities the effect appears to be negligible, it starts to play a more
significant role at higher ne, where Ipr tends to be larger and
can therefore more strongly modify the voltage at the probe.
It also appears that the effect of the resistance is slightly more
pronounced in the low-T e domain. This is in line with the con-
clusions drawn previously, as shown by the red lines, which
corresponds to the iso-contours obtained from Eq. (9) and
which are similar to the iso-contours of ∆Tfit

e , indicating that
Eq. (9) gives a consistent scaling of the error with ne and T e.

IV. APPLICATION TO DETACHED PLASMAS

Large temperature gradients can develop along the mag-
netic flux tubes linking the upstream Scrape-Off Layer (SOL,
the region of open field lines outside the separatrix of the
plasma) to the wall. Depending on the local temperature,
different volumetric processes can occur. For instance, for tem-
peratures in the range from about 10 eV to a few tens of eV,
low-Z impurities are susceptible to radiate power isotropically,
thus distributing the exhaust power over a larger area and there-
fore reducing the peak heat fluxes reaching the divertor wall.
If the temperature further drops (below approximately 5 eV),
charge exchange reactions between plasma ions and neutrals
can result in a net loss of momentum and energy from the
plasma. This yields a drop of the pressure along the magnetic

field lines and is usually denoted as detachment.12,29 This pro-
cess is enhanced below ∼1.5 eV, when volume recombination
can become an important particle sink. Since in these con-
ditions the temperature and density at the wall are reduced,
detached regimes appear as an attractive solution for future
fusion devices, as they could effectively protect the wall from
enormous local peak heat fluxes and unacceptable sputtering
rates. In this section, we investigate the possibility to use the
Langmuir probes to measure the temperature at the wall in
detached conditions, which is generally considered to be a
difficult regime for Langmuir probe measurement interpreta-
tion.30–32 Indeed, it has been seen in several tokamaks,33,34

including TCV,31,32 that in detached conditions, the Lang-
muir probe analysis yields electron temperature higher than
that one would expect from other diagnostics such as spec-
troscopy,35–37 Thomson scattering,29,38 or simulations.31 Sev-
eral mechanisms might be responsible for this effect, such as
the role of plasma resistance1,39 or the fluctuations of the float-
ing potential.39 Furthermore, the standard fitting procedure
considers only a relatively small part of the I-V characteris-
tics, the one determined by the high energetic electrons of
the distribution.40 In the case of a significant departure of the
electron distribution from a Maxwellian, the Langmuir probes
then measure mostly the temperature of the hot electron popu-
lation. Such a departure from the Maxwellian distribution has
been observed in simulations14,41 and experiments42 and could
explain the overestimation of the temperature.

In Fig. 8, the electron temperature and density radial pro-
files on the floor wall are plotted for an experiment where

FIG. 8. Temperature (top) and density (bottom) profiles measured by the
floor probes at different times in a density ramp experiment in TCV, where
the line-averaged density of the plasma is linearly increased during the dis-
charge. As line-averaged density is increased, the temperature measured at
the wall decreases. After an initial growth, the density measured at the wall
also decreases after detachment. The four-parameter fit with the minimum
temperature approach is used to determine T e and ne at the wall. The dashed
line at ρψ = 1.02 indicates the mean position (over time) of the density profile
peak.
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plasma line-averaged density 〈ne〉 is increased approximately
linearly over time. The magnetic configuration is the same as
in Fig. 2. In the top panel, a clear decreasing trend can be
seen on the temperature profile as the line-averaged density is
increased. This is a possible indication of detachment, which
is further confirmed when measuring the total ion flux reach-
ing the wall, which decreases above a certain line-averaged
density, as shown in Ref. 13 or, for a single probe, in the top
panel of Fig. 11. In the bottom panel of Fig. 8, the evolution of
the density profile is also plotted. After an initial rise, the mea-
sured density finally decreases after detachment. In a similar
discharge, measurements with divertor spectroscopy (based on
collision-radiation model, without transport) found significant
levels of volume recombination at the highest 〈ne〉, suggesting
T e ≤ 1 eV (Ref. 43).

A striking feature of the profiles plotted in Fig. 8 is the
existence of a temperature peak near the strike-point posi-
tion (i.e., the point where the separatrix intersects the wall,
at ρψ = 1), on the left (“high-field side”) of the density pro-
file. Even at 〈ne〉 ≈ 1.38 × 1020 m�3, the electron temperature
reaches values of the order of 10 eV, while the plasma is
expected to be detached. The presence of this peak is not yet
fully understood. Observations on a restricted dataset indi-
cate that the peak occurs in the region of positive radial
density gradient and is more visible at higher flux expan-
sion, which also corresponds to the cases where the ion flux
to the wall is reduced the most, an indication of stronger
detachment.13

One might suspect that this peak is unphysical and comes
from a difficulty of the four-parameter fit to operate for certain
shapes of I-V curves. We show in the following that the sheath
physics offers another way to estimate the electron temperature
and that, in the region of the temperature peak, the discrepancy
between these two evaluations of the temperature might indeed
indicate a failure of the four-parameter fit technique. When the
probe is biased at a potential higher than the plasma potential
Vpl, it is no longer repulsing the electrons, and the current
collected by the probe saturates. It is possible to show that the
difference between the plasma potential Vpl and the floating
potential V f l can be written, when including the voltage drops
in the sheath and pre-sheath, as1

Vpl − Vf l =ΛTe, (11)

where

Λ= ln *.
,

√
2mi

πme

[
Te

Te + γTi

]
+/
-

. (12)

For a typical deuterium plasma, assuming γ = 1 and T i = T e,
which are the default assumptions made in our analysis, one
findsΛ ≈ 3.53. Under the assumption that the voltage at which
the current collected by the probe saturates does correspond to
the plasma potential Vpl, and by measuring the floating poten-
tial of the probe, it is possible to infer the electron temperature
as

Te =

(
Vpl − Vf l

)
Λ

=

(
Vpl − Vf l

)
3.53

. (13)

A hyperbolic-tangent fit, described in Appendix B, is used to
estimate the value of Vpl. In Fig. 9, we compare the temperature

FIG. 9. Temperature profiles at 〈ne〉 ≈ 8.50 × 1019 m�3 and 〈ne〉 ≈ 1.38
× 1020 m�3 for the shot presented in Figs. 2 and 5 using either the four-
parameter fit [Eq. (1)], Eq. (13), or using the A dependence of Λ described
in Fig. 12. A was estimated using the hyperbolic tangent fit presented in
Appendix B and is comprised between ≈3 and 4 in this case.

profiles of Fig. 8 at 〈ne〉 ≈ 8.50 × 1019 m�3 and 〈ne〉 ≈ 1.38
× 1020 m�3, obtained with the four-parameter fit, with the
ones determined from Eq. (13), assuming Λ = 3.5. Before
detachment, at 〈ne〉 ≈ 8.50 × 1019 m�3, we observe fairly
good agreement between the two methods. However, after
detachment (〈ne〉 ≈ 1.38 × 1020 m�3), a temperature peak is
observed with the four-parameter fit, around ρψ ≈ 1, while it
is much less pronounced with the temperature estimated from
Eq. (13). In the top panel of Fig. 10, we have plotted the I-
V characteristics associated with two probes contributing to
the temperature profile plotted in Figs. 8 and 9 at 〈ne〉 ≈ 1.38
× 1020 m�3. Probe 4, located near the strike point (ρψ ≈ 1),
shows a temperature of about 10 eV. Conversely, probe 11,
which is away from the strike point, shows a temperature of
about 3.5 eV. The quantity Λ=

(
Vpl − Vf l

)
1
Te

is represented
for both I-V curves, with V f l and T e estimated from the
four-parameter fit. In the bottom panel of 10, Λ is plotted
as a function of time for the same probes. While probe 11
keeps an approximately constant value of Λ, around 3 (not
far from the expected theoretical value), probe 4 shows an
erratic behavior with significant differences with the expected
value.

Let us denote with Esat = Ipr

(
Vpr > Vpl

)
the electron sat-

uration current. We see in the top panels of Fig. 10 that the
value ofΛ and the ratio κ = ��Esat

/
Isat

�� of electron to ion satura-
tion current differ substantially for the two probes. The model
presented so far allows us to compute the expected value of
κ. When the plasma potential is reached by the probe, there
is no sheath anymore and the electron current reaching the
probe corresponds to the flux resulting from a Maxwellian
distribution. Similarly, the ion current reaching the probe in
these conditions will correspond to the flux resulting from
a Maxwellian distribution of temperature T i. The theoretical
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FIG. 10. (Top) Averaged I-V curve and
associated fit for probes 4 (left) and 11
(right) at 〈ne〉 ≈ 1.38 × 1020 m�3. The
voltages are normalized to the tempera-
ture determined at this time by the four-
parameter fit for each probe. Probe 4
is one of the contributors to the tem-
perature peak plotted in Fig. 8, while
probe 11 does not exhibit this behav-
ior. The yellow dashed line indicates the
level of the electron current saturation,
while the yellow dot indicates the posi-
tion of the first point where saturation
is determined by the modified hyper-
bolic tangent function, Appendix B.
The solid black line indicates the level
jpr = Ipr

/
S = 0, and the vertical dashed

lines indicates the interval [V f l
/
T e,

Vpl
/
T e]. The bottom panel shows the

evolution of Λ = (Vpl � V f l)
/
T e over

time for these two different probes.
Again, T e has been estimated using the
four-parameter fit.

current reaching the probe at Vpr = Vpl can then be written
as1

I th
pr

(
Vpr =Vpl

)
= Se *.

,

1
4

√
8Ti

πmi
−

1
4

√
8Te

πme

+/
-
× 2nse, (14)

=−Isate
Λ *

,
1 −

√
Ti

Te

√
me

mi

+
-

. (15)

For T i = T e, we thus have I th
pr

(
Vpr =Vpl

)
≈−IsateΛ. If one

computes only the contribution from the electrons, denoted
with Eth

sat , one has

Eth
sat =−

1
4

√
8Te

πme
Se × 2nse, (16)

=−Isat

√
2mi

πme

(
Te

Te + γTi

)
, (17)

=−Isate
Λ, (18)

and therefore the current Eth
sat = I th

pr

(
Vpr > Vpl

)
measured by

a probe for Vpr ≥ Vpl corresponds to the electron saturation
current. Moreover, one has

Eth
sat

Isat
=−

√
2mi

πme

(
Te

Te + γTi

)
≈−34. (19)

From the theory, we expect κth =
���E

th
sat

/
Isat

���= 34. However, it
can be seen from the I-V curves in Fig. 10 that while κ remains
fairly high for probe 11, it is close to unity for probe 4. This
tends to indicate that the model used so far which constitutes
the basis for both the four-parameter fit and Eq. (13) might not
be applicable in this situation. In the bottom panel of Fig. 11,

we have plotted the evolution of κ for probe 8. The highest
value of κ reached by this particular probe is about 15, well
below the theoretical value. Furthermore, it appears that, as
density is increased, κ decreases, indicating that the I-V char-
acteristics tend to be closer to symmetry. We note that this
behavior is reminiscent of observations on other devices such
as JET,30 where a reduction of κ is also observed in detached
regimes. A possible way to interpret the decrease of κ would
be to relax the hypotheses γ = 1 and T i = T e in the compu-
tation of κ and thus of the saturation level. Values of γ are

FIG. 11. (Top) Ion flux reaching LP number 8 during the density ramp. Notice
the reduction of the flux after 〈ne〉 ≈ 1× 1019 m�3, an indication of detachment.
(Bottom) Evolution of the ratio ���

Esat
Isat

���= κ as a function of time. κmonotonically
decreases over time, indicating that I-V curves become more symmetrical.
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typically between 1 and 3 depending on the physics chosen to
describe it.1 From Eq. (19), it is possible to derive the ratio
T i

/
T e that one would need to have κth ≈ 5, the average value

plotted in Fig. 11. Assuming γ = 3 and a deuterium plasma,
one finds T i

/
T e ≈ 30. While having ions hotter than elec-

trons is commonly observed in the SOL,44 we consider that
such a temperature difference is unlikely, and we therefore
argue that the fact that the ratio κ is lower than the one given
by Eq. (19) does not only come from a possible role of ion
temperature but also from other effects. One might suspect
a possible role of electron self-emission by the probe itself.
However, following Richardson’s law,45 this would require
the probe’s temperature to reach approximately 2500 K and
the onset of the self-emission process would appear as a very
abrupt change of the I-V characteristics,46,47 which is in contra-
diction with the observations made in Fig. 11, where it appears
that the reduction of κ is a continuous decay throughout the
discharge.

So far, we have neglected the presence of a magnetic
field, except in the evaluation of S. However, since the plasma
is strongly magnetized, the charges reaching the probe will
originate from the magnetic flux tube to which the probe is con-
nected. This flux tube cannot provide more charges than it can
refill, through cross-field transport or from its other end. This is
known to reduce the expected value of the electron saturation
current and hence κ.4,48 A modification of the cross-field trans-
port or of the electron mean free path during the experiment,
due to the change of the plasma conditions, could explain, at
least partially, the trend observed in Fig. 11.

In the following, we discuss a model that develops this
idea of a particular flux tube providing charges to the probe
and which reproduces a saturation of the electron current. We
consider that our probe is connected, through its companion
flux tube, to a particular region of the wall, which will be
responsible for collecting or providing charges to the probe.
In this sense, this particular area of the wall will act as a vir-
tual electrode30,49 (cross-field currents can be accounted for in
this picture simply by artificially changing the effective area of
the virtual electrode). The electron or ion currents reaching the
probe will thus be limited by the ability of the virtual electrode
to provide these charges, and the magnitude of the electron sat-
uration current can thus be lower than that one would expect. In
the following, we note A, the ratio between the collection area
of the virtual electrode and the collection area of the probe.
We assume that A > 1, and we denote with Ipr the current
reaching the Langmuir probe, I 3e the current at the virtual
electrode, V f l the floating potential at the probe, and δV

(
Vpr

)
the self-modification of the plasma potential in the perturbed
flux tube to enforce current conservation. It is important to note
that δV

(
Vpr

)
is not a constant but a function of Vpr . The ion

saturation current at the probe is denoted with Isat . Because
of current conservation, Ipr + I 3e = 0, the electron saturation
current at the probe will be limited to �AIsat . This provides
a natural saturation mechanism for the I-V curve in the elec-
tron saturation part of the curve. In the following, the voltages
are normalized to the temperature, Ṽ = V

/
T e, and we note

∆Ṽ = Ṽpr � Ṽ f l. We can then write

Ipr = Isat

(
1 − e∆Ṽ− ˜δV

)
, (20)

Ive =AIsat

(
1 − e−

˜δV
)

. (21)

From the current conservation Ipr + I 3e = 0, we have

1 − e∆Ṽ− ˜δV =−A
(
1 − e−

˜δV
)

, (22)

and thus

˜δV = ln *
,

e∆Ṽ + A
1 + A

+
-

. (23)

Re-injected in Eq. (20), this yields

Ipr =AIsat
1 − e∆Ṽ

A + e∆Ṽ
. (24)

However, the probe current is not allowed to reach values
below �κthIsat . No such limitation is imposed by Eq. (24).
Therefore, we need to add a supplemental constraint enforcing
the saturation of the electron current if

e∆Ṽ
(
A − κth

)
≥ A

(
κth + 1

)
, (25)

which has solutions only if A ≥ κth. Thus, if A ≥ κth, then
Eq. (24) must be rewritten as

Ipr =




AIsat
1−e∆Ṽ

A+e∆Ṽ

−κthIsat , if A ≥ κth and ∆Ṽ > ln
(

A(κ th+1)
A−κ th

). (26)

This implies that, using the previous notation, one has κ = A
if A < κth and κ = κth otherwise. In the top panel of Fig. 12
are plotted synthetic I-V curves generated using Eq. (26) for
different values of A and arbitrary, but fixed, T e, ne, and V f l.
From these synthetic I-V curves, it is then possible to link
the electron temperature T e to the difference between Vpl and
V f l, thus finding theΛ function introduced before. This is done
in the bottom plot of Fig. 12, where we have plotted Λ as a
function of A. To do so, we evaluate Vpl using the tangent fit

FIG. 12. (Top) Synthetic I-V curves generated from relation 26 assuming
V f l = 0 and T e = 10 eV. Only A is varying. The vertical black line indicates the
position of V f l , while the colored vertical lines and dots indicate the position
of the first saturation point, defined as the first point where the 95% of the
electron saturation current is reached. (Bottom) Dependency of Λ versus A.
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(Appendix B). Knowing the parameter T e and V f l that have
been used to generate the synthetic I-V curves,Λ is evaluated.
While not shown in Fig. 12, we retrieve in this model that for
A→ ∞, Λ = 3.53. In Fig. 9, we have plotted the temperature
derived using Eq. (13) but keeping the dependency of Λ on
A. This method, which we shall refer to as the Λ-method in
the remainder of this paper, yields similar temperatures than
assumingΛ ≈ 3.5. We also note that Eq. (26) provides a model
that could, in principle, be used to fit the I-V characteristics
and directly deduce the temperature. However, this model does
not include the sheath expansion, whose effect on the charac-
teristics can be important. As a result, fits done with Eq. (26)
overestimate T e and Isat . Thus, in Sec. V of this paper, we
extend the asymmetric double probe model by including the
sheath expansion.

V. ASYMMETRIC DOUBLE PROBE MODEL
WITH SHEATH EXPANSION
A. Model and implementation

In

Q3

this section, we present a fitting model based on the
asymmetric double probe including the effect of sheath expan-
sion. A similar model has been developed in Ref. 18. We
however introduce here a simplified formulation, and we show
that the sheath expansion effect can be included in the model
while keeping a semi-analytical expression for the expression,
therefore facilitating its implementation and use. We start the
derivation of the model with the same assumptions as for an
asymmetric double probe without the sheath expansion and
write

Ipr = Snsecse

(
1 + α

(
Vpr −

(
Vf l + δV

))
− e

Vpr−(δV+Vf l)
Te

)
,

(27)

Ive =ASnsecse

(
1 −

β

A
δV − e

−δV
Te

)
, (28)

where the quantities have the same meaning as in Sec. IV. We
add two linear terms to describe the sheath expansion, gov-
erned by the coefficients α and β. From charge conservation,
we have again Ipr + I 3e = 0, and therefore δV

(
Vpr

)
is defined

by the implicit relation

e
−δV
Te

(
A + e

Vpr−Vf l
Te

)
+(α + β) δV −

(
1 + A + α

(
Vpr − Vf l

))
= 0.

(29)
This equation is of the form aex + bx + c. For α + β < 0, and
following Appendix A, we can show that Eq. (29) has exactly
one solution, given by

δV =−Te


−W0(∆) −

1 + A + α
(
Vpr − Vf l

)
Te (α + β)


, (30)

where W0 is the 0-th branch of the Lambert W function, and
∆ is defined as

∆=−
A + e

Vpr−Vf l
Te

Te (α + β)
e

1+A+α(Vpr−Vf l)
−Te(α+β) . (31)

Since the current conservation Ipr + I 3e = 0 holds, by con-
struction, for every value of Vpr , and since I 3e is bounded to

AIsat (assuming A < κth), then Ipr will saturate to �AIsat for
Vpr � Vpl. We now show that for Vpr = V f l, we have δV = 0
and thus Ipr

(
Vpr =Vf l

)
= 0, as it should. From Eq. (30), if

Vpr = V f l, we find

∆=−
A + 1

Te (α + β)
e−

A+1
Te(α+β) , (32)

using the fact that, by the definition of the Lambert function
W, one has W (xex) = x, we have

−W0(∆)=
A + 1

Te (α + β)
, (33)

which yields, using Eq. (30),

δV
(
Vpr =Vf l

)
= 0. (34)

Therefore, from Eq. (27), we have Ipr

(
Vpr =Vf l

)
= 0 and V f l

is indeed the floating potential at the probe location.
Unlike the four-parameter fit, this method can be used to

fit the entire of the I-V curve. Six parameters have to be fit-
ted: Isat , T e, V f l, A, α, and β, where Isat = Snsecse. δV

(
Vpr

)
is evaluated either by using Eq. (30) or by finding the zero
of Eq. (29), thanks to Newton’s method or a Powell hybrid
method provided by the routine HYBRD of MINPACK. All
the three methods yields similar results, and the analytical eval-
uation of δV using Eq. (29) is chosen as the default one since it
is faster. For the fitting in itself, we adopt a three-step method.
Using a hyperbolic tangent fit (Appendix B), the parameters α
and β are first estimated. Isat , T e, V f l, and A are then estimated
using Eqs. (27) and (29), holding α and β constant. In the sec-
ond step, based on the estimated values of Isat , T e, V f l, and A,
we fit the model to estimate α and β. Finally, in a third and
last step, we perform a fit with the 6 parameters Isat , T e, V f l,
A, α, and β using the values estimated in the previous steps as
a starting point. This three-step method yields the same results
as the direct 6 parameter fit but appears to produce less out-
liers. It is important to remark that as this fit uses the entire I-V
characteristic, it is sensitive to the saturation of the electron-
ics if the electron saturation current amplitude is particularly
high.

In Fig. 13, we have plotted the fit performed on a single
I-V curve, as well as the fit obtained when using an aver-
aged I-V curve obtained from a 50 ms aggregation of data. As
one can see, this model is able to adequately fit the electron
current saturation part of the characteristic and thus does not
require the need for an additional criterion such as the mini-
mum temperature approach used for the four-parameter fit. It
however requires the electron saturation part of the character-
istic to be well measured to be able to provide a reliable fit. For
high values of κ reached, for instance, in attached (i.e., non-
detached) conditions, it can happen that the electron branch
has such a high amplitude that it leads to a saturation of the
measurements. In that case, the electron saturation current is
not properly captured by our measurements, and thus, this fit
cannot be applied. Figure 14 shows the temperature profiles
resulting from analysis using the asymmetric double probe fit,
compared to the profiles obtained previously in Fig. 8 with the
four-parameter fit, for the lowest and highest densities plot-
ted in Fig. 5. In the low density case, probes 6–10 had to be
excluded from the analysis as they corresponded to saturated

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773
774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819



000000-11 Février et al. Rev. Sci. Instrum. 89, 000000 (2018)

FIG. 13. The same data as in Fig. 5, but now analyzed using the asymmetric
double probe fit. The color code is the same as in Fig. 5.

measurements and thus were unsuitable for fitting. For the
remaining probes, the temperatures determined by both fits
are similar. In the high density case, all probes could be kept
in the analysis. Indeed, the lower amplitude of the electron
saturation in detached conditions allows us to have a good
description of this part of the curve. It is clear from Fig. 14
that the asymmetric double probe fit leads to lower temper-
ature. Furthermore, the strong peaking observed previously
near the strike-point is not observed, a possible indication that
this fit is more reliable, thanks to its ability to fit the entire
I-V characteristic. However, the temperatures that are mea-
sured remain fairly high (∼5 eV) near the strike-point where

FIG. 14. Temperature (top) and density (bottom) profiles measured by the
floor probes for the same discharge as in Fig. 8 and for the lowest density and
highest density. The asymmetric double probe fit with the sheath expansion
is used to determine T e and ne. In the low density case, probe 6–10 had to be
excluded from the analysis as their electron saturation branches were poorly
resolved. For reference, the profiles obtained with the four-parameter fit in
Fig. 8 are plotted as well (dashed lines).

we would expect from detachment physics significantly lower
temperatures. This possible over-estimation of the temperature
by the probes is interpreted as a signature of the presence of
kinetic effects.14 Thus, in the following part, we investigate
the sensitivity of our different fitting models (four-parameter,
asymmetric double probe, Λ-method) toward the existence of
a population of fast electrons.

VI. POSSIBLE INFLUENCE OF FAST ELECTRONS
ON THE MEASURED TEMPERATURE

Previous analysis relies on the assumption that the elec-
tron distribution is Maxwellian, which is not necessarily the
case. For instance, there could be a population of fast electrons,
characterized by a hotter temperature than the bulk popula-
tion. This has been predicted in tokamaks,14,40,50 in particular,
after detachment.14 It has been confirmed experimentally in the
CASTOR (Czech Academy of Sciences TORus)51 and NSTX
(National Spherical Torus Experiment)42,52 tokamaks, where
non-Maxwellian distribution functions have been observed.
In Q4Ref. 51, in particular, it has been seen that the electron
distribution is not Maxwellian but can be approximated by
a bi-Maxwellian distribution with a bulk of low temperature
electrons and a second population of hot electrons since these
hotter electrons will tend to contribute more to the I-V elec-
tron current than the cold ones, especially around and below
the floating potential. Therefore, already for a relatively low
fraction of the hot population, the temperature inferred from
the standard analysis no longer represents the temperature of
the bulk population. In this part, we evaluate the robustness of
the different fitting methods in the presence of fast electrons.
We proceed in a way very similar to Ref. 40. For simplicity,
we assume that the electron distribution function consists of
the superposition of two Maxwellian populations of electrons
that coexist in our plasma: a population of “slow” electrons at a
temperature T e,s and of density ne,s, and a population of “fast”
electrons at a temperature T e,f and of density ne,f. We consider
a Langmuir probe maintained at a potential Vpr and denote
with V se the sheath-edge potential at floating conditions. We
define h = ne,f

/
ne,s and r = ne,f

/
(ne,f + ne,s) = h

/
(1 + h)

which quantifies the fraction of fast electrons over the total
electron population. The temperature ratio of the electron pop-
ulations is defined by g=

Te,f

Te,s
. One can then write the electron

flux Γe as

Γe =
1
4

ne,sce,s

[
e

Vpr−Vse
Te,s + h

√
ge

Vpr−Vse
Te,f

]
, (35)

where ce,s =

√
8Te,s
πme

. Noting nse as the electron density at the
sheath edge, we have ne,s (1 + h)= nse. The ion flux Γi is
defined as Γi = nsecs, where assuming γ = 1,

cs =

√ (
Ti + f Te,s

)
mi

(36)

with f = g (1+h)
(h+g) (see Ref. 53). Since at the floating potential V f l

one has Γi = Γe, V f l is the solution of
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√
8mi

πme

Te,s

Ti + f Te,s
= 4

(1 + h)
[
e

Vf l−Vse
Te,s + h

√
ge

Vf l−Vse
Te,f

] . (37)

As for the ion temperature T i, we assume T i = fT e,s for sim-
plicity. This yields T i → T e,s for h → 0 and T i → T e,f for
h→∞. In typical conditions where one expects the slow elec-
trons to be the majority, h � 1, f ≈ 1, and T i ≈ T e,s. We also
define ∆ = V se � V f l such that Eq. (37) reads√

8mi

2πmef
= 4

(1 + h)
[
e
−∆
Te,s + h

√
ge

−∆
Te,f

] . (38)

This equation is used to determine ∆ and thus the float-
ing potential if the voltage at the sheath entrance is taken
as the reference. The current reaching the probe then reads
Ipr = S (eΓi − eΓe), where S is the collection area of the probe.
Ipr can be rewritten as

Ipr = Isat

*...
,

1 −
e

Vpr−Vse
Te,s + h

√
ge

Vpr−Vse
Te,f

[
e
−∆
Te,s + h

√
ge

−∆
Te,f

]
+///
-

, (39)

where Isat = eSnsecs = eSnse

√
(Ti+f Te,s)

mi
. It should be noted that,

in our model, Isat depends on the population of fast electrons
since cs depends on f and T i, the latter also depending on
f. We now use the asymmetric double probe model that was
presented in Sec. IV. The electron or ion currents reaching
the probe will thus be limited by the ability of a virtual elec-
trode to provide these charges. We use the same notations
and definitions as in Sec. IV. Because of current conservation
Ipr + I 3e = 0, the current density reaching the probe can be
written as

Ipr = Isat

*...
,

1 −
e

Vpr−(∆+δV+Vf l )

Te,s + h
√

ge
Vpr−(∆+δV+Vf l )

Te,f

[
e
−∆
Te,s + h

√
ge

−∆
Te,f

]
+///
-

, (40)

where we did not include the effect of sheath expansion for the
sake of simplicity. If we assume that the fast electron popula-
tion is the same in front of the probe and the virtual electrode,
the current at the electrode can be written as

Ive =AIsat

*...
,

1 −
e
−(∆+δV )

Te,s + h
√

ge
−(∆+δV )

Te,f

[
e
−∆
Te,s + h

√
ge

−∆
Te,f

]
+///
-

. (41)

Thus, proceeding in the same way as in Sec. IV and invok-
ing current conservation, δV (Vpr) is defined by the implicit
relation Ipr + I 3e = 0. As for Eq. (27), one can now check that
V f l is indeed the floating potential, i.e., Ipr

(
Vpr =Vf l

)
= 0. For

Vpr = V f l and δV = 0, one finds Ipr = I 3e = 0 and Ipr(Vpr = V f l)
+ I 3e(Vpr = V f l) = 0. Since Ipr(Vpr = V f l) + I 3e(Vpr = V f l) is
a monotonous function of δV, it ensures that δV = 0 is the
unique solution that enforces Ipr + I 3e = 0 at Vpr = V f l, and
we thus indeed have Ipr(Vpr = V f l) = 0.

In Fig. 15, we have plotted a set of I-V curves generated
from this expression for different values of r. For the purpose
of the plot, T e,f = 10 eV, T e,s = 2 eV, A = 5, and V f l = 1 V

FIG. 15. Synthetic I-V curves generated using Eq. (40) for different values
of the fast electron population density, quantified by r = ne ,f /(ne ,f + ne ,s). The
cold electrons are at T e ,s = 2 eV and the fast ones at T e ,f = 10 eV. The ratio
of the saturation currents is given by A = 5.

were assumed. One can see that an increase in the fast electron
population is associated with a broadening of the I-V charac-
teristics, which relatively quickly lead to the measurement of
a temperature higher than the one set by the cold electron pop-
ulation. Values of r as low as 1% are already strong enough
to have a visible impact on the characteristic. This is reflected
on the temperature derived from the different fits, as shown
in Fig. 16, where the temperatures derived with the different
methods presented in this paper are represented as a function
of r. For low values of r, the impact of the fast electron popula-
tion is small and the temperature is correctly determined by the
different fits. However, as r increases, the different fits start to
get influenced by the presence of the fast electron population
and return a temperature substantially larger than that of the
bulk, even for r as low as 5%. In Fig. 16, we have also plotted
with a dashed line the results obtained assuming a larger ratio
of the ion to electron saturation currents, A = 15. While the

FIG. 16. Temperatures determined from fitting the synthetic I-V curves pre-
sented in Fig. 15 (A = 5) for different concentrations r of fast electrons. The
temperatures determined from similar I-V curves, generated using A = 15, are
also plotted using dashed lines. (For the color version of this figure, the reader
is referred to the online version of this article).
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temperatures estimated by the fits are higher than the temper-
ature of the cold electron population, the “over-estimation” is
not as strong as for a lower value of A. This illustrates how the
reduction of this ratio, observed in detached plasmas, increases
the sensitivity of our analysis workflow to the presence of fast
electrons. For both values of A, it appears that the asymmetric
double probe fit and the Λ-method have a very similar sen-
sitivity, while the four-parameter fit is more sensitive toward
the presence of fast electrons for low values of A, typical for
detached conditions. For larger values of A and low values of
r, the situation reverses and the four-parameter fit appears to
provide a lower estimate of the temperature than the asym-
metric double probe fit. This is not surprising, as for large
values of A, Eq. (24) tends toward Eq. (1). But since the four-
parameter fit is coupled to a minimum temperature approach, it
is biased toward deriving low temperatures. Overall, it appears
that all fits are very sensitive toward the presence of fast elec-
trons and that they cannot estimate the temperature of the bulk
population even for moderate presence of fast electrons. This
could explain, at least partially, the apparent over-estimation
of temperature at detachment. The fact that the four-parameter
fit is more sensitive than the asymmetric double probe fit to
the fast electrons could also explain in part why it leads to a
peaking of the temperature in detached conditions (where A is
low).

VII. CONCLUSION

This paper presents the standard method used to analyze
current-voltage characteristics of the wall-embedded Lang-
muir probes on the TCV tokamak and the strategies deployed
in order to improve the measurements in the detached regime.
After describing the TCV Langmuir probe system, the analy-
sis tool chain developed to process the acquired data has been
discussed in detail. It starts by removing stray currents from
the signals, using a few voltage sweeps performed after the
termination of the plasma. Once cleaned, the measurements
are analyzed using a four-parameter fit combined with a mini-
mum temperature method, which is the default method at TCV
for the analysis of the I-V curves. The averaging process used
to reduce the plasma fluctuations and noise affecting the I-V
curve has been compared to analysis performed without I-V
curves averaging, showing agreement between the two meth-
ods in stationary plasma conditions. We briefly described a
possible way to perform analysis in non-stationary conditions,
for instance, in the presence of ELMs. We also provided an
estimate of the error induced by the presence of resistance in
the circuitry and highlighted both computationally and analyt-
ically that a large overestimation of the temperature can occur
in high density, low temperature plasmas. We then applied
the analysis to experiments in the detached plasma regime,
which constitutes a challenging regime of operation for the
Langmuir probes. We have evidenced that the temperature
profiles derived from the four-parameter fit analysis are not
always reliable, in particular, close to the strike-point. Thus,
two alternative methods to determine the electron temperature
from the I-V curve have been presented. The first one relies on
the link between the plasma potential, the floating potential,
and the electron temperature. The second one is based on an

asymmetric double probe model. We introduced a variant of
the asymmetric double probe fit18 that can be expressed with a
semi-analytical formula. We have shown that in attached con-
ditions, both methods yield results in agreement with the four-
parameter fit, while they find lower temperatures in detached
regime. In particular, the temperature peak observed near the
strike point with the four-parameter fit is strongly reduced
with these two methods, a sign of their robustness. However,
the computed temperatures still remain higher than expected
from spectroscopic measurements,35–37 Thomson scattering,38

or simulations. Thus in the last part, we explored the possible
role that fast electrons, often considered as a possible respon-
sibility for this discrepancy,14 could have on the temperature
measured by the Langmuir probes. We found that the two alter-
native methods, which rely on a larger part of the I-V curve, are
only marginally less sensitive to the presence of a fast electron
population. It should be noted that other effects could also be
responsible for the large temperatures observed in detached
conditions with the Langmuir probes, such as a modification
of the plasma resistance1,39 or the fluctuations of the float-
ing potential.39 These effects have not been addressed in this
paper.

To summarize, by exploring three different fitting meth-
ods, we have shown that while in attached conditions the
good agreement between the three methods indicates that the
temperatures we determine are robust, and the discrepancies
observed in detached conditions and the strong sensitivity of
the analysis on a potential supra-thermal electron population
call for caution in the interpretation of the inferred electron
temperatures and densities.
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APPENDIX A: THE LAMBERT W FUNCTION

For w, z ∈C, the Lambert W function27,28 is defined such
that

z= wew ⇐⇒ w =W (z). (A1)

In this appendix, we show how it can be used to solve equations
of the form

aex + bx + c= 0, (A2)

where (a, b) ∈R∗2 and (c, x) ∈R. Under these assumptions,
Eq. (A2) can be recasted in the form(

−x −
c
b

)
e−x− c

b =
a
b

e−
c
b . (A3)

Denoting X =
(
−x − c

b

)
and ∆= a

b e−
c
b , one has

XeX =∆. (A4)
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Since in this paper we restrict ourselves (by a proper choice of
hypotheses) to cases where∆ ∈R and∆ > 0, we have existence
and unicity of X, leading to

x =−W0(∆) −
c
b

, (A5)

where W0 is the 0-th branch of the Lambert W function.

APPENDIX B: HYPERBOLIC TANGENT FIT

In this appendix, we present the hyperbolic tangent fit
that is used in the analysis chain to get an estimate of certain
parameters. This fit, which is similar to the function presented
in Ref. 54 to fit pedestal profiles, can be written as

Ipr =B + h tanh

(
V0 − Vpr

d

)
+ m1

(
V0 − Vpr − d

)
Θ

(
V0 − Vpr − d

)
−m2

(
−V0 + Vpr − d

)
Θ

(
−V0 + Vpr − d

)
, (B1)

where Θ is the Heaviside function and B, h, d, V0, m1, and m2

are the fitting variables. m1 and m2 are related to the sheath
parameters αIsat and βIsat

/
A that are defined in this paper and

thus can be used as initial first guesses for them. Similarly, h
and B are related to A and d, which quantifies the width of
the tanh part of the curve, and can be related to T e. However,
unlike other fitting models presented in this paper, this fit is
not established on the basis of a physical model of the I-V
characteristics and, therefore, cannot be used to derive directly
the physical parameters. From Eq. (B1), the electron saturation
voltage is determined as

Vsat ≈V0 + d. (B2)

Making the assumption that this saturation voltage does
indeed correspond to the plasma potential, we therefore
have

Vpl ≈Vsat ≈V0 + d. (B3)
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