
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. K. Hess Bellwald, présidente du jury
Prof. W. Gerstner, directeur de thèse

Prof. J. Peters, rapporteur
Prof. M. Botvinick, rapporteur
Prof. A. Ijspeert, rapporteur

Model-based reinforcement learning and navigation
in animals and machines

THÈSE NO 8950 (2018)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 19 OCTOBRE 2018

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE CALCUL NEUROMIMÉTIQUE (IC/SV)

PROGRAMME DOCTORAL EN NEUROSCIENCES

Suisse
2018

PAR

Dane Sterling CORNEIL

There’s no need to build a labyrinth when the entire universe is one.

— Jorge Luis Borges, The Aleph (1949)

Acknowledgements

First, I want to thank my supervisor, Wulfram Gerstner, for his support and guidance through-

out the many research projects that caught my interest during my time at the LCN. To the

other members of the LCN during my time here – Olivia, Alex, Laureline, Willem, Moritz,

Aditya, Skander, Christian, Carlos, Felipe, Friedemann, Bernd, Mohammadjavad, Tilo, Chiara,

Florian, Hesam, Samuel, Lorric, Nicolas, David, Tim, Danilo; thank you for all of the talks,

feedback, and happy hour reminders. I especially want to thank Johanni Brea for the many

great conversations and the fruitful collaboration.

Outside of the LCN, I want to thank all the members of the Catalyst; I’ve loved every minute

of being on stage with you. To Danny and Saee: you’re the best friends and past/future co–

workers I could possibly ask for. To Yannick: thank you for being a constant bedrock of support

throughout the past year.

Finally, I want to thank my family – Mom, Dad, Drew, Jenny, Owen and Briar – for their love

and encouragement during my PhD and my time in Switzerland.

Lausanne, 6 August 2018 D. C.

i

Abstract

For decades, neuroscientists and psychologists have observed that animal performance on

spatial navigation tasks suggests an internal learned map of the environment. More recently,

map–based (or model–based) reinforcement learning has become a highly active research area

in machine learning. With a learned model of their environment, both animals and artificial

agents can generalize between tasks and learn rapidly. In this thesis, I present approaches

for developing efficient model–based behaviour in machines and explaining model–based

behaviour in animals.

From a neuroscience perspective, I focus on the hippocampus, believed to be a major substrate

of model–based behaviour in the brain. I consider how hippocampal connectivity enable

path–finding between different locations in an environment. The model describes how envi-

ronments with boundaries and barriers can be represented in recurrent neural networks (i.e.

attractor networks), and how the transient activity in these networks, after being stimulated

with a goal location, could be used for determining a path to the goal. I also propose how

the connectivity of these map–like networks can be learned from the spatial firing patterns

observed in the input pathway to the hippocampus (i.e. grid cells and border cells).

From a machine learning perspective, I describe a reinforcement learning model that inte-

grates model–based methods and “episodic control”, an approach to reinforcement learning

based on episodic memory. According to episodic control, the agent learns how to act in

the environment by storing snapshot–like memories of its observations, then comparing its

current observations to similar snapshot memories where it took an action that resulted in

high reward. In our approach, the agent augments these real–world memories with episodes

simulated offline using a learned model of the environment. These “simulated memories”

allow the agent to adapt faster when the reward locations change.

Next, I describe Variational State Tabulation (VaST), a model–based method for learning

quickly with continuous and high–dimensional observations (like those found in 3D naviga-

tion tasks). The VaST agent learns to map its observations to a limited number of discrete

abstract states, and build a transition model over those abstract states. The long–term values

of different actions in each state are updated continuously and efficiently in the background

as the agent explores the environment. I show how the VaST agent can learn faster than other

iii

state–of–the–art algorithms, even changing its policy after a single new experience, and how it

can respond quickly to changing rewards in complex 3D environments.

The models I present allow the agent to rapidly adapt to changing goals and rewards, a key

component of intelligence. They use a combination of features attributed to model–based

and episodic controllers, suggesting that the division between the two fields is not strict.

I therefore also consider the consequences of these findings on theories of model–based

learning, episodic control and hippocampal function.

Key words: Reinforcement learning, model-based, goal–directed, episodic, navigation, hip-

pocampus, place cells, recurrent neural networks, deep learning, machine learning, sample

efficiency, task transfer.

iv

Résumé

Durant des décennies, les neuroscientifiques et psychologues ont observé dans les animuax,

lors de tâches de navigation spatiale, des comportements semblait indiquer l’acquisition

d’une carte interne de l’environnement. Plus récemment, l’apprentissage par renforcement

basé sur carte (ou model-based) est devenu un champ de recherche extrêmement actif dans

le domain de l’apprentissage automatique (machine learning). À l’aide d’un modèle appris

de leur environnement, les animaux tout comme les agents artificiels peuvent généraliser

d’une tâche à l’autre et apprendre rapidement. Dans cette thèse, je présente des approches

permettant de développer un comportement automatique model-based efficace et d’expliquer

le comportement model-based chez les animaux.

Du point de vue des neurosciences, je me concentre sur l’hippocampe, considéré comme étant

un sous-état major du comportement model-based dans le cerveau. J’examine comment les

connexions de l’hippocampe pourraient agir comme un substrat permettant une recherche de

chemin entre différents emplacements dans un environnement. Le modèle décrit comment

les environnements ayant des limites et des barrières peuvent être représentés dans des

réseaux neuronaux récurrents (i.e. réseaux attracteurs), et comment l’activité transitoire dans

ces réseaux, après avoir été stimulée par un but d’emplacement, pourrait être utilisée pour

la recherche de chemin. Je propose aussi de voir comment la connectivité de ces réseaux

cartographiques peut être apprise à partir des modèles d’activation spatiale observés dans la

saisie de chemins jusqu’à l’hippocampe (i.e. cellule de grille et cellules de bord).

Du point de vue de l’apprentissage automatique, je décris un modèle d’apprentissage par ren-

forcement qui intègre des méthodes model-based et un “contrôle épisodique”, une approche à

l’apprentissage par renforcement basée sur la mémoire épisodique. Selon le contrôle épiso-

dique, l’agent apprend à se comporter dans un certain environnement en emmagasinant des

souvenirs photographiques de ses observations, puis en comparant ses observations en cours

avec des clichés mémoriels similaires à l’endroit où a été entreprise une action donnant lieu

à une récompense élevée. Dans notre approche, l’agent augmente ces souvenirs du monde

réel à l’aide de souvenirs épisodiques simulés hors-ligne en utilisant un modèle appris de

l’environnement. Ces “souvenirs simulées” permettent à l’agent de s’adapter plus rapidement

lorsque les emplacements à récompense changent.

v

Suite à cela, je décris la Tabulation d’État Variationnel (Variational State Tabulation, VaST),

une méthode model-based pour apprendre rapidement avec des observations en continu

et en grande dimension (comme celles que l’on retrouve dans les tâches de navigation 3D).

L’agent VaST apprend à cartographier ses observations jusqu’à un nombre limité d’états

abstraits discrets, puis à construire un modèle de transition par-dessus ces états abstraits. Les

valeurs à long terme des différentes actions dans chaque état sont mises à jour en arrière-plan,

de façon continue et efficace, en même temps que l’agent explore son environnement. Je

montre comment l’agent VaST peut apprendre plus rapidement que d’autres algorithmes

de l’état de l’art, et même comment il peut changer de stratégie suite à une seule nouvelle

expérience, et comment il peut répondre rapidement aux récompenses changeantes dans des

environnements 3D complexes.

Les modèles que je présente permettent à l’agent de s’adapter à des buts changeants et à des

récompenses à la volée, un composant clé de l’intelligence. Ils utilisent une combinaison de

caractéristiques attribuées au model-based et aux contrôleurs épisodiques, suggérant que

la division entre deux champs n’est pas absolue. Je prends donc aussi en considération les

conséquences de ces découvertes sur les théories de l’apprentissage model-based, du contrôle

épisodique et de la fonction de hippocampe.

Mots clefs : Apprentissage par renforcement, model-based, but dirigé, épisodique, hippo-

campe, cellules de lieu, réseaux neuronaux récurrents, apprentissage profond, apprentissage

automatique, sample efficiency, transfère de tâche.

vi

Contents
Acknowledgements i

Abstract (English) iii

Résumé (Français) v

List of Figures xi

List of Abbreviations xiii

1 Introduction 1

1.1 Navigation and cognitive maps . 2

1.2 Reinforcement learning . 5

1.3 Structure of the thesis and previously published work 6

2 Background: Reinforcement Learning Approaches 9

2.1 The model–based approach . 10

2.1.1 Optimal control: value iteration . 10

2.1.2 Synthetic experience . 11

2.1.3 Decision–time planning . 12

2.2 The model–free approach . 12

2.2.1 Q–learning . 12

2.2.2 Deep Q–learning . 13

2.2.3 Policy search . 14

2.3 Episodic control . 14

2.4 Hybrid model–free/model–based approaches . 16

2.4.1 Dyna–Q . 16

2.4.2 Prioritized sweeping . 17

2.4.3 Successor representations . 17

3 Preplay and Path Planning with Attractor Networks 21

3.1 Introduction . 21

3.2 Background . 22

3.2.1 Attractor network models of hippocampus 22

3.2.2 Spatial representations in attractor networks 25

vii

Contents

3.3 Geodesic attractor networks . 28

3.4 Trajectories from attractor dynamics . 30

3.4.1 Spiking networks . 33

3.4.2 Multichart attractor networks . 35

3.5 Successor Representation–based geodesic attractors 37

3.5.1 Representing space using the successor representation 37

3.5.2 Path–finding using the successor coordinate mapping 40

3.5.3 The network model . 40

3.5.4 Results . 41

3.6 From trajectories to headings . 42

3.7 Discussion . 44

4 Learning Place Cell Maps for Navigation 47

4.1 Introduction . 47

4.2 Grid and border cell input to the place cell network 48

4.3 Learning large geodesic place fields from entorhinal input 50

4.4 Learning the attractor map in recurrent weights 53

4.5 Discussion . 55

5 Deep Reinforcement Learning with Offline Episodic Control 59

5.1 Introduction . 59

5.2 Background . 60

5.3 The model and training procedure . 61

5.3.1 Learning environment structure with a VAE 62

5.3.2 Learning value functions . 63

5.4 Results . 66

5.5 Related work . 68

5.5.1 Model–based simulated experience . 68

5.5.2 Dimensionality reduction for Reinforcement Learning (RL) 69

5.5.3 Non–parametric approaches to RL . 70

5.6 Discussion . 70

6 Efficient Model–Based RL with Variational State Tabulation 73

6.1 Introduction . 73

6.2 Learning the model . 76

6.2.1 The variational cost function . 77

6.2.2 The reparameterization trick and the Con–crete distribution 79

6.2.3 Learning a tabular transition model . 80

6.2.4 Using the model for reinforcement learning 80

6.2.5 Implementation details . 82

6.3 Results . 82

6.3.1 Dimensionality of the latent representation 86

6.3.2 Visualizing the abstraction . 86

viii

Contents

6.3.3 Sample efficiency . 87

6.3.4 Transfer learning: non–stationary rewards 89

6.3.5 Transfer learning: multiple tasks with a shared network 90

6.3.6 Training on Atari: Pong . 91

6.4 Related work . 93

6.5 Discussion . 96

7 Discussion & Conclusions 97

7.1 Model–based control, episodic control and the hippocampus 97

7.2 Conclusions . 98

8 Future Work 101

8.1 Offline Episodic Control . 101

8.2 VaST . 101

A Hyperparameters for Chapter 6 105

A.1 3D Navigation . 105

A.2 Atari: Pong . 106

Contributions 107

Bibliography 109

Curriculum Vitae 125

ix

List of Figures
1.1 Model–free vs. model–based learning . 2

1.2 Spatial representations in the brain . 3

2.1 The successor representation and rapid learning 19

3.1 Schematic of neural activity in a continuous “bump” attractor network 23

3.2 A toroidal bump attractor network . 27

3.3 Non–Geodesic vs. Geodesic place fields . 28

3.4 A geodesic attractor network in an environment with barriers 29

3.5 Sequential activity generated by low–dimensional representations 31

3.6 Trajectories in an environment with barriers . 34

3.7 Sequential activity generated in a spiking attractor network 35

3.8 Multichart attractors . 36

3.9 Representing an environment in successor coordinates 39

3.10 Successor coordinate–based attractor networks 42

3.11 Successor coordinate–based network trajectories in different environments . . 43

4.1 Local place fields from combined grid and border cell input 49

4.2 Large place fields from progressive clustering along the dorsoventral axis 51

4.3 Learned large place fields capture global environment properties 52

4.4 Learning attractor dynamics in recurrent networks 54

4.5 Learned large–scale bump attractor dynamics . 56

5.1 Offline episodic control network . 62

5.2 Limiting the impact of model error . 65

5.3 Learning from offline episodes in a GridWorld environment 66

5.4 Combining offline and online experiences in GridWorld 68

5.5 Failures to learn across conditions . 69

6.1 Using state tabulation for efficient planning . 74

6.2 The Variational State Tabulation (VaST) network model 79

6.3 VaST learns quickly in complex mazes. 85

6.4 Effect of latent dimensionality. 87

6.5 Binary latent state assignment along different dimensions. 88

xi

List of Figures

6.6 VaST allows for rapid policy changes in response to single experiences. 89

6.7 VaST can adapt to changing rewards. 90

6.8 VaST enables transfer learning across tasks in an environment. 91

6.9 Learning to play Pong with variable frame history. 92

xii

List of Abbreviations
RL Reinforcement Learning

TD Temporal Difference

VaST Variational State Tabulation

MFEC Model–Free Episodic Control

kNN k–Nearest–Neighbour

NEC Neural Episodic Control

MDP Markov Decision Process

STDP Spike–Timing Dependent Plasticity

POMDP partially–observable Markov Decision Process

CNN Convolutional Neural Network

DCNN deConvolutional Neural Network

VAE Variational Autoencoder

SWR Sharp Wave and Ripple

DQN Deep Q–learning

NEF Neural Engineering Framework

LSH Locality Sensitive Hashing

LSTM Long Short–Term Memory

EM Expectation Maximization

xiii

1 Introduction

The ability to adapt to new situations is a cornerstone in any theory of intelligence. Humans

show a remarkable capacity to rapidly thrive in new environments and tasks, often by rec-

ognizing features and patterns that they have seen in the past. While natural selection has

allowed varied forms of life to adapt to extreme and inhospitable environments across the

planet, it relies on millions of years of trial, error and noise. However, one solution generated

by natural selection – the human brain – can adapt to novel and complex situations in years,

days, or even minutes.

This thesis considers how the ability to adapt to new environments and new tasks might be

achieved by building a model of the environment. Rather than finding solutions by simply

determining what works and what does not, building a model requires learning the underlying

dynamics of an environment or state space at some level of abstraction. Armed with a model

of the dynamics of an environment, an agent (human, animal or artificial) is often much faster

at solving a task in that environment and adapting when the task changes.

As a motivating example, we can consider the problem faced by a rat trying to reach a food

reward in a maze (Figure 1.1). We assume that, during the first stage of learning, the rat is

placed in the same location in the maze every day with the same location of the reward. The

rat can learn whether to turn left, turn right or continue forward at each choice point to find

the food. Alternatively, it can learn to build a model (or map) of where it will be following

each action at each choice point, and use that model to plan a path to the food. While the

second approach is generally more complex, it will allow the rat to adapt faster if the reward’s

location changes. In the neuroscience and psychology literature, these two types of learning

are often referred to as habitual vs. goal–directed, or stimulus–response vs. stimulus–stimulus

respectively [Holland, 2008, Balleine and O’Doherty, 2010]. In the field of RL, they are referred

to as model–free vs. model–based [Daw et al., 2005, Sutton and Barto, 2018].

In this thesis, I will consider aspects of model–based learning from the perspective of both

machine learning and computational neuroscience. In neuroscience, I will focus on the

problem of spatial navigation, where model–based learning is closely related to the study of

1

Chapter 1. Introduction

Figure 1.1 – Model–free vs. model–based learning. Left: A rat learns to navigate to a food
reward in a maze (at Position 1). Here, the rat learns a set of fixed stimulus–response rela-
tionships dictating which direction to turn at each intersection in the maze. These responses
cannot be easily adapted to a new reward location (Position 2). Right: The rat builds an
internal model of where it will be after turning in a given direction at each position in the
maze. The model can be used to plan a path to either reward location.

cognitive maps [Tolman, 1948, O’Keefe and Nadel, 1979]. In the field of machine learning, I

will focus on how artificial agents could use models to learn and adapt to new tasks faster. In

the following, I provide a brief overview of relevant research and findings in both neuroscience

and machine learning.

1.1 Navigation and cognitive maps

Modern theories of model–based behaviour are based on early behavioural experiments

in latent learning [Blodgett, 1929]. In these experiments, rats were trained to find the exit

in a maze, either with a food reward at the exit (control group) or without a food reward

(experimental group). With sufficient training, rats trained with the food reward eventually

finished the maze much faster than rats without the food reward. However, when a food reward

was later introduced for the experimental group, the researchers found that their performance

rapidly improved to match that of the control group. They concluded that the rats in the

experimental group had learned something about the structure of the maze even when not

incentivized by food, which allowed them to adapt much faster when the food was introduced.

The result contrasted against the prevailing theory of operant conditioning [Thorndike, 1898,

Sutton and Barto, 2018] in which learning corresponds to reinforcing behaviours that lead to

reward. The process of acquiring environmental knowledge in absence of reward was later

described by Edward Tolman as building a cognitive map [Tolman, 1948].

The discovery of hippocampal place cells in the rat [O’Keefe and Dostrovsky, 1971], which

2

1.1. Navigation and cognitive maps

Figure 1.2 – Spatial representations in the brain. A: Place cells in the hippocampus respond
selectively when the rat is in a particular position within the environment. B: Grid cells in the
medial entorhinal cortex stereotypically respond according to a hexagonal grid pattern in two–
dimensional space. C: The population response of multiple place cells in the hippocampus
with stable place fields can be decoded downstream to estimate the rat’s current location.

tend to fire selectively in a specific region of an environment, provided evidence that the

hippocampus may play a role in forming a cognitive map [Moser et al., 2008]. Different place

cells within the hippocampus were found to be consistently selective to different locations in

an environment (Figure 1.2), such that the population response could be used to determine

the animal’s current location [O’Keefe, 1976, Wilson and McNaughton, 1993]. The existence of

spatially–tuned cells in the hippocampus has since been shown in several other mammalian

species, including humans [Nadel, 1991, Rolls et al., 1997, Ekstrom et al., 2003, Ulanovsky and

Moss, 2007].

Grid cells were later discovered in the entorhinal cortex [Fyhn et al., 2004, Hafting et al., 2005],

the primary input region to the hippocampus. Grid cells have a spatially periodic response,

such that a scatter plot of the animal’s location when an individual grid cell emits a spike

resembles a hexagonal grid (Figure 1.2B) [Moser et al., 2008]. Individual grid cells differ in their

grid orientation and offset, with a grid spacing that increases along the dorsoventral axis of the

medial entorhinal cortex [Hafting et al., 2005, Moser et al., 2008, Brun et al., 2008], mirroring

3

Chapter 1. Introduction

the increase in place field size in the hippocampus along the dorsoventral axis [Kjelstrup et al.,

2008]. Several researchers have suggested that grid cells may act as basis functions for the

place cell network in the hippocampus, by combining them across different spatial scales to

produce a single, non–periodic place cell response [McNaughton et al., 2006, Solstad et al.,

2006, Rolls et al., 2006].

The ability to plan a path within an environment requires more than just a stable represen-

tation of the current location; it also requires a model of how different locations are related.

Experiments in path integration have shown that the hippocampal representation of position

is determined not only by external visual cues, but also by the distance travelled from a starting

position, particularly in the absence of familiar landmarks [Gothard et al., 1996, Redish et al.,

2000]. In addition, the hippocampal representation of position can persist and continue to

be updated after turning off the light in the environment [Quirk et al., 1990, Markus et al.,

1994]. The ability to maintain an estimate of the current position while moving in the dark

requires the animal to have an internal model of where it will be after moving in a particu-

lar direction from a known location, as suggested by the earlier latent learning behavioural

experiments [Blodgett, 1929].

Samsonovich and McNaughton [1997], and later Conklin and Eliasmith [2005], proposed

that the path integration response of hippocampal place cells could be explained using an

attractor network model, in which cells with similar and overlapping place fields share recur-

rent excitatory connections, in combination with an external driving signal which moves the

place cell representation in the direction of motion. Attractor network connectivity has since

been used to explain several experimental findings on place cell responses [Wills et al., 2005,

Colgin et al., 2010, Jezek et al., 2011]. The attractor network model suggests that the spatial

relationship between locations is at least partially represented in the hippocampus, in the

recurrent connections between place cells.

If the rat were to use a model to plan, one would expect to see, during planning, a neural

representation of potential paths through the environment that the rat could follow (i.e.

Figure 1.1 right). The observation of sequential place cell activity in the hippocampus during

Sharp Wave and Ripple (SWR) events appears to reflect such paths [Lee and Wilson, 2002,

Foster and Wilson, 2006, Csicsvari et al., 2007, Diba and Buzsáki, 2007, Johnson and Redish,

2007, Davidson et al., 2009, Karlsson and Frank, 2009, Gupta et al., 2010]. These short events

(50 – 300 ms) typically occur when the animal halts during exploration or when the animal is

sleeping [Buckner, 2010]. During these events, the location represented by the hippocampus

becomes disconnected from the animal’s actual location, and moves along a trajectory through

the environment. This trajectory can correspond to a path the animal has already taken (replay,

Lee and Wilson [2002]), the reverse direction of a path the animal has just taken (reverse replay,

Foster and Wilson [2006]), a path the animal may take in the immediate future (preplay, Diba

and Buzsáki [2007]), or a path that has no clear relationship to past or future experience [Gupta

et al., 2010]. Preplay events have been shown to be predictive of the animal’s future path even

in open–field environments [Pfeiffer and Foster, 2013], suggesting a link to a path planning

4

1.2. Reinforcement learning

mechanism.

When a rat is moving, hippocampal activity is modulated by background theta oscillations

(approximately 8 Hz, Buzsáki [2002]). As the rat approaches the place field of a neuron, that

neuron typically fires at an earlier and earlier phase in the theta cycle [O’Keefe and Recce,

1993, Skaggs and McNaughton, 1996]. If we consider the activity of several cells within the

same theta cycle, this phenomenon can be interpreted as a “sweep” of the hippocampal

place representation moving from the animal’s location forward in the direction of travel,

corresponding to a prediction of future location [Lisman and Redish, 2009]. Like SWR preplay

sequences, theta sequences have been found to predict the animal’s actual future path through

the environment [Huxter et al., 2008, Wikenheiser and Redish, 2015].

Trajectory events like SWR preplay and theta sequences may reflect model–based path plan-

ning or some other computation; if they do reflect path planning, it is unclear to what extent

they depend on networks external to the hippocampus. However, behavioural evidence also

suggests a link between the hippocampus and model–based navigation. Bast et al. [2009]

found that the ability to rapidly learn and return to new goal locations in a well–known maze,

a hallmark of model–based planning, critically depends on one region of the hippocampus.

Incremental learning of constant reward locations (consistent with a model–free approach)

was found to not require the hippocampus at all. In other experiments, rapid place learning

has been found to depend on NMDA–based plasticity in the recurrently–connected CA3 region

of the hippocampus, while incremental learning does not [Nakazawa et al., 2003].

1.2 Reinforcement learning

Modern reinforcement learning theory is founded in the study of optimal control: the problem

of determining the control signal to supply to a dynamical system in order to maximize

a performance criterion over time, subject to a set of constraints [Kirk, 2012, Sutton and

Barto, 2018]. In such problems, a perfect model of the system is typically assumed. The

dynamic programming approach to optimal control suggests breaking the control problem

into multiple nested subproblems and solving them recursively. It is anchored in Richard

Bellman’s Principle of Optimality [Bellman, 1957]:

An optimal policy has the property that whatever the initial state and initial deci-

sion are, the remaining decisions must constitute an optimal policy with regard to

the state resulting from the first decision.

For example, in Figure 1.1, we can consider the very simple problem of finding a path to reward

location 1 from the top right corner of the maze. This is, in fact, a subproblem of finding an

optimal path from any other point in the maze, since the rat will first need to navigate to the

top right corner. The rat could build on solutions in the near vicinity of the goal, extending to

further distances, until it has determined the optimal path from any point in the maze. This is

5

Chapter 1. Introduction

formalized in the Bellman Equation, discussed in Chapter 2.

The method of Q–learning [Watkins and Dayan, 1992] combined ideas from dynamic pro-

gramming with Temporal Difference (TD) learning [Sutton and Barto, 2018]. Watkins and

Dayan showed that it was possible to learn an optimal policy by incrementally improving

an estimate of the long–run future rewards after taking a particular action from a state in

the environment. Q–learning relies on the concept of bootstrapping: the value of state A

depends on the estimated value of state B that follows it, and the estimated value of state B

depends on the estimate of its successor state C etc. As in dynamic programming, successfully

determining the value of state C would therefore improve the estimate of its predecessor states

B and A. Q–learning is model–free: the agent learns only the expected value of taking an action

from each state, and takes the action that has the highest expected value at each point in

time. Several algorithms later extended Q–learning with model–based components, including

Dyna–Q [Sutton, 1990], prioritized sweeping [Moore and Atkeson, 1993, Peng and Williams,

1993, Van Seijen and Sutton, 2013], and successor representations [Dayan, 1993]. Q–learning

and its variants and successors are considered in greater detail in Chapter 2.

In 2013, Q–learning was successfully extended to complex, high–dimensional environments

like video games by using deep artificial neural networks [Mnih et al., 2013]. Many algorithms

for model–free RL in continuous and/or high–dimensional environments have followed,

improving the performance or sample efficiency, decreasing the training time, or addressing

new types of problems (e.g. Lillicrap et al. [2015], Schaul et al. [2015], Mnih et al. [2016], Pritzel

et al. [2017]). However, there have been relatively few successful applications of model–based

techniques in combination with deep networks; most have appeared since 2016 [Gu et al.,

2016, Racanière et al., 2017, Nagabandi et al., 2017, Oh et al., 2017, Farquhar et al., 2017, Silver

et al., 2017a,b, Buesing et al., 2018].

1.3 Structure of the thesis and previously published work

Most chapters in the remainder of the thesis incorporate one or more model–based RL tech-

niques. In Chapter 2, I provide a very brief overview of the field of RL and an introduction to

the algorithms that will be considered.

In Chapter 3, I consider the problem of spatial navigation from a neuroscience perspective. I

propose a model in which the topology of an environment with boundaries and obstacles is

represented in the recurrent connections of the CA3 region of the hippocampus (i.e. a cognitive

map), and show how it could allow for planning paths to novel goal locations. Different

portions of this chapter were previously published in the proceedings of NIPS 2015 [Corneil

and Gerstner, 2015a], and as an extended abstract at COSYNE 2015 [Corneil and Gerstner,

2015b]. In Chapter 4, I extend this work by considering how the environment topology could

be learned in attractor networks beginning from simple spatial representations upstream of

the hippocampus.

6

1.3. Structure of the thesis and previously published work

In Chapter 5 and Chapter 6, I describe two different model–based agents primarily from a

machine learning perspective (with some possible implications for neuroscience). Chapter 5

considers a deep neural network architecture that combines aspects of model–based RL with

the emerging theory of episodic control, allowing the agent to rapidly adapt to changing

reward landscapes. Portions of this chapter were previously published as an extended abstract

in the proceedings of CCN 2017 [Corneil and Gerstner, 2017].

In Chapter 6, I introduce Variational State Tabulation, an algorithm for enabling fast model–

based RL by learning discrete abstractions of environments defined by high–dimensional

and/or continuous observations. The model is evaluated primarily in the domain of 3D naviga-

tion. Most of this chapter, excluding some new results on multi–task learning and visualizing

the abstraction, has been previously published in the proceedings of ICML 2018 [Corneil et al.,

2018].

I conclude the thesis with a discussion of the overarching results and promising future research

directions.

7

2 Background: Reinforcement Learning
Approaches

The field of Reinforcement Learning is concerned with finding a mapping from observations

to actions, in order to maximize a reward signal [Sutton and Barto, 2018]. In the situations

considered in this thesis, a reward is often the outcome of an entire sequence of actions over

time, like the sequence of turns a rat needs to make to find the food pellet in a maze. RL is one

of three major classes of problems considered in the neuroscience of learning and machine

learning literature, together with supervised learning and unsupervised learning [Goodfellow

et al., 2016]. Supervised learning is concerned with finding a mapping from observations to

labels (e.g. from a picture of a bird in a pond to the label “duck”), while unsupervised learning

is concerned with finding some underlying structure in data. In Chapter 6, we will incorporate

aspects of unsupervised learning when considering how an agent can learn a model of its

environment.

Many problems studied in RL (including the ones in this thesis) belong to the class of Markov

Decision Processes (MDPs) [Bellman, 1957]. Consider an agent exploring an environment

made up of a set of states s ∈S , taking actions a ∈A, and receiving real–valued rewards r ∈R,

with discrete time steps t = 0,1,2,3 etc. In an MDP, we have

p(st+1,rt+1|a1:t+1,r1:t , s0:t) = p(st+1,rt+1|at+1, st), 2.1

i.e. the outcome of the next action at+1 (the distribution over rewards and next states) depends

only on the current state st ; the agent’s history before the current state can be safely ignored.

This is referred to as the Markov assumption [Rosenblatt, 1974].

In RL, we consider the problem of learning a policy π(a|s), which describes the action that

should be taken in any particular state in order to maximize future reward. Typically, a discount

factor γ ∈ [0,1] is introduced to make rewards in the near future more enticing than rewards in

the distant future. Given a particular policy π, the value V π(s) of state s is defined as

V π(s) := Eπ

[∞∑
k=0

γk rt+1+k

∣∣∣∣∣ st = s

]
, 2.2

9

Chapter 2. Background: Reinforcement Learning Approaches

i.e. the expected discounted future reward starting from the state s and continuing under

the policy π. The optimal policy π∗ is that which maximizes the value function for all states,

resulting in the value function V ∗(s).

Using the Markov assumption, we find that the state value can be redefined [Sutton and Barto,

2018] as

V ∗(s) = max
a

∑
s′∈S
r ′∈R

p(s′,r ′|a, s)
[
r ′ +γV ∗(s′)

]
. 2.3

This is the Bellman optimality equation, an expression of the Principle of Optimality intro-

duced in Chapter 1. It reveals the useful property that following the optimal policy from state s

simply means taking the action a that appears in the maximization of V ∗(s); all previous states

and actions are irrelevant due to the Markov assumption. This is more easily expressed by

stating Equation 2.3 in terms of the value of a state–action pair, the so-called Q–value, defined

as

Q∗(s, a) = ∑
s′∈S
r ′∈R

p(s′,r ′|a, s)
[
r ′ +γmax

a′ Q∗(s′, a′)
]
. 2.4

The optimal policy in the current state st is then to take action at+1 = argmaxa Q∗(st , a).

In some cases, the agent receives observations ot rather than the underlying states st directly.

When the observations fully determine the true underlying state, we say the problem is fully

observable at the current time step [Kirk, 2012]. When there are details about the state st

that cannot be determined from ot , we say the problem is partially observable. Often, some

recent history of observations can then be used to disambiguate the underlying state. In the

following, we assume the state is fully observable and consider st directly. Some partially

observable problems will be considered in Chapter 6.

When the number of states |S| and actions |A| are relatively few, we refer to the task as tabular.

This reflects the fact that the task statistics can be efficiently stored and updated in a fixed–size

table or array in memory.

2.1 The model–based approach

2.1.1 Optimal control: value iteration

According to the model–based approach, we can determine the Q–values by solving the right–

hand side of Equation 2.4 after learning the task statistics p(s′,r ′|a, s). The equation can be

10

2.1. The model–based approach

separated into two terms, giving us

Q∗(s, a) = ∑
s′∈S
r ′∈R

p(s′,r ′|a, s)r ′ +γ
∑

s′∈S
r ′∈R

p(s′,r ′|a, s)
[

max
a′ Q∗(s′, a′)

]
2.5

= r (s, a)+γ
∑

s′∈S
p(s′|a, s)

[
max

a′ Q∗(s′, a′)
]

where we have marginalized out the variables irrelevant to the expectation in each term, and

r (s, a) = E[r |a, s] is shorthand for the expected immediate reward after taking action a in state

s (i.e. without taking into account future rewards). If the agent learns an accurate model of

r (s, a) and p(s′|a, s) by exploration, the optimal Q–values can be determined by iteratively

solving for Q(s, a) over all states and actions until a stable solution is reached. This is referred

to as value iteration [Bellman, 1957]. The update equation is given by

Qi+1(s, a) = r (s, a)+γ
∑

s′∈S
p(s′|a, s)

[
max

a′ Qi (s′, a′)
] ∀ s ∈S , a ∈A, 2.6

where i is the iteration index. Given sufficient iterations for convergence, value iteration

arrives at a solution for the value function that induces the optimal policy for the MDP (under

the transition model and expected rewards). The algorithm therefore falls into the family of

optimal control techniques [Kirk, 2012].

Value iteration is computationally expensive in large state spaces, and can also be inefficient

because the values of many states will not change over the course of one iteration. For instance,

consider an agent exploring a large state space, with all Q–values initialized to 0. It encounters

the first non–zero reward on step t +1 after taking action at+1 from state st , and updates

r (st , at+1) accordingly. It then performs value iteration to update its Q–value estimates for all

states and actions. In this case, the first update iteration will require |S|× |A| applications

of Equation 2.6 despite the fact that only Q(st , at+1) will change, a significant inefficiency.

This is addressed in part by the method of prioritized sweeping by small backups, discussed

in Section 2.4.2 and applied in Chapter 6.

2.1.2 Synthetic experience

An alternative way to leverage a model in order to estimate the optimal value function is

to generate synthetic experiences by sampling from the transition distribution p(s′|a, s) and

evaluating the result. These experiences, extending for one step or multiple steps using a given

policy, can be used to update the value function estimate (see Section 2.4.1 for more details).

Compared to backups using the full expectation over the next state as in value iteration,

sample–based backups require a learning rate parameter (as we will describe in the following

sections) and introduce sampling noise; however, they can achieve low error in the value

function estimate with less computation [Sutton and Barto, 2018].

11

Chapter 2. Background: Reinforcement Learning Approaches

2.1.3 Decision–time planning

The preceding approaches use a model to solve or estimate a value function. Alternatively, a

model can be used to sample multi–step trajectories from the current state in order to simulate

and evaluate many possible future paths, taking the immediate action that leads to the best

sampled outcome (given the expected rewards r (s, a)). Typically, this process is repeated each

time an action is taken and the agent moves to a new state, receiving new observations. This is

called decision–time planning [Sutton and Barto, 2018]. In linear control theory, the process

of optimizing up to a future horizon in order to determine the current control signal, then

re–optimizing at the next time step, is referred to as model predictive control [Camacho and

Alba, 2013].

While not considered in detail in this thesis, decision–time planning is one of the main

areas of focus in model–based deep reinforcement learning and the basis of several recent

successful algorithms (e.g. Silver et al. [2016, 2017a]). In particular, decision–time planning

can be advantageous when the state space is very large such that the agent rarely revisits

states, and the transition model is well–known or perfectly known. In this case, the agent

may achieve better results by planning at each step rather than estimating or learning a

complex value function. Furthermore, decision–time planning avoids wasting computation

on determining the policy for states that the agent rarely visits. However, decision–time

planning is computationally intensive in general due to the need to re–determine the policy at

each step, leading to high latency in selecting an action. In contrast to decision–time planning,

model–based algorithms that do not depend on the current state (e.g. value iteration or

synthetic experience) have been referred to as background planning methods [Sutton and

Barto, 2018].

2.2 The model–free approach

2.2.1 Q–learning

Rather than solving for the recursion in Equation 2.4 from a learned model, one can attempt

to learn the Q–values Q∗(s, a) directly. This is the approach taken in Q–learning [Watkins

and Dayan, 1992]. Consider the agent’s observations after taking the next step at+1 from the

current state st . If the Q–values have already been solved under the optimal policy, we expect

from Equation 2.4 that

Er ′,s′
[
r ′ +γmax

a′ Q∗(s′, a′)−Q∗(st , at+1)
]= Er ′,s′ [δtd] = 0, 2.7

where δtd is called the TD–error [Sutton and Barto, 2018]. A non–zero expected TD–error

represents an inconsistency in the current estimate of the state–action value. To improve the

estimate, one could perform stochastic gradient descent on δ2
td with respect to the current

12

2.2. The model–free approach

estimate of Q(st , at+1). This yields the update equation

Q(st , at+1) ←Q(st , at+1)+η · [rt+1 +γmax
a′ Q(st+1, a′)−Q(st , at+1)

]
, 2.8

where 0 < η≤ 1 is the learning rate. Every time the agent takes a step, it observes the tuple

(st , at+1,rt+1, st+1) (original state, action taken, reward received, new state). It then updates

Q(st , at+1), using its current estimates to determine maxa′ Q(st+1, a′). Watkins and Dayan

[1992] showed that Equation 2.8 converges to the state–action values Q∗(s, a) under the

optimal policy given infinite experience of all possible state–action pairs. Successful Q–

learning therefore requires a balance between collecting experience in the state space to

achieve a reliable estimate of the Q–values, and maximizing reward by choosing actions with

the highest Q–value (the exploration–exploitation dilemma). A common approach is to choose

a random action with probability ε on each step, or argmaxa Q(s, a) with probability 1− ε,

where epsilon is typically annealed over the course of training; this is referred to as an ε–greedy

strategy [Sutton and Barto, 2018].

The term model–free is perhaps a misnomer, since the algorithm clearly maintains a model

in the form of the learned Q–values. In contrast to the transition statistics learned by the

model–based approach, however, the learned Q–values are dependent on the reward structure.

If the reward distribution changes within the same environment, the Q–values will need

to be re–learned from scratch; in contrast, a model–based agent will only need to re–learn

the expected immediate rewards r (s, a). The parameters learned by a model-free agent are

therefore inseparable from the task (i.e. the rewards in an environment) being learned by that

agent.

2.2.2 Deep Q–learning

It is reasonable to build a table of Q–values Q(s, a) only when there are a small number

of discrete states s ∈ S . In a continuous and/or high–dimensional state space, the agent

may never collect a sufficient amount of experience to ensure that the Q–learning algorithm

converges; in some tasks, the agent may never revisit the same state twice. In this case, we need

a “non–tabular” approximation. A common practice is to parameterize the Q–values by a set

of parameters θ, and minimize δ2
td with respect to θ for the observed transitions. Generalizing

from observed data points to a continuous or high–dimensional function requires function

approximation [Sutton and Barto, 2018]. The Deep Q–learning (DQN) algorithm uses deep

neural networks as Q–value function approximators, and successfully applies Q–learning to

complex video game environments [Mnih et al., 2013, 2015].

Several issues can make value learning unstable when using function approximation, particu-

larly with deep networks. First, the network is trained under the assumption that training data

examples correspond to independent samples from the training set. However, if the agent

learns while exploring the environment according to the current policy, consecutive steps tend

to be in the same region of the environment and are therefore highly correlated. As well, the

13

Chapter 2. Background: Reinforcement Learning Approaches

training set can change suddenly in response to changes in the agent’s policy. In DQN, this was

partially addressed by sampling training data points independently from a replay memory of

the last 1 million transitions [Lin, 1993, Mnih et al., 2013]. Secondly, we note from Equation 2.8

that both Qθ(st , at+1) and maxa′ Qθ(st+1, a′) are parameterized by θ; optimizing Qθ(st , at+1)

can lead to a corresponding change in maxa′ Qθ(st+1, a′), causing parameters to oscillate or

diverge. Mnih et al. [2015] therefore parameterized maxa′ Qθ′
(st+1, a′) using a separate set of

parameters θ′, which were copied from θ every 10 000 steps. Finally, rewards and/or output

layer error terms were clipped to [−1,1] to allow the same learning rate to be used across

different reward scales in different games.

2.2.3 Policy search

The methods previously described (and those used throughout this thesis) determine a policy

π(a|s) indirectly by learning a value function over state–action pairs, then choosing the action

that maximizes the value function. An alternative model–free approach is to directly determine

a policy that maximizes the expected discounted returns. In the common case where this is

done by optimizing the parameters of the policy using gradient descent, it is referred to as

a policy gradient method [Peters and Schaal, 2008, Peters, 2010]. Policy gradient methods

have convergence guarantees that are lacking with many model–free value function–based

approaches [Peters, 2010].

One of the most common policy gradient methods is the REINFORCE algorithm [Williams,

1992, Sutton and Barto, 2018], which can suffer from high variance in the gradient descent

update. Attempts to reduce the gradient estimator variance in REINFORCE while maintaining

convergence guarantees have resulted in the combination of policy search and value function

approaches, through the class of actor–critic algorithms [Konda and Tsitsiklis, 2000].

2.3 Episodic control

When using function approximation for value functions as in DQN, the value function (cumu-

lative discounted rewards) is learned by optimizing a fixed number of network parameters

θ. An alternative is to use a non–parametric approach, i.e. to store the returns experienced

from a state–action pair directly in memory, and use these raw data points for estimating

Q–values in the future. This approach, termed episodic control, has been championed from

both a neural/behavioural standpoint [Lengyel and Dayan, 2007, Gershman and Daw, 2017]

and a machine–learning standpoint [Blundell et al., 2016] as a viable alternative to parametric

model–free and model–based methods.

We focus on the formulation of episodic control given by Gershman and Daw [2017]. We

consider the case where an agent learns across multiple separate “episodes”, and the states

s encountered on these episodes exist in some continuous and/or high–dimensional state

space (for instance, the color intensity of pixels on a screen while playing a video game). We

14

2.3. Episodic control

take sμ,t to indicate the (potentially vector–valued) state that the agent encountered on step t

of episode μ. The index set

Esa = {(μ, t)|sμ,t = s, aμ,t+1 = a} 2.9

describes the set of episodes and time steps where the agent has encountered a particular

state–action pair (s, a) in the past. The Q–value for (s, a) is then given by

Q(s, a) = 1

|Esa |
∑

(μ,t)∈Esa

[(N∑
n=1

γn−1rμ,t+n

)
+γN max

a′ Q(sμ,t+N , a′)

]
, 2.10

i.e. an average over the discounted returns from all experienced trajectories beginning with

(s, a) in the past, truncated to N steps (with the remaining returns estimated from the value of

the state on the Nth step). Alternatively, the agent can use the maximum returns experienced

thus far from (s, a) [Lengyel and Dayan, 2007, Blundell et al., 2016]. If N =∞, the corresponds

to full episodic returns without bootstrapping (i.e. Monte Carlo returns [Sutton and Barto,

2018]).

While parametric N–step model–free methods are common [Sutton and Barto, 2018], an

additional key difference lies in how the Q–values of state–action pairs are estimated online:

Q(s, a) =
∑

s′∈Sa
K (s, s′)Q(s′, a)∑

s′∈Sa
K (s, s′)

, 2.11

where K (s, s′) represents some similarity function between states (e.g. a kernel function or

a nearest–neighbour measure), and Sa are the states in memory where the action a was

experienced in the past. Equation 2.11 represents an alternative to function approximation for

generalizing to state–action pairs that the agent has never seen before. Past observed states

may be represented in memory by their associated raw representation (e.g. pixels) or some

low–dimensional projection to reduce memory requirements [Blundell et al., 2016].

Returns associated with each state in an episode can be added to the memory at the end of

that episode. Individual experiences tend to affect the policy much faster than with 1–step

model–free deep RL for two reasons. First, N–step TD methods result in a faster backward

diffusion of reward signals than 1–step methods. Secondly, an episode is incorporated into

the model immediately rather than being added to a replay memory for eventual incremental

update of a function approximator by stochastic gradient descent. Accordingly, episodic

controllers have shown much better performance in the early stages of learning [Blundell et al.,

2016, Pritzel et al., 2017]. However, they tend to perform worse in later stages, in part because

deep networks can eventually learn to generalize and extract the task–relevant features of

the state–space more efficiently than is possible with a fixed kernel over raw features. This

issue can be partially addressed by learning a state embedding that efficiently compresses the

observations [Blundell et al., 2016] or predicts the estimated returns [Pritzel et al., 2017].

15

Chapter 2. Background: Reinforcement Learning Approaches

2.4 Hybrid model–free/model–based approaches

2.4.1 Dyna–Q

As mentioned earlier, a model can be used to generate synthetic experience by sampling in

order to update the value function. One possibility is to use that experience to augment the

performance of a model–free Q–learner. This is the approach taken by Dyna–Q [Sutton, 1990].

The agent explores a tabular environment updating the Q–values according to the Q–learning

update rule, while also learning p(s′|a, s) and r (s, a) online. Then, for a number of offline

backup steps, it updates the Q–values by randomly sampling learned transitions from the

estimated model, defined by transition probabilities p(s′|a, s) and estimated rewards r (s, a).

Algorithm 1 Dyna–Q.

Initialize Q(s, a) for all s, a
Initialize Nsa ,Rsa , N s′

sa = 0 for all s, a, s′

1: Observe current state s
2: loop
3: Take action a with ε-greedy strategy based on Q(s, a)
4: Observe r ′, s′

5: Q(s, a) ←Q(s, a)+η · [r ′ +γmaxa′ Q(s′, a′)−Q(s, a)
]

� Q–learning step
6: Nsa ← Nsa +1; N s′

sa ← N s′
sa +1; Rsa ← Rsa + r ′ � Model update

7: for k = 1 to Nk do
8: Sample sk from states where

∑
a Nsa > 0

9: Sample ak from actions where Nsk a > 0
10: Set r ′

k = r (sk , ak) = Rsk ak /Nsk ak

11: Sample s′k ∼ p(s′k |ak , sk) = N
s′k
sk ak

/Nsk ak

12: Q(sk , ak) ←Q(sk , ak)+η · [r ′
k +γmaxa′ Q(s′k , a′)−Q(sk , ak)

]
� Offline backup

13: end for
14: s ← s′

15: end loop

If the number of offline backup steps is Nk = 0, then the model is never used and Dyna–Q

collapses exactly to Q–learning. Conversely, as Nk →∞, Dyna–Q updates the value function

estimate almost entirely from the learned model. We can therefore see Nk as a parameter that

smoothly interpolates between a model–free and a model–based approach, and as a trade–off

in terms of background computation requirements.

Notably, the DQN replay memory considered in Section 2.2.2 is equivalent to a form of Dyna–Q

in which (a) the transitions kept in memory are limited to those recently encountered by the

agent and (b) sampling is biased towards transitions frequently encountered by the agent

(since transitions are stored explicitly rather than being used to update tabular statistics,

as in Algorithm 1). In this view, DQN is a hybrid approach, where the replay memory is a

non–parametric environment model, although the authors consider it to be purely model–

free [Mnih et al., 2013].

16

2.4. Hybrid model–free/model–based approaches

2.4.2 Prioritized sweeping

Like value iteration, Dyna–Q can be computationally inefficient because many cycles are spent

updating Q–values that change very little, or not at all. This is addressed by prioritized sweeping,

which aims to concentrate update cycles on large changes to the value landscape [Peng and

Williams, 1993, Moore and Atkeson, 1993, Van Seijen and Sutton, 2013].

Intuitively, after updating a Q–value according to Step 5 of Algorithm 1, we can consider the

priority value p = |Vi (s)−Vi−1(s)| = |maxa Qi (s, a)−maxa Qi−1(s, a)|, i.e. the change in value

of state s after updating Q(s, a). If p is high for a given state s, it is logical to prioritize sampling

states sk in Step 8 that have a high probability of transitioning into state s according to the

learned model.

The most efficient form of prioritized sweeping, prioritized sweeping with small backups [Van Sei-

jen and Sutton, 2013], is considered in Chapter 6. The version of the algorithm used there

updates the Q–values entirely with offline backups, making it a purely model–based approach.

In addition, the value of a predecessor state–action pair is updated using the probability

of the transition (without sampling or a learning rate); as a result, it can be considered an

asynchronous version of value iteration, and likewise converges to the optimal value function

for the model [Li et al., 2008, Van Seijen and Sutton, 2013].

2.4.3 Successor representations

As an alternative to background computation, one can consider a factorization of the Q–

value that allows the agent to respond quickly to new reward observations. The successor

representation [Dayan, 1993] does this by building a model of the expected multi–step future

occupancy of each successor state under the current policy in a tabular environment.

To see how this is useful, we note that the policy and transition probabilities can be combined

to give

M(s, s′) = ∑
a∈A

p(s′|a, s)π(a|s), 2.12

i.e. the policy–dependent probability that the agent will arrive in state s′ after a single step

from s.

We form the matrix M from the entries M(s, s′); where M has the shape |S|× |S|. We similarly

define |S|–length vectors v and r, where each entry v(s) in v represents the value of state s, and

each entry r (s) = ∑
a r (s, a)π(a|s) in r represents the expected reward received after exiting

17

Chapter 2. Background: Reinforcement Learning Approaches

state s. In a similar fashion to Equation 2.2, state values v can be represented as

v =
∞∑

k=0
γk Mk r 2.13

= r+γMr+γ2M2r+γ3M3r+ . . .

= (I−γM)−1r

= Lr,

where L is the successor representation. Each entry L(s, s′) gives the future discounted occu-

pancy in state s′ starting from state s.

We can similarly define a version of the successor representation that also depends on the

initial action a,

L(s, a, s′) = Eπ

[∞∑
k=0

γk
�[st+k = s′]

∣∣∣∣∣st = s, at = a

]
, 2.14

where �[·] = 1 if · is True and 0 otherwise. This allows the state–action value Qπ(s, a) under the

current policy π to be expressed as

Qπ(s, a) = ∑
s′∈S

L(s, a, s′)r (s′). 2.15

It is straightforward to adapt a learning rule similar to Equation 2.8 that learns the successor

representation L(s, a, s′) and r (s′) independently.

The successor representation can be beneficial because it isolates the task dynamics, which

change slowly as a multi–step function of the policy, from the immediate rewards, which can

be updated rapidly. Consider the case where the Q–values and policy have nearly converged

to optimality, then the agent experiences a surprising reward (Figure 2.1). In standard Q–

learning or Dyna–Q, it can take many experiences and/or offline backups before the Q–values

re–converge to accurate estimates. With successor representations, the immediate reward

estimates r (s) can change quickly, and the agent immediately gains access to the resulting

Q–values under the existing policy. In Figure 2.1C, the agent’s existing policy would cause it to

move left in the left arm of the maze; since the leftmost state now has an expected negative

reward, all states that tend to transition into the leftmost state over time have their state values

reduced. As a result, the agent will already tend to move right in the left arm of the maze, as it

should according to the new optimal greedy policy.

The agent can adjust the policy rapidly because L(s, a, s′) implicitly contains a model of the

environment dynamics (from the definition of M(s, s′) in Equation 2.12), as in a model–based

approach. However, M(s, s′) also depends on the policy, and as a result L(s, a, s′) will need to be

re–learned as the policy changes, as in model–free approaches. The successor representation

can therefore be seen as a hybrid model–based/model–free approach.

18

2.4. Hybrid model–free/model–based approaches

Figure 2.1 – The successor representation and rapid learning. [A] A simple tabular environ-
ment with four possible actions moving in cardinal directions (where the agent stays in the
same state if it moves into a wall). At the end of each hallway, the agent receives a reward and
the episode terminates; states are shaded according to their learned value after initial training
(where darker green corresponds to higher value). [B] The left arm stochastically gives a strong
negative reward that the agent has not yet experienced. The new state values one step after
experiencing the strong negative reward, under standard Q–learning (Equation 2.8). Note that
all states except the last one in the left arm still have high values; these could be updated with
a background planning method like Dyna–Q or prioritized sweeping. [C] The new state values
one step after experiencing the strong negative reward, using the successor representation
factorization (Equation 2.15). State values in the left arm are immediately reduced.

The future discounted occupancy under a certain policy can also be a useful metric for

representing a state space, as considered in Chapter 3.

19

3 Preplay and Path Planning with
Attractor Networks

3.1 Introduction

Animals navigating in a well–known environment can rapidly learn to revisit observed reward

locations, often after a single trial [Bast et al., 2009]. The mechanism for rapid path planning

remains unknown, though the hippocampus is a natural candidate for investigation given its

established role in spatial representation [O’Keefe, 1976]. Experimental results have suggested

that the hippocampus is involved in active spatial planning: experiments in “one–shot learning”

have revealed the critical role of the CA3 region [Nakazawa et al., 2003, Nakashiba et al., 2008]

and the intermediate hippocampus [Bast et al., 2009] in returning to goal locations that the

animal has seen only once. In addition, “preplay” activity during Sharp Wave and Ripple

(SWR) events in the hippocampus appears to reflect a path planning mechanism [Pfeiffer and

Foster, 2013]. This raises the question of whether hippocampal dynamics could support a

representation of the current location, a representation of a goal, and the relation between the

two.

In this chapter, we propose that a model of CA3 as a “bump attractor” [Samsonovich and

McNaughton, 1997, Conklin and Eliasmith, 2005] can be used for path planning. The attractor

map represents not only locations within the environment, but also the spatial relationship

between locations. In particular, broad activity profiles (like those found in intermediate

and ventral hippocampus [Kjelstrup et al., 2008]) can be viewed as a condensed map of a

particular environment. In our model, the planned path is observed as sequential activity from

the representation of the current position towards the goal location, similar to the preplay

observed experimentally in hippocampal activity during navigation tasks [Pfeiffer and Foster,

2013, Wikenheiser and Redish, 2015]. In the model, the sequential activity is initiated by

supplying input to the neurons proportional to their activation at the goal site (i.e. reactivating

the goal). Unlike other models of rapid goal learning and path planning [Martinet et al., 2011,

Ponulak and Hopfield, 2013, Khajeh-Alijani et al., 2015], there is no backward diffusion of a

value signal from the goal to the current state during the learning or planning process. Instead,

the sequential activity results from the representation of space in the attractor network, even

21

Chapter 3. Preplay and Path Planning with Attractor Networks

in the presence of obstacles.

After a presentation of the background, the chapter focuses on three different contributions

discussed in separate sections. First, we describe how the traditional attractor network model

of the hippocampus, based on open–field environments with periodic boundaries, can be

extended to realistic environments with boundaries and obstacles. Secondly, we show how an

attractor network could give rise to preplay–like trajectories towards goal locations, even if

more than one environment is represented in the same attractor network.

Finally, we describe the recurrent structure of the attractor network using a random walk–

based successor representation [Dayan, 1993], which represents space according to the num-

ber and length of paths connecting different locations. The resulting network can be inter-

preted as an attractor manifold in a low–dimensional space, where the dimensions correspond

to the most relevant eigenvectors of the environment’s transition matrix. These low spatial–

frequency functions have recently found support in theory as a viable basis for place cell

activity [Franzius et al., 2007, Schoenfeld and Wiskott, 2015, Stachenfeld et al., 2014]. We

show that, when the attractor network operates in this space and is stimulated with a goal

location, the resulting network activity can be interpreted as a viable path to that goal. These

trajectories could then be decoded by networks downstream of the attractor network into

actions used by the rat to reach a goal. Thus, the bump attractor network can act as a spatial

path planning system as well as a spatial memory system.

3.2 Background

3.2.1 Attractor network models of hippocampus

Research in rodent spatial navigation has revealed the existence of place cells in two subregions

of the hippocampus: CA3 and CA1 [Moser et al., 2008]. Cells in the CA3 region have significant

recurrent interconnectivity and project to the CA1 region, where there are few excitatory

recurrent connections [Andersen et al., 2007].

The connectivity profile of CA3 has contributed to multiple models of the CA3 place cell

network as a continuous attractor neural network [Samsonovich and McNaughton, 1997,

Tsodyks, 1999, Doboli et al., 2000, Conklin and Eliasmith, 2005], in loose agreement with

experimental findings on the network response of place cells [Wills et al., 2005, Colgin et al.,

2010, Jezek et al., 2011]. In a continuous attractor network, the steady–state activity of a

population of neurons lies on a low–dimensional manifold [Samsonovich, 2013]. In a spatial

bump attractor like that used to model CA3, activity lies on a 2D manifold representing the

coordinates [x1, x2] of the animal’s current location in the environment. A true continuous

attractor is not strictly possible with a finite population size, as the steady–state network

activity can only collapse to a discrete number of points on the manifold; however, a finite

network can be viewed as a (quasi-)continuous attractor if the size of the perturbation required

to move the system to a different point on the manifold can be made arbitrarily small by

22

3.2. Background

Figure 3.1 – Schematic of neural activity in a continuous “bump” attractor network. The
schematic shows a cross–section along a single spatial dimension x1. [Top] The white circles
represent neurons in a population, arranged along the horizontal axis according to ci 1, i.e.
the position along the x1 axis where neuron i responds maximally (the neuron’s “place field
center”). A feedforward stimulus xi n representing a spatial position in 2D space is applied to
the population [green arrows]. The resulting activity in the population is shown. The stimulus
induces a Gaussian–like “activity profile” when neurons are aligned according to their place
field centers, where the activation of each neuron depends on the distance between its place
field center and xi n . [Bottom] A given neuron (below the black vertical line) recurrently excites
neurons with similar place field centers and recurrently inhibits neurons with distant place
field centers (as shown by the curve, where red represents excitation and blue represents
inhibition). As a result, the activity profile induced by a feedforward stimulus can persist after
the stimulus is removed.

increasing the number of neurons [Samsonovich, 2013].

Consider a network of N place cells, where the i th cell responds to the current position

xi n(t) = [x1(t), x2(t)] in 2D space, with maximal response at that neuron’s place field center ci

(Figure 3.1). The activity ai of that neuron (analogous to a firing rate in a spiking network) is

determined in attractor models by

τ
d ai

d t
=−ai + gi

[
N∑

j=1
wr ec

i j a j + fi (xi n)

]
, 3.1

where gi is some non–negative monotonically increasing transfer function, wr ec
i j are the

recurrent weights in the network, xi n represents the observed position at time t , and fi

23

Chapter 3. Preplay and Path Planning with Attractor Networks

describes the response of neuron i to an input position (i.e. the place field). Note that gi can

incorporate some multiplicative neuron–specific gain and additive neuron–specific bias (or

threshold) before the non–negative nonlinearity.

We describe fi as a function of the spatial position as

fi (xi n) ∝ exp(−hd 2) 3.2

for some width factor h and distance d (here we take d = |xi n − ci |). A bump attractor can

then be achieved with recurrent weights wr ec
i j corresponding to excitation between neurons

with similar place fields and inhibition between neurons with distant place fields (Figure 3.1

bottom).

Our neuron now has two nonlinearities, gi and fi , where fi is chosen to induce place cell–like

activity. Rather than assuming the nonlinearity fi , we can consider an alternative represen-

tation of the input position allowing for a linear response function. For instance, we can

achieve a spatial tuning curve as in Equation 3.2 after expressing the input position xi n as an

approximately Gaussian–shaped “bump” in space using a set of M orthonormal spatial basis

functions xi n
k for k = 1, . . . , M [Conklin and Eliasmith, 2005]. In this coordinate system, the

nonlinear function of the input position can be expressed as

fi (xi n) =
M∑

k=1
w f f

i k xi n
k , 3.3

where the feedforward weights w f f
i k depend on the neuron’s place field center ci . We determine

the input weights using a normalized vector of coordinates ei = [ei 1,ei 2, . . . ,ei k , . . . ,ei M], the

neuron’s preferred direction vector or “encoding vector”, optimized to make an approximately

Gaussian function in space. The feedforward weights are then w f f
i k = αei k for some scalar

input gain factor α � 1. The dot product eT
i xi n defines a similarity measure between the

neuron’s selectivity and the current input; i.e. the overlap between the input Gaussian and the

neuron’s Gaussian tuning curve. For the illustrations in this section, the basis corresponds to a

set of 2D spatial Fourier functions. Note that the number of functions M required will depend

on the width of the Gaussian bumps represented by the input and the network; large bumps

can be represented using only a small number of low–frequency Fourier functions.

After this definition, we can re–write Equation 3.1 as

τ
d ai

d t
=−ai + gi

[
N∑

j=1
wr ec

i j a j +
M∑

k=1
w f f

i k xi n
k

]
. 3.4

Here, we assume that the “activity” xi n
k of each basis function is available directly as an input

to the network; we will consider how this assumption can be relaxed at the end of the next

section. Thus, xi n
k is a Gaussian centered at the current input location projected onto a basis

function k.

24

3.2. Background

3.2.2 Spatial representations in attractor networks

The weight profile shown in Figure 3.1 is the same for all neurons in the network, which is

appropriate if we assume the environment is periodic (toroidal) or infinite. Before we gener-

alize the attractor network to represent finite non–toroidal environments, we first consider

how to express the representation in the attractor network, and how to determine appropriate

recurrent weights. The central idea is that the network activities can be seen as representing

a control theoretic vector–valued variable x corresponding to a set of coordinates on the

basis functions considered in the previous section. Given appropriate recurrent weights, the

dynamics of the network representation x correspond to a low–pass filter over recent input

positions xi n supplied to the network. The analysis here is based primarily on the Neural

Engineering Framework (NEF) [Eliasmith and Anderson, 2004] and existing models of bump

attractors based on the NEF in toroidal environments [Conklin and Eliasmith, 2005].

In the following, we define an “effective input” xe f f ∈RM to the network. At first, we will use

the effective input as a mathematical construct to derive an appropriate recurrent weight

factorization, allowing for an alternative description of the network dynamics in terms of x.

After determining this factorization, we will show how the effective input corresponds to the

combined feedforward and recurrent input to the neurons in the network.

First, we consider how such an effective input vector could be recovered after being multiplied

with the network encoding vectors [e1,e2, . . . ,e j , . . . ,eN] and passed through the nonlinear

transfer function g j [·]. As before, each encoding vector e j ∈ RM describes the selectivity of

neuron j to an effective input. We assume that the effective input can be approximately

linearly decoded using a set of neuron–specific “decoding vectors” [d1,d2, . . . ,d j , . . . ,dN]. That

is, we write

xe f f ≈
N∑

j=1
d j g j

[
eT

j xe f f
]

, where d j ∈RM . 3.5

Next, we use the same decoding vectors d j and apply them to the population activities as

defined in Equation 3.4. Here, we define the result to be x, i.e. the population representation

of the spatial function (e.g. Gaussian bump) corresponding to the animal’s position. That is,

x =
N∑

j=1
d j a j . 3.6

Finally, we fix the recurrent weights in the population to

wi j = (1−α)eT
i d j . 3.7

25

Chapter 3. Preplay and Path Planning with Attractor Networks

Re–evaluating Equation 3.4 using Equation 3.6 and Equation 3.7, we find that

τ
d ai

d t
=−ai + gi

[
N∑

j=1
wr ec

i j a j +
M∑

k=1
w f f

i k xi n
k

]
3.8

=−ai + gi

[
N∑

j=1

(
(1−α)eT

i d j a j
)+αeT

i xi n

]
from Equation 3.7

=−ai + gi

[
(1−α)eT

i x+αeT
i xi n

]
from Equation 3.6

=−ai + gi

[
eT

i

(
(1−α)x+αxi n)]

.

Applying our decoding vectors to both sides of the equation, summing over the population

activities and taking xe f f = (1−α)x+αxi n , we find that

τ
N∑
i

di
d ai

d t
=−

N∑
i

di ai +
N∑
i

di gi

[
eT

i

(
(1−α)x+αxi n

)]
3.9

τ
dx

d t
≈−x+

(
(1−α)x+αxi n

)
from Equation 3.5 and Equation 3.6

τ′
dx

d t
≈−x+xi n , where τ′ = τ/α.

The network can thus be seen as an integrator or low–pass filter over the input positions xi n

(Figure 3.2). The effective input introduced earlier corresponds to a convex combination of

the network representation x and the input xi n under this weight factorization. Note that as

the recurrent weight magnitude increases (i.e. α decreases) the effective time constant of

the filter also increases, reflecting the hysteresis induced by the recurrent weights. Strong

recurrent weights can also filter out high–frequency noise in the input and allow the network

to maintain a memory of the input for some time after it is removed.

To derive the decoding vectors. we take a set of P vectors [xe f f
1 ,xe f f

2 , . . . ,xe f f
P] corresponding

to Gaussian profiles of constant width evenly spaced throughout the environment. We then

consider the squared error after approximating these effective inputs from their resulting

nonlinear representations in Equation 3.5, i.e.

E = 1

2

P∑
n=1

[
xe f f

n −
N∑

j=1
d j g j

[
eT

j xe f f
n

]]2

. 3.10

Finding the optimal decoding vectors for these P effective inputs corresponds to a linear

regression problem; they can thus be determined using the Moore–Penrose pseudoinverse

of the matrix of representations in response to the inputs. It is straightforward to adjust the

solution based on the expected variance of independent, Gaussian noise in each neuron’s

response profile, corresponding to an L2 regularization [Eliasmith and Anderson, 2004]. Note

that each neuron’s optimal decoding vector depends on the activity of the other neurons in

the population; in general, the error in decoding will decrease as more neurons are added to

the population.

26

3.2. Background
W
eight

Figure 3.2 – A toroidal bump attractor network. [Left] An input vector xi n is supplied to the
network representing the animal’s position in space using a basis consisting of low–frequency
spatial basis functions. This vector corresponds to a 2D Gaussian bump in a spatial reference
frame. The width of the bump depends on the number of basis functions used; additional high–
frequency functions result in narrower bumps. [Middle] Encoding vectors ei also correspond
to localized Gaussian bumps in 2D space. As a result, neurons with encoding vectors most
similar to the current input have the strongest response. If the neurons are arranged in a 2D
grid with equally spaced place field centers, the resulting activity profile likewise resembles a
Gaussian function. [Right] The activity can be decoded to estimate the network representation
x. With recurrent weights that feed x back into the network, the decoded network activity
approximates a low–pass filter of the input. The recurrent outgoing weights from neuron i are
shown, plotted in a 2D grid according to the 2D spatial relationship between neuron i ’s place
field center and the place field center of each postsynaptic neuron (where neuron i ’s place
field center corresponds to the middle of the plot). As in Figure 3.1, the neuron excites other
neurons with similar place field centers and inhibits those with distant place field centers.

In a toroidal attractor network, the resulting recurrent weights from this procedure are shown

in Figure 3.2. Note that they resemble the Gaussian or Mexican–hat–like recurrent connectivity

usually imposed heuristically to obtain an attractor network, as in Figure 3.1.

Until this point, we have described the network as a low–pass filter over the input. It is an

“attractor network” because the error minimization in Equation 3.10 is performed with respect

to a manifold of coefficients that correspond to localized Gaussian bumps in space. As a

result, the low–pass filter dynamics are only stable when the network operates in the vicinity

of this manifold, and the network activity tends to collapse back to this manifold (i.e. it

forms an attractor) [Eliasmith and Anderson, 2004]. For instance, if the initial effective input

xe f f = (1−α)x+αxi n corresponds to a mixture of two narrow Gaussian bumps x and xi n at

different locations in space, the recurrent connectivity will cause the network representation x

to rapidly collapse to a single bump rather than a mixture of the two (Eliasmith and Anderson

[2004]).

As an alternative to an orthonormal basis as an input to the network, we note that grid cells in

the entorhinal cortex (the primary input region to CA3 [Moser et al., 2008]) correspond to a

population of spatially global, periodic functions that can be linearly weighted to form place

fields in an open environment [Solstad et al., 2006]. Thus, for a hippocampal bump attractor

27

Chapter 3. Preplay and Path Planning with Attractor Networks

x x

Figure 3.3 – Non–Geodesic vs. Geodesic place fields. The colour indicates a cell’s simulated
activity according to the animal’s 2D position in an environment divided by a wall (in white).
Here, darker red corresponds to higher activity. The two cells have a maximal response at the
same position in the environment, marked with a white cross, which we refer to as the cell’s
place field center. [Left] Place cell response under a non–geodesic metric. Here, place cell
activity varies with the shortest path distance from a position on the discrete grid to the place
cell center, moving horizontally or vertically between points on the discrete grid, whether
or not those points are occupied by a barrier. [Right] Actual place cell responses are better
represented by fields based on geodesic distance. According to the geodesic metric, the cell’s
response depends on the shortest path along the discrete grid between the animal’s location
and the cell’s place field center, excluding grid positions occupied by obstacles.

network, we may instead take xi n
l as the response of grid cell l to the current location, with

w f f
i l =αeT

i dl as the connection from grid cell l to place cell i , where dl decodes the grid cell

representation into an M–dimensional basis representation. In the following we assume that

the “activities” of the M basis functions are available directly as input. Later we will consider

an explicit grid cell population as input (Chapter 4).

3.3 Geodesic attractor networks

In general, we are interested in representing environments with boundaries and obstacles. In

this case, place cell responses respect the topology of the environment; for instance, a cell

which responds strongly on one side of a thin wall has little or no response on the opposite

side [Gustafson and Daw, 2011].

Rather than using neurons that respond according to the distance between the animal’s

location and the place field center ignoring obstacles (here referred to as a non–geodesic

metric), we consider cell responses that scale with geodesic distance – i.e. the shortest path the

animal could take through the environment between its current position and the place field

center. An example profile under a geodesic metric is shown in Figure 3.3 (right), compared

to a profile based on distances ignoring the obstacle in the environment (left). We use the

term “geodesic” following Gustafson and Daw [2011], where it refers to the fact that obstacles

28

3.3. Geodesic attractor networks

A

B C

D E
Activation

W
eight

Figure 3.4 – A geodesic attractor network in an environment with barriers. [A] Example of
one of the P large geodesic profiles used for constructing the network weights. This example
has a place field centered in the top left corner of the maze. [B] The four basis functions
associated with the highest magnitude singular values after performing SVD on a set of
geodesic spatial profiles evenly spaced throughout the environment. These four low–frequency
functions, which varied smoothly across the environment, could explain > 95% of the variance
in the P large geodesic profiles. [C] 100 positions were randomly selected in the environment,
and the coordinates associated with those positions were used as encoding vectors. Coloured
pixels correspond to the 100 sampled positions; as a result, each pixel also defines one neuron’s
place field center. We plot the 100 outgoing recurrent weights from the i th neuron (which has a
place field center circled in red); each pixel’s colour gives the value of the recurrent weight from
the circled i th neuron to the neuron with a place field center at that pixel’s position. Note the
similarity to a traditional toroidal attractor weight profile (Figure 3.2), with recurrent excitation
between neuron’s with similar place field centers and inhibition between neurons with distant
place field centers. [D] The place field for the i th neuron circled in C, i.e. the steady–state
activity of the i th neuron when a constant input stimulus is applied corresponding to each
position in the environment. [E] The network activity profile for an input corresponding to
the top–left corner. The colour bar is shared between D and E.

29

Chapter 3. Preplay and Path Planning with Attractor Networks

effectively curve or warp the geometry of the environment.

We consider the problem of building an attractor network that can stably represent such

geodesic profiles in a given environment. First, we calculate geodesic spatial functions for

[1, . . . ,n, . . . ,P] 2D place field centers evenly spaced throughout an environment with obstacles,

where the nth function decreases exponentially with the shortest traversable distance d

between the nth place field center and a location in the environment (e.g. Figure 3.4A). The

full set of geodesic profiles can be represented with a P ×Z matrix R, where Z is the number

of possible positions in the environment (determined by the resolution of the representation).

Taking the Singular Value Decomposition of R gives R = USVT , where S is a diagonal matrix of

singular values in order of decreasing magnitude. Here, V corresponds to an environment–

specific orthonormal basis (e.g. Figure 3.4B), like the Fourier basis in periodic environments.

Similar to a Fourier basis, the vectors in V correspond to topologically–smooth functions, with

larger singular values associated with functions of lower spatial frequency.

The nth row of US gives the coordinates on the basis V that reconstruct a geodesic profile

centered at position n. We took the vectors in US and truncated them to length M , after

arranging them in order of decreasing singular value magnitude. We picked N locations

randomly and expressed the locations in the new basis to construct the encoding vectors

[e1, . . . ,eN] for the N neurons in the attractor network. In addition, we used all P rows in US to

generate the decoding vectors minimizing the error in Equation 3.10. Taking wr ec
i j = (1−α)eT

i d j

and w f f
i k = αei k , this process fully defines the recurrent and feedforward weights for the

environment–specific attractor network. We used a rectified linear nonlinearity for gi .

The resulting recurrent weights for an H–maze environment are shown in Figure 3.4C, an

example place field is shown in Figure 3.4D, and an activity profile (for a set of 100 neurons

with randomly chosen place field centers) is shown in Figure 3.4E.

3.4 Trajectories from attractor dynamics

From Equation 3.9, we can see the network as maintaining a memory of the animal’s current

location x(t) that follows a change in feedforward input on the timescale of τ′. We next consider

how the attractor network structure could contribute to the sequential activity observed in

place cell networks during SWRs and theta cycles [Pfeiffer and Foster, 2013, Wikenheiser and

Redish, 2015].

We consider the case where the current state represented by the network, x(t), and the new

input, xi n(t), are significantly different. In this case, we can see the network as generating a

low–pass filtered version of the transition between the initial and new stimulation coordinates.

In a goal–directed navigation task, x(t) and xi n(t) may correspond to the animal’s current

location and a goal location, respectively.

30

3.4. Trajectories from attractor dynamics

A

M
ea

n
Ac

tiv
iti

es

0.10

0.20

0.30

M
ea

n
Ac

tiv
iti

es

0.04

0.00

0.08

0.12

0.16

B

C D F
Position

0 10 20 30 400.00

Position
0 10 20 30 40

Position
0 10 20 30 40

M
ea

n
Ac

tiv
iti

es

0.05

0.00

0.10

0.15

0.20

0.40

E
Position input

Figure 3.5 – Sequential activity generated by low–dimensional representations, with units
possessing place fields centers equally spaced along a toroidal grid. [A] Neurons with large
place fields (generated using 9 Fourier basis functions) have place field centers that evenly tile
the entire toroidal environment. They produce a large activity profile [dark red: high activity,
dark blue: no activity]. Activity was initialized at the center of the image and stimulation was
delivered, centered at the white dot. [B] Activity profiles collapsed on the x1 spatial axis for
the first 200 time steps τ of stimulation; profiles are plotted at every 10 steps, moving from
yellow to green. Stimulation produced a smooth movement of the bump with an intervening
decrease in activity rates. [C] The same stimulation process was used on a network of neurons
with narrow place fields and narrow resulting activity profiles. [D] With narrow fields, the
bump decreased at the original position and reappeared at the stimulated location. [E] A
hierarchical structure was used with four populations of neurons, where the input stimulus
was applied to the population with the largest place fields and each population projected
to the next population with smaller place fields (Equation 3.11). [F] With the hierarchical
structure, the bump moves smoothly to the new location at the lowest level.

In mean–field models of periodic continuous attractor networks with broad bump profiles

and strong recurrent excitatory feedback, the network activity has been shown to reflect a

smooth transition between the initial position and the stimulated position with relatively little

change in the profile, a phenomenon referred to as “virtual rotation” [Hansel and Sompolinsky,

1998]. Virtual rotation results from the overlap between the initial activity profile and the

input stimulus in combination with the recurrent excitatory dynamics, which pull the network

activity towards a bump–like profile.

We reproduce the same phenomenon in a continuous attractor generated according to the

31

Chapter 3. Preplay and Path Planning with Attractor Networks

NEF in the top row of Figure 3.5. In this case, we evenly tiled the [41x41] grid with neurons,

such that each neuron’s encoding vector made it maximally receptive to a Gaussian bump

at a particular 2D location. When the input and recurrent weights were determined using

broad Gaussian bumps (generated from a low–dimensional Fourier basis), we observed virtual

rotation (Figure 3.5B). When narrow Gaussian bumps were used (generated from a high–

dimensional Fourier basis), the network representation jumped directly to the stimulated

location (Figure 3.5D).

The low–pass filter in Equation 3.9 requires the network to represent some convex combination

of the initial and final positions. In the low–dimensional, low–frequency basis used to generate

the broad activity profiles, the possible positions [x1 . . .xP] form a manifold that is nearly linear

close to the origin (i.e. closed under addition and multiplication). As a result, the network

representation of x in Equation 3.9 will, at any point in time, be close to the manifold of

possible positions. As well, since these points are used to determine the network weights

by minimizing the error in Equation 3.10, this manifold is also where the network error is

lowest. In contrast, attractor networks generated using narrow bumps correspond to high–

dimensional, highly nonlinear manifolds. In other words, convex combinations of narrow

Gaussian bumps do not resemble single Gaussian bumps, and they are not well–represented

by the network. As a result, the network profile tends to fade from the current position and

rise at the stimulated position, without a peak ever appearing between the two (Figure 3.5D).

Drawing on the observation of small place fields in the dorsal hippocampus, but larger place

fields in the intermediate and ventral hippocampus [Jung et al., 1994, Kjelstrup et al., 2008],

we propose that sequential activity could arise from recurrent dynamics in these more ventral

regions. However, preplay trajectories have been observed along the entire dorsoventral

axis in theta phase precession [Kjelstrup et al., 2008], and primarily recorded in the dorsal

hippocampus during SWR events [Pfeiffer and Foster, 2013]. The model can account for these

observations under the hypothesis that sequential activity in dorsal regions (where place fields

are narrow) is inherited from intermediate and ventral regions.

Here, we introduce a hierarchical model, where populations with large place fields project to

and influence populations with smaller place fields during sequential activity (e.g. Figure 3.5E).

At the top level (largest place fields), the dynamics are determined according to Equation 3.4

as usual. For each lower level, the neuron dynamics are amended to

τ
d al

i

d t
=−al

i + g

[
nl∑

j=1
wi j al

j +
nl+1∑
k=1

w td
i k al+1

k

]
3.11

where the superscript l denotes the level, the activity of units al+1
k represent the estimate

of the position at a higher level (a broader, lower–frequency representation), and the top–

down weights w td
i k are determined using the least–squares decoders of these low–frequency

components. Notably, the weights at all levels were determined with respect to the same basis

functions. As a result, a neuron with a large place field at a given position maximally excites

32

3.4. Trajectories from attractor dynamics

neurons with smaller place fields down the hierarchy near the same position. The top–down

signal provides a low–dimensional estimate of the path for the lower level to follow, while

the recurrent dynamics at the lower level impose the high–frequency dynamics that keep the

activity close to the attractor manifold. By feeding the estimate iteratively through several

levels, a smooth path can be generated between distant locations in the environment, even at

the level of small place fields.

In order to do this, we generated a four–level network using a 2D Fourier basis, with gradually

smaller place fields (higher–dimensional representations) at each level. As shown in Figure 3.5F,

a path generated by virtual rotation in a network with large places could also produce a

smooth path in the network with small place fields, by filtering the activity through each level

successively. This was not possible when a goal signal was supplied directly to the population

with small place fields; in that case, the bump jumped directly from the start location to the

goal location (Figure 3.5D).

By generating the weights according to the NEF rather than a Gaussian heuristic, the same

phenomenon of virtual rotation can be extended to non–toroidal environments with bound-

aries (Figure 3.6B). Here, the arrows indicate the initial shift in position of the most active

neuron after tiling the space such that exactly one neuron had a place field centered at every

position, and supplying feedforward input to the network corresponding to a given position

(the red dot). As in the toroidal environment, the shift was generally smooth relative to the

local topology with large place–field units, but was erratic when place fields were small relative

to the size of the environment (Figure 3.6C). However, in a hierarchical 2–layer network, top–

down stimulation from the high–level population of 100 neurons with large place fields could

induce smooth long–distance movement in the network with small place fields (Figure 3.6D).

3.4.1 Spiking networks

The same behaviour is qualitatively demonstrated in a hierarchical leaky integrate–and–fire

(LIF) spiking network with 3 layers (Figure 3.7). We segregated the neurons into excitatory

and inhibitory subgroups following the generally sharp division of neurons by chemical ef-

fect at outgoing synapses (i.e. Dale’s Principle, Eccles et al. [1954]). In this simple toroidal

environment, we used a Gaussian weight profile within and between the excitatory subpopula-

tions and a uniform weight profile between excitatory and inhibitory populations, and within

inhibitory populations. Fewer neurons were used at each increasing level in the hierarchy,

reflecting the decrease in precision (increase in width) of the place representation; as well, we

applied the position input at all levels of the hierarchy. Without top–down input, the narrow

activity profiles did not move until they eventually jumped directly to the stimulated posi-

tion. With top–down input from the broader profiles, they moved smoothly to the stimulated

position.

33

Chapter 3. Preplay and Path Planning with Attractor Networks

Figure 3.6 – Trajectories in an environment with barriers. [A] Comparison of a large geodesic
place field (left) and a small geodesic field (right), both centered in the top left corner of the
maze. [B] An attractor network was composed with a large place field neuron centered at each
of the 1351 locations in the environment not occupied by a barrier. Activity was initialized at
each point in the environment, and weak bump–shaped input applied, centered at the bottom
right [red dot]. The direction of shift in the most active unit after the first 10 time steps τ of
stimulation is shown by the vector field. [C] Paths were generated again using small place
fields (higher dimensional representations). With smaller fields, the decoded trajectories were
generally accurate near the stimulated location, but activity profiles far from the stimulated
location moved erratically or jumped directly to the stimulus (e.g. bottom left of maze). [D]
A network of 100 large place field neurons with randomly situated centers was generated
[coloured overlay represents the steady–state activity in this network for a bump centered at
the red dot]. This network was stimulated with an input corresponding to the position of the
red dot, and provided top–down stimulation to the lower level, causing activity in the small
place field network to move towards a fixed point near the stimulation center from across the
environment [vector field].

34

3.4. Trajectories from attractor dynamics

Position
Input

Position
Input

Excitatory
LIF (256)

Excitatory
LIF (1024)

Excitatory
LIF (4096)

Inhibitory
LIF (64)

Inhibitory
LIF (256)

Inhibitory
LIF (1024)

Figure 3.7 – Sequential activity generated in a spiking, hierarchical, toroidal attractor net-
work. [Left] Network diagram. Each level contains an excitatory and a (global) inhibitory
population. Excitatory weights were generated with a Gaussian profile. Profile width was
increased and neuron count decreased at each higher level (population sizes are shown in
brackets). Red lines: excitatory connections, blue lines: inhibitory connections, dotted lines:
manipulated top–down connections. [Middle] Overlaid results from two separate trials in
the lowest level (smallest profile widths). Neurons are arranged in the grid according to their
place field centers. Two different initial activity profiles [grey, spikes in the first 10ms] and
stimulation positions [large red dots] are shown. Without the dotted top–down connections,
the profiles did not move during the initial stimulation input period [small black dots, activity
profile means plotted every 10 ms for 100 ms]. With top–down connections, the profile means
moved towards the stimulated position [colored dots, plotted every 10 ms, blue to green for
Trial 1 and orange to yellow for Trial 2]. [Right] Raster plots for corresponding neurons in
middle diagram, showing sequential firing due to hierarchical attractor dynamics.

3.4.2 Multichart attractor networks

Place cells have been experimentally observed to “remap” between different environments, i.e.

cells which have correlated firing fields in one environment tend to show no correlation in an-

other environment [McNaughton et al., 1996]. Theorists have shown that a recurrent network,

such as CA3, can potentially store many uncorrelated maps simultaneously (a “multichart”

representation, Samsonovich and McNaughton [1997]), where each map corresponds to a

different environment.

Multichart attractors can be achieved with recurrent connectivity corresponding to the super-

position of multiple recurrent weight profiles for multiple environments. Provided that the

place cell activities are uncorrelated across environments, and the number of environments is

small relative to the network size, the recurrent attractor connections can be superimposed

such that the bump is localized only in the environment represented by the feedforward in-

put [Samsonovich and McNaughton, 1997]. The cooperative activity of the neurons maintains

the representation in that environment, as the representation has no spatial coherence in any

other environment represented in the recurrent weights.

To investigate whether sequential activity could occur in multichart attractors, we generated

a geodesic multichart attractor with 100 units for two environments, where each unit was

randomly assigned a large place field center in both environments (Figure 3.8). In both environ-

35

Chapter 3. Preplay and Path Planning with Attractor Networks

Figure 3.8 – A small network of large place–field units can generate geodesic trajectories in
multiple environments. Two orthogonal attractors representing different environments were
stored in the same network of 100 units. [A] Initial activity trajectory from each point in a
twisting hallway environment, with stimulation provided at the red dot, as decoded from
the network activity. Place field centers and activities, for a bump centered at the red dot,
are shown in overlay. [B] The same network representing a maze–like environment, with
trajectories and activities for stimulation centered at the red dot. Note the discontinuity in the
lower left, where two different paths are equidistant from the goal. [C] The same activities as in
the previous two plots, plotted according to the place field centers in the other environment.

ments, these place fields were well–represented using 6 basis functions. To generate multiple

charts in the same network, we determined the recurrent weights solved by minimizing the

representation error across both environments; i.e.

E = 1

2

P1∑
n1=1

[
x′n1

−
N∑

j=1
d j a j (x′n1

)

]2

+ 1

2

P2∑
n2=1

[
x′n2

−
N∑

j=1
d j a j (x′n2

)

]2

, 3.12

for P1 positions in environment 1 and P2 positions in environment 2, where the augmented

input vectors correspond to

x′Tn1
= [x1,n1 , x2,n1 , x3,n1 , x4,n1 , x5,n1 , x6,n1 ,0,0,0,0,0,0] and 3.13

x′Tn2
= [0,0,0,0,0,0, x1,n2 , x2,n2 , x3,n2 , x4,n2 , x5,n2 , x6,n2], 3.14

i.e. for each 12–dimensional input vector used to determine the weights, 6 dimensions

represented a position in one environment and the other 6 dimensions were set to 0. As a

result, all encoding and decoding vectors were 12–dimensional as well. This process results in

the generation of two orthogonal attractor manifolds.

We then tested the possibility of sequential activity from virtual rotation in the multichart

network. For each environment, the initial movement of the activity profile from each point in

36

3.5. Successor Representation–based geodesic attractors

that environment was recorded, after stimulating the network with a single goal location. In

this case, the movement of the profile was not judged by the shift in the most active unit, but

rather by the shift in the maximum position of the spatial function represented by the network

activities after decoding them with the optimal decoders from Equation 3.10.

The networks were able to generate trajectories across both environments and displayed

diverging activity at equidistant points (e.g. Figure 3.8B, bottom middle of maze), although

high–frequency elements like corners were sometimes filtered out by the network (e.g. Fig-

ure 3.8A, top left of maze).

3.5 Successor Representation–based geodesic attractors

In the spatial attractor network models presented thus far, the shortest–path distances between

all grid positions in the environment are used to determine appropriate recurrent weights. In

the following, we consider how large–scale features of the environment could be represented

in the network weights using only local distance information about the environment. To do

this, we derive the network weights using a local random walk combined with the successor

representation framework. In addition, we provide an interpretation of the evolution of the

network’s activity in light of the successor representation. We focus on the network activity

in large place field populations, without the hierarchical structures considered in previous

sections.

3.5.1 Representing space using the successor representation

We represent the relationship between locations in an environment including obstacles using

the geodesic similarity metric considered in Section 3.3. Given two states s = [x1, x2] and

s′ = [x ′
1, x ′

2] in the 2D plane, their (symmetric) similarity f is given by

f (s, s′) = f (s′, s) = exp
(−hd 2) 3.15

where h is a width term as in Equation 3.2 and d is the distance between s and s′ along a dis-

crete grid, respecting walls and obstacles (as in the geodesic fields previously considered). The

metric is localized such that f (s, ·) resembles, as a function of the second argument, a small

bump in space truncated by walls with a maximum located at s. Unlike the geodesic functions

considered in the previous section, we take a much larger, fixed value for h; the resulting

bump is therefore much smaller (Figure 3.9 center bottom, cf. Figure 3.4A). Normalizing the

similarity metric gives

p(s, s′) = f (s, s′)∑
s′ f (s, s′)

. 3.16

The normalized metric can be interpreted as a transition probability from s to s′ under a

random walk. This random walk results in small steps to positions in the near vicinity of

37

Chapter 3. Preplay and Path Planning with Attractor Networks

s; in the 41×41 discrete grid environments considered in the following, p(s, s′) < 0.1% for

positions s and s′ more than 4 grid positions apart. Taking p(s, s′) = ∑
a T (s′|s, a)π(a|s), the

transition probability can be seen as implicitly incorporating both the action–conditional

transition probabilities T (s′|s, a) and a policy π(a|s) [Stachenfeld et al., 2014]; the random

walk can therefore be interpreted as arising from a deterministic transition function and a

policy describing a small random step from the current position. The statistics of the random

walk could be determined from one–step observations during random exploration of the

environment.

In order to capture large–scale structure using the local transition function p(s, s′), we consider

the Markov chain described by the transition matrix P, formed from the elements p(s, s′). In

addition, we assume that there is a single “goal” state in the environment at any point in time,

described by the one–hot vector r with r (s′) = δs′g (δ denotes the Kronecker delta function

and the index g denotes the goal state). Using the successor representation (Section 2.4.3), the

expected discounted returns v from each state while following the random walk is given by

v = r+γPr+γ2P2r+γ3P3r+ . . . 3.17

= (I−γP)−1r

= Lr.

where γ denotes a discount factor. When we consider only a single goal, we can see the

elements of L as L(s, s′) = v(s|s′ = g), i.e. the value of state s given that s′ is the current goal.

We will use this property to generate a spatial mapping that allows for rapidly planning a path

between any two points in the environment.

Given that P is formed from a random walk, a spectral analysis of L [Coifman and Lafon, 2006,

Stachenfeld et al., 2014] gives

v(s|s′ = g) = z(s′)
n∑

l=0
(1−γλl)−1ψl (s)ψl (s′) 3.18

where z(s′) is the steady–state occupancy of s′ given the transition matrix P, ψl are the right

eigenvectors of P, and 1 = |λ0| ≥ |λ1| ≥ |λ2| · · · ≥ |λn | are the n +1 eigenvalues [Coifman and

Lafon, 2006]. Large–scale features of the environment are represented in the eigenvectors

associated with the largest eigenvalues ([Fiedler, 1989], Figure 3.9 top left). Note that the

successor representation describes the space by repeated application of a local transition

function p(s, s′), rather than a single application of a large–scale, global similarity function as

in the previous geodesic networks.

We now express the position in the 2D space using a set of “successor coordinates”, such that

s(x1, x2) �→ s̆ =
(√(

1−γλ0
)−1

ψ0(s),
√(

1−γλ1
)−1

ψ1(s), . . . ,
√(

1−γλq
)−1

ψq (s)

)
3.19

= (
ξ0(s),ξ1(s), . . . ,ξq (s)

)

38

3.5. Successor Representation–based geodesic attractors

30

20

10

0

-10

-20

-30

-40
-40 -30 -20 -10 0 10 20 30-50

Figure 3.9 – Representing an environment in successor coordinates. [Left] A rat explores
a maze–like environment and passively learns its topology. We assume a process such as
hierarchical slow feature analysis, that preliminarily extracts slowly changing functions in the
environment (here, the vectors ξ1 . . .ξq). The vector ξ1 for the maze is shown in the top left.
In practice, we extracted the vectors directly from a localized Gaussian transition function
(bottom center, for an arbitrary location). [Right] This basis can be used to generate a value
map approximation over the environment for a given reward (goal) position and discount
factor γ (inset). Due to the walls, the function is highly discontinuous in the x y spatial
dimensions, but varies smoothly along dimensions where movement is possible. The goal
position is circled in white. In the scatter plot, the same array of states and value function are
shown on the manifold given by the first two non–trivial successor coordinate dimensions. In
this space, the value function is proportional to the scalar product between the states and the
goal location. The grey and black dots show corresponding states between the inset and the
scatter plot.

where ξl =
√(

1−γλl
)−1

ψl (see Figure 3.9). This is similar to the “diffusion map” framework

by Coifman and Lafon [2006]; with the useful property that, if q = n, the value of a given

state when considering a given goal is proportional to the scalar product of their respective

mappings: v(s|s′ = g) = z(s′)〈s̆, s̆′〉. This property allows a network operating in the successor

coordinate space to rapidly generate prospective trajectories between arbitrary locations.

The mapping can also be defined using the eigenvectors φl of a related measure of the space,

the normalized graph Laplacian [Mahadevan, 2009]. The eigenvectors φl serve as the objective

functions for slow feature analysis [Sprekeler, 2011], and approximations have been extracted

through hierarchical slow feature analysis on visual data [Franzius et al., 2007, Schoenfeld and

Wiskott, 2015], where they have been used as an input for generating place cell–like behaviour.

Note that, since the successor coordinates are based on a random walk and not a directed

policy resulting from a specific reward landscape, they primarily represent a model–based ap-

proach (rather than a hybrid model–free/model–based approach as associated with successor

representations in Chapter 2).

39

Chapter 3. Preplay and Path Planning with Attractor Networks

3.5.2 Path–finding using the successor coordinate mapping

Successor coordinates provide a means of mapping a set of locations in a 2D environment

to a new space based on the topology of the environment. In the new representation, the

value landscape is particularly simple. To move from a location s̆ towards a goal position s̆′,
we can consider a constrained gradient ascent procedure on the value landscape, expressed

by Equation 3.20:

s̆(t +Δt) = argmin
s̆∈S̆

[
(s̆− (s̆(t)+α∇v(s̆(t)))2] 3.20

= argmin
s̆∈S̆

[(
s̆− (s̆(t)+ α̃s̆′)

)2
]

where z(s′) (see Equation 3.18) has been absorbed into the parameter α̃. At each time step,

the state closest to an incremental ascent of the value gradient is selected amongst all states

in the environment S̆. Since the value function is derived under a random walk policy, this

corresponds to choosing a state that is more likely to reach the goal in the near future under a

random walk. In the following, we will consider how the step s̆(t)+ α̃s̆′ can be approximated

by a neural attractor network acting in successor coordinate space.

Due to the properties of the transition matrix, ψ0 is constant across the state space and

does not contribute to the value gradient in 3.20. As such, we substituted a free parameter

for the coefficient
√

(1−γλ0)−1, which controlled the overall level of activity in the network

simulations.

3.5.3 The network model

We use the same network structure described with the NEF in Section 3.3, but here using

successor coordinates. Each neuron has an encoding vector given by ei = s̆i
||s̆i || , the normalized

successor coordinates of a particular point in space, which corresponds to its place field center.

The input to neuron i in the network is then given by

wi k = [ei]k ,
m∑

k=1
wi k s̆i n

k = ei · s̆i n . 3.21

where we assume the input s̆i n is given using the basis ξ. As before, we find a set of decoding

weights d j to recover the least–squares approximation to a set of example effective inputs

s̆e f f corresponding to locations in the environment, and use them to determine the recurrent

weights wi j . With a gain factor α in the feedforward weights and (1− ε) in the recurrent

weights, the update equation of the network (following from Equation 3.9) is then given by

τ
d s̆

d t
≈−εs̆+αs̆i n . 3.22

40

3.5. Successor Representation–based geodesic attractors

Given a location s̆i n as an initial input, the network representation s̆ approximates the input

and reinforces it, allowing a persistent bump of activity to form. When s̆i n then changes to

a new (goal) location, the input and recovered coordinates conflict. By Equation 3.22, the

recovered location moves in the direction of the new input, giving us an approximation of

the initial gradient ascent step in Equation 3.20 with the addition of a decay controlled by

ε. However, the attractor dynamics prevent s̆ from moving far from the manifold of actual

locations in the environment (determined by the points where the error in Equation 3.10

was minimized). As before, the network activity is decoded after a short stimulation period;

here, the state on the manifold of actual states (Figure 3.9 right) closest to the new network

representation s̆ can be interpreted as a state close to the starting position that ascends the

value gradient.

As in earlier non–hierarchical experiments, we used large place fields dominated by low–

frequency spatial functions (corresponding to γ= 1). In addition, we truncated the successor

coordinate representation to the first q most significant dimensions, where q < 6 in the

experiments presented here. Finally, we achieved the best results by balancing the decay and

input strength in the network (ε=α).

3.5.4 Results

We generated successor coordinate–based attractor networks according to the layout of mul-

tiple environments containing walls and obstacles, and stimulated them successively with

arbitrary starting points and goals. Here, we use n = 500 neurons to represent each environ-

ment, with place field centers selected randomly throughout the environment. The network

activity resembles a bump across a portion of the environment, as in the previous geodesic

attractors (Figure 3.10).

For several networks representing different environments, we initialized the activity at points

evenly spaced throughout the environment and provided weak feedforward stimulation

corresponding to a fixed goal location (Figure 3.11). After a short delay (5τ), we decoded the

successor coordinates from the network activity to determine the closest state (Equation 3.20).

The shifts in the network representation are shown by the arrows in Figure 3.11. For two

networks, we show the effect of different feedforward stimuli representing different goal

locations. The movement of the activity profile was similar to the shortest path towards the

goal (Figure 3.11, bottom left), including reversals at equidistant points (center bottom of the

maze). Irregularities were still present, however, particularly near the edges of the environment

and in the immediate vicinity of the goal (where high–frequency components play a larger

role in determining the value gradient).

41

Chapter 3. Preplay and Path Planning with Attractor Networks

0.0
4.0
9.0
13.0
18.0

0.0
4.0
9.0
13.0
18.0

0.0
2.0
4.0
6.0
8.0

Figure 3.10 – Successor coordinate–based attractor networks. Network activities are illus-
trated over time for different inputs and networks, in multiples of the membrane time constant
τ. Purple boxes indicate the most active unit at each point in time. [Top row] Activities are
shown for a network representing a maze–like environment in a low–dimensional space (q = 5).
The network was initially stimulated with a bump of activation representing the successor
coordinates of the state at the black circle; recurrent connections maintain a similar yet fading
profile over time. [Middle row] For the same network and initial conditions, a weak constant
stimulus was provided representing the successor coordinates at the grey circle; the activities
transiently decrease and the center of the profile shifts over time through the environment.
[Bottom row] Two positions (black and grey circles) were sequentially activated in a network
representing a second environment in a low–dimensional space (q = 4).

3.6 From trajectories to headings

In the geodesic attractor networks described thus far, we have decoded trajectories according

to either the place field center of the most active unit at each point in time (Section 3.4)

or by projecting the network representation on to the state manifold at each point in time

(Section 3.5). It is worthwhile to consider instead how a downstream network could translate

the network activity into a heading for the animal to follow (and ultimately, an action).

Rather than determining a nearby state that ascends the value gradient as in Equation 3.20, a

downstream network could decode the gradient in x y space (i.e. the arrows in Figure 3.11) in

order to determine an appropriate heading. Several methods for neural differentiation have

been proposed [Tripp and Eliasmith, 2010]; for instance, one approach utilizes feedforward

42

3.6. From trajectories to headings

Figure 3.11 – Successor coordinate–based network trajectories in different environments.
Arrows show the initial change in the location of the activity profile by determining the state
closest to the decoded network activity (at t = 5τ) after weakly stimulating with the successor
coordinates at the black dot (α = ε = 0.05). Pixels show the place field centers of the 500
neurons representing each environment, coloured according to their activity at the stimulated
goal site. [Top left] Change in location of the represented successor coordinates in a maze–like
environment with low–dimensional activity compared to [Bottom left] the true shortest path
towards the goal at each point in the environment. [Additional plots] Various environments
and stimulated goal sites using low–dimensional successor coordinate representations.

excitation in combination with delayed, disynaptic inhibition. Suppose that the attractor

network projects indirectly to a downstream network, where the activity of each neuron can

be described by

τ
d ad s

i (t)

d t
=−ad s

i (t)+ g

[
N∑

j=1
wi j aat t

j (t)+
N∑

j=1
w ′

i j aat t
j (t −Δt)

]
, 3.23

where aat t
j (t) describes the activity of a neuron j in the attractor network at time t , and the

delay (t −Δt) is accomplished with a disynaptic delay line. If the disynaptic pathway reverses

the sign of the input, and wi j = eT
i d j where d j decodes the successor coordinates, this gives

us

τ
d ad s

i (t)

d t
=−ad s

i (t)+ g
[

eT
i s̆(t)−e′Ti s̆(t −Δt)

]
, 3.24

where ei and −e′i represent the neuron’s response to successor coordinates at time t and time

(t −Δt), respectively.

Suppose that a neuron in the downstream region is maximally receptive to a particular com-

bination of successor coordinates s̆p1 (t) and −s̆p2 (t −Δt) from the attractor network, and

43

Chapter 3. Preplay and Path Planning with Attractor Networks

that s̆p1 and s̆p2 correspond to neighbouring positions in the environment, offset in some

allocentric direction (e.g. s̆p1 is slightly north of s̆p2). If ad s
i (t) is strongly active near the

beginning of a trajectory, it suggests that the attractor network representation is also moving

north, and that the animal should travel north in order to move closer to the goal position. An

entire population receptive to different positions and offsets would therefore give rise to a

population code for planned allocentric heading, which could be compared to the animal’s

current heading by a further downstream network in order to determine an egocentric action

(e.g. turn left, turn right or go forward).

This model would require a network of “place × heading” cells downstream of the attractor

network in order to decode the heading; in fact, neurons with a place × heading response

have been found in the subiculum, the output pathway of the hippocampus [Cacucci et al.,

2004]. It is unclear how the cells respond during SWRs or whether they predict the animal’s

future heading (as opposed to merely reflecting the current heading). However, the cells are

strongly predisposed to fire at a particular phase of the local theta rhythm; assuming that this

aligns with the end of a theta cycle in CA3/CA1, the subicular cells may summarize the place

cell trajectories that occur during theta cycles, which predict the animal’s future heading and

reflect current goals [Huxter et al., 2008, Wikenheiser and Redish, 2015].

3.7 Discussion

We have presented a spatial bump attractor model generalized to represent environments

with arbitrary obstacles, and shown how, with large activity profiles relative to the size of

the environment, the network dynamics can be used for long–distance path–finding. This

provides a possible explanation for goal–directed activity observed in the hippocampus [Pfeif-

fer and Foster, 2013, Wikenheiser and Redish, 2015] and an hypothesis for the role that the

hippocampus and the CA3 region play in rapid goal–directed navigation [Nakazawa et al., 2003,

Nakashiba et al., 2008, Bast et al., 2009], as a complement to an additional (e.g. model–free)

system enabling incremental goal learning in unfamiliar environments [Nakazawa et al., 2003].

Recent theoretical work has linked the bump–like firing behaviour of place cells to an encoding

of the environment based on its natural topology, including obstacles [Gustafson and Daw,

2011], and specifically to the successor representation [Stachenfeld et al., 2014]. As well,

several models have proposed that place cell behaviour can be learned by processing visual

data using hierarchical slow feature analysis [Franzius et al., 2007, Schoenfeld and Wiskott,

2015], a process which can extract the lowest frequency eigenvectors of the graph Laplacian

generated by the environment [Sprekeler, 2011] and therefore provide an appropriate basis for

successor representation–based activity. We provide the first link between these theoretical

analyses and attractor–based models of CA3.

Slow feature analysis has been proposed as a natural outcome of a plasticity rule based

on Spike–Timing Dependent Plasticity (STDP) [Sprekeler et al., 2007], albeit on the timescale

of a standard postsynaptic potential rather than the behavioural timescale we consider here.

44

3.7. Discussion

However, STDP can be extended to behavioural timescales when combined with sustained

firing and slowly decaying potentials [Drew and Abbott, 2006] of the type observed on the

single–neuron level in the input pathway to CA3 [Larimer and Strowbridge, 2010], or as a result

of network effects. Within the attractor network, learning could potentially be addressed by a

rule that trains recurrent synapses to reproduce feedforward inputs (representing positions)

during exploration (e.g. [Urbanczik and Senn, 2014]). Both the development of geodesic place

fields and learning of recurrent weights are considered in greater detail in Chapter 4.

Our model assigns a key role to neurons with large place fields in generating long–distance

goal–directed trajectories. We further propose that such trajectories in dorsal hippocampus

(where place fields are much smaller [Kjelstrup et al., 2008]) may be inherited from dynamics

in ventral or intermediate hippocampus. The model predicts that ablating the intermedi-

ate/ventral hippocampus [Bast et al., 2009] will result in a significant reduction in goal-directed

preplay activity in the remaining dorsal region. In an intact hippocampus, the model predicts

that long–distance goal–directed preplay in the dorsal hippocampus is preceded by preplay

tracing a similar path in intermediate hippocampus.

Recent evidence, since the development of this model, suggests that trajectory events in the

dorsal hippocampus move in a “step–like” discontinuous fashion across discrete subpop-

ulations of neurons [Pfeiffer and Foster, 2015]. While this evidence contradicts a model in

which trajectories arise from continuous attractor dynamics in dorsal hippocampus, they

are still potentially consistent with one in which discrete trajectories in dorsal hippocampus

are inherited from continuous trajectories in intermediate/ventral hippocampus. Similar

experiments in the intermediate/ventral hippocampus could directly test the hypothesis.

In the model, if an assembly of neurons projecting to the attractor network is active while the

animal searches the environment, reward–modulated Hebbian plasticity provides a mech-

anism for reactivating a goal location. In particular, the presence of a reward–induced neu-

romodulator would allow for potentiation between the assembly and the attractor network

neurons active when the animal receives a reward at a particular location. Activating the

assembly would then provide stimulation to the goal location in the network; the same mech-

anism could allow an arbitrary number of assemblies to become selective for different goal

locations in the same environment. Unlike traditional model–free methods of learning which

generate a static value map, this would give a highly configurable means of navigating the

environment (e.g. visiting different goal locations based on thirst vs. hunger needs), providing

a link between spatial navigation and higher cognitive functioning.

45

4 Learning Place Cell Maps for
Navigation

4.1 Introduction

In Chapter 3, we considered how an attractor–based representation of an environment in

the hippocampus could contribute to navigation and planning through trajectory events.

However, both the feedforward weights and recurrent weights were assumed to be pre–learned,

potentially through slow feature analysis. Here, we examine how geodesic place fields of

various sizes (i.e. place fields that respect the topology of the environment) could arise from

the simple representations of the environment upstream of the hippocampus, and how a local

learning rule could result in the recurrent weights implementing an attractor network.

We consider two types of spatial neural responses as input to the place cell network: grid

cells (Fyhn et al. [2004], Hafting et al. [2005], briefly introduced in Chapter 1) and border

cells [Solstad et al., 2008]. Grid cells, found in the entorhinal cortex (an input pathway to the

place cell network of the hippocampus) exhibit spatially periodic firing across an environment,

typically resembling a hexagonal grid, at multiple spatial scales along the dorsoventral axis.

Border cells, also discovered in the entorhinal cortex, tend to fire at a rate inversely related to

the animal’s distance to an environmental boundary at a particular orientation. For instance,

a cell might respond more strongly as the animal approaches any south–facing wall in its

enclosure.

While several theorists have shown that local place cell responses can arise from selectivity to

grid cells at multiple spatial scales [McNaughton et al., 2006, Solstad et al., 2006, Rolls et al.,

2006], we show how additional selectivity to border cells can result in small–scale place fields

that respect the local geometry of the environment (e.g. firing on one side of a wall but not

the other, as observed in experiments [Gustafson and Daw, 2011]). We then show how these

small-scale place cell responses can, in turn, act as a basis for large–scale place fields like

those observed in the ventral hippocampus [Jung et al., 1994, Kjelstrup et al., 2008]. Finally,

we show how a local recurrent learning rule could induce attractor weights adapted to the

environmental topology.

47

Chapter 4. Learning Place Cell Maps for Navigation

4.2 Grid and border cell input to the place cell network

Following Solstad et al. [2006], we define a set of grid cell responses according to

ag c
j (x) = g g c 2

3

[1

3

3∑
l=1

cos(sT
l j (x−r0 j))+ 1

2

]
, 4.1

where [s1 j ,s2 j ,s3 j] correspond to a set of 2D sinusoidal gratings offset by 0, 60 and 120 degrees

from a particular phase angle φ, x corresponds to the animal’s 2D position in the environment,

and the constants enforce that the grid cell response varies between 0 and g g c across the

environment. The grid cell scale is determined by the (equal) wavelength of the three gratings.

Each cell is therefore defined by uniformly sampling a grating wavelength from a given range,

as well as a a phase φ and a 2D offset r0 j . The interference pattern of the sinusoidal gratings

produces a hexagonal pattern (Figure 4.1A).

Solstad et al. [2006] determine appropriate grid–to–place cell weights algorithmically. Here,

we instead follow Sheynikhovich et al. [2009] and “recruit” a place cell i when the animal is at

a location x by setting the feedforward weights according to the normalized presynaptic grid

cell activities, i.e.

wi j =
ag c

j (x)√∑N g c

m=1 ag c
m (x)2

, 4.2

reflecting the stable solution of a fast self–normalizing competitive Hebbian learning rule,

such as Oja’s rule [Oja, 1982]. The response of place cell i is then given by

apc
i (x) =

[
N g c∑
j=1

w g c
i j ag c

j (x)−θpc

]
+

, 4.3

where θpc corresponds to a threshold (or bias), and [·]+ indicates a rectified linear response

function. Equation 4.3 can be seen as a discrete time version of the cell model considered

in Chapter 3, with a small time constant (and the addition of an explicit threshold θpc).

Given a sufficiently rich grid cell population, the weight learning rule in Equation 4.2 combined

with the interference pattern of the grid cells active at the location that the cell is recruited

results in local firing fields centered at the recruitment position (Figure 4.1B left, similar to the

results of Sheynikhovich et al. [2009] for a different grid cell model). Throughout this chapter,

when we refer to a cell being “recruited”, we mean that its feedforward input weights are fixed

according to the current normalized presynaptic activity from an upstream population, as

in Equation 4.2.

This approach, a combination of the models by Solstad et al. [2006] and Sheynikhovich

48

4.2. Grid and border cell input to the place cell network

A C

B D

Figure 4.1 – Local place fields from combined grid and border cell input. [A] Example grid
cell responses of differing scale and orientation generated according to Equation 4.1. [B] Cells
recruited with weights according to Equation 4.2 produce spatially localized place cell–like
responses in open field regions of the environment, but can produce non–local responses
near boundaries. [C] Example border cell responses, generated according to Equation 4.4. [D]
Combined grid and border input generates spatially localized responses.

et al. [2009], is effective in open–field environments. However, if the grid cell basis does

not respect boundaries or obstacles, neither will the resulting place cells (Figure 4.1B right).

Evidence suggests that grid cells will form a global pattern unaffected by barriers across

an environment [Carpenter et al., 2015], like the pattern resulting from Equation 4.1. In

contrast, place cell responses in non–ambiguous environments are generally local and respect

boundaries [Skaggs and McNaughton, 1998, Gustafson and Daw, 2011].

We therefore investigate whether entorhinal border cells could allow place cell responses to

disambiguate between regions separated by an obstacle. Following Barry et al. [2006], we

model border cells according to

abc
k (x) = g bc

∫
π

−π

exp
[− lθ(x)2/2σ2

r ad

]
√

2πσ2
r ad

exp
[− (θ−φk)2/2σ2

ang

]
√

2πσ2
ang

dθ 4.4

where lθ(x) corresponds to the shortest distance to a boundary in direction θ from the current

position x in the environment, φk determines the border cell’s preferred direction vector, and

the widths σr ad and σang (which we take to be fixed) determine how quickly the cell’s response

is attenuated with distance from a boundary and the cell’s preferred direction, respectively.

Equation 4.4 is a simplified version of the “boundary–vector cell” model developed by Barry

et al. [2006]. Unlike that model, where the cell’s maximal response could occur at an arbitrary

distance from the boundary, the cell described by Equation 4.4 always responds maximally at

49

Chapter 4. Learning Place Cell Maps for Navigation

distance 0 from the boundary, and therefore more closely resembles the border cell response

found in entorhinal cortex [Solstad et al., 2008].

Combining the grid and border cell populations, we set the feedforward weights of a grid cell

j and border cell k to a place cell i at the position of recruitment x to

w g c
i j =

ag c
j (x)√∑N g c

m=1 ag c
m (x)2 +∑N bc

n=1 abc
n (x)2

and w bc
i k = abc

k (x)√∑N g c

m=1 ag c
m (x)2 +∑N bc

n=1 abc
n (x)2

, 4.5

with a total of N g c grid cells and N bc . The place cell’s response is then given by

apc
i (x) =

[
N g c∑
j=1

w g c
i j ag c

j (x)+
N bc∑
k=1

wbc
i k abc

k (x)−θpc

]
+

. 4.6

By scaling the relative strengths g g c and g bc of the grid cells and border cells and the threshold

θpc , the resulting place cells respond on only one side of a thin barrier (Figure 4.1D), despite

the place field half–width extending beyond the width of the barrier. This occurs because the

border cell population response is effectively anticorrelated across the barrier, resulting in a

sharp division between place cell responses across the barrier despite similar grid cell firing

patterns.

4.3 Learning large geodesic place fields from entorhinal input

In open–field environments, large place fields can be learned simply by restricting place cell

input to low–frequency grid cells [Solstad et al., 2006]. This solution is intuitively appealing,

since both grid fields [Hafting et al., 2005] and place fields [Jung et al., 1994, Kjelstrup et al.,

2008] increase in size moving along the dorsoventral axis; it is then reasonable that (large–

scale) ventral place cells receive input primarily from (large–scale, low spatial frequency)

ventral grid cells [Solstad et al., 2006]. We therefore consider whether local fields could develop

by combining large–scale grid input with border cell input.

As shown in Figure 4.2A, the combined input often results in multiple firing fields instead of a

single place cell response. Cells typically develop multiple fields defined by a “local border

cell” response; i.e. responding like border cells constrained to one section of the environment.

Alternatively, we considered how large place fields could develop by successive local clustering

along the dorsoventral axis of hippocampus (Figure 4.2B). At the first level (reflecting small–

scale, dorsal place fields) cells had their weights fixed at random locations in the environment

according to Equation 4.5. We used 1500 grid cells, 1500 border cells and 3000 place cells. We

then trained a hierarchical succession of place cell populations, each on the output from the

50

4.3. Learning large geodesic place fields from entorhinal input

A B Grid/border cells (EC)

EC to HPC

Place cells (HPC)

Dorsal
to

Ventral

1:

4:

7:

10:

Figure 4.2 – Large place fields from progressive clustering along the dorsoventral axis. [A]
Direct grid and border cell input using only low–frequency grid cells typically results in mul-
tiple firing fields. [B] Direct grid and border cell input including high–frequency grid cells
can generate local firing fields. By iteratively applying the same weight learning rule across
multiple populations, each trained on the output from the previous, large geodesic place fields
arise. Example place fields are illustrated for population 1 (trained directly on grid and border
cell output) and populations 4, 7 and 10.

previous population, i.e.

w f f ,n
i k =

apc,n−1
k (x)√∑N n−1

m=1 (apc,n−1
m (x))2

, 4.7

where w f f ,n
i k denotes the feedforward weight from neuron k in population n−1 to neuron i in

population n, and apc,n−1
j (x) is the response of neuron k to the position x. In total, we trained

10 place cell populations, where population n = 1 was trained directly on grid and border cell

input and each population n > 1 was trained on the output of population n −1. This pattern

of connectivity is consistent with the observation of dense associational fibers that extend

between CA3 cells along the dorsoventral axis of the hippocampus [Amaral and Witter, 1989].

We linearly decreased the cell population size by 200 cells at each level.

We found that the resulting place fields gradually increased in size, reflecting clustering of

smaller, local place fields into larger place fields at each level (Figure 4.2B right). While the

fields generally maintained locality, there was a gradual spread in the direction of navigable

corridors, consistent with intermediate and ventral place fields observed in the hippocam-

pus [Kjelstrup et al., 2008]. Like the place cell responses observed in intermediate and ventral

51

Chapter 4. Learning Place Cell Maps for Navigation

A Place eld

Activity
Activities at circled positionB

C

D

EPosition
recruited

FNormalized Place eld
Activity

Un its

20 60 100

2
4

6
0

Shortest Path Distance

36

28
20
12
4

4.8

3.6

2.4

1.2

0.056

0.040

0.024

0.008

Ac
tiv

ity

Figure 4.3 – Learned large place fields capture global environment properties. [A] Singular
value decomposition of the population response of large place fields across the environment
reveals singular vectors resembling [B] the eigenvectors of a random–walk transition matrix.
[C] Place fields often display peaks far from the recruited position, particularly if the cell is
recruited in a corner/edge of the environment. [D] Conversely, the activity profile of all cells in
the population plotted according to each cell’s recruited position is generally smooth, with cells
recruited close to the current position in the environment having the strongest response. [E]
Plotting the same activity as in D as a function of the shortest path distance between each cell’s
recruited position and the circled position reveals a slow and nearly monotonic relationship.
[F] After normalizing across the population activity at each point in the environment, the large
place fields were smooth and peaked at the recruitment position.

hippocampus, these fields also had reduced spatial coherence (sometimes resulting in multi-

ple field peaks, as in population 10 in Figure 4.3B).

We analyzed the population activity of the large place field units using singular value de-

composition, and found that the dominant singular vectors bore a close resemblance to the

dominant eigenvectors of the random–walk transition matrix (Figure 4.3A and B, using the lo-

cal transition function considered in Section 3.5), suggesting that the fields capture important

global information about the environment. Population activity was unevenly distributed by

position, with cells generally responding more strongly far from the edges of the maze. For

instance, in Figure 4.3C, a cell that was recruited in the corner of the maze has a field peak

near the center of the hallway. However, the population activity profiles at a given position

were smooth (Figure 4.3D and E, plotted for the same cell’s recruited position). Place fields

were smooth and peaked near the cell’s recruited position after normalizing the population

activity at each position (Figure 4.3F). The shifted fields reflect both the randomly recruited

positions of the cells in the previous layers, and asymmetry effects when a new cell is recruited

close to an environment boundary; since there are no cells in the previous layer active on

the opposite side of the boundary, the new place field tends to shift away from the boundary

towards the interior of the environment. The dependence of the activity rates on the position

52

4.4. Learning the attractor map in recurrent weights

input could be mitigated by online normalization of the total network activity at each level,

using e.g. a pool of recurrently connected inhibitory neurons.

4.4 Learning the attractor map in recurrent weights

Finally, we examine whether a local learning rule could result in recurrent weights that im-

plement an arbitrary attractor network in the place cell population. After simplifying the

system to discrete time dynamics, a learning rule for the recurrent weights arises naturally

from segregating feed–forward and recurrent input to the place cell population.

Until now, we have considered activities arising from a single feedforward pass through the

populations for a given fixed combination of grid and border cell activities. Here, in order to

consider the impact of recurrent weights, we introduce the argument t to denote the discrete

time step. We use “feedforward” to refer to long–distance connections from more dorsally–

located CA3 cells with smaller place fields (i.e. population n −1), and “recurrent” to refer to

connections between cells within the same region along the dorsoventral axis (i.e. population

n). We consider the case where feedforward weights have already been learned (e.g. via the

process considered in the last section).

We denote the feedforward postsynaptic activation as v f f ,n
i (x, t) =∑

k w f f ,n
i k apc,n−1

k (x, t) for

the input position x, i.e. the weighted place cell activities in population n−1 at the current time

step. After introducing the recurrent weights, we denote the recurrent activation vr ec,n
i (x, t) =∑

j wr ec
i j apc,n

j (x, t), i.e. the weighted place cell activities in population n at the current time

step. The total activation is then vn
i (x, t) = v f f ,n

i (x, t)+ vr ec,n
i (x, t).

The place cell population behaves like an integrator if, for some total activation vn
i (x, t −1) to

each cell i , it is approximately matched by the resulting recurrent activation vr ec,n
i (x, t) on the

next time step, i.e.

apc,n
i (x, t +1) =

[
N n−1∑
k=1

w f f ,n
i k apc,n−1

k (x, t)+
N n∑
j=1

wr ec,n
i j apc,n

j (x, t)−θpc

]
+

=
[

v f f ,n
i (x, t)+ vr ec,n

i (x, t)−θpc

]
+

≈
[

v f f ,n
i (x, t)+ vn

i (x, t −1)−θpc

]
+

. 4.8

In this case, the population activity will remain approximately constant after the input is re-

moved. The set of all inputs x for which vr ec,n
i (x, t) ≈ vn

i (x, t −1) defines the attractor manifold.

The formulation here differs slightly from that in Chapter 3 in that we do not include the

weights (1−α) and α that result in a low–pass filter of the input rather than an integrator,

53

Chapter 4. Learning Place Cell Maps for Navigation

0.045

0.030

0.015

0.000

0.015

0.030

0.045

0.060

0.075

Incoming weightsA B

Figure 4.4 – Learning attractor dynamics in recurrent networks. [A] We used the discrete–
time, step–based rule (Equation 4.10) to learn recurrent weights based on position inputs
resulting from a random walk in the environment. The learned incoming weights for one
unit are shown, plotted according to the recruited position of the presynaptic neuron. If a
place cell was never recruited at a given position, it is plotted in white. [B] Attractor network
weights could be learned using the difference in steady–state postsynaptic activation between
compartments dominated by feedforward and recurrent input, with activity driven by the
feedforward compartment during the learning stage.

although the resulting attractor network activity is similar.

We assume that the feedforward inputs to the place cell network (that the network receives

during exploration of the environment) correspond to samples from the attractor manifold.

If we restrict the time course to t = [0,1] and start the network in a quiescent state (apc,n
i =

0 ∀ i ∈N n), then vn
i (x,0) = v f f ,n

i (x,0). In this case, the error function for an integrator is then

given by

E = 1

2

∫
t

∑
i

(
v f f ,n

i (x,0)− vr ec,n
i (x,1)

)2
d t , 4.9

which is a restatement of the error function considered in Chapter 3 (Equation 3.10) in activa-

tion space, with the assumption that each feedforward input defines a target for the attractor

manifold. Taking the partial derivative with respect to a recurrent weight gives

∂E

∂wr ec
i j

=−apc,n
j (x,1)(v f f ,n

i (x,0)− vr ec,n
i (x,1))

Δwr ec,n
i j = η ·apc,n

j (x,1)(v f f ,n
i (x,0)− vr ec,n

i (x,1)). 4.10

We used Equation 4.10 in discrete time to learn recurrent weights for the large place field

network, population n = 10, based on input from the grid/border cell population filtered

through the first 9 place cell populations. We trained the network based on a 50 000 step

random walk in the environment with the learning rate annealed over time. For each position,

54

4.5. Discussion

starting from no activity in the population, we first determined (a) the feedforward activations

v f f ,n
i (x,0), then (b) the resulting activities apc,n

j (x,1), and finally (c) the new recurrent acti-

vations vr ec,n
i (x,1). These three terms are sufficient to calculate one iteration of the weight

update rule. The resulting incoming weights for one cell are shown in Figure 4.4A.

The learning rule in Equation 4.10 requires the neuron to maintain separate estimates of the

feedforward and recurrent activations in order to calculate the weight update. Biologically, one

possibility is that the activations correspond to the local potential in two different regions or

compartments of the postsynaptic cell: one dominated by local (recurrent) CA3 input and the

other by long–distance (feedforward) CA3 input from a more dorsal region. Assuming that the

activity of cells in the attractor network is dominated by the feedforward compartment during

the learning phase (i.e. the recurrent activation is not integrated into the total activation),

then vn
i (x, t) = v f f ,n

i (x, t). In addition, at steady–state, v f f ,n
i (x, t) ≈ v f f ,n

i (x, t −1). The weight

change in the recurrent synapses at steady–state would then be proportional to the presynaptic

activity and postsynaptic difference in potential between the compartments (Figure 4.4B).

Notably, a similar rule has been developed for spiking neurons by Urbanczik and Senn [2014].

After learning the weights, we relaxed the dynamics of the network to continuous time to

evaluate the attractor dynamics; i.e. taking

τ
d apc,n

i (x)

d t
=−apc,n

i (x)+
[
N n−1∑
k=1

w f f ,n
i k apc,n−1

k (x)+
N n∑
j=1

wr ec,n
i j apc,n

j (x)−θpc

]
+

. 4.11

We observed the evolution of the network activity after supplying brief input corresponding to

a location. The network displayed bump attractor dynamics, with bumps of activity remaining

stable after the input was removed for much longer than the time constant τ (Figure 4.5A; note

that we did not use a decay term α when learning the recurrent weights, so the magnitude of

the population activity does not noticeably decrease over time). Similarly, the bump moved

along a path between locations when the network was consecutively stimulated with two

different locations in the environment (Figure 4.5B). These trajectories were decoded into

headings according to the recruited position of the most active neuron before and after

stimulation (Figure 4.5C). We found that the decoded heading accuracy was best for long–

distance trajectories, and generally worse in the near vicinity of the goal, particularly for goals

near the edges of the environment; this reflects both the low precision of the large–scale

bumps and the uneven network response near environment boundaries (shown in Figure 4.3).

4.5 Discussion

In this chapter, we considered how the geodesic place fields described in Chapter 3 could be

learned from the types of spatial representations found in entorhinal cortex. In addition, we

proposed a learning rule for the recurrent weights required to implement attractor network

dynamics in arbitrary environments.

55

Chapter 4. Learning Place Cell Maps for Navigation

Figure 4.5 – Learned large–scale bump attractor dynamics. [A] The network was initialized
with the steady–state activities apc,n

j (x,1) resulting from a feedforward activation at a particular
spatial position (marked “Initial”). The feedforward input was then removed and the network
activity evolved according to Equation 4.11. The learned weights resulted in a sustained
bump–like activity profile after the stimulus was removed, with some drift. [B] After the
same initialization, the activity evolved under a feedforward activation corresponding to the
position marked “Goal”. [C] Headings decoded from initial bump movement after stimulating
the network with two locations, according to the change in the recruited position of the most
active neuron before and after stimulating the network with the goal position.

Unlike several other models examining the response of spatial cells near barriers [Gustafson

and Daw, 2011, Stachenfeld et al., 2017], we assume that grid cells are invariant to boundaries

and obstacles. In our grid–to–place cell model, place cells become responsive to boundaries

under the influence of border cells. Grid cell barrier invariance is supported by evidence

56

4.5. Discussion

suggesting that grid cells form a globally coherent response as rats discover that different areas

on each side of a boundary are in the same environment [Carpenter et al., 2015], although

different interpretations of the same data have been proposed [Stachenfeld et al., 2017]. Our

model does not necessarily require that grid input is boundary invariant; it only proposes that

boundary sensitivity of grid cells is unnecessary when combined with border cell input.

Developmental evidence in rat pups suggests that strong periodicity in grid cell firing arises

1–2 weeks later than stable place cell responses [Langston et al., 2010, Wills et al., 2010], calling

into question the necessity of grid cells in the formation of place cell responses. Border cell

responses, however, are present from the same time as place cells [Bjerknes et al., 2014]. The

combination of entorhinal border cell input with weakly periodic (yet multi–peaked [Langston

et al., 2010, Wills et al., 2010]) proto–grid cell input may therefore form a rich enough basis

for early place fields, especially given the dense input provided from grid and border cells to

hippocampal neurons [Moser et al., 2015].

In our model, large place fields are learned by successive clustering of smaller, local place fields.

This dorsal–to–ventral model of place field development contrasts with the ventral–to–dorsal

model of preplay activity considered in Section 3.4. While the clustering approach shows how

local fields could develop despite non–local grid input, it seems unlikely that ventral place cells

are always activated via a multisynaptic cascade along the dorsoventral axis. One possibility

is that, after the fields and recurrent dynamics have been shaped, the cells could be directly

reactivated by entorhinal or dentate gyrus input, in combination with the soft winner–take–all

dynamics of the attractor network.

Finally, we considered how the weights required to implement an attractor network might arise

from a two–compartment neuron model. As discussed, the learning rule is qualitatively similar

to that described by Urbanczik and Senn [2014], although here it was derived to minimize

the error in Equation 3.10. Here, the learning rule was carried out in discrete time, although

attractor dynamics were illustrated in continuous time; a continuous time implementation

of the learning rule remains for future work. The rule relies on separate estimates of long

distance vs. local input to a neuron. CA3–to–CA3 synapses can occur in both the apical and

basal dendritic compartments of a CA3 neuron, although a distance–based segregation has

not yet been reported [Andersen et al., 2007].

While a learning rule has been proposed before to minimize the least–squares error in Equa-

tion 3.10 [MacNeil and Eliasmith, 2011], it uses a (potentially high–dimensional) external error

signal to tune the recurrent weights. Conversely, the learning rule here requires only local,

scalar information, under the assumption that the feedforward input itself defines a target for

the recurrent dynamics.

57

5 Deep Reinforcement Learning with
Offline Episodic Control

5.1 Introduction

In Chapter 1, we considered the problem of learning in an environment without fixed reward

locations. To maximize reward efficiently, we discussed how the rat (or more generally, the

agent) can leverage a model–based approach by learning a “map” of the environment that can

be reused to solve multiple tasks (i.e. reward landscapes). In this chapter we describe, from a

machine learning perspective, an approach for learning and utilizing such an environment

model to quickly adapt to non–stationary rewards.

When the task is rapidly changing, the agent needs to adjust quickly and build a new policy

with very little data; otherwise, it will never learn to exploit the present reward landscape

before it changes again. In contrast, given a long–running task with stationary rewards, the

learning period will be negligible compared to the total rewards that the agent can expect

to receive after reaching asymptotic performance. We can therefore see the model–based

approach as one potential way to solve the basic issue of sample efficiency faced by the agent:

how to best leverage the little experience the agent has in the new reward landscape.

Model–based methods improve sample efficiency by allowing the agent to reuse the expe-

rience that does not change between reward landscapes: the structure of the environment.

However, it is still critical that a new policy can be learned and exploited quickly. This can

be a particular issue if the policy is built on a deep neural network with weights trained by

gradient descent; this approach can achieve impressive results but tends to be extremely

data inefficient, requiring tens of millions of observations (e.g. Mnih et al. [2015, 2016]). In

contrast, Model–Free Episodic Control (MFEC) [Blundell et al., 2016] stores returns to a lookup

table and performs no gradient descent on the value function. It achieves significantly higher

performance than deep model–free algorithms in the initial stages of learning on complex

deterministic tasks like Atari games.

Here, we combine episodic control and model–based approaches to build an agent that can

adapt rapidly to changing rewards. We use a Variational Autoencoder (VAE) [Kingma and

59

Chapter 5. Deep Reinforcement Learning with Offline Episodic Control

Welling, 2013, Rezende et al., 2014] to map observations (corresponding to states) to a normal

distribution in latent space. In addition to learning to reconstruct the input observations, the

model learns to approximate the transition function between states in the latent space.

Conceptually, our algorithm is inspired by Dyna–Q [Sutton, 1990]. Q–values in the environ-

ment are updated based on both real (online) and simulated (offline) experiences, which

are generated according to the learned transition model. Simulated offline experiences are

generated by sampling initial states from the Normal prior over the latent space, and produc-

ing an on–policy rollout through the state space according to the learned transition function

(choosing actions according to the approximated Q–values). Unlike existing approaches, the

returns from these simulated experiences are stored in a lookup table memory alongside the

returns from real episodes, allowing the simulated episodes to rapidly update the policy. The

rewards, terminal states, and Q–values are estimated using a k–Nearest–Neighbour (kNN)

classifier over real and simulated experiences, such that all three are learned without adjusting

the network weights. By storing simulated experiences in a lookup memory (a non–parametric

approach) rather than using them to train a deep network, the network can leverage them to

update the policy faster. In addition, the kNN memory naturally limits the impact of model

error by returning exact matches from real–world experience when possible.

5.2 Background

MFEC [Blundell et al., 2016] can be seen as a variant of the more general class of episodic

controllers introduced in Chapter 2. Following an episode lasting T steps and ending in a

terminal state sT , the values of state–action pairs (s0, a1), (s1, a2), . . . , (sT−1, aT) visited during

the episode are updated according to

Q(st , at+1) ←
⎧⎨
⎩Rt+1 if (st , at+1) ∉ T

max
(
Q(st , at+1),Rt+1

)
otherwise,

5.1

where Rt+1 = rt+1+γrt+2+·· ·+γT−t−1rT corresponds to the future discounted returns received

from step t , and T is the set of all state–action pairs in the agent’s lookup table memory.

The use of the max operator for estimating the future returns only works in deterministic

environments; otherwise, the Q–value update can be significantly biased by observing a high

value but low probability stochastic return. During inference, the agent estimates the Q–values

of new (s, a) pairs using a kNN average over the Q–values of existing states in memory where

the action a has been taken.

The low–dimensional st is determined from the high–dimensional raw observations ot in one

of two ways: by using a fixed random projection to the low–dimensional space, or by learning

a low–dimensional embedding with a VAE [Kingma and Welling, 2013, Rezende et al., 2014].

Our model builds on the second approach.

A VAE is an unsupervised deep learning algorithm based on variational Bayes, that maps input

60

5.3. The model and training procedure

observations to a (typically Normal) distribution in N–dimensional latent space. The objective

function is given by

L(θ,φ;ot) = log p(ot)−DK L(qφ(st |ot)||pθ(st |ot))

= Eqφ(st |ot)[log pθ(ot |st)]−DK L(qφ(st |ot)||N (0, I)) 5.2

and corresponds to the evidence lower bound (or ELBO) of the observations, using a learned

generative distribution (or “decoder”) p and an auxiliary posterior distribution (or “encoder”)

q , assuming a fixed prior p(s) =N (0, I). The encoder is parameterized by φ and the decoder

by θ. The gradients are determined using the second line of Equation 5.2; however, we can

interpret the training procedure using the first line as finding a model that maximizes the

lower bound of the evidence log p(ot) (since the KL–divergence DK L(qφ(st |ot)||pθ(st |ot)) is

non–negative).

Training proceeds by using the encoder to map each observation ot to two N–dimensional

vectors sμt and sσt . Using the reparameterization trick [Kingma and Welling, 2013], a new

vector st ∼ qφ(s|ot) is then sampled, where qφ(s|ot) =N (sμt ,diag((sσt)2)) (and diag indicates

a diagonal matrix formed from the entries in (sσt)2). The vector st is then used by the de-

coder to perform gradient descent on the reconstruction cost log pθ(ot |st). The second term

in Equation 5.2 pressures the posterior distribution qφ(st |ot) =N (sμt ,diag((sσt)2)) generated

by the encoder to match the prior distribution p(s) =N (0, I). Note that the learned encoder

output sσt introduces stochasticity into sampling st , which causes the VAE to map observations

from the environment to some continuous region around the mean sμt (such that all training

observations taken together can be approximately mapped to a continuous prior N (0, I)).

Typically, a VAE is used to generate new example observations by sampling from the prior

s ∼N (0, I) after training and evaluating Eθ[o|s]. In MFEC, the posterior model qφ(st |ot) can

instead be used to map the observations to a structured latent space. In particular, when the ob-

servations correspond to a 2D image, qφ is parameterized using a deep Convolutional Neural

Network (CNN) [Krizhevsky et al., 2012], and pθ is parameterized by a deep deConvolutional

Neural Network (DCNN) [Goodfellow et al., 2014], the latent space can incorporate features

like translation invariance that are not well–represented by random projections.

In MFEC, the latent embedding stored to memory is taken as the concatenation of sμt and

log sσt ; in our model, we use only the mean vector sμt .

5.3 The model and training procedure

Our model consists of a VAE (composed of an an encoder and a decoder), an auxiliary tran-

sition learning network, and a kNN lookup table, illustrated in Figure 5.1. During an initial

learning phase, the network is trained to both generate the state observations and to predict

the next state under a state–action pair, using the transition network. After the initial learning

phase, the agent explores the environment while updating Q–value estimates based on real

61

Chapter 5. Deep Reinforcement Learning with Offline Episodic Control

A C

B

Figure 5.1 – Offline episodic control network. The network consists of [A] an encoder network,
[B] a decoder and transition network, and [C] a kNN lookup table, which can be accessed in
both online mode (from the encoder, storing experiences to Q(W)) and offline mode (from the
decoder, storing experiences to Q(S)). Blue boxes denote convolutional/deconvolutional layers
and grey boxes denote fully connected layers. The next state estimate ŝμ,a

t+1 is the expectation
E[sμ,a

t+1|a, st].

and simulated episodes.

5.3.1 Learning environment structure with a VAE

We use an initial learning phase to allow the agent to develop a model of the environment,

ignoring any rewards. In this phase, the agent explores according to a random walk, observing

triplets of (ot , at+1, ot+1) that are added to a replay memory. Triplets are presented to the

network in minibatches. Here, we train the network to optimize the evidence lower bound

L(θ,φ;ot) of a state observation ot along with an additional loss term Lt (φ,ψ;ot ,ot+1, at+1),

according to

Lt (θ,φ,ψ) =L(θ,φ;ot)+Lt (φ,ψ;ot ,ot+1, at+1)

= Eqφ(s|ot)[log pθ(ot |s)]−DK L(qφ(s|ot)||p(s)) 5.3

+Eqφ(s|ot)[log pψ(sμt+1(ot+1)|s, at+1)]

where ψ represents the parameters of the transition network.

The first two terms in Eq. 5.3 correspond to the VAE reconstruction and latent/prior losses

in Equation 5.2. Using the third loss term, we also train the VAE to generate an estimate of

sμt+1, the latent space embedding of the next state observation ot+1, conditioned on the action

at+1. Conditioning on the action is achieved by evaluating a specific branch of the transition

network, where the number of branches is equal to the number of possible actions (Figure 5.1).

62

5.3. The model and training procedure

Algorithm 2 Latent Learning with a Random Walk.

Initialize replay memory M
1: Observe o0 and store in M
2: for t = 0, . . . ,T do
3: Select a random action at+1

4: Observe ot+1

5: Store transition (at+1,ot+1) in M.
6: if t mod Iupd ate == 0 then
7: Sample a random minibatch of transitions (oi , ai+1,oi+1) from M
8: for Sample in minibatch do
9: Process sμi , sσi , sμi+1 using the encoder on oi and oi+1

10: Sample si ∼N (sμi ,diag((sσi)2))
11: Process E[oi |si] using the decoder on si

12: Process E[sμ,ai+1

i+1] using the transition network on si and ai+1

13: Perform a gradient descent step on Li (θ,φ,ψ)
14: end for
15: end if
16: end for

5.3.2 Learning value functions

After the initial latent learning phase, the agent explores the environment observing tuples

of (ot , at+1, rt+1, Tt+1), where rt+1 denotes the reward received at step t +1 and Tt+1 = {0,1}

indicates whether the state reached at step t + 1 was found to be terminating (1) or non–

terminating (0). During this phase, the agent updates the estimates r (sμt) and T (sμt) in the

lookup table according to

r (sμt) ← r (sμt)+ηr (rt − r (sμt)) 5.4

T (sμt) ← T (sμt)+ηT (Tt −T (sμt)) ,

where ηr and ηT are learning rates. Note that we assume that the status of a state as terminal

or non–terminal can change, just like the reward function.

At certain step intervals during exploration, the agent simulates N–step trajectories (truncated

episodes) offline using the learned transition network and the lookup table (Figure 5.3B). A

simulated episode ŝμ0 . . . ŝμt . . . ŝμN is generated by first sampling s ∼N (0, I), and evaluating a

random branch of the transition network to determine ŝμ0 . This state is then wrapped back into

the transition network (dotted line in Figure 5.1) and an action branch is evaluated according

to at+1 = argmaxa Q̂(ŝμt , a) with probability 1−ε or a random action with probability ε. The

same process is repeated for N steps. The simulated returns R̂t observed after taking an action

63

Chapter 5. Deep Reinforcement Learning with Offline Episodic Control

at from state ŝμt−1 are given by

R̂t = r̂ t +γ · r̂ t+1(1− T̂t)+ . . .

+
[
γn−t · r̂n

N−1∏
i=t

(1− T̂i)
]
+

[
γN−t+1 ·max

a
Q̂(ŝμN , a)

N∏
i=t

(1− T̂i)
]

, 5.5

where γ denotes the discount factor [Peng and Williams, 1996]. The values of r̂ t and T̂t are

determined by a kNN lookup on the associated key ŝμt ; the (1−T̂i) factors prevent value signals

from propagating through a learned terminal state. We found that we achieved better results

by discarding the return estimate from the first state ŝμ0 in the sequence, which also tended to

have greater error in observation space (Figure 5.3).

The simulated returns are used to update the Q–values in the lookup table, according to

Q(S)(ŝμt , at) ← Q̂(S)(ŝμt , at)+ηQ (R̂t −Q̂(S)(ŝμt , at)), 5.6

where the S superscript denotes Q–values estimated from simulated trajectories. The estimate

Q̂(S)(ŝμt , at) on the right side is obtained from a kNN lookup. In addition, we maintained a sep-

arate lookup table for Q–values obtained from online (or “real–world”) episodes, Q(W)(sμt , at).

This table is updated using the MFEC algorithm (Equation 5.1) at the end of an episode. Note

that the learning rule for simulated Q–values in Equation 5.6 involves averaging over existing

table entries, unlike Equation 5.1. We found that this averaging helped to mitigate the impact

of model error for simulated rollouts.

During inference, we use a kNN lookup over both real–world and simulated Q–values in the

table,

Q̂(sμt , a) =
⎧⎨
⎩

1
k

∑k
i=1 Q(sμi , a) if (sμt , a) ∉ (W ∪S)

Q(sμt , a) otherwise,
5.7

where W are the keys in the real–world lookup table, S are the keys in the simulated rollout

lookup table, and i = 1. . .k indexes the k keys closest to sμt already existing in either lookup

table. If the key sμt is sufficiently close to an existing state in the lookup table, the Q–value for

that approximately matching state is returned; if it is close to both a real and simulated key, the

real key is returned. In both real and simulated episodes, the agent’s policy is determined by

an ε–greedy strategy. Following Blundell et al. [2016], we used a least–recently used approach

to remove keys from the two lookup tables (with a maximum of 1500 entries in each lookup

table).

In general, lookup keys obtained from simulated rollouts exist off the manifold of real states

due to model error (Figure 5.2). As a result, the estimate Equation 5.7 is dominated by real–

world memories in regions of the environment that the agent has recently explored (i.e. where

there are many matching keys in W). In addition, the greater the model error in a certain

64

5.3. The model and training procedure

Reward

Figure 5.2 – Limiting the impact of model error. A schematic example where states sit on a
low–dimensional manifold in latent space (a large circle), with a single recently discovered
reward state (black dot with a dashed green outline). The reward memories for an action that
results in a counter–clockwise transition on the circle are plotted from real–world episodes
(black dots) and offline rollouts (white dots), where darker green outlines indicate higher
values for the counter–clockwise action. Due to model error, the offline rollouts sit slightly
off the manifold. As a result, a nearest–neighbour lookup will be dominated by real–world
experience in recently visited states (darker green arrow) and by simulated episodes otherwise
(lighter green arrow).

region of the environment, the farther the rollout states in S are from the manifold, and the

less they contribute to the estimate. These factors help to mitigate the impact of model error

in the value estimate.

Finally, in the experiment involving changing rewards, the Q–values in the lookup table

become stale as soon as the rewards shift. Ideally, the agent should be able to empty the

Q–values in the lookup table after detecting a reward schedule change. For the environments

considered here, where the reward depends deterministically on the state the agent moves

into, we used a simple change detection rule: with ηr = 1, if the agent encounters a state

in a real–world trajectory where rt = 0 and r (sμt) �= 0, the Q–value table is emptied (more

advanced change detection techniques could be used for other environments; see Discussion).

In addition, we dynamically adjusted the value of ε for exploration according to

εt ←
⎧⎨
⎩1 if

∑
i |r (sμi)| = 0

max(exp(−1/τε) ·εt−1,0.1) otherwise.
5.8

As a result, the agent explores randomly until it encounters a non–zero reward, at which point

ε begins decreasing; it resets to ε= 1 if the agent discovers that a previously rewarded state is

no longer rewarding. We used the same value of ε for both real–world and simulated episodes.

65

Chapter 5. Deep Reinforcement Learning with Offline Episodic Control

0 500 1000 1500 2000 2500
Offline simulated batches

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f r
ew

ar
de

d
tra

je
ct

or
ie

s

x 1.0

0.9

0.8

0.6

0.7

A B

C

Figure 5.3 – Learning from offline episodes in a GridWorld environment. [A] The larger plot
illustrates the environment excluding exterior walls. The agent’s actual observations when it
occupies a particular state are highlighted in red, including the black pixels that represent the
interior and exterior walls and the agent itself. [B] Offline episodes are generated by sampling
from the N (0, I) prior over the initial state, then rolling out an on–policy trajectory according
to the Q–values in the lookup table. [C] N–step returns were rapidly improved by offline
simulation. The percentage of online trials ending in reward is shown as a function of the
number of offline rollout batches (beginning with an empty Q–value table, with no online
learning). The midline shows the median performance, with the shaded region corresponding
to the 10th and 90th percentiles. The inset shows the generated maxa Q̂(s, a) for an example
goal state G .

5.4 Results

We tested the model on a 360–state GridWorld maze (Figure 5.3A), with observations consisting

of 15×15 pixel boxes around the agent, with four actions (up, down, right, and left). For the

purpose of our investigation, we used an environment that was both fully controllable and

fully observable at each time step [Kirk, 2012]. By controllable, we mean that there exists

a sequence of actions that will transition the agent between any arbitrary pair of states; by

observable, we mean that the agent can determine the underlying state from the current

observations. The latent learning phase consisted of a 1 000 000 step random walk, sampling a

66

5.4. Results

minibatch of 20 transitions every 10 steps from a replay memory of the last 10 000 transitions.

We first tested the agent’s ability to learn entirely from offline episodes. The agent experi-

enced each (o, r , T) triplet in the environment, including the triplet associated with a single

randomly–chosen rewarding, terminal goal state G . The agent then estimated the value func-

tion by generating 2500 minibatches of ten 50–step offline episodes each, with ε annealed from

1 to 0.1 over the first 700 minibatches. Online performance was measured every 50 batches,

using the proportion of 100 randomly–initialized agents that reached a given G within 100

steps under the offline–generated policy. We used k = 3 for the Q–value lookup and k = 1

for the r̂ t and T̂t lookup. The agent’s policy significantly improved as a result of the online

backups (Figure 5.3). Results are based on 100 random goal states.

Next, we combined online and offline learning with the goal state G changing every 25 000

steps. Each trial consisted of a total of 125 000 steps, i.e. 5 different goal locations. When

the agent reached the current goal location, it started a new episode in a random initial state

(since the environment was fully controllable, it was possible for the agent to issue a sequence

of actions allowing it to transition between any pair of start and goal positions). Every 20

steps in the real world, the agent simulated ten 50–step offline trajectories with initial states

sampled from N (0, I), and updated QS accordingly. We used Equation 5.8 with τε = 7500 to

determine the policy.

We compared against three baseline conditions across 100 trials. In the first, the agent’s policy

was based only on Q–values obtained from online experience, corresponding to MFEC with a

VAE–based latent representation (except that log sσt was not included in the latent embedding).

In the second baseline, in addition to online learning, we included Dyna–Q–like 1–step offline

backups, sampled uniformly from the last 10 000 transition triplets (st , at+1, st+1) in a replay

memory. The immediate rewards r̂ (sμt+1) for these transitions were obtained from the lookup

table; as a result, the agent could continue to use transitions from the replay memory to

update the value function after the rewards had changed. We used a learning rate η= 1, which

is optimal for deterministic environments. The agent made 10 ·50 = 500 offline backups every

20 steps.

In the third baseline, we simulated 50–step offline trajectories as in the experimental model;

however, the initial states were sampled from the replay memory rather than N (0, I).

The final results are shown in Figure 5.4. The best performance was obtained using offline

n–step backups initiated from the latent state prior N (0, I), followed closely by offline N–

step backups initiated from states in the replay memory. The median returns for the two

approaches were approximately the same; however, replay memory–initiated trajectories

occasionally resulted in very poor performance (Figure 5.4B).

In many subtrials, the agent failed to learn a useful policy during the exploration period after

discovering the new reward location. This could result in compounding error over time. For

67

Chapter 5. Deep Reinforcement Learning with Offline Episodic Control

A B

Figure 5.4 – Combining offline and online experiences in GridWorld. [A] Mean reward ±
SEM over all trials for the four conditions. Goal positions were randomly reassigned every
25 000 steps. [B] Quartile plot of total reward across the four conditions. Whiskers correspond
to 5th and 95th percentiles.

instance, if the agent failed to learn how to consistently reach the reward before ε converged

to 0.1 during the third subtrial, it would also often fail to discover the reward landscape had

changed when the fourth subtrial began; as a result, it would not initiate an exploration period

during the fourth and fifth subtrials (typically becoming “stuck” in an uninteresting region

of the environment). We analyzed learning failures over the five subtrials in Figure 5.5. The

online and 1–step backup agents showed the most accumulating failures over time. The effect

was most obvious for the online agent, which had a nearly 100% failure rate by the end of the

trial. In contrast, the agents using offline simulated episodes had an approximately constant

failure rate over time.

5.5 Related work

5.5.1 Model–based simulated experience

Dyna–Q has traditionally been confined to tabular environments without function approxima-

tion or used with linear function approximation [Sutton et al., 2008]. A recent deep network

model uses Dyna–Q–like simulated rollouts initiated from memories in a replay buffer to im-

prove learning in a continuous control task [Gu et al., 2016]. Several recent approaches learn

and use predictive models of rewards and value functions [Silver et al., 2017b, Oh et al., 2017,

Farquhar et al., 2017], but not the observations. Racanière et al. [2017] learn a rollout model

and rollout policy trained on the observations and combine it with a model–free pathway to

generate an output policy.

The network we present here differs from these existing approaches by storing the results of

both online and simulated rollouts in a non–parametric memory, as in an episodic controller

(Blundell et al. [2016], Pritzel et al. [2017]). In this regard, our network is most similar to the

model from Fraccaro et al. [2018], which also augments a model–based rollout algorithm

68

5.5. Related work

Figure 5.5 – Failures to learn across conditions. For each of the five random reward positions
(subtrials) presented in each trial, we considered the subtrial a failure if the agent reached the
reward position fewer than 10 times over the course of 25 000 steps.

with a lookup table memory; however, their model assumes a spatial task and is not used to

store rewards or predict the value function. The structure of our action–conditional transi-

tion network is somewhat reminiscent of a conditional variational autoencoder [Sohn et al.,

2015]; however the action is not available to the encoder, and the condition is evaluated by

training a specific branch of the decoder, where each branch corresponds to a single action

(see Figure 5.1).

5.5.2 Dimensionality reduction for RL

There is a rich tradition of study in dimensionality reduction for reinforcement learning,

using unsupervised learning techniques like Principal Component Analysis [Curran et al.,

2016] as well as task–relevant reward or goal information [Parisi et al., 2017, Rolf and Asada,

2015]. Tangkaratt et al. [2016] consider learning a low–dimensional representation of the

high–dimensional input space that captures the transition dynamics of the original state

space, in order to apply model–based RL. Luck et al. [2014] integrate dimensionality reduction

with policy search through an Expectation Maximization–based approach. Dimensionality

reduction for RL has also been proposed as a model for the function of neural circuits [Shah

and Alexandre, 2011].

Further, several existing models perform RL using autoencoders and VAEs. Lange and Ried-

miller [2010] train a deep autoencoder to create a low–dimensional representation of the

input space, and use fitted Q–iteration [Ernst et al., 2005] for generalization. The autoencoder

and Q–value function approximator are retrained in batch mode after each episode until

a satisfactory approximation is achieved. Barth-Maron [2015] train a deep convolutional

autoencoder on GridWorld input, with the latent representation used as a basis for gradient

descent SARSA(λ)–based RL [Rummery and Niranjan, 1994]. Finn et al. [2016] also train a

69

Chapter 5. Deep Reinforcement Learning with Offline Episodic Control

deep convolutional autoencoder, using a spatial softmax layer before the bottleneck, as a basis

for a robotic continuous control task.

Watter et al. [2015], focusing on continuous state and action spaces, propose Embed to Control,

in which a VAE is trained with a locally linear dynamics model (unlike the nonlinear transition

model we use) and apply stochastic optimal control algorithms in the latent space to determine

a policy. Van Hoof et al. [2016] also train a VAE (as well as a denoising autoencoder) to

construct a latent state space representation of the input with a learned affine transition

model for training the latent representation. They learn a policy using a non–parametric

kernel embedding trained to respect the system dynamics [Van Hoof et al., 2015]. The DARLA

model uses a VAE with a high weight on the isotropic Gaussian prior to extract independent

components of the input space, in order to improve performance on transfer learning with

various RL algorithms [Higgins et al., 2017].

Dimensionality reduction is closely related to the study of state space abstractions for rein-

forcement learning, reviewed by Li et al. [2006] and considered in greater detail in Section 6.4.

5.5.3 Non–parametric approaches to RL

Non–parametric approaches have been used on RL problems beyond the recent episodic

control paradigm. They have been applied to model–based controllers in order to mitigate the

impact of model error when using continuous differential models for imitation learning on

robotics tasks [Atkeson and Schaal, 1997, Atkeson, 1998]. Doshi-Velez et al. [2010] also apply a

nonparametric approach for imitation learning, where the data generated by an expert’s near–

optimal policy is used to reduce uncertainty about the partially–observable world model and

the optimal policy. Morimura et al. [2010] describe an approach that uses particle smoothing

to estimate the distribution over returns from state–action pairs (as opposed to simply the

mean), allowing for risk–sensitive policies. Driessens and Džeroski [2005] combine model–

based and instance–based approaches for relational RL, where the model takes the form of a

decision tree. Non–parametric approaches have further been applied to inverse RL [Choi and

Kim, 2012].

While we use a nearest neighbour–based method here, non–parametric approaches to RL

based on kernel methods [Ormoneit and Sen, 2002, Kveton and Theocharous, 2013, Chen

et al., 2013, Barreto et al., 2016b] and Gaussian processes [Kuss and Rasmussen, 2004, Engel

et al., 2005, Ko et al., 2007, Deisenroth et al., 2009, Deisenroth and Rasmussen, 2011] have also

been studied.

5.6 Discussion

In this chapter, we considered how an agent could use a VAE–like architecture to learn the

structure of an environment and simulate episodes offline. In contrast to existing approaches,

70

5.6. Discussion

the agent stores the results of offline episodes in a kNN lookup table, which it can use to

rapidly generate new policies for changing reward landscapes.

We employed a simple reward change detection method for the agent that would not be

suitable for more complex tasks. A more general change detection method could make use

of the lookup table to model a distribution over expected rewards in the current state, and

employ a surprise measure given the actual experienced reward (e.g. Faraji et al. [2018]) in

order to determine when to reset the kNN lookup tables.

The agent was evaluated in a GridWorld environment. Although the underlying environment

was tabular, the agent observed the pixel representation of each state, allowing for a measure

of similarity between different observations. Compared to several alternative approaches, the

agents combining online experience with simulated offline episodes performed the best; the

most consistent performance was achieved when offline episodes were initiated with samples

from N (0, I)), a probability distribution over the environment observations learned during a

random walk. In addition to improving the Q–value estimates, the model–generated offline

experience likely provided additional noise in the policy, pushing the agent out of repetitive

patterns.

Two of the baselines were based on sampling experiences from a replay memory of recently

observed transitions, which is biased towards regions of the environment that the agent has

recently explored. This can be both detrimental (if the agent becomes stuck in a cycle over a

small number of states, recent experience is less useful in updating the policy) and beneficial

(if the agent’s performance is improving, recent experience often reflects important regions

of the state space, i.e. states that are close to the goal). Further experiments on the optimal

length and sampling procedure for the replay memory may be worthwhile, considering that

both replay–based agents performed significantly better than vanilla MFEC.

The model is unique in combining model–based and episodic control approaches to RL. In

particular, the non–parametric approach of episodic control allows model–based rollouts to be

leveraged rapidly by the agent, avoiding the slow process of learning value functions by gradi-

ent descent, while limiting model error through the kNN lookup. The model is also potentially

relevant to a recent theory of hippocampal function, which suggests that the hippocampus

acts primarily as an episodic controller rather than a model–based controller [Gershman

and Daw, 2017]. If, as in our model, the hippocampus is an episodic controller that also

learns a transition model in the latent space, then both real–world episodes and model–based

simulated episodes can be combined to estimate the value function. Our results suggest that

this is useful when dealing with non–stationary rewards, a problem area that the hippocampus

is particularly associated with (as detailed in Chapter 1).

The model detailed in this chapter relies on forward–focused planning, i.e. simulated trajecto-

ries moving forward in time. A sample–efficient alternative is a backwards–focused planning

mechanism, such as prioritized sweeping. We consider how to apply backwards–focused

planning in complex environments in the next chapter.

71

6 Efficient Model–Based RL with
Variational State Tabulation

6.1 Introduction

Classical RL techniques generally assume a tabular representation of the state space [Sutton

and Barto, 2018]. While methods like prioritized sweeping [Moore and Atkeson, 1993, Peng

and Williams, 1993, Van Seijen and Sutton, 2013, Sutton and Barto, 2018] have proven to be

very sample–efficient in tabular environments, there is no canonical way to carry them over to

very large (or continuous) state spaces, where the agent seldom or never encounters the same

state more than once. Recent approaches to reinforcement learning have shown tremendous

success by using deep neural networks as function approximators in such environments,

allowing for generalization between similar states (e.g. Mnih et al. [2015, 2016]) and learning

approximate dynamics to perform planning at decision time (e.g. Silver et al. [2017b], Oh et al.

[2017], Farquhar et al. [2017], Racanière et al. [2017], Nagabandi et al. [2017]). However, the

use of prioritized sweeping for offline updates of Q–values (i.e. background planning [Sutton

and Barto, 2018]), has not yet been investigated in conjunction with function approximation

by neural networks.

Adjusting the weights in a deep network to learn a value function is a slow procedure rel-

ative to learning in tabular environments. As an alternative, episodic controllers (as con-

sidered in Chapter 2) improve sample efficiency by using a semi–tabular approach in high–

dimensional environments; new episodes can be immediately incorporated into the value

function estimate via the lookup table. This chapter describes a model that brings the effi-

ciency of both lookup tables and prioritized sweeping to high–dimensional environments by

using a deep network to learn a tabular abstraction of the state space.

As motivation, we consider the T–maze task shown in Figure 6.1A using an MFEC agent (a

type of episodic control agent described in Chapter 5). The observations are continuous (x, y)

coordinates; the agent can take a fixed–sized step in one of four cardinal directions, with

a rebound on hitting a wall, and a terminal reward zone (green). The first episode (red) is

spontaneously terminated without reward; the discounted returns along the red trajectory are

therefore set to zero. On the second episode (blue), the agent reaches the reward zone, and the

73

Chapter 6. Efficient Model–Based RL with Variational State Tabulation

Figure 6.1 – Using state tabulation for efficient planning. [A] Two episodes in a time discrete
MDP with a continuous state space, given by (x, y) coordinates. [B] The same episodes after
discretizing the state space by rounding. States visited on each trajectory are shaded; magenta
states were shared by both trajectories, and can be leveraged by prioritized sweeping. [C] 3D
navigation with VaST. The agent was trained to run from the start position to the goal, with
one arm blocked (dotted line). After training, the agent experienced a trajectory from the
blocked arm to the stem of the maze (arrows, no outline). If the observations in this trajectory
mapped to existing states in the lookup table, the average coordinates and orientation where
those states were previously observed are shown (matching colour arrows, outlined). The
observations for one state are illustrated. [D] A scatter plot of all state values after training
according to the average position and orientation where they were observed; darker green
corresponds to higher value.

discounted reward is immediately associated with the states visited along the blue trajectory.

To improve sample efficiency, we consider how an agent could apply the experience of the

rewarded trajectory to Q–value estimates in the top–right arm. In particular, a learned a model

of the environment could indicate that both trajectories pass through the center of the T–maze,

and that discovering a reward at the bottom of the maze should therefore change Q–value

74

6.1. Introduction

estimates in both of the arms at the top. For instance, using prioritized sweeping, a state that

changing significantly in value will result in a rapid update of all the state–action pairs that

transition into that state [Moore and Atkeson, 1993, Peng and Williams, 1993, Van Seijen and

Sutton, 2013]. If both trajectories passed through the same position in the center of the maze,

prioritized sweeping could then exploit this fact to rapidly update the value function in both

arms.

However, assuming random restarts, the agent in this task never encounters the exact same

state more than once. In this case, given a deterministic task, prioritized sweeping as im-

plemented by Van Seijen and Sutton [2013] collapses to the MFEC learning algorithm [Brea,

2017]. We are therefore motivated to consider mapping the observation space to a tabular

representation by some form of discretization. For example, with discretization based on

rounding the (x, y) coordinates (a simple form of state aggregation [Li et al., 2006, Sutton and

Barto, 2018]), the two trajectories in Figure 6.1B now pass through several of the same states.

A model–based prioritized sweeping algorithm would allow us to update the Q–values in the

top–right arm of the maze to nonzero values after experiencing both episodes, despite the fact

that the red trajectory did not result in reward.

Such a discretization can be considered a form of state aggregation, in which multiple obser-

vations o1 . . .on map to the same abstract state s. Optimally, the abstraction should be fine

enough that all observations in the same state s share similar optimal Q–values [Li et al., 2006],

yet coarse enough that the agent can visit the same states multiple times to leverage a densely

connected model of the environment.

Even if the underlying task is deterministic, discretization can result in a stochastic state

transition model. In the top right of Figure 6.1, the successor state and reward resulting from

an action depend on the exact (continuous) position within the discrete state where the action

took place, which is hidden at the abstract state level (as shown by the fact that neighbouring

states are sometimes “skipped”). In addition, p(o|s) is not a delta function, since multiple

observations correspond to the same state. Similarly, p(s|o) may not be a delta function if the

abstraction function results in partial membership for observations on the edge of multiple

abstract states. We have therefore transformed the system from a continuous fully–observable

MDP to a discrete partially–observable Markov Decision Process (POMDP).

If observations are given by high-dimensional visual inputs instead of (x, y) coordinates,

the simple form of state aggregation by rounding (Figure 6.1B) is impractical. Instead, we

propose and describe in this chapter the new method of Variational State Tabulation (VaST)1

for learning discrete, tabular representations from high–dimensional and/or continuous

observations. VaST can be seen as an action conditional hybrid ANN–HMM (artificial neural

network hidden Markov model, see e.g. [Bengio et al., 1992, Tucker et al., 2017, Ng et al., 2016,

Maddison et al., 2016]) with a d-dimensional binary representation of the latent variables,

useful for generalization in RL. VaST is trained in an unsupervised fashion by maximizing the

1The full code for VaST can be found at https://github.com/danecor/VaST/.

75

Chapter 6. Efficient Model–Based RL with Variational State Tabulation

evidence lower bound. We exploit a parallelizable implementation of prioritized sweeping

by small backups [Van Seijen and Sutton, 2013] to constantly update the value landscape

in response to new observations. By creating a tabular abstraction where states are often

revisited, the agent can rapidly update state–action values in distant areas of the environment

in response to single observations.

In Figure 6.1C&D, we show how VaST can use the generalization of the tabular representation

to learn from single experiences. We consider a 3D version of the example T–maze, imple-

mented in the VizDoom environment [Kempka et al., 2016]. Starting from the top–left arm, the

agent was trained to run to a reward in the bottom of the T–maze stem. During training, the

top–right arm of the T–maze was blocked by an invisible wall (dotted line). After training, the

agent observed a single, 20–step fixed trajectory (or “forced run”) beginning in the top–right

arm and ending in the stem, without reaching the reward zone (Figure 6.1C). The agent’s early

observations in the unexplored right arm were mapped to new states, while the observations

after entering the stem were mapped to existing states in the lookup table (corresponding to

observations at similar positions and orientations). The agent was able to update the values of

the new states by prioritized sweeping from the values of familiar states (Figure 6.1D), without

needing to change the neural network parameters, as would be necessary with model-free

deep reinforcement learners like DQN [Mnih et al., 2013]. In total, the network generated

only 8973 unique states for the 50021 observations during training, indicating significant

generalization between similar observations.

6.2 Learning the model

In order to compute a policy using the model–based prioritized sweeping algorithm described

by Van Seijen and Sutton [2013], we seek a posterior distribution p(sμt |oμ
0:tμ) over latent discrete

states sμt given all past observations o0:tμ in the current episode μ. We will later describe how

the posterior model is used to build a tabular abstraction.

Classically, the parameters of such a posterior model could be estimated using Expectation

Maximization (EM) according to the Baum–Welch algorithm [Baum et al., 1970], with a dif-

ferent transition distribution for each possible action [Chrisman, 1992]. This would require

learning an observation model pθ(ot |st), a transition model pθ(st |at , st−1) and an initial state

distribution πθ(s0), all parameterized by θ. At each iteration of the algorithm, the model

parameters θ are improved by first calculating the posterior probability of each latent state at

each time step under the current parameters, using Bayes’ rule.

For the VizDoom environment we evaluate on, the observation space is 60×80 pixels and 3

colour channels. An observation model based on a Gaussian Mixture would therefore have

over 200 million parameters for each state. With tens of thousands of states necessary to

create an accurate model of a complex environment, it rapidly becomes computationally

intractable to calculate the posteriors of all states and update the model parameters in a

reasonable number of steps. As well, modeling directly on the pixel space fails to capture

76

6.2. Learning the model

important features like translation invariance. We overcome these issues by parameterizing the

probabilistic models as deep neural networks, and using variational inference to approximate

the posterior distribution.

6.2.1 The variational cost function

For a sequence of states s0:T = (s0, . . . sT) and observations o0:T = (o0, . . .oT), we consider

a family of approximate posterior distributions qφ(s0:T |o0:T) with parameters φ, which we

assume to factorize given the current observation and a memory of the past k observations,

i.e.

qφ(s0:T |o0:T) =
T∏

t=0
qφ(st |ot−k:t) , 6.1

where observations before t = 0 consist of blank frames. We learn qφ indirectly using the distri-

bution pθ parameterized by θ. Given a collection of M observation sequences O = {oμ

0:T μ}M
μ=1

and hidden state sequences S = {sμ0:T μ}M
μ=1, we maximize the log–likelihood logL(θ;O) =∑M

μ=1 log pθ

(
oμ

0:T μ

)
of the weight parameters θ, while minimizing DK L(qφ(S|O)||pθ(S|O)). To-

gether, these terms form the evidence lower bound (ELBO) or negative variational free energy

−F (θ,φ;O) = logL(θ;O)−DK L(qφ(S|O)||pθ(S|O)). 6.2

By training on the objective function in Equation 6.2, the parameters θ are optimized to learn

a model pθ that captures the observation distribution. Then, rather than calculating the

posterior pθ(S|O) according to that model directly (as in EM), we optimize the variational

posterior qφ(S|O) to approximate pθ(S|O), by minimizing the Kullback–Leibler divergence

between the two posteriors. Following the VAE approach and using the reparameterization

trick (Kingma and Welling [2013], Rezende et al. [2014], introduced in Chapter 5), the objective

function can be optimized efficiently by sampling from qφ.

Equation 6.2 can be rewritten as

−F (θ,φ;O) = logL(θ;O)−DK L(qφ(S|O)||pθ(S|O))

= Eqφ
[log pθ(S ,O)]+H(qφ(S|O)) , 6.3

where H denotes the entropy of the distribution. The term inside the expectation evaluates to

log pθ(S ,O) =
M∑
μ=1

logπθ0 (sμ0)+
M∑
μ=1

T μ∑
t=0

log pθR(oμ
t |sμt)

+
M∑
μ=1

T μ∑
t=1

log pθT (sμt |aμ
t , sμt−1) , 6.4

where aμ
t denotes the action taken by the agent on step t of sequence μ, πθ0 is the distribution

over initial states, and θ0 ∪θR∪θT = θ.

77

Chapter 6. Efficient Model–Based RL with Variational State Tabulation

We aim to learn the appropriate posterior distribution qφ by minimizing the variational free

energy (maximizing the ELBO). Our cost function from Eq. 6.3 can be written as

F (θ,φ;O) =
M∑
μ=1

T μ∑
t=0

[
Rμ

t +T μ
t −Hμ

t

]
, 6.5

with reconstruction cost terms

Rμ
t =−∑

sμt

qφ(sμt |oμ

t−k:t) log pθR(oμ
t |sμt) , 6.6

transition cost terms

T μ
t =− ∑

sμt ,sμt−1

qφ(sμt , sμt−1|o
μ

t−k−1:t) log pθT (sμt |aμ
t , sμt−1) 6.7

for t > 0 and T μ
0 =−∑

sμ0
qφ(sμ0 |o

μ
0) logπθ0 (sμ0) , and entropy terms

Hμ
t =−∑

sμt

qφ(sμt |oμ

t−k:t) log qφ(sμt |oμ

t−k:t) . 6.8

We parameterize the posterior distribution qφ (or “encoder”) using a deep CNN [Krizhevsky

et al., 2012], and the observation model pθR using a deep DCNN [Goodfellow et al., 2014], as

shown in Figure 6.2. We use a multilayer perceptron (3 layers for each possible action) for

the transition model pθT , and learned parameters θ0 for the initial state distribution πθ0 . The

architecture is similar to that of a VAE, with the fixed priors replaced by learned transition

probabilities conditioned on previous state–action pairs. Unlike the model in Chapter 5, the

transition cost terms here arise naturally from evaluating the ELBO under the assumption that

the observations come from an MDP.

To allow for a similarity metric between discrete states, we model the state space as all possible

combinations of d binary variables, resulting in N = 2d possible states. Each of the d outputs

of the encoder defines the expectation of a Bernoulli random variable, with each variable

sampled independently. The sampled states are used as input to the observation and transition

networks, and as targets for the transition network.

The reconstruction and transition cost terms can now be used in stochastic gradient descent

on F in θ, by estimating the gradient ∇θF with Monte Carlo samples from the variational

posterior qφ. To minimize F also in φ, we need to perform backpropagation over discrete,

stochastic variables (i.e. over sμt sampled from qφ). There are several methods for doing

this (see Discussion). We use the reparameterization trick together with a relaxation of the

Bernoulli distribution: the binary Con–crete (or Gumbel–Softmax) distribution (Maddison

et al. [2016], Jang et al. [2016]).

78

6.2. Learning the model

Figure 6.2 – The network model. [A] CNN encoder qφ. [B] Encoder outputs can be used to
sample each dimension from a Con–crete distribution for training (ŝt , where the Con–crete
distribution corresponds to a logistic activation with added noise L), or [C] discretized to the
Bernoulli mode s̄t to update the table. [D] DCNN decoder pθR and [E] Transition network
pθT , with N possible actions. For illustration, EpθR

[ot |ŝt] and EpθT
[ŝt |at , ŝt−1] are shown.

6.2.2 The reparameterization trick and the Con–crete distribution

Denoting the ith dimension of state st as st ,i , we consider the ith output of the encoder at

time t to correspond to xt ,i = logit(qφ(st ,i = 1|ot−k:t)). Following Maddison et al. [2016], we

note that we can achieve a Bernoulli distribution by sampling according to st ,i = H(xt ,i +L),

where H is the Heaviside step function and L is a logistic random variable. In this form, the

stochastic component L is fully independent of φ, and we can simply backpropagate through

the deterministic nodes [Kingma and Welling, 2013]. However, the derivative of H is 0 almost

everywhere. To address this, the Bernoulli distribution can be relaxed into a continuous Con–

crete (continuous relaxation of discrete) distribution [Maddison et al., 2016]. This corresponds

to replacing the Heaviside non–linearity with a logistic non–linearity parameterized by the

temperature λ:

ŝt ,i = 1

1+exp(−(xt ,i +L)/λ)
, 6.9

with ŝt ,i ∈ [0,1]. We use Con–crete samples from the encoder output for the input to both

the reconstruction and transition networks and for the targets of the transition network, with

temperatures taken from those suggested by Maddison et al. [2016]: λ1 = 2/3 for the poste-

rior distribution and λ2 = 1/2 for evaluating the transition log–probabilities. The Con–crete

relaxation corresponds to replacing the discrete joint Bernoulli samples st in the previous loss

functions with their corresponding joint Con–crete samples ŝt . We train the network by sam-

pling minibatches of observations and actions (oμ

t−k−1:t , aμ
t) from a replay memory [Riedmiller,

2005, Mnih et al., 2015] of transitions observed by the agent.

79

Chapter 6. Efficient Model–Based RL with Variational State Tabulation

6.2.3 Learning a tabular transition model

The model as described learns a joint Con–crete posterior distribution q̂φ(ŝt |ot−k:t). We

can recover a discrete joint Bernoulli distribution qφ(st |ot−k:t) by replacing the logistic non–

linearity with a Heaviside non–linearity (i.e. as λ→ 0 in Eq. 6.9).

For prioritized sweeping, we need to build a tabular model of the transition probabilities

in the environment (i.e. p(st |at , st−1)). We could consider extracting such a model from

pθT (ŝt |at , ŝt−1), the transition network used to train the encoder. However, this is problematic

for several reasons. The transition network corresponds to Con–crete states, and is of a par-

ticularly simple form, where each dimension is sampled independently conditioned on the

previous state and action. Moreover, the transition network is trained through stochastic gra-

dient descent and therefore learns slowly; we want the agent to rapidly exploit new transition

observations.

We therefore build a state transition table based purely on the encoder distribution qφ(st |ot−k:t),

by treating the most probable sequence of states under this distribution as observed data.

Since each dimension of st is independent conditioned on the observations, the mode s̄t at

time t corresponds to a d–length binary string, where s̄t ,i = H(xt ,i). Likewise, since states

within an episode are assumed to be independent conditioned on the causal observation filter,

the most probable state sequence for an episode is S̄μ = {s̄μ0 , s̄μ1 . . . , s̄μT μ}. We therefore record a

transition between s̄t−1 and s̄t under action at for every step taken by the agent, and update

the expected reward r (s̄t−1, at) in the table with the observed reward. Each binary string s̄ is

represented as a d–bit unsigned integer in memory.

This process corresponds to empirically estimating the transition probabilities and rewards by

counting transitions between the most probable states. As the model changes during training,

we also revise the counts. As an example, assume the agent encounters states A, B and C

successively in the environment. We record transitions A → B and B → C in the table, and

store the raw observations along with the corresponding state assignments A, B and C in

the replay memory. If the observations associated with B are later sampled from the replay

memory and instead assigned to state D , we delete A → B and B →C from the table and add

A → D and D →C . Both the deletion and addition of transitions through training can change

the Q–values.

6.2.4 Using the model for reinforcement learning

The Q–values in the table are updated continuously using the learned transition model

p(s̄t |at , s̄t−1), expected reward r (s̄t−1, at) and prioritized sweeping with small backups (specif-

ically, the “reversed full backups” variant [Van Seijen and Sutton, 2013]). Prioritized sweeping

converges to the same solution as value iteration, but can be much more computationally effi-

cient by focusing updates on states where the Q–values change most significantly (particularly

on environments with sparse transition matrices). Since learning could result in transition

80

6.2. Learning the model

deletions as well as additions, our implementation of prioritized sweeping (Algorithm 4)

includes a separate subroutine for deletions.

Given an observation history ot−k:t , the agent follows an ε–greedy policy using the Q–values

Q(s̄t , a) in the lookup table for all possible actions a. For any pair (s̄t , a) that has not yet

been observed, Q(s̄t , a) will simply be equal to its initialized value. In order to allow for fast

generalization to state–action pairs that have not yet been experience, we therefore estimate

the Q–value for new state–action pairs using its nearest neighbours in Hamming distance.

In the following, we simplify the discretized states s̄ to s for clarity. We denote S as the set

of all states corresponding to d–length binary strings, Q̃(s, a) as the Q–value estimate used

for action selection, and Q(s, a) as the Q–value for a state–action pair in the lookup table as

determined by prioritized sweeping. In order to calculate Q̃(st , a) for a particular state–action

pair, we first determine the Hamming distance m to the nearest neighbour(s) s ∈S for which

the action a has already been observed, i.e.

m = min
s∈S

{D(st , s)|Nsa > 0}, 6.10

where D(st , s) is the Hamming distance between st and s and Nsa denotes the number of

times that action a has been taken from state s. We then define the set Stm of all m–nearest

neighbours to state st ,

Stm = {s ∈S|D(st , s) = m}, 6.11

and the Q–value estimate used for action selection is then given by

Q̃(st , a) :=
∑

s∈Stm
NsaQ(s, a)∑

s∈Stm
Nsa

. 6.12

If (st , a) has already been observed, then m = 0, Stm = {st } and Q̃(st , a) = Q(st , a). If m = 1,

Q̃(st , a) corresponds to an experience–weighted average over all states s with a Hamming

distance of 1 from st , m = 2 to the average over neighbours with a Hamming distance of 2

etc. This Hamming neighbour estimate is parameter–less, and generally much faster than

searching for nearest neighbours in continuous space. Note that Equation 6.12 is very similar

in form to the instance–based estimate of an episodic controller (Equation 2.11, Gershman and

Daw [2017]) where the estimate combines a similarity function based on Hamming distance

with an experience weighting, providing a further link to episodic control approaches.

In addition, Q̃(st , a) can be seen as the Q–value of an abstract aggregate state stm consisting of

the m–nearest neighbours to st . To show this, we introduce the index set of past experiences

Esa = {(τ,μ)|sμτ = s, aμ
τ = a} that contains all the time indices τ for all episodes μ where action

a was chosen in state s (taking into account all reassignments as described in Section 6.2.3

and in Algorithm 3). With the above definition of Nsa we see that Nsa = |Esa |, i.e. there are

Nsa elements in the set Esa . With this and the update mechanism of prioritized sweeping

81

Chapter 6. Efficient Model–Based RL with Variational State Tabulation

(Algorithm 4) we can write

Q(s, a) = 1

Nsa

∑
τ,μ∈Esa

rμ
τ +γ

1

Nsa

∑
τ,μ∈Esa

V (sμτ+1), 6.13

where V (s) = maxb{Q(s,b)|Nsb > 0}. Substituting this into Equation 6.12, we obtain

Q̃(st , a) =
∑

s∈Stm

[∑
τ,μ∈Esa

rμ
τ +γ

∑
τ,μ∈Esa

V (sμτ+1)
]

∑
s∈Stm

Nsa
. 6.14

We now consider an aggregate state stm by treating all states s ∈Stm as equivalent, i.e. Estm a =
{(τ,μ)|sμτ ∈Stm , aμ

τ = a}. With this definition we get
∑

s∈Stm

∑
τ,μ∈Esa

=∑
τ,μ∈Estm a

and we obtain

Q̃(st , a) =
[∑

τ,μ∈Estm a
rμ
τ +γ

∑
τ,μ∈Estm a

V (sμτ+1)
]

Nstm a
6.15

=Q(stm , a),

where we used Equation 6.13 to obtain the second equality.

6.2.5 Implementation details

The prioritized backups described by Van Seijen and Sutton [2013] are performed serially with

environment exploration. To decrease training time and improve performance, we performed

backups independently, and in parallel, to environment exploration and training the deep

network.

We implemented state tabulation and prioritized sweeping as two separate processes (running

on different CPU cores). The tabulation process (Algorithm 3) acts in the environment and

trains the neural networks by sampling the replay memory. The sweeping process (Algorithm 4)

maintains the transition table and continuously updates the Q-values using prioritized sweep-

ing.

To perform greedy actions, the tabulation process requests Q–values from the sweeping

process. To update the transition table, the tabulation process sends transition updates

(additions and deletions) to the sweeping process. Our implementation of the sweeping

process performed ∼6000 backups/second, allowing the agent to rapidly propagate Q–value

changes with little effect on the simulation time.

6.3 Results

We evaluated the VaST agent on a series of navigation tasks implemented in the VizDoom

environment (see Figure 6.3A, Kempka et al. [2016]). Each input frame consists of a 3–channel

[60×80] pixel image of the 3D environment, collected by the agent at a position (x, y) and

82

6.3. Results

Algorithm 3 Variational State Tabulation.

Initialize replay memory M with capacity N
Initialize sweeping table process B with transition add queue Q+ and delete queue Q−

1: for each episode do
2: Set t ← 0
3: Get initial observations o0

4: Process initial state s̄0 ← argmaxs qφ(s|o0)
5: Store memory (o0, s̄0) in M
6: while not terminal do
7: Set t ← t +1
8: Take action at with ε-greedy strategy based on Q̃(st−1, a) from B
9: Receive rt , ot

10: Process new state s̄t ← argmaxs qφ(s|ot−k:t)
11: Store memory (ot , s̄t , at ,rt) in M
12: Put transition (s̄t−1, at ,rt , s̄t) on Q+

13: if training step then
14: Set gradient list G← {}
15: for sample in minibatch do
16: Get (o j−k−1: j , a j) from random episode and step j in M
17: Process qφ(s j−1|o j−k−1: j−1), qφ(s j |o j−k: j) with encoder
18: Sample ŝ j−1, ŝ j ∼ q̂φ with temperature λ

19: Process pθ(o j |ŝ j), pθ(ŝ j |a j , ŝ j−1) with decoder and transition network
20: Append ∇θ,φF (θ,φ;o j−k−1: j) to G
21: for i in { j −1, j } do
22: Process s̄new

i ← argmaxs qφ(s|oi−k:i)
23: Get (s̄i−1, ai , ri , s̄i , ai+1, ri+1, s̄i+1) from M
24: if s̄i �= s̄new

i then
25: Put (s̄i−1, ai ,ri , s̄i), (s̄i , ai+1,ri+1, s̄i+1) on Q−

26: Put (s̄i−1, ai ,ri , s̄new
i), (s̄new

i , ai+1,ri+1, s̄i+1) on Q+

27: Update s̄i ← s̄new
i in M

28: end if
29: end for
30: end for
31: Perform a gradient descent step according to G with given optimizer
32: end if
33: end while
34: end for

83

Chapter 6. Efficient Model–Based RL with Variational State Tabulation

Algorithm 4 Prioritized Sweeping Process.

Initialize V (s) =U (s) = 0 for all s � Discretized states s̄ are simplified to s for clarity
Initialize Q(s, a) = 0 for all s, a � Initial value is arbitrary; never used
Initialize Nsa , N s′

sa = 0 for all s, a, s′

Initialize priority queue P with minimum priority cutoff pmi n

Initialize add queue Q+ and delete queue Q−

1: while True do
2: while Q+, Q− empty do
3: Remove top state s′ from P
4: ΔU ←V (s′)−U (s′)
5: U (s′) ←V (s′)
6: for all (s, a) pairs with N s′

sa > 0 do
7: Q(s, a) ←Q(s, a)+γN s′

sa/Nsa ·ΔU
8: V (s) ← maxb{Q(s,b)|Nsb > 0}
9: add/update s in P with priority |U (s)−V (s)| if |U (s)−V (s)| > pmi n

10: end for
11: end while
12: for (s, a,r, s′) in Q+ do
13: Nsa ← Nsa +1; N s′

sa ← N s′
sa +1

14: Q(s, a) ← [Q(s, a)(Nsa −1)+ r +γU (s′)]/Nsa

15: V (s) ← maxb{Q(s,b)|Nsb > 0}
16: add/update s in P with priority |U (s)−V (s)| if |U (s)−V (s)| > pmi n

17: end for
18: for (s, a,r, s′) in Q− do
19: Nsa ← Nsa −1; N s′

sa ← N s′
sa −1

20: if Nsa > 0 then
21: Q(s, a) ← [Q(s, a)(Nsa +1)− (r +γU (s′))]/Nsa

22: else
23: Q(s, a) ← 0
24: end if
25: if

∑
b Nsb > 0 then

26: V (s) ← maxb{Q(s,b)|Nsb > 0}
27: else
28: V (s) ← 0
29: end if
30: add/update s in P with priority |U (s)−V (s)| if |U (s)−V (s)| > pmi n

31: end for
32: end while

84

6.3. Results

Figure 6.3 – VaST learns quickly in complex mazes. [A] The agent started at a random position
and orientation in the outer rim of the 3D maze (highlighted in grey), and received a reward
of +1 on reaching the center of the maze (highlighted in green), with a step penalty of -0.01.
Red hatched areas correspond to the hazard regions in the second version of the task, where
the agent received a penalty of -1 with a probability of 25%. We used a different texture for
each wall in the maze, ending at a corner. The black arrow depicts an example position and
orientation. [B] The observations for an agent positioned at the black arrow. [C] Performance
comparison between models for 5 individual runs with different random seeds (mean in bold).
Rewards are very sparse (≈ every 20 000 steps with a random policy); with longer training we
expect DQN to improve. [D] Results for the second version of the task (including hazards).

orientation θ. The agent rarely observes the exact same frame from a previous episode (0.05% –

0.3% of the time in the mazes used here), making it ill–suited for a traditional tabular approach;

yet the discovery of new transitions (particularly shortcuts) can have a significant effect on

the global policy if leveraged by a model–based agent. We considered the relatively low–data

regime (up to 2 million steps). Three actions were available to the agent: move forward, turn

left and turn right; due to momentum in the game engine, these give rise to visually smooth

trajectories. We also trained the agent on the Atari game Pong (Figure 6.9). For 3D navigation,

we used only the current frame as input to the network; each wall in the maze was given a

different visual texture, ending at a corner, in order to improve the observability of the task.

We tested both 1– and 4–frame inputs for Pong in order to test whether VaST could use frame

history to disambiguate states.

We compared the performance of VaST against two recently published sample–efficient model–

free approaches: Neural Episodic Control (NEC) [Pritzel et al., 2017] and Prioritized Double–

85

Chapter 6. Efficient Model–Based RL with Variational State Tabulation

DQN [Schaul et al., 2015]. We used the structure of the DQN network in [Mnih et al., 2015] for

both NEC and Prioritized D–DQN as well as the encoder of VaST (excluding the output layers).

Full hyperparameters are given in Appendix A. NEC is similar to both VaST and MFEC in that

it is semi–tabular, but unlike MFEC, it can be used in non–deterministic environments. It is

an n–step method, unlike VaST and Prioritized DQN, which are both entirely off–policy.

We also compared against prioritized sweeping using Locality Sensitive Hashing (LSH) with

random projections [Charikar, 2002], where each bit s̄t ,i = H (vi ·ot), and each fixed projection

vector vi had elements sampled from N (0,1) at the beginning of training. The environment

model and Q–values were determined as with VaST.

In the first task (Figure 6.3), the agents were trained to reach a reward of +1 in the center of

a complex maze, starting from a random position and orientation in the outer region. In a

second version of the task, we added six “hazard” regions which gave a penalty of -1 with

a probability of 25% for each step. The agents were evaluated over a 1000–step test epoch,

with ε= 0.05, every 25 000 steps. VaST slightly outperformed NEC on the first version of the

task and significantly outperformed all of the other models on the more difficult version

(Figure 6.3C).

6.3.1 Dimensionality of the latent representation

We used d = 32 latent dimensions for the VaST agent in the navigation tasks, corresponding

to a 32–bit representation of the environment. We examine the effect of d in Figure 6.4, for

both a large maze and a small maze. High–dimensional representations (d = 64) tended to

plateau at lower performance than representations with d = 32, but also resulted in faster

initial learning in the larger maze. The agent frequently revisited state–action pairs even using

the high dimensional representation (Figure 6.4B). In general, we found that we could achieve

similar performance with a wide range of dimensionalities, though the agent was clearly more

limited by the dimensionality in the larger, more complex maze.

6.3.2 Visualizing the abstraction

After training an agent in the maze task without hazards, we ran the agent for an additional

100 000 steps in the environment and recorded the position and orientation at each step, as

well as the latent discrete state that the observations were assigned to. We plot the binary state

assignments along six different dimensions in Figure 6.5.

As the abstract state is conditioned on the observations, we expect the state assignments to be

dominated by the visual input; for instance, visual features change slowly as the agent moves

in a particular direction along one side of a hallway. The binary states generally reflect this. In

some cases, the binary assignment changes almost exclusively in a particular region of the

environment (e.g. Figure 6.5 bottom left).

86

6.3. Results

Figure 6.4 – Effect of latent dimensionality. The left column corresponds to a large maze
(Figure 6.3C) and the right column to a small maze (Figure 6.7 with stationary rewards). [A]
Average reward. [B] Cumulative percentage of revisited state–action pairs over the course of
training. The sharp transition at 50 000 steps (10 000 steps in the small maze) corresponds
to the beginning of network training. [C] The average lookup distance m as a function of
time. [D] The average percentage of observations from a minibatch that were reassigned to a
different state during training.

6.3.3 Sample efficiency

We hypothesized that the VaST agent would be particularly adept at rapidly modifying its

policy in response to one new experience. To test this, we designed an experiment in a 3D

H–maze (Figure 6.6) that requires the agent to leverage a single experience of a new shortcut.

The agent learned to run towards a terminal reward zone (+1) while avoiding a dead end

and a terminal penalty zone (-1), with a step penalty of -0.01. After 400 000 steps of training

87

Chapter 6. Efficient Model–Based RL with Variational State Tabulation

Figure 6.5 – Binary latent state assignment along different dimensions. The agent explored
the environment for 100 000 time steps after the end of training, with ε= 0.1. In each plot, we
choose 10 000 times steps t out of those 100 000 steps at random, and plot the position and
orientation of each step t as an arrow. Each plot corresponds to a different latent dimension i ,
where the arrows are shaded according to s̄t ,i (s̄t ,i = 0 is shown in blue and s̄t ,i = 1 in red).

(when the policy had nearly converged) we introduced a small change to the environment:

running into the dead end would cause the agent to teleport to a position close to the reward

zone, allowing it to reach the reward much faster. We informed the agent of the teleporter

using a single forced run episode, in which the agent collected observations while running

from the start box, through the teleporter, to either the reward zone or penalty zone under

a fixed, predetermined policy. For the VaST agent, this corresponds to a single experience

indicating a new shortcut: the transition between the states before and after the teleporter.

After observing either the rewarded or penalized episode, performance rapidly improved

as the agent adapted its policy to using the teleporter; in contrast, the agent discovered the

teleporter on only 2/5 random seeds without the forced run (Figure 6.6B). The agents switched

to using the teleporter regularly approximately 20 000 steps after the forced run, on average

(about 160 episodes). The VaST agent adapted to the teleporter more effectively than any of

the other models (Figure 6.6C and D).

88

6.3. Results

Figure 6.6 – VaST allows for rapid policy changes in response to single experiences. [A] The
agent learned to run from the starting area (grey) to a reward zone (green). After training,
a new shortcut (teleporter) was introduced at the bottom of the left arm. The agent either
observed no forced run, or a single forced run through the teleporter ending either in the
rewarding (green) or the penalizing (red) terminal zone. The forced runs were 58 and 72 steps
in length, respectively. [B] The teleporter was introduced after 400 000 steps (black triangle).
The VaST agent’s performance is shown for the three conditions: no forced run, rewarded
forced run and penalized forced run. [C] Model performance comparison for rewarded forced
runs. [D] Model performance comparison for penalized forced runs.

6.3.4 Transfer learning: non–stationary rewards

VaST maintains a model of transition probabilities in the environment, separate from imme-

diate rewards or Q–values. If the rewards were suddenly modified, we hypothesized that the

existing transition model could allow the agent to rapidly adjust its policy (after collecting

enough data to determine that the expected immediate rewards had changed).

We tested this in the 3D maze shown in Figure 6.7A (inset, with example observations show

in Figure 6.2). Starting at a random position, the episode terminated at the end of any arm

of the maze; the agent received a reward of +1 at the end of horizontal arms, and a penalty

of -1 at the end of vertical arms. The reward positions were reversed after 200 000 steps.

We used two replay memory sizes (N = 100 000 and N = 500 000). Compared to NEC and

Prioritized D–DQN, VaST both learned quickly in the initial phase and recovered quickly when

89

Chapter 6. Efficient Model–Based RL with Variational State Tabulation

Figure 6.7 – VaST can adapt to changing rewards. [A, Inset] The maze environment. Horizon-
tal arms (purple) initially yielded a reward of +1 while vertical arms (yellow) yielded a penalty
of -1. [A] After training for 200 000 steps (black triangle), the rewards and penalties in the maze
were reversed. All agents used a replay memory size of N = 100 000 transitions. [B] The same
task with a replay memory size of N = 500 000.

the rewards were reversed. While both NEC and Prioritized D–DQN adapted faster with a

smaller replay memory, VaST performed similarly in both conditions.

6.3.5 Transfer learning: multiple tasks with a shared network

The results in Figure 6.7 suggest that VaST could leverage shared structure across multiple

parallel tasks in the same environment, or similar environments, in order to learn them using

the same network model. In addition, we hypothesized that training the network on multiple

tasks would allow the agent to learn each task faster. To test this, we reused the same maze

but with four different reward landscapes (Figure 6.8A) corresponding to four separate tasks.

The specific task was selected at random at the beginning of each episode, and signaled to the

agent from the environment with an index variable (i.e. “Task 1”, “Task 2”, “Task 3” or “Task

4”).

In order to learn the tasks in parallel, we created a version of the agent that could launch

multiple prioritized sweeping processes (one for each task). At the beginning of each episode,

the agent selects the process corresponding to the signaled task index. It then sends observed

transitions to that process, and likewise requests Q–values from that process. In addition, the

task index of each observed transition is stored in the replay memory, and used to update

the correct process when the state assignments changed. All prioritized sweeping processes

continually update Q–values in parallel; as a result, the impact to overall simulation time is

minimal.

The agent explored the environment and trained a common network model across all 4 tasks.

We trained 5 multi–task agents with different random seeds. As a baseline, we compared the

performance of the multi–task agents to 20 single–task agents (5 agents with different random

seeds trained on one of the 4 tasks exclusively). The results are shown in Figure 6.8, plotted

90

6.3. Results

Figure 6.8 – VaST enables transfer learning across tasks in an environment. [A] The multi–
task agent was trained to learn four different tasks corresponding to differing rewarded arms,
all in the same environment (reaching the end of an arm always terminated the episode). The
task was selected randomly at the beginning of each episode and signaled to the agent. [B]
The multi–task agent’s performance (red) compared to an agent trained on only one of the
four tasks (blue), ± SEM. The horizontal axis denotes the average number of steps on each
task; e.g. at 1000 steps on the axis, a multi–task agent has taken 4000 steps total across the four
task conditions.

as a function of the average steps taken on each task. To ensure a fair comparison, we fixed

the exploration rate to ε= 0.1 without annealing, and plot performance from the beginning of

network training (after initializing each agent’s replay memory with 1000 exploratory steps).

We plot the training performance every 1000 steps.

Despite sharing a single network for all four tasks, the multi–task agent learned faster than the

single–task agent. Since the agent did not share any tabular transition statistics across tasks in

the prioritized sweeping processes, the transfer learning can be attributed to training the deep

network on multiple tasks with the same environment structure.

6.3.6 Training on Atari: Pong

In addition to 3D navigation, we trained the VaST agent to play the Atari game Pong using

the Arcade Learning Environment [Bellemare et al., 2013], with preprocessing steps taken

from Mnih et al. [2013]. In Pong, a table tennis–like game played against the computer, the

direction of the ball’s movement is typically unclear given only the current frame as input;

as a result, the state is only partially observable given the current frame. We therefore tried

conditioning the posterior distribution qφ on either the current frame (k = 0) or the current

frame along with the last 3 frames of input (k = 3, following Mnih et al. [2013]), in order to test

91

Chapter 6. Efficient Model–Based RL with Variational State Tabulation

Figure 6.9 – Learning to play Pong with variable frame history. [A] Test epoch episode re-
wards for VaST trained over 5 million steps (episode rewards in Pong range from −21 to +21).
We tested performance with no frame history (k = 0) and with 3 frames of history (k = 3) as
input to the encoder qφ. [A, Inset] Actual observations ot (left) and reconstructed observations
Ep [ot |ŝt] (right) for a trained agent. [B] The reconstruction cost component of the free energy
cost function, for the two values of k. [C] The additional terms of the free energy cost function
(transition and entropy).

92

6.4. Related work

whether VaST could use the additional frame history to mitigate the partially observability of

the task. Using k = 3, the performance converged significantly faster on average (Figure 6.9).

While the reconstruction cost was the same for k = 0 and k = 3, the transition and entropy cost

terms decreased with additional frame history, showing that the additional frames allowed

VaST to disambiguate the transition structure of the task.

6.4 Related work

Model-based reinforcement learning Prioritized sweeping with small backups [Van Seijen

and Sutton, 2013] is usually more efficient than but similar to Dyna-Q [Sutton and Barto, 2018],

where a model is learned and leveraged to update Q-values. Prioritized sweeping and Dyna-

Q are background planning methods [Sutton and Barto, 2018], in that the action selection

policy depends on Q-values that are updated in the background independent of the current

state. In contrast, methods that rely on planning at decision time (like Monte Carlo Tree

Search) estimate Q-values by expanding the decision tree from the current state up to a certain

depth and using the values of the leaf nodes. Both background and decision–time planning

methods for model-based reinforcement learning are well studied in tabular environments

[Sutton and Barto, 2018]. Together with function approximation, usually used to deal with

high–dimensional raw (pixel) input, many recent works have focused on planning at decision

time. Oh et al. [2017] and Farquhar et al. [2017], extending the predictron [Silver et al., 2017b],

train both an encoder neural network and an action–dependent transition network on the

abstract states used to run rollouts up to a certain depth. Racanière et al. [2017] and Nagabandi

et al. [2017] train a transition network on the observations directly. Racanière et al. [2017]

additionally train a rollout policy, the rollout encoding and an output policy that aggregates

different rollouts and a model-free policy. Planning at decision time is advantageous in

situations like playing board games [Silver et al., 2017a], where the transition model is perfectly

known, many states are visited only once and a full tabulation puts high demands on memory.

Conversely, background planning has the advantage of little computational cost at decision

time, almost no planning cost in well–explored stationary environments and efficient policy

updates after minor environment changes.

Exploration The most similar network model to VaST was proposed by Tang et al. [2017],

for the purpose of count–based exploration. The model used an autoencoder with a noisy

sigmoidal hidden layer, where sigmoidal activations were rounded to produce a binary code;

the binary code was then used to estimate the number of times an agent had visited a state

before. The visitation count determined an exploration bonus that was added to the reward;

however, a different RL algorithm was used to determine the actual policy. In addition, the

network model differed from ours in the structure of the loss function, the lack of a learned

transition model (either in network weights or in a table), and the lack of a variational Bayesian

motivation as in VaST.

93

Chapter 6. Efficient Model–Based RL with Variational State Tabulation

Successor representations for transfer learning The hybrid model–based/model–free ap-

proach of successor representations has recently been transferred from the tabular domain to

deep function approximation [Dayan, 1993, Kulkarni et al., 2016]. Learning separate models

of the immediate rewards and the discounted multi–step future occupancy allows for transfer

between tasks. However, the future occupancy is learned under a given policy induced by the

reward landscape, and the optimal policy will generally change with new rewards. The ability

to generalize between tasks in an environment (as VaST does in Figure 6.7 and Figure 6.8)

then depends on the similarity between the existing reward landscape (or multiple existing

reward landscapes [Barreto et al., 2016a]) and the new reward landscape. Recent work has

proposed updating successor representations offline in a Dyna–like fashion using a transition

model [Russek et al., 2017, Peng and Williams, 1993]; we expect that prioritized sweeping with

small backups could also be adapted to efficiently update tabular successor representations.

Navigation tasks Many methods have been introduced focusing on general spatial nav-

igation tasks by incorporating specialized domain knowledge. These methods are often

collectively referred to under the umbrella term Simultaneously Localization and Mapping

(SLAM) [Thrun, 2007, Cadena et al., 2016], comprising techniques including extended Kalman

filtering and particle filtering. They generally exploit the assumption that the agent is navigat-

ing in a 2D spatial environment, and therefore that the true latent space is continuous and

three–dimensional (2D spatial dimensions x and y combined with the agent’s orientation θ).

Under this assumption, the agent begins with a strong model of the relationship between an

action and the corresponding displacement in the latent space. SLAM algorithms typically ex-

ploit “loop closure” (i.e. recognition of landmarks previously visited on the current trajectory)

to build maps and find shortcuts [Cadena et al., 2016].

Mirowski et al. [2016] develop an RL agent for 3D navigation trained using auxiliary tasks based

on loop closure prediction and depth prediction to improve the function approximator. Jader-

berg et al. [2016] similarly train an RL agent on spatial navigation tasks using unsupervised

auxiliary losses not specific to navigation, including reward prediction. Finally, several recent

models [Bhatti et al., 2016, Parisotto and Salakhutdinov, 2017, Gupta et al., 2017] augment re-

inforcement learning algorithms and planners with internal 2D maps to improve performance

on navigation problems.

Even though we demonstrate and evaluate our method mostly on navigation tasks, VaST

does not leverage any domain knowledge for spatial navigation problems. The inclusion

of auxiliary tasks like depth prediction and loop closure prediction, as well as inductive

biases regarding the structure of the latent space and the transition model, are likely to

further improve performance on spatial navigation tasks (particularly when combined with

features like recurrent memory cells to overcome partial observability). The addition of further

unsupervised losses not specific to navigation [Jaderberg et al., 2016] is also promising.

94

6.4. Related work

State abstraction in reinforcement learning State abstraction has a long history in rein-

forcement learning [Sutton and Barto, 2018]. Li et al. [2006] and Hutter [2014] consider the

conditions under which the abstraction can be used to learn a successful policy. Li et al. [2006]

describe a hierarchy of abstractions, and show that several types within the hierarchy result

in an abstract MDP which allows Q–learning to converge to an optimal policy that is also

optimal in the ground MDP. Without specific constraints on the abstraction, Q–learning in

the abstract MDP can result in suboptimal policies [Singh et al., 1994].

The most exact abstraction allowing for an optimal policy is based on bisimulation: it requires

that all ground states within an abstract state share the same action–conditional abstract

transition probabilities and expected action–conditional immediate rewards [Li et al., 2006].

Notably, VaST is not trained to reconstruct immediate reward statistics from the abstract

states; adding this additional loss may therefore improve performance by mitigating model

error, at the cost of imposing reward landscape dependence on the latent representation. Both

Li et al. [2006] and Hutter [2014] further show that much more efficient abstractions than

bisimulation can result in optimal policies, as long as Q–value estimates are consistent within

the abstract/aggregate states. Several abstraction algorithms based on aggregating states with

equivalent Q–values [Chapman and Kaelbling, 1991, McCallum, 1995] have been proposed;

in particular, Chapman and Kaelbling [1991] consider statistical tests on factored binary

state representations. A variant of VaST based on reconstructing Q–values is therefore an

interesting future direction (see Discussion and Chapter 8). Coarser state aggregations based

on equivalent best actions [Jong and Stone, 2005] and similar Bellman residuals [Bertsekas

and Castanon, 1989] have also been proposed. State aggregation has further been considered

in the domain of Monte Carlo Tree Search [Hostetler et al., 2014].

To our knowledge, VaST is the first approach that uses modern deep learning methods to learn

useful and non-linear state discretization for determining a value function. In earlier versions

of our model we tried discretizing with standard VAEs (i.e. with a fixed prior distribution and

no transition network), with mixed success. The state aggregator qφ(st |ot−k:t) of VaST can be

seen as a byproduct of training a hybrid ANN–HMM. Different methods to train ANN-HMMs

have been studied [Bengio et al., 1992, Ng et al., 2016, Maddison et al., 2016, Tucker et al.,

2017]. While none of these works study the binary representation of the latent states used by

VaST for the generalization of Q–values, we believe it is worthwhile to explore other training

procedures and potentially draw inspiration from the ANN-HMM literature.

Dimensionality reduction for RL State abstraction based on dimensionality reduction (in-

cluding the use of autoencoders and variational autoencoders) has a rich history; see Sec-

tion 5.5.2 for more details.

95

Chapter 6. Efficient Model–Based RL with Variational State Tabulation

6.5 Discussion

We found that the VaST agent could rapidly transform its policy based on limited new infor-

mation and generalize between tasks in the same environment. In stationary problems, VaST

performed better than competing models in complex 3D tasks where shortcut discovery plays

a significant role. Notably, VaST performs latent learning: it builds a model of the structure of

the environment even when not experiencing rewards [Tolman and Honzik, 1930].

We also trained VaST to play the Atari game Pong. In general, we had less initial success training

the agent on other Atari games. We suspect that many Atari games resemble deterministic

tree Markov Decision Processes, where each state has exactly one predecessor state. In these

tasks, prioritized sweeping conveys no benefit beyond MFEC [Brea, 2017]. In contrast, tasks

like 3D navigation can be well–characterized by a non–treelike tabular representation (e.g. by

using a discretization of (x,y ,θ)).

VaST differs from many deep reinforcement learning models in that the neural network is

entirely reward–agnostic, where training corresponds to an unsupervised learning task. The

reward–agnostic network combined with a parallelizable prioritized sweeping algorithm allows

VaST to naturally extend to learning multiple tasks in the same environment; we similarly

expect that the model can leverage learning across tasks in differing environments with similar

observations and transition statistics.

Many other possible architectures exist for the unsupervised tabulator; for instance, a Score

Function Estimator such as NVIL [Mnih and Gregor, 2014, Mnih and Rezende, 2016, Tucker

et al., 2017] could be used in place of the Con–crete relaxation for discrete stochastic sampling.

In addition, while we chose here to show the strengths of a purely model–based approach, one

could also consider alternative models that use value information for tabulation, resulting in

hybrid model–based/model–free architectures.

VaST naturally maintains statistics on state–action visitation counts, which could be employed

for a tabular count–based exploration approach like MBIE–EB [Strehl and Littman, 2008].

Given that a similar model to VaST has recently been proposed for the purpose of count–based

exploration [Tang et al., 2017], this remains a promising avenue for research.

The past decade has seen considerable efforts towards using deep networks to adapt tabular

RL techniques to high–dimensional and continuous environments. In this chapter, we showed

how the opposite approach – using deep networks to instead transform the environment into

a tabular one – can enable the use of powerful model–based techniques.

96

7 Discussion & Conclusions

7.1 Model–based control, episodic control and the hippocampus

While my thesis primarily investigated model–based approaches, I also found techniques

associated with episodic control to be of particular interest. The use of lookup tables in Chap-

ter 5 and Chapter 6 was inspired by recent results showing impressive sample efficiency with

episodic controllers [Lengyel and Dayan, 2007, Blundell et al., 2016]. In addition, VaST was

motivated by the observation that MFEC corresponds to a simplified version of prioritized

sweeping [Brea, 2017], appropriate for deterministic tree MDPs. With VaST, we sought to bring

the additional sample efficiency of prioritized sweeping to continuous and high–dimensional

environments where states are never revisited.

On a broader scope, the analysis by Brea [2017] blurs the line between episodic control and

model–based methods, and brings into question when and whether pure episodic control

is a better approach. Notably, episodic control was originally motivated using tree MDPs

and compared with a particularly weak model–based controller, which relied on dynamic

programming without caching to determine Q–values at each time step [Lengyel and Dayan,

2007]. In contrast, Brea [2017] shows that model–based prioritized sweeping has equivalent

sample efficiency to MFEC on deterministic tree MDPs and better sample efficiency on general

MDPs. MFEC’s primary advantage is then in space complexity: it does not require the memory

to maintain a transition model longer than the length of an episode 1.

Gershman and Daw [2017] consider the key features of episodic controllers to be a non–

parametric memory and a kernel– or instance–based generalization method (such as kNN)

for approximating the value of new states. While prioritized sweeping corresponds to a

parametric approach in tabular environments, it does not explicitly require the state space

to have a fixed size, and can therefore be applied in a non–parametric fashion. As well, any

generalization method associated with episodic control can be directly applied alongside

prioritized sweeping in non–tabular environments.

1Although: Brea [2017] also proposes a version of prioritized sweeping where the transition model is reset after
every episode, reducing memory requirements while leveraging revisited states within an episode.

97

Chapter 7. Discussion & Conclusions

The offline episodic controller in Chapter 5 combines a non–parametric memory and a nearest–

neighbour lookup with a model–based simulator. VaST also arguably leverages both of these

features attributed to episodic controllers, despite the fact that we consider it to be a purely

model–based controller. While the VaST lookup table has a fixed number of possible states

(2d) as in a parametric approach, we grew the state table online under the assumption that

the agent will visit only a small number of possible states, as in a non–parametric approach.

As well, we used a nearest–neighbour algorithm based on Hamming distance to estimate the

value of new states from previously observed states.

Any difference between the controllers is particularly relevant to ongoing questions about

the role of the hippocampus in RL. Gershman and Daw [2017] note the dichotomy between

characteristics of model–based control in the hippocampus (e.g. map–like place cell coding

and preplay and replay phenomena similar to Dyna–like simulation), and the established

role of the hippocampus in episodic memory. The authors propose that the hippocampus

is primarily an episodic controller, observing that many signatures of episodic control can

be confused for those of model–based control (for instance, as I discussed above, episodic

memories and statistical world models are indistinguishable when states are never revisited).

In their proposal, a key function of the hippocampus is learning useful kernel functions for

encoding episodic memories. As an example, they point out that geodesic place cell coding

allows for storing snapshot–like information about the animal’s location in a manner that is

useful for navigation, consistent with the attractor network model in Chapter 3 (and broadly

consistent with the encoders in Chapter 5 and Chapter 6). If the kernel function is trained

using a transition model, however, then the animal may also have the ability to simulate

episodes in latent space, as in the offline episodic controller. Notably, the observation of place

cell sequences that trace out novel, never–before–experienced paths through the environment

is difficult to explain in an episodic controller without an environment model [Gupta et al.,

2010, Pfeiffer and Foster, 2013, Brea, 2017].

In Section 2.4.1, I noted how Dyna methods smoothly interpolate between model–free and

model–based approaches as a function of the number of background sweeps performed

on each step, with a tradeoff between sample efficiency and time complexity [Sutton and

Barto, 2018]. Similarly, prioritized sweeping can be seen as approximately interpolating

between model–based control and episodic control as a function of the amount of transition

information stored beyond the current episode. In this case, the tradeoff is between sample

efficiency and space complexity. It remains an interesting avenue of research to consider

an agent where both background sweeps and transition storage are parameterized, moving

between model–free, model–based and episodic control modes.

7.2 Conclusions

Throughout this thesis, I have considered how environment models allow an agent to learn

quickly (i.e. with high sample efficiency) and reuse learned structure between different tasks

98

7.2. Conclusions

(i.e. task transfer). These models include the attractor networks of Chapter 3 and Chapter 4,

which encode a low–dimensional representation of an environment for rapid path–planning,

as well as the generative networks of Chapter 5 and Chapter 6, which similarly learn a low–

dimensional representation of the environment in order to quickly update a value function in

the background.

Task transfer obviously becomes critical when the task dynamics are non–stationary. As

discussed in Chapter 5, this is also when sample efficiency is most important: an agent seeking

to maximize total cumulative reward should favour fast learning over asymptotic performance

if the task dynamics are unlikely to remain fixed for very long. Non–stationary tasks, then, are

an important area of study for model–based methods.

In Chapter 5 and Chapter 6, we addressed sample efficiency in part by using a a lookup table.

Lookup tables can be updated quickly compared to training a network to approximate a

value function with gradient descent; the table entries can also be rewritten rapidly if the

task changes, bypassing the problem of training a network to approximate a non–stationary

optimal value function.

The lookup tables were paired with deep networks trained using SGD to learn the environment

statistics, which were consistent across tasks. The trained environment model allows the

lookup table to be exploited more efficiently, by compressing the agent’s observations in

an environment–specific manner before storing them in the table. The results suggests

that pairing network–based “slow” learning with tabular “fast” learning can leverage the

best of both approaches to address task transfer, sample efficiency and ultimately task non–

stationarity.

The attractor network models presented operate on a similar principle: the slowly–learned

network generates a representation of the animal’s position that doubles as a representation

of the path to that position. This preprocessing enables fast “one–shot” learning of a path to a

goal location by reactivating the representation of the goal location. Without the preprocessing

step, storing a snapshot of the goal location (using e.g. the visual features at the goal location)

is much less useful for planning.

Overall, I found two key methods – prioritized sweeping, and the use of lookup tables (or

non–parametric memory) with model–based planning – to be particularly effective and under–

explored in both computational neuroscience and deep reinforcement learning. I believe that

the two together can enable RL algorithms that learn and adapt to the environment quickly,

efficiently and intelligently.

99

8 Future Work

Here, I outline several worthwhile lines in inquiry based on the models and results described

in Chapter 5 and Chapter 6.

8.1 Offline Episodic Control

Surprise–based change detection In complex tasks where the reward is stochastic or the

agent rarely revisits a state exactly more than once, the reward change detection rule we used

will not scale. As an alternative, a non–parametric version of Bayesian surprise [Itti and Baldi,

2009] or confidence–corrected surprise [Faraji et al., 2018] could be employed with a threshold

determining when to reset the lookup table. Note that surprise–based change detection and

reset is primarily useful in settings where tasks change but never reoccur, whereas multi–task

learning (as employed with VaST) applies when the environment rotates between a small

number of tasks.

Alternative objective function We trained the model to map the input observations to a

Normal distribution in latent space, while learning a transition model within that latent

space. While the Normal prior is useful for sampling initial states for offline trajectories, we

found that sampling initial states from a replay memory was almost as effective (Figure 5.4).

Removing the Normal distribution prior, the transition model can be naturally incorporated

into a variational objective function based on an MDP task structure (as in the VaST model). I

suspect this would improve the model’s performance.

8.2 VaST

Value–based tabulation Complex MDPs like Atari games often include many features in the

observation space that are irrelevant to the policy. For instance, many Atari games include the

player’s current score at the top of the screen. The score is generally only weakly associated

101

Chapter 8. Future Work

with the state’s value and irrelevant in determining the optimal action. Since VaST does

not use any reward information in learning the state representation, it will usually learn to

represent each possible score as a different state, preventing any generalization across states

that are equivalent from a policy perspective. This is less of a problem in 3D navigation,

where the observations can be fully determined by three nearly independent variables (the 2D

coordinates plus orientation, all of which are relevant to the agent’s policy).

Improving VaST’s performance on Atari–like environments therefore requires training it to

generalize across policy–irrelevant features. We are currently exploring several methods for

doing this. In particular, one approach is to predict bootstrapped Q–value estimates in a

DQN–like manner from the sampled encoder output st . Although these bootstrapped Q–

values are learned slowly, they can ideally extract the features of the observation space relevant

for predicting the state value early in training. Given a low–dimensional latent embedding,

this forces the encoder to prioritize task–relevant features over task–irrelevant features in the

binary state representation, generalizing over regions of the state space that are not important

for predicting the state value. Early experiments on this approach have been promising.

Alternatively, it may be possible to train the network on the tabular Q–value estimates directly,

similar to NEC [Pritzel et al., 2017].

Multi–task learning In Section 6.3.5, we showed how VaST could use a common network to

transfer learning between tasks in the same environment. This is a particularly conservative

form of task transfer; another possibility is to share tabular transition statistics between the

tasks as well, differing only in tabular state reward statistics.

Going further, we can ask whether the agent can learn to tell the difference between tasks in

an environment when the task is changing without notice. For instance, Doya et al. [2002] pro-

pose an EM–like mixture–of–experts approach for learning multiple task models in a tabular

environment, where the agent accumulates evidence over time to determine a probability

distribution over the current task. This approach could be applied to VaST, allowing the agent

to rapidly adapt to unpredictably changing reward landscapes, and potentially to changing

environments with similar visual statistics.

Notably, multi–task learning illustrates the downside to value–based tabulation: the network

is most generalizable when it makes the fewest assumptions about the reward structure.

Partially observable environments The 3D environments we used to train VaST were al-

most fully observable, due to the use of a different texture on each wall. However, the results

on Pong show that the agent can learn to accumulate information over multiple frames in

order to decipher hidden state information.

More generally, we note that the model can be easily conditioned on the full episode obser-

vation history by using a recurrent neural network like a Long Short–Term Memory (LSTM)

102

8.2. VaST

layer [Hochreiter and Schmidhuber, 1997] in the encoder. Given a partially observable environ-

ment, the transition network pressures the model to learn a Markovian latent state structure,

where observation history in the LSTM layer memory cells would allow the network to differen-

tiate between aliased states. The most significant challenge here is in training the network on

extended sequences of observations sampled from the replay memory. Existing approaches

either sample full episodes, or sample subsequences and reset the LSTM hidden state to

an arbitrary value at the beginning of every subsequence [Hausknecht and Stone, 2015]. A

potential alternative approach is to store the LSTM’s hidden state in the replay memory, and

use it to bootstrap the recurrent network state at the beginning of a sampled subsequence.

Exploration The most similar network model to VaST that we discovered was used to imple-

ment tabular count–based exploration [Tang et al., 2017]. It therefore remains a promising

direction to see how VaST could combine prioritized sweeping and tabular count–based

algorithms like MBIE–EB [Strehl and Littman, 2008] for high–dimensional and continuous

environments. Alternatively, measures of familiarity or surprise could be extracted directly

from the p or q distributions and used to determine exploration bonuses (see e.g. Bellemare

et al. [2016], Houthooft et al. [2016]).

103

A Hyperparameters for Chapter 6

A.1 3D Navigation

For the three network–based models, hyperparameters were chosen based on a coarse pa-

rameter search in two mazes (Figure 6.3 excluding the hazards and Figure 6.6 excluding the

teleporter), using the previously published hyperparameters as a starting point for the base-

lines [Pritzel et al., 2017, Schaul et al., 2015, Mnih et al., 2015]. In all mazes except the smaller

Plus–Maze, the agents explored randomly for 50 000 steps to initialize the replay memory

before training; ε was then annealed from 1 to 0.1 over 200 000 steps. In the Plus–Maze, the

agents explored randomly for 10 000 steps and ε was annealed over 40 000 steps. We used

ε= 0.05 for evaluation during test epochs, which lasted for 1000 steps. In all tasks we used a

discount factor of 0.99.

The encoder of VaST and the networks for NEC and Prioritized D–DQN all shared the same

architecture, as published in [Mnih et al., 2015], with ReLU activations. For all three networks,

we used the Adam optimizer [Kingma and Ba, 2014] with β1 = 0.9, β2 = 0.999, and ε= 1e−8,

and trained on every 4th step. Unless otherwise stated, we used a replay memory size of N =
500 000 transitions.

VaST We used a latent dimensionality of d = 32 unless otherwise stated. For training, we used

a minibatch size of 128 and a learning rate of 2×1e−4. For sweeping, we used pmi n = 5×1e−5.

For the Con–crete relaxation, we used the temperatures suggested by Maddison et al. [2016]:

λ1 = 2/3 for sampling from the posterior and evaluating the posterior log–probability and

λ2 = 0.5 for evaluating the transition and initial state log–probabilities.

For the decoder architecture, we used a fully–connected layer with 256 units, followed by 4

deconvolutional layers with 4×4 filters and stride 2, and intermediate channel depths of 64,

64 and 32 respectively. We used a multi–layer perceptron with 3 hidden layers (with 512, 256

and 512 units respectively) for each action in the transition network.

105

Appendix A. Hyperparameters for Chapter 6

NEC We used a latent embedding of size 64, ns = 50 for the n–step Q-value backups, and α=
0.1 for the tabular learning rate. We performed a 50 approximate nearest–neighbour lookup

using the ANNoy library (pypi.python.org/pypi/annoy) on Differentiable Neural Dictionaries

of size 500 000 for each action. For training, we used a minibatch size of 32 and a learning rate

of 5×1e−5.

Prioritized D–DQN We used the rank–based version of Prioritized DQN with α = 0.7 and

β = 0.5 (annealed to 1 over the course of training). We used a minibatch size of 32 and a

learning rate of 1e−4 and updated the target network every 2000 steps.

LSH The LSH–based algorithm does not use a neural network or replay memory, since the

embedding is based on fixed random projections. We achieved the best results with d = 64 for

the latent dimensionality. For prioritized sweeping, we used pmi n = 5×1e−5.

A.2 Atari: Pong

We used a latent dimensionality of d = 64, a replay memory size of N = 1 000 000 transi-

tions, and annealed ε over 1 000 000 steps. All other hyperparameters were the same as for

navigation.

106

Contributions

Chapter 3 I developed the model for attractor networks in arbitrary environments based on

existing toroidal attractor network models [Conklin and Eliasmith, 2005] and the NEF [Elia-

smith and Anderson, 2004]; I also introduced the approach for generating multichart attractor

networks described in the chapter. I devised the sequential activity model and the hierarchical

network structure based in part on the analysis of virtual rotation in [Hansel and Sompolinsky,

1998]. Finally, I developed the “successor coordinates” model and the application to attractor

networks drawing in part from the “diffusion map” framework by Coifman and Lafon [2006]. I

implemented all of the experiments. I collaborated with Wulfram Gerstner on writing the text

for the paper [Corneil and Gerstner, 2015a] which was the foundation for Section 3.5.

Chapter 4 I developed the model of learning hierarchical representations from combined

grid and border cell input based in part of the grid cell to place cell models of Solstad et al.

[2006] and Sheynikhovich et al. [2009] as well as the boundary vector cell model of Barry et al.

[2006]. I implemented all of the experiments. The recurrent learning rule for the attractor

network I introduced in the chapter is inspired in part by the weight learning rule in [MacNeil

and Eliasmith, 2011], although without the need for an external error signal.

Chapter 5 I developed the network model and devised and implemented the experiments,

drawing primarily from existing research on VAEs [Kingma and Welling, 2013, Rezende et al.,

2014] and MFEC [Blundell et al., 2016], as well as the Dyna learning framework [Peng and

Williams, 1993].

Chapter 6 I developed the model of learning a tabular abstraction of the environment using

a VAE–like architecture and the Con–crete distribution, and combining it with parallelized

prioritized sweeping, based on Johanni Brea’s analysis of prioritized sweeping in tabular

environments [Brea, 2017], my existing work in Chapter 5, and the “prioritized sweeping with

small backups” algorithm itself [Van Seijen and Sutton, 2013]. I worked with Johanni Brea on

determining the implementation of the transition cost in the objective function, as well as

the design of the teleporter task. I implemented the model, devised the other experiments

and performed all of the experiments. I collaborated with both Johanni Brea and Wulfram

107

Appendix A. Hyperparameters for Chapter 6

Gerstner on writing the text for the paper [Corneil et al., 2018] which was the foundation for

the chapter.

108

Bibliography

DG Amaral and MP Witter. The three-dimensional organization of the hippocampal formation:

a review of anatomical data. Neuroscience, 31(3):571–591, 1989.

Per Andersen, Richard Morris, David Amaral, John O’Keefe, and Tim Bliss. The hippocampus

book. Oxford University Press, 2007.

Christopher G Atkeson. Nonparametric model-based reinforcement learning. In Advances in

neural information processing systems, pages 1008–1014, 1998.

Christopher G Atkeson and Stefan Schaal. Robot learning from demonstration. In ICML,

volume 97, pages 12–20. Citeseer, 1997.

Bernard W Balleine and John P O’Doherty. Human and rodent homologies in action control:

corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacol-

ogy, 35(1):48, 2010.

André Barreto, Rémi Munos, Tom Schaul, and David Silver. Successor features for transfer in

reinforcement learning. arXiv preprint arXiv:1606.05312, 2016a.

André Barreto, Doina Precup, and Joelle Pineau. Practical kernel-based reinforcement learning.

The Journal of Machine Learning Research, 17(1):2372–2441, 2016b.

Caswell Barry, Colin Lever, Robin Hayman, Tom Hartley, Stephen Burton, John O’Keefe, Kate

Jeffery, and N Burgess. The boundary vector cell model of place cell firing and spatial

memory. Reviews in the Neurosciences, 17(1-2):71–98, 2006.

Gabriel Barth-Maron. Learning deep state representations with convolutional autoencoders.

PhD thesis, Master’s thesis, Brown University, 2015.

Tobias Bast, Iain A Wilson, Menno P Witter, and Richard GM Morris. From rapid place learning

to behavioral performance: a key role for the intermediate hippocampus. PLoS biology, 7

(4):e1000089, 2009.

Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss. A maximization technique

occurring in the statistical analysis of probabilistic functions of markov chains. The annals

of mathematical statistics, 41(1):164–171, 1970.

109

Bibliography

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning Environment:

An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:

253–279, Jun 2013.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi

Munos. Unifying count-based exploration and intrinsic motivation. In Advances in Neural

Information Processing Systems, pages 1471–1479, 2016.

Richard Bellman. Dynamic programming. Princeton University Press, Princeton, NJ, 1957.

Y. Bengio, R. De Mori, G. Flammia, and R. Kompe. Global optimization of a neural network-

hidden markov model hybrid. IEEE Transactions on Neural Networks, 3(2):252–259, Mar

1992. ISSN 1045-9227. doi: 10.1109/72.125866.

Dimitri P Bertsekas and David Alfred Castanon. Adaptive aggregation methods for infinite

horizon dynamic programming. IEEE transactions on Automatic Control, 34(6):589–598,

1989.

Shehroze Bhatti, Alban Desmaison, Ondrej Miksik, Nantas Nardelli, N Siddharth, and Philip HS

Torr. Playing doom with slam-augmented deep reinforcement learning. arXiv preprint

arXiv:1612.00380, 2016.

Tale L Bjerknes, Edvard I Moser, and May-Britt Moser. Representation of geometric borders in

the developing rat. Neuron, 82(1):71–78, 2014.

Hugh Carlton Blodgett. The effect of the introduction of reward upon the maze performance

of rats. University of California publications in psychology, 1929.

Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,

Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv preprint

arXiv:1606.04460, 2016.

J. Brea. Is prioritized sweeping the better episodic control? ArXiv e-prints arXiv:1711.06677,

2017.

Vegard Heimly Brun, Trygve Solstad, Kirsten Brun Kjelstrup, Marianne Fyhn, Menno P Witter,

Edvard I Moser, and May-Britt Moser. Progressive increase in grid scale from dorsal to

ventral medial entorhinal cortex. Hippocampus, 18(12):1200–1212, 2008.

Randy L Buckner. The role of the hippocampus in prediction and imagination. Annual review

of psychology, 61:27–48, 2010.

Lars Buesing, Theophane Weber, Sebastien Racaniere, SM Eslami, Danilo Rezende, David P

Reichert, Fabio Viola, Frederic Besse, Karol Gregor, Demis Hassabis, et al. Learning and

querying fast generative models for reinforcement learning. arXiv preprint arXiv:1802.03006,

2018.

György Buzsáki. Theta oscillations in the hippocampus. Neuron, 33(3):325–340, 2002.

110

Bibliography

Francesca Cacucci, Colin Lever, Thomas J Wills, Neil Burgess, and John O’Keefe. Theta–

modulated place-by-direction cells in the hippocampal formation in the rat. Journal of

Neuroscience, 24(38):8265–8277, 2004.

Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José Neira, Ian

Reid, and John J Leonard. Past, present, and future of simultaneous localization and

mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 32(6):1309–

1332, 2016.

Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer Science &

Business Media, 2013.

Francis Carpenter, Daniel Manson, Kate Jeffery, Neil Burgess, and Caswell Barry. Grid cells

form a global representation of connected environments. Current Biology, 25(9):1176–1182,

2015.

David Chapman and Leslie Pack Kaelbling. Input generalization in delayed reinforcement

learning: An algorithm and performance comparisons. In IJCAI, volume 91, pages 726–731,

1991.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings

of the thiry-fourth annual ACM symposium on Theory of computing, pages 380–388. ACM,

2002.

Badong Chen, Songlin Zhao, Pingping Zhu, and Jose C Principe. Quantized kernel recursive

least squares algorithm. IEEE transactions on neural networks and learning systems, 24(9):

1484–1491, 2013.

Jaedeug Choi and Kee-Eung Kim. Nonparametric bayesian inverse reinforcement learning for

multiple reward functions. In Advances in Neural Information Processing Systems, pages

305–313, 2012.

Lonnie Chrisman. Reinforcement learning with perceptual aliasing: The perceptual distinc-

tions approach. In AAAI, pages 183–188, 1992.

Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic

analysis, 21(1):5–30, 2006.

Laura L Colgin, Stefan Leutgeb, Karel Jezek, Jill K Leutgeb, Edvard I Moser, Bruce L Mc-

Naughton, and May-Britt Moser. Attractor-map versus autoassociation based attractor

dynamics in the hippocampal network. Journal of neurophysiology, 104(1):35–50, 2010.

John Conklin and Chris Eliasmith. A controlled attractor network model of path integration in

the rat. Journal of computational neuroscience, 18(2):183–203, 2005.

Dane Corneil and Wulfram Gerstner. Attractor network dynamics enable preplay and rapid

path planning in maze–like environments. In Advances in Neural Information Processing

Systems, pages 1684–1692, 2015a.

111

Bibliography

Dane Corneil and Wulfram Gerstner. Rapid path planning and preplay in maze-like environ-

ments using attractor networks. In COSYNE 2015, number EPFL-POSTER-207002, 2015b.

Dane Corneil and Wulfram Gerstner. Offline reinforcement learning with simulated trajecto-

ries in latent space. In CCN 2017, 2017.

Dane Corneil, Wulfram Gerstner, and Johanni Brea. Efficient model-based deep reinforcement

learning with variational state tabulation. In Proceedings of the 35th International Conference

on Machine Learning, 2018.

Jozsef Csicsvari, Joseph O’neill, Kevin Allen, and Timothy Senior. Place-selective firing con-

tributes to the reverse-order reactivation of ca1 pyramidal cells during sharp waves in

open-field exploration. European Journal of Neuroscience, 26(3):704–716, 2007.

William Curran, Tim Brys, David Aha, Matthew Taylor, and William D Smart. Dimensionality

reduced reinforcement learning for assistive robots. In Proc. of Artificial Intelligence for

Human-Robot Interaction at AAAI Fall Symposium Series, 2016.

Thomas J Davidson, Fabian Kloosterman, and Matthew A Wilson. Hippocampal replay of

extended experience. Neuron, 63(4):497–507, 2009.

Nathaniel D Daw, Yael Niv, and Peter Dayan. Uncertainty-based competition between pre-

frontal and dorsolateral striatal systems for behavioral control. Nature neuroscience, 8(12):

1704, 2005.

Peter Dayan. Improving generalization for temporal difference learning. Neural Computation,

5(4):613–624, 1993.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach

to policy search. In Proceedings of the 28th International Conference on machine learning

(ICML-11), pages 465–472, 2011.

Marc Peter Deisenroth, Carl Edward Rasmussen, and Jan Peters. Gaussian process dynamic

programming. Neurocomputing, 72(7-9):1508–1524, 2009.

Kamran Diba and György Buzsáki. Forward and reverse hippocampal place-cell sequences

during ripples. Nature neuroscience, 10(10):1241, 2007.

Simona Doboli, Ali A Minai, and Phillip J Best. Latent attractors: a model for context-

dependent place representations in the hippocampus. Neural Computation, 12(5):1009–

1043, 2000.

Finale Doshi-Velez, David Wingate, Nicholas Roy, and Joshua B Tenenbaum. Nonparametric

bayesian policy priors for reinforcement learning. In Advances in Neural Information

Processing Systems, pages 532–540, 2010.

Kenji Doya, Kazuyuki Samejima, Ken-ichi Katagiri, and Mitsuo Kawato. Multiple model-based

reinforcement learning. Neural computation, 14(6):1347–1369, 2002.

112

Bibliography

Patrick J Drew and LF Abbott. Extending the effects of spike-timing-dependent plasticity to

behavioral timescales. Proceedings of the National Academy of Sciences, 103(23):8876–8881,

2006.

Kurt Driessens and Sašo Džeroski. Combining model-based and instance-based learning

for first order regression. In Proceedings of the 22nd international conference on Machine

learning, pages 193–200. ACM, 2005.

John C Eccles, P Fatt, and K Koketsu. Cholinergic and inhibitory synapses in a pathway from

motor-axon collaterals to motoneurones. The Journal of physiology, 126(3):524–562, 1954.

Arne D Ekstrom, Michael J Kahana, Jeremy B Caplan, Tony A Fields, Eve A Isham, Ehren L

Newman, and Itzhak Fried. Cellular networks underlying human spatial navigation. Nature,

425(6954):184, 2003.

Chris Eliasmith and Charles H Anderson. Neural engineering: Computation, representation,

and dynamics in neurobiological systems. MIT press, 2004.

Yaakov Engel, Shie Mannor, and Ron Meir. Reinforcement learning with gaussian processes.

In Proceedings of the 22nd international conference on Machine learning, pages 201–208.

ACM, 2005.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement

learning. Journal of Machine Learning Research, 6(Apr):503–556, 2005.

Mohammadjavad Faraji, Kerstin Preuschoff, and Wulfram Gerstner. Balancing new against

old information: The role of puzzlement surprise in learning. Neural computation, 30(1):

34–83, 2018.

G. Farquhar, T. Rocktäschel, M. Igl, and S. Whiteson. TreeQN and ATreeC: Differentiable Tree

Planning for Deep Reinforcement Learning. ArXiv e-prints, October 2017.

Miroslav Fiedler. Laplacian of graphs and algebraic connectivity. Banach Center Publications,

25(1):57–70, 1989.

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Deep

spatial autoencoders for visuomotor learning. In 2016 IEEE International Conference on

Robotics and Automation (ICRA), pages 512–519. IEEE, 2016.

David J Foster and Matthew A Wilson. Reverse replay of behavioural sequences in hippocampal

place cells during the awake state. Nature, 440(7084):680, 2006.

Marco Fraccaro, Danilo Jimenez Rezende, Yori Zwols, Alexander Pritzel, SM Eslami, and Fabio

Viola. Generative temporal models with spatial memory for partially observed environments.

arXiv preprint arXiv:1804.09401, 2018.

Mathias Franzius, Henning Sprekeler, and Laurenz Wiskott. Slowness and sparseness lead to

place, head-direction, and spatial-view cells. PLoS Computational Biology, 3(8):e166, 2007.

113

Bibliography

Marianne Fyhn, Sturla Molden, Menno P Witter, Edvard I Moser, and May-Britt Moser. Spatial

representation in the entorhinal cortex. Science, 305(5688):1258–1264, 2004.

Samuel J Gershman and Nathaniel D Daw. Reinforcement learning and episodic memory in

humans and animals: An integrative framework. Annual Review of Psychology, 68, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,

Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural

information processing systems, pages 2672–2680, 2014.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.

MIT press Cambridge, 2016.

Katalin M Gothard, William E Skaggs, and Bruce L McNaughton. Dynamics of mismatch cor-

rection in the hippocampal ensemble code for space: interaction between path integration

and environmental cues. Journal of Neuroscience, 16(24):8027–8040, 1996.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning

with model-based acceleration. arXiv preprint arXiv:1603.00748, 2016.

Anoopum S Gupta, Matthijs AA van der Meer, David S Touretzky, and A David Redish. Hip-

pocampal replay is not a simple function of experience. Neuron, 65(5):695–705, 2010.

Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Malik. Cog-

nitive mapping and planning for visual navigation. arXiv preprint arXiv:1702.03920, 3,

2017.

Nicholas J Gustafson and Nathaniel D Daw. Grid cells, place cells, and geodesic generalization

for spatial reinforcement learning. PLoS computational biology, 7(10):e1002235, 2011.

Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt Moser, and Edvard I Moser. Mi-

crostructure of a spatial map in the entorhinal cortex. Nature, 436(7052):801, 2005.

David Hansel and Haim Sompolinsky. 13 modeling feature selectivity in local cortical circuits.

1998.

Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable

mdps. CoRR, abs/1507.06527, 7(1), 2015.

Irina Higgins, Arka Pal, Andrei A Rusu, Loic Matthey, Christopher P Burgess, Alexander Pritzel,

Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot

transfer in reinforcement learning. arXiv preprint arXiv:1707.08475, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9

(8):1735–1780, 1997.

Peter C Holland. Cognitive versus stimulus-response theories of learning. Learning & behavior,

36(3):227–241, 2008.

114

Bibliography

Jesse Hostetler, Alan Fern, and Tom Dietterich. State aggregation in monte carlo tree search.

In AAAI, pages 2446–2452, 2014.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:

Variational information maximizing exploration. In Advances in Neural Information Pro-

cessing Systems, pages 1109–1117, 2016.

Marcus Hutter. Extreme state aggregation beyond mdps. In International Conference on

Algorithmic Learning Theory, pages 185–199. Springer, 2014.

John R Huxter, Timothy J Senior, Kevin Allen, and Jozsef Csicsvari. Theta phase–specific

codes for two-dimensional position, trajectory and heading in the hippocampus. Nature

neuroscience, 11(5):587, 2008.

Laurent Itti and Pierre Baldi. Bayesian surprise attracts human attention. Vision research, 49

(10):1295–1306, 2009.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David

Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks.

arXiv preprint arXiv:1611.05397, 2016.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.

arXiv preprint arXiv:1611.01144, 2016.

Karel Jezek, Espen J Henriksen, Alessandro Treves, Edvard I Moser, and May-Britt Moser.

Theta-paced flickering between place-cell maps in the hippocampus. Nature, 478(7368):

246, 2011.

Adam Johnson and A David Redish. Neural ensembles in ca3 transiently encode paths forward

of the animal at a decision point. Journal of Neuroscience, 27(45):12176–12189, 2007.

Nicholas K Jong and Peter Stone. State abstraction discovery from irrelevant state variables. In

IJCAI, volume 8, pages 752–757, 2005.

Min W Jung, Sidney I Wiener, and Bruce L McNaughton. Comparison of spatial firing charac-

teristics of units in dorsal and ventral hippocampus of the rat. Journal of Neuroscience, 14

(12):7347–7356, 1994.

Mattias P Karlsson and Loren M Frank. Awake replay of remote experiences in the hippocam-

pus. Nature neuroscience, 12(7):913, 2009.

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski.

ViZDoom: A Doom-based AI research platform for visual reinforcement learning. In IEEE

Conference on Computational Intelligence and Games, pages 341–348, Santorini, Greece,

Sep 2016. IEEE.

Azadeh Khajeh-Alijani, Robert Urbanczik, and Walter Senn. Scale-free navigational planning

by neuronal traveling waves. PloS one, 10(7):e0127269, 2015.

115

Bibliography

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

Donald E Kirk. Optimal control theory: an introduction. Courier Corporation, 2012.

Kirsten Brun Kjelstrup, Trygve Solstad, Vegard Heimly Brun, Torkel Hafting, Stefan Leutgeb,

Menno P Witter, Edvard I Moser, and May-Britt Moser. Finite scale of spatial representation

in the hippocampus. Science, 321(5885):140–143, 2008.

Jonathan Ko, Daniel J Klein, Dieter Fox, and Dirk Haehnel. Gaussian processes and reinforce-

ment learning for identification and control of an autonomous blimp. In Robotics and

Automation, 2007 IEEE International Conference on, pages 742–747. IEEE, 2007.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information

processing systems, pages 1008–1014, 2000.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems, pages

1097–1105, 2012.

Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J Gershman. Deep successor

reinforcement learning. arXiv preprint arXiv:1606.02396, 2016.

Malte Kuss and Carl E Rasmussen. Gaussian processes in reinforcement learning. In Advances

in neural information processing systems, pages 751–758, 2004.

Branislav Kveton and Georgios Theocharous. Structured kernel-based reinforcement learning.

In AAAI, 2013.

Sascha Lange and Martin Riedmiller. Deep auto-encoder neural networks in reinforcement

learning. In The 2010 International Joint Conference on Neural Networks (IJCNN), pages 1–8.

IEEE, 2010.

Rosamund F Langston, James A Ainge, Jonathan J Couey, Cathrin B Canto, Tale L Bjerknes,

Menno P Witter, Edvard I Moser, and May-Britt Moser. Development of the spatial represen-

tation system in the rat. Science, 328(5985):1576–1580, 2010.

Phillip Larimer and Ben W Strowbridge. Representing information in cell assemblies: per-

sistent activity mediated by semilunar granule cells. Nature neuroscience, 13(2):213–222,

2010.

Albert K Lee and Matthew A Wilson. Memory of sequential experience in the hippocampus

during slow wave sleep. Neuron, 36(6):1183–1194, 2002.

116

Bibliography

Máté Lengyel and Peter Dayan. Hippocampal contributions to control: The third way. In NIPS,

volume 20, pages 889–896, 2007.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstrac-

tion for MDPs. In ISAIM, 2006.

Lihong Li, Michael L Littman, and L Littman. Prioritized sweeping converges to the optimal

value function, 2008.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,

David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.

arXiv preprint arXiv:1509.02971, 2015.

Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical report,

Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, 1993.

John Lisman and A David Redish. Prediction, sequences and the hippocampus. Philosophical

Transactions of the Royal Society B: Biological Sciences, 364(1521):1193–1201, 2009.

Kevin Sebastian Luck, Gerhard Neumann, Erik Berger, Jan Peters, and Heni Ben Amor. Latent

space policy search for robotics. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ

International Conference on, pages 1434–1440. IEEE, 2014.

David MacNeil and Chris Eliasmith. Fine-tuning and the stability of recurrent neural networks.

PloS one, 6(9):e22885, 2011.

C. J. Maddison, A. Mnih, and Y. Whye Teh. The Concrete Distribution: A Continuous Relaxation

of Discrete Random Variables. ArXiv e-prints arXiv:1611.00712, November 2016.

Sridhar Mahadevan. Learning Representation and Control in Markov Decision Processes,

volume 3. Now Publishers Inc, 2009.

Etan J Markus, Carol A Barnes, Bruce L McNaughton, Victoria L Gladden, and William E Skaggs.

Spatial information content and reliability of hippocampal ca1 neurons: effects of visual

input. Hippocampus, 4(4):410–421, 1994.

Louis-Emmanuel Martinet, Denis Sheynikhovich, Karim Benchenane, and Angelo Arleo. Spa-

tial learning and action planning in a prefrontal cortical network model. PLoS computational

biology, 7(5):e1002045, 2011.

R Andrew McCallum. Instance-based utile distinctions for reinforcement learning with hidden

state. In Machine Learning Proceedings 1995, pages 387–395. Elsevier, 1995.

Bruce L McNaughton, Carol A Barnes, Jason L Gerrard, Katalin Gothard, Min W Jung, James J

Knierim, H Kudrimoti, Y Qin, WE Skaggs, M Suster, et al. Deciphering the hippocampal

polyglot: the hippocampus as a path integration system. Journal of Experimental Biology,

199(1):173–185, 1996.

117

Bibliography

Bruce L McNaughton, Francesco P Battaglia, Ole Jensen, Edvard I Moser, and May-Britt Moser.

Path integration and the neural basis of the’cognitive map’. Nature Reviews Neuroscience, 7

(8):663, 2006.

P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil, R. Goroshin,

L. Sifre, K. Kavukcuoglu, D. Kumaran, and R. Hadsell. Learning to Navigate in Complex

Environments. ArXiv e-prints, November 2016.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks.

In Eric P. Xing and Tony Jebara, editors, Proceedings of the 31st International Conference on

Machine Learning, volume 32 of Proceedings of Machine Learning Research, pages 1791–

1799, Bejing, China, 22–24 Jun 2014. PMLR.

Andriy Mnih and Danilo Rezende. Variational inference for monte carlo objectives. In Proceed-

ings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of

Machine Learning Research, pages 2188–2196, New York, New York, USA, 20–22 Jun 2016.

PMLR.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv

preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-

mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-

level control through deep reinforcement learning. Nature, 518(7540), 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,

Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep rein-

forcement learning. In International Conference on Machine Learning, pages 1928–1937,

2016.

Andrew W Moore and Christopher G Atkeson. Prioritized sweeping: Reinforcement learning

with less data and less time. Machine learning, 13(1):103–130, 1993.

Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, and Toshiyuki

Tanaka. Nonparametric return distribution approximation for reinforcement learning. In

Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages

799–806, 2010.

Edvard I Moser, Emilio Kropff, and May-Britt Moser. Place cells, grid cells, and the brain’s

spatial representation system. Annual review of neuroscience, 31, 2008.

May-Britt Moser, David C Rowland, and Edvard I Moser. Place cells, grid cells, and memory.

Cold Spring Harbor perspectives in biology, 7(2):a021808, 2015.

Lynn Nadel. The hippocampus and space revisited. Hippocampus, 1(3):221–229, 1991.

118

Bibliography

A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural Network Dynamics for Model-

Based Deep Reinforcement Learning with Model-Free Fine-Tuning. ArXiv e-prints, August

2017.

Toshiaki Nakashiba, Jennie Z Young, Thomas J McHugh, Derek L Buhl, and Susumu Tonegawa.

Transgenic inhibition of synaptic transmission reveals role of ca3 output in hippocampal

learning. Science, 319(5867):1260–1264, 2008.

Kazu Nakazawa, Linus D Sun, Michael C Quirk, Laure Rondi-Reig, Matthew A Wilson, and

Susumu Tonegawa. Hippocampal ca3 nmda receptors are crucial for memory acquisition

of one-time experience. Neuron, 38(2):305–315, 2003.

Yin Cheng Ng, Pawel M Chilinski, and Ricardo Silva. Scaling factorial hidden markov models:

Stochastic variational inference without messages. In Advances in Neural Information

Processing Systems 29, pages 4044–4052. 2016.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In Advances in

Neural Information Processing Systems, pages 6120–6130, 2017.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of mathemati-

cal biology, 15(3):267–273, 1982.

John O’Keefe. Place units in the hippocampus of the freely moving rat. Experimental neurology,

51(1):78–109, 1976.

John O’Keefe and Jonathan Dostrovsky. The hippocampus as a spatial map: Preliminary

evidence from unit activity in the freely-moving rat. Brain research, 1971.

John O’Keefe and Lynn Nadel. The hippocampus as a cognitive map. Behavioral and Brain

Sciences, 2(4):520–533, 1979.

John O’Keefe and Michael L Recce. Phase relationship between hippocampal place units and

the eeg theta rhythm. Hippocampus, 3(3):317–330, 1993.

Dirk Ormoneit and Śaunak Sen. Kernel-based reinforcement learning. Machine learning, 49

(2-3):161–178, 2002.

Simone Parisi, Simon Ramstedt, and Jan Peters. Goal-driven dimensionality reduction for re-

inforcement learning. In Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International

Conference on, pages 4634–4639. IEEE, 2017.

Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for deep rein-

forcement learning. arXiv preprint arXiv:1702.08360, 2017.

Jing Peng and Ronald J Williams. Efficient learning and planning within the dyna framework.

Adaptive Behavior, 1(4):437–454, 1993.

119

Bibliography

Jing Peng and Ronald J Williams. Incremental multi-step q-learning. Machine learning, 22(1),

1996.

J. Peters. Policy gradient methods. Scholarpedia, 5(11):3698, 2010. doi: 10.4249/scholarpedia.

3698. revision #137199.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients.

Neural networks, 21(4):682–697, 2008.

Brad E Pfeiffer and David J Foster. Hippocampal place-cell sequences depict future paths to

remembered goals. Nature, 497(7447), 2013.

Brad E Pfeiffer and David J Foster. Autoassociative dynamics in the generation of sequences of

hippocampal place cells. Science, 349(6244):180–183, 2015.

Filip Ponulak and John J Hopfield. Rapid, parallel path planning by propagating wavefronts of

spiking neural activity. Frontiers in computational neuroscience, 7, 2013.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adrià Puigdomènech Badia, Oriol Vinyals,

Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In Pro-

ceedings of the 34th International Conference on Machine Learning, volume 70. PMLR,

2017.

Gregory J Quirk, Robert U Muller, and John L Kubie. The firing of hippocampal place cells in

the dark depends on the rat’s recent experience. Journal of Neuroscience, 10(6):2008–2017,

1990.

Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez,

Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yu-

jia Li, et al. Imagination-augmented agents for deep reinforcement learning. In Advances in

Neural Information Processing Systems, pages 5694–5705, 2017.

A David Redish, Ephron S Rosenzweig, JD Bohanick, BL McNaughton, and CA Barnes. Dy-

namics of hippocampal ensemble activity realignment: time versus space. Journal of

Neuroscience, 20(24):9298–9309, 2000.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation

and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural

reinforcement learning method. In European Conference on Machine Learning, pages

317–328. Springer, 2005.

Matthias Rolf and Minoru Asada. Latent goal analysis for dimension reduction in reinforce-

ment learning. In Machine Learning for Interactive Systems, pages 26–30, 2015.

Edmund T Rolls, Robert G Robertson, and Pierre Georges-François. Spatial view cells in the

primate hippocampus. European Journal of Neuroscience, 9(8):1789–1794, 1997.

120

Bibliography

Edmund T Rolls, Simon M Stringer, and Thomas Elliot. Entorhinal cortex grid cells can map to

hippocampal place cells by competitive learning. Network: Computation in Neural Systems,

17(4):447–465, 2006.

M Rosenblatt. Markov chains. In Random Processes, pages 36–67. Springer, 1974.

Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems,

volume 37. University of Cambridge, Department of Engineering Cambridge, England,

1994.

Evan M Russek, Ida Momennejad, Matthew M Botvinick, Samuel J Gershman, and Nathaniel D

Daw. Predictive representations can link model-based reinforcement learning to model-free

mechanisms. PLOS Computational Biology, 13(9):e1005768, 2017.

Alexei Samsonovich. Continuous attractor network. Scholarpedia, 2013.

Alexei Samsonovich and Bruce L McNaughton. Path integration and cognitive mapping in

a continuous attractor neural network model. Journal of Neuroscience, 17(15):5900–5920,

1997.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.

arXiv preprint arXiv:1511.05952, 2015.

Fabian Schoenfeld and Laurenz Wiskott. Modeling place field activity with hierarchical slow

feature analysis. Frontiers in Computational Neuroscience, 9:51, 2015.

Nishal Shah and Frédéric Alexandre. Reinforcement learning and dimensionality reduction: a

model in computational neuroscience. In International Joint Conference on Neural Networks

IJCNN 2011, 2011.

Denis Sheynikhovich, Ricardo Chavarriaga, Thomas Strösslin, Angelo Arleo, and Wulfram

Gerstner. Is there a geometric module for spatial orientation? insights from a rodent

navigation model. Psychological review, 116(3):540, 2009.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-

che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al.

Mastering the game of go with deep neural networks and tree search. nature, 529(7587):

484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur

Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering

chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint

arXiv:1712.01815, 2017a.

David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel

Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, and Thomas Degris. The

predictron: End-to-end learning and planning. In Proceedings of the 34th International

Conference on Machine Learning, volume 70, 2017b.

121

Bibliography

Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. Learning without state-estimation in

partially observable markovian decision processes. In Machine Learning Proceedings 1994,

pages 284–292. Elsevier, 1994.

William E Skaggs and Bruce L McNaughton. Theta phase precession in hippocampal. Hip-

pocampus, 6:149–172, 1996.

William E Skaggs and Bruce L McNaughton. Spatial firing properties of hippocampal ca1 popu-

lations in an environment containing two visually identical regions. Journal of Neuroscience,

18(20):8455–8466, 1998.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using

deep conditional generative models. In Advances in Neural Information Processing Systems,

pages 3483–3491, 2015.

Trygve Solstad, Edvard I Moser, and Gaute T Einevoll. From grid cells to place cells: a mathe-

matical model. Hippocampus, 16(12):1026–1031, 2006.

Trygve Solstad, Charlotte N Boccara, Emilio Kropff, May-Britt Moser, and Edvard I Moser.

Representation of geometric borders in the entorhinal cortex. Science, 322(5909):1865–1868,

2008.

Henning Sprekeler. On the relation of slow feature analysis and laplacian eigenmaps. Neural

computation, 23(12):3287–3302, 2011.

Henning Sprekeler, Christian Michaelis, and Laurenz Wiskott. Slowness: an objective for

spike-timing-dependent plasticity. PLoS Comput Biol, 3(6):e112, 2007.

Kimberly L Stachenfeld, Matthew Botvinick, and Samuel J Gershman. Design principles of

the hippocampal cognitive map. In Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence,

and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages

2528–2536. Curran Associates, Inc., 2014.

Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman. The hippocampus as

a predictive map. Nature neuroscience, 20(11):1643, 2017.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation

for markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331,

2008.

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on

approximating dynamic programming. In Proceedings of ICML 1990, 1990.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,

Cambridge, MA, (in progress) second edition, 2018. URL http://incompleteideas.net/book/

the-book-2nd.html.

122

Bibliography

Richard S. Sutton, Csaba Szepesvári, Alborz Geramifard, and Michael Bowling. Dyna-style

planning with linear function approximation and prioritized sweeping. In Proceedings of

the 24th Conference on Uncertainty in Artificial Intelligence, 2008.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John

Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based ex-

ploration for deep reinforcement learning. In Advances in Neural Information Processing

Systems, pages 2753–2762, 2017.

Voot Tangkaratt, Jun Morimoto, and Masashi Sugiyama. Model-based reinforcement learning

with dimension reduction. Neural Networks, 84:1–16, 2016.

Edward L Thorndike. Animal intelligence: an experimental study of the associative processes

in animals. The Psychological Review: Monograph Supplements, 2(4):i, 1898.

Sebastian Thrun. Simultaneous localization and mapping. In Robotics and cognitive ap-

proaches to spatial mapping, pages 13–41. Springer, 2007.

Edward C Tolman. Cognitive maps in rats and men. Psychological review, 55(4):189, 1948.

Edward Chace Tolman and Charles H Honzik. Introduction and removal of reward, and maze

performance in rats. University of California publications in psychology, 1930.

Bryan P Tripp and Chris Eliasmith. Population models of temporal differentiation. Neural

computation, 22(3):621–659, 2010.

Misha Tsodyks. Attractor neural network models of spatial maps in hippocampus. Hippocam-

pus, 9(4):481–489, 1999.

G. Tucker, A. Mnih, C. J. Maddison, D. Lawson, and J. Sohl-Dickstein. REBAR: Low-variance,

unbiased gradient estimates for discrete latent variable models. ArXiv e-prints, March 2017.

Nachum Ulanovsky and Cynthia F Moss. Hippocampal cellular and network activity in freely

moving echolocating bats. Nature neuroscience, 10(2):224, 2007.

Robert Urbanczik and Walter Senn. Learning by the dendritic prediction of somatic spiking.

Neuron, 81(3):521–528, 2014.

Herke Van Hoof, Jan Peters, and Gerhard Neumann. Learning of non-parametric control

policies with high-dimensional state features. In Artificial Intelligence and Statistics, pages

995–1003, 2015.

Herke Van Hoof, Nutan Chen, Maximilian Karl, Patrick van der Smagt, and Jan Peters. Stable

reinforcement learning with autoencoders for tactile and visual data. In Intelligent Robots

and Systems (IROS), 2016 IEEE/RSJ International Conference on, pages 3928–3934. IEEE,

2016.

123

Bibliography

Harm Van Seijen and Richard S Sutton. Efficient planning in MDPs by small backups. In

Proceedings of the 30th International Conference on Machine Learning, volume 28, 2013.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,

1992.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to

control: A locally linear latent dynamics model for control from raw images. In Advances in

neural information processing systems, pages 2746–2754, 2015.

Andrew M Wikenheiser and A David Redish. Hippocampal theta sequences reflect current

goals. Nature neuroscience, 18(2):289, 2015.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning. Machine learning, 8(3-4):229–256, 1992.

Tom J Wills, Colin Lever, Francesca Cacucci, Neil Burgess, and John O’keefe. Attractor dynamics

in the hippocampal representation of the local environment. Science, 308(5723):873–876,

2005.

Tom J Wills, Francesca Cacucci, Neil Burgess, and John O’Keefe. Development of the hip-

pocampal cognitive map in preweanling rats. Science, 328(5985):1573–1576, 2010.

Matthew A Wilson and Bruce L McNaughton. Dynamics of the hippocampal ensemble code

for space. Science, 261(5124):1055–1058, 1993.

124

Dane Corneil
PhD Candidate, Computational Neuroscience

Education
2013–Now PhD Candidate Computational Neuroscience EPFL, Switzerland

Laboratory of Computational Neuroscience, Prof. Wulfram Gerstner
Primary research: Model–based reinforcement learning and navigation in ani-
mals and machines.
Teaching assistant: Artificial neural networks, unsupervised & reinforcement
learning, linear algebra.

2010–2012 MSc Neural Systems and Computation University of Zürich/ETH Zürich, Switzerland
Thesis: Temporal Learning & Inference in Stochastic Winner-Take-All Net-
works
Adviser: Prof. Giacomo Indivieri
GPA: 5.6/6.0
Coursework: Neuroscience, models of computation, neuromorphic engineer-
ing.

2004–2009 BASc Honours Systems Design Engineering University of Waterloo, Canada
Co-operative Program, Psychology Minor, Cognitive Science Option
Final year average: 86.3 %
“Outstanding” or “Excellent” evaluation in all co-operative work terms.
Coursework: Pattern recognition, artificial intelligence, simulating neurobiolog-
ical systems.

Publications
Eligibility Traces and Plasticity on Behavioral Time Scales: Experimental Support of neoHeb-

bian Three-Factor Learning Rules
W. Gerstner, M. Lehmann, V. Liakoni, D. Corneil, and J. Brea
Frontiers in Neuroscience (2018). 2018

Efficient Model-Based Deep Reinforcement Learning with Variational State Tabulation
D. Corneil, Gerstner W., and J. Brea
International Conference on Machine Learning ICML, 2018

Attractor network dynamics enable preplay and rapid path planning in maze–like environ-
ments
D. Corneil and W. Gerstner
Neural Information Processing Systems NIPS, 2015, (Selected for oral presentation)

Function approximation with uncertainty propagation in a VLSI spiking neural network
D. Corneil, D. Sonnleithner, E. Neftci, E. Chicca, M. Cook, G. Indiveri, and R. Douglas
International Joint Conference on Neural Networks, IJCNN, 2012

Real-time inference in a VLSI spiking neural network
D. Corneil, D. Sonnleithner, E. Neftci, E. Chicca, M. Cook, G. Indiveri, and R. Douglas
International Symposium on Circuits and Systems, ISCAS, 2012

StandEasy: a device for people with Parkinson’s Disease
A. Schulze, A. Murczek, D. Corneil, D. Kraan, D. Smith, K. Cerar, J. Ma, and J. Zelek
Proceedings of the IASTED International Conference on Telehealth/Assistive Technologies, 2008

Contact
Route Cantonale 55,
St-Sulpice VD, 1025

Switzerland

+41 (0) 76 706-3263

dane@corneil.ca
linkedin:danecor

Programming
Python

TensorFlow
NumPy/SciPy

Django
Lua, Java, Matlab

JavaScript & JQuery
CSS & HTML

Interests
Science–inspired

improv comedy and
theatre

www.thecatalyst.ch

Extended Abstracts
Offline Reinforcement Learning with Simulated Trajectories in Latent Space

D. Corneil and W. Gerstner
Computational and Cognitive Neuroscience CCN, 2017

Rapid path planning and preplay in maze–like environments using attractor networks
D. Corneil and W. Gerstner
Computational and Systems Neuroscience COSYNE, 2015

Learning, inference, and replay of hidden state sequences in recurrent spiking neural net-
works
D. Corneil, E. Neftci, G. Indiveri, and M. Pfeiffer
Computational and Systems Neuroscience COSYNE, 2014

Work Experience
2016 Research Science Intern London, England

Google Deepmind
Workingwithin the Neuroscience team, devised and tested extensions tomod-
els of deep reinforcement learning in complex environments.

2014–2016 Co-founder/Web Developer Zürich, Switzerland
Ponder
Working with two other PhD students, designed and built a Django–based
search engine and aggregator for academic talks and events. Work ranged
from logic and database development to front–end web design.

2009–2010 Web Developer Waterloo, Ontario, Canada
Pebble
Redesigned and built the customer support section for a smartwatch start–up
company using Django.

2008 Research Assistant Toronto, Canada
Defence Research & Development Canada
Using AnyLogic (Java-based), developed models of regional stability in war
zones based on troop movements. Supervised a research study to determine
the extent to which users can internalize and act on war zone dynamics.

2007 Java Developer Ottawa, Ontario, Canada
Communications Security Establishment Canada
Acted as a member of an internal Java development team. Researched and
compiled a report on the usability of an internal application.

