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Abstract—High-quality 3D ultrasound (US) imaging requires
dense matrix-array probes with thousands of elements and
necessitates an unrealistic number of coaxial cables to connect
such probes to back-end systems. To address this issue, many
techniques have been developed such as sparse arrays, mechani-
cal scanning, multiplexing and micro-beamforming, which permit
to achieve 3D imaging with existing 2D imaging systems but with
a degradation in image quality. We propose a novel multiplexing
method which relies on compressed-sensing (CS) principles to
significantly reduce the number of coaxial cables. We exploit the
compressive multiplexer (CMUX) introduced for radio-frequency
signals to multiplex US signals in the probe head. The CMUX
considers a set of signals as inputs, modulates them with chipping
sequences and sums them to form a single output. On the
reconstruction side, we propose two methods: one solving a CS-
based problem exploiting sparsity of US signals in a pulse-stream
model (CS-PS) and another one solving a least-squares problem
in the Fourier domain based on bandlimited signal properties
of US signals. We demonstrate through simulations and in vivo
experiments that the proposed techniques lead to high-quality
reconstruction with significantly fewer coaxial cables, up to 12×
less with CS-PS.

Index Terms—Compressed Sensing, multiplexing, ultrasound
imaging.

I. INTRODUCTION

H IGH-QUALITY ultrasound (US) imaging requires high-
channel count matrix array probes of typically several

thousands of transducer elements. Direct connection of such
probes to back-end computers necessitates as many coaxial
cables as the number of transducer elements, which is either
unfeasible or very expensive. In order to address this issue,
sparse array techniques which aim at reducing the number of
receiving elements with minimal signal degradation have been
investigated. Many strategies have been studied, i.e. random
aperiodic layouts [1], [2] and sparse periodic layouts [3] such
as vernier arrays [4] and row-column addressed arrays [5], [6].
While proposing a drastic reduction on the number of receive
elements, such methods induce a significant decrease of image
quality due to higher side lobes and/or grating lobes [7].

Alternative techniques have been developed including me-
chanical scanning based on motorized arrays [8], [9], time
multiplexing [10], [11] and micro-beamforming, where an ana-
log pre-beamforming step is performed in the probe head [12].

In this work, we propose a novel method that benefits from
recent advances in modelling of US signals to allow for high-
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quality signal reconstructions from up to 12× fewer coaxial
cables. The proposed compressive multiplexing strategy ex-
ploits the well-known compressed sensing (CS) framework.
It is based on a compression module set in the probe head
and a reconstruction module set in the back-end system. The
compression module aims at mixing the signals in the analog
domain so that they can be carried to the back-end system with
fewer coaxial cables. Its main building block is the compres-
sive multiplexer (CMUX), an analog CS architecture which
has been recently introduced in the radar community [13].
The reconstruction module aims at recovering the element-
raw data from compressed measurements. We implement two
methods, one solving a CS-problem based on sparsity of US
signals in the pulse-stream model and another one solving a
least-squares problem in the frequency domain by exploiting
bandlimited properties of US signals.

The remainder of the paper is organized as follows. Sec-
tion II describes the proposed approach which is validated
through simulations and experimental data in Section III.
Concluding remarks are given in Section IV.

II. COMPRESSIVE MULTIPLEXING OF ULTRASOUND
SIGNALS

We consider a pulse-echo US imaging configuration where a
US probe, composed of Nel transducer elements, positioned at
(pi)

Nel

i=1 , transmits acoustic pulses and then receives backscat-
tered echoes, as shown in Figure 1. We also consider that
the medium of interest is composed of K point-reflectors
positioned at (rk)Kk=1 with a reflectivity, expressed in terms
of local variations of acoustic impedance, (γ (rk))Kk=1. We
suppose that the reception is achieved during a time T such
that the echo signal mi (t) received at the i-th element can be
expressed as:

mi (t) =
K∑
k=1

aikvpe (t − tik) , (1)

where aik and tik = tTx (rk) + tRx (rk, pi) are the amplitude
and round-trip time of flight of the k-th point reflector seen
by the i-th transducer element and vpe (t) is the pulse-echo
waveform [14].

A. Compression Module

The main building block of the compression module is the
CMUX, recently introduced in the radar community [13]. The
CMUX, shown in Figure 2, takes L input signals (mi (t))Li=1
bandlimited to B Hz, modulates each of them with chipping
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Fig. 1. Pulse-echo 2D US imaging configuration.

sequences of ±1, pi (t), working at a rate W , and sums the
modulated signals to form a single output signal y (t). The
analog signal is then sampled at a rate W by an analog-to-
digital converter (ADC), leading to y ∈ RN , where N = WT .
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Fig. 2. Compressive multiplexer architecture.

In the CMUX architecture, the chipping sequence pi (t)
spreads the spectrum of the signal mi (t) and the summation
acts as an undersampling operation. If the signals mi (t) are
sparse in the frequency domain, i.e. if their spectrum is com-
posed of S � LB non-zero frequency components, then per-
fect reconstruction can be achieved for a rate W ≈ S log (LB)q ,
for q > 1 a small constant [13].

The proposed compression module, displayed in Figure 3,
concatenates J = Nel/L CMUXs in the probe head and outputs
Y = [y1, . . . yJ ] ∈ R

N×J , which are transfered to the back-end
system through J cables, therefore allowing a reduction by a
factor of L of the number of cables. Formally, we can write the
measurement model associated with the proposed compression
strategy as follows

Y =
( [
p1, . . . , pNel

]
◦

[
m1, . . . ,mNel

] )
× A = (P ◦M) × A,

where ◦ denotes the Hadamard product, × denotes the matrix
product, M ∈ RN×Nel is the raw-data sampled at rate W , P ∈
RN×Nel is composed of the Nel chipping sequences and A ∈
RNel×J performs the summation across the elements.
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Fig. 3. Proposed compression module.

B. Reconstruction Module

The reconstruction module aims at recovering M from
compressed measurements Y. We propose to exploit two well
known low-dimensional models of US signals, namely the
bandlimited signal model and the pulse-stream model.

The bandlimited signal model exploits the fact that the
pulse-echo waveform vpe (t), and consequently the element
raw-data, has a spectrum concentrated in a frequency band
Ξ = [ fc − Fu, fc + Fu] ∪ [− fc − Fu,− fc + Fu], where fc is
the center frequency of the transducer elements and Fu > 0
depends on the bandwidth of the elements. Hence, the discrete
element raw-data mi , i = 1, . . . , Nel , sampled at rate W can
be expressed as

mi = Fm̂i + ε, ‖m̂i ‖0 = |Jd |,

where ε accounts for the modeling noise, F ∈ RN×N is the
discrete Fourier basis and |Jd | is the cardinal of the following
index set

Jd =
{

j ∈ {1, . . . , N} | W
(
−

1
2
+

j − 1
N

)
∈ Ξ

}
.

Hence, the vectors mi are sparse in the frequency domain
and the support Jd is usually well known such that least-
squares reconstruction can be performed as follows

M̂?
(Jd )
= argmin

M̂∈RN×Nel

Y − (P ◦ FJd M̂(Jd )) × A
2

F
, (2)

where M(Jd ) (resp. MJd ) denotes the submatrix formed by the
restriction of M to the rows (resp. columns) indexed by Jd .

The pulse-stream model exploits the fact that the discretized
element raw-data can be expressed using the following con-
volutional model

mi = Vpe m̃i + ε
′, ‖m̃i ‖0 ≤ K,

where Vpe ∈ R
N×N is a convolutional dictionary made of

shifted replica of the discretized pulse-echo waveform, m̃i ∈



RN and ε ′ ∈ RN accounts for modelling and measurement
noise. We reconstruct the element-raw data by solving the
following synthesis problem

M? ∈ Vpe argmin
M̃∈RN×Nel

Y − (P ◦ VpeM̃) × A
2
F

+

Nel∑
i=1

λi
M̃i


1 , (3)

where λi ∈ R+, i = 1, . . . , Nel are the regularization pa-
rameters. By several reshaping operations, (3) can be recast
as a standard weighted `1-minimization problem which can
be solved using the fast iterative shrinkage thresholding al-
gorithm (FISTA) [15]. In the remainder of the paper, the
reconstruction method using the bandlimited signal model
described above is denoted as LS-F and the one based on
the pulse-stream model as CS-PS.

III. EXPERIMENTS AND RESULTS

A. Simulated PICMUS Phantom

A first experiment is performed within the framework of
the PICMUS challenge [16], whose details are available on
the dedicated website1. We work on the numerical phantom
and simulate two compression strategies: one based on 8 input
signals per CMUX working at a rate of 62.5 MHz, achieving
a compression of 8× on the number of coaxial cables, and one
based on 4 input signals per CMUX working at 31.25 MHz,
achieving a compression of 4× on the number of coaxial
cables We simulate a single PW insonification with normal
incidence. The impulse response is a Gaussian modulated
sinusoidal pulse, centered at 5 MHz with 60 % bandwidth,
and the excitation is a 1-cycle square signal. The chipping
sequences are generated as random sequence of ±1.

Regarding the CS-PS reconstruction strategy, we manually
set the regularization parameters, we fix a maximum of 1000
iterations and a stopping criterion based on the relative evolu-
tion of the solution. Regarding LS-F, the least-squares problem
is solved with the well known LSQR method with a maximum
number of iterations of 2000 and a stopping criterion based
on a tolerance of 1 × 10−8 on the residual.

Once the element raw-data are reconstructed from com-
pressed measurements, we obtain a radio-frequency (RF) im-
age by performing delay-and-sum beamforming with spline
interpolation and with apodization coefficients taking into
account element directivity. Standard post-processing is per-
formed on the RF image, i.e. envelope detection, normalization
and log-compression for display.

We evaluate the reconstruction methods based on several
metrics defined in the context of the challenge2, i.e. contrast-
to-noise ratio (CNR), average lateral and axial resolutions at
14 mm and 45 mm and speckle test (number of regions that
pass the test).

1https://www.creatis.insa-lyon.fr/EvaluationPlatform/picmus/about.html
2https://www.creatis.insa-lyon.fr/EvaluationPlatform/picmus/about_

speckle_quality.html

The results, reported in Table I, show that the images
reconstructed with the proposed strategies exhibit qualities
similar to the reference image obtained without compression.

TABLE I
COMPARISON OF THE METHODS ON THE NUMERICAL PICMUS

PHANTOM

Method Freq. CNR [dB] Lat. Res. [mm] Ax. Res. [mm] Speck.
14 mm 45 mm 14 mm 45 mm

LS-F
62.5

5.90 0.33 0.51 0.38 0.42 6/6
CS-PS 6.10 0.33 0.51 0.38 0.42 6/6
Reference 5.90 0.33 0.51 0.37 0.40 6/6

LS-F
31.25

5.90 0.33 0.51 0.38 0.41 4/6
CS-PS 6.40 0.34 0.52 0.38 0.41 6/6
Reference 5.90 0.33 0.51 0.37 0.40 6/6

B. Sequence of In Vivo Carotids

We acquire two 0.5 s-long sequences (approx. 40 frames) of
in vivo carotids, one longitudinal and one cross-section, with
a Verasonics Vantage 256™ (Verasonics, WA, USA) equipped
with a GE 9L-D probe (linear array, 192 elements, 5.2 MHz
center frequency, 75 % bandwidth). We transmit a single plane
wave with normal incidence with 3-cycle square excitation
signal. We acquire the data at 62.5 MHz and we simulate two
CMUX compression strategies, one with 8 input signals per
CMUX and one with 12 input signals per CMUX, resulting
in a compression equivalent to 8× and 12× on the number of
coaxial cables, respectively.

We use the same settings as for the simulated experiment for
the reconstruction methods, beamforming and post-processing.
Regarding CS-PS, we approximate the impulse response of
the transducer elements by a Gaussian modulated sinusoidal
pulse. To quantify the image quality, the average peak-signal-
to-noise-ratio (PSNR) and structural similarity index (SSIM)
are computed against the reference sequence reconstructed
from data that have not been compressed.

Table II reports the values of SSIM and PSNR for LS-F
and CS-PS for the two considered compression strategies. We
observe that both methods lead to high-quality reconstruction
for a compression ratio of 8, with slightly better results for
LS-F. This may be explained by the imperfect knowledge of
the pulse shape which impacts the quality of the reconstruction
with CS-PS. Regarding the reconstruction with a compression
ratio of 12, we observe that CS-PS significantly outperforms
LS-F, which can be explained by a potentially sparser repre-
sentation of US signals in the pulse stream model than with
the bandlimited signal model, especially when the bandwidth
is relatively high.

Figure 4 displays the log-compressed B-mode images of
a single frame of the sequence of longitudinal carotids for
the compression ratio of 8. Visual assessment of the images
corroborates the above analysis of the metrics and shows the
remarkable quality of the reconstruction with the proposed
approaches.

https://www.creatis.insa-lyon.fr/EvaluationPlatform/picmus/about.html
https://www.creatis.insa-lyon.fr/EvaluationPlatform/picmus/about_speckle_quality.html
https://www.creatis.insa-lyon.fr/EvaluationPlatform/picmus/about_speckle_quality.html
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Fig. 4. From left to right: reference log-compressed B-mode image (40 dB dynamic range); log-compressed B-mode image reconstructed with LS-
F (compression ratio of 8); log-compressed B-mode image reconstructed with CS-PS (compression ratio of 8).

TABLE II
COMPARISON OF THE METHODS ON THE IN VIVO CAROTID

Method Acquisition Compression
Ratio [–]

PSNR [dB] SSIM [–]

LS-F

Longitudinal
8 44.5 0.96

CS-PS 42.2 0.96
LS-F 12 33.2 0.79
CS-PS 38.7 0.91

LS-F

Cross-section
8 42.6 0.95

CS-PS 40.3 0.95
LS-F 12 34.3 0.82
CS-PS 37.1 0.90

IV. CONCLUSION

We propose a compressive multiplexing approach for ultra-
sound signals which aims at reducing the number of coaxial
cables to connect the probe to the back-end computer. The
compression module, that would be located in the head of
the probe, is composed of several compressive multiplex-
ers (CMUX). Each CMUX takes few input signals, modulates
each of them with a chipping sequence and sums them to
output a single signal. The reconstruction module, that would
be located in the back-end computer, reconstructs the element
raw data from the compressed measurements. We suggest two
reconstruction methods, one solving a least-square problem in
the Fourier domain, based on the bandlimited signal property
of the element raw data, and one solving a CS problem
based sparsity on the pulse-stream model. We demonstrate
through simulations and in vivo experiments that the proposed
technique may lead to high-quality reconstruction with up to
12× fewer coaxial cables. The proposed method, combined
with existing approaches, e.g. sparse array techniques, may
allow to perform 3D imaging with significantly fewer elements
than any existing method.
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