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Abstract—In this paper, we propose a re-dispatching scheme
for radial distribution grids hosting Distributed Energy Re-
sources (DERs) and batteries. The proposed scheme applies a
Receding Horizon Control (RHC) over the CoDistFlow algorithm.
CoDistFlow handles stochastic DERs and prosumers uncertain-
ties via scenario-based optimization and the non-convexity of
the AC Optimal Power Flow by iteratively solving suitably
defined convex problems until convergence. RHC is applied
for re-dispatching over regular time intervals using updated
information (batteries state-of-energy, updated prosumption fore-
casts/scenarios). We perform numerical evaluations based on
real-data, obtained on a real Swiss grid characterized by a large
connection of stochastic DERs. We show that by re-dispatching
via RHC, the daily dispatch tracking error can reduce more than
80%, while when re-dispatch becomes more frequent, it can be
eliminated. In addition, we show that the daily dispatch tracking
error reduction is much higher when re-dispatching in presence
of larger batteries capacities. Finally, we study the computational
complexity issues, as well as the efficiency of CoDistFlow for
incorporating the grid/batteries losses.

Index Terms—Dispatch plan; re-dispatch; intra-day; optimal
power flow; grid losses; battery models; scenario-based;

I. INTRODUCTION & CONTRIBUTIONS

The joint dispatch of Distributed Energy Resources (DERs)
and batteries allows for achieving (i) less costly balancing of
load/generation during real-time operation [1], [2], [3], (ii)
peak shaving [4], and (iii) voltage and ampacity constraints’
satisfaction in local grids [5]. For a distribution grid with DERs
and batteries, one approach is to commit with the day-ahead
market a dispatch plan at the Point of Common Coupling
(PCC) with the main grid, as well as computing appropriate
battery setpoints, by solving an AC Optimal Power Flow (AC
OPF) that considers the uncertainties of the prosumption, the
grid/battery losses and the grid constraints [6]. Then, a real-
time control algorithm re-computes the battery power in order
to follow the dispatch plan based on the realization of the
uncertain resources ([7], [8]).

However, when tracking a day-ahead dispatch plan during
operation, (i) there may exist better forecasts for the remaining
part of the day, and/or (ii) the realization might have not
been close to the predicted day-ahead scenarios, leading to
situations of depleted flexibility in the batteries. In this context,
it is key to perform intra-day re-dispatching, i.e., update the
dispatch plan for the upcoming time horizons accounting
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for more recent information. Indeed, it is widely accepted
that the progressive penetration of renewable generation in
modern power systems increases the importance of intra-
day re-dispatching in order to compress the scheduling and
activation of the primary/secondary frequency control reserve.

We propose an intra-day re-dispatch scheme for distribution
grids with DERs and batteries which applies Receding Horizon
Control (RHC) over the CoDistFlow algorithm, which is
introduced in [6]. CoDistFlow is an iterative OPF algorithm
(details are given in Section V-A) that, at each dispatch
period, computes the updated dispatch plan for the next time
horizon. It applies scenario-based optimization for handling
the uncertainty of DERs and loads. Compared to the robust and
chance-constrained optimizations, the advantages of scenario-
based optimization are: (i) proper modeling of the uncertainty
of stochastic resources [9] (e.g., non-parametric), (ii) inclusion
of general convex constraints, and (iii) possibility to account
for any existing time correlations. In this work, the scenarios
consist of forecasted time-series constructed based on histori-
cal and present knowledge; thus the nonanticipativity condition
[10] is not violated.

RHC is applied for re-dispatching over regular time intervals
using updated information, i.e., currently observed state-of-
energy of batteries and/or updated prosumption forecast sce-
narios. RHC adds an extra degree of robustness to the scenario-
based optimization since the control values are updated based
on the latest observations available, which, in general, might
be different than the forecasts used in the previous time
steps. Our method appropriately accounts for computational
complexity issues that impact the possible time of commiting
the updated dispatch plan (see in Section V). Finally, we model
the internal losses of the grid-connected battery systems using
equivalent lossy lines integrated in the power flow model [6],
and we adopt an accurate representation of batteries’ power-
electronic’s-converter apparent power constraints. To the best
of our knowledge this is the most realistic model of battery
losses in the literature.

CoDistFlow is chosen as the most suitable method for our
setting. Specifically, to the best of our knowledge, CoDistFlow
is the only algorithm in the literature for solving a scenario-
based AC OPF while providing a solution that satisfies the
exact power flow equations and the exact grid security con-
straints. It is shown in [6] that existing AC OPF relaxation
methods yielding exact solutions, e.g., [11], [12], do not apply
in case of scenario-based optimization. In addition, in [6], it
is shown that the commonly applied sequential linearization
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of the power flow equations with sensitivity coefficients may
have a slow convergence and may lead to a non-optimal
solution. Moreover, CoDistFlow is computationally efficient
for being integrated in an RHC framework, as it converges in
few iterations [6].

This paper investigates the importance of re-dispatching
and quantifies it by introducing appropriate measures based
on existing reserve markets and by evaluations on real data-
sets. To the best of our knowledge, the proposed RHC over
CoDistFlow is the only method in the literature that re-
dispatches the operation of a distribution grid in a complete
setting, since, (i) it considers distributed batteries and DERs,
(i1) it handles the uncertainty via scenario-based optimization,
(iii) it obtains solutions that satisfy the exact power flow
equations and the exact grid constraints, (iv) it accounts for
an accurate model of battery losses and constraints.

We perform extensive numerical evaluations on a real-life
distribution system in Switzerland composed by 34 buses and
using real data to construct the scenarios. By solving large
scale optimization problems, we show that by re-dispatching
via RHC, the error in tracking the dispatch plan, as well as
the corresponding energy cost, reduce significantly. Moreover,
these costs further reduce as re-dispatching becomes more
frequent. We study the performance of RHC over CoDistFlow
with respect to the number of scenarios and battery capacities.
Finally, we indicate the importance of incorporating CoDist-
Flow to efficiently account for the grid/batteries losses.

The rest of the paper is organized as follows. Section II
summarizes the related literature. Section III describes the
system model and the assumptions. Section IV formulates the
problem and Section V proposes the RHC over CoDistFlow
scheme. Section VI presents the evaluation results and finally
Section VII concludes the paper.

II. RELATED WORKS ON RE-DISPATCHING

Re-dispatch strategies for intra-day markets and real-time
operation of power grids have been extensively discussed in
the literature. In [13], the Authors propose an intra-day multi-
period energy and reserve pre-dispatch model and a real-time
single time-slot re-dispatch model. Contrary to our approach,
neither prosumption uncertainty is considered, nor the adap-
tation of previous decisions to the revealed prosumption and
the updated forecasts. The work in [14] performs single time-
slot re-dispatching (thus without an MPC strategy) without
considering energy storage. For the solution, the prosumption
uncertainty is handled via chance-constraints on a second order
cone programming OPF. The chance constraints are approxi-
mated based on a known parametric probability distribution of
the uncertainty, contrary to our proposed approach that uses
scenario-based optimization.

MPC-based grid operational control schemes have been also
examined, e.g., [10], [15], [16], [17], [18], [19]. In particular,
in [15], RHC and scenario-based optimization are applied
for the operational control of islanded microgrids using the
well known DC approximation of the power flow and without
accounting for energy storage losses. In [10], a real-time RHC-
based power dispatch scheme is proposed for a grid with DERs
and energy storage using scenario-based optimization. In [16],
the coordinated operation of wind farms and energy storage is

studied, by applying a 4 hours-ahead RHC scheme and wind
power forecast scenarios. The work in [17] applies RHC to
re-dispatch a battery storage system coupled to PV generation
using point forecasts for the PV and the load. Works [18]
and [19] propose RHC for operating a microgrid with the aim
of minimizing its operating costs. [18] applies scenario-based
optimization whereas [19] replaces the uncertain quantities
with point forecasts. It is shown that the operating cost and
the number of violations of the storage capacity constraints are
considerably reduced if using RHC compared to the solution
of a day-ahead problem. All the mentioned works [10], [16],
[17], [18], [19], contrary to our approach, do not model the
grid and the associated operational voltage/current constraints.

Compared to the above-listed works, our approach effi-
ciently re-dispatches the operation of a distribution grid with
distributed battery energy storage and DERs while appropri-
ately accounting for uncertainties, and accurately modeling the
grid constraints and the batteries constraints and losses.

III. SYSTEM MODEL & NOMENCLATURE

We consider a balanced and transposed radial distribution
grid. The PCC is at index 0 and is assumed to be the only
slack bus. Distribution lines and, in general, branches are
represented by their single-phase direct sequence equivalent
exact m models (Fig. 1(a)). Note that the same model can
be used to represent other devices connected between nodes
(e.g., series voltage regulating transformers). This modeling
approach is particularly suitable for underground cables that
are used especially in urban contexts. The indices of buses
(except the PCC) and of lines lie in {1,2,..., N}. The node
at the top of line ¢ closer to the PCC, is denoted as up(¢),
and the node at the bottom as ¢ (Fig. 1(a)). We assume
that the PCC lies at the top of line { = 1. The index of
time is ¢t € {0,1,...,7 — 1}, and the index of scenarios is
d € {1,2,...,D}. Each time interval has a duration of At
(in hours). The N x N matrix G is the adjacency matrix of
the oriented graph of the network excluding the PCC, i.e.,
Gy = 1 for two buses k,¢ # 0, if k& = up(¢), otherwise
Gre = 0. We use |.|, ||.|| for the absolute value and the
Euclidean norm, respectively.

On each line ¢ (Fig. 1(a)), let (i) S¢(t) = Pa(t) + 1Q4(t)
be the direct sequence complex power fed from the bus up(¥),
(ii) z¢ = r¢ + jx, and by be the direct sequence longitudinal
impedance and shunt susceptance of the branch ¢, (iii) fgl(t) be
the square magnitude of the direct sequence current flowing
through 2., and (iv) i¢(¢) (i;”d(t)) be the current at the top
(bottom) of branch £. I, is the ampacity limit of branch /.

On each bus/node ¢ (Fig. 1(a)), (i) vg(t) is the square
magnitude of the direct sequence voltage, (ii) v, v are lower
and upper bounds of v@l(t), ie, v < vf(t) < T2, (i)
s3(t) = pd(t) +gi(t) is the complex power injection without
the battery power injections (p¢(t) > 0, ¢&(t) > 0 indicate
consumption). Also, SPP(t) = PPF(t) + QP (t) stands for
the dispatched complex power at PCC, at time ¢t. At PCC the
voltage is assumed fixed, vd(t) = 1 pu, V¢,d.

Each battery, along with its power conversion devices, is
represented by a lossy equivalent power source (Fig. 1(b))
[6]. For each battery connected to bus ¢, a new virtual node
is added and connects to this bus via a virtual purely resistive



line. If there exist Np batteries in the grid, the total number
of buses increases to N + Np and the admittance matrix
of the grid is appropriately updated. The battery model is
characterized by the resistance of the newly added virtual
line (Fig. 1(b)) that can be assessed experimentally as in
[6]. Then, (i) the battery losses are equal to the active
power losses of this resistive line, and (ii) the state-of-energy
(SoE) is equal to the one of a lossless battery, with same
capacity and rated power connected to the virtual node. As
the reactive power is entirely generated (or absorbed) by the
battery inverter, there are no losses on the virtual line due
to the battery reactive power (see Fig. 1(b)). For a battery
at virtual node ¢, let (i) SoEZ(¢) be its state-of-energy at
time ¢ and for scenario d, (ii) SoEp ¢ be its energy capacity,
ie, 0 < SoE} ,(t) < SoEg,, (iii) ph ,(t) be the charging

%)g(t) > 0) or discharging (p‘é)g(t) < 0) power at time ¢ and
scenario d, without including the battery losses, (iii) qge(t)
be the reactive power, (iv) sp ¢(t) = ph ,(t) +19% ,(t) and (V)
sk ¢ be its rated power. Note that, we impose neither ampacity
constraints to the virtual line, nor voltage constraints at the
virtual node, since both are only part of the battery model.
Finally, after representing all batteries with their models, the
battery capacity is non-zero only at the virtual nodes i.e., those
within the set {N +1,..., N + Ng}.

We define P4(t) = [Pi(t), Psi(t),..., P& (t)]T the active
power flow values for all lines. Similarly, we define the
vectors: Q%(t) for the reactive power, v?(t) for buses’ voltages
(square magnitude) and p?(t), ¢%(t), p%(t), ¢%(t), for the node
active and reactive prosumption injections and battery active
and reactive power values, respectively. In Section V, for the
needs of CoDistFlow, we use the correction terms p¢(t), G4(t),
9¢(t) and the approximation terms #¢(t) (for line £, scenario
d and time t). Furthermore, Pty = [pd(t),....p% ()]7,
QUt) = [d(1), .o @ (O V(E) = [64(0), ... 8 (D)7 and
V(t,d) = [0(t),...,0%(t)]T. We introduce more compact
notations for the electrical state of the grid F(t,d), the
corrections C(t, d), the load injections s(t, d) and the battery
power values sp(t,d), as E(t,d) = [P(t); Q%(t); vi(t)],
C(t.d) = [PU(t): QUt); V), s(t.d) = [p'(t); ¢*(1)],
sp(t,d) = [ph(t); ah(t)).

To conclude, some collective notation: S denotes complex
power for all lines (top/bottom), scenarios and times, v denotes
voltage square magnitude for all buses, scenarios and times,
SPP defines the dispatched complex power for all times, and
f denotes the square magnitude currents flowing through the
longitudinal impedances for all lines, scenarios and times.

IV. PROBLEM FORMULATION
We solve, at regular time intervals, a scenario-based AC
OPF for a radial distribution network with stochastic renew-
able energy sources and battery storage. We consider the

following constraints.
a) Power Flow Equations defined Vt,d, line ¢:
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Fig. 1: Line (a) and Battery (b) models.
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b) Voltage Constraints, defined Vt,d, bus {:

Vi (t) = vip(o) (1) — 2R {zz (Szl(t) + 0in e (t)%) } @
+ 2l £ (1),

fit) =

vl () =1, v® <of(t) <7 ®)
¢) Ampacity Constraints, defined Vt,d, line {:
d d

w0y = 0 sptey = 20
V(o) () Vo) (£)

R{ip ) = (PO —refl®) /\Juie), @)

i 0} = (QFD) —wefi M) /i) ®)
+ (vltoio () + 07 (0) ) be/ (20/ 1)),

I3 @) < Te I3 ()] < Te. ©)

d) Battery Constraints, defined V't,d, bus {:

SOE% o(t + 1) = SoEL 4(t) + ph o (£) AL, (10)

apSoEg ¢ < SoEG ¢(t) < (1 — ap)SoEs ¢, (1)
2

(PAO) + (ab (1) < (5500, (12)

SoE% +(0) = SoEj 4, 13)

where (i) 0 < ap < 1 is a constant parameter used to define

a margin on the state-of-energy lower and upper bounds, and
(i) SOEIB is a vector with dimension N + Np and its element,
SoEJIg,Z, is the given initial SoE of the battery at node ¢.

The above set of constraints is non-convex due to the
Egs. (3) and (6)-(9). Note that the battery apparent power
constraint of Eq. (12) does represent an improvement of the
corresponding one in [6] when using the battery resistance
model. Indeed, it considers the battery active power not at the
virtual bus ¢ of the battery model, but, at the bus up(¥), i.e.,
including the battery losses.

We assume that the first scenario (i.e., scenario with index 1)
consists of the point forecasts of the prosumption at each bus
and time. The rest of the scenarios are constructed based on
probabilistic forecasts as in [9] (see Section VI-A for details).
All the scenarios are based on historical data and present



knowledge at the time the OPF is solved and thus the decisions
taken are nonanticipative. In case that D attains a large value
(> 100) and computational complexity issues emerge, then

scenario reduction techniques can be applied, as e.g., in [6].
Next, we give the considered objective function,

w1 Z Ad max( B~ SOE% 4(t), 0, SoE% 4(t) 7EB,5)
dt,e

+ w2 Z)\d|Qil(t)| + ws Z)\d|P1d(t)| + waq Z)\dpld(t)
d.t

d,t d,t

RO (1Pf®) - PPP )1+ 1@ - QP )]

+w62/\d\ Z ph,;(t

k,d,t I

pi (£))]. (14)

)+ pi(t) —

The first objective penalizes the deviation of SoECfM(t)
above Ep ¢ and below E B¢~ The second objective minimizes
the reactive power at the PCC (|Q%(t)|) that serves the purpose
of maximizing the power factor at the PCC. The third objective
minimizes the active power exchanged with the upstream
power grid. The fourth goal is to maximize the power export
to the main grid. This objective also minimizes the sum of
line losses, thus implicitly prioritizing batteries for each load,
i.e., the battery that is closer to the load will be preferably
used otherwise the losses will increase. Note that battery losses
are handled similarly to the line losses; also being minimized
through this objective. The fifth objective minimizes the error
between the obtained dispatch plan and the optimal power
at the PCC for every scenario. The sixth term explicitly
prioritizes batteries for absorbing the uncertainty of specific
loads, where Zj, is a set of buses with battery j and buses
with prosumption ¢. The individual objectives are weighted by
the positive constants w;, % = 1,...,6. Finally, the objective
function is a weighted average over all scenarios, where the
weight )\ is the probability of occurrence of scenario d, with
> -4 Ad = 1. The non-convex AC OPF is formulated as follows:

min s.t. Vt,d, ¢, (1) —(13).

S,sp,v,SPP, f

(14), (15)

Our aim is to obtain updated trajectories for the dispatch
plan, SPP, and the battery power, sg, by solving the non-
convex problem (15) in an efficient way, repeatedly over
regular intervals. Each time we solve (15) we should account
for the currently observed values of the batteries’ SoE and
the updated prosumption scenarios in order to re-dispatch
efficiently, i.e., compute an updated S that adapts better
to the current information than the previously computed one.
To do so, we apply CoDistFlow [6] for solving the scenario-
based non-convex problem (15), and RHC for re-dispatching.

V. PROPOSED APPROACH: RHC OoVER CODISTFLOW

Every A7 (in hours), we solve (15) for a horizon length
of T time intervals each of duration A¢, where we assume
that A7/At is a positive integer. Specifically, we compute
an updated dispatch plan at the PCC, SPF, via (15) at
times 7 = p%, with p € 0,1,2,3,--- (see Algorithm 2).
For large-scale problems (i.e., large values of the number
of scenarios D, network size and horizon length 7' as the
ones considered in our evaluations, solving the non-convex

problem (15) via CoDistFlow may require a non-negligible
computational time. Assume that the required computational
time is at most T'y;zcq time intervals, i.e., Ty;zeqAt. Therefore,
the computation performed at time 7 will be completed at most
at time 7 + T'fizeq; thus, it is not be possible to guarantee
committing before time 7 + T't;zeq, the dispatch plan for the
first T'pizcq time intervals. To solve this issue, for the first
Tfizea time intervals we commit the dispatch plan computed
at 7 — 1 for the corresponding time intervals, assuming that
T > AT + Ttizea- Specifically, we define SE, fmed as a vector
of length T'fizeq With elements the dispatched complex power
at 7 — 1 for the mentioned time intervals. Then, we add
the constraint of Eq. (16) to account for this dispatch plan
commitment when solving (15) at 7. To present our approach,
we describe and adapt CoDistFlow [6] and then apply RHC.

A. CoDistFlow

CoDistFlow [6] consists of two modules, namely: Improved
DistFlow (iDF) and Load Flow (LF). These two modules are
applied sequentially and iteratively until convergence.

1) Improved DistFlow (iDF) and Load Flow (LF) Mod-
ules: The iDF module is given as [SPP E' sp] =
iDF (s, C,V,SoEp, SPL ), where SoEj collects the cur-
rently observed batteries SoE values, inserted as inputs to iDF,
as initial ones for the computations. iDF solves a problem
similar to (15), but, with the following differences. First, it
introduces the constant correction terms pf(t), ¢(t), 0¢(t)
that replace the variables r¢f&(t), zof3(t) and |ze||2fE(2),
respectively, in Egs. (1)-(9). In addition, iDF introduces the
constant approximation terms, ¥ (¢), which replace the voltage

«/vé( ), in Egs. (6)-(9). Given constant

values of the correction and approximation terms, C), V, and
the above replacements, the problem (15) becomes convex
and can be efficiently solved. Second, the problem solved by
iDF has in addition the constraint (16), which is required to
integrate CoDistFlow within the RHC framework. Its meaning
is discussed above.

Fixed Dispatch Plan Constraints:

magnitude variables,

SPP0: Tivea — 1) = SPikea- (16)
As mentioned above, iDF solves a convex OPF with con-
stant correction and approximation terms. The values of the
correction and approximation terms are computed/updated by
the LF module, by solving a full AC load flow ((Eqs. (1)-
(4))) for a specific time and scenario. The LF module is
given as [E(t,d),C(t,d),V(t,d)] = LF(sp(t,d),s(t,d)).
The batteries are also considered as PQ buses with injections
computed by iDF at the previous iteration.

2) CoDistFlow: CoDistFlow is given in Algorithm 1. The
superscript (k) denotes the iteration k& of CoDistFlow and the
index j in lines 7 — 10 the j" element of the corresponding
vectors. According to [6], at convergence the obtained solu-
tion satisfies the exact (AC) power flow equations and the
exact operational constraints (i.e., Eqgs. (1)-(13)) within the
tolerance bounds imposed by the convergence criterion, i.e.,
if CoDistFlow terminates at iteration ki, the electrical states
E' (k) Bk (almost) coincide.



Algorithm 1: CoDistFlow
CoDistFlow(s, SoEL, SHEea)

(SDP7SB) —

1 k = 0; convergence = false;

2 00 = 0; V) = 1;

3 while convergence = false do
PO H{ ORF)

iDF(s, C™, V*) SoEL, SPL ));

5 for each time t and scenario d do

6 [E®)(t,d), CEHD (¢, d), VED (¢, d)] =
L LE(s\¥ (¢, d), s(t,d));

7 if £k > 1 and

8 Sup; 44 C](-k+1)(t, d) — C'J(k) (t,d)| <e. and

9 Supj,d,t ‘?j(k+1)(t7d) - ~.j(k) (t7d) S €v and

10 SUp; 44 %{sg’)](t,d) - Sgk’;l)(t,d)} <ep and
1 SUp; 44 S{sg’)j(t, d) — sg’gl)(t, d)} <ep

12 then

13 | convergence = true;

u | k< k41

15 return SPP « SPP(=1) g o sg_l);

B. RHC over CoDistFlow

We solve (15) via CoDistFlow every AT, at time instants
indicated by 7. We obtain the battery trajectories for all
scenarios and the dispatch plan. We assume that between two
re-dispatch instances (i.e., during A7), a real-time algorithm
is applied to decide the battery setpoints with the aim of
following the committed dispatch plan, while each battery
SoE is updated based on these decisions. The real-time control
algorithm runs every At, (in hours), with At, < At < Ar,
at time instants indicated by ¢,., where At/At, is assumed a
positive integer. Notice that at time 7, we compute ¢, = Tﬁ—ttr.
Fig. 2 illustrates the diverse times and scales, e.g., the times
of computing and committing the dispatch plan based on
Algorithm 2. Also, let SoE% ,(t.) be the observed state-of-
energy at bus ¢ and time ¢,., and SoE%(¢,-) be the vector with
elements SoE% 4(t,) for all buses (dimension N + Np).

The RHC over CoDistFlow scheme is given in Algorithm
2. At time 7, CoDistFlow takes as inputs (i) s, which is
defined similarly as s and stands for the updated prosumption
scenarios for all buses at time 7; (ii) SOE"B(TA—Atf), which is
the observed SoE at 7At and (iii) Sﬁ.fed, defined above.
CoDistFlow outputs SPP, ie., the dispatch plan for time
intervals {r,...,7 + T — 1}. CoDistFlow and the real-time
control algorithm can start running in parallel, since the
dispatch plan for the time intervals {7,...,7 + Tigeq — 1}
is known. When CoDistFlow finishes its computation (after
T'fizeq time intervals) the real-time control algorithm starts
using the obtained SP¥ instead of S ]258 4- All other computa-
tions except CoDistFlow are assumed instantaneous. Finally,
we consider that the SoE is observed before each re-dispatch
at times 7 and before each real-time battery control decision
at times t,; in this way we account for any uncertainties in

AT TAt
D Fixed dispatch plan setpoints, i.e., within dispatch plan horizon Tﬁxed
. Newly computed and applied dispatch plan setpoints

D Newly computed and discarded dispatch plan setpoints

Fig. 2: Ilustration of time intervals in the RHC over CoDistFlow
scheme.

the implementation of the real-time decisions by the batteries.

Algorithm 2: RHC over CoDistFlow
17=0; t.=0;

2 SoE%(0), Sﬁ-fed, known;

3 while true do

4 Observe SoE% (t);

5 s, < updated prosumption scenarios for time
intervals {7,....7+ T — 1};

6 | SPP 0

7 At time ¢, run in parallel 1, 2:

8 1. (SPP sp) = CoDistFlow(s,, SoE%(tT),SfDifed);

9 | 2. whilet, <t,+ 24 do

10 Compute t,, = {%J;

u Take real-time decisions using (i) SOE%(¢,) and

(ii) SPP (t,) if SPF # 0 or else SPL. 4 (tn);

12 Wait At,; ¢, <t +1;

13 SfDiitDed — STDP(O : Tfi:zed — 1);

14 T T+ %;

VI. EVALUATION RESULTS

We perform numerical evaluations and comparisons of the
proposed RHC over CoDistFlow re-dispatch scheme. We study
the impact of several factors on the re-dispatch performance
and complexity, such as the battery size, the number of
scenarios and the consideration of grid and battery losses.
We set At = At, = 0.25 h, T = 96, while A7 varies.
We compare re-dispatching via RHC over CoDistFlow, with a
scheme that the dispatch plan is computed just before the day it
is applied and it is not further updated intra-day. For the latter
scheme, called “No Re-dispatch”, we use the algorithms of
Section V-B, but, we set A7 = T = 96. Thus, the problems
solved every At refer to completely disjoint time periods.
RHC over CoDistFlow is indicated with “Re-dispatch”.

The simulations are performed for a real Swiss grid, shown
in Fig. 3. It consists of 34 buses, including the PCC. There
is one battery connected to bus 1, with maximum apparent
power 6 MW and capacity 3 MWh (three-phase), and one
battery connected to bus 23 with the same characteristics.
The buses 34 and 35 are virtual buses for the battery mod-
els. The max/min (magnitude) line impedance is (0.34 +
70.24)/(0.025 + 50.01) €2, the max/min shunt capacitance is
200.15/6.73 uS and the max/min ampacity limit is 400/140



@

8 10 12 19 20 21 22 28

2 3 4 5 7 17 18 I
33 24 119 13 27
22 256 914

26

Grid connection point (GCP)

¢

0

Fig. 3: Illustration of the real Swiss grid used for our numerical
evaluations. The squares indicate nodes with batteries.

A. The power base is 256 MW and the voltage base is 21 kV.
We set v = 0.9 pu, ¥ = 1.1 pu, and that the initial SoE of all
batteries is equal to 1 MWh, for all scenarios.

We apply D = 80 scenarios, except differently mentioned,
created as described in Section VI-A. By choosing this D,
we tried to account for as much detailed information of
the uncertainty as possible while maintaining a manageable
computational complexity. Note that we tackle large scale
problems (N = 36, T' = 96, D = 80 and several decision
variables per node, time and scenario), with much larger
dimensions than in the literature e.g., [15], [10], [18]. We use

Matlab with the Yalmip toolbox and the Gurobi solver.
We introduce the following measures. The applied dispatch
plan value at ¢,. based on our intra-day computations is equal to

pPPF (g(tTAtT —TAt)/ AtJ ) Let Py (t,) be the realized power

at PCC, at t,., when the true prosumption is revealed and the
battery power decisions are applied after being computed by
the real-time control algorithm. The dispatch plan power error
at t,., denoted as D Ppg, is defined as

DPy(t,) = Pi(tr) — PDPQ(tTAtT - rAt)/AtD. 17)
When D Pg(t,) = 0, the dispatch plan can be followed at ¢,.
According to the energy market Fingrid [20], the dispatch plan
error in terms of energy is defined per hour. Let us denote as
tr, € {0,1,2,...} the index of hours, and assuming that 1/At,.
is an integer, we define:

tp/Atp+1/At,

>

tr=tp /Aty

DEE(th) = DPE(tT)Atr. (18)

When DEg(ty) > 0, the required energy at hour ¢;, exceeds

the planned one and we need to pay up-regulation costs [20],
at price x*. Similarly, when DEg(t,) < 0 we pay down-
regulation costs, at price x~. In both cases, we additionally
consider the price-to-pay for the frequency containment re-
serves, denoted as xco. We use Fingrid’s data ([20]), and
specifically, we apply the average values of the last three
months of 2018 equal to x* = 56.22 € /MWh, xy~ = 45.97
€ /MWh, \¢ = 18.10 € /MWh. Thus, the cost at t;, is:

DPcost(tn) = |max{x" - DEg(tn),x” - DEg(ts)}|
ty/Atr+1/At,

+Atr : XC Z

tr=ty /Aty

|DPg(t,)]. (19)

Assume T hours of grid control in total. We define the
average dispatch plan energy error per day, CDEpg and the
corresponding cost per day, C'D Pg,st, as:

21 T-1
CDEp = > " IDEg(tn)|, CDPoost =

tp =0

ﬂ\\ AN

T_1
Z PC’ost th

(20)

We assign wy = wy = wy = wyg = wg = 1, ws = 10
and ag = 0.1. ws is chosen much larger than the rest of
the weights to emphasize on the importance of obtaining a
dispatch plan that can be followed by all scenarios. Also,
Ep, = 15%SoEp, MWh and Eg, = 85%SoEp, MWh,
¢ € {34,35}. For the sixth term in the Eq. (14), let 7,
include the virtual node 34 and the buses with IDs 1 — 21,
and Z, include the virtual node 35 and the buses with IDs
22 — 33. In all cases, we set Tf;zcq = 1 since CoDistFlow
takes a few minutes to run for the grid considered in this
application, at each iteration of the RHC. Finally, the real-time
control algorithm minimizes the error in following the dispatch
plan. Also, it does not discharge/charge a battery more than
10%/90% of its capacity.

A. Day-ahead and intra-day forecasts

This section describes the computation of forecasts and
forecast scenarios. Although not a contribution of this paper,
their availability is essential to evaluate the performance of
the proposed re-dispatching strategy. The forecasting engine is
based on an ARMA model. The order of the autoregressive and
moving average terms are respectively chosen by evaluating
the partial autocorrelation and autocorrelation functions, ac-
cording to conventional practices for their identification. They
are 36 (with non-zero coefficients at lags 1, 24, 25 and 36)
and 4. Differentiating the time series at lag 1 and 24 was also
tested, but it did not contribute to improving the estimation
performance. The order of ARMA models at the various
buses is the same, but their parameters are estimated for each
bus individually. ARMA models are used to generate point
predictions for the horizon 1 — 25 hours, which are updated
in a rolling horizon every 2 hours. Moreover, the variance of
the point predictions is used to build parametric probabilistic
forecasts in the form of probability density functions (PDFs).

Forecast scenarios are generated with the method described
in [9], briefly summarized hereafter for clarity. It relies on
the intuition that, if predicted PDFs are reliable, calculating
the values of the PDF for the realizations lead to uniformly
distributed series, which can be transformed in Gaussian mul-
tivariate random variables (i.e., by applying the profit function)
and tracked by identifying the associated covariance matrix.
The covariance matrix is then used to generate multivariate
Gaussian distributed scenarios with off-the-shelf libraries (e.g.,
mvnrnd in Matlab). The random sequences are transformed in
the final forecast scenarios by, first, applying the inverse probit
function and, finally, the inverse predicted PDFs. Temperature
is not considered as a regressor since, in this case, there are
no electric-thermal loads.

B. Evaluation of RHC over CoDistFlow on Real Data Sets

Our evaluation is based on historical data from the con-
sidered real grid for 10 days (T = 240). The measurements
are used for deriving day-ahead and intra-day forecasts and
scenarios (Section VI-A) as well as realizations to which the
real-time control algorithm applies. For RHC, we examined
different values of the parameter A7. The results are shown
in Fig. 4 and in Table 1.

Table I compares the CDEgr and C'DPg,s values, as
well as the characteristics of the DFEp values among all
schemes. Re-dispatch via RHC reduces significantly the error



in following the dispatch plan in real-time. Specifically, if
using RHC with A7 = 6 h, CDFEFg reduces more than 4.5
times. When A7 = 4 h, CDFEFg reduces more than 32.5
times and with A7 = 2 h, it reduces drastically being almost
zero. Moreover, the 98% percentile of DEg is drastically
reduced; if A7 =4 h or lower, it becomes very close to zero.
CDPg,st shows the same trends with C'D Eg. Notice that no
re-dispatching may lead to significant costs along time and
across multiple feeders (here, we account for a single feeder).
For example, for a single feeder, the expected yearly cost is
24,696 € compared to 799.2 € that it would have been if re-
dispatching every 4 hours. If considering that a small city, such
as Lausanne with 150,000 inhabitants, has 50 — 60 feeders,
this cost may reach 1,234,800 — 1,481,760 €, which is a
way larger than a cost of 39,960 — 47,952 € if re-dispatching
with A7 =4 h.

TABLE I: Comparisons of CDEg, DEg [kWh], CDPcos: [€].

Scheme CDEg 98% perc. DEg | CDPcost
No Re-dispatch | 978.8 400.91 68.6

AT =6h 209.53 249.51 15.57
AT =4h 29.95 0.0325 2.22

AT =2h 0.15 0.0242 0.0095

Fig. 4(a) shows the D Pg values for all real-time intervals,
for schemes without and with re-dispatch. Re-dispatch reduces
the number of real-time intervals that dispatch plan tracking
fails. In Fig. 4(b), we compare the cdf of D Pg, for all schemes.
The maximum value of DPg over all real-time intervals
decreases significantly with re-dispatch. For No Re-dispatch
it is equal to 736.39 kW and for Re-dispatch it is 453.64 kW
with A7 = 6 h, 405.24 kW with A7 = 4 h and 0.365 kW
with A7 = 2 h. Thus, if re-dispatching the required power
capacity reserves are smaller.

In Figs. 4(c)-4(f), for better illustration purposes, we focus
on times between ¢, = 800 and t, = 960. Figs. 4(c), 4(d)
compare the dispatch plan and the realized power, P;, at the
PCC without and with re-dispatch. By comparing Fig. 4(a)
with Figs. 4(c), 4(d), we observe that the error is just one
order of magnitude smaller than the PCC power and therefore
it is important to reduce it via re-dispatching. Indeed, we
observe once more that RHC can track the dispatch plan more
accurately. Finally, failures in following the dispatch plan are
due to depleting the flexibility of the batteries. Figs. 4(e), 4(f)
present the SoE of the batteries at the virtual nodes 34 and 35.
When the batteries are both full and the generation is greater
than the consumption or when they are both empty and the
consumption is greater than the generation, there is a failure
in following the dispatch plan.

Next, we vary the number of scenarios, D, and study
the impact on time complexity and performance of RHC
over CoDistFlow. Time complexity refers to the time that
CoDistFlow requires to compute an updated SP* at an RHC
iteration and does not depend on A7. We observe that the
time complexity increases with the number of scenarios. In
the cases examined it is less than 10 min; that is why we
choose T'fjzcq = 1 that corresponds to 15 min. As a result,
re-dispatching every 2 hours for eliminating error and cost
(Table 1) is totally possible as far as time complexity is
considered. In general, the error values, C DEg, are smaller

for larger D. However, introducing re-dispatch leads to a much
larger improvement in C'D Ep than increasing the number of

scenarios of the No Re-dispatch scheme.
TABLE II: Comparisons w.r.t. the number of scenarios.

D CDEg [kWh] | CDEg [kWh] | Time complex-
AT =6 No Re-dispatch | ity (min)

5 300.44 1032 0.35

15 236.4 996.92 1.3

30 234.37 992.01 4

50 223.78 987.41 6

80 209.53 978.8 9

C. Study of RHC over CoDistFlow with Varying Battery Size

In this part, we evaluate the impact of battery capacity on
re-dispatching. The battery positions remain the same. Here,
we consider D = 30 scenarios. Table III shows the results.
The CDFEFE values decrease as the battery capacity increases,
as expected, since a larger battery provides more flexibility to
both the day-ahead and the real-time control algorithms.

Re-dispatching via RHC further reduces C D Eg for larger
battery capacities. In detail, for small battery capacities, i.e.,
second and third column of Table III, re-dispatch with A7 = 6
h reduces the CDEg by 30% — 64%. For larger battery ca-
pacities (last two columns of Table III), it reduces the CDFEg,
by 80%. Therefore, re-dispatch via RHC always improves the
battery usage and allows efficiently tracking the dispatch plan
with more advantages though for larger battery capacities.
TABLE III: CDEg values [kWh] for diverse battery capacities.

The first line is the per battery capacity (three-phase). Note that in
Section VI-B, each battery has a capacity of 3 MWh.

Scheme/Bat. size | 0.75 MWh | 1.5 MWh | 3 MWh | 4.5 MWh
No Re-dispatch 2,452 1,703.9 992.01 615.06
AT =6h 1,714 608.22 234.37 108.28

D. Efficiency of using CoDistFlow for Re-dispatch

As mentioned in Section V, by using CoDistFlow we
ensure that at convergence the obtained solution satisfies the
exact (AC) power flow equations and the exact operational
constraints (i.e., Eqgs. (1)-(13)). Notably, via our evaluations
we verified that the computational complexity required for
CoDistFlow is suitable for the re-dispatch time-scale (i.e.,
every A7) and that CoDistFlow converges in a few iterations,
usually 2 to 5.

We further evaluate the result of the first iteration (k = 0) of
CoDistFlow in two options, namely, (A) we apply the dispatch
plan obtained for k = 0, after adding to it the aggregated for
all lines at PCC grid and battery losses (computed via LF) for
each time interval, (B) we apply the dispatch plan obtained
for k£ = 0 (i.e., we do not account for the grid/battery losses).
However, the solution obtained at each 7, in both options,
will not satisfy the exact power flow equations and operational
constraints; note that the battery trajectories, i.e., sg, are not
updated after considering the losses in option (A). For Re-
dispatch, we set A, =6 h.

From Table IV, we observe that by ignoring the grid/battery
losses (i.e., in option (B)) the CDFEp values increase com-
pared to CoDistFlow (similar results are shown in [6]). In
addition, option (A) has very similar C D Eg values as option
(B), implying that iterations are important. If considering the
city of Lausanne as in Section VI-B, the yearly cost due
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Fig. 4: State-of-energy and dispatch plan error comparisons. RHC is with A7 =4 h.

to impossibility of tracking the dispatch plan may have an
increase of up to 108,000 €, when not accounting for the
losses both for Re-dispatch and No Re-dispatch.

TABLE 1IV: CoDistFlow vs. No iterations. CDEg in kWh,
CDPgyst in €.
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IEEE Trans. on Sustainable Energy, vol. 7, no. 4, pp. 1762-1777, 2016.
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“From Probabilistic Forecasts to Statistical Scenarios of Short-Term

Scheme CDEg CDPcost | CDEE No | CDPcost
Re-disp. | Re-disp. Re-disp. No Re-disp.

CoDistFlow | 209.53 15.57 978.8 68.6

(A) 270.11 20.07 1031.3 72.9

(B) 270.83 20.13 1032.3 72.98
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VII. CONCLUSIONS

We proposed and evaluated RHC over CoDistFlow, a re-
dispatch scheme for distribution grids with DERs and batteries.
The dispatch plan is updated during the grid operation with
a receding horizon policy. The update of the dispatch plan
is performed via CoDistFlow that efficiently accounts for the
grid/battery losses and the grid constraints. The evaluations are
performed on a real Swiss grid using real data. We have shown
that, if we do not re-dispatch, the daily dispatch plan tracking
error and associated cost may become considerably large. On
the contrary, if re-dispatching every 6 h, the daily dispatch plan
tracking error and associated cost reduce by around 80%, if
re-dispatching every 4 h they can reduce more than 30x and
if re-dispatching every 2 h they eliminate to zero.

REFERENCES

[1] R. Lueken and J. Apt, “The Effects of Bulk Electricity Storage on the
PJM Market,” Energy Systems, vol. 5, no. 4, pp. 677-704, 2014.

[2] A. Preskill and D. Callaway, “How Much Energy Storage do Modern
Power Systems Need?” arXiv preprint arXiv:1805.05115, 2018.

[3] M. Bozorg, F. Sossan, J.-Y. L. Boudec, and M. Paolone, “Influencing
the Bulk Power System Reserve by Dispatching Power Distribution Net-
works Using Local Energy Storage,” Electric Power Systems Research,
vol. 163, pp. 270 — 279, 2018.

[4] J. Leadbetter and L. Swan, “Battery Storage System for Residential
Electricity Peak Demand Shaving,” Energy and Buildings, vol. 55, pp.
685 — 692, 2012.

[5] P. Fortenbacher, J. L. Mathieu, and G. Andersson, “Modeling and
Optimal Operation of Distributed Battery Storage in Low Voltage Grids,”
IEEE Trans. on Power Systems, vol. 32, no. 6, pp. 4340-4350, Nov 2017.

[6] E. Stai, L. Reyes-Chamorro, F. Sossan, J. Y. L. Boudec, and M. Paolone,
“Dispatching Stochastic Heterogeneous Resources Accounting for Grid
and Battery Losses,” IEEE Transactions on Smart Grid, vol. 9, no. 6,
pp. 6522-6539, Nov. 2018.

[10] P. Patrinos, S. Trimboli, and A. Bemporad, “Stochastic MPC for Real-
time Market-based Optimal Power Dispatch,” in 50th IEEE Conf. on
Decision and Control and European Control Conf., Dec 2011.

N. Li, L. Chen, and S. H. Low, “Exact Convex Relaxation of OPF for
Radial Networks Using Branch Flow Model,” in IEEE Int’l Conf. on
Smart Grid Com., Nov 2012, pp. 7-12.

M. Nick, R. Cherkaoui, J. L. Boudec, and M. Paolone, “An Exact
Convex Formulation of the Optimal Power Flow in Radial Distribution
Networks Including Transverse Components,” IEEE Transactions on
Automatic Control, vol. 63, no. 3, pp. 682-697, March 2018.

Y. Ding, M. Xie, Q. Wu, and J. Ostergaard, “Development of Energy and
Reserve Pre-dispatch and Re-dispatch Models for Real-time Price Risk
and Reliability Assessment,” IET Generation, Transmission Distribution,
vol. &, no. 7, pp. 1338-1345, 2014.

C. Hamon, M. Perninge, and L. Soder, “The Value of Using Chance-
constrained Optimal Power Flows for Generation Re-dispatch Under
Uncertainty with Detailed Security Constraints,” in /[EEE PES Asia-
Pacific Power and Energy Engin. Conf. (APPEEC), Dec 2013, pp. 1-6.
C. A. Hans, P. Sopasakis, A. Bemporad, J. Raisch, and C. Reincke-
Collon, “Scenario-based Model Predictive Operation Control of Islanded
Microgrids,” in 54th IEEE Conference on Decision and Control (CDC),
Dec 2015, pp. 3272-3277.

H. Ding, Z. Hu, and Y. Song, “Rolling Optimization of Wind Farm and
Energy Storage System in Electricity Markets,” IEEE Transactions on
Power Systems, vol. 30, no. 5, pp. 2676-2684, 2015.

A. Nottrott, J. Kleissl, and B. Washom, “Storage Dispatch Optimization
for Grid-connected Combined Photovoltaic-Battery Storage Systems,” in
IEEE Power and Energy Society General Meeting, 2012, pp. 1-7.

A. Parisio, E. Rikos, and L. Glielmo, “A Model Predictive Control
Approach to Microgrid Operation Optimization,” IEEE Transactions on
Control Systems Technology, vol. 22, no. 5, pp. 1813-1827, 2014.

R. Palma-Behnke, C. Benavides, F. Lanas, B. Severino, L. Reyes,
J. Llanos, and D. Séez, “A Microgrid Energy Management System Based
on the Rolling Horizon Strategy,” IEEE Transactions on Smart Grid,
vol. 4, no. 2, pp. 996-1006, 2013.

Fingrid, “Reserve Market Information,” 2019.
[Online]. Available: https://www.fingrid.fi/en/electricity-
market/reserves_and_balancing/reserve-market-information, (Accessed:
22/01/2019)

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]



