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Abstract 

 The energy associated with shearing of planes of atoms in a crystal is the generalized stacking 10 

fault energy (GSFE). It is a crucial material property for describing nanoscale plasticity phenomena 

in crystalline materials, such as dislocation dissociation, nucleation, and twinning. The dependence 

of the GSFE on applied stress normal to the stacking fault has been suggested to influence such 

phenomena. Here, the stacking fault stress dependence is analyzed through (i) the generalized 

stacking fault potential energy (GSFE) and (ii) the generalized stacking fault enthalpy (GSFH). At an 15 

imposed shear displacement, there is also an associated inelastic inter-planar normal displacement 

around the fault. Extensive molecular statics simulations with interatomic potentials and/or first 

principle calculations in Ni, Cu, Al and Mg reveal that GSFE and inelastic normal displacement both 

increase with tensile stress. An increasing GSFE contradicts long-standing wisdom and previous 

studies. Positive inelastic normal displacement coupled to the applied normal stress decreases the 20 

GSFH, but is not useful for general mechanics problems. The existence of the inelastic displacement 

can lead to incorrect measurements of the GSFE and GSFH in finite systems loaded by an applied 

strain. Application of the GSFE and the inelastic normal displacement to both fcc dissociation 

distance versus applied normal stress and crack tip dislocation emission under mixed Mode II/I 

loading show very good agreement with direct simulations. In general, “opening softening” effects 25 

are not universal, and so the analysis of any particular nanomechanics problem requires precise 

implementation of the combination of GSFE and inelastic normal displacement rather than the GSFH. 
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1. Introduction 

 The Generalized Stacking Fault Energy (GSFE) 𝛹𝑔𝑠𝑓 is one of the most important properties 

for understanding dislocation phenomena in crystalline materials [1]. The GSFE governs the 35 

dissociation distance of fcc partial dislocations, the distribution of Burgers vector across the core of 

a dislocation, and is used in the classic Peierls-Nabarro model to compute these physical features [2]. 

The GSFE is also recognized as a crucial material property for describing nanoscale plasticity, 

especially dislocation nucleation processes such as dislocation emission (i) from a crack tip [3, 4], 

(ii) from a grain boundary [5, 6], (iii) during nanoindentation [7], and (iv) to create crack-tip twinning 40 

[8, 9]. 

For a given slip plane and slip direction in a crystal, the GSFE is the energy associated with 

an imposed shear displacement Δ𝑠 between two non-sheared crystalline blocks. The standard 

measurement is performed allowing displacements of all atoms normal to the slip plane, and thus full 

relaxation of the normal stress (or traction) 𝑇𝑛 throughout the cell, leading to Ψ𝑔𝑠𝑓(∆𝑠, 𝑇𝑛 = 0). The 45 

normal relaxation gives rise to changes in the inter-planar spacings around the fault; we denote the 

total inelastic normal displacement as Δ𝑛. The changes in planar spacings and Δ𝑛 are often neglected. 

In some early mechanics works, computations held the two blocks rigidly at the unstrained lattice 

constant of the crystal and then minimized the energy by relaxing the normal displacement across 

only the two planes of atoms on either side of the fault plane [10]. In this case, Δ𝑛 is slightly different 50 

than in the more-general case and is localized to the fault plane, but again this is often neglected. 

In fcc metals, the focus here, favorable sliding occurs along the ⟨112⟩ crystallographic 

direction. The GSFE has a local minimum at Δ𝑠 = 𝑏𝑝 where 𝑏𝑝 = 𝑎0 √6⁄  is the magnitude of the 

partial dislocation Burgers vector for fcc lattice parameter 𝑎0. The GSFE at this point is the stable 

stacking fault energy 𝛾𝑠𝑠𝑓. Prior to reaching the stable stacking fault, the GSFE has maximum 55 

corresponding to the unstable stacking fault energy with energy 𝛾𝑢𝑠𝑓. The quantities 𝛾𝑠𝑠𝑓 and 𝛾𝑢𝑠𝑓 

are primary fault energies used to understand various dislocation phenomena in metals. Typical GSFE 

curves for Al [11], with full normal relaxation and relaxation only across the slip plane, both at  

𝑇𝑛 = 0, are shown in Figure 1. The difference between the two methods is indeed small in this case, 

largely justifying the prior neglect of the differences between the two methods. 60 

The high stresses often associated with nanoscale phenomena suggest that the normal stress 

dependence of the GSFE, and in particular of 𝛾𝑠𝑠𝑓 and/or 𝛾𝑢𝑠𝑓, are important. Rice and collaborators 

postulated that 𝛾𝑢𝑠𝑓 decreases under a high tensile stress 𝑇𝑛, facilitating crack tip dislocation emission 

[3, 10]. Such “opening softening” was estimated to decrease the critical energy release rate for crack-

tip dislocation emission 𝐺𝐼𝑒 by up to 30% in fcc metals [10]. Subsequently, the notion of “opening 65 

softening” was invoked in different contexts but without a quantitative analysis of its effects in each 
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particular problem [12, 13]. The need for quantification motivated several computational studies of 

the stress effects on the GSFE using molecular statics simulations [14, 15] and first principle 

calculations [16, 17]. All of these studies reported “opening softening”. The prior computational 

studies were performed under displacement boundary conditions, which we show below can be 70 

problematic. In addition, the Rice theory for dislocation emission is typically somewhat lower than 

detailed simulation studies [4] and so “opening softening” would lead to further deviations between 

theory and simulation. The present authors also recently introduced a new theory/analysis for crack-

tip dislocation emission and twinning that agrees very well with simulations of the critical stress 

intensity factor 𝐾𝐼𝑒 without including any “opening softening” effect [4, 9]. These factors motivate 75 

us to revisit the measurement/computation of the stress dependence of the GSFE more thoroughly 

than in earlier works. 

 

GSF calculations under an applied stress can be envisioned in principle through two 

thermodynamic interface quantities, (i) a generalized stacking fault (potential) energy GSFE, and (ii) 80 

a generalized stacking fault enthalpy (GSFH, consistent with the standard thermodynamic notation 

for the enthalpy as H=E+PV). The GSFE Ψ𝑔𝑠𝑓(∆𝑠, ∆𝑛) is a local surface constitutive law associated 

with shearing ∆𝑠 and normal displacement ∆𝑛. However, the total inelastic normal displacement 

observed under applied normal stress ∆𝑛(∆𝑠, 𝑇𝑛) extends over several atomic planes around the 

stacking fault and so is non-local. A ∆𝑛 cannot easily be imposed since there are actually individual 85 

internal variables ∆𝑛
(𝑖)

 for successive planar spacings {𝑖 = 0, ±1, ±2, … }. By changing variables from 

normal displacement to normal traction, we can define Ψ𝑔𝑠𝑓(∆𝑠, ∆𝑛(𝑇𝑛)) ≡ Ψ𝑔𝑠𝑓(∆𝑠, 𝑇𝑛) also as the 

GSFE (potential energy). Under normal traction, not all interatomic planar spacings {∆𝑛
(𝑖)

} are 

accessible; only those corresponding to the imposed traction 𝑇𝑛 can be measured. As noted above, 

Figure 1: Generalized stacking fault energy with full normal relaxation (blue 

squares) and relaxation only across the slip plane (red diamonds) computed in 

Aluminum [11] at T=0K. 
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the standard GSFE is precisely Ψ𝑔𝑠𝑓(∆𝑠, ∆𝑛(𝑇𝑛 = 0)) ≡ Ψ𝑔𝑠𝑓(∆𝑠, 𝑇𝑛 = 0) and the value of 90 

∆𝑛(𝑇𝑛 = 0) is not usually reported. Here, we apply a normal traction 𝑇𝑛 and directly measure 

Ψ𝑔𝑠𝑓(∆𝑠, 𝑇𝑛) and ∆𝑛(∆𝑠, 𝑇𝑛). The GSFE Ψ𝑔𝑠𝑓(∆𝑠, 𝑇𝑛) generally increases, or remains nearly constant, 

over a wide range of tractions approaching normal decohesion levels; there is no “opening softening”. 

Under an applied traction normal to the fault plane, the relevant thermodynamic quantity for 

the entire system is the enthalpy. Subtracting the enthalpy of the reference perfect crystal yields the 95 

GSFH, Ψ𝑔𝑠𝑓
𝑒𝑛𝑡ℎ(∆𝑠, 𝑇𝑛) = Ψ𝑔𝑠𝑓(∆𝑠, 𝑇𝑛) − 𝑇𝑛∆𝑛(∆𝑠, 𝑇𝑛). When the normal opening is positive, this 

quantity can decrease under increasing normal stress. Previously reported “opening softening” results 

are essentially calculations of Ψ𝑔𝑠𝑓
𝑒𝑛𝑡ℎ [14-17] (aside from detrimental finite size effects). However, 

the term “enthalpy” was never used, and the quantity was often reported as the GSFE (potential 

energy) under stress. The distinction between GSFE and GSFH is important. While Ψ𝑔𝑠𝑓
𝑒𝑛𝑡ℎ is the 100 

proper thermodynamic quantity for the entire system under a traction normal to an infinite fault plane, 

this quantity cannot easily be used in general mechanics problems and, if used improperly can lead 

to spurious conclusions. 

The importance of defining and distinguishing the various thermodynamic quantitates in 

mechanics problems is thus highlighted here in two applications: (i) fcc partial dissociation under 105 

applied normal stress, and (ii) crack-tip dislocation emission under mixed Mode II/I loading. We 

show that a precise use and/or understanding of Ψ𝑔𝑠𝑓(∆𝑠, 𝑇𝑛) and ∆𝑛(∆𝑠, 𝑇𝑛) enables quantitative 

understanding of explicit molecular statics simulations of these two problems. In particular, for crack-

tip dislocation emission, we demonstrate that there is no “opening softening” as previously reported 

and the simulations are entirely consistent with the underlying Ψ𝑔𝑠𝑓(∆𝑠, 𝑇𝑛) and ∆𝑛(∆𝑠, 𝑇𝑛). 110 

 The remainder of this paper is organized as follows. In Section 2, we introduce the methods 

for computing the GSFE and inelastic normal displacement under an applied normal tensile stress. 

Section 3 presents our results for the GSFE and inelastic normal displacement, as computed using 

interatomic potentials and first-principles methods, and the subsequent determinations of 

Ψ𝑔𝑠𝑓(∆𝑠, ∆𝑛) and Ψ𝑔𝑠𝑓
𝑒𝑛𝑡ℎ(∆𝑠, 𝑇𝑛). In Section 4, we show the errors that arise in the computation of the 115 

GSFE and GSFH when computed using displacement boundary condition; these rationalize previous 

literature results. In Section 5.1, we present the analysis of mechanics problems using the GSFE and 

inelastic normal displacements with the framework of the Eshelby method for defects in infinite 

elastic bodies. Section 5.2 presents the analysis and results of partial dislocation separation distance 

versus normal stress fcc metals. Section 5.3 presents results and analysis of crack-tip dislocation 120 

emission in mixed mode II/I loading. Finally, in Section 6, we discuss the general implications of our 

results. 
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2. GSFE under normal stress: simulation methods 

 We compute the GSFE under applied normal stress using interatomic potentials (and the 125 

LAMMPS code [18]) and first principles density-functional theory (DFT) calculations (VASP code 

[19-20]) in molecular statics. The GSFE for relative sliding of two crystalline blocks of material is 

computed in the standard manner (see Figure 2). At relative shear displacement ∆𝑠, the GSFE is 

computed as  

Ψ𝑔𝑠𝑓(∆𝑠, 𝑇𝑛) = (E(∆𝑠, 𝑇𝑛) − E(∆𝑠= 0, 𝑇𝑛)) 𝐴⁄  (1) 

where E(∆𝑠= 0, 𝑇𝑛) is the potential energy of a perfect crystal under stress 𝑇𝑛, E(∆𝑠, 𝑇𝑛) is the 130 

potential energy of the simulation cell at relative slip displacement 0 ≤ Δ𝑠 ≤ 𝑏𝑝, and A is the area of 

the simulated fault. Note that in the above, the work done by the applied stress is not included, so that 

Eq. 1 is the desired potential energy. 

  

 135 

In the interatomic potential computations, we first define a rectangular simulation cell oriented 

with X = [112], Y = [111̄] and Z = [1̄10], and dimensions 6√6𝑎0 × 20√3𝑎0 × 2√2𝑎0. We set 

periodic boundary conditions along the X and Z direction in the plane of the fault, and traction 

boundary conditions in the Y direction normal to the fault. The simulation cell length in the Y 

direction is sufficient to prevent any interaction between the upper and lower surfaces and the stacking 140 

fault. The desired stress 𝑇𝑛 along the Y=[111̄] direction is created by applying forces to atoms within 

𝑟𝑐 (𝑟𝑐 = cut-off distance of the interatomic potential) of the top and bottom Y boundaries (see Figure 

2a). At a given applied normal stress 𝜎𝑦𝑦 = 𝑇𝑛 we compute initial atomic positions and the initial 

Figure 2: a) Typical simulation cell for computing the GSFE under applied normal stress, with the lower and 

upper domains indicated by red and blue, and atoms on which forces are applied indicated in green. b) Stacking 

fault region for describing the local constitutive behavior for rigid block sliding under applied tractions.  

c) Inter-planar spacing around the stacking fault for a given shear displacement ∆𝑠 and applied tractions 𝑇𝑛. 

Atoms are visualized using OVITO [30]. 
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energy 𝐸(Δ𝑠 = 0, 𝑇𝑛) by minimizing the total energy using the “fire” method [21]. Under an applied 

load 𝑇𝑛, the cell sizes along X and Z are held fixed; thus lateral loads 𝜎𝑥𝑥 and 𝜎𝑧𝑧 develop as 𝑇𝑛 is 145 

increased. However, in finite-length simulation cells, allowing relaxation of the total lateral stresses 

includes a compensation for lateral stresses due to the fault itself; this leads to erroneous stresses 

away from the fault, and changes in stored elastic energy that are then attributed to the fault only. 

Thus, it is best to use fixed cell sizes along X and Z with periodic boundary conditions; the GSFE 

under uniaxial stress is shown in Appendix A for comparison and differences are negligible. After 150 

the initial minimization, the upper half of the crystal in the [112] slip direction is displaced relative 

to the (fixed) lower half by the displacement Δ𝑠. The applied normal stress is held fixed for all shear 

displacement values. As with standard GSF computations, atomic relaxation is allowed only in the Y 

direction normal to the slip plane and the minimum energy computed. We perform calculations in fcc 

Nickel, Copper and Aluminum using the Mishin et al. EAM interatomic interactions [11, 22]. 155 

First principle DFT calculations of the GSFE in Cooper, Aluminum and Magnesium are 

performed as follows. The exchange-correlation functional is treated within the generalized gradient 

approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) parametrization [23]. Core electrons 

are replaced by the projector augmented wave (PAW) pseudopotentials [24]. The cutoff energy of 

the plane wave basis set is 800eV for Cu, 500 eV for Al, and 400 eV for Mg, respectively. Simulation 160 

of the GSFE is accomplished using the tilted-cell method [25]. We start with a simulation cell in the 

fully-periodic bulk crystal structure with the X-Z plane parallel to the desired stacking fault plane. 

The (non-orthogonal) cell has lattice vectors (𝒂𝒙, 𝒂𝒚, 𝒂𝒛). A new periodic simulation cell with lattice 

vectors (𝒂𝒙, 𝒂𝒚 + Δ𝑠 𝒕, 𝒂𝒛) is then defined where 𝒕 is a unit vector lying in the X-Z slip plane and in 

the direction of the slip. The change in periodicity thus introduces an initial atomistic fault across the 165 

X-Z periodic boundary of the cell. All atoms are then permitted to relaxed in the Y direction normal 

to the fault and the length of the cell normal to the fault plane is also allowed to relax such that the 

normal stress is the desired applied stress, 𝜎𝑦𝑦 = 𝑇𝑛. This procedure is appropriate for computing the 

GSFE when atoms undergo no in-plane relaxations, which is true by symmetry for the fcc stable 

stacking fault position and is generally valid for fcc and hcp basal fault planes (see [26] for notable 170 

exceptions for other hcp slip planes). We use 12 atomic layers normal to the fault, which is just about 

sufficient to avoid SF-SF interactions of the periodic images for the close-packed planes in Cu, Al, 

and Mg. Our results for the stable stacking fault energies are then close to those reported in other 

work [26] using different methods and different cell sizes. Other details of the DFT parameters and 

geometry setup can be found in Ref. [26]. 175 

We now introduce few technical points that are crucial for achieving accurate DFT results. 

First, the force convergence criterion must be selected carefully. In some cases, it must be smaller 

than the value of 10−3eV/Å typically used in DFT studies. The smaller value is necessary due to 

This is a post-print of the following article: Andric, Predrag; Yin, Binglun; Curtin, W.A. Journal of the Mechanics and Physics of Solids
2019,, 262-279.. The formal publication is available at http://dx.doi.org/10.1016/j.jmps.2018.09.007 © 2019. This manuscript version is
made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

http://dx.doi.org/10.1016/j.jmps.2018.09.007


7 

 

energy contributions arising from the corresponding uncertainty in the stress state when stress 

boundary conditions are used. For an uncertainty in stress of 𝑑𝜎, the uncertainty in the energy is  180 

𝑑𝐸 =
𝑉

2𝐶
(𝑑𝜎2 + 2𝜎𝑑𝜎) assuming linear elasticity, where C is the plane-strain elastic modulus for 

loading along the y direction. Taking Mg as an example (𝐶33 = 63.6 GPa, atomic volume 22.9 Å3, 

12 atoms in the supercell), in the stress-free state (𝑇𝑛 = 0) force convergence at  

10−3eV/Å corresponds to 𝑑𝜎~7 ∙ 10−3 GPa and dE~7 ∙ 10−7 eV, which is negligible. However, at 

a stress 𝑇𝑛 = 5 GPa, the error is dE~0.9 meV. Since the GSFE energy is calculated by subtracting 185 

two supercell energies, this uncertainty in the supercell total energy can cause a large uncertainty in 

the computed GSFE, with uncertainty of ~3 mJ/m2 for Mg. Here, we choose 10−4eV/Å (~0.7 ∙

10−3 GPa) for Al and Mg, reducing the total error in energy to ~0.09 meV and thus good accuracy 

in the computation of the GSFE. For Cu, the effective elastic constant C is approximately four times 

larger than that of Mg so that a force tolerance of 10−3eV/Å leads to an error of 0.3 meV at 5 GPa, 190 

and hence only an error of 1.3 mJ/m2 in the GSFE. Difficulty in converging of ionic relaxations in 

Cu limits the force tolerance to 10−3eV/Å and so it is not possible to reduce the error further. This 

discussion also shows that a smaller number of layers introduces less error. But too few layers lead 

to spurious interactions among the periodic images of the SF. We find that 12 layers of atoms is 

satisfactory for avoiding both problems. 195 

 

3. GSFE under normal stress: results 

Figure 3(i) shows the GSFE Ψ𝑔𝑠𝑓(∆𝑠, 𝑇𝑛) as computed for Ni, Cu, and Al using interatomic 

potentials for a range of applied normal tensile stresses up to 𝑇𝑛 = 15GPa. In Ni and Cu, the entire 

GSFE curve increases with applied normal tensile stress; the increases in 𝛹𝑔𝑠𝑓 up to 10 GPa are fairly 200 

small, however. Similar trends are generally found in Al but the GSFE does decrease for the highest 

stress and large shear displacements, Ψ𝑔𝑠𝑓(∆𝑠> 0.7𝑏𝑝, 𝑇𝑛 = 7.5 𝐺𝑃𝑎), where the normal stress is 

approaching the material cohesive stress (maximum sustainable normal stress in the material). 

Focusing on the most important points of the GSFE, the unstable and stable stacking fault energies 

𝛾𝑢𝑠𝑓 and 𝛾𝑠𝑠𝑓, Figure 4 shows 𝛾𝑢𝑠𝑓 and 𝛾𝑠𝑠𝑓 normalized by their values at 𝑇𝑛 = 0. In Ni and Cu, 𝛾𝑢𝑠𝑓 205 

is fairly insensitive to stress up to ~10GPa, while 𝛾𝑢𝑠𝑓 increases more rapidly in Al. In contrast, 𝛾𝑠𝑠𝑓 

varies more rapidly with stress, especially in Al and Cu. Al does show “opening softening” 

(normalized values below unity) at 𝑇𝑛 > 6 𝐺𝑃𝑎. Overall, the trend for all materials is “opening 

hardening”. 
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 210 

Studies using EAM potentials enable us to analyze atom-by-atom energy changes around the 

fault. For all shear displacements, the energy contributions to the GSFE are localized to two (Ni and 

Cu) or three (Al) atomic planes on each side of the slip plane. Figure 5 shows examples at the unstable 

and the stable stacking fault displacements for Ni. This is fully expected since the GSFE is the energy 

change of the atoms due to the presence of the planar fault, and deviations from perfect crystal 215 

behavior are well-known to extend only a few layers of atoms from the defect plane even for much 

more drastic planar defects such as free surfaces and grain boundaries. 

Figure 6(i) shows the GSFE versus applied normal stress as computed via first-principles for 

Al, Cu, and the basal plane in Mg (which is very similar to fcc). In all three materials, the qualitative 

trends are similar to those obtained using interatomic potentials. There is no “opening softening”. For 220 

Figure 3: (i) The GSFE Ψ𝑔𝑠𝑓 , and ii) total inelastic normal displacement Δ𝑛 across the slip plane for different 

applied normal stresses 𝑇𝑛; (iii) The GSFE Ψ𝑔𝑠𝑓 for different applied inelastic displacements Δ𝑛; 

(iv) GSFH versus shear displacement Δ𝑠 for different applied normal stresses 𝑇𝑛. All values are computed 

with interatomic potentials at T=0K in a) nickel, b) copper and c) aluminum. 
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the stresses considered here, the DFT-computed GSFE is nearly constant in Cu and Mg and increases 

in Al. Quantitative differences between DFT and interatomic potentials are expected, with the DFT 

being the reference, but the differences are not significant relative to our main points. These results 

also show that the GSFE typically increases with applied stress. There is no “opening softening”, in 

contrast to prior concepts and results in this literature. This is the first main result of this paper.  225 

 

 

We further examine the inelastic normal displacement under applied normal stress. The 

∆𝑛(∆𝑠,  𝑇𝑛) represents a total change in atomic planar spacings, over several atomic layers around the 

stacking fault, due to the change in local atomic environment away from the perfect strained crystal. 230 

Defining ℎ𝑖 as the atomic inter-planar spacing perpendicular to the slip plane between the (𝑖 − 1)𝑡ℎ 

and 𝑖𝑡ℎ planes (see Figure 2c), ∆𝑛(∆𝑠,  𝑇𝑛) is computed as  

∆𝑛(∆𝑠,  𝑇𝑛) = ∑ [ℎ𝑖(∆𝑠,  𝑇𝑛) − ℎ𝑖(∆𝑠= 0, 𝑇𝑛)]

+∞

𝑖=−∞

 (2) 

Non-zero inelastic displacements are always found over the three atomic plane spacings (central plane 

and one on either side of the fault (−1 ≤ 𝑖 ≤ 1)) (Figure 2c) but can extend up to five plane spacings 

Figure 4: Normalized stable and unstable stacking fault energies in Ni (blue color), Cu (red color) and Al 

(green color) versus applied normal tensile stress.  

Figure 5: Atom-by-atom energy change during rigid block shear displacement at the point of the unstable stacking 

energy 𝛾𝑢𝑠𝑓 and stable stacking fault energy 𝛾𝑠𝑠𝑓 in fcc Ni under a) zero applied stress, and b) at the applied stress 

𝑇𝑛 = 10GPa. Note that contributions to the energy are confined to a few layers of atoms around the fault. Energies 

of atoms exceeding the energy scale are indicated.  
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(−2 ≤ 𝑖 ≤ 2) in some cases as computed by first principles methods. We note that in DFT 235 

computations there are very small variations in interplanar spacing throughout the entire cell due to 

non-zero forces below the DFT tolerance level; these are numerical noise and arise even in 

simulations of the stressed perfect crystal. Figure 3(ii) shows the total inelastic normal displacement 

∆𝑛(∆𝑠,  𝑇𝑛) computed via interatomic potentials for Ni, Cu, and Al at the various normal stresses 𝑇𝑛. 

Δ𝑛 generally increases with increasing applied stress. Only in Al at high shear displacement and high 240 

normal stress does the opening decrease. Figure 6(ii) shows similar trends in Δ𝑛 obtained from the 

first principle calculations, with no decreases in Δ𝑛 observed in any materials. Overall, the inelastic 

normal displacements follow the same trends with stress as the GSFE. 

From the results in Figures 3(i,ii), we can computed the GSFE Ψ𝑔𝑠𝑓(∆𝑠, ∆𝑛) for different 

magnitudes of the inelastic normal displacement Δ𝑛 over certain ranges of displacement as shown in 245 

Figures 3(iii). Only those inelastic normal displacements corresponding to equilibrium conditions at 

the imposed normal stresses are accessible but the trends are clear. Figure 3(iii) clearly demonstrates 

an “opening hardening” trend: the GSFE increases with increasing Δ𝑛. The physical origin of the 

“opening hardening” is not clear. At high stresses where the effect is largest, the entire material is 

deforming non-linearly and the inelastic normal displacements also vary with applied load. Hence, 250 

we have not been able to attribute the small total energy changes (that ultimately lead to increases in 

the fault energy) to a single specific mechanism. 

The GSFE and the total inelastic normal displacement then allow for the computation of the 

generalized stacking fault enthalpy (GSFH) as  

Ψ𝑔𝑠𝑓
𝑒𝑛𝑡ℎ(∆𝑠, 𝑇𝑛) =  Ψ𝑔𝑠𝑓(∆𝑠, 𝑇𝑛) − 𝑇𝑛∆𝑛(∆𝑠, 𝑇𝑛). (3) 

Figures 3(iv) and 6(iii) show the GSFH versus shear displacement 𝛥𝑠 and normal stress 𝑇𝑛 for all 255 

cases studied here. The GSFH always decreases when T𝑛 > 0, although Δ𝑛 is not always positive, 

and the decreases can be a significant fraction of the zero-stress energy. Incorporating this apparent 

“opening softening” directly into mechanics problems as a replacement for the GSFE is, however, 

not quite accurate. The GSFH is measured only when the planar fault extends entirely across the area 

of the system. Geometry effects in mechanics problems differ, and thus the use of GSFH is not 260 

appropriate in all cases. The combination of Ψ𝑔𝑠𝑓(∆𝑠, 𝑇𝑛) and ∆𝑛(∆𝑠, 𝑇𝑛), or the use of Ψ𝑔𝑠𝑓(∆𝑠, ∆𝑛) 

is more general, as we will show below. 
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4. GSFE under normal applied loading: boundary conditions and size effects 265 

 Direct use of stress boundary conditions leads to clear results and insights about the GSFE 

and the inelastic normal displacement ∆𝑛(∆𝑠, 𝑇𝑛), from which the GSFH can be computed. Previous 

computations reporting “opening softening” used displacement boundary conditions [14-17]. The 

enthalpy change associated with a localized planar defect in a material can be computed using either 

stress or displacement boundary conditions at infinity, and so in principle boundary conditions should 270 

not matter. However, only the enthalpy is obtained and simulations, especially DFT studies, are not 

performed on infinite systems, leading to size-dependent differences. For the stacking fault problem 

under an imposed normal displacement, the inelastic normal displacements lead to relaxation of the 

stresses throughout the entire simulation cell so as to maintain the imposed displacements on the cell. 

The relaxed stresses lead to relaxed elastic energies far from the stacking fault that are included into 275 

Figure 6: (i) The GSFE Ψ𝑔𝑠𝑓 , (ii) total inelastic normal displacement Δ𝑛 across the slip plane, and (iii) GSFH 

versus shear displacement Δ𝑠 for different applied normal stresses as computed in DFT in a) copper, b) 

aluminum and c) magnesium {0001}.  
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the calculation of the fault energy. The result is not the GSFE nor the GSFH, but asymptotically 

approaches the GSFH for large sizes.  

 The analysis of finite-sized cells under displacement control is simple because the planar fault 

problem is essentially one-dimensional in the Y dimension only. In a cell of length 𝐿𝑌 with imposed 

total displacement 𝑢𝑦, the strain in the reference calculation at zero shear displacement is  280 

ε𝑦𝑦 = 𝑢𝑦/𝐿𝑌. The total stored elastic energy in the cell of volume V is then 

𝐸𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
1

2
𝐶𝜀𝑦𝑦

2 𝑉 (4) 

and the normal traction is 𝑇𝑛 = 𝐶ε𝑦𝑦, where 𝐶 is the plane-strain elastic modulus for loading in the 

Y=[111̄] direction. At shear displacement Δ𝑠, with inelastic normal displacement ∆𝑛(Δ𝑠, 𝑇𝑛) across 

the cross-section of the cell, the total displacement is unchanged but now given by 𝑢𝑦 = ∆𝑛 + 𝜀𝑦𝑦𝐿𝑌. 

The elastic strain is thus decreased to ε𝑦𝑦 − ∆𝑛(Δ𝑠, 𝑇𝑛)/𝐿𝑌. The stored elastic energy in the system 285 

is then  

𝐸𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
1

2
𝐶(ε𝑦𝑦 − ∆𝑛(Δ𝑠, 𝑇𝑛)/𝐿𝑌)

2
𝑉. (5) 

The elastic energy released upon introduction of the shear displacement is the difference between 

Eqs. 4 and 5. Dividing by the area A, with 𝑉 = 𝐴𝐿𝑌, leads to 

Δ𝐸𝑒𝑙𝑎𝑠𝑡𝑖𝑐(Δ)

𝐴
= −𝐶ε𝑦𝑦∆𝑛(Δ𝑠, 𝑇𝑛) +

1

2
𝐶

Δ𝑛
2 (Δ𝑠, 𝑇𝑛)

𝐿𝑌
=  −𝑇𝑛∆𝑛(Δ𝑠, 𝑇𝑛) +

1

2
𝐶

Δ𝑛
2 (Δ𝑠, 𝑇𝑛)

𝐿𝑌
. (6) 

The change in total energy, including the actual change in potential energy Ψ𝑔𝑠𝑓(∆𝑠, 𝑇𝑛) of the fault, 

is then 290 

Ψ𝑔𝑠𝑓
𝑑𝑖𝑠𝑝(∆𝑠, 𝑇𝑛) = Ψ𝑔𝑠𝑓(∆𝑠, 𝑇𝑛) +

Δ𝐸𝑒𝑙𝑎𝑠𝑡𝑖𝑐(Δ)

𝐴

=  Ψ𝑔𝑠𝑓(∆𝑠, 𝑇𝑛) − 𝑇𝑛∆𝑛(Δ𝑠, 𝑇𝑛) +
1

2
𝐶

Δ𝑛
2 (Δ𝑠, 𝑇𝑛)

𝐿𝑌
 

(7) 

This result is neither the GSFE nor the GSFH, although it approaches the GSFH as 𝐿𝑌 → ∞. The rate 

of approach to the GSFH depends on ∆𝑛(Δ𝑠, 𝑇𝑛), which is unknown in advance and is both traction-

dependent and material dependent. Computations using a single simulation cell size for different 

tractions and/or different materials thus introduce uncontrolled errors in spite of appearing to be 

systematic. 295 

 We demonstrate the convergence issue explicitly using interatomic potentials under 

displacement boundary conditions as follows. We use same rectangular simulation cell (X = [112], 

Y = [111̄], Z = [1̄10]) and later cell dimensions (X=6√6𝑎0, 𝑍 = 2√2𝑎0) with periodic boundary 

conditions in X and Z. We consider Y lengths between 10 and 240 ⟨111⟩ atomic planes. For a desired 
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applied normal stress 𝑇𝑛, the corresponding applied normal strain ε𝑦𝑦 is computed from Hooke’s 300 

Law. The atomic positions are initialized by linearly displacing all atoms at 𝑦 by 𝑦ε𝑦𝑦 in the [111̄] 

direction. The initial total energy E(Δ𝑠 = 0, ε𝑦𝑦) is computed by relaxing all the non-boundary atoms 

using the “fire” method [21], while the boundary atoms (atoms within 𝑟𝑐 of the Y boundaries at 𝑦 =

0 and 𝑦 = 𝐿𝑦) are held fixed at the imposed displacements corresponding to the applied strain ε𝑦𝑦 

(see Figure 2a). We then rigidly slide the upper half of the crystal in [112] slip direction, holding the 305 

Y positions of the boundary atoms fixed and allowing all other atoms to relax in the Y direction 

normal to the slip plane. The total energy of the simulation cell E(Δ𝑠, ε𝑦𝑦) versus slip displacement 

is then computed for all three studied materials. The apparent energy change is then calculated using 

Eq. 1. 

 Figure 7 shows the normalized values of 𝛾𝑢𝑠𝑓 and 𝛾𝑠𝑠𝑓 at the applied strain of ε𝑦𝑦 = 0.045 as 310 

a function of the Y dimension (number N of [111̄] atomic layers). This applied strain corresponds to 

an applied stress of ~15.8GPa in Ni, ~9.8GPa in Cu, and ~5.1GPa in Al. Since all other points on the 

GSFE curve follow a similar evolution we do not present them. Figure 7 shows that at least 100 [111̄] 

atomic layers are needed for reasonable converged results Ψ𝑔𝑠𝑓
𝑑𝑖𝑠𝑝(∆𝑠, 𝑇𝑛)~Ψ𝑔𝑠𝑓

𝑒𝑛𝑡ℎ(∆𝑠, 𝑇𝑛) at this 

applied strain. In addition, since we do not control either the normal traction nor the inelastic normal 315 

displacements, and since the material might be nonlinearly elastic at high strains, the simulation 

results in Figure 7 may not be corrected simply by using Eq. 7.  

 

 The use of displacement boundary conditions in DFT has further been studied in Cu for the 

stable stacking fault energy 𝛾𝑠𝑠𝑓. The displacement boundary conditions are as described above, but 320 

using the tilted cell method and a cell length of 12 atomic layers. Table 1 shows 𝛾𝑠𝑠𝑓 and Δ𝑛 computed 

using stress boundary conditions along with 𝛾𝑠𝑠𝑓
𝑒𝑛𝑡ℎ, computed using Eq. 3, and 𝛾𝑠𝑠𝑓

𝑑𝑖𝑠𝑝
 computed using 

displacement boundary conditions for different applied normal stresses. With increasing applied 

Figure 7: The size dependence of a) 𝛾𝑢𝑠𝑓
𝑑𝑖𝑠𝑝

 and b) 𝛾𝑠𝑠𝑓
𝑑𝑖𝑠𝑝

 using displacement boundary conditions along with 

𝛾𝑢𝑠𝑓
𝑒𝑛𝑡ℎ and 𝛾𝑠𝑠𝑓

𝑒𝑛𝑡ℎ computed using Eq. 3 and shown on the right axis, at the applied strain of ε𝑦𝑦 = 0.045 in 

nickel (blue diamonds), copper (red squares) and aluminum (green circles). 
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stress, there is a difference between 𝛾𝑠𝑠𝑓
𝑑𝑖𝑠𝑝

 and 𝛾𝑠𝑠𝑓
𝑒𝑛𝑡ℎ, with 𝛾𝑠𝑠𝑓

𝑒𝑛𝑡ℎ < 𝛾𝑠𝑠𝑓
𝑑𝑖𝑠𝑝

 as expected. The difference 

here is not large because Δ𝑛(Δ𝑠 = b𝑝, T𝑛) in Cu is particularly small (see figure 6(ii))) but the trend 325 

is clear. Larger errors would be found in the other materials using the same cell size. Thus, obtaining 

converged results in DFT using displacement boundary conditions is not attractive since (i) the 

inelastic normal displacement Δ𝑛(Δ𝑠, T𝑛) is not known a priori, (ii) the size needed for convergence 

is not clearly established a priori, and (iii) the direct application of stress on much smaller cells, as 

done here, provides all the necessary information with far less computational effort. 330 

 

𝑇𝑛 

(GPa) 

𝛾𝑠𝑠𝑓 

(mJ/m2) 

Δ𝑛 

(Å) 

𝛾𝑠𝑠𝑓
𝑒𝑛𝑡ℎ (Eq.3) 

(mJ/m2) 

𝛾𝑠𝑠𝑓
𝑑𝑖𝑠𝑝

 

(mJ/m2) 

0 40.9 0.011 40.9 41.0 

5 40.6 0.014 33.6 34.6 

10 40.7 0.016 24.7 27.1 

 

 

5. Applications of the GSFE 

  Section 3 has clearly highlighted that the GSFE and GSFH are the two thermodynamic 335 

quantities that arise during GSF calculations under an applied normal stress. In addition, the crucial 

feature above is the inelastic normal displacement ∆𝑛 across the stacking fault plane that enters in 

both Ψ𝑔𝑠𝑓 and Ψ𝑔𝑠𝑓
𝑒𝑛𝑡ℎ. Here, we examine which thermodynamic quantity is most appropriate to use 

for describing different mechanics problems.  

 340 

5.1. GSFE: An analysis based on the Eshelby method 

 The stacking fault induces normal inelastic displacements ∆𝑛 of the atomic planes just around 

the fault plane (Figure 2b and 3(ii)). The local nature of ∆𝑛 suggests that stress dependence of the 

stacking fault can be derived using an Eshelby-type analysis [27] where the inelastic normal 

displacement is treated as an “eigenstrain” 𝜺𝑇 associated with an “inclusion” confined to the stacking 345 

fault region. Any finite length stacking fault must be bounded by partial dislocations but here we first 

outline the general Eshelby analysis and then in Sec. 5.2 we apply it to the prediction of the fcc 

Shockley partial dissociation distance under applied normal stress.  

Table 1: Stable stacking fault energy 𝛾𝑠𝑠𝑓 and inelastic normal displacement Δ𝑛 computed in copper via DFT using 

stress boundary conditions along with the stable stacking fault enthalpy 𝛾𝑠𝑠𝑓
𝑒𝑛𝑡ℎ computed using Eq. 3, and 𝛾𝑠𝑠𝑓

𝑑𝑖𝑠𝑝
computed 

using displacement boundary conditions.  

This is a post-print of the following article: Andric, Predrag; Yin, Binglun; Curtin, W.A. Journal of the Mechanics and Physics of Solids
2019,, 262-279.. The formal publication is available at http://dx.doi.org/10.1016/j.jmps.2018.09.007 © 2019. This manuscript version is
made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

http://dx.doi.org/10.1016/j.jmps.2018.09.007


15 

 

 Following standard analysis, consider a body with no inclusion that is subjected to external 

surface tractions 𝑻𝐴 applied over the boundary S. The total free energy of the body, which is the 350 

generalized enthalpy, is  

𝐹1 =
1

2
∫ 𝝈𝐴: 𝜺𝐴 𝑑𝑉

𝑉

− ∫ 𝑻𝐴𝒖𝐴 𝑑𝑆

𝑆

 (8) 

where 𝝈𝐴, 𝜺𝐴 and 𝒖𝐴 are the stress, strain, and displacement due to the applied load 𝑻𝐴. The first 

term is the elastic energy stored in the volume V and the second term is the work done by the applied 

tractions 𝑻𝐴 on S. Now consider the insertion of an inclusion of area A having the same elastic moduli 

as the body but having a chemical energy change Ψ𝑔𝑠𝑓𝐴 and undergoing some eigenstrain 𝜺𝑇. The 355 

enthalpy of the system is then 

𝐹2 =
1

2
∫(𝝈𝐴 + 𝝈): (𝜺𝐴 + 𝜺 − 𝜺𝑇) 𝑑𝑉

𝑉

− ∫ 𝑻𝐴(𝒖𝐴 + 𝒖) 𝑑𝑆

𝑆

+ Ψ𝑔𝑠𝑓𝐴 (9) 

where 𝝈, 𝜺 − 𝜺𝑇 and 𝒖 are additional and unknown stress, elastic strain, and displacement fields, 

respectively, generated by the inclusion that undergoes some eigenstrain 𝜺𝑇. Using integration by 

parts, Gauss law, and some simple algebraic manipulations (for more details see [27-28]) the enthalpy 

can be written as 360 

𝐹2 =
1

2
∫ 𝝈𝐴: 𝜺𝐴 𝑑𝑉

𝑉

− ∫ 𝑻𝐴𝒖𝐴 𝑑𝑆

𝑆

−
1

2
∫ 𝝈: 𝜺𝑇 𝑑𝑉

𝑉

− ∫ 𝑻𝐴𝒖 𝑑𝑆

𝑆

+ Ψ𝑔𝑠𝑓𝐴. (10) 

The third and fourth terms are elastic energy stored in the body only due to the inclusion eigenstrain 

and an interaction energy corresponding to the external work done by the deformations caused by the 

inclusion, respectively. The change in enthalpy is then 

Δ𝐹 = −
1

2
∫ 𝝈: 𝜺𝑇 𝑑𝑉

𝑉

− ∫ 𝑻𝐴𝒖 𝑑𝑆

𝑆

+ Ψ𝑔𝑠𝑓𝐴. (11) 

Our computational results above shows that the Ψ𝑔𝑠𝑓 itself is stress-dependent, but this can be folded 

into Eq. 11 by self-consistently computing the actual stress inside the inclusion. This does not change 365 

the main features of our analysis. 

 The analysis presented above is rather general and does not depend on the inclusion shape. 

Now, consider a plate-like inclusion that extends across the entire crystal. This corresponds to the 

stacking fault configuration used to compute the GSFH (see Sec. 2 and Figure 2). The first term in 

Eq. 11 then disappears since the inclusion is not constrained by the surrounding elastic material and 370 

therefore generates no additional stress (𝝈 → 0). Thus, the change in crystal enthalpy becomes 

Δ𝐹 = −𝑇𝑛Δ𝑛𝐴 + Ψ𝑔𝑠𝑓𝐴 (12) 
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where 2𝒖 = Δ𝑛 = 𝑐𝑜𝑛𝑠𝑡 on the body’s outer boundary (𝒖/2 displacements on the top and bottom 

surfaces normal to the fault). Dividing Eq. 12 by the stacking fault area leads to 

Δ𝐹

𝐴
= −𝑇𝑛Δ𝑛 + Ψ𝑔𝑠𝑓 ≡ Ψ𝑔𝑠𝑓

𝑒𝑛𝑡ℎ, (13) 

which is precisely the GSFH. Note that Eq. 13 is only valid when the stacking fault region exists 

across the entire crystal. When the stacking fault region is confined, e.g. surrounded by elastic 375 

material (Shockley partial dislocations in fcc metals, dislocation emerging from a grain boundary, 

etc.), the change in crystal enthalpy is given by Eq. 11.  

Further integration of Eq. 11 using Gauss law leads to the alternative expression 

Δ𝐹

𝐴
= −

1

2𝐴
∫ 𝝈: 𝜺𝑇 𝑑𝑉

𝑉𝐼

−
1

𝐴
∫ 𝝈𝑨: 𝜺𝑇 𝑑𝑉

𝑉𝐼

+ Ψ𝑔𝑠𝑓 . (14) 

The two volume integrals are non-zero only within the inclusion volume VI because 𝜺𝑇 exists only 

inside the inclusion, regardless of the inclusion shape. Often, the first term is small because the 380 

additional stress caused by the inclusion eigenstrain is proportional to 𝜺𝑇 and so this term is second 

order in 𝜺𝑇. The second term is similar to the contribution −𝑇𝑛Δ𝑛 but is not exactly the same. From 

Eq. 14, it is clear that, even for an infinite elastic space subject to traction boundary conditions, the 

GSFH emerges only as a special case for a specific geometry (the infinite fault), although the overall 

free energy change has an “enthalpy-like” nature to it (due to the second term in Eq. 14). 385 

 

5.2 Shockley partial dislocation dissociation under applied normal stress  

The analysis presented in the previous section can be applied to analyze the stress dependence 

of fcc partial dislocation spacing. In fcc metals, it is energetically favorable for a perfect dislocation 

of Burgers vector 
1

2
⟨110⟩ to dissociate into two Shockley partial dislocations with Burgers vectors of 390 

the 
1

6
⟨112⟩ type [2]. The slip in between the two partial dislocations, along the ⟨112⟩ direction 

between closed-packed {111} atomic planes, generates a stacking fault with energy cost (per unit 

area) 𝛾𝑠𝑠𝑓 = 𝛹𝑔𝑠𝑓(𝛥 = 𝑏𝑝, 𝑻𝐴 = 0). The elastic interactions between the two partials are repulsive 

and so the partial dislocations have an equilibrium separation that balances the elastic and stacking 

fault energies.  395 

At zero applied normal stress, the analysis is standard; we use isotropic elasticity to enable 

clear analytic expressions. We consider an infinitely long edge dislocation lying along the 𝝃 = 𝒙̂ and 

dissociated into two parallel partials with a stacking fault between them (Figure 8). The partial 

Burgers vectors 𝒃1 and 𝒃2 lie at angles 𝜃1 = 60⁰ and 𝜃2 = 120⁰ with respect to the dislocation line 

𝝃. At partial separation d, the crystal energy (per unit length) is  400 
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𝐹 = 𝑊1 + 𝑊2 + 𝑊12 + 𝛾𝑠𝑠𝑓𝑑, (15) 

where 𝑊1 and 𝑊2 are the elastic self-energies of the partial dislocations, and 𝑊12 is the elastic 

interaction energy between the two partial dislocations [2] 

𝑊12 = − 
𝜇(𝒃1 ⋅ 𝝃)(𝒃2 ⋅ 𝝃)

2𝜋
𝑙𝑛

𝑑

|𝒃|
−

𝜇

2𝜋(1 − 𝜈)
[(𝒃1 × 𝝃) ⋅ (𝒃2 × 𝝃)]𝑙𝑛

𝑑

|𝒃|
 (16) 

with 𝜇 and 𝜈 the shear modulus for sliding along ⟨110⟩ direction and Poisson’s ratio, respectively. 

The self-energies of each partial dislocation do not depend on the partial separation and so do not 

influence the equilibrium separation. Therefore the equilibrium distance minimizes 𝑊12 + 𝛾𝑠𝑠𝑓𝑑, 405 

leading to the well-known result  

𝑑 =
𝜇𝑏𝑝

2

8𝜋𝛾𝑠𝑠𝑓

𝜈 + 2

1 − 𝜈
. (17) 

Using material properties for fcc Ni and Al as described by the EAM potential [11] (see Appendix 

B), the dissociation distances are 𝑑0 = 16.3Å and 𝑑0 = 10.1Å, respectively. A full anisotropic 

analysis for Ni yields 19.1Å, but anisotropy does not affect the major findings below. 

 410 

We now examine the partial dislocation dissociation distance with increasing applied stress 

perpendicular to the slip plane 𝑻𝐴 = 𝑇𝑦 = 𝑇𝑛. Eq. 17 suggests that applied normal stress nominally 

affects the stable stacking fault energy. Because the stacking fault defect is completely surrounded 

by linearly elastic material, we treat the stacking fault as a defect with an eigenstrain using the analysis 

of the previous section (Eq. 14), as follows. The inelastic normal displacements exist over several 415 

atomic planes around the fault plane. We thus consider the stacking fault as an elliptic cylindrical 

inclusion having major axis length d (the stacking fault length) and minor axis length 𝑎 = 3ℎ where 

Figure 8: Geometry used to simulate the equilibrium separation d between Shockley partial dislocations under 

normal stress applied that is perpendicular to the slip plane (along y axis). Red color indicates partial dislocations 

and dislocation lines along x axis, while the grey color represents the stacking fault. Orange color indicates the 

elliptic cylinder that undergoes some eigenstrain 𝜺𝑻 = 𝜀𝑦𝑦
𝑇 = 𝛥𝑛(𝛥𝑠, 𝑇𝑛)/𝑎. Blue color indicates boundary atoms.  
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h is the {111} atomic plane spacing (Figure 8). The choice of 𝑎 = 3ℎ is based on the measured 

inelastic normal displacements in each plane, as shown in Figure 9. The total inelastic displacement 

Δ𝑛(Δ𝑠, 𝑇𝑛) is the sum over the planes. DFT calculations show inelastic displacements over one 420 

additional pair of layers, suggesting 𝑎 = 5ℎ, but this does not influence the main result (see below). 

The inclusion has the same elastic properties as the matrix and an eigenstrain 𝜺𝑇 = 𝜀𝑦𝑦
𝑇 = 

Δ𝑛(Δ𝑠 = 𝑏𝑝, 𝑇𝑛)/𝑎. The eigenstrain itself depends on the applied normal stress and so is a non-linear 

eigenstrain (see Figure 9); again, this does not influence the general analysis. 

 425 

Due to the inclusion with eigenstrain but with no applied stress, there is an additional elastic 

strain energy contribution per unit length of dislocation of  

𝑊𝐼 = −
1

2
∫ 𝝈: 𝜺𝑇 𝑑𝐴

𝐴𝐼

. (18) 

where 𝐴𝐼 = 𝑎𝑑 𝜋 4⁄  is area of the inclusion in the y-z plane. The stress 𝝈 inside the elliptical inclusion 

is constant [27], and given by  

𝝈 = 𝑪(𝑺 − 𝑰)𝜺𝑇 430 

where C is the stiffness tensor, S the dimensionless Eshelby tensor for an elliptic cylinder [27, 28] 

and I the identity tensor. Within isotropic elasticity, 𝐶11 = 2𝜇(1 − 𝜈)/(1 − 2𝜈), 𝐶12 = 2𝜇𝜈/(1 −

2𝜈) and 𝐶44 = 𝜇. The elastic energy (per dislocation length) due to 𝜺𝑇 is then simply  

𝑊𝐼 = −
1

2
𝑪(𝑺 − 𝑰)𝜺𝑇: 𝜺𝑇𝐴𝐼 (19) 

This contribution is, however, generally negligible. Note also that the interaction energy between the 

partial dislocations and the inclusion stress field is zero, in isotropic elasticity, because the eigenstrain 435 

𝜺𝑻 has only one non-zero component along y direction and the dislocation stress field is antisymmetric 

Figure 9: Inelastic vertical displacement at the stable stacking fault position (Δ𝑠 = 𝑏𝑝) in a) Ni and b) Al 

between atomic planes immediately across the slip plane Δ𝑛
(0)

 (red color), and between atomic planes just 

above and below the slip plane Δ𝑛
(1)

 (blue color). The inelastic vertical displacement is zero everywhere else, 

as shown here for Δ𝑛
(2)

 (orange color). 
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with respect to the x-z plane. So, at zero applied traction, the energy remains essentially that of  

Eq. 15 and the dissociation distance that of Eq. 17.  

When a stress is applied normal to the stacking fault plane, the second energy contribution in 

Eq. 14 must be added to the total energy. For the (elliptical) inclusion with the 𝜺𝑻, this interaction 440 

energy is  

𝑊𝜎 = −𝝈𝐴: 𝜺𝑻𝐴𝐼 . (20) 

The equilibrium dissociation distance d then minimizes the energy 

𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊12 + Ψ𝑔𝑠𝑓(Δ𝑠 = 𝑏𝑝, 𝑇𝑛) 𝑑 + 𝑊𝐼 + 𝑊𝜎.  (21) 

Since 𝝈𝐴 = 𝜎𝑦𝑦
𝐴 = 𝑇𝑛, 𝜺𝑻 = 𝜀𝑦𝑦

𝑇 = Δ𝑛(Δ𝑠 = 𝑏𝑝, 𝑇𝑛)/𝑎, 𝐴𝐼 = 𝑎𝑑 𝜋 4⁄ , and 𝑊𝐼 is negligible, the 

energy functional reduces to the simple form 

𝑊 = 𝑊12 + 𝑑 [Ψ𝑔𝑠𝑓(Δ𝑠 = 𝑏𝑝, 𝑇𝑛)  −
𝜋

4
𝑇𝑛Δ𝑛(Δ𝑠 = 𝑏𝑝, 𝑇𝑛)] . (22) 

The stress dependence of the GSFE thus appears to reduce the relevant stacking fault energy. The 445 

partial separation is then predicted to be 

𝑑(𝑇𝑛) =
𝜇𝑏2

8𝜋 [Ψ𝑔𝑠𝑓(Δ𝑠 = 𝑏𝑝, 𝑇𝑛)  − (
𝜋
4) 𝑇𝑛Δ𝑛(Δ𝑠 = 𝑏𝑝, 𝑇𝑛)]

𝜈 + 2

1 − 𝜈
. (23) 

There are four contributions to the stress dependence of 𝑑(𝑇𝑛): (i) the interaction energy between two 

partials, (ii) the change of Ψ𝑔𝑠𝑓(Δ𝑠 = 𝑏𝑝, 𝑇𝑛) with the applied stress (Figure 4), (iii) the coupling of 

applied stress and inelastic displacement Δ𝑛, and (iv) the geometrical parameter 𝜋/4 arising because 

the inelastic displacement is spread over several planes and localized to the dislocation volume, 450 

represented by the elliptical geometry. The net result is an increase in the partial dislocation separation 

with increasing applied normal stress – that is, there is an “opening softening”. However, the direct 

application of the GSFH as a replacement for the GSFE would not have the factor of π/4, and thus 

would predict a larger partial spacing.  

 As seen in Figure 9, the inelastic normal displacements at small 𝑇𝑛 for Ni are negative and are 455 

zero at just above 𝑇𝑛 = 3GPa. Thus, the theory predicts that the dissociation distance will actually 

decrease for 𝑇𝑛 < 3GPa. In Al, ∆𝑛 is positive for all 𝑇𝑛 and much larger than in Ni, and so the 

dissociation distance is predicted to increase, and more rapidly than in Ni. A subtlety in applying the 

elasticity analysis at high 𝑇𝑛 is that the underlying material becomes nonlinearly elastic. To account 

for this, we use the tangent modulus 𝜇 = 𝜇(𝑇𝑛) and Poisson ratio at the far-field applied stress 𝑇𝑛 460 

(see Appendix B). This approximation is valid because the problem can be envisioned as first 

homogeneously deforming the entire material (non-linearly) and then adding a dissociated dislocation 

into this material. Linearizing around the homogeneously-deformed state enables application of 

superposition upon addition of the dislocation, similar to the usual introduction of a dislocation into 
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an unstrained (but still non-linear) atomistic material. Figure 10 shows the partial spacing versus 465 

applied normal stress as predicted using (i) Eq. 23, and (ii) Eq. 17 with Ψ𝑠𝑠𝑓
𝑒𝑛𝑡ℎ(Δ𝑠 = 𝑏𝑝, 𝑇𝑛). In both 

cases we use 𝜇 = 𝜇(𝑇𝑛). There are significant quantitative differences between two cases, especially 

at higher applied loads. Both cases (i) and (ii) do show an “opening softening” effect, although it is 

almost zero in Ni for 𝑇𝑛 < 3GPa due to the small negative inelastic eigenstrains. 

 470 

To evaluate the above predictions, we execute simulations using interatomic potentials for Ni 

and Al. We use the standard methods [29], as follows. The simulation cell is oriented with X = [1̄21̄], 

Y = [111] and Z = [101̄] (Figure 8) with dimensions of ~600x25x250 Å (345,400 atoms) that we 

have verified to be sufficient for converged results. We insert a {111}⟨110⟩ edge dislocation by 

adding a periodic {110} plane in the upper half of the crystal that is spread over predicted equilibrium 475 

separation distance at 𝑇𝑛 = 0. Periodic boundary conditions are applied along X and Z directions with 

free surface in Y. The system energy is then minimized by the “fire” method with force tolerance 

10−6eV/ Å on every atom. The equilibrium distances are then measured as 𝑑0 = 21.8Å in Ni, and 

𝑑0 = 13.6Å in Al; these are slightly higher than predicted by Eq. 17 but typical for fcc metals due to 

the neglect of non-linear effects, spreading of the partial Burgers vector, and the assumption of 480 

isotropic elasticity. A normal traction 𝑇𝑛 is then applied on the system via vertical forces applied on 

the boundary atoms within 𝑟𝑐 of the Y surface boundaries (Figure 8). The system energy is again 

minimized and the equilibrium partial separation measured. The simulated partial spacing versus 

applied stress 𝑇𝑛 is shown in Figure 10 along with the previous predictions. The simulations agree 

very well with the predictions of Eq. 23, which is the complete theory including the multi-plane 485 

distribution of inelastic normal displacements represented as an elliptical inclusion. The prediction 

using simply the enthalpy Ψ𝑠𝑠𝑓
𝑒𝑛𝑡ℎ(Δ𝑠 = 𝑏𝑝, 𝑇𝑛) shows the same trend, but is much larger than observed 

in both Ni and Al. The simulation results thus confirm the full theory. There is an “opening softening” 

Figure 10: Equilibrium separation between partial dislocations in a) Ni and b) Al at different applied stress 

that is perpendicular to the slip plane, normalized with its value at zero applied load, as predicted by equation 

17 with 𝛾𝑠𝑠𝑓
𝑒𝑛𝑡ℎ

 (black line), or by Eq. 23 (blue color), and as observed in atomistic simulations (orange 

squares). 
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effect due to the coupling of the inelastic normal displacement to the applied stress, but it is smaller 

than predicted simply by using the GSFH. 490 

 

5.3 Crack-tip dislocation emission under mixed Mode II/I loading 

The previous section has shown a softening effect with applied normal stress for an existing 

dislocation with existing stacking fault in an infinite elastic medium. Many problems of interest 

involve dislocation nucleation in which the fault is emerging from some stress concentration and the 495 

relevant quantity is the unstable stacking fault energy. Here, we examine the effects of normal stress 

on one standard problem: emission of a (partial) dislocation from the crack tip of an fcc metal. We 

use Mode II loading, with an additional Mode I loading to create the normal stress acting on the plane 

of the dislocation nucleation. This problem cannot be treated using the Eshelby analysis of Sec. 5.1 

since the partial stacking fault emerges from a crack and so is not surrounded by an infinite elastic 500 

medium. 

A theory for dislocation emission from a crack tip under Mode II loading was developed by 

Rice [3]. In Mode II loading, the slip plane is coplanar with the crack plane (Figure 11a) and the 

critical Mode II stress intensity factor for dislocation emission 𝐾𝐼𝐼𝑒 depends on the unstable stacking 

fault energy 𝛾𝑢𝑠𝑓 = Ψ𝑔𝑠𝑓(Δ𝑠 ≈ 𝑏𝑝/2) and the material elastic properties. The Rice theory agrees well 505 

with detailed simulations for this loading scenario [4]. For the same crack geometry under mixed 

Mode II/I loading, there is no exact solution. However, a numerical solution can be obtain by 

introducing the coupled opening-shear constitutive law Ψ𝑔𝑠𝑓(∆𝑠, ∆𝑛) along the slip plane and solving 

coupled integral equations for the slip displacement of an incipient dislocation emerging from the 

crack tip [10]. Within this framework, Rice and co-workers showed that 𝐾𝐼𝐼𝑒 decreases with 510 

increasing applied Mode I stress intensity factor 𝐾𝐼. However, the inelastic potential used in that 

work, which is derived from Ψ𝑔𝑠𝑓(∆𝑠, ∆𝑛), had explicit “opening softening” of 𝛾𝑢𝑠𝑓; the predicted 

softening was thus not due directly to the enthalpy Ψ𝑢𝑠𝑓
𝑒𝑛𝑡ℎ. The full mechanics analysis introduces the 

coupling of crack-tip stresses and slip along the slip plane through the potential energy Ψ𝑔𝑠𝑓(∆𝑠, ∆𝑛). 

In contrast to the law developed by Rice, the detailed results here show that 𝛾𝑢𝑠𝑓 = Ψ𝑔𝑠𝑓(Δ𝑠 ≈515 

𝑏𝑝

2
, ∆𝑛) is nearly independent of the normal opening (see Figure 3(iii)), indicating that 𝐾𝐼𝐼𝑒 should be 

nearly independent of an applied 𝐾𝐼. 

To resolve the discrepancy between results in [10] and results in Figure 3(iii), and their 

presumed consequences on dislocation emission, we perform standard “K-test” simulations using the 

interatomic potentials for Ni, Cu and Al as follows. We model a semi-infinite crack under plane-520 

strain stress intensity 𝐾𝐼𝐼 + 𝐾𝐼 loading conditions. A single fcc crystal is oriented with 𝑋 = [112], 

𝑌 = [111̅] and 𝑍 = [1̅10] and dimensions approximately 120 × 120 × 1nm with periodic boundary 
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conditions along Z. A crack is inserted into the material for X<0, Y=0 with the crack front along Z at 

X=0. The cracked specimen is loaded by applying atomic displacements to all atoms corresponding 

to the desired mixed Mode II/I anisotropic displacement field for linear elastic fracture mechanic. The 525 

entire system is then relaxed to a minimum energy while holding the boundary atoms within 2𝑟𝑐 

(𝑟𝑐 =cut-off distance of the interatomic potential) of the outer boundary fixed at the elastic solution. 

Additional load increments Δ𝐾 are applied in the same manner. More details can be found in Ref. 

[4]. In each simulation we hold the applied 𝐾𝐼 fixed at the desired value and incrementally increase 

the applied 𝐾𝐼𝐼 until dislocation emission occurs.  530 

Simulating an atomically sharp crack at loads below the stress intensity for Griffith cleavage 

𝐾𝐼𝑐 is always challenging since the crack is unstable to closure – the traction free crack surfaces 

cannot be simple imposed on atoms. To address this issue we remove one layer of atoms and 

artificially delete the atomic interactions across the newly created crack surfaces (see Figure 11). 

Within this crack geometry, emission remains controlled only by the shear response along the slip 535 

plane, and no fictitious effects arise near the crack tip that would unduly influence the emission under 

mixed Mode II/I loading. 

 

Figure 12 shows the simulated 𝐾𝐼𝐼𝑒 as a function of the applied 𝐾𝐼 in Ni, Cu and Al, 

respectively. There is no “opening softening” observed: the value of 𝐾𝐼𝐼𝑒 is essential independent of 540 

𝐾𝐼. If there is any effect at all, it is a tendency toward increasing 𝐾𝐼𝐼𝑒. The near-crack-tip opening 

stresses (normal stresses across the slip plane), computed using the average virial stresses on the 

atoms marked by stars in Figure 11a, are shown in Figure 12. Due to surface effects, the atomic virial 

stresses on the crack tip atoms are not reliable; the stresses shown in Figure 12 are thus a lower bound. 

At 𝐾𝐼 = 0MPa√m, the near-tip atoms are in normal compression. This is entirely expected because 545 

the inelastic normal displacement ∆𝑛 is positive at ∆𝑠≈ 𝑏𝑝/2. At zero normal stress, the stacking fault 

Figure 11: a) Crack geometry in mixed Mode II/I loading formed by removing one layer of atoms and then 

by artificially canceling the interaction between the atoms marked with black circles. b) Crack geometry after 

dislocation emission. Opening stress just before the emission is measured between atoms marked with stars. 

Atoms are colored based on Common Neighbor Analysis [30]; green for fcc, red for hcp and white for surface 

atoms.  
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cannot expand by ∆𝑛 because of the constraint of the surrounding elastic material. The crack-tip 

inelastic displacement is then smaller than ∆𝑛 and the normal stress is naturally compressive. With 

increasing 𝐾𝐼, the near-tip atoms do experience tensile opening stresses (Figure 12), as expected, and 

these stresses can reach levels of 5-10 GPa. Yet, 𝐾𝐼𝐼𝑒 remains unaffected by these high normal 550 

stresses. This is not surprising since (i) the local unstable stacking fault energy Ψ𝑔𝑠𝑓(Δ𝑠 ≈ 𝑏𝑝/2, 𝑇𝑛) 

is constant or increasing (see Figure 4a), and (ii) the work done by 𝑇𝑛 over the actual crack-tip 

inelastic displacement is small/negligible because the crack-tip inelastic displacement is much 

smaller than ∆𝑛. Use of the GSFH at the tip would be incorrect because it would include work done 

by 𝑇𝑛 over the ∆𝑛. We conclude that proper analysis requires the use of Ψ𝑔𝑠𝑓(∆𝑠, ∆𝑛) that is derived 555 

from Ψ𝑔𝑠𝑓(∆𝑠, 𝑇𝑛) and ∆𝑛(∆𝑠, 𝑇𝑛). 

Finally, in all three materials, there is a change in the emission plane from the upper (initial) 

plane to the 1 atomic layer lower plane, beyond some high level of 𝐾𝐼. This change occurs at very 

high normal opening stresses, suggesting that the opening stresses on the original slip plane are 

suppressing emission. The emission then shifts to the lower slip plane. We cannot clearly attribute 560 

this shift to normal stress effects – there are likely additional non-linear crack-tip processes that 

develop, and detailed analysis is far beyond the scope of this paper. We only note that the normal 

stresses on the original slip plane are very high and yet emission on that plane does not occur.  

 

 To summarize, no “opening softening” effect is observed in the very well controlled mixed-565 

mode 𝐾𝐼𝐼/𝐾𝐼 loading test. This is entirely consistent with the absence of “opening softening” in the 

Figure 12: Molecular statics results of the critical stress intensity factor 𝐾𝐼𝐼𝑒 as a function of the applied 𝐾𝐼  in 

mixed Mode II/I loading in nickel (blue diamonds), copper (red squares) and aluminum (green circles). Crack-

tip opening stresses just before the emission are indicated for every applied 𝐾𝐼 . Solid symbols correspond to 

the emission along the upper (initial) slip plane, while the open symbols correspond to the emission along the 

lower slip plane.  
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GSFE measured for these same materials. While the GSFH is the relevant thermodynamic quantity 

for specific GSF calculations under an applied stress, it is not directly relevant to the crack tip 

problem. Based on our examinations, reasons for the reported decrease in 𝐾𝐼𝐼𝑒 with increased 𝐾𝐼 in 

simulations reported in [10] is not due to GSFH but rather due to (i) poorly controlled crack-tip 570 

conditions in the simulations leading to spurious effects on emission, (ii) use of a Ψ𝑔𝑠𝑓(Δ𝑠, Δ𝑛) 

computed without accounting for the non-linear response of the atomic system, and (iii) subtraction 

of tension elastic effects assuming only linear response of the system. This test case and the analysis 

in Sections 5.1 and 5.2 indicated that mechanics problems are best analyzed using the combination 

of Ψ𝑔𝑠𝑓(∆𝑠, 𝑇𝑛) and ∆𝑛(∆𝑠, 𝑇𝑛) or using Ψ𝑔𝑠𝑓(∆𝑠, ∆𝑛), if computable.  575 

 

6. Concluding remarks 

 Using both interatomic potentials and first principle calculations, we have demonstrated that 

the generalized stacking fault energy (GSFE) in various metals (Ni, Cu, Al, Mg) generally increases 

with increasing far-field applied tensile stress normal to the slip plane. There is almost no evidence 580 

of “opening softening” that has been envisioned and reported in the literature. An important additional 

outcome is that the stacking fault is not a pure-shear defect: shear sliding gives rise to stress-dependent 

inelastic normal displacements between the atomic planes around the slip plane, leading to a net 

displacement Δ𝑛. This net inelastic displacement is typically positive, and does couple to the applied 

stress, giving rise to a generalized stacking fault enthalpy (GSFH) that does decrease with increasing 585 

normal stress. However, the apparent “opening softening” observed in the GSFH does not directly 

translate to “opening softening” in all mechanics problems involving stacking faults. 

The above results are examined via simulation for two canonical problems: the partial 

dissociation spacing of dislocations in fcc metals and the emission of a dislocation from a crack tip. 

Theory using the GSFE and opening Δ𝑛 as an eigenstrain shows that the partial spacing does increase 590 

with increasing normal stress, consistent with “opening softening”, but not to the degree predicted 

using the GSFH. Simulations fully support the analysis. Simulations of crack tip emission under 

Mode II/Mode I loading show no change in the critical Mode II stress intensity for emission due to 

applied Mode I, and thus no “opening softening”, in spite of normal stresses at the crack tip reaching 

5-10 GPa. This is consistent with the need to analyze mechanics problems using the GSFE and Δ𝑛 595 

rather than the GSFH directly. In previous work on crack tip emission in Mode I, we also obtained 

quantitative agreement with many simulations using an analysis that does not involve any effects of 

normal stress on the slip behavior [4].  

Overall, the present study provides a fairly complete understanding of the effects of normal 

stress on stacking fault energies, and demonstrates the consequences for several different situations. 600 

“Opening softening” is not a general phenomenon. Analysis of any problem requires consideration 
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of the GSFE and the net inelastic opening displacement Δ𝑛, and conclusions depend on the specific 

problem. The results and understanding here thus provide a basis for detailed investigation, or re-

investigation, of nanoscale dislocation plasticity phenomena under stresses normal to the slip plane 

of the dislocations. 605 

 

Acknowledgements: PA and WAC acknowledge support for their work by the European Research 

Council through the Advanced Grant ``Predictive Computational Metallurgy'', ERC Grant agreement 

No.339081 – PreCoMet. BY acknowledges support for his work by the NCCR MARVEL. 

 610 

Appendix A. GSFE under uniaxial tension 

 In Section 2 we investigate the GSFE stress dependence whit the lateral cell sizes held fixed. This loading 

scenario corresponds to the so-called uniaxial strain (imposed with the stress boundary conditions). We now investigate 

the influence of the lateral stresses on the GSFE by performing an additional set of GSF simulations, in which the 

relaxation of the lateral stresses is allowed (uniaxial tension). All other simulation details are identical to those presented 615 

in Section 2. Figure 13 shows the GSFE curves computed using interatomic potentials for Ni, Cu and Al at different 

applied normal stresses imposed by the uniaxial strain (solid line) or uniaxial stress (dashed line). We find that lateral 

loads in Ni and Cu have no significant influence on the GSFE. Furthermore, the GSFE in Al tends to be more sensitive 

for Δ𝑠 > 0.6𝑏𝑝 and for applied normal stress above 5GPa. The observed behavior is mainly due to potential which under 

uniaxial tension becomes unstable for applied stresses slightly above 6GPa. 620 

 
 

 

Appendix B. Effective elastic constants 

 625 
 Our results in Section 5.2 are based on linear isotropic elasticity and thus require proper effective elastic constants 

input as a function of the normal stress applied. We use molecular statics simulations for calculating the effective elastic 

constants as follows. We define a simulation box, having periodic boundaries, oriented with 𝑋 = [1̅21̄], 𝑌 = [111] and 

𝑍 = [101̅], and with dimension of approximately 35 x 60 x 50Å. We set a desired stress perpendicular to the X-Z plane 

by increasing the lattice parameter along [111], while the lateral lattice parameter is held constant. At given applied 630 

normal stress we compute the effective shear modulus 𝜇 from the stress-shear strain response due to applied shear of 

𝜏𝑦𝑧 = 0.1𝑀𝑃𝑎. Then, by relaxing the stress along Z direction, we compute the effective Poisson’s ratio as 𝜈 = −𝜀𝑧𝑧 𝜀𝑦𝑦⁄ . 

Figure 14 shows the computed elastic constants as a function of applied stress in Ni and Al. For the applied stresses 

Figure 13: GSFE versus slip displacement, for various applied normal tensile stresses under uniaxial strain 

(solid line) and uniaxial stress (dashed line) as computed using interatomic potentials at T=0K in a) nickel, 

b) copper and c) aluminum 
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considered here we find that the shear modulus, in both studied materials, increases with normal tensile stress in part 

because the Poisson contraction decreases the in-plane atomic spacing which increases the curvature of the energy 635 

landscape in shear.  

 

 Stress dependence of the materials elastic properties nominally affects only the interaction energy 𝑊12 between 

two partials, since the inclusion energy 𝑊𝐼 is negligible. Therefore, we investigate how big this effect on predicted 

dissociation distance d is. Figure 15 shows the simulated dissociation distance d, along with the predictions of Eq. 23 with 640 

and without taking into account stress dependence of the elastic properties. Influence of the stress dependent elastic 

properties on the overall behavior is more emphasized in Ni than in Al. The result sensitivity in Ni is due to similar 

contribution to the crystal enthalpy from 𝑊12 and the stacking fault (change in GSFE and inelastic normal displacement 

with applied normal stress) itself. The stacking fault contribution in Al is bigger than 𝑊12 (due to very big inelastic 

displacement as (see Figure 9)); thus, change in elastic properties only slightly influences predictions on the dissociation 645 

distance with increasing applied normal stress.  

Figure 14: Effective elastic Shear modului and Poisson’s ratios in Ni and Al computed using molecular 

statics at T=0K as a function of the applied far-field normal stress. 

This is a post-print of the following article: Andric, Predrag; Yin, Binglun; Curtin, W.A. Journal of the Mechanics and Physics of Solids
2019,, 262-279.. The formal publication is available at http://dx.doi.org/10.1016/j.jmps.2018.09.007 © 2019. This manuscript version is
made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

http://dx.doi.org/10.1016/j.jmps.2018.09.007


27 

 

 

References 

[1] Vitek V. Intrinsic stacking faults in body-centred cubic crystals. Philosophical Magazine. 1968 Oct 

1;18(154):773-86. 650 
[2] Hirth, J.P., Lothe, J., 1982. Theory of Dislocations. Wiley, New York. 

[3] Rice JR. Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. Journal of the 

Mechanics and Physics of Solids. 1992 Jan 1;40(2):239-71. 

[4] Andric P, Curtin WA. New Theory for Mode I Crack-tip Dislocation Emission. Journal of the Mechanics and 

Physics of Solids. 2017 Jun 15. 655 
[5] Van Swygenhoven H, Derlet PM, Frøseth AG. Stacking fault energies and slip in nanocrystalline metals. Nature 

materials. 2004 Jun 1;3(6):399-403. 

[6] Van Swygenhoven H. Grain boundaries and dislocations. Science. 2002 Apr 5;296(5565):66-7. 

[7] Tadmor EB, Miller R, Phillips R, Ortiz M. Nanoindentation and incipient plasticity. Journal of Materials 

Research. 1999 Jun;14(6):2233-50. 660 
[8] Tadmor EB, Hai S. A Peierls criterion for the onset of deformation twinning at a crack tip. Journal of the 

Mechanics and Physics of Solids. 2003 May 31;51(5):765-93. 

[9] Andric P, Curtin WA. New theory for crack-tip twinning in fcc metals. Journal of Mechanics Physics of Solids. 

2018 Apr;113:144-61. 

[10] Sun Y, Beltz GE, Rice JR. Estimates from atomic models of tension-shear coupling in dislocation nucleation 665 
from a crack tip. Materials Science and Engineering: A. 1993 Oct 1;170(1-2):67-85. 

[11]  Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA. Interatomic potentials for monoatomic metals from 

experimental data and ab initio calculations. Physical Review B. 1999 Feb 1;59(5):3393. 

[12] Zhou SJ, Carlsson AE, Thomson R. Crack blunting effects on dislocation emission from cracks. Physical review 

letters. 1994 Feb 7;72(6):852. 670 
[13] Knap J, Sieradzki K. Crack tip dislocation nucleation in FCC solids. Physical review letters. 1999 Feb 

22;82(8):1700. 

[14] Zimmerman JA, Gao H, Abraham FF. Generalized stacking fault energies for embedded atom FCC metals. 

Modelling and Simulation in Materials Science and Engineering. 2000 Mar;8(2):103. 

[15] Möller JJ, Bitzek E. Comparative study of embedded atom potentials for atomistic simulations of fracture in α-675 
iron. Modelling and Simulation in Materials Science and Engineering. 2014 Apr 11;22(4):045002. 

[16] Brandl C, Derlet PM, Van Swygenhoven H. General-stacking-fault energies in highly strained metallic 

environments: Ab initio calculations. Physical Review B. 2007 Aug 29;76(5):054124. 

[17] Branicio PS, Zhang JY, Srolovitz DJ. Effect of strain on the stacking fault energy of copper: a first-principles 

study. Physical Review B. 2013 Aug 26;88(6):064104. 680 
[18] Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics. 1995 

Mar 1;117(1):1-9. 

[19] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave 

basis set. Physical review B. 1996 Oct 15;54(16):11169. 

[20] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review 685 
B. 1999 Jan 15;59(3):1758. 

Figure 15: Equilibrium separation between partial dislocations in a) Ni and b) Al at different applied stress 

that perpendicular to the slip plane, normalized with its value at zero applied load, as predicted by equation 

by Eq. 23 when stress dependence of elastic properties is (blue color)/is not (red color) taken into account, 

and as observed in atomistic simulations (orange squares). 

This is a post-print of the following article: Andric, Predrag; Yin, Binglun; Curtin, W.A. Journal of the Mechanics and Physics of Solids
2019,, 262-279.. The formal publication is available at http://dx.doi.org/10.1016/j.jmps.2018.09.007 © 2019. This manuscript version is
made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

http://dx.doi.org/10.1016/j.jmps.2018.09.007


28 

 

[21] Bitzek E, Koskinen P, Gähler F, Moseler M, Gumbsch P. Structural relaxation made simple. Physical review 

letters. 2006 Oct 27;97(17):170201 

[22] Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD. Structural stability and lattice defects in 

copper: Ab initio, tight-binding, and embedded-atom calculations. Physical Review B. 2001 May 690 
21;63(22):224106. 

[23] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical review letters. 

1996 Oct 28;77(18):3865. 

[24] Blöchl PE. Projector augmented-wave method. Physical review B. 1994 Dec 15;50(24):17953. 

[25] Kibey S, Liu JB, Johnson DD, Sehitoglu H. Generalized planar fault energies and twinning in Cu–Al alloys. 695 
Applied Physics Letters. 2006 Nov 6;89(19):191911. 

[26] Yin B, Wu Z, Curtin WA. Comprehensive first-principles study of stable stacking faults in hcp metals. Acta 

Materialia. 2017 Jan 15;123:223-34. 

[27] Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. 

InProceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 1957 Aug 700 
20 (Vol. 241, No. 1226, pp. 376-396). The Royal Society. 

[28] Mura T. Micromechanics of defects in solids. Springer Science & Business Media; 2013 Mar 9. 

[29] Osetsky YN, Bacon DJ. An atomic-level model for studying the dynamics of edge dislocations in metals. 

Modelling and simulation in materials science and engineering. 2003 May 1;11(4):427. 

[30] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. 705 
Modelling and Simulation in Materials Science and Engineering. 2009 Dec 15;18(1):015012. 

 

This is a post-print of the following article: Andric, Predrag; Yin, Binglun; Curtin, W.A. Journal of the Mechanics and Physics of Solids
2019,, 262-279.. The formal publication is available at http://dx.doi.org/10.1016/j.jmps.2018.09.007 © 2019. This manuscript version is
made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

http://dx.doi.org/10.1016/j.jmps.2018.09.007

