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Abstract—1In this work, we propose a probabilistic-based
approach for detecting transitions in hybrid control systems
with limited sensing. Detecting the transition moment is a
particularly challenging problem as (i) multiple sources of
sensory information are usually not available in robotic systems
and (ii) the sensory information is noisy and requires calibra-
tions. The challenge significantly increases if the robot makes
physical contact as it causes discontinuities in the dynamics.
The proposed transition criterion addresses these shortcomings
by studying the behavior of the robot and the environment
during a short horizon of time. We empirically validate our
approach while detecting contact transitions in a hand-over
scenario where a human operator brings a large object and
hands it over to a pair of robotic arms which are not equipped
with a force or tactile sensors.

I. INTRODUCTION

By leveraging multiple sub-action controllers, humans have
demonstrated remarkable capabilities in performing manip-
ulation tasks that require making and breaking contact with
objects [1], [2]. In order to confidently transition between
these successive sub-action controllers, multiple sources of
sensory information, such as tactile, vision or audition, are
engaged. Studies have shown that that integrating different
source of sensory information reduces ambiguity regard-
ing the environment. This, consequently, improves humans
ability in confidently detecting the transition moments [3],
[4]. The ultimate goal for robotic platforms is to work in
unstructured environments where, just like humans, multiple
sub-action controllers are required to accomplish complex
manipulation tasks. In such scenarios, detecting the true
transitions plays a vital role in the accomplishment of the
desired task. Unlike humans, due to hardware limitations,
robotic platforms are commonly not equipped with multiple
sources of sensory information, e.g., vision, force and tactile
sensors. Moreover, sensors are often noisy and require pe-
riodic calibration.. Hence, confidently detecting event-based
transitions, such as making and breaking physical contact
with an object or a surface, is not trivial. A typical scenario is
the contact/non-contact transition, where the robot switches
from free-space motion (non-contact) to constrained motion
(contact). During the free motion phase, the unconstrained
motion controller guides the robot to make a contact with the
environment. Once the robot is in contact, the constrained
motion controller must take over the guidance while control-
ling for the interaction forces (see Fig. [I).

If force or tactile information is not available, one solution
is to switch from one controller to another according to
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Fig. 1: An illustrative example of dual-phase hybrid con-
trollers. The force control must take over if and only if the
robot is in contact with the environment. The transition needs
to be detected by measuring the distance between the robot’s
end-effector and the surface as the robot is not equipped with
force or tactile sensors.

the distance between the robot and the environment. Early
approaches on contact transitions adapt the "hybrid systems”
approaches [5], [6], which exhibit both continuous and
discrete dynamic behaviors. Given perfect knowledge of the
robot’s position and the environment, these methods can
achieve precise force/motion tracking and perform smooth
transitions. Such an assumption is hard to meet as a complete
representation of the environment is generally unknown or if
the sensory signals are subject to noise which can easily lead
to unstable behaviors [7], [8]. Moreover, hard switches may
lead to an infinite number of discrete transitions between
controllers (as known as “chattering”) in a finite time [9].
One way to deal with this problem is to apply filtering on
the observations [10], but the complexity grows with time.
This can also be tackled by approximation over a finite ob-
servation [11] and/or estimate of the transition probabilities
[12].

Compliant control architectures can address the problem
of switching by imitating the behavior of a spring-damper
system which is connected between the robot and a target.
Some focus on variations of compliant controllers to reduce
the impact forces, such as using velocity feedback to improve
impact response [13], increasing the velocity gains of the
controller for a limited time after impact [14], or avoiding
large impact force/velocity during transition [15], [16]. Al-
though these architectures have implicitly addressed the issue
of detecting transitions by eliminating the need of switching,
they suffer from one shortcoming: they are action-specific.
This limits the use of these controllers to broader scenarios
where transitions are required across a set of actions or



control architectures. In this paper, we propose a probabilistic
based criterion to detect transitions in hybrid control systems
with limited sensing. By using the proposed criterion, we can
confidently detect the exact instance in which the systems
make contact with an external agent in the face of uncertainty
from the measured state of the system or the agent. We have
studied the performance of the proposed method in a hand-
over scenario where a human operator brings a box and hands
it over to a pair of robotic arms that then place it on a desired
location.

The rest of the paper is organized as follows. In Section
we introduce our probabilistic-based approach to indicate
the time of transition. In Section we validate the proposed
approach in performing a bi-manual object manipulation
task.. Discussions and future works are presented in Section

vt

II. PROBLEM FORMULATION

Let us consider systems in the following form

&= f(z,t) +u(z,z% @) (1)

where z, z¢ € R? are the states of the system and the
external agent, respectively. For the sake of brevity, apart
from these two signals, the rest of the variables are indicated
by ¢. u(x,z¢, ¢) € R? is the hybrid control law which is
defined with respect to the states:

|l —2¢| <6 (2a)
|z —z¢|| >0 (2b)

u(z, z, p) = {m(x,xe,cp) v
T us(x, ¢, ) if
where u;(.), Vi € {1,2} are the desired sub-action con-
trollers and § € R is the threshold for switching between
two control laws. In theory, one can switch the control input
between Eq. (Za) and Eq. (2b) when |z — z¢|| < § and
|lx — x¢|| > ¢, respectively. However, due to noises in the
sensory signals, this distance-based approach suffers from
two main shortcomings in practice:
1) Switching between two systems might cause chattering

2) Switching might happen at wrong moments; e.g., ||z —
x¢]| is actually greater than &, however, due to the
presence of noise, it is perceived less than .

To address these shortcomings, we propose a probability-
based criterion to confidently detect the transition moment.

III. TRANSITION WITH CONFIDENCE

Let x(x°),#(2¢) be the measured and the true states of
the system (agent) subject to Gaussian noise €(e®) ~
N(0,%(2°)) such that © = & + € and ¢ = ¢ + €°. The
Euclidean distance between z and z° can be described as:

2] = [l — 2l = |2 = 2° + € — €| ©)

Assuming that u; is a control law that generates the motion
of the robot constrained by a surface and it is crucial to
ensure that (2a) is solely activated when ||z — &¢|| < 4

i.e. once the robot is in contact. To ensure this, we can
approximate by its upper boundﬂ ie.

e — 2 = |12 — 2% + [|€]| )

where ||€]| = ||e—€®||. Assuming the noises along all axes are
| d

independently and identically distributed, ||é]] = {/ >_ (& )?
i=1

forms a d degree-of-freedom Chi distribution with

E(|le®) = ?‘2E<x(d)>
Var(|lé)?) = =7*(d — E(x(d)))

With respect to this and as & and 2° are independent
from noise signals, one can calculate the mean (/i) and the

variance (X) of ||Z|| as follows:

(&)

(6a)
(6b)

i=E(|E —°]) + =72 E(x(d))
S =Var(|z - &) +£7(d ~ B(x(d)))

The probability that the true distance between the system
and and agent is less than or equal to the threshold value ¢

18
P& — & < 0; 1, %) ©)

Since we have no statistical assumption on z, the probability
distribution ([7) is an unknown distribution. However, in the
contact/non-contact scenarios, the motion of the system is
constrained by the agent once the system is in contact with
it. Assuming that the agent does not deform, ||& — &°|
can be assumed constant for a given T} observations. By
this, one can approximate by using the Chi or normal
distributions for small or large d, respectivelyﬂ We thus
propose to estimate the probability of |2 — Z¢|| < § as
follows:

P(||z —2°|| <6, %) € [0,1] (8)

w<

where i and ¥ are the mean and the variance of the
Euclidean distance between the states of the system and the
agent over T} step-time. Note that, the probability density
function defined by (B) tends toward zero or one if & and
2¢ are far from or very close to each other, respectively.
Once P(||# — 2¢|| < 6;0) ~ 1, one can confidently say
|Z — &¢|| < ¢ and thus, it is the right time to switch to
(2a). Hence, (8) improves the performance of the switching
controller as (i) the chattering on the decision boundary is
avoided and (ii) the controller switches at the right time.
Given criterion (8], the control law (2a) and (2b) can be
re-written as:

u(z,z%, ) =
uy(x, 2% ) if P(||& —2°) <68,0)<68, (9a)
us(z, %, ) if P(||2—2°) <46,0)>68, (9b)

'Noteworthy is that, if shall not be activated when ||z — z¢|| < 4,
can be approximated by its lower bound, which is ||& — Z¢|| — ||€]|.

2Based on the central limit theorem, a chi distribution converges to a
normal distribution for sufficiently large degrees of freedom [17].
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Fig. 2: Fig. and Fig. illustrate the behavior of the
system controlled by () and (@) in non-noisy environment,
respectively. In Fig. [2a] and Fig. 2b] the system is controlled
by (@) and (), respectively. ¥ = %¢ = 0.007 and T}, = 30.
In this example, as d = 1, we approximate by a Chi
distribution: P(||Z — #¢|| < 6;0) = x(|# — 2¢| < §,0).

where 0 < J, <1 defines the level of confidence. Based
on the central limit theorem, the mean of the distance
convergences to the true expected value for sufficiently large
horizon time. However, defining 7}, is closely related to the
rate of changes of || — &¢||. If the rate is high, T} should
be defined small such that (8) can be approximated with
normal/chi distributions. However, this comes with the cost
of inaccuracies in calculating the true expected value. On the
contrary, if the rate is low, T}, can be large enough to be able
to approximate (8) with a normal distribution. Based on our
experiments, a good rule of thumb is that d and T}, are large
if 50 < Tjd.

Example Consider the following system and agent.
T=z+u, z(0) = 0.1

z°(0) =0

(10)

(1)

with w1 = —10z + 92¢ + 0.1, ug = —2x + 2° and 6 =
0.02. As it has been shown in Fig. 2a] and Fig. 2b] if the
measurements are not noisy, both () and (9) result in the
same behavior. However, if the measurements are noisy, @)
causes chattering while (9) results in smooth control inputs;

compare Fig. 2d with Fig.

IV. EMPIRICAL VALIDATION

i€ = 0.1,

The practicality of the proposed approach is validated on
a real-world scenario. We consider a system with d =6
degree-of-freedom and 7T}, = 15 observations. The observed
state of the system is subject to some Gaussian noise, and
the norm of the noise forms a Chi-distribution defined in ().
As 50 < dT, the probability function is approximated
by a normal distribution.

In this scenario, we consider the case where a human
operator brings a large object (a box) and hands it over to a
pair of robotic arms that is then placed on a desired location;
see Fig.[3] The proposed framework is implemented on a real
dual-arm platform, consisting of two 7 DOF KUKA LWR
4+. The robots are controlled via Fast Research Interface
(FRI) at 1000Hz. The position of the object is captured by
the Optitrack motion capture system from Natural Point at
240 Hz.

The dynamic equation of i robotic manipulator with N;
revolute joints can be described by the following second-
order nonlinear differential equation:

M;(q:)Gi + hi(gis i) = 7 + Ji(Qi)TFci

where ¢; € RYi*1 is the joint positions, M;(g;) € RNixN:
is the Inertia matrix, h;(q;,q;) € RY:*! is the Coriolis,
Centrifugal and Gravitational force vector, J;(q;) € R6*™:
is the Jacobian that relates the joint space to the point of
contacts, 7; € RNi*1 is the control torque, F,., € R6*! is
contact forces between the robot and the environment, and
the subscript i denotes the i" manipulator. By concatenating
the dynamic equation Vi € {1,2}, the dynamic of the
robotic system in a compact form as follows:

M(q)q+ H(q,q) =7+ Je(q)" F.

(12)

13)

where 7 = [7'1 TQ}T is the joint torques of the two arms.
In order to successfully perform this task, the following
subtasks need to be accomplished

o Free space phase: During the free space phase, the
aim of the robots is to reach the moving object and
grab it from the desired grabbing points. To this end,
the motion of the robotic arms must be coordinated
with each other and with the moving object such that
both of them intercept the object and grab it from
the desired locations. As the arms’ motion must be
continuously updated in synchrony to adapt to the
changes in the objects trajectory, we use the virtual
object based motion planning approach for controlling
the robots’ motions during the free space phase [18],
[19]. The control architecture ug(x, 2, @) for the free
phase is presented in Appendix [A]

« Contact phase: During the contact phase, the aim of
the robots is to place the grabbed object at a desired
location while being robust to external disturbances.
To this end, the interaction/contact forces need to be
precisely controlled such that the robots can perform
the task while being compliant to external disturbances.,
yet maintaining firm grasps of the object. Moreover,
the robots must maintain enough contact force so the
object does not slip on the box, and the force exerted
by the robots must not damage the object. To achieve
these two objectives, we use the projected inverse dy-
namic approach for controlling the multi-arm grasping
proposed in [20]. The control architecture u;(x, ¢, @)
for the contact phase is presented in Appendix

The robot must switch from the free space phase controller
us(x, 2°, @) to the contact phase controller u; (x, x¢, ¢) once
it is in contact with the object. As the robotic arms are
not equipped with any force/torque sensors, the only way to
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Fig. 3: Illustration of Dual-arm Task-Space Coordination.

The goal of the task is to grab the object and place it at
the desired location.

detect the contact is by calculating the distance between the
robots’ end-effectors and the desired grabbing positions on
the object. Hence, the proposed hybrid system () is used
to switch confidently from the free space phase controller to
the contact phase controller.

As the contact space controller must be activated if and
only if the robots have reached the desired grabbing loca-
tions, we set 6, = 0.99. When the operator carrying the box
approaches the robots, the virtual object and coordinately
the robots, reach the box and follow it till they intercept the
object at the desired grabbing points. Once, the robots are
in contact with the object, the probability function P(||Z —
#¢|| < §,0) increases towards one and the contact phase
control law takes over. As it can be seen in the accompanying
video and Fig. 4| this transition is smooth and the robots
stay in contact with the object afterwards. At the end of the
scenario, the object is placed at the desired location on the
table. An example of the motion of the arms, the object and
the probability of being in contact are shown in Fig. [5]

V. SUMMARY AND DISCUSSION

In this paper, we proposed a probabilistic-based criterion to
confidently detect transitions in hybrid control systems with
limited sensing. This criterion improves the robustness of the
controller in the face of noisy signals and uncertainties by
studying the distance between the system and the agent for
a time horizon. The performance of the proposed criterion
is verified in a real-world scenario where the measurements
are noisy.

In contact/non-contact scenarios, the motion of the system
is constrained by the agent once it is in contact with
the agent. We leverage this property and approximate the
probabilistic criterion by Normal or Chi distributions by
assuming that the distance between the system and the agent
is constant for a time horizon. Even though this cannot be
generalized for free-space motions, one can assume that the
distance is constant for a short time horizon if the sampling
frequency is much higher than the speed of the system and
the agent. It is noteworthy that if none of these assumptions
are true, one cannot approximate (8)) by normal distributions.
In future works, we are planning to relax these assumptions

and study the cases where the motion of the agent/system
are faster than the sampling rate.

In this paper, the distance between the system and the
agent is calculated in Euclidean space. This can also be
generalized for other distance functions as long as the
function is strictly monotonic.

As the main scope of this paper is detecting the true
transition time and not the stability of the multi-phase hybrid
systems, we have not studied the stability of (I)) controlled
by (@). The ongoing work is oriented towards detecting
transitions while ensuring the stability of hybrid systems.
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Fig. 4: Snapshots of the robots’ motion. In (a) and (b), the virtual object based motion generator guides the robots towards
the moving object. In (c), the robots make secure contacts with the object. In (d), (e), (f), The robots remain in contact with
the object even under external perturbations. In (g), the object is at a desired location, where a third operator hoists it as
illustrated in (h). The corresponding video is available on-line: https://youtu.be/MZikIS-rSn4.
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Fig. 5: An example of the position of the object, the end-effectors and the probability of being in contact. The grabbing
positions are specified by markers on the object. In order to track the object, all the markers must be feasible to cameras.
However, the object’s tracking was obscured partly by the robots when it is close to them. Hence, the measurements are
not only noisy but also they might be wrong for some sampling times. Due to the implementation limitations, the markers
are placed inside of the object and not on the sides. Hence, the distance between the measured grabbing positions on the
object and the surface of the object is not zero and it is 17c¢m. Therefore, 6 = 0.17.
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where z¢ and z¥ are the states of the real and the virtual
objects, respectively. 0 < v < 1 is the coordination
parameter and of class C!. The origin is located on the
desired intercept point; i.e. z¢(T*) = [0 O}T. U, is
the interaction effect of the tracking controller of the i'" end-
effector on the virtual object:

Uy = il + AR (&Y — i) + AR (2 — ) (15)

where z; is the current end-effector state, and z¢ is the
desired end-effector state calculated based on the tracking
error between the i point on the virtual object and end-
effector of the i manipulator:

wd v R/-v
&y =3 — Ag ()

— ) = Afi(x} i) (16)
To avoid any collision between the robots’ body parts, the
centralized IK solver proposed in [19] is used to convert the
desired end-effector state (¢) to the desired joint state (¢¢).

In this phase, as the robots’ motions are not constrained
by the object, the contact force is not present: F, = 0.
Hence, the objective of the low-level controller is to asymp-
totically/exponentially track the desired motion generated by

the virtual object (T6); i.e.

. d . . .d

i lg = g% =0 Jim g —=g%l=0 a7
T T

where ¢ = [q1 qg] and ¢ = [qf qg] are the real and

the desired joint configurations, respectively. By defining 7 =

us(z, ¢, @), where us(x, ¢, ) is the following joint-space

impedance controller, can be achieved.

us(z, 2, ¢) = M(q)(§ — Da(d — 4") — Ka(g — ¢%))
+ H(g,q)
(18)
In the aforementioned equation, Dy and K, are diagonal
positive definite matrices and ¢ is the state of the virtual
object, and the joint configurations.

B. Projected inverse dynamic controller

While the robots are in the contact with the object, the
constraints from the contact modify the motion of the robots,
resulting the relation

(I-P)j=0

(I=P)j—Pi=0 4

where P = I —JJ. is the projection matrix that projects an
arbitrary vector onto the null space of the constraint .J.. By
utilizing the technique proposed by [21], [22], The control
law can be decomposed into two orthogonal components

T=Ty+7c=Pr+ (I —-P)r (20)

where 7, = P71 denotes the torque in the unconstrained
subspace that controls the motion of the robot, and 7. =
(I — P)7 denotes the torque in the constrained subspace
that maintains the the contacts. By projecting (I3) into the
null space of the constraints, one can write the projected
dynamic of the robots as follows:

PM(q)i+ PH(q,§) = Pr (1)

As PM(q) is rank-deficient, we cannot directly invert
PM(q) to calculate §. However, by utilizing the technique
proposed by [21], [22], one can re-write @I) as follows:

(PM+1—-P)(q)j+ PH(q,q) = Pt
———
M.

(22)

where M., is a full rank matrix. Hence, (22)) can be re-written
as follows:

§=M_"P(t— H(q,q)) (23)

[20] proposed a constraint Jacobian for multi-arm manipula-

tion Iu(an) 0 }
0 Ja(q2)

where G is the grasp matrix. By using J. defined in (24)), the
projection P = I — J}.J, decomposes the dynamic equation
such that the unconstrained subspace handles the external
force and the constrained subspace handles the internal force
of the system.

J.=(I-G*G) [ (24)

T =uy(z, 2% ¢) = Pu} + (I — P)uf (25)

where ¢ includes the velocities of the robots and the object.
In the aforementioned control law, u} controls the robots’
motions along the unconstrained direction with a Cartesian
impedance controller

wf = J7 [he + Aci — Dy(d — 2%) — Kq(x — 2%)]  (26)

where A, = (JM;7'PJT)~! is the Cartesian space inertia
matrix, and h. = A.(JM 1 (PH(q,q) — Pg) — Jg) is the
Cartesian space Coriolis, centrifugal and gravitational force.
In 23), u$ controls the robots’ motions along the con-
strained direction and calculated by solving the following
constraint optimization problem to fine the minimum actuator
torques needed to maintain all contacts while satisfying the
unilateral, the friction cone, and moment constraints.:
minimise u$” (I — P)u$
s 1 1
subject to A\ > 0
pl >\ JO0)2 + ()2
AL = A
SN, > |\ 4
oYyA, > |\,

m,y |
where Ao, A7 AL and X, AL A are the contact forces
and moments along each axis for i*" robot, respectively. [20]
shows that (27) can be solved without explicit knowledge
of contact forces and moments, and hence no force/torque

sensor is needed.
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