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Abstract. The estimation of the apparent axon diameter (AAD) via dif-
fusion MRI is affected by the incoherent alignment of single axons around
its axon bundle direction, also known as orientational dispersion. The si-
multaneous estimation of AAD and dispersion is challenging and requires
the optimization of many parameters at the same time. We propose to
reduce the complexity of the estimation with an multi-stage approach,
inspired to alternate convex search, that separates the estimation prob-
lem into simpler ones, thus avoiding the estimation of all the relevant
model parameters at once. The method is composed of three optimiza-
tion stages that are iterated, where we separately estimate the volume
fractions, diffusivities, dispersion, and mean AAD, using a Cylinder and
Zeppelin model. First, we use multi-shell data to estimate the undis-
persed axon micro-environment’s signal fractions and diffusivities using
the spherical mean technique; then, to account for dispersion, we use
the obtained micro-environment parameters to estimate a Watson axon
orientation distribution; finally, we use data acquired perpendicularly to
the axon bundle direction to estimate the mean AAD and updated signal
fractions, while fixing the previously estimated diffusivity and dispersion
parameters. We use the estimated mean AAD to initiate the following
iteration. We show that our approach converges to good estimates while
being more efficient than optimizing all model parameters at once. We
apply our method to ez-vivo spinal cord data, showing that including
dispersion effects results in mean apparent axon diameter estimates that
are closer to their measured histological values.
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1 Introduction

Axon diameter estimation in white matter (WM) tissue is one of the most chal-
lenging tasks in Diffusion MRI (dMRI), due to demanding acquisition require-
ments and to the presence of confounding factors, such as axon orientational



dispersion [1]. These estimates can be improved by using complex models that
account for dispersion [1]. However, the optimization of these models can be
computationally expensive, since the presence of local minima often requires us-
ing global optimization strategies over a huge parameter space. Moreover, the
degeneracy of the solution space further complicates the problem [2]. In this
work, we propose a method inspired by alternate convex search [3] that decom-
poses the estimation problem into three simpler sub-problems, thus reducing the
complexity while converging to desired results.

The knowledge of axon diameters in the WM tissue is important for a variety
of applications, spanning from anatomical to functional imaging. In dAMRI, how-
ever, based on modeling and physical considerations one could often compute
estimates of an apparent axon diameter (AAD). The AAD can be estimated by
acquiring data using strong diffusion sensitizing gradients directed perpendicu-
larly to the axons, in combination with multiple diffusion times [4]. In some cases,
a 3D acquisition is added to compensate for eventual misalignment with the prin-
cipal axons bundle direction [5]. Typically, multi-compartment models composed
of intra-axonal Cylinder and extra-axonal Gaussian models are used to estimate
the AAD from this data [5-9]. The parameter estimation is confounded by the
presence of axon dispersion around the principal diffusion direction [1]. However,
the simultaneous estimation of both AAD and dispersion involves fitting many
model parameters in a space that has several local minima. Classical approaches
to find the global minimum in these situations use methods like brute force or
differential evolution based optimization [10]. However, the computational cost
of fitting models such as the one considered in this work, with many non-linear
parameters, quickly becomes prohibitively expensive. The method we propose,
allows for the estimation of orientation-dispersed axon diameters with reduced
computational complexity.

In our proposed multi-stage spherical mean (MSSM) approach, we consider
a two compartments model composed of an impermeable Cylinder [19] and a
Gaussian Zeppelin, representing the intra- and extra-axonal diffusion micro-
environments. This model is then dispersed over the sphere with a Watson dis-
tribution to represent orientational dispersion [12,13]. The complete model has
many free, mostly non-linear parameters: the mean apparent axon diameter,
intra/extra signal fractions, parallel and perpendicular diffusivities, angular ori-
entation, and dispersion. We propose to estimate these parameters in three main
stages. In the first stage, we use multi-shell (MS) data to estimate the micro-
environment model parameters with the spherical mean of each shell, in analogy
with Multi-Compartment Microstructure Diffusion Imaging (MC-MDI) [14]. The
signal fractions and the diffusivities estimated in this first stage are used to es-
timate the parameters of the Watson distribution from the MS data samples
[12,14], i.e. the orientation and the dispersion. Finally, the previous estimates
are used to fix some of the corresponding parameters of the complete dispersed
model which is fitted using the perpendicularly acquired data in order to esti-
mate the mean AAD, an updated version of the perpendicular diffusivity, and the
intra/extra-axonal compartment signal fractions. The newly estimated AAD and



perpendicular diffusivity are fixed as parameters of the micro-environment model
of the first stage, and the process is iterated until convergence. The method is im-
plemented using the open-source Dmipy framework for reproducible microstruc-
ture research® [15,16], which facilitates the concatenation and construction of
multi-compartment models in a parallelized and simple manner. We validate
the approach with simulations and on a spinal cord diffusion MRI dataset with
histology [17, 18]. Results show that the method accurately captures dispersion
improving AAD estimates over a conventional non-dispersed estimation, showing
an improved spatial correlation with histology.

2 Theory and Methods

Orientation dispersion can be taken into account by defining a microscopic axon
model kernel which is then convolved with a Watson distribution to produce
the orientation-dispersed axon model [13]. This is iteratively fitted to MS and
perpendicular data with a three-stage procedure, where at each stage the pa-
rameter space is constrained by earlier estimates, and where at each iteration
estimates are updated. We first present the model, then describe the proposed
fitting procedure, and provide a description of the adopted datasets.

2.1 Orientation-dispersed axon model

The non-dispersed kernel model describes the microscopic axonal environment,
and is composed of a restricted and a hindered diffusion compartments [6, 4]. The
restricted compartment is described by a Gaussian Phase Approximation (GPA)
cylinder [19] with diameter a, whereas the hindered compartment is described
by a zeppelin [11]. Note that the choice of a zeppelin implies orientational de-
pendence of the hindered compartment, corresponding to anisotropic diffusion
profiles. The non-dispersed kernel is then convolved with a Watson distribution
to give the following formulation for the signal attenuation

kernel
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where stands for the set of experimental variables g, d, A including the gra-
dient vector, pulse gradient duration, and separation of a PGSE sequence [20],
1 the main orientation in spherical coordinates, s the concentration parameter
of the Watson distribution W(-), A\j > AL the undispersed parallel and per-
pendicular diffusivities of the microscopic axonal environment, and f3, f, the
corresponding hindered and restricted signal fractions, with f. = 1 — f,. Note
that both the hindered Ej(-) and restricted E,.(-) signal attenuations consider
the full 3D signal, where the direction is determined by the Watson distribution.

5 https://github.com/AthenaEPI/dmipy



2.2 Multi-Stage Spherical Mean (MSSM) optimization

We propose a multi-stage method with three optimization stages for estimating
the parameters a, s, p, A, A1, and f,. of the model presented in eq. 1. At each
stage, we estimate a different subset of parameters while fixing the others to
initial values or to estimates obtained with a previous estimation. In this way,
we obtain a cascade of simpler fittings that are computationally more efficient,
and possibly less degenerate, than the global problem.

Stage 1: estimating diffusivities using shells spherical mean. The first
step of the procedure uses the spherical mean of each shell of the MS dataset
to estimate the parameters of the micro-environment without the influence of
dispersion [14]. The kernel in eq. 1 is fitted by accounting for the spherical means
of three or more shells ¢, 5(b;), which allows estimating the signal fraction f, (and
fn), A, and AL, regardless of the FOD
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where ép(-) and é.(-) are the hindered and the restricted spherical means of
the corresponding hindered and restricted compartments, and where b is the
b-value. Note that €, is the dispersion-invariant signal spherical mean of a GPA
cylinder, which we compute by approximation with spherical harmonic bases.
The cylinder diameter a can initially be fixed to a large value, e.g. 6um, or to
zero which would correspond to calculating the spherical mean signal of a stick.

Stage 2: estimating orientation and dispersion. In the second stage,
we consider the full model in eq. 1, where we fix (f;, A, A1) to those estimated
in the previous stage with eq. 2. This time, we optimize for the parameters of
the Watson distribution, FOD = W (&, ) [14], minimizing the error norm of the
model over the multi-shell diffusion-weighted images (DWIs)

ki, fu = argmin[|S(bn) /So — E(k, plbm, fr, A, A3 3)

NY
where S(bn) /Sy is the measured signal attenuation with Sy being the non atten-
uated signal. The estimated set of parameters AH,)\J_, i, 4 is used to constrain

the fitting of the model in eq. 1 for the next optimization stage, whereas fr may
be used as initial guess when it applies.

Stage 3: estimating the diameter using a perpendicular acquisition.
The third stage optimization involves minimizing the error norm with respect to
the signal attenuation measured along the perpendicular direction n . For this
reason, this is the most suitable acquisition for estimating the diameter, a, and
updating the value of A1, and of fr

a, AL, fr = argmin [|§(bn.1)/So — E(a. AL felns kA (4)
QAL r
where now all of the parameters of the model in eq. 1 have been estimated. In
the following iteration, the newly estimated values @ and A\, are now fixed in
eq. 2. The three stages are repeated until convergence.
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Fig. 1: Convergence of the proposed approach for a grid of parameters (diame-
ter,ODI) over iterations (first three images). Intensities represent under (blue)
and over-estimation (red). On the right, the error of the non-dispersed technique.

2.3 Implementation, MRI and Histology data

The dataset consists of a four shell DWIs collection (796 samples) and two radial
acquisitions (1791 samples) with gradient direction perpendicular to the axon
bundle axis of an ez-vivo cat spinal cord [17], which is available at the White
Matter Microscopy Database [18]. Maximum gradient strength for the MS and
perpendicular acquisitions were G & 0.67/m and G = 0.85T/m, respectively,
with diffusion time 7 = 29 ms for the MS and 7 € {6,12,17,22,27,32,37,39} ms for
the perpendicular acquisitions. Note that the data was acquired with a different
echo-times for each diffusion time, which requires making some assumptions as
discussed in section 4. The synthetic datasets were generated using the same ac-
quisition scheme for consistency. Mean axon diameter histology is also present,
already in MRI space. In all optimization stages we used the global MIX op-
timizer [10], made exception for stage 2, where differential evolution [21] was
employed. All implementations were done and can be reproduced in the Dmipy
software framework for reproducible microstructure research [15, 16].

3 Experiments and results

To validate our approach, we performed synthetic and acquired data experi-
ments. In all experiments, we initialized our MSSM method with a ”large” mean
diameter of 6um and let it converge in a fixed number of iterations. Results
show that the proposed algorithm reaches convergence in few iterations. More-
over, obtained AAD estimates in the presence of various levels of dispersion are
more precise compared to when dispersion is not modeled, as expected. The non-
dispersed technique, consisting on fitting only the kernel of the model in eq. 1
with a ball instead of a zeppelin [4, 5], was informed of the angular axon bundle
main direction, u, estimated with stages 1 and 2 of the proposed method. For
this reason, differences in the comparison only account for dispersion. Moreover,
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Fig.2: Convergence of diameter and ODI estimates for proposed method over
iterations. On the right, means and standard deviations of axon diameter esti-
mates as function of the SNR, for the zeroth iteration, and at convergence.

we apply our method to the cat spinal cord dataset, where we report mean ap-
parent axon diameter estimates closer to histological values and with comparable
or better spatial correlation with respect to the non-dispersed case.

3.1 Synthetic results

We generated the synthetic signal attenuation for a grid of orientation dispersion
index (ODI) values (related to x [1]), ODIe {0.10,0.15, 0.20, 0.25}, and cylinder
diameters, a € {1,2,3,4,5,6} um. For the experiment, we set u = (0,0), A\ =
l.le — 9m?/s, AL = 0.8\, and f,. = 0.6. Figure 1 reports the AAD estimation
absolute error obtained with the proposed method with respect to the ground
truth, for some iterations of the algorithm. We find that for smaller diameters a
the error is larger. This is expected since dMRI is less sensitive to small diameters
at these gradient strengths. For larger diameters and ODIs, the method converges
to the correct estimates, often in just two iterations. As expected, when not
accounting for dispersion, diameters are overestimated up to 3um (fig. 1, right).
We more clearly show the convergence of the method in the left and central plots
of fig. 2. We also perform an evaluation of the robustness to noise for different
signal-to-noise ratios, SNR= 1/, with o being the standard deviation of the
real and imaginary Gaussian distributions generating the added Rician noise.
This evaluation is illustrated in the right plot of fig. 2, which reports the mean
and standard deviation of the absolute error of the estimated diameter for the
case of a 3um apparent axon diameter with dispersion index ODI= 0.15. The
values were obtained after repeating the MSSM method with 100 different noise
realizations for each SNR, and were reported for the zeroth iteration (yellow),
and at convergence (blue). The plot shows that the estimation of axon diameters
converges to the right values fot SNR> 30. We believe that the suboptimal
convergence at SNR=20,30 is due to the Rician bias which is not taken into
account in the optimization. With respect to computational efficiency we find
that one iteration of our MSSM approach takes up to 10s, whereas a naive
global implementation using MIX takes about 2 minutes for SNR=20 on a Intel®
Core " i7-3840QM with 32 Gb of RAM.
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Fig. 3: Mean apparent axon diameter maps reported from histology, and calcu-
lated with the non-dispersed and with the proposed method. Right, the estimated
orientation dispersion index for the proposed method.

3.2 Histological validation and comparison

Figure 3 reports the histological mean AAD maps, and the corresponding maps
calculated without accounting for dispersion and for the proposed method. In the
latter case, we also report the estimated dispersion index map, i.e. the ODI. The
AAD map computed with the proposed method reports values clearly closer to
the histology compared to the case in which dispersion is neglected. This confirms
findings in the synthetic experiments. In fact, the ODI map shows a medium level
of dispersion almost everywhere that the proposed method is able to capture,
thus rendering apparent axon diameter estimates that are more coherent with
histology. We also computed the spatial correlation between the axon diameter
map obtained with the proposed method, or with the non-dispersed one, and
the histology. Results that consider axons with histological diameter in range
2—5um are shown in fig. 4. We note an improved spatial correlation and a higher
dynamic range of diameter estimates obtained with the proposed method. In the
same figure, we report the difference between histological and computed AAD
separately for group of axons with histological diameter in range [1 — 2], [2 — 3],
[3 — 4], and [4 — 5] pm, which confirms that accounting for dispersion renders
estimates closer to histology.

4 Discussion, limitations, and future directions

This work presents a new method for estimating apparent axon diameters while
accounting for orientational dispersion by means of a spherical mean-based multi-
stage search approach. Our method reduces the complexity of the estimation
compared to the naive global optimization while showing convergence. Results on
ex-vivo data showed that the proposed approach was able to capture dispersion
and render AAD estimates better aligned with histological values.

The presented method however makes some assumptions that lead to some
limitations. From the point of view of modeling, we have neglected the extra-
axonal diffusion time dependence [22-24]. Although assuming only intra-axonal
time dependence might be a good approximation at very high gradient strengths,
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Fig. 4: The absolute AAD error estimated w.r.t. histology for the proposed (light
blue) and the non-dispersed (red) methods, for increasing ranges of histological
axon diameters. On the right, the correlation of MRI-based axon diameter esti-
mates with histological values of axons with diameter in range 2 — bum.

depending on the combination of (4, A), at lower diffusion sensitization regimes
it could possibly lead to a wrong description of the signal. In the future, we
would like to account for this phenomenon by accordingly changing the extra-
axonal model [22]. As a procedural limitation, we mention that the estimation of
the signal fraction and diffusivities (parallel and perpendicular) obtained using
shells spherical mean accounts only for the diffusion time (more generally for &
and A) of the MS acquisition. As a consequence, the parameters estimated at
stage 1 might not be coherent with those of stage 3 where the model parameters
should actually explain time dependence with respect to § and A. This issue
is partially mitigated for the signal fraction and the perpendicular diffusivity,
since they are re-estimated at stage 3, but it is present for the parallel diffusivity
and for the orientation parameters propagated through stage 2. In our synthetic
results, however, we could not directly observe the effects of this phenomenon
even if a more accurate investigation should be performed. This limitation could
be prevented with a dataset containing MS data at different diffusion times,
since the spherical mean of the cylinder, in the case of the proposed model, is
dependent on diffusion time. Alternatively, in acquisitions like the one used for
this work, we speculate that it could be possible to use the parameters estimated
at stage 1 and 2 as initial guess for performing a gradient-descent non-linear
fitting at stage 3 where all the parameters could be estimated at once. Also, the
proposed processing assumes that the transverse relaxation times of the intra-
and extra-axonal compartments are the same. Where this assumtion did not
hold, then relaxation should be modeled. This would be particularly relevant in
datasets like the one used in this work, which includes different echo-times.

In general, we point out that several choices have been made in this work
that could be changed and/or improved upon. For instance, we decided to es-
timate A, although initial tortuosity constraints could be imposed, as for the
MC-MDI model [14], thus reducing the number of parameters. Moreover, the
initialization value of the diameter could be fixed with a previous non-dispersed



fitting, and a step-size could be introduced to improve the MSSM convergence
rate. At the same time, the use of global optimizers might not be necessary at
each step/iteration. In addition to proposals made above, future work includes
performing a more thorough comparison with global optimization results and in-
vestigating more deeply on the convergence properties of the proposed approach
in order to further improve its efficiency.

5 Conclusion

In this work, we propose the use of spherical mean data to reduce the compu-
tational complexity of apparent axon diameter estimates from a compartmental
model. Despite the above mentioned limitations, the adopted strategy effectively
splits the estimation of a complex compartmental model into several stages lead-
ing to simpler and faster estimation steps. Further investigation is required to
improve the method along this line. In fact a similar approach, eventually applied
to time-dependent multi-shell data, might reveal helpful for obtaining reliable
estimates in human datasets, especially where the richness of the data used for
this work may not be achievable.
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